1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60 
61 /*
62  * Rx buffer size.  We use largish buffers if possible but settle for single
63  * pages under memory shortage.
64  */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70 
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES    256
73 #define RX_PULL_LEN      128
74 
75 /*
76  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78  */
79 #define RX_PKT_SKB_LEN   512
80 
81 /*
82  * Max number of Tx descriptors we clean up at a time.  Should be modest as
83  * freeing skbs isn't cheap and it happens while holding locks.  We just need
84  * to free packets faster than they arrive, we eventually catch up and keep
85  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86  * also match the CIDX Flush Threshold.
87  */
88 #define MAX_TX_RECLAIM 32
89 
90 /*
91  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92  * allocating buffers isn't cheap either.
93  */
94 #define MAX_RX_REFILL 16U
95 
96 /*
97  * Period of the Rx queue check timer.  This timer is infrequent as it has
98  * something to do only when the system experiences severe memory shortage.
99  */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Period of the Tx queue check timer.
104  */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106 
107 /*
108  * Max number of Tx descriptors to be reclaimed by the Tx timer.
109  */
110 #define MAX_TIMER_TX_RECLAIM 100
111 
112 /*
113  * Timer index used when backing off due to memory shortage.
114  */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116 
117 /*
118  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119  * for a full sized WR.
120  */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122 
123 /*
124  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125  * into a WR.
126  */
127 #define MAX_IMM_TX_PKT_LEN 256
128 
129 /*
130  * Max size of a WR sent through a control Tx queue.
131  */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133 
134 struct rx_sw_desc {                /* SW state per Rx descriptor */
135 	struct page *page;
136 	dma_addr_t dma_addr;
137 };
138 
139 /*
140  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142  * We could easily support more but there doesn't seem to be much need for
143  * that ...
144  */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147 
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 					  unsigned int mtu)
150 {
151 	struct sge *s = &adapter->sge;
152 
153 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155 
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158 
159 /*
160  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161  * these to specify the buffer size as an index into the SGE Free List Buffer
162  * Size register array.  We also use bit 4, when the buffer has been unmapped
163  * for DMA, but this is of course never sent to the hardware and is only used
164  * to prevent double unmappings.  All of the above requires that the Free List
165  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167  * Free List Buffer alignment is 32 bytes, this works out for us ...
168  */
169 enum {
170 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173 
174 	/*
175 	 * XXX We shouldn't depend on being able to use these indices.
176 	 * XXX Especially when some other Master PF has initialized the
177 	 * XXX adapter or we use the Firmware Configuration File.  We
178 	 * XXX should really search through the Host Buffer Size register
179 	 * XXX array for the appropriately sized buffer indices.
180 	 */
181 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183 
184 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186 };
187 
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK  1
190 
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195 
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 	return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200 
201 /**
202  *	txq_avail - return the number of available slots in a Tx queue
203  *	@q: the Tx queue
204  *
205  *	Returns the number of descriptors in a Tx queue available to write new
206  *	packets.
207  */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 	return q->size - 1 - q->in_use;
211 }
212 
213 /**
214  *	fl_cap - return the capacity of a free-buffer list
215  *	@fl: the FL
216  *
217  *	Returns the capacity of a free-buffer list.  The capacity is less than
218  *	the size because one descriptor needs to be left unpopulated, otherwise
219  *	HW will think the FL is empty.
220  */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224 }
225 
226 /**
227  *	fl_starving - return whether a Free List is starving.
228  *	@adapter: pointer to the adapter
229  *	@fl: the Free List
230  *
231  *	Tests specified Free List to see whether the number of buffers
232  *	available to the hardware has falled below our "starvation"
233  *	threshold.
234  */
235 static inline bool fl_starving(const struct adapter *adapter,
236 			       const struct sge_fl *fl)
237 {
238 	const struct sge *s = &adapter->sge;
239 
240 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242 
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 		  dma_addr_t *addr)
245 {
246 	const skb_frag_t *fp, *end;
247 	const struct skb_shared_info *si;
248 
249 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 	if (dma_mapping_error(dev, *addr))
251 		goto out_err;
252 
253 	si = skb_shinfo(skb);
254 	end = &si->frags[si->nr_frags];
255 
256 	for (fp = si->frags; fp < end; fp++) {
257 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 					   DMA_TO_DEVICE);
259 		if (dma_mapping_error(dev, *addr))
260 			goto unwind;
261 	}
262 	return 0;
263 
264 unwind:
265 	while (fp-- > si->frags)
266 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267 
268 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 	return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273 
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 		      const dma_addr_t *addr)
276 {
277 	const skb_frag_t *fp, *end;
278 	const struct skb_shared_info *si;
279 
280 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281 
282 	si = skb_shinfo(skb);
283 	end = &si->frags[si->nr_frags];
284 	for (fp = si->frags; fp < end; fp++)
285 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287 
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290  *	deferred_unmap_destructor - unmap a packet when it is freed
291  *	@skb: the packet
292  *
293  *	This is the packet destructor used for Tx packets that need to remain
294  *	mapped until they are freed rather than until their Tx descriptors are
295  *	freed.
296  */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302 
303 /**
304  *	free_tx_desc - reclaims Tx descriptors and their buffers
305  *	@adapter: the adapter
306  *	@q: the Tx queue to reclaim descriptors from
307  *	@n: the number of descriptors to reclaim
308  *	@unmap: whether the buffers should be unmapped for DMA
309  *
310  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311  *	Tx buffers.  Called with the Tx queue lock held.
312  */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 		  unsigned int n, bool unmap)
315 {
316 	unsigned int cidx = q->cidx;
317 	struct tx_sw_desc *d;
318 
319 	d = &q->sdesc[cidx];
320 	while (n--) {
321 		if (d->skb) {                       /* an SGL is present */
322 			if (unmap && d->addr[0]) {
323 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 				memset(d->addr, 0, sizeof(d->addr));
325 			}
326 			dev_consume_skb_any(d->skb);
327 			d->skb = NULL;
328 		}
329 		++d;
330 		if (++cidx == q->size) {
331 			cidx = 0;
332 			d = q->sdesc;
333 		}
334 	}
335 	q->cidx = cidx;
336 }
337 
338 /*
339  * Return the number of reclaimable descriptors in a Tx queue.
340  */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 	hw_cidx -= q->cidx;
345 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347 
348 /**
349  *	reclaim_completed_tx - reclaims completed TX Descriptors
350  *	@adap: the adapter
351  *	@q: the Tx queue to reclaim completed descriptors from
352  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353  *	@unmap: whether the buffers should be unmapped for DMA
354  *
355  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356  *	and frees the associated buffers if possible.  If @max == -1, then
357  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358  */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 				       int maxreclaim, bool unmap)
361 {
362 	int reclaim = reclaimable(q);
363 
364 	if (reclaim) {
365 		/*
366 		 * Limit the amount of clean up work we do at a time to keep
367 		 * the Tx lock hold time O(1).
368 		 */
369 		if (maxreclaim < 0)
370 			maxreclaim = MAX_TX_RECLAIM;
371 		if (reclaim > maxreclaim)
372 			reclaim = maxreclaim;
373 
374 		free_tx_desc(adap, q, reclaim, unmap);
375 		q->in_use -= reclaim;
376 	}
377 
378 	return reclaim;
379 }
380 
381 /**
382  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383  *	@adap: the adapter
384  *	@q: the Tx queue to reclaim completed descriptors from
385  *	@unmap: whether the buffers should be unmapped for DMA
386  *
387  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388  *	and frees the associated buffers if possible.  Called with the Tx
389  *	queue locked.
390  */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 				bool unmap)
393 {
394 	(void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397 
398 static inline int get_buf_size(struct adapter *adapter,
399 			       const struct rx_sw_desc *d)
400 {
401 	struct sge *s = &adapter->sge;
402 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 	int buf_size;
404 
405 	switch (rx_buf_size_idx) {
406 	case RX_SMALL_PG_BUF:
407 		buf_size = PAGE_SIZE;
408 		break;
409 
410 	case RX_LARGE_PG_BUF:
411 		buf_size = PAGE_SIZE << s->fl_pg_order;
412 		break;
413 
414 	case RX_SMALL_MTU_BUF:
415 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 		break;
417 
418 	case RX_LARGE_MTU_BUF:
419 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 		break;
421 
422 	default:
423 		BUG();
424 	}
425 
426 	return buf_size;
427 }
428 
429 /**
430  *	free_rx_bufs - free the Rx buffers on an SGE free list
431  *	@adap: the adapter
432  *	@q: the SGE free list to free buffers from
433  *	@n: how many buffers to free
434  *
435  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436  *	buffers must be made inaccessible to HW before calling this function.
437  */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 	while (n--) {
441 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442 
443 		if (is_buf_mapped(d))
444 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 				       get_buf_size(adap, d),
446 				       PCI_DMA_FROMDEVICE);
447 		put_page(d->page);
448 		d->page = NULL;
449 		if (++q->cidx == q->size)
450 			q->cidx = 0;
451 		q->avail--;
452 	}
453 }
454 
455 /**
456  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457  *	@adap: the adapter
458  *	@q: the SGE free list
459  *
460  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461  *	buffer must be made inaccessible to HW before calling this function.
462  *
463  *	This is similar to @free_rx_bufs above but does not free the buffer.
464  *	Do note that the FL still loses any further access to the buffer.
465  */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469 
470 	if (is_buf_mapped(d))
471 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 	d->page = NULL;
474 	if (++q->cidx == q->size)
475 		q->cidx = 0;
476 	q->avail--;
477 }
478 
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 	if (q->pend_cred >= 8) {
482 		u32 val = adap->params.arch.sge_fl_db;
483 
484 		if (is_t4(adap->params.chip))
485 			val |= PIDX_V(q->pend_cred / 8);
486 		else
487 			val |= PIDX_T5_V(q->pend_cred / 8);
488 
489 		/* Make sure all memory writes to the Free List queue are
490 		 * committed before we tell the hardware about them.
491 		 */
492 		wmb();
493 
494 		/* If we don't have access to the new User Doorbell (T5+), use
495 		 * the old doorbell mechanism; otherwise use the new BAR2
496 		 * mechanism.
497 		 */
498 		if (unlikely(q->bar2_addr == NULL)) {
499 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 				     val | QID_V(q->cntxt_id));
501 		} else {
502 			writel(val | QID_V(q->bar2_qid),
503 			       q->bar2_addr + SGE_UDB_KDOORBELL);
504 
505 			/* This Write memory Barrier will force the write to
506 			 * the User Doorbell area to be flushed.
507 			 */
508 			wmb();
509 		}
510 		q->pend_cred &= 7;
511 	}
512 }
513 
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 				  dma_addr_t mapping)
516 {
517 	sd->page = pg;
518 	sd->dma_addr = mapping;      /* includes size low bits */
519 }
520 
521 /**
522  *	refill_fl - refill an SGE Rx buffer ring
523  *	@adap: the adapter
524  *	@q: the ring to refill
525  *	@n: the number of new buffers to allocate
526  *	@gfp: the gfp flags for the allocations
527  *
528  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529  *	allocated with the supplied gfp flags.  The caller must assure that
530  *	@n does not exceed the queue's capacity.  If afterwards the queue is
531  *	found critically low mark it as starving in the bitmap of starving FLs.
532  *
533  *	Returns the number of buffers allocated.
534  */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 			      gfp_t gfp)
537 {
538 	struct sge *s = &adap->sge;
539 	struct page *pg;
540 	dma_addr_t mapping;
541 	unsigned int cred = q->avail;
542 	__be64 *d = &q->desc[q->pidx];
543 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 	int node;
545 
546 #ifdef CONFIG_DEBUG_FS
547 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 		goto out;
549 #endif
550 
551 	gfp |= __GFP_NOWARN;
552 	node = dev_to_node(adap->pdev_dev);
553 
554 	if (s->fl_pg_order == 0)
555 		goto alloc_small_pages;
556 
557 	/*
558 	 * Prefer large buffers
559 	 */
560 	while (n) {
561 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 		if (unlikely(!pg)) {
563 			q->large_alloc_failed++;
564 			break;       /* fall back to single pages */
565 		}
566 
567 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 				       PAGE_SIZE << s->fl_pg_order,
569 				       PCI_DMA_FROMDEVICE);
570 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 			__free_pages(pg, s->fl_pg_order);
572 			q->mapping_err++;
573 			goto out;   /* do not try small pages for this error */
574 		}
575 		mapping |= RX_LARGE_PG_BUF;
576 		*d++ = cpu_to_be64(mapping);
577 
578 		set_rx_sw_desc(sd, pg, mapping);
579 		sd++;
580 
581 		q->avail++;
582 		if (++q->pidx == q->size) {
583 			q->pidx = 0;
584 			sd = q->sdesc;
585 			d = q->desc;
586 		}
587 		n--;
588 	}
589 
590 alloc_small_pages:
591 	while (n--) {
592 		pg = alloc_pages_node(node, gfp, 0);
593 		if (unlikely(!pg)) {
594 			q->alloc_failed++;
595 			break;
596 		}
597 
598 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 				       PCI_DMA_FROMDEVICE);
600 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 			put_page(pg);
602 			q->mapping_err++;
603 			goto out;
604 		}
605 		*d++ = cpu_to_be64(mapping);
606 
607 		set_rx_sw_desc(sd, pg, mapping);
608 		sd++;
609 
610 		q->avail++;
611 		if (++q->pidx == q->size) {
612 			q->pidx = 0;
613 			sd = q->sdesc;
614 			d = q->desc;
615 		}
616 	}
617 
618 out:	cred = q->avail - cred;
619 	q->pend_cred += cred;
620 	ring_fl_db(adap, q);
621 
622 	if (unlikely(fl_starving(adap, q))) {
623 		smp_wmb();
624 		q->low++;
625 		set_bit(q->cntxt_id - adap->sge.egr_start,
626 			adap->sge.starving_fl);
627 	}
628 
629 	return cred;
630 }
631 
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 		  GFP_ATOMIC);
636 }
637 
638 /**
639  *	alloc_ring - allocate resources for an SGE descriptor ring
640  *	@dev: the PCI device's core device
641  *	@nelem: the number of descriptors
642  *	@elem_size: the size of each descriptor
643  *	@sw_size: the size of the SW state associated with each ring element
644  *	@phys: the physical address of the allocated ring
645  *	@metadata: address of the array holding the SW state for the ring
646  *	@stat_size: extra space in HW ring for status information
647  *	@node: preferred node for memory allocations
648  *
649  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650  *	free buffer lists, or response queues.  Each SGE ring requires
651  *	space for its HW descriptors plus, optionally, space for the SW state
652  *	associated with each HW entry (the metadata).  The function returns
653  *	three values: the virtual address for the HW ring (the return value
654  *	of the function), the bus address of the HW ring, and the address
655  *	of the SW ring.
656  */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 			size_t sw_size, dma_addr_t *phys, void *metadata,
659 			size_t stat_size, int node)
660 {
661 	size_t len = nelem * elem_size + stat_size;
662 	void *s = NULL;
663 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664 
665 	if (!p)
666 		return NULL;
667 	if (sw_size) {
668 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669 
670 		if (!s) {
671 			dma_free_coherent(dev, len, p, *phys);
672 			return NULL;
673 		}
674 	}
675 	if (metadata)
676 		*(void **)metadata = s;
677 	return p;
678 }
679 
680 /**
681  *	sgl_len - calculates the size of an SGL of the given capacity
682  *	@n: the number of SGL entries
683  *
684  *	Calculates the number of flits needed for a scatter/gather list that
685  *	can hold the given number of entries.
686  */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695 	 * Address[N+1] is omitted.
696 	 *
697 	 * The following calculation incorporates all of the above.  It's
698 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 	 * first two flits which include the DSGL header, Length0 and
700 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 	 * (n-1) is odd ...
704 	 */
705 	n--;
706 	return (3 * n) / 2 + (n & 1) + 2;
707 }
708 
709 /**
710  *	flits_to_desc - returns the num of Tx descriptors for the given flits
711  *	@n: the number of flits
712  *
713  *	Returns the number of Tx descriptors needed for the supplied number
714  *	of flits.
715  */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 	return DIV_ROUND_UP(n, 8);
720 }
721 
722 /**
723  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724  *	@skb: the packet
725  *
726  *	Returns whether an Ethernet packet is small enough to fit as
727  *	immediate data. Return value corresponds to headroom required.
728  */
729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
730 {
731 	int hdrlen = 0;
732 
733 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
734 	    chip_ver > CHELSIO_T5) {
735 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
736 		hdrlen += sizeof(struct cpl_tx_pkt_core);
737 	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
738 		return 0;
739 	} else {
740 		hdrlen = skb_shinfo(skb)->gso_size ?
741 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
742 		hdrlen += sizeof(struct cpl_tx_pkt);
743 	}
744 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
745 		return hdrlen;
746 	return 0;
747 }
748 
749 /**
750  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
751  *	@skb: the packet
752  *
753  *	Returns the number of flits needed for a Tx WR for the given Ethernet
754  *	packet, including the needed WR and CPL headers.
755  */
756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
757 					 unsigned int chip_ver)
758 {
759 	unsigned int flits;
760 	int hdrlen = is_eth_imm(skb, chip_ver);
761 
762 	/* If the skb is small enough, we can pump it out as a work request
763 	 * with only immediate data.  In that case we just have to have the
764 	 * TX Packet header plus the skb data in the Work Request.
765 	 */
766 
767 	if (hdrlen)
768 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
769 
770 	/* Otherwise, we're going to have to construct a Scatter gather list
771 	 * of the skb body and fragments.  We also include the flits necessary
772 	 * for the TX Packet Work Request and CPL.  We always have a firmware
773 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
774 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
775 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
776 	 * with an embedded TX Packet Write CPL message.
777 	 */
778 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
779 	if (skb_shinfo(skb)->gso_size) {
780 		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
781 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
782 				 sizeof(struct cpl_tx_tnl_lso);
783 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
784 			u32 pkt_hdrlen;
785 
786 			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
787 						     skb_headlen(skb));
788 			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
789 				 round_up(pkt_hdrlen, 16);
790 		} else {
791 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
792 				 sizeof(struct cpl_tx_pkt_lso_core);
793 		}
794 
795 		hdrlen += sizeof(struct cpl_tx_pkt_core);
796 		flits += (hdrlen / sizeof(__be64));
797 	} else {
798 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
799 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
800 	}
801 	return flits;
802 }
803 
804 /**
805  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
806  *	@skb: the packet
807  *
808  *	Returns the number of Tx descriptors needed for the given Ethernet
809  *	packet, including the needed WR and CPL headers.
810  */
811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
812 					 unsigned int chip_ver)
813 {
814 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
815 }
816 
817 /**
818  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
819  *	@skb: the packet
820  *	@q: the Tx queue we are writing into
821  *	@sgl: starting location for writing the SGL
822  *	@end: points right after the end of the SGL
823  *	@start: start offset into skb main-body data to include in the SGL
824  *	@addr: the list of bus addresses for the SGL elements
825  *
826  *	Generates a gather list for the buffers that make up a packet.
827  *	The caller must provide adequate space for the SGL that will be written.
828  *	The SGL includes all of the packet's page fragments and the data in its
829  *	main body except for the first @start bytes.  @sgl must be 16-byte
830  *	aligned and within a Tx descriptor with available space.  @end points
831  *	right after the end of the SGL but does not account for any potential
832  *	wrap around, i.e., @end > @sgl.
833  */
834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
835 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
836 		     const dma_addr_t *addr)
837 {
838 	unsigned int i, len;
839 	struct ulptx_sge_pair *to;
840 	const struct skb_shared_info *si = skb_shinfo(skb);
841 	unsigned int nfrags = si->nr_frags;
842 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
843 
844 	len = skb_headlen(skb) - start;
845 	if (likely(len)) {
846 		sgl->len0 = htonl(len);
847 		sgl->addr0 = cpu_to_be64(addr[0] + start);
848 		nfrags++;
849 	} else {
850 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
851 		sgl->addr0 = cpu_to_be64(addr[1]);
852 	}
853 
854 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
855 			      ULPTX_NSGE_V(nfrags));
856 	if (likely(--nfrags == 0))
857 		return;
858 	/*
859 	 * Most of the complexity below deals with the possibility we hit the
860 	 * end of the queue in the middle of writing the SGL.  For this case
861 	 * only we create the SGL in a temporary buffer and then copy it.
862 	 */
863 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
864 
865 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
866 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
867 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
868 		to->addr[0] = cpu_to_be64(addr[i]);
869 		to->addr[1] = cpu_to_be64(addr[++i]);
870 	}
871 	if (nfrags) {
872 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
873 		to->len[1] = cpu_to_be32(0);
874 		to->addr[0] = cpu_to_be64(addr[i + 1]);
875 	}
876 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
877 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
878 
879 		if (likely(part0))
880 			memcpy(sgl->sge, buf, part0);
881 		part1 = (u8 *)end - (u8 *)q->stat;
882 		memcpy(q->desc, (u8 *)buf + part0, part1);
883 		end = (void *)q->desc + part1;
884 	}
885 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
886 		*end = 0;
887 }
888 EXPORT_SYMBOL(cxgb4_write_sgl);
889 
890 /* This function copies 64 byte coalesced work request to
891  * memory mapped BAR2 space. For coalesced WR SGE fetches
892  * data from the FIFO instead of from Host.
893  */
894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
895 {
896 	int count = 8;
897 
898 	while (count) {
899 		writeq(*src, dst);
900 		src++;
901 		dst++;
902 		count--;
903 	}
904 }
905 
906 /**
907  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
908  *	@adap: the adapter
909  *	@q: the Tx queue
910  *	@n: number of new descriptors to give to HW
911  *
912  *	Ring the doorbel for a Tx queue.
913  */
914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
915 {
916 	/* Make sure that all writes to the TX Descriptors are committed
917 	 * before we tell the hardware about them.
918 	 */
919 	wmb();
920 
921 	/* If we don't have access to the new User Doorbell (T5+), use the old
922 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
923 	 */
924 	if (unlikely(q->bar2_addr == NULL)) {
925 		u32 val = PIDX_V(n);
926 		unsigned long flags;
927 
928 		/* For T4 we need to participate in the Doorbell Recovery
929 		 * mechanism.
930 		 */
931 		spin_lock_irqsave(&q->db_lock, flags);
932 		if (!q->db_disabled)
933 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
934 				     QID_V(q->cntxt_id) | val);
935 		else
936 			q->db_pidx_inc += n;
937 		q->db_pidx = q->pidx;
938 		spin_unlock_irqrestore(&q->db_lock, flags);
939 	} else {
940 		u32 val = PIDX_T5_V(n);
941 
942 		/* T4 and later chips share the same PIDX field offset within
943 		 * the doorbell, but T5 and later shrank the field in order to
944 		 * gain a bit for Doorbell Priority.  The field was absurdly
945 		 * large in the first place (14 bits) so we just use the T5
946 		 * and later limits and warn if a Queue ID is too large.
947 		 */
948 		WARN_ON(val & DBPRIO_F);
949 
950 		/* If we're only writing a single TX Descriptor and we can use
951 		 * Inferred QID registers, we can use the Write Combining
952 		 * Gather Buffer; otherwise we use the simple doorbell.
953 		 */
954 		if (n == 1 && q->bar2_qid == 0) {
955 			int index = (q->pidx
956 				     ? (q->pidx - 1)
957 				     : (q->size - 1));
958 			u64 *wr = (u64 *)&q->desc[index];
959 
960 			cxgb_pio_copy((u64 __iomem *)
961 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
962 				      wr);
963 		} else {
964 			writel(val | QID_V(q->bar2_qid),
965 			       q->bar2_addr + SGE_UDB_KDOORBELL);
966 		}
967 
968 		/* This Write Memory Barrier will force the write to the User
969 		 * Doorbell area to be flushed.  This is needed to prevent
970 		 * writes on different CPUs for the same queue from hitting
971 		 * the adapter out of order.  This is required when some Work
972 		 * Requests take the Write Combine Gather Buffer path (user
973 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
974 		 * take the traditional path where we simply increment the
975 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
976 		 * hardware DMA read the actual Work Request.
977 		 */
978 		wmb();
979 	}
980 }
981 EXPORT_SYMBOL(cxgb4_ring_tx_db);
982 
983 /**
984  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
985  *	@skb: the packet
986  *	@q: the Tx queue where the packet will be inlined
987  *	@pos: starting position in the Tx queue where to inline the packet
988  *
989  *	Inline a packet's contents directly into Tx descriptors, starting at
990  *	the given position within the Tx DMA ring.
991  *	Most of the complexity of this operation is dealing with wrap arounds
992  *	in the middle of the packet we want to inline.
993  */
994 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
995 			 const struct sge_txq *q, void *pos)
996 {
997 	int left = (void *)q->stat - pos;
998 	u64 *p;
999 
1000 	if (likely(skb->len <= left)) {
1001 		if (likely(!skb->data_len))
1002 			skb_copy_from_linear_data(skb, pos, skb->len);
1003 		else
1004 			skb_copy_bits(skb, 0, pos, skb->len);
1005 		pos += skb->len;
1006 	} else {
1007 		skb_copy_bits(skb, 0, pos, left);
1008 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1009 		pos = (void *)q->desc + (skb->len - left);
1010 	}
1011 
1012 	/* 0-pad to multiple of 16 */
1013 	p = PTR_ALIGN(pos, 8);
1014 	if ((uintptr_t)p & 8)
1015 		*p = 0;
1016 }
1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1018 
1019 static void *inline_tx_skb_header(const struct sk_buff *skb,
1020 				  const struct sge_txq *q,  void *pos,
1021 				  int length)
1022 {
1023 	u64 *p;
1024 	int left = (void *)q->stat - pos;
1025 
1026 	if (likely(length <= left)) {
1027 		memcpy(pos, skb->data, length);
1028 		pos += length;
1029 	} else {
1030 		memcpy(pos, skb->data, left);
1031 		memcpy(q->desc, skb->data + left, length - left);
1032 		pos = (void *)q->desc + (length - left);
1033 	}
1034 	/* 0-pad to multiple of 16 */
1035 	p = PTR_ALIGN(pos, 8);
1036 	if ((uintptr_t)p & 8) {
1037 		*p = 0;
1038 		return p + 1;
1039 	}
1040 	return p;
1041 }
1042 
1043 /*
1044  * Figure out what HW csum a packet wants and return the appropriate control
1045  * bits.
1046  */
1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1048 {
1049 	int csum_type;
1050 	bool inner_hdr_csum = false;
1051 	u16 proto, ver;
1052 
1053 	if (skb->encapsulation &&
1054 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1055 		inner_hdr_csum = true;
1056 
1057 	if (inner_hdr_csum) {
1058 		ver = inner_ip_hdr(skb)->version;
1059 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1060 			inner_ipv6_hdr(skb)->nexthdr;
1061 	} else {
1062 		ver = ip_hdr(skb)->version;
1063 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1064 			ipv6_hdr(skb)->nexthdr;
1065 	}
1066 
1067 	if (ver == 4) {
1068 		if (proto == IPPROTO_TCP)
1069 			csum_type = TX_CSUM_TCPIP;
1070 		else if (proto == IPPROTO_UDP)
1071 			csum_type = TX_CSUM_UDPIP;
1072 		else {
1073 nocsum:			/*
1074 			 * unknown protocol, disable HW csum
1075 			 * and hope a bad packet is detected
1076 			 */
1077 			return TXPKT_L4CSUM_DIS_F;
1078 		}
1079 	} else {
1080 		/*
1081 		 * this doesn't work with extension headers
1082 		 */
1083 		if (proto == IPPROTO_TCP)
1084 			csum_type = TX_CSUM_TCPIP6;
1085 		else if (proto == IPPROTO_UDP)
1086 			csum_type = TX_CSUM_UDPIP6;
1087 		else
1088 			goto nocsum;
1089 	}
1090 
1091 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1092 		int eth_hdr_len, l4_len;
1093 		u64 hdr_len;
1094 
1095 		if (inner_hdr_csum) {
1096 			/* This allows checksum offload for all encapsulated
1097 			 * packets like GRE etc..
1098 			 */
1099 			l4_len = skb_inner_network_header_len(skb);
1100 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1101 		} else {
1102 			l4_len = skb_network_header_len(skb);
1103 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1104 		}
1105 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1106 
1107 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1108 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1109 		else
1110 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1111 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1112 	} else {
1113 		int start = skb_transport_offset(skb);
1114 
1115 		return TXPKT_CSUM_TYPE_V(csum_type) |
1116 			TXPKT_CSUM_START_V(start) |
1117 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1118 	}
1119 }
1120 
1121 static void eth_txq_stop(struct sge_eth_txq *q)
1122 {
1123 	netif_tx_stop_queue(q->txq);
1124 	q->q.stops++;
1125 }
1126 
1127 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1128 {
1129 	q->in_use += n;
1130 	q->pidx += n;
1131 	if (q->pidx >= q->size)
1132 		q->pidx -= q->size;
1133 }
1134 
1135 #ifdef CONFIG_CHELSIO_T4_FCOE
1136 static inline int
1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1138 		  const struct port_info *pi, u64 *cntrl)
1139 {
1140 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1141 
1142 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1143 		return 0;
1144 
1145 	if (skb->protocol != htons(ETH_P_FCOE))
1146 		return 0;
1147 
1148 	skb_reset_mac_header(skb);
1149 	skb->mac_len = sizeof(struct ethhdr);
1150 
1151 	skb_set_network_header(skb, skb->mac_len);
1152 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1153 
1154 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1155 		return -ENOTSUPP;
1156 
1157 	/* FC CRC offload */
1158 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1159 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1160 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1161 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1162 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1163 	return 0;
1164 }
1165 #endif /* CONFIG_CHELSIO_T4_FCOE */
1166 
1167 /* Returns tunnel type if hardware supports offloading of the same.
1168  * It is called only for T5 and onwards.
1169  */
1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1171 {
1172 	u8 l4_hdr = 0;
1173 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1174 	struct port_info *pi = netdev_priv(skb->dev);
1175 	struct adapter *adapter = pi->adapter;
1176 
1177 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1178 	    skb->inner_protocol != htons(ETH_P_TEB))
1179 		return tnl_type;
1180 
1181 	switch (vlan_get_protocol(skb)) {
1182 	case htons(ETH_P_IP):
1183 		l4_hdr = ip_hdr(skb)->protocol;
1184 		break;
1185 	case htons(ETH_P_IPV6):
1186 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1187 		break;
1188 	default:
1189 		return tnl_type;
1190 	}
1191 
1192 	switch (l4_hdr) {
1193 	case IPPROTO_UDP:
1194 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1195 			tnl_type = TX_TNL_TYPE_VXLAN;
1196 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1197 			tnl_type = TX_TNL_TYPE_GENEVE;
1198 		break;
1199 	default:
1200 		return tnl_type;
1201 	}
1202 
1203 	return tnl_type;
1204 }
1205 
1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1207 				   struct cpl_tx_tnl_lso *tnl_lso,
1208 				   enum cpl_tx_tnl_lso_type tnl_type)
1209 {
1210 	u32 val;
1211 	int in_eth_xtra_len;
1212 	int l3hdr_len = skb_network_header_len(skb);
1213 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1214 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1215 	bool v6 = (ip_hdr(skb)->version == 6);
1216 
1217 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1218 	      CPL_TX_TNL_LSO_FIRST_F |
1219 	      CPL_TX_TNL_LSO_LAST_F |
1220 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1221 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1222 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1223 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1224 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1225 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1226 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1227 
1228 	tnl_lso->IpIdOffsetOut = 0;
1229 
1230 	/* Get the tunnel header length */
1231 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1232 	in_eth_xtra_len = skb_inner_network_header(skb) -
1233 			  skb_inner_mac_header(skb) - ETH_HLEN;
1234 
1235 	switch (tnl_type) {
1236 	case TX_TNL_TYPE_VXLAN:
1237 	case TX_TNL_TYPE_GENEVE:
1238 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1239 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1240 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1241 		break;
1242 	default:
1243 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1244 		break;
1245 	}
1246 
1247 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1248 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1249 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1250 
1251 	tnl_lso->r1 = 0;
1252 
1253 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1254 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1255 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1256 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1257 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1258 
1259 	tnl_lso->IpIdOffset = htons(0);
1260 
1261 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1262 	tnl_lso->TCPSeqOffset = htonl(0);
1263 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1264 }
1265 
1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1267 				 struct cpl_tx_pkt_lso_core *lso)
1268 {
1269 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1270 	int l3hdr_len = skb_network_header_len(skb);
1271 	const struct skb_shared_info *ssi;
1272 	bool ipv6 = false;
1273 
1274 	ssi = skb_shinfo(skb);
1275 	if (ssi->gso_type & SKB_GSO_TCPV6)
1276 		ipv6 = true;
1277 
1278 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1279 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1280 			      LSO_IPV6_V(ipv6) |
1281 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1282 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1283 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1284 	lso->ipid_ofst = htons(0);
1285 	lso->mss = htons(ssi->gso_size);
1286 	lso->seqno_offset = htonl(0);
1287 	if (is_t4(adap->params.chip))
1288 		lso->len = htonl(skb->len);
1289 	else
1290 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1291 
1292 	return (void *)(lso + 1);
1293 }
1294 
1295 /**
1296  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1297  *	@adap: the adapter
1298  *	@eq: the Ethernet TX Queue
1299  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1300  *
1301  *	We're typically called here to update the state of an Ethernet TX
1302  *	Queue with respect to the hardware's progress in consuming the TX
1303  *	Work Requests that we've put on that Egress Queue.  This happens
1304  *	when we get Egress Queue Update messages and also prophylactically
1305  *	in regular timer-based Ethernet TX Queue maintenance.
1306  */
1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1308 				 int maxreclaim)
1309 {
1310 	struct sge_txq *q = &eq->q;
1311 	unsigned int reclaimed;
1312 
1313 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1314 		return 0;
1315 
1316 	/* Reclaim pending completed TX Descriptors. */
1317 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1318 
1319 	/* If the TX Queue is currently stopped and there's now more than half
1320 	 * the queue available, restart it.  Otherwise bail out since the rest
1321 	 * of what we want do here is with the possibility of shipping any
1322 	 * currently buffered Coalesced TX Work Request.
1323 	 */
1324 	if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) {
1325 		netif_tx_wake_queue(eq->txq);
1326 		eq->q.restarts++;
1327 	}
1328 
1329 	__netif_tx_unlock(eq->txq);
1330 	return reclaimed;
1331 }
1332 
1333 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1334 				     struct net_device *dev,
1335 				     u32 min_pkt_len)
1336 {
1337 	u32 max_pkt_len;
1338 
1339 	/* The chip min packet length is 10 octets but some firmware
1340 	 * commands have a minimum packet length requirement. So, play
1341 	 * safe and reject anything shorter than @min_pkt_len.
1342 	 */
1343 	if (unlikely(skb->len < min_pkt_len))
1344 		return -EINVAL;
1345 
1346 	/* Discard the packet if the length is greater than mtu */
1347 	max_pkt_len = ETH_HLEN + dev->mtu;
1348 
1349 	if (skb_vlan_tagged(skb))
1350 		max_pkt_len += VLAN_HLEN;
1351 
1352 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1353 		return -EINVAL;
1354 
1355 	return 0;
1356 }
1357 
1358 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1359 			     u32 hdr_len)
1360 {
1361 	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1362 	wr->u.udpseg.ethlen = skb_network_offset(skb);
1363 	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1364 	wr->u.udpseg.udplen = sizeof(struct udphdr);
1365 	wr->u.udpseg.rtplen = 0;
1366 	wr->u.udpseg.r4 = 0;
1367 	if (skb_shinfo(skb)->gso_size)
1368 		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1369 	else
1370 		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1371 	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1372 	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1373 
1374 	return (void *)(wr + 1);
1375 }
1376 
1377 /**
1378  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1379  *	@skb: the packet
1380  *	@dev: the egress net device
1381  *
1382  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1383  */
1384 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1385 {
1386 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1387 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1388 	unsigned int last_desc, flits, ndesc;
1389 	u32 wr_mid, ctrl0, op, sgl_off = 0;
1390 	const struct skb_shared_info *ssi;
1391 	int len, qidx, credits, ret, left;
1392 	struct tx_sw_desc *sgl_sdesc;
1393 	struct fw_eth_tx_eo_wr *eowr;
1394 	struct fw_eth_tx_pkt_wr *wr;
1395 	struct cpl_tx_pkt_core *cpl;
1396 	const struct port_info *pi;
1397 	bool immediate = false;
1398 	u64 cntrl, *end, *sgl;
1399 	struct sge_eth_txq *q;
1400 	unsigned int chip_ver;
1401 	struct adapter *adap;
1402 
1403 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1404 	if (ret)
1405 		goto out_free;
1406 
1407 	pi = netdev_priv(dev);
1408 	adap = pi->adapter;
1409 	ssi = skb_shinfo(skb);
1410 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1411 	if (xfrm_offload(skb) && !ssi->gso_size)
1412 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1413 #endif /* CHELSIO_IPSEC_INLINE */
1414 
1415 #ifdef CONFIG_CHELSIO_TLS_DEVICE
1416 	if (skb->decrypted)
1417 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1418 #endif /* CHELSIO_TLS_DEVICE */
1419 
1420 	qidx = skb_get_queue_mapping(skb);
1421 	if (ptp_enabled) {
1422 		spin_lock(&adap->ptp_lock);
1423 		if (!(adap->ptp_tx_skb)) {
1424 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1425 			adap->ptp_tx_skb = skb_get(skb);
1426 		} else {
1427 			spin_unlock(&adap->ptp_lock);
1428 			goto out_free;
1429 		}
1430 		q = &adap->sge.ptptxq;
1431 	} else {
1432 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1433 	}
1434 	skb_tx_timestamp(skb);
1435 
1436 	reclaim_completed_tx(adap, &q->q, -1, true);
1437 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1438 
1439 #ifdef CONFIG_CHELSIO_T4_FCOE
1440 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1441 	if (unlikely(ret == -ENOTSUPP)) {
1442 		if (ptp_enabled)
1443 			spin_unlock(&adap->ptp_lock);
1444 		goto out_free;
1445 	}
1446 #endif /* CONFIG_CHELSIO_T4_FCOE */
1447 
1448 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1449 	flits = calc_tx_flits(skb, chip_ver);
1450 	ndesc = flits_to_desc(flits);
1451 	credits = txq_avail(&q->q) - ndesc;
1452 
1453 	if (unlikely(credits < 0)) {
1454 		eth_txq_stop(q);
1455 		dev_err(adap->pdev_dev,
1456 			"%s: Tx ring %u full while queue awake!\n",
1457 			dev->name, qidx);
1458 		if (ptp_enabled)
1459 			spin_unlock(&adap->ptp_lock);
1460 		return NETDEV_TX_BUSY;
1461 	}
1462 
1463 	if (is_eth_imm(skb, chip_ver))
1464 		immediate = true;
1465 
1466 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1467 		tnl_type = cxgb_encap_offload_supported(skb);
1468 
1469 	last_desc = q->q.pidx + ndesc - 1;
1470 	if (last_desc >= q->q.size)
1471 		last_desc -= q->q.size;
1472 	sgl_sdesc = &q->q.sdesc[last_desc];
1473 
1474 	if (!immediate &&
1475 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1476 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1477 		q->mapping_err++;
1478 		if (ptp_enabled)
1479 			spin_unlock(&adap->ptp_lock);
1480 		goto out_free;
1481 	}
1482 
1483 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1484 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1485 		/* After we're done injecting the Work Request for this
1486 		 * packet, we'll be below our "stop threshold" so stop the TX
1487 		 * Queue now and schedule a request for an SGE Egress Queue
1488 		 * Update message. The queue will get started later on when
1489 		 * the firmware processes this Work Request and sends us an
1490 		 * Egress Queue Status Update message indicating that space
1491 		 * has opened up.
1492 		 */
1493 		eth_txq_stop(q);
1494 
1495 		/* If we're using the SGE Doorbell Queue Timer facility, we
1496 		 * don't need to ask the Firmware to send us Egress Queue CIDX
1497 		 * Updates: the Hardware will do this automatically.  And
1498 		 * since we send the Ingress Queue CIDX Updates to the
1499 		 * corresponding Ethernet Response Queue, we'll get them very
1500 		 * quickly.
1501 		 */
1502 		if (!q->dbqt)
1503 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1504 	}
1505 
1506 	wr = (void *)&q->q.desc[q->q.pidx];
1507 	eowr = (void *)&q->q.desc[q->q.pidx];
1508 	wr->equiq_to_len16 = htonl(wr_mid);
1509 	wr->r3 = cpu_to_be64(0);
1510 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1511 		end = (u64 *)eowr + flits;
1512 	else
1513 		end = (u64 *)wr + flits;
1514 
1515 	len = immediate ? skb->len : 0;
1516 	len += sizeof(*cpl);
1517 	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1518 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1519 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1520 
1521 		if (tnl_type)
1522 			len += sizeof(*tnl_lso);
1523 		else
1524 			len += sizeof(*lso);
1525 
1526 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1527 				       FW_WR_IMMDLEN_V(len));
1528 		if (tnl_type) {
1529 			struct iphdr *iph = ip_hdr(skb);
1530 
1531 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1532 			cpl = (void *)(tnl_lso + 1);
1533 			/* Driver is expected to compute partial checksum that
1534 			 * does not include the IP Total Length.
1535 			 */
1536 			if (iph->version == 4) {
1537 				iph->check = 0;
1538 				iph->tot_len = 0;
1539 				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1540 								 iph->ihl));
1541 			}
1542 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1543 				cntrl = hwcsum(adap->params.chip, skb);
1544 		} else {
1545 			cpl = write_tso_wr(adap, skb, lso);
1546 			cntrl = hwcsum(adap->params.chip, skb);
1547 		}
1548 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1549 		q->tso++;
1550 		q->tx_cso += ssi->gso_segs;
1551 	} else if (ssi->gso_size) {
1552 		u64 *start;
1553 		u32 hdrlen;
1554 
1555 		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1556 		len += hdrlen;
1557 		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1558 					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1559 		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1560 		cntrl = hwcsum(adap->params.chip, skb);
1561 
1562 		start = (u64 *)(cpl + 1);
1563 		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1564 						  hdrlen);
1565 		if (unlikely(start > sgl)) {
1566 			left = (u8 *)end - (u8 *)q->q.stat;
1567 			end = (void *)q->q.desc + left;
1568 		}
1569 		sgl_off = hdrlen;
1570 		q->uso++;
1571 		q->tx_cso += ssi->gso_segs;
1572 	} else {
1573 		if (ptp_enabled)
1574 			op = FW_PTP_TX_PKT_WR;
1575 		else
1576 			op = FW_ETH_TX_PKT_WR;
1577 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1578 				       FW_WR_IMMDLEN_V(len));
1579 		cpl = (void *)(wr + 1);
1580 		sgl = (u64 *)(cpl + 1);
1581 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1582 			cntrl = hwcsum(adap->params.chip, skb) |
1583 				TXPKT_IPCSUM_DIS_F;
1584 			q->tx_cso++;
1585 		}
1586 	}
1587 
1588 	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1589 		/* If current position is already at the end of the
1590 		 * txq, reset the current to point to start of the queue
1591 		 * and update the end ptr as well.
1592 		 */
1593 		left = (u8 *)end - (u8 *)q->q.stat;
1594 		end = (void *)q->q.desc + left;
1595 		sgl = (void *)q->q.desc;
1596 	}
1597 
1598 	if (skb_vlan_tag_present(skb)) {
1599 		q->vlan_ins++;
1600 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1601 #ifdef CONFIG_CHELSIO_T4_FCOE
1602 		if (skb->protocol == htons(ETH_P_FCOE))
1603 			cntrl |= TXPKT_VLAN_V(
1604 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1605 #endif /* CONFIG_CHELSIO_T4_FCOE */
1606 	}
1607 
1608 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1609 		TXPKT_PF_V(adap->pf);
1610 	if (ptp_enabled)
1611 		ctrl0 |= TXPKT_TSTAMP_F;
1612 #ifdef CONFIG_CHELSIO_T4_DCB
1613 	if (is_t4(adap->params.chip))
1614 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1615 	else
1616 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1617 #endif
1618 	cpl->ctrl0 = htonl(ctrl0);
1619 	cpl->pack = htons(0);
1620 	cpl->len = htons(skb->len);
1621 	cpl->ctrl1 = cpu_to_be64(cntrl);
1622 
1623 	if (immediate) {
1624 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1625 		dev_consume_skb_any(skb);
1626 	} else {
1627 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1628 				sgl_sdesc->addr);
1629 		skb_orphan(skb);
1630 		sgl_sdesc->skb = skb;
1631 	}
1632 
1633 	txq_advance(&q->q, ndesc);
1634 
1635 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1636 	if (ptp_enabled)
1637 		spin_unlock(&adap->ptp_lock);
1638 	return NETDEV_TX_OK;
1639 
1640 out_free:
1641 	dev_kfree_skb_any(skb);
1642 	return NETDEV_TX_OK;
1643 }
1644 
1645 /* Constants ... */
1646 enum {
1647 	/* Egress Queue sizes, producer and consumer indices are all in units
1648 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1649 	 * concerned, the free list is an Egress Queue (the host produces free
1650 	 * buffers which the hardware consumes) and free list entries are
1651 	 * 64-bit PCI DMA addresses.
1652 	 */
1653 	EQ_UNIT = SGE_EQ_IDXSIZE,
1654 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1655 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1656 
1657 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1658 			       sizeof(struct cpl_tx_pkt_lso_core) +
1659 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1660 };
1661 
1662 /**
1663  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1664  *	@skb: the packet
1665  *
1666  *	Returns whether an Ethernet packet is small enough to fit completely as
1667  *	immediate data.
1668  */
1669 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1670 {
1671 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1672 	 * which does not accommodate immediate data.  We could dike out all
1673 	 * of the support code for immediate data but that would tie our hands
1674 	 * too much if we ever want to enhace the firmware.  It would also
1675 	 * create more differences between the PF and VF Drivers.
1676 	 */
1677 	return false;
1678 }
1679 
1680 /**
1681  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1682  *	@skb: the packet
1683  *
1684  *	Returns the number of flits needed for a TX Work Request for the
1685  *	given Ethernet packet, including the needed WR and CPL headers.
1686  */
1687 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1688 {
1689 	unsigned int flits;
1690 
1691 	/* If the skb is small enough, we can pump it out as a work request
1692 	 * with only immediate data.  In that case we just have to have the
1693 	 * TX Packet header plus the skb data in the Work Request.
1694 	 */
1695 	if (t4vf_is_eth_imm(skb))
1696 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1697 				    sizeof(__be64));
1698 
1699 	/* Otherwise, we're going to have to construct a Scatter gather list
1700 	 * of the skb body and fragments.  We also include the flits necessary
1701 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1702 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1703 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1704 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1705 	 * with an embedded TX Packet Write CPL message.
1706 	 */
1707 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1708 	if (skb_shinfo(skb)->gso_size)
1709 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1710 			  sizeof(struct cpl_tx_pkt_lso_core) +
1711 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1712 	else
1713 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1714 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1715 	return flits;
1716 }
1717 
1718 /**
1719  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1720  *	@skb: the packet
1721  *	@dev: the egress net device
1722  *
1723  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1724  */
1725 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1726 				     struct net_device *dev)
1727 {
1728 	unsigned int last_desc, flits, ndesc;
1729 	const struct skb_shared_info *ssi;
1730 	struct fw_eth_tx_pkt_vm_wr *wr;
1731 	struct tx_sw_desc *sgl_sdesc;
1732 	struct cpl_tx_pkt_core *cpl;
1733 	const struct port_info *pi;
1734 	struct sge_eth_txq *txq;
1735 	struct adapter *adapter;
1736 	int qidx, credits, ret;
1737 	size_t fw_hdr_copy_len;
1738 	u64 cntrl, *end;
1739 	u32 wr_mid;
1740 
1741 	/* The chip minimum packet length is 10 octets but the firmware
1742 	 * command that we are using requires that we copy the Ethernet header
1743 	 * (including the VLAN tag) into the header so we reject anything
1744 	 * smaller than that ...
1745 	 */
1746 	fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1747 			  sizeof(wr->ethtype) + sizeof(wr->vlantci);
1748 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1749 	if (ret)
1750 		goto out_free;
1751 
1752 	/* Figure out which TX Queue we're going to use. */
1753 	pi = netdev_priv(dev);
1754 	adapter = pi->adapter;
1755 	qidx = skb_get_queue_mapping(skb);
1756 	WARN_ON(qidx >= pi->nqsets);
1757 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1758 
1759 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1760 	 * transfers have completed.
1761 	 */
1762 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1763 
1764 	/* Calculate the number of flits and TX Descriptors we're going to
1765 	 * need along with how many TX Descriptors will be left over after
1766 	 * we inject our Work Request.
1767 	 */
1768 	flits = t4vf_calc_tx_flits(skb);
1769 	ndesc = flits_to_desc(flits);
1770 	credits = txq_avail(&txq->q) - ndesc;
1771 
1772 	if (unlikely(credits < 0)) {
1773 		/* Not enough room for this packet's Work Request.  Stop the
1774 		 * TX Queue and return a "busy" condition.  The queue will get
1775 		 * started later on when the firmware informs us that space
1776 		 * has opened up.
1777 		 */
1778 		eth_txq_stop(txq);
1779 		dev_err(adapter->pdev_dev,
1780 			"%s: TX ring %u full while queue awake!\n",
1781 			dev->name, qidx);
1782 		return NETDEV_TX_BUSY;
1783 	}
1784 
1785 	last_desc = txq->q.pidx + ndesc - 1;
1786 	if (last_desc >= txq->q.size)
1787 		last_desc -= txq->q.size;
1788 	sgl_sdesc = &txq->q.sdesc[last_desc];
1789 
1790 	if (!t4vf_is_eth_imm(skb) &&
1791 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1792 				   sgl_sdesc->addr) < 0)) {
1793 		/* We need to map the skb into PCI DMA space (because it can't
1794 		 * be in-lined directly into the Work Request) and the mapping
1795 		 * operation failed.  Record the error and drop the packet.
1796 		 */
1797 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1798 		txq->mapping_err++;
1799 		goto out_free;
1800 	}
1801 
1802 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1803 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1804 		/* After we're done injecting the Work Request for this
1805 		 * packet, we'll be below our "stop threshold" so stop the TX
1806 		 * Queue now and schedule a request for an SGE Egress Queue
1807 		 * Update message.  The queue will get started later on when
1808 		 * the firmware processes this Work Request and sends us an
1809 		 * Egress Queue Status Update message indicating that space
1810 		 * has opened up.
1811 		 */
1812 		eth_txq_stop(txq);
1813 
1814 		/* If we're using the SGE Doorbell Queue Timer facility, we
1815 		 * don't need to ask the Firmware to send us Egress Queue CIDX
1816 		 * Updates: the Hardware will do this automatically.  And
1817 		 * since we send the Ingress Queue CIDX Updates to the
1818 		 * corresponding Ethernet Response Queue, we'll get them very
1819 		 * quickly.
1820 		 */
1821 		if (!txq->dbqt)
1822 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1823 	}
1824 
1825 	/* Start filling in our Work Request.  Note that we do _not_ handle
1826 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1827 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1828 	 * do something else here.
1829 	 */
1830 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1831 	wr = (void *)&txq->q.desc[txq->q.pidx];
1832 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1833 	wr->r3[0] = cpu_to_be32(0);
1834 	wr->r3[1] = cpu_to_be32(0);
1835 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1836 	end = (u64 *)wr + flits;
1837 
1838 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1839 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1840 	 * just use a TX Packet CPL message.
1841 	 */
1842 	ssi = skb_shinfo(skb);
1843 	if (ssi->gso_size) {
1844 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1845 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1846 		int l3hdr_len = skb_network_header_len(skb);
1847 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1848 
1849 		wr->op_immdlen =
1850 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1851 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1852 						    sizeof(*cpl)));
1853 		 /* Fill in the LSO CPL message. */
1854 		lso->lso_ctrl =
1855 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1856 				    LSO_FIRST_SLICE_F |
1857 				    LSO_LAST_SLICE_F |
1858 				    LSO_IPV6_V(v6) |
1859 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1860 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1861 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1862 		lso->ipid_ofst = cpu_to_be16(0);
1863 		lso->mss = cpu_to_be16(ssi->gso_size);
1864 		lso->seqno_offset = cpu_to_be32(0);
1865 		if (is_t4(adapter->params.chip))
1866 			lso->len = cpu_to_be32(skb->len);
1867 		else
1868 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1869 
1870 		/* Set up TX Packet CPL pointer, control word and perform
1871 		 * accounting.
1872 		 */
1873 		cpl = (void *)(lso + 1);
1874 
1875 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1876 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1877 		else
1878 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1879 
1880 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1881 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1882 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1883 		txq->tso++;
1884 		txq->tx_cso += ssi->gso_segs;
1885 	} else {
1886 		int len;
1887 
1888 		len = (t4vf_is_eth_imm(skb)
1889 		       ? skb->len + sizeof(*cpl)
1890 		       : sizeof(*cpl));
1891 		wr->op_immdlen =
1892 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1893 				    FW_WR_IMMDLEN_V(len));
1894 
1895 		/* Set up TX Packet CPL pointer, control word and perform
1896 		 * accounting.
1897 		 */
1898 		cpl = (void *)(wr + 1);
1899 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1900 			cntrl = hwcsum(adapter->params.chip, skb) |
1901 				TXPKT_IPCSUM_DIS_F;
1902 			txq->tx_cso++;
1903 		} else {
1904 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1905 		}
1906 	}
1907 
1908 	/* If there's a VLAN tag present, add that to the list of things to
1909 	 * do in this Work Request.
1910 	 */
1911 	if (skb_vlan_tag_present(skb)) {
1912 		txq->vlan_ins++;
1913 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1914 	}
1915 
1916 	 /* Fill in the TX Packet CPL message header. */
1917 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1918 				 TXPKT_INTF_V(pi->port_id) |
1919 				 TXPKT_PF_V(0));
1920 	cpl->pack = cpu_to_be16(0);
1921 	cpl->len = cpu_to_be16(skb->len);
1922 	cpl->ctrl1 = cpu_to_be64(cntrl);
1923 
1924 	/* Fill in the body of the TX Packet CPL message with either in-lined
1925 	 * data or a Scatter/Gather List.
1926 	 */
1927 	if (t4vf_is_eth_imm(skb)) {
1928 		/* In-line the packet's data and free the skb since we don't
1929 		 * need it any longer.
1930 		 */
1931 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1932 		dev_consume_skb_any(skb);
1933 	} else {
1934 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
1935 		 * message and retain a pointer to the skb so we can free it
1936 		 * later when its DMA completes.  (We store the skb pointer
1937 		 * in the Software Descriptor corresponding to the last TX
1938 		 * Descriptor used by the Work Request.)
1939 		 *
1940 		 * The retained skb will be freed when the corresponding TX
1941 		 * Descriptors are reclaimed after their DMAs complete.
1942 		 * However, this could take quite a while since, in general,
1943 		 * the hardware is set up to be lazy about sending DMA
1944 		 * completion notifications to us and we mostly perform TX
1945 		 * reclaims in the transmit routine.
1946 		 *
1947 		 * This is good for performamce but means that we rely on new
1948 		 * TX packets arriving to run the destructors of completed
1949 		 * packets, which open up space in their sockets' send queues.
1950 		 * Sometimes we do not get such new packets causing TX to
1951 		 * stall.  A single UDP transmitter is a good example of this
1952 		 * situation.  We have a clean up timer that periodically
1953 		 * reclaims completed packets but it doesn't run often enough
1954 		 * (nor do we want it to) to prevent lengthy stalls.  A
1955 		 * solution to this problem is to run the destructor early,
1956 		 * after the packet is queued but before it's DMAd.  A con is
1957 		 * that we lie to socket memory accounting, but the amount of
1958 		 * extra memory is reasonable (limited by the number of TX
1959 		 * descriptors), the packets do actually get freed quickly by
1960 		 * new packets almost always, and for protocols like TCP that
1961 		 * wait for acks to really free up the data the extra memory
1962 		 * is even less.  On the positive side we run the destructors
1963 		 * on the sending CPU rather than on a potentially different
1964 		 * completing CPU, usually a good thing.
1965 		 *
1966 		 * Run the destructor before telling the DMA engine about the
1967 		 * packet to make sure it doesn't complete and get freed
1968 		 * prematurely.
1969 		 */
1970 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1971 		struct sge_txq *tq = &txq->q;
1972 
1973 		/* If the Work Request header was an exact multiple of our TX
1974 		 * Descriptor length, then it's possible that the starting SGL
1975 		 * pointer lines up exactly with the end of our TX Descriptor
1976 		 * ring.  If that's the case, wrap around to the beginning
1977 		 * here ...
1978 		 */
1979 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1980 			sgl = (void *)tq->desc;
1981 			end = (void *)((void *)tq->desc +
1982 				       ((void *)end - (void *)tq->stat));
1983 		}
1984 
1985 		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
1986 		skb_orphan(skb);
1987 		sgl_sdesc->skb = skb;
1988 	}
1989 
1990 	/* Advance our internal TX Queue state, tell the hardware about
1991 	 * the new TX descriptors and return success.
1992 	 */
1993 	txq_advance(&txq->q, ndesc);
1994 
1995 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1996 	return NETDEV_TX_OK;
1997 
1998 out_free:
1999 	/* An error of some sort happened.  Free the TX skb and tell the
2000 	 * OS that we've "dealt" with the packet ...
2001 	 */
2002 	dev_kfree_skb_any(skb);
2003 	return NETDEV_TX_OK;
2004 }
2005 
2006 /**
2007  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2008  * @q: the SGE control Tx queue
2009  *
2010  * This is a variant of cxgb4_reclaim_completed_tx() that is used
2011  * for Tx queues that send only immediate data (presently just
2012  * the control queues) and	thus do not have any sk_buffs to release.
2013  */
2014 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2015 {
2016 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2017 	int reclaim = hw_cidx - q->cidx;
2018 
2019 	if (reclaim < 0)
2020 		reclaim += q->size;
2021 
2022 	q->in_use -= reclaim;
2023 	q->cidx = hw_cidx;
2024 }
2025 
2026 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2027 {
2028 	u32 val = *idx + n;
2029 
2030 	if (val >= max)
2031 		val -= max;
2032 
2033 	*idx = val;
2034 }
2035 
2036 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2037 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2038 {
2039 	struct tx_sw_desc *d;
2040 
2041 	d = &eosw_txq->desc[eosw_txq->last_cidx];
2042 	while (ndesc--) {
2043 		if (d->skb) {
2044 			if (d->addr[0]) {
2045 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2046 				memset(d->addr, 0, sizeof(d->addr));
2047 			}
2048 			dev_consume_skb_any(d->skb);
2049 			d->skb = NULL;
2050 		}
2051 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2052 				       eosw_txq->ndesc);
2053 		d = &eosw_txq->desc[eosw_txq->last_cidx];
2054 	}
2055 }
2056 
2057 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2058 {
2059 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2060 	eosw_txq->inuse += n;
2061 }
2062 
2063 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2064 				   struct sk_buff *skb)
2065 {
2066 	if (eosw_txq->inuse == eosw_txq->ndesc)
2067 		return -ENOMEM;
2068 
2069 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2070 	return 0;
2071 }
2072 
2073 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2074 {
2075 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2076 }
2077 
2078 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2079 				       struct sk_buff *skb, u32 hdr_len)
2080 {
2081 	u8 flits, nsgl = 0;
2082 	u32 wrlen;
2083 
2084 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2085 	if (skb_shinfo(skb)->gso_size &&
2086 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2087 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2088 
2089 	wrlen += roundup(hdr_len, 16);
2090 
2091 	/* Packet headers + WR + CPLs */
2092 	flits = DIV_ROUND_UP(wrlen, 8);
2093 
2094 	if (skb_shinfo(skb)->nr_frags > 0) {
2095 		if (skb_headlen(skb) - hdr_len)
2096 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2097 		else
2098 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2099 	} else if (skb->len - hdr_len) {
2100 		nsgl = sgl_len(1);
2101 	}
2102 
2103 	return flits + nsgl;
2104 }
2105 
2106 static inline void *write_eo_wr(struct adapter *adap,
2107 				struct sge_eosw_txq *eosw_txq,
2108 				struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2109 				u32 hdr_len, u32 wrlen)
2110 {
2111 	const struct skb_shared_info *ssi = skb_shinfo(skb);
2112 	struct cpl_tx_pkt_core *cpl;
2113 	u32 immd_len, wrlen16;
2114 	bool compl = false;
2115 	u8 ver, proto;
2116 
2117 	ver = ip_hdr(skb)->version;
2118 	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2119 
2120 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2121 	immd_len = sizeof(struct cpl_tx_pkt_core);
2122 	if (skb_shinfo(skb)->gso_size &&
2123 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2124 		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2125 	immd_len += hdr_len;
2126 
2127 	if (!eosw_txq->ncompl ||
2128 	    eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) {
2129 		compl = true;
2130 		eosw_txq->ncompl++;
2131 		eosw_txq->last_compl = 0;
2132 	}
2133 
2134 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2135 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2136 				     FW_WR_COMPL_V(compl));
2137 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2138 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2139 	wr->r3 = 0;
2140 	if (proto == IPPROTO_UDP) {
2141 		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2142 	} else {
2143 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2144 		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2145 		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2146 		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2147 		wr->u.tcpseg.tsclk_tsoff = 0;
2148 		wr->u.tcpseg.r4 = 0;
2149 		wr->u.tcpseg.r5 = 0;
2150 		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2151 
2152 		if (ssi->gso_size) {
2153 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2154 
2155 			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2156 			cpl = write_tso_wr(adap, skb, lso);
2157 		} else {
2158 			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2159 			cpl = (void *)(wr + 1);
2160 		}
2161 	}
2162 
2163 	eosw_txq->cred -= wrlen16;
2164 	eosw_txq->last_compl += wrlen16;
2165 	return cpl;
2166 }
2167 
2168 static void ethofld_hard_xmit(struct net_device *dev,
2169 			      struct sge_eosw_txq *eosw_txq)
2170 {
2171 	struct port_info *pi = netdev2pinfo(dev);
2172 	struct adapter *adap = netdev2adap(dev);
2173 	u32 wrlen, wrlen16, hdr_len, data_len;
2174 	enum sge_eosw_state next_state;
2175 	u64 cntrl, *start, *end, *sgl;
2176 	struct sge_eohw_txq *eohw_txq;
2177 	struct cpl_tx_pkt_core *cpl;
2178 	struct fw_eth_tx_eo_wr *wr;
2179 	bool skip_eotx_wr = false;
2180 	struct tx_sw_desc *d;
2181 	struct sk_buff *skb;
2182 	u8 flits, ndesc;
2183 	int left;
2184 
2185 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2186 	spin_lock(&eohw_txq->lock);
2187 	reclaim_completed_tx_imm(&eohw_txq->q);
2188 
2189 	d = &eosw_txq->desc[eosw_txq->last_pidx];
2190 	skb = d->skb;
2191 	skb_tx_timestamp(skb);
2192 
2193 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2194 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2195 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2196 		hdr_len = skb->len;
2197 		data_len = 0;
2198 		flits = DIV_ROUND_UP(hdr_len, 8);
2199 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2200 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2201 		else
2202 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2203 		skip_eotx_wr = true;
2204 	} else {
2205 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2206 		data_len = skb->len - hdr_len;
2207 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2208 	}
2209 	ndesc = flits_to_desc(flits);
2210 	wrlen = flits * 8;
2211 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2212 
2213 	/* If there are no CPL credits, then wait for credits
2214 	 * to come back and retry again
2215 	 */
2216 	if (unlikely(wrlen16 > eosw_txq->cred))
2217 		goto out_unlock;
2218 
2219 	if (unlikely(skip_eotx_wr)) {
2220 		start = (u64 *)wr;
2221 		eosw_txq->state = next_state;
2222 		goto write_wr_headers;
2223 	}
2224 
2225 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2226 	cntrl = hwcsum(adap->params.chip, skb);
2227 	if (skb_vlan_tag_present(skb))
2228 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2229 
2230 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2231 				 TXPKT_INTF_V(pi->tx_chan) |
2232 				 TXPKT_PF_V(adap->pf));
2233 	cpl->pack = 0;
2234 	cpl->len = cpu_to_be16(skb->len);
2235 	cpl->ctrl1 = cpu_to_be64(cntrl);
2236 
2237 	start = (u64 *)(cpl + 1);
2238 
2239 write_wr_headers:
2240 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2241 					  hdr_len);
2242 	if (data_len) {
2243 		if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) {
2244 			memset(d->addr, 0, sizeof(d->addr));
2245 			eohw_txq->mapping_err++;
2246 			goto out_unlock;
2247 		}
2248 
2249 		end = (u64 *)wr + flits;
2250 		if (unlikely(start > sgl)) {
2251 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2252 			end = (void *)eohw_txq->q.desc + left;
2253 		}
2254 
2255 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2256 			/* If current position is already at the end of the
2257 			 * txq, reset the current to point to start of the queue
2258 			 * and update the end ptr as well.
2259 			 */
2260 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2261 
2262 			end = (void *)eohw_txq->q.desc + left;
2263 			sgl = (void *)eohw_txq->q.desc;
2264 		}
2265 
2266 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2267 				d->addr);
2268 	}
2269 
2270 	if (skb_shinfo(skb)->gso_size) {
2271 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2272 			eohw_txq->uso++;
2273 		else
2274 			eohw_txq->tso++;
2275 		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2276 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2277 		eohw_txq->tx_cso++;
2278 	}
2279 
2280 	if (skb_vlan_tag_present(skb))
2281 		eohw_txq->vlan_ins++;
2282 
2283 	txq_advance(&eohw_txq->q, ndesc);
2284 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2285 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2286 
2287 out_unlock:
2288 	spin_unlock(&eohw_txq->lock);
2289 }
2290 
2291 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2292 {
2293 	struct sk_buff *skb;
2294 	int pktcount;
2295 
2296 	switch (eosw_txq->state) {
2297 	case CXGB4_EO_STATE_ACTIVE:
2298 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2299 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2300 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2301 		if (pktcount < 0)
2302 			pktcount += eosw_txq->ndesc;
2303 		break;
2304 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2305 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2306 	case CXGB4_EO_STATE_CLOSED:
2307 	default:
2308 		return;
2309 	}
2310 
2311 	while (pktcount--) {
2312 		skb = eosw_txq_peek(eosw_txq);
2313 		if (!skb) {
2314 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2315 					       eosw_txq->ndesc);
2316 			continue;
2317 		}
2318 
2319 		ethofld_hard_xmit(dev, eosw_txq);
2320 	}
2321 }
2322 
2323 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2324 				      struct net_device *dev)
2325 {
2326 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2327 	struct port_info *pi = netdev2pinfo(dev);
2328 	struct adapter *adap = netdev2adap(dev);
2329 	struct sge_eosw_txq *eosw_txq;
2330 	u32 qid;
2331 	int ret;
2332 
2333 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2334 	if (ret)
2335 		goto out_free;
2336 
2337 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2338 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2339 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2340 	spin_lock_bh(&eosw_txq->lock);
2341 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2342 		goto out_unlock;
2343 
2344 	ret = eosw_txq_enqueue(eosw_txq, skb);
2345 	if (ret)
2346 		goto out_unlock;
2347 
2348 	/* SKB is queued for processing until credits are available.
2349 	 * So, call the destructor now and we'll free the skb later
2350 	 * after it has been successfully transmitted.
2351 	 */
2352 	skb_orphan(skb);
2353 
2354 	eosw_txq_advance(eosw_txq, 1);
2355 	ethofld_xmit(dev, eosw_txq);
2356 	spin_unlock_bh(&eosw_txq->lock);
2357 	return NETDEV_TX_OK;
2358 
2359 out_unlock:
2360 	spin_unlock_bh(&eosw_txq->lock);
2361 out_free:
2362 	dev_kfree_skb_any(skb);
2363 	return NETDEV_TX_OK;
2364 }
2365 
2366 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2367 {
2368 	struct port_info *pi = netdev_priv(dev);
2369 	u16 qid = skb_get_queue_mapping(skb);
2370 
2371 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2372 		return cxgb4_vf_eth_xmit(skb, dev);
2373 
2374 	if (unlikely(qid >= pi->nqsets))
2375 		return cxgb4_ethofld_xmit(skb, dev);
2376 
2377 	return cxgb4_eth_xmit(skb, dev);
2378 }
2379 
2380 /**
2381  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2382  * @dev - netdevice
2383  * @eotid - ETHOFLD tid to bind/unbind
2384  * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2385  *
2386  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2387  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2388  * a traffic class.
2389  */
2390 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2391 {
2392 	struct port_info *pi = netdev2pinfo(dev);
2393 	struct adapter *adap = netdev2adap(dev);
2394 	enum sge_eosw_state next_state;
2395 	struct sge_eosw_txq *eosw_txq;
2396 	u32 len, len16, nparams = 6;
2397 	struct fw_flowc_wr *flowc;
2398 	struct eotid_entry *entry;
2399 	struct sge_ofld_rxq *rxq;
2400 	struct sk_buff *skb;
2401 	int ret = 0;
2402 
2403 	len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2404 	len16 = DIV_ROUND_UP(len, 16);
2405 
2406 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2407 	if (!entry)
2408 		return -ENOMEM;
2409 
2410 	eosw_txq = (struct sge_eosw_txq *)entry->data;
2411 	if (!eosw_txq)
2412 		return -ENOMEM;
2413 
2414 	skb = alloc_skb(len, GFP_KERNEL);
2415 	if (!skb)
2416 		return -ENOMEM;
2417 
2418 	spin_lock_bh(&eosw_txq->lock);
2419 	if (tc != FW_SCHED_CLS_NONE) {
2420 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2421 			goto out_unlock;
2422 
2423 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2424 	} else {
2425 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2426 			goto out_unlock;
2427 
2428 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2429 	}
2430 
2431 	flowc = __skb_put(skb, len);
2432 	memset(flowc, 0, len);
2433 
2434 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2435 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2436 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2437 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2438 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2439 					   FW_WR_COMPL_V(1));
2440 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2441 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2442 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2443 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2444 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2445 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2446 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2447 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2448 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2449 	flowc->mnemval[4].val = cpu_to_be32(tc);
2450 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2451 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2452 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2453 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2454 
2455 	eosw_txq->cred -= len16;
2456 	eosw_txq->ncompl++;
2457 	eosw_txq->last_compl = 0;
2458 
2459 	ret = eosw_txq_enqueue(eosw_txq, skb);
2460 	if (ret) {
2461 		dev_consume_skb_any(skb);
2462 		goto out_unlock;
2463 	}
2464 
2465 	eosw_txq->state = next_state;
2466 	eosw_txq->flowc_idx = eosw_txq->pidx;
2467 	eosw_txq_advance(eosw_txq, 1);
2468 	ethofld_xmit(dev, eosw_txq);
2469 
2470 out_unlock:
2471 	spin_unlock_bh(&eosw_txq->lock);
2472 	return ret;
2473 }
2474 
2475 /**
2476  *	is_imm - check whether a packet can be sent as immediate data
2477  *	@skb: the packet
2478  *
2479  *	Returns true if a packet can be sent as a WR with immediate data.
2480  */
2481 static inline int is_imm(const struct sk_buff *skb)
2482 {
2483 	return skb->len <= MAX_CTRL_WR_LEN;
2484 }
2485 
2486 /**
2487  *	ctrlq_check_stop - check if a control queue is full and should stop
2488  *	@q: the queue
2489  *	@wr: most recent WR written to the queue
2490  *
2491  *	Check if a control queue has become full and should be stopped.
2492  *	We clean up control queue descriptors very lazily, only when we are out.
2493  *	If the queue is still full after reclaiming any completed descriptors
2494  *	we suspend it and have the last WR wake it up.
2495  */
2496 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2497 {
2498 	reclaim_completed_tx_imm(&q->q);
2499 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2500 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2501 		q->q.stops++;
2502 		q->full = 1;
2503 	}
2504 }
2505 
2506 /**
2507  *	ctrl_xmit - send a packet through an SGE control Tx queue
2508  *	@q: the control queue
2509  *	@skb: the packet
2510  *
2511  *	Send a packet through an SGE control Tx queue.  Packets sent through
2512  *	a control queue must fit entirely as immediate data.
2513  */
2514 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2515 {
2516 	unsigned int ndesc;
2517 	struct fw_wr_hdr *wr;
2518 
2519 	if (unlikely(!is_imm(skb))) {
2520 		WARN_ON(1);
2521 		dev_kfree_skb(skb);
2522 		return NET_XMIT_DROP;
2523 	}
2524 
2525 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2526 	spin_lock(&q->sendq.lock);
2527 
2528 	if (unlikely(q->full)) {
2529 		skb->priority = ndesc;                  /* save for restart */
2530 		__skb_queue_tail(&q->sendq, skb);
2531 		spin_unlock(&q->sendq.lock);
2532 		return NET_XMIT_CN;
2533 	}
2534 
2535 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2536 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2537 
2538 	txq_advance(&q->q, ndesc);
2539 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2540 		ctrlq_check_stop(q, wr);
2541 
2542 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2543 	spin_unlock(&q->sendq.lock);
2544 
2545 	kfree_skb(skb);
2546 	return NET_XMIT_SUCCESS;
2547 }
2548 
2549 /**
2550  *	restart_ctrlq - restart a suspended control queue
2551  *	@data: the control queue to restart
2552  *
2553  *	Resumes transmission on a suspended Tx control queue.
2554  */
2555 static void restart_ctrlq(unsigned long data)
2556 {
2557 	struct sk_buff *skb;
2558 	unsigned int written = 0;
2559 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2560 
2561 	spin_lock(&q->sendq.lock);
2562 	reclaim_completed_tx_imm(&q->q);
2563 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2564 
2565 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2566 		struct fw_wr_hdr *wr;
2567 		unsigned int ndesc = skb->priority;     /* previously saved */
2568 
2569 		written += ndesc;
2570 		/* Write descriptors and free skbs outside the lock to limit
2571 		 * wait times.  q->full is still set so new skbs will be queued.
2572 		 */
2573 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2574 		txq_advance(&q->q, ndesc);
2575 		spin_unlock(&q->sendq.lock);
2576 
2577 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2578 		kfree_skb(skb);
2579 
2580 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2581 			unsigned long old = q->q.stops;
2582 
2583 			ctrlq_check_stop(q, wr);
2584 			if (q->q.stops != old) {          /* suspended anew */
2585 				spin_lock(&q->sendq.lock);
2586 				goto ringdb;
2587 			}
2588 		}
2589 		if (written > 16) {
2590 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2591 			written = 0;
2592 		}
2593 		spin_lock(&q->sendq.lock);
2594 	}
2595 	q->full = 0;
2596 ringdb:
2597 	if (written)
2598 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2599 	spin_unlock(&q->sendq.lock);
2600 }
2601 
2602 /**
2603  *	t4_mgmt_tx - send a management message
2604  *	@adap: the adapter
2605  *	@skb: the packet containing the management message
2606  *
2607  *	Send a management message through control queue 0.
2608  */
2609 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2610 {
2611 	int ret;
2612 
2613 	local_bh_disable();
2614 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2615 	local_bh_enable();
2616 	return ret;
2617 }
2618 
2619 /**
2620  *	is_ofld_imm - check whether a packet can be sent as immediate data
2621  *	@skb: the packet
2622  *
2623  *	Returns true if a packet can be sent as an offload WR with immediate
2624  *	data.  We currently use the same limit as for Ethernet packets.
2625  */
2626 static inline int is_ofld_imm(const struct sk_buff *skb)
2627 {
2628 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2629 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2630 
2631 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2632 		return skb->len <= SGE_MAX_WR_LEN;
2633 	else
2634 		return skb->len <= MAX_IMM_TX_PKT_LEN;
2635 }
2636 
2637 /**
2638  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2639  *	@skb: the packet
2640  *
2641  *	Returns the number of flits needed for the given offload packet.
2642  *	These packets are already fully constructed and no additional headers
2643  *	will be added.
2644  */
2645 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2646 {
2647 	unsigned int flits, cnt;
2648 
2649 	if (is_ofld_imm(skb))
2650 		return DIV_ROUND_UP(skb->len, 8);
2651 
2652 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2653 	cnt = skb_shinfo(skb)->nr_frags;
2654 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2655 		cnt++;
2656 	return flits + sgl_len(cnt);
2657 }
2658 
2659 /**
2660  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2661  *	@adap: the adapter
2662  *	@q: the queue to stop
2663  *
2664  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2665  *	inability to map packets.  A periodic timer attempts to restart
2666  *	queues so marked.
2667  */
2668 static void txq_stop_maperr(struct sge_uld_txq *q)
2669 {
2670 	q->mapping_err++;
2671 	q->q.stops++;
2672 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2673 		q->adap->sge.txq_maperr);
2674 }
2675 
2676 /**
2677  *	ofldtxq_stop - stop an offload Tx queue that has become full
2678  *	@q: the queue to stop
2679  *	@wr: the Work Request causing the queue to become full
2680  *
2681  *	Stops an offload Tx queue that has become full and modifies the packet
2682  *	being written to request a wakeup.
2683  */
2684 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2685 {
2686 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2687 	q->q.stops++;
2688 	q->full = 1;
2689 }
2690 
2691 /**
2692  *	service_ofldq - service/restart a suspended offload queue
2693  *	@q: the offload queue
2694  *
2695  *	Services an offload Tx queue by moving packets from its Pending Send
2696  *	Queue to the Hardware TX ring.  The function starts and ends with the
2697  *	Send Queue locked, but drops the lock while putting the skb at the
2698  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2699  *	allows more skbs to be added to the Send Queue by other threads.
2700  *	The packet being processed at the head of the Pending Send Queue is
2701  *	left on the queue in case we experience DMA Mapping errors, etc.
2702  *	and need to give up and restart later.
2703  *
2704  *	service_ofldq() can be thought of as a task which opportunistically
2705  *	uses other threads execution contexts.  We use the Offload Queue
2706  *	boolean "service_ofldq_running" to make sure that only one instance
2707  *	is ever running at a time ...
2708  */
2709 static void service_ofldq(struct sge_uld_txq *q)
2710 {
2711 	u64 *pos, *before, *end;
2712 	int credits;
2713 	struct sk_buff *skb;
2714 	struct sge_txq *txq;
2715 	unsigned int left;
2716 	unsigned int written = 0;
2717 	unsigned int flits, ndesc;
2718 
2719 	/* If another thread is currently in service_ofldq() processing the
2720 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2721 	 * that we're doing the work and continue.  Examining/modifying
2722 	 * the Offload Queue boolean "service_ofldq_running" must be done
2723 	 * while holding the Pending Send Queue Lock.
2724 	 */
2725 	if (q->service_ofldq_running)
2726 		return;
2727 	q->service_ofldq_running = true;
2728 
2729 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2730 		/* We drop the lock while we're working with the skb at the
2731 		 * head of the Pending Send Queue.  This allows more skbs to
2732 		 * be added to the Pending Send Queue while we're working on
2733 		 * this one.  We don't need to lock to guard the TX Ring
2734 		 * updates because only one thread of execution is ever
2735 		 * allowed into service_ofldq() at a time.
2736 		 */
2737 		spin_unlock(&q->sendq.lock);
2738 
2739 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2740 
2741 		flits = skb->priority;                /* previously saved */
2742 		ndesc = flits_to_desc(flits);
2743 		credits = txq_avail(&q->q) - ndesc;
2744 		BUG_ON(credits < 0);
2745 		if (unlikely(credits < TXQ_STOP_THRES))
2746 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2747 
2748 		pos = (u64 *)&q->q.desc[q->q.pidx];
2749 		if (is_ofld_imm(skb))
2750 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2751 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2752 				       (dma_addr_t *)skb->head)) {
2753 			txq_stop_maperr(q);
2754 			spin_lock(&q->sendq.lock);
2755 			break;
2756 		} else {
2757 			int last_desc, hdr_len = skb_transport_offset(skb);
2758 
2759 			/* The WR headers  may not fit within one descriptor.
2760 			 * So we need to deal with wrap-around here.
2761 			 */
2762 			before = (u64 *)pos;
2763 			end = (u64 *)pos + flits;
2764 			txq = &q->q;
2765 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2766 							   (void *)pos,
2767 							   hdr_len);
2768 			if (before > (u64 *)pos) {
2769 				left = (u8 *)end - (u8 *)txq->stat;
2770 				end = (void *)txq->desc + left;
2771 			}
2772 
2773 			/* If current position is already at the end of the
2774 			 * ofld queue, reset the current to point to
2775 			 * start of the queue and update the end ptr as well.
2776 			 */
2777 			if (pos == (u64 *)txq->stat) {
2778 				left = (u8 *)end - (u8 *)txq->stat;
2779 				end = (void *)txq->desc + left;
2780 				pos = (void *)txq->desc;
2781 			}
2782 
2783 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
2784 					end, hdr_len,
2785 					(dma_addr_t *)skb->head);
2786 #ifdef CONFIG_NEED_DMA_MAP_STATE
2787 			skb->dev = q->adap->port[0];
2788 			skb->destructor = deferred_unmap_destructor;
2789 #endif
2790 			last_desc = q->q.pidx + ndesc - 1;
2791 			if (last_desc >= q->q.size)
2792 				last_desc -= q->q.size;
2793 			q->q.sdesc[last_desc].skb = skb;
2794 		}
2795 
2796 		txq_advance(&q->q, ndesc);
2797 		written += ndesc;
2798 		if (unlikely(written > 32)) {
2799 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2800 			written = 0;
2801 		}
2802 
2803 		/* Reacquire the Pending Send Queue Lock so we can unlink the
2804 		 * skb we've just successfully transferred to the TX Ring and
2805 		 * loop for the next skb which may be at the head of the
2806 		 * Pending Send Queue.
2807 		 */
2808 		spin_lock(&q->sendq.lock);
2809 		__skb_unlink(skb, &q->sendq);
2810 		if (is_ofld_imm(skb))
2811 			kfree_skb(skb);
2812 	}
2813 	if (likely(written))
2814 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2815 
2816 	/*Indicate that no thread is processing the Pending Send Queue
2817 	 * currently.
2818 	 */
2819 	q->service_ofldq_running = false;
2820 }
2821 
2822 /**
2823  *	ofld_xmit - send a packet through an offload queue
2824  *	@q: the Tx offload queue
2825  *	@skb: the packet
2826  *
2827  *	Send an offload packet through an SGE offload queue.
2828  */
2829 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2830 {
2831 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
2832 	spin_lock(&q->sendq.lock);
2833 
2834 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
2835 	 * that results in this new skb being the only one on the queue, start
2836 	 * servicing it.  If there are other skbs already on the list, then
2837 	 * either the queue is currently being processed or it's been stopped
2838 	 * for some reason and it'll be restarted at a later time.  Restart
2839 	 * paths are triggered by events like experiencing a DMA Mapping Error
2840 	 * or filling the Hardware TX Ring.
2841 	 */
2842 	__skb_queue_tail(&q->sendq, skb);
2843 	if (q->sendq.qlen == 1)
2844 		service_ofldq(q);
2845 
2846 	spin_unlock(&q->sendq.lock);
2847 	return NET_XMIT_SUCCESS;
2848 }
2849 
2850 /**
2851  *	restart_ofldq - restart a suspended offload queue
2852  *	@data: the offload queue to restart
2853  *
2854  *	Resumes transmission on a suspended Tx offload queue.
2855  */
2856 static void restart_ofldq(unsigned long data)
2857 {
2858 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2859 
2860 	spin_lock(&q->sendq.lock);
2861 	q->full = 0;            /* the queue actually is completely empty now */
2862 	service_ofldq(q);
2863 	spin_unlock(&q->sendq.lock);
2864 }
2865 
2866 /**
2867  *	skb_txq - return the Tx queue an offload packet should use
2868  *	@skb: the packet
2869  *
2870  *	Returns the Tx queue an offload packet should use as indicated by bits
2871  *	1-15 in the packet's queue_mapping.
2872  */
2873 static inline unsigned int skb_txq(const struct sk_buff *skb)
2874 {
2875 	return skb->queue_mapping >> 1;
2876 }
2877 
2878 /**
2879  *	is_ctrl_pkt - return whether an offload packet is a control packet
2880  *	@skb: the packet
2881  *
2882  *	Returns whether an offload packet should use an OFLD or a CTRL
2883  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
2884  */
2885 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2886 {
2887 	return skb->queue_mapping & 1;
2888 }
2889 
2890 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2891 			   unsigned int tx_uld_type)
2892 {
2893 	struct sge_uld_txq_info *txq_info;
2894 	struct sge_uld_txq *txq;
2895 	unsigned int idx = skb_txq(skb);
2896 
2897 	if (unlikely(is_ctrl_pkt(skb))) {
2898 		/* Single ctrl queue is a requirement for LE workaround path */
2899 		if (adap->tids.nsftids)
2900 			idx = 0;
2901 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2902 	}
2903 
2904 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
2905 	if (unlikely(!txq_info)) {
2906 		WARN_ON(true);
2907 		return NET_XMIT_DROP;
2908 	}
2909 
2910 	txq = &txq_info->uldtxq[idx];
2911 	return ofld_xmit(txq, skb);
2912 }
2913 
2914 /**
2915  *	t4_ofld_send - send an offload packet
2916  *	@adap: the adapter
2917  *	@skb: the packet
2918  *
2919  *	Sends an offload packet.  We use the packet queue_mapping to select the
2920  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2921  *	should be sent as regular or control, bits 1-15 select the queue.
2922  */
2923 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2924 {
2925 	int ret;
2926 
2927 	local_bh_disable();
2928 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2929 	local_bh_enable();
2930 	return ret;
2931 }
2932 
2933 /**
2934  *	cxgb4_ofld_send - send an offload packet
2935  *	@dev: the net device
2936  *	@skb: the packet
2937  *
2938  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2939  *	intended for ULDs.
2940  */
2941 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2942 {
2943 	return t4_ofld_send(netdev2adap(dev), skb);
2944 }
2945 EXPORT_SYMBOL(cxgb4_ofld_send);
2946 
2947 static void *inline_tx_header(const void *src,
2948 			      const struct sge_txq *q,
2949 			      void *pos, int length)
2950 {
2951 	int left = (void *)q->stat - pos;
2952 	u64 *p;
2953 
2954 	if (likely(length <= left)) {
2955 		memcpy(pos, src, length);
2956 		pos += length;
2957 	} else {
2958 		memcpy(pos, src, left);
2959 		memcpy(q->desc, src + left, length - left);
2960 		pos = (void *)q->desc + (length - left);
2961 	}
2962 	/* 0-pad to multiple of 16 */
2963 	p = PTR_ALIGN(pos, 8);
2964 	if ((uintptr_t)p & 8) {
2965 		*p = 0;
2966 		return p + 1;
2967 	}
2968 	return p;
2969 }
2970 
2971 /**
2972  *      ofld_xmit_direct - copy a WR into offload queue
2973  *      @q: the Tx offload queue
2974  *      @src: location of WR
2975  *      @len: WR length
2976  *
2977  *      Copy an immediate WR into an uncontended SGE offload queue.
2978  */
2979 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2980 			    unsigned int len)
2981 {
2982 	unsigned int ndesc;
2983 	int credits;
2984 	u64 *pos;
2985 
2986 	/* Use the lower limit as the cut-off */
2987 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2988 		WARN_ON(1);
2989 		return NET_XMIT_DROP;
2990 	}
2991 
2992 	/* Don't return NET_XMIT_CN here as the current
2993 	 * implementation doesn't queue the request
2994 	 * using an skb when the following conditions not met
2995 	 */
2996 	if (!spin_trylock(&q->sendq.lock))
2997 		return NET_XMIT_DROP;
2998 
2999 	if (q->full || !skb_queue_empty(&q->sendq) ||
3000 	    q->service_ofldq_running) {
3001 		spin_unlock(&q->sendq.lock);
3002 		return NET_XMIT_DROP;
3003 	}
3004 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3005 	credits = txq_avail(&q->q) - ndesc;
3006 	pos = (u64 *)&q->q.desc[q->q.pidx];
3007 
3008 	/* ofldtxq_stop modifies WR header in-situ */
3009 	inline_tx_header(src, &q->q, pos, len);
3010 	if (unlikely(credits < TXQ_STOP_THRES))
3011 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3012 	txq_advance(&q->q, ndesc);
3013 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3014 
3015 	spin_unlock(&q->sendq.lock);
3016 	return NET_XMIT_SUCCESS;
3017 }
3018 
3019 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3020 		       const void *src, unsigned int len)
3021 {
3022 	struct sge_uld_txq_info *txq_info;
3023 	struct sge_uld_txq *txq;
3024 	struct adapter *adap;
3025 	int ret;
3026 
3027 	adap = netdev2adap(dev);
3028 
3029 	local_bh_disable();
3030 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3031 	if (unlikely(!txq_info)) {
3032 		WARN_ON(true);
3033 		local_bh_enable();
3034 		return NET_XMIT_DROP;
3035 	}
3036 	txq = &txq_info->uldtxq[idx];
3037 
3038 	ret = ofld_xmit_direct(txq, src, len);
3039 	local_bh_enable();
3040 	return net_xmit_eval(ret);
3041 }
3042 EXPORT_SYMBOL(cxgb4_immdata_send);
3043 
3044 /**
3045  *	t4_crypto_send - send crypto packet
3046  *	@adap: the adapter
3047  *	@skb: the packet
3048  *
3049  *	Sends crypto packet.  We use the packet queue_mapping to select the
3050  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3051  *	should be sent as regular or control, bits 1-15 select the queue.
3052  */
3053 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3054 {
3055 	int ret;
3056 
3057 	local_bh_disable();
3058 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3059 	local_bh_enable();
3060 	return ret;
3061 }
3062 
3063 /**
3064  *	cxgb4_crypto_send - send crypto packet
3065  *	@dev: the net device
3066  *	@skb: the packet
3067  *
3068  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3069  *	intended for ULDs.
3070  */
3071 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3072 {
3073 	return t4_crypto_send(netdev2adap(dev), skb);
3074 }
3075 EXPORT_SYMBOL(cxgb4_crypto_send);
3076 
3077 static inline void copy_frags(struct sk_buff *skb,
3078 			      const struct pkt_gl *gl, unsigned int offset)
3079 {
3080 	int i;
3081 
3082 	/* usually there's just one frag */
3083 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3084 			     gl->frags[0].offset + offset,
3085 			     gl->frags[0].size - offset);
3086 	skb_shinfo(skb)->nr_frags = gl->nfrags;
3087 	for (i = 1; i < gl->nfrags; i++)
3088 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3089 				     gl->frags[i].offset,
3090 				     gl->frags[i].size);
3091 
3092 	/* get a reference to the last page, we don't own it */
3093 	get_page(gl->frags[gl->nfrags - 1].page);
3094 }
3095 
3096 /**
3097  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3098  *	@gl: the gather list
3099  *	@skb_len: size of sk_buff main body if it carries fragments
3100  *	@pull_len: amount of data to move to the sk_buff's main body
3101  *
3102  *	Builds an sk_buff from the given packet gather list.  Returns the
3103  *	sk_buff or %NULL if sk_buff allocation failed.
3104  */
3105 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3106 				   unsigned int skb_len, unsigned int pull_len)
3107 {
3108 	struct sk_buff *skb;
3109 
3110 	/*
3111 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3112 	 * size, which is expected since buffers are at least PAGE_SIZEd.
3113 	 * In this case packets up to RX_COPY_THRES have only one fragment.
3114 	 */
3115 	if (gl->tot_len <= RX_COPY_THRES) {
3116 		skb = dev_alloc_skb(gl->tot_len);
3117 		if (unlikely(!skb))
3118 			goto out;
3119 		__skb_put(skb, gl->tot_len);
3120 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3121 	} else {
3122 		skb = dev_alloc_skb(skb_len);
3123 		if (unlikely(!skb))
3124 			goto out;
3125 		__skb_put(skb, pull_len);
3126 		skb_copy_to_linear_data(skb, gl->va, pull_len);
3127 
3128 		copy_frags(skb, gl, pull_len);
3129 		skb->len = gl->tot_len;
3130 		skb->data_len = skb->len - pull_len;
3131 		skb->truesize += skb->data_len;
3132 	}
3133 out:	return skb;
3134 }
3135 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3136 
3137 /**
3138  *	t4_pktgl_free - free a packet gather list
3139  *	@gl: the gather list
3140  *
3141  *	Releases the pages of a packet gather list.  We do not own the last
3142  *	page on the list and do not free it.
3143  */
3144 static void t4_pktgl_free(const struct pkt_gl *gl)
3145 {
3146 	int n;
3147 	const struct page_frag *p;
3148 
3149 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3150 		put_page(p->page);
3151 }
3152 
3153 /*
3154  * Process an MPS trace packet.  Give it an unused protocol number so it won't
3155  * be delivered to anyone and send it to the stack for capture.
3156  */
3157 static noinline int handle_trace_pkt(struct adapter *adap,
3158 				     const struct pkt_gl *gl)
3159 {
3160 	struct sk_buff *skb;
3161 
3162 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3163 	if (unlikely(!skb)) {
3164 		t4_pktgl_free(gl);
3165 		return 0;
3166 	}
3167 
3168 	if (is_t4(adap->params.chip))
3169 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3170 	else
3171 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3172 
3173 	skb_reset_mac_header(skb);
3174 	skb->protocol = htons(0xffff);
3175 	skb->dev = adap->port[0];
3176 	netif_receive_skb(skb);
3177 	return 0;
3178 }
3179 
3180 /**
3181  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3182  * @adap: the adapter
3183  * @hwtstamps: time stamp structure to update
3184  * @sgetstamp: 60bit iqe timestamp
3185  *
3186  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3187  * which is in Core Clock ticks into ktime_t and assign it
3188  **/
3189 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3190 				     struct skb_shared_hwtstamps *hwtstamps,
3191 				     u64 sgetstamp)
3192 {
3193 	u64 ns;
3194 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3195 
3196 	ns = div_u64(tmp, adap->params.vpd.cclk);
3197 
3198 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3199 	hwtstamps->hwtstamp = ns_to_ktime(ns);
3200 }
3201 
3202 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3203 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3204 {
3205 	struct adapter *adapter = rxq->rspq.adap;
3206 	struct sge *s = &adapter->sge;
3207 	struct port_info *pi;
3208 	int ret;
3209 	struct sk_buff *skb;
3210 
3211 	skb = napi_get_frags(&rxq->rspq.napi);
3212 	if (unlikely(!skb)) {
3213 		t4_pktgl_free(gl);
3214 		rxq->stats.rx_drops++;
3215 		return;
3216 	}
3217 
3218 	copy_frags(skb, gl, s->pktshift);
3219 	if (tnl_hdr_len)
3220 		skb->csum_level = 1;
3221 	skb->len = gl->tot_len - s->pktshift;
3222 	skb->data_len = skb->len;
3223 	skb->truesize += skb->data_len;
3224 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3225 	skb_record_rx_queue(skb, rxq->rspq.idx);
3226 	pi = netdev_priv(skb->dev);
3227 	if (pi->rxtstamp)
3228 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3229 					 gl->sgetstamp);
3230 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3231 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3232 			     PKT_HASH_TYPE_L3);
3233 
3234 	if (unlikely(pkt->vlan_ex)) {
3235 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3236 		rxq->stats.vlan_ex++;
3237 	}
3238 	ret = napi_gro_frags(&rxq->rspq.napi);
3239 	if (ret == GRO_HELD)
3240 		rxq->stats.lro_pkts++;
3241 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3242 		rxq->stats.lro_merged++;
3243 	rxq->stats.pkts++;
3244 	rxq->stats.rx_cso++;
3245 }
3246 
3247 enum {
3248 	RX_NON_PTP_PKT = 0,
3249 	RX_PTP_PKT_SUC = 1,
3250 	RX_PTP_PKT_ERR = 2
3251 };
3252 
3253 /**
3254  *     t4_systim_to_hwstamp - read hardware time stamp
3255  *     @adap: the adapter
3256  *     @skb: the packet
3257  *
3258  *     Read Time Stamp from MPS packet and insert in skb which
3259  *     is forwarded to PTP application
3260  */
3261 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3262 					 struct sk_buff *skb)
3263 {
3264 	struct skb_shared_hwtstamps *hwtstamps;
3265 	struct cpl_rx_mps_pkt *cpl = NULL;
3266 	unsigned char *data;
3267 	int offset;
3268 
3269 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3270 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3271 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3272 		return RX_PTP_PKT_ERR;
3273 
3274 	data = skb->data + sizeof(*cpl);
3275 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3276 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3277 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3278 		return RX_PTP_PKT_ERR;
3279 
3280 	hwtstamps = skb_hwtstamps(skb);
3281 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3282 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
3283 
3284 	return RX_PTP_PKT_SUC;
3285 }
3286 
3287 /**
3288  *     t4_rx_hststamp - Recv PTP Event Message
3289  *     @adap: the adapter
3290  *     @rsp: the response queue descriptor holding the RX_PKT message
3291  *     @skb: the packet
3292  *
3293  *     PTP enabled and MPS packet, read HW timestamp
3294  */
3295 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3296 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3297 {
3298 	int ret;
3299 
3300 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3301 		     !is_t4(adapter->params.chip))) {
3302 		ret = t4_systim_to_hwstamp(adapter, skb);
3303 		if (ret == RX_PTP_PKT_ERR) {
3304 			kfree_skb(skb);
3305 			rxq->stats.rx_drops++;
3306 		}
3307 		return ret;
3308 	}
3309 	return RX_NON_PTP_PKT;
3310 }
3311 
3312 /**
3313  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3314  *      @adap: the adapter
3315  *      @skb: the packet
3316  *      @dev: the ingress net device
3317  *
3318  *      Read hardware timestamp for the loopback PTP Tx event message
3319  */
3320 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3321 			  struct net_device *dev)
3322 {
3323 	struct port_info *pi = netdev_priv(dev);
3324 
3325 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3326 		cxgb4_ptp_read_hwstamp(adapter, pi);
3327 		kfree_skb(skb);
3328 		return 0;
3329 	}
3330 	return 1;
3331 }
3332 
3333 /**
3334  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3335  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3336  *	@rsp: Response Entry pointer into Response Queue
3337  *	@gl: Gather List pointer
3338  *
3339  *	For adapters which support the SGE Doorbell Queue Timer facility,
3340  *	we configure the Ethernet TX Queues to send CIDX Updates to the
3341  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3342  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3343  *	potentially, higher CPU Interrupt load, but allows us to respond
3344  *	much more quickly to the CIDX Updates.  This is important for
3345  *	Upper Layer Software which isn't willing to have a large amount
3346  *	of TX Data outstanding before receiving DMA Completions.
3347  */
3348 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3349 				     const __be64 *rsp,
3350 				     const struct pkt_gl *gl)
3351 {
3352 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3353 	struct port_info *pi = netdev_priv(rspq->netdev);
3354 	struct adapter *adapter = rspq->adap;
3355 	struct sge *s = &adapter->sge;
3356 	struct sge_eth_txq *txq;
3357 
3358 	/* skip RSS header */
3359 	rsp++;
3360 
3361 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3362 	 */
3363 	if (unlikely(opcode == CPL_FW4_MSG &&
3364 		     ((const struct cpl_fw4_msg *)rsp)->type ==
3365 							FW_TYPE_RSSCPL)) {
3366 		rsp++;
3367 		opcode = ((const struct rss_header *)rsp)->opcode;
3368 		rsp++;
3369 	}
3370 
3371 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3372 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3373 			__func__, opcode);
3374 		return;
3375 	}
3376 
3377 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3378 
3379 	/* We've got the Hardware Consumer Index Update in the Egress Update
3380 	 * message.  If we're using the SGE Doorbell Queue Timer mechanism,
3381 	 * these Egress Update messages will be our sole CIDX Updates we get
3382 	 * since we don't want to chew up PCIe bandwidth for both Ingress
3383 	 * Messages and Status Page writes.  However, The code which manages
3384 	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3385 	 * stored in the Status Page at the end of the TX Queue.  It's easiest
3386 	 * to simply copy the CIDX Update value from the Egress Update message
3387 	 * to the Status Page.  Also note that no Endian issues need to be
3388 	 * considered here since both are Big Endian and we're just copying
3389 	 * bytes consistently ...
3390 	 */
3391 	if (txq->dbqt) {
3392 		struct cpl_sge_egr_update *egr;
3393 
3394 		egr = (struct cpl_sge_egr_update *)rsp;
3395 		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3396 	}
3397 
3398 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3399 }
3400 
3401 /**
3402  *	t4_ethrx_handler - process an ingress ethernet packet
3403  *	@q: the response queue that received the packet
3404  *	@rsp: the response queue descriptor holding the RX_PKT message
3405  *	@si: the gather list of packet fragments
3406  *
3407  *	Process an ingress ethernet packet and deliver it to the stack.
3408  */
3409 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3410 		     const struct pkt_gl *si)
3411 {
3412 	bool csum_ok;
3413 	struct sk_buff *skb;
3414 	const struct cpl_rx_pkt *pkt;
3415 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3416 	struct adapter *adapter = q->adap;
3417 	struct sge *s = &q->adap->sge;
3418 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3419 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3420 	u16 err_vec, tnl_hdr_len = 0;
3421 	struct port_info *pi;
3422 	int ret = 0;
3423 
3424 	/* If we're looking at TX Queue CIDX Update, handle that separately
3425 	 * and return.
3426 	 */
3427 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3428 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3429 		t4_tx_completion_handler(q, rsp, si);
3430 		return 0;
3431 	}
3432 
3433 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3434 		return handle_trace_pkt(q->adap, si);
3435 
3436 	pkt = (const struct cpl_rx_pkt *)rsp;
3437 	/* Compressed error vector is enabled for T6 only */
3438 	if (q->adap->params.tp.rx_pkt_encap) {
3439 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3440 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3441 	} else {
3442 		err_vec = be16_to_cpu(pkt->err_vec);
3443 	}
3444 
3445 	csum_ok = pkt->csum_calc && !err_vec &&
3446 		  (q->netdev->features & NETIF_F_RXCSUM);
3447 
3448 	if (err_vec)
3449 		rxq->stats.bad_rx_pkts++;
3450 
3451 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3452 	     tnl_hdr_len) &&
3453 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3454 		do_gro(rxq, si, pkt, tnl_hdr_len);
3455 		return 0;
3456 	}
3457 
3458 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3459 	if (unlikely(!skb)) {
3460 		t4_pktgl_free(si);
3461 		rxq->stats.rx_drops++;
3462 		return 0;
3463 	}
3464 	pi = netdev_priv(q->netdev);
3465 
3466 	/* Handle PTP Event Rx packet */
3467 	if (unlikely(pi->ptp_enable)) {
3468 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3469 		if (ret == RX_PTP_PKT_ERR)
3470 			return 0;
3471 	}
3472 	if (likely(!ret))
3473 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3474 
3475 	/* Handle the PTP Event Tx Loopback packet */
3476 	if (unlikely(pi->ptp_enable && !ret &&
3477 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3478 		     cxgb4_ptp_is_ptp_rx(skb))) {
3479 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3480 			return 0;
3481 	}
3482 
3483 	skb->protocol = eth_type_trans(skb, q->netdev);
3484 	skb_record_rx_queue(skb, q->idx);
3485 	if (skb->dev->features & NETIF_F_RXHASH)
3486 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3487 			     PKT_HASH_TYPE_L3);
3488 
3489 	rxq->stats.pkts++;
3490 
3491 	if (pi->rxtstamp)
3492 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3493 					 si->sgetstamp);
3494 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3495 		if (!pkt->ip_frag) {
3496 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3497 			rxq->stats.rx_cso++;
3498 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3499 			__sum16 c = (__force __sum16)pkt->csum;
3500 			skb->csum = csum_unfold(c);
3501 
3502 			if (tnl_hdr_len) {
3503 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3504 				skb->csum_level = 1;
3505 			} else {
3506 				skb->ip_summed = CHECKSUM_COMPLETE;
3507 			}
3508 			rxq->stats.rx_cso++;
3509 		}
3510 	} else {
3511 		skb_checksum_none_assert(skb);
3512 #ifdef CONFIG_CHELSIO_T4_FCOE
3513 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3514 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3515 
3516 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3517 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3518 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3519 				if (q->adap->params.tp.rx_pkt_encap)
3520 					csum_ok = err_vec &
3521 						  T6_COMPR_RXERR_SUM_F;
3522 				else
3523 					csum_ok = err_vec & RXERR_CSUM_F;
3524 				if (!csum_ok)
3525 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3526 			}
3527 		}
3528 
3529 #undef CPL_RX_PKT_FLAGS
3530 #endif /* CONFIG_CHELSIO_T4_FCOE */
3531 	}
3532 
3533 	if (unlikely(pkt->vlan_ex)) {
3534 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3535 		rxq->stats.vlan_ex++;
3536 	}
3537 	skb_mark_napi_id(skb, &q->napi);
3538 	netif_receive_skb(skb);
3539 	return 0;
3540 }
3541 
3542 /**
3543  *	restore_rx_bufs - put back a packet's Rx buffers
3544  *	@si: the packet gather list
3545  *	@q: the SGE free list
3546  *	@frags: number of FL buffers to restore
3547  *
3548  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3549  *	have already been unmapped and are left unmapped, we mark them so to
3550  *	prevent further unmapping attempts.
3551  *
3552  *	This function undoes a series of @unmap_rx_buf calls when we find out
3553  *	that the current packet can't be processed right away afterall and we
3554  *	need to come back to it later.  This is a very rare event and there's
3555  *	no effort to make this particularly efficient.
3556  */
3557 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3558 			    int frags)
3559 {
3560 	struct rx_sw_desc *d;
3561 
3562 	while (frags--) {
3563 		if (q->cidx == 0)
3564 			q->cidx = q->size - 1;
3565 		else
3566 			q->cidx--;
3567 		d = &q->sdesc[q->cidx];
3568 		d->page = si->frags[frags].page;
3569 		d->dma_addr |= RX_UNMAPPED_BUF;
3570 		q->avail++;
3571 	}
3572 }
3573 
3574 /**
3575  *	is_new_response - check if a response is newly written
3576  *	@r: the response descriptor
3577  *	@q: the response queue
3578  *
3579  *	Returns true if a response descriptor contains a yet unprocessed
3580  *	response.
3581  */
3582 static inline bool is_new_response(const struct rsp_ctrl *r,
3583 				   const struct sge_rspq *q)
3584 {
3585 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3586 }
3587 
3588 /**
3589  *	rspq_next - advance to the next entry in a response queue
3590  *	@q: the queue
3591  *
3592  *	Updates the state of a response queue to advance it to the next entry.
3593  */
3594 static inline void rspq_next(struct sge_rspq *q)
3595 {
3596 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3597 	if (unlikely(++q->cidx == q->size)) {
3598 		q->cidx = 0;
3599 		q->gen ^= 1;
3600 		q->cur_desc = q->desc;
3601 	}
3602 }
3603 
3604 /**
3605  *	process_responses - process responses from an SGE response queue
3606  *	@q: the ingress queue to process
3607  *	@budget: how many responses can be processed in this round
3608  *
3609  *	Process responses from an SGE response queue up to the supplied budget.
3610  *	Responses include received packets as well as control messages from FW
3611  *	or HW.
3612  *
3613  *	Additionally choose the interrupt holdoff time for the next interrupt
3614  *	on this queue.  If the system is under memory shortage use a fairly
3615  *	long delay to help recovery.
3616  */
3617 static int process_responses(struct sge_rspq *q, int budget)
3618 {
3619 	int ret, rsp_type;
3620 	int budget_left = budget;
3621 	const struct rsp_ctrl *rc;
3622 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3623 	struct adapter *adapter = q->adap;
3624 	struct sge *s = &adapter->sge;
3625 
3626 	while (likely(budget_left)) {
3627 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3628 		if (!is_new_response(rc, q)) {
3629 			if (q->flush_handler)
3630 				q->flush_handler(q);
3631 			break;
3632 		}
3633 
3634 		dma_rmb();
3635 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3636 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3637 			struct page_frag *fp;
3638 			struct pkt_gl si;
3639 			const struct rx_sw_desc *rsd;
3640 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3641 
3642 			if (len & RSPD_NEWBUF_F) {
3643 				if (likely(q->offset > 0)) {
3644 					free_rx_bufs(q->adap, &rxq->fl, 1);
3645 					q->offset = 0;
3646 				}
3647 				len = RSPD_LEN_G(len);
3648 			}
3649 			si.tot_len = len;
3650 
3651 			/* gather packet fragments */
3652 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3653 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3654 				bufsz = get_buf_size(adapter, rsd);
3655 				fp->page = rsd->page;
3656 				fp->offset = q->offset;
3657 				fp->size = min(bufsz, len);
3658 				len -= fp->size;
3659 				if (!len)
3660 					break;
3661 				unmap_rx_buf(q->adap, &rxq->fl);
3662 			}
3663 
3664 			si.sgetstamp = SGE_TIMESTAMP_G(
3665 					be64_to_cpu(rc->last_flit));
3666 			/*
3667 			 * Last buffer remains mapped so explicitly make it
3668 			 * coherent for CPU access.
3669 			 */
3670 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3671 						get_buf_addr(rsd),
3672 						fp->size, DMA_FROM_DEVICE);
3673 
3674 			si.va = page_address(si.frags[0].page) +
3675 				si.frags[0].offset;
3676 			prefetch(si.va);
3677 
3678 			si.nfrags = frags + 1;
3679 			ret = q->handler(q, q->cur_desc, &si);
3680 			if (likely(ret == 0))
3681 				q->offset += ALIGN(fp->size, s->fl_align);
3682 			else
3683 				restore_rx_bufs(&si, &rxq->fl, frags);
3684 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3685 			ret = q->handler(q, q->cur_desc, NULL);
3686 		} else {
3687 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3688 		}
3689 
3690 		if (unlikely(ret)) {
3691 			/* couldn't process descriptor, back off for recovery */
3692 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3693 			break;
3694 		}
3695 
3696 		rspq_next(q);
3697 		budget_left--;
3698 	}
3699 
3700 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3701 		__refill_fl(q->adap, &rxq->fl);
3702 	return budget - budget_left;
3703 }
3704 
3705 /**
3706  *	napi_rx_handler - the NAPI handler for Rx processing
3707  *	@napi: the napi instance
3708  *	@budget: how many packets we can process in this round
3709  *
3710  *	Handler for new data events when using NAPI.  This does not need any
3711  *	locking or protection from interrupts as data interrupts are off at
3712  *	this point and other adapter interrupts do not interfere (the latter
3713  *	in not a concern at all with MSI-X as non-data interrupts then have
3714  *	a separate handler).
3715  */
3716 static int napi_rx_handler(struct napi_struct *napi, int budget)
3717 {
3718 	unsigned int params;
3719 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3720 	int work_done;
3721 	u32 val;
3722 
3723 	work_done = process_responses(q, budget);
3724 	if (likely(work_done < budget)) {
3725 		int timer_index;
3726 
3727 		napi_complete_done(napi, work_done);
3728 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3729 
3730 		if (q->adaptive_rx) {
3731 			if (work_done > max(timer_pkt_quota[timer_index],
3732 					    MIN_NAPI_WORK))
3733 				timer_index = (timer_index + 1);
3734 			else
3735 				timer_index = timer_index - 1;
3736 
3737 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3738 			q->next_intr_params =
3739 					QINTR_TIMER_IDX_V(timer_index) |
3740 					QINTR_CNT_EN_V(0);
3741 			params = q->next_intr_params;
3742 		} else {
3743 			params = q->next_intr_params;
3744 			q->next_intr_params = q->intr_params;
3745 		}
3746 	} else
3747 		params = QINTR_TIMER_IDX_V(7);
3748 
3749 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
3750 
3751 	/* If we don't have access to the new User GTS (T5+), use the old
3752 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3753 	 */
3754 	if (unlikely(q->bar2_addr == NULL)) {
3755 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3756 			     val | INGRESSQID_V((u32)q->cntxt_id));
3757 	} else {
3758 		writel(val | INGRESSQID_V(q->bar2_qid),
3759 		       q->bar2_addr + SGE_UDB_GTS);
3760 		wmb();
3761 	}
3762 	return work_done;
3763 }
3764 
3765 void cxgb4_ethofld_restart(unsigned long data)
3766 {
3767 	struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3768 	int pktcount;
3769 
3770 	spin_lock(&eosw_txq->lock);
3771 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3772 	if (pktcount < 0)
3773 		pktcount += eosw_txq->ndesc;
3774 
3775 	if (pktcount) {
3776 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3777 					 eosw_txq, pktcount);
3778 		eosw_txq->inuse -= pktcount;
3779 	}
3780 
3781 	/* There may be some packets waiting for completions. So,
3782 	 * attempt to send these packets now.
3783 	 */
3784 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
3785 	spin_unlock(&eosw_txq->lock);
3786 }
3787 
3788 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3789  * @q: the response queue that received the packet
3790  * @rsp: the response queue descriptor holding the CPL message
3791  * @si: the gather list of packet fragments
3792  *
3793  * Process a ETHOFLD Tx completion. Increment the cidx here, but
3794  * free up the descriptors in a tasklet later.
3795  */
3796 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3797 			     const struct pkt_gl *si)
3798 {
3799 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3800 
3801 	/* skip RSS header */
3802 	rsp++;
3803 
3804 	if (opcode == CPL_FW4_ACK) {
3805 		const struct cpl_fw4_ack *cpl;
3806 		struct sge_eosw_txq *eosw_txq;
3807 		struct eotid_entry *entry;
3808 		struct sk_buff *skb;
3809 		u32 hdr_len, eotid;
3810 		u8 flits, wrlen16;
3811 		int credits;
3812 
3813 		cpl = (const struct cpl_fw4_ack *)rsp;
3814 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3815 			q->adap->tids.eotid_base;
3816 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3817 		if (!entry)
3818 			goto out_done;
3819 
3820 		eosw_txq = (struct sge_eosw_txq *)entry->data;
3821 		if (!eosw_txq)
3822 			goto out_done;
3823 
3824 		spin_lock(&eosw_txq->lock);
3825 		credits = cpl->credits;
3826 		while (credits > 0) {
3827 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
3828 			if (!skb)
3829 				break;
3830 
3831 			if (unlikely((eosw_txq->state ==
3832 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3833 				      eosw_txq->state ==
3834 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3835 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
3836 				flits = DIV_ROUND_UP(skb->len, 8);
3837 				if (eosw_txq->state ==
3838 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3839 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3840 				else
3841 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3842 				complete(&eosw_txq->completion);
3843 			} else {
3844 				hdr_len = eth_get_headlen(eosw_txq->netdev,
3845 							  skb->data,
3846 							  skb_headlen(skb));
3847 				flits = ethofld_calc_tx_flits(q->adap, skb,
3848 							      hdr_len);
3849 			}
3850 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
3851 					       eosw_txq->ndesc);
3852 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3853 			credits -= wrlen16;
3854 		}
3855 
3856 		eosw_txq->cred += cpl->credits;
3857 		eosw_txq->ncompl--;
3858 
3859 		spin_unlock(&eosw_txq->lock);
3860 
3861 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3862 		 * if there were packets waiting for completion.
3863 		 */
3864 		tasklet_schedule(&eosw_txq->qresume_tsk);
3865 	}
3866 
3867 out_done:
3868 	return 0;
3869 }
3870 
3871 /*
3872  * The MSI-X interrupt handler for an SGE response queue.
3873  */
3874 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3875 {
3876 	struct sge_rspq *q = cookie;
3877 
3878 	napi_schedule(&q->napi);
3879 	return IRQ_HANDLED;
3880 }
3881 
3882 /*
3883  * Process the indirect interrupt entries in the interrupt queue and kick off
3884  * NAPI for each queue that has generated an entry.
3885  */
3886 static unsigned int process_intrq(struct adapter *adap)
3887 {
3888 	unsigned int credits;
3889 	const struct rsp_ctrl *rc;
3890 	struct sge_rspq *q = &adap->sge.intrq;
3891 	u32 val;
3892 
3893 	spin_lock(&adap->sge.intrq_lock);
3894 	for (credits = 0; ; credits++) {
3895 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3896 		if (!is_new_response(rc, q))
3897 			break;
3898 
3899 		dma_rmb();
3900 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3901 			unsigned int qid = ntohl(rc->pldbuflen_qid);
3902 
3903 			qid -= adap->sge.ingr_start;
3904 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
3905 		}
3906 
3907 		rspq_next(q);
3908 	}
3909 
3910 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3911 
3912 	/* If we don't have access to the new User GTS (T5+), use the old
3913 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3914 	 */
3915 	if (unlikely(q->bar2_addr == NULL)) {
3916 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3917 			     val | INGRESSQID_V(q->cntxt_id));
3918 	} else {
3919 		writel(val | INGRESSQID_V(q->bar2_qid),
3920 		       q->bar2_addr + SGE_UDB_GTS);
3921 		wmb();
3922 	}
3923 	spin_unlock(&adap->sge.intrq_lock);
3924 	return credits;
3925 }
3926 
3927 /*
3928  * The MSI interrupt handler, which handles data events from SGE response queues
3929  * as well as error and other async events as they all use the same MSI vector.
3930  */
3931 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3932 {
3933 	struct adapter *adap = cookie;
3934 
3935 	if (adap->flags & CXGB4_MASTER_PF)
3936 		t4_slow_intr_handler(adap);
3937 	process_intrq(adap);
3938 	return IRQ_HANDLED;
3939 }
3940 
3941 /*
3942  * Interrupt handler for legacy INTx interrupts.
3943  * Handles data events from SGE response queues as well as error and other
3944  * async events as they all use the same interrupt line.
3945  */
3946 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3947 {
3948 	struct adapter *adap = cookie;
3949 
3950 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3951 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3952 	    process_intrq(adap))
3953 		return IRQ_HANDLED;
3954 	return IRQ_NONE;             /* probably shared interrupt */
3955 }
3956 
3957 /**
3958  *	t4_intr_handler - select the top-level interrupt handler
3959  *	@adap: the adapter
3960  *
3961  *	Selects the top-level interrupt handler based on the type of interrupts
3962  *	(MSI-X, MSI, or INTx).
3963  */
3964 irq_handler_t t4_intr_handler(struct adapter *adap)
3965 {
3966 	if (adap->flags & CXGB4_USING_MSIX)
3967 		return t4_sge_intr_msix;
3968 	if (adap->flags & CXGB4_USING_MSI)
3969 		return t4_intr_msi;
3970 	return t4_intr_intx;
3971 }
3972 
3973 static void sge_rx_timer_cb(struct timer_list *t)
3974 {
3975 	unsigned long m;
3976 	unsigned int i;
3977 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3978 	struct sge *s = &adap->sge;
3979 
3980 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3981 		for (m = s->starving_fl[i]; m; m &= m - 1) {
3982 			struct sge_eth_rxq *rxq;
3983 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3984 			struct sge_fl *fl = s->egr_map[id];
3985 
3986 			clear_bit(id, s->starving_fl);
3987 			smp_mb__after_atomic();
3988 
3989 			if (fl_starving(adap, fl)) {
3990 				rxq = container_of(fl, struct sge_eth_rxq, fl);
3991 				if (napi_reschedule(&rxq->rspq.napi))
3992 					fl->starving++;
3993 				else
3994 					set_bit(id, s->starving_fl);
3995 			}
3996 		}
3997 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
3998 	 * global Master PF activities like checking for chip ingress stalls,
3999 	 * etc.
4000 	 */
4001 	if (!(adap->flags & CXGB4_MASTER_PF))
4002 		goto done;
4003 
4004 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4005 
4006 done:
4007 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4008 }
4009 
4010 static void sge_tx_timer_cb(struct timer_list *t)
4011 {
4012 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4013 	struct sge *s = &adap->sge;
4014 	unsigned long m, period;
4015 	unsigned int i, budget;
4016 
4017 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4018 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4019 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4020 			struct sge_uld_txq *txq = s->egr_map[id];
4021 
4022 			clear_bit(id, s->txq_maperr);
4023 			tasklet_schedule(&txq->qresume_tsk);
4024 		}
4025 
4026 	if (!is_t4(adap->params.chip)) {
4027 		struct sge_eth_txq *q = &s->ptptxq;
4028 		int avail;
4029 
4030 		spin_lock(&adap->ptp_lock);
4031 		avail = reclaimable(&q->q);
4032 
4033 		if (avail) {
4034 			free_tx_desc(adap, &q->q, avail, false);
4035 			q->q.in_use -= avail;
4036 		}
4037 		spin_unlock(&adap->ptp_lock);
4038 	}
4039 
4040 	budget = MAX_TIMER_TX_RECLAIM;
4041 	i = s->ethtxq_rover;
4042 	do {
4043 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4044 						       budget);
4045 		if (!budget)
4046 			break;
4047 
4048 		if (++i >= s->ethqsets)
4049 			i = 0;
4050 	} while (i != s->ethtxq_rover);
4051 	s->ethtxq_rover = i;
4052 
4053 	if (budget == 0) {
4054 		/* If we found too many reclaimable packets schedule a timer
4055 		 * in the near future to continue where we left off.
4056 		 */
4057 		period = 2;
4058 	} else {
4059 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4060 		 * at the normal period.
4061 		 */
4062 		period = TX_QCHECK_PERIOD;
4063 	}
4064 
4065 	mod_timer(&s->tx_timer, jiffies + period);
4066 }
4067 
4068 /**
4069  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4070  *	@adapter: the adapter
4071  *	@qid: the SGE Queue ID
4072  *	@qtype: the SGE Queue Type (Egress or Ingress)
4073  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4074  *
4075  *	Returns the BAR2 address for the SGE Queue Registers associated with
4076  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4077  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4078  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4079  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4080  */
4081 static void __iomem *bar2_address(struct adapter *adapter,
4082 				  unsigned int qid,
4083 				  enum t4_bar2_qtype qtype,
4084 				  unsigned int *pbar2_qid)
4085 {
4086 	u64 bar2_qoffset;
4087 	int ret;
4088 
4089 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4090 				&bar2_qoffset, pbar2_qid);
4091 	if (ret)
4092 		return NULL;
4093 
4094 	return adapter->bar2 + bar2_qoffset;
4095 }
4096 
4097 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4098  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4099  */
4100 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4101 		     struct net_device *dev, int intr_idx,
4102 		     struct sge_fl *fl, rspq_handler_t hnd,
4103 		     rspq_flush_handler_t flush_hnd, int cong)
4104 {
4105 	int ret, flsz = 0;
4106 	struct fw_iq_cmd c;
4107 	struct sge *s = &adap->sge;
4108 	struct port_info *pi = netdev_priv(dev);
4109 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4110 
4111 	/* Size needs to be multiple of 16, including status entry. */
4112 	iq->size = roundup(iq->size, 16);
4113 
4114 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4115 			      &iq->phys_addr, NULL, 0,
4116 			      dev_to_node(adap->pdev_dev));
4117 	if (!iq->desc)
4118 		return -ENOMEM;
4119 
4120 	memset(&c, 0, sizeof(c));
4121 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4122 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4123 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4124 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4125 				 FW_LEN16(c));
4126 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4127 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4128 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4129 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4130 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4131 							-intr_idx - 1));
4132 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4133 		FW_IQ_CMD_IQGTSMODE_F |
4134 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4135 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4136 	c.iqsize = htons(iq->size);
4137 	c.iqaddr = cpu_to_be64(iq->phys_addr);
4138 	if (cong >= 0)
4139 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4140 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4141 							:  FW_IQ_IQTYPE_OFLD));
4142 
4143 	if (fl) {
4144 		unsigned int chip_ver =
4145 			CHELSIO_CHIP_VERSION(adap->params.chip);
4146 
4147 		/* Allocate the ring for the hardware free list (with space
4148 		 * for its status page) along with the associated software
4149 		 * descriptor ring.  The free list size needs to be a multiple
4150 		 * of the Egress Queue Unit and at least 2 Egress Units larger
4151 		 * than the SGE's Egress Congrestion Threshold
4152 		 * (fl_starve_thres - 1).
4153 		 */
4154 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4155 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4156 		fl->size = roundup(fl->size, 8);
4157 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4158 				      sizeof(struct rx_sw_desc), &fl->addr,
4159 				      &fl->sdesc, s->stat_len,
4160 				      dev_to_node(adap->pdev_dev));
4161 		if (!fl->desc)
4162 			goto fl_nomem;
4163 
4164 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4165 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4166 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4167 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4168 					     FW_IQ_CMD_FL0PADEN_F);
4169 		if (cong >= 0)
4170 			c.iqns_to_fl0congen |=
4171 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4172 				      FW_IQ_CMD_FL0CONGCIF_F |
4173 				      FW_IQ_CMD_FL0CONGEN_F);
4174 		/* In T6, for egress queue type FL there is internal overhead
4175 		 * of 16B for header going into FLM module.  Hence the maximum
4176 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4177 		 * doesn't coalesce fetch requests if more than 64 bytes of
4178 		 * Free List pointers are provided, so we use a 128-byte Fetch
4179 		 * Burst Minimum there (T6 implements coalescing so we can use
4180 		 * the smaller 64-byte value there).
4181 		 */
4182 		c.fl0dcaen_to_fl0cidxfthresh =
4183 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4184 						   FETCHBURSTMIN_128B_X :
4185 						   FETCHBURSTMIN_64B_T6_X) |
4186 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4187 						   FETCHBURSTMAX_512B_X :
4188 						   FETCHBURSTMAX_256B_X));
4189 		c.fl0size = htons(flsz);
4190 		c.fl0addr = cpu_to_be64(fl->addr);
4191 	}
4192 
4193 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4194 	if (ret)
4195 		goto err;
4196 
4197 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4198 	iq->cur_desc = iq->desc;
4199 	iq->cidx = 0;
4200 	iq->gen = 1;
4201 	iq->next_intr_params = iq->intr_params;
4202 	iq->cntxt_id = ntohs(c.iqid);
4203 	iq->abs_id = ntohs(c.physiqid);
4204 	iq->bar2_addr = bar2_address(adap,
4205 				     iq->cntxt_id,
4206 				     T4_BAR2_QTYPE_INGRESS,
4207 				     &iq->bar2_qid);
4208 	iq->size--;                           /* subtract status entry */
4209 	iq->netdev = dev;
4210 	iq->handler = hnd;
4211 	iq->flush_handler = flush_hnd;
4212 
4213 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4214 	skb_queue_head_init(&iq->lro_mgr.lroq);
4215 
4216 	/* set offset to -1 to distinguish ingress queues without FL */
4217 	iq->offset = fl ? 0 : -1;
4218 
4219 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4220 
4221 	if (fl) {
4222 		fl->cntxt_id = ntohs(c.fl0id);
4223 		fl->avail = fl->pend_cred = 0;
4224 		fl->pidx = fl->cidx = 0;
4225 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4226 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4227 
4228 		/* Note, we must initialize the BAR2 Free List User Doorbell
4229 		 * information before refilling the Free List!
4230 		 */
4231 		fl->bar2_addr = bar2_address(adap,
4232 					     fl->cntxt_id,
4233 					     T4_BAR2_QTYPE_EGRESS,
4234 					     &fl->bar2_qid);
4235 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4236 	}
4237 
4238 	/* For T5 and later we attempt to set up the Congestion Manager values
4239 	 * of the new RX Ethernet Queue.  This should really be handled by
4240 	 * firmware because it's more complex than any host driver wants to
4241 	 * get involved with and it's different per chip and this is almost
4242 	 * certainly wrong.  Firmware would be wrong as well, but it would be
4243 	 * a lot easier to fix in one place ...  For now we do something very
4244 	 * simple (and hopefully less wrong).
4245 	 */
4246 	if (!is_t4(adap->params.chip) && cong >= 0) {
4247 		u32 param, val, ch_map = 0;
4248 		int i;
4249 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4250 
4251 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4252 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4253 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4254 		if (cong == 0) {
4255 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4256 		} else {
4257 			val =
4258 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4259 			for (i = 0; i < 4; i++) {
4260 				if (cong & (1 << i))
4261 					ch_map |= 1 << (i << cng_ch_bits_log);
4262 			}
4263 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4264 		}
4265 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4266 				    &param, &val);
4267 		if (ret)
4268 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4269 				 " Manager Context for Ingress Queue %d: %d\n",
4270 				 iq->cntxt_id, -ret);
4271 	}
4272 
4273 	return 0;
4274 
4275 fl_nomem:
4276 	ret = -ENOMEM;
4277 err:
4278 	if (iq->desc) {
4279 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4280 				  iq->desc, iq->phys_addr);
4281 		iq->desc = NULL;
4282 	}
4283 	if (fl && fl->desc) {
4284 		kfree(fl->sdesc);
4285 		fl->sdesc = NULL;
4286 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4287 				  fl->desc, fl->addr);
4288 		fl->desc = NULL;
4289 	}
4290 	return ret;
4291 }
4292 
4293 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4294 {
4295 	q->cntxt_id = id;
4296 	q->bar2_addr = bar2_address(adap,
4297 				    q->cntxt_id,
4298 				    T4_BAR2_QTYPE_EGRESS,
4299 				    &q->bar2_qid);
4300 	q->in_use = 0;
4301 	q->cidx = q->pidx = 0;
4302 	q->stops = q->restarts = 0;
4303 	q->stat = (void *)&q->desc[q->size];
4304 	spin_lock_init(&q->db_lock);
4305 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4306 }
4307 
4308 /**
4309  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4310  *	@adap: the adapter
4311  *	@txq: the SGE Ethernet TX Queue to initialize
4312  *	@dev: the Linux Network Device
4313  *	@netdevq: the corresponding Linux TX Queue
4314  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4315  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4316  */
4317 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4318 			 struct net_device *dev, struct netdev_queue *netdevq,
4319 			 unsigned int iqid, u8 dbqt)
4320 {
4321 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4322 	struct port_info *pi = netdev_priv(dev);
4323 	struct sge *s = &adap->sge;
4324 	struct fw_eq_eth_cmd c;
4325 	int ret, nentries;
4326 
4327 	/* Add status entries */
4328 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4329 
4330 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4331 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4332 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4333 			netdev_queue_numa_node_read(netdevq));
4334 	if (!txq->q.desc)
4335 		return -ENOMEM;
4336 
4337 	memset(&c, 0, sizeof(c));
4338 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4339 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4340 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4341 			    FW_EQ_ETH_CMD_VFN_V(0));
4342 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4343 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4344 
4345 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4346 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4347 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4348 	 * write the CIDX Updates into the Status Page at the end of the
4349 	 * TX Queue.
4350 	 */
4351 	c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4352 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4353 
4354 	c.fetchszm_to_iqid =
4355 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4356 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4357 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4358 
4359 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4360 	c.dcaen_to_eqsize =
4361 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4362 					    ? FETCHBURSTMIN_64B_X
4363 					    : FETCHBURSTMIN_64B_T6_X) |
4364 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4365 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4366 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4367 
4368 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4369 
4370 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4371 	 * currently configured Timer Index.  THis can be changed later via an
4372 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4373 	 * Doorbell Queue mode is currently automatically enabled in the
4374 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4375 	 */
4376 	if (dbqt)
4377 		c.timeren_timerix =
4378 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4379 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4380 
4381 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4382 	if (ret) {
4383 		kfree(txq->q.sdesc);
4384 		txq->q.sdesc = NULL;
4385 		dma_free_coherent(adap->pdev_dev,
4386 				  nentries * sizeof(struct tx_desc),
4387 				  txq->q.desc, txq->q.phys_addr);
4388 		txq->q.desc = NULL;
4389 		return ret;
4390 	}
4391 
4392 	txq->q.q_type = CXGB4_TXQ_ETH;
4393 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4394 	txq->txq = netdevq;
4395 	txq->tso = 0;
4396 	txq->uso = 0;
4397 	txq->tx_cso = 0;
4398 	txq->vlan_ins = 0;
4399 	txq->mapping_err = 0;
4400 	txq->dbqt = dbqt;
4401 
4402 	return 0;
4403 }
4404 
4405 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4406 			  struct net_device *dev, unsigned int iqid,
4407 			  unsigned int cmplqid)
4408 {
4409 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4410 	struct port_info *pi = netdev_priv(dev);
4411 	struct sge *s = &adap->sge;
4412 	struct fw_eq_ctrl_cmd c;
4413 	int ret, nentries;
4414 
4415 	/* Add status entries */
4416 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4417 
4418 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4419 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4420 				 NULL, 0, dev_to_node(adap->pdev_dev));
4421 	if (!txq->q.desc)
4422 		return -ENOMEM;
4423 
4424 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4425 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4426 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4427 			    FW_EQ_CTRL_CMD_VFN_V(0));
4428 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4429 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4430 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4431 	c.physeqid_pkd = htonl(0);
4432 	c.fetchszm_to_iqid =
4433 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4434 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4435 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4436 	c.dcaen_to_eqsize =
4437 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4438 					     ? FETCHBURSTMIN_64B_X
4439 					     : FETCHBURSTMIN_64B_T6_X) |
4440 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4441 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4442 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4443 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4444 
4445 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4446 	if (ret) {
4447 		dma_free_coherent(adap->pdev_dev,
4448 				  nentries * sizeof(struct tx_desc),
4449 				  txq->q.desc, txq->q.phys_addr);
4450 		txq->q.desc = NULL;
4451 		return ret;
4452 	}
4453 
4454 	txq->q.q_type = CXGB4_TXQ_CTRL;
4455 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4456 	txq->adap = adap;
4457 	skb_queue_head_init(&txq->sendq);
4458 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4459 	txq->full = 0;
4460 	return 0;
4461 }
4462 
4463 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4464 			unsigned int cmplqid)
4465 {
4466 	u32 param, val;
4467 
4468 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4469 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4470 		 FW_PARAMS_PARAM_YZ_V(eqid));
4471 	val = cmplqid;
4472 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4473 }
4474 
4475 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4476 				 struct net_device *dev, u32 cmd, u32 iqid)
4477 {
4478 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4479 	struct port_info *pi = netdev_priv(dev);
4480 	struct sge *s = &adap->sge;
4481 	struct fw_eq_ofld_cmd c;
4482 	u32 fb_min, nentries;
4483 	int ret;
4484 
4485 	/* Add status entries */
4486 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4487 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4488 			     sizeof(struct tx_sw_desc), &q->phys_addr,
4489 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4490 	if (!q->desc)
4491 		return -ENOMEM;
4492 
4493 	if (chip_ver <= CHELSIO_T5)
4494 		fb_min = FETCHBURSTMIN_64B_X;
4495 	else
4496 		fb_min = FETCHBURSTMIN_64B_T6_X;
4497 
4498 	memset(&c, 0, sizeof(c));
4499 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4500 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4501 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4502 			    FW_EQ_OFLD_CMD_VFN_V(0));
4503 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4504 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4505 	c.fetchszm_to_iqid =
4506 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4507 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4508 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4509 	c.dcaen_to_eqsize =
4510 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4511 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4512 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4513 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4514 	c.eqaddr = cpu_to_be64(q->phys_addr);
4515 
4516 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4517 	if (ret) {
4518 		kfree(q->sdesc);
4519 		q->sdesc = NULL;
4520 		dma_free_coherent(adap->pdev_dev,
4521 				  nentries * sizeof(struct tx_desc),
4522 				  q->desc, q->phys_addr);
4523 		q->desc = NULL;
4524 		return ret;
4525 	}
4526 
4527 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4528 	return 0;
4529 }
4530 
4531 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4532 			 struct net_device *dev, unsigned int iqid,
4533 			 unsigned int uld_type)
4534 {
4535 	u32 cmd = FW_EQ_OFLD_CMD;
4536 	int ret;
4537 
4538 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4539 		cmd = FW_EQ_CTRL_CMD;
4540 
4541 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4542 	if (ret)
4543 		return ret;
4544 
4545 	txq->q.q_type = CXGB4_TXQ_ULD;
4546 	txq->adap = adap;
4547 	skb_queue_head_init(&txq->sendq);
4548 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4549 	txq->full = 0;
4550 	txq->mapping_err = 0;
4551 	return 0;
4552 }
4553 
4554 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4555 			     struct net_device *dev, u32 iqid)
4556 {
4557 	int ret;
4558 
4559 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4560 	if (ret)
4561 		return ret;
4562 
4563 	txq->q.q_type = CXGB4_TXQ_ULD;
4564 	spin_lock_init(&txq->lock);
4565 	txq->adap = adap;
4566 	txq->tso = 0;
4567 	txq->uso = 0;
4568 	txq->tx_cso = 0;
4569 	txq->vlan_ins = 0;
4570 	txq->mapping_err = 0;
4571 	return 0;
4572 }
4573 
4574 void free_txq(struct adapter *adap, struct sge_txq *q)
4575 {
4576 	struct sge *s = &adap->sge;
4577 
4578 	dma_free_coherent(adap->pdev_dev,
4579 			  q->size * sizeof(struct tx_desc) + s->stat_len,
4580 			  q->desc, q->phys_addr);
4581 	q->cntxt_id = 0;
4582 	q->sdesc = NULL;
4583 	q->desc = NULL;
4584 }
4585 
4586 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4587 		  struct sge_fl *fl)
4588 {
4589 	struct sge *s = &adap->sge;
4590 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4591 
4592 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4593 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4594 		   rq->cntxt_id, fl_id, 0xffff);
4595 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4596 			  rq->desc, rq->phys_addr);
4597 	netif_napi_del(&rq->napi);
4598 	rq->netdev = NULL;
4599 	rq->cntxt_id = rq->abs_id = 0;
4600 	rq->desc = NULL;
4601 
4602 	if (fl) {
4603 		free_rx_bufs(adap, fl, fl->avail);
4604 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4605 				  fl->desc, fl->addr);
4606 		kfree(fl->sdesc);
4607 		fl->sdesc = NULL;
4608 		fl->cntxt_id = 0;
4609 		fl->desc = NULL;
4610 	}
4611 }
4612 
4613 /**
4614  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4615  *      @adap: the adapter
4616  *      @n: number of queues
4617  *      @q: pointer to first queue
4618  *
4619  *      Release the resources of a consecutive block of offload Rx queues.
4620  */
4621 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4622 {
4623 	for ( ; n; n--, q++)
4624 		if (q->rspq.desc)
4625 			free_rspq_fl(adap, &q->rspq,
4626 				     q->fl.size ? &q->fl : NULL);
4627 }
4628 
4629 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4630 {
4631 	if (txq->q.desc) {
4632 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4633 				txq->q.cntxt_id);
4634 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4635 		kfree(txq->q.sdesc);
4636 		free_txq(adap, &txq->q);
4637 	}
4638 }
4639 
4640 /**
4641  *	t4_free_sge_resources - free SGE resources
4642  *	@adap: the adapter
4643  *
4644  *	Frees resources used by the SGE queue sets.
4645  */
4646 void t4_free_sge_resources(struct adapter *adap)
4647 {
4648 	int i;
4649 	struct sge_eth_rxq *eq;
4650 	struct sge_eth_txq *etq;
4651 
4652 	/* stop all Rx queues in order to start them draining */
4653 	for (i = 0; i < adap->sge.ethqsets; i++) {
4654 		eq = &adap->sge.ethrxq[i];
4655 		if (eq->rspq.desc)
4656 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4657 				   FW_IQ_TYPE_FL_INT_CAP,
4658 				   eq->rspq.cntxt_id,
4659 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4660 				   0xffff);
4661 	}
4662 
4663 	/* clean up Ethernet Tx/Rx queues */
4664 	for (i = 0; i < adap->sge.ethqsets; i++) {
4665 		eq = &adap->sge.ethrxq[i];
4666 		if (eq->rspq.desc)
4667 			free_rspq_fl(adap, &eq->rspq,
4668 				     eq->fl.size ? &eq->fl : NULL);
4669 		if (eq->msix) {
4670 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4671 			eq->msix = NULL;
4672 		}
4673 
4674 		etq = &adap->sge.ethtxq[i];
4675 		if (etq->q.desc) {
4676 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4677 				       etq->q.cntxt_id);
4678 			__netif_tx_lock_bh(etq->txq);
4679 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4680 			__netif_tx_unlock_bh(etq->txq);
4681 			kfree(etq->q.sdesc);
4682 			free_txq(adap, &etq->q);
4683 		}
4684 	}
4685 
4686 	/* clean up control Tx queues */
4687 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4688 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4689 
4690 		if (cq->q.desc) {
4691 			tasklet_kill(&cq->qresume_tsk);
4692 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4693 					cq->q.cntxt_id);
4694 			__skb_queue_purge(&cq->sendq);
4695 			free_txq(adap, &cq->q);
4696 		}
4697 	}
4698 
4699 	if (adap->sge.fw_evtq.desc) {
4700 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4701 		if (adap->sge.fwevtq_msix_idx >= 0)
4702 			cxgb4_free_msix_idx_in_bmap(adap,
4703 						    adap->sge.fwevtq_msix_idx);
4704 	}
4705 
4706 	if (adap->sge.nd_msix_idx >= 0)
4707 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4708 
4709 	if (adap->sge.intrq.desc)
4710 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4711 
4712 	if (!is_t4(adap->params.chip)) {
4713 		etq = &adap->sge.ptptxq;
4714 		if (etq->q.desc) {
4715 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4716 				       etq->q.cntxt_id);
4717 			spin_lock_bh(&adap->ptp_lock);
4718 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4719 			spin_unlock_bh(&adap->ptp_lock);
4720 			kfree(etq->q.sdesc);
4721 			free_txq(adap, &etq->q);
4722 		}
4723 	}
4724 
4725 	/* clear the reverse egress queue map */
4726 	memset(adap->sge.egr_map, 0,
4727 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4728 }
4729 
4730 void t4_sge_start(struct adapter *adap)
4731 {
4732 	adap->sge.ethtxq_rover = 0;
4733 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4734 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4735 }
4736 
4737 /**
4738  *	t4_sge_stop - disable SGE operation
4739  *	@adap: the adapter
4740  *
4741  *	Stop tasklets and timers associated with the DMA engine.  Note that
4742  *	this is effective only if measures have been taken to disable any HW
4743  *	events that may restart them.
4744  */
4745 void t4_sge_stop(struct adapter *adap)
4746 {
4747 	int i;
4748 	struct sge *s = &adap->sge;
4749 
4750 	if (in_interrupt())  /* actions below require waiting */
4751 		return;
4752 
4753 	if (s->rx_timer.function)
4754 		del_timer_sync(&s->rx_timer);
4755 	if (s->tx_timer.function)
4756 		del_timer_sync(&s->tx_timer);
4757 
4758 	if (is_offload(adap)) {
4759 		struct sge_uld_txq_info *txq_info;
4760 
4761 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4762 		if (txq_info) {
4763 			struct sge_uld_txq *txq = txq_info->uldtxq;
4764 
4765 			for_each_ofldtxq(&adap->sge, i) {
4766 				if (txq->q.desc)
4767 					tasklet_kill(&txq->qresume_tsk);
4768 			}
4769 		}
4770 	}
4771 
4772 	if (is_pci_uld(adap)) {
4773 		struct sge_uld_txq_info *txq_info;
4774 
4775 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4776 		if (txq_info) {
4777 			struct sge_uld_txq *txq = txq_info->uldtxq;
4778 
4779 			for_each_ofldtxq(&adap->sge, i) {
4780 				if (txq->q.desc)
4781 					tasklet_kill(&txq->qresume_tsk);
4782 			}
4783 		}
4784 	}
4785 
4786 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4787 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
4788 
4789 		if (cq->q.desc)
4790 			tasklet_kill(&cq->qresume_tsk);
4791 	}
4792 }
4793 
4794 /**
4795  *	t4_sge_init_soft - grab core SGE values needed by SGE code
4796  *	@adap: the adapter
4797  *
4798  *	We need to grab the SGE operating parameters that we need to have
4799  *	in order to do our job and make sure we can live with them.
4800  */
4801 
4802 static int t4_sge_init_soft(struct adapter *adap)
4803 {
4804 	struct sge *s = &adap->sge;
4805 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4806 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4807 	u32 ingress_rx_threshold;
4808 
4809 	/*
4810 	 * Verify that CPL messages are going to the Ingress Queue for
4811 	 * process_responses() and that only packet data is going to the
4812 	 * Free Lists.
4813 	 */
4814 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4815 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4816 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4817 		return -EINVAL;
4818 	}
4819 
4820 	/*
4821 	 * Validate the Host Buffer Register Array indices that we want to
4822 	 * use ...
4823 	 *
4824 	 * XXX Note that we should really read through the Host Buffer Size
4825 	 * XXX register array and find the indices of the Buffer Sizes which
4826 	 * XXX meet our needs!
4827 	 */
4828 	#define READ_FL_BUF(x) \
4829 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4830 
4831 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4832 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4833 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4834 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4835 
4836 	/* We only bother using the Large Page logic if the Large Page Buffer
4837 	 * is larger than our Page Size Buffer.
4838 	 */
4839 	if (fl_large_pg <= fl_small_pg)
4840 		fl_large_pg = 0;
4841 
4842 	#undef READ_FL_BUF
4843 
4844 	/* The Page Size Buffer must be exactly equal to our Page Size and the
4845 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4846 	 */
4847 	if (fl_small_pg != PAGE_SIZE ||
4848 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
4849 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4850 			fl_small_pg, fl_large_pg);
4851 		return -EINVAL;
4852 	}
4853 	if (fl_large_pg)
4854 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4855 
4856 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4857 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4858 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4859 			fl_small_mtu, fl_large_mtu);
4860 		return -EINVAL;
4861 	}
4862 
4863 	/*
4864 	 * Retrieve our RX interrupt holdoff timer values and counter
4865 	 * threshold values from the SGE parameters.
4866 	 */
4867 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4868 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4869 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4870 	s->timer_val[0] = core_ticks_to_us(adap,
4871 		TIMERVALUE0_G(timer_value_0_and_1));
4872 	s->timer_val[1] = core_ticks_to_us(adap,
4873 		TIMERVALUE1_G(timer_value_0_and_1));
4874 	s->timer_val[2] = core_ticks_to_us(adap,
4875 		TIMERVALUE2_G(timer_value_2_and_3));
4876 	s->timer_val[3] = core_ticks_to_us(adap,
4877 		TIMERVALUE3_G(timer_value_2_and_3));
4878 	s->timer_val[4] = core_ticks_to_us(adap,
4879 		TIMERVALUE4_G(timer_value_4_and_5));
4880 	s->timer_val[5] = core_ticks_to_us(adap,
4881 		TIMERVALUE5_G(timer_value_4_and_5));
4882 
4883 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4884 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4885 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4886 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4887 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4888 
4889 	return 0;
4890 }
4891 
4892 /**
4893  *     t4_sge_init - initialize SGE
4894  *     @adap: the adapter
4895  *
4896  *     Perform low-level SGE code initialization needed every time after a
4897  *     chip reset.
4898  */
4899 int t4_sge_init(struct adapter *adap)
4900 {
4901 	struct sge *s = &adap->sge;
4902 	u32 sge_control, sge_conm_ctrl;
4903 	int ret, egress_threshold;
4904 
4905 	/*
4906 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
4907 	 * t4_fixup_host_params().
4908 	 */
4909 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4910 	s->pktshift = PKTSHIFT_G(sge_control);
4911 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4912 
4913 	s->fl_align = t4_fl_pkt_align(adap);
4914 	ret = t4_sge_init_soft(adap);
4915 	if (ret < 0)
4916 		return ret;
4917 
4918 	/*
4919 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
4920 	 * timer will attempt to refill it.  This needs to be larger than the
4921 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
4922 	 * stuck waiting for new packets while the SGE is waiting for us to
4923 	 * give it more Free List entries.  (Note that the SGE's Egress
4924 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4925 	 * there was only a single field to control this.  For T5 there's the
4926 	 * original field which now only applies to Unpacked Mode Free List
4927 	 * buffers and a new field which only applies to Packed Mode Free List
4928 	 * buffers.
4929 	 */
4930 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4931 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4932 	case CHELSIO_T4:
4933 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4934 		break;
4935 	case CHELSIO_T5:
4936 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4937 		break;
4938 	case CHELSIO_T6:
4939 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4940 		break;
4941 	default:
4942 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4943 			CHELSIO_CHIP_VERSION(adap->params.chip));
4944 		return -EINVAL;
4945 	}
4946 	s->fl_starve_thres = 2*egress_threshold + 1;
4947 
4948 	t4_idma_monitor_init(adap, &s->idma_monitor);
4949 
4950 	/* Set up timers used for recuring callbacks to process RX and TX
4951 	 * administrative tasks.
4952 	 */
4953 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4954 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4955 
4956 	spin_lock_init(&s->intrq_lock);
4957 
4958 	return 0;
4959 }
4960