1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adapter: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 PCI_DMA_FROMDEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 PCI_DMA_FROMDEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 PCI_DMA_FROMDEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * 726 * Returns whether an Ethernet packet is small enough to fit as 727 * immediate data. Return value corresponds to headroom required. 728 */ 729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 730 { 731 int hdrlen = 0; 732 733 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 734 chip_ver > CHELSIO_T5) { 735 hdrlen = sizeof(struct cpl_tx_tnl_lso); 736 hdrlen += sizeof(struct cpl_tx_pkt_core); 737 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 738 return 0; 739 } else { 740 hdrlen = skb_shinfo(skb)->gso_size ? 741 sizeof(struct cpl_tx_pkt_lso_core) : 0; 742 hdrlen += sizeof(struct cpl_tx_pkt); 743 } 744 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 745 return hdrlen; 746 return 0; 747 } 748 749 /** 750 * calc_tx_flits - calculate the number of flits for a packet Tx WR 751 * @skb: the packet 752 * 753 * Returns the number of flits needed for a Tx WR for the given Ethernet 754 * packet, including the needed WR and CPL headers. 755 */ 756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 757 unsigned int chip_ver) 758 { 759 unsigned int flits; 760 int hdrlen = is_eth_imm(skb, chip_ver); 761 762 /* If the skb is small enough, we can pump it out as a work request 763 * with only immediate data. In that case we just have to have the 764 * TX Packet header plus the skb data in the Work Request. 765 */ 766 767 if (hdrlen) 768 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 769 770 /* Otherwise, we're going to have to construct a Scatter gather list 771 * of the skb body and fragments. We also include the flits necessary 772 * for the TX Packet Work Request and CPL. We always have a firmware 773 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 774 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 775 * message or, if we're doing a Large Send Offload, an LSO CPL message 776 * with an embedded TX Packet Write CPL message. 777 */ 778 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 779 if (skb_shinfo(skb)->gso_size) { 780 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 781 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 782 sizeof(struct cpl_tx_tnl_lso); 783 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 784 u32 pkt_hdrlen; 785 786 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 787 skb_headlen(skb)); 788 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 789 round_up(pkt_hdrlen, 16); 790 } else { 791 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 792 sizeof(struct cpl_tx_pkt_lso_core); 793 } 794 795 hdrlen += sizeof(struct cpl_tx_pkt_core); 796 flits += (hdrlen / sizeof(__be64)); 797 } else { 798 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 799 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 800 } 801 return flits; 802 } 803 804 /** 805 * calc_tx_descs - calculate the number of Tx descriptors for a packet 806 * @skb: the packet 807 * 808 * Returns the number of Tx descriptors needed for the given Ethernet 809 * packet, including the needed WR and CPL headers. 810 */ 811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 812 unsigned int chip_ver) 813 { 814 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 815 } 816 817 /** 818 * cxgb4_write_sgl - populate a scatter/gather list for a packet 819 * @skb: the packet 820 * @q: the Tx queue we are writing into 821 * @sgl: starting location for writing the SGL 822 * @end: points right after the end of the SGL 823 * @start: start offset into skb main-body data to include in the SGL 824 * @addr: the list of bus addresses for the SGL elements 825 * 826 * Generates a gather list for the buffers that make up a packet. 827 * The caller must provide adequate space for the SGL that will be written. 828 * The SGL includes all of the packet's page fragments and the data in its 829 * main body except for the first @start bytes. @sgl must be 16-byte 830 * aligned and within a Tx descriptor with available space. @end points 831 * right after the end of the SGL but does not account for any potential 832 * wrap around, i.e., @end > @sgl. 833 */ 834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 835 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 836 const dma_addr_t *addr) 837 { 838 unsigned int i, len; 839 struct ulptx_sge_pair *to; 840 const struct skb_shared_info *si = skb_shinfo(skb); 841 unsigned int nfrags = si->nr_frags; 842 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 843 844 len = skb_headlen(skb) - start; 845 if (likely(len)) { 846 sgl->len0 = htonl(len); 847 sgl->addr0 = cpu_to_be64(addr[0] + start); 848 nfrags++; 849 } else { 850 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 851 sgl->addr0 = cpu_to_be64(addr[1]); 852 } 853 854 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 855 ULPTX_NSGE_V(nfrags)); 856 if (likely(--nfrags == 0)) 857 return; 858 /* 859 * Most of the complexity below deals with the possibility we hit the 860 * end of the queue in the middle of writing the SGL. For this case 861 * only we create the SGL in a temporary buffer and then copy it. 862 */ 863 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 864 865 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 866 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 867 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 868 to->addr[0] = cpu_to_be64(addr[i]); 869 to->addr[1] = cpu_to_be64(addr[++i]); 870 } 871 if (nfrags) { 872 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 873 to->len[1] = cpu_to_be32(0); 874 to->addr[0] = cpu_to_be64(addr[i + 1]); 875 } 876 if (unlikely((u8 *)end > (u8 *)q->stat)) { 877 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 878 879 if (likely(part0)) 880 memcpy(sgl->sge, buf, part0); 881 part1 = (u8 *)end - (u8 *)q->stat; 882 memcpy(q->desc, (u8 *)buf + part0, part1); 883 end = (void *)q->desc + part1; 884 } 885 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 886 *end = 0; 887 } 888 EXPORT_SYMBOL(cxgb4_write_sgl); 889 890 /* This function copies 64 byte coalesced work request to 891 * memory mapped BAR2 space. For coalesced WR SGE fetches 892 * data from the FIFO instead of from Host. 893 */ 894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 895 { 896 int count = 8; 897 898 while (count) { 899 writeq(*src, dst); 900 src++; 901 dst++; 902 count--; 903 } 904 } 905 906 /** 907 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 908 * @adap: the adapter 909 * @q: the Tx queue 910 * @n: number of new descriptors to give to HW 911 * 912 * Ring the doorbel for a Tx queue. 913 */ 914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 915 { 916 /* Make sure that all writes to the TX Descriptors are committed 917 * before we tell the hardware about them. 918 */ 919 wmb(); 920 921 /* If we don't have access to the new User Doorbell (T5+), use the old 922 * doorbell mechanism; otherwise use the new BAR2 mechanism. 923 */ 924 if (unlikely(q->bar2_addr == NULL)) { 925 u32 val = PIDX_V(n); 926 unsigned long flags; 927 928 /* For T4 we need to participate in the Doorbell Recovery 929 * mechanism. 930 */ 931 spin_lock_irqsave(&q->db_lock, flags); 932 if (!q->db_disabled) 933 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 934 QID_V(q->cntxt_id) | val); 935 else 936 q->db_pidx_inc += n; 937 q->db_pidx = q->pidx; 938 spin_unlock_irqrestore(&q->db_lock, flags); 939 } else { 940 u32 val = PIDX_T5_V(n); 941 942 /* T4 and later chips share the same PIDX field offset within 943 * the doorbell, but T5 and later shrank the field in order to 944 * gain a bit for Doorbell Priority. The field was absurdly 945 * large in the first place (14 bits) so we just use the T5 946 * and later limits and warn if a Queue ID is too large. 947 */ 948 WARN_ON(val & DBPRIO_F); 949 950 /* If we're only writing a single TX Descriptor and we can use 951 * Inferred QID registers, we can use the Write Combining 952 * Gather Buffer; otherwise we use the simple doorbell. 953 */ 954 if (n == 1 && q->bar2_qid == 0) { 955 int index = (q->pidx 956 ? (q->pidx - 1) 957 : (q->size - 1)); 958 u64 *wr = (u64 *)&q->desc[index]; 959 960 cxgb_pio_copy((u64 __iomem *) 961 (q->bar2_addr + SGE_UDB_WCDOORBELL), 962 wr); 963 } else { 964 writel(val | QID_V(q->bar2_qid), 965 q->bar2_addr + SGE_UDB_KDOORBELL); 966 } 967 968 /* This Write Memory Barrier will force the write to the User 969 * Doorbell area to be flushed. This is needed to prevent 970 * writes on different CPUs for the same queue from hitting 971 * the adapter out of order. This is required when some Work 972 * Requests take the Write Combine Gather Buffer path (user 973 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 974 * take the traditional path where we simply increment the 975 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 976 * hardware DMA read the actual Work Request. 977 */ 978 wmb(); 979 } 980 } 981 EXPORT_SYMBOL(cxgb4_ring_tx_db); 982 983 /** 984 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 985 * @skb: the packet 986 * @q: the Tx queue where the packet will be inlined 987 * @pos: starting position in the Tx queue where to inline the packet 988 * 989 * Inline a packet's contents directly into Tx descriptors, starting at 990 * the given position within the Tx DMA ring. 991 * Most of the complexity of this operation is dealing with wrap arounds 992 * in the middle of the packet we want to inline. 993 */ 994 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 995 const struct sge_txq *q, void *pos) 996 { 997 int left = (void *)q->stat - pos; 998 u64 *p; 999 1000 if (likely(skb->len <= left)) { 1001 if (likely(!skb->data_len)) 1002 skb_copy_from_linear_data(skb, pos, skb->len); 1003 else 1004 skb_copy_bits(skb, 0, pos, skb->len); 1005 pos += skb->len; 1006 } else { 1007 skb_copy_bits(skb, 0, pos, left); 1008 skb_copy_bits(skb, left, q->desc, skb->len - left); 1009 pos = (void *)q->desc + (skb->len - left); 1010 } 1011 1012 /* 0-pad to multiple of 16 */ 1013 p = PTR_ALIGN(pos, 8); 1014 if ((uintptr_t)p & 8) 1015 *p = 0; 1016 } 1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1018 1019 static void *inline_tx_skb_header(const struct sk_buff *skb, 1020 const struct sge_txq *q, void *pos, 1021 int length) 1022 { 1023 u64 *p; 1024 int left = (void *)q->stat - pos; 1025 1026 if (likely(length <= left)) { 1027 memcpy(pos, skb->data, length); 1028 pos += length; 1029 } else { 1030 memcpy(pos, skb->data, left); 1031 memcpy(q->desc, skb->data + left, length - left); 1032 pos = (void *)q->desc + (length - left); 1033 } 1034 /* 0-pad to multiple of 16 */ 1035 p = PTR_ALIGN(pos, 8); 1036 if ((uintptr_t)p & 8) { 1037 *p = 0; 1038 return p + 1; 1039 } 1040 return p; 1041 } 1042 1043 /* 1044 * Figure out what HW csum a packet wants and return the appropriate control 1045 * bits. 1046 */ 1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1048 { 1049 int csum_type; 1050 bool inner_hdr_csum = false; 1051 u16 proto, ver; 1052 1053 if (skb->encapsulation && 1054 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1055 inner_hdr_csum = true; 1056 1057 if (inner_hdr_csum) { 1058 ver = inner_ip_hdr(skb)->version; 1059 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1060 inner_ipv6_hdr(skb)->nexthdr; 1061 } else { 1062 ver = ip_hdr(skb)->version; 1063 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1064 ipv6_hdr(skb)->nexthdr; 1065 } 1066 1067 if (ver == 4) { 1068 if (proto == IPPROTO_TCP) 1069 csum_type = TX_CSUM_TCPIP; 1070 else if (proto == IPPROTO_UDP) 1071 csum_type = TX_CSUM_UDPIP; 1072 else { 1073 nocsum: /* 1074 * unknown protocol, disable HW csum 1075 * and hope a bad packet is detected 1076 */ 1077 return TXPKT_L4CSUM_DIS_F; 1078 } 1079 } else { 1080 /* 1081 * this doesn't work with extension headers 1082 */ 1083 if (proto == IPPROTO_TCP) 1084 csum_type = TX_CSUM_TCPIP6; 1085 else if (proto == IPPROTO_UDP) 1086 csum_type = TX_CSUM_UDPIP6; 1087 else 1088 goto nocsum; 1089 } 1090 1091 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1092 int eth_hdr_len, l4_len; 1093 u64 hdr_len; 1094 1095 if (inner_hdr_csum) { 1096 /* This allows checksum offload for all encapsulated 1097 * packets like GRE etc.. 1098 */ 1099 l4_len = skb_inner_network_header_len(skb); 1100 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1101 } else { 1102 l4_len = skb_network_header_len(skb); 1103 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1104 } 1105 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1106 1107 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1108 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1109 else 1110 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1111 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1112 } else { 1113 int start = skb_transport_offset(skb); 1114 1115 return TXPKT_CSUM_TYPE_V(csum_type) | 1116 TXPKT_CSUM_START_V(start) | 1117 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1118 } 1119 } 1120 1121 static void eth_txq_stop(struct sge_eth_txq *q) 1122 { 1123 netif_tx_stop_queue(q->txq); 1124 q->q.stops++; 1125 } 1126 1127 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1128 { 1129 q->in_use += n; 1130 q->pidx += n; 1131 if (q->pidx >= q->size) 1132 q->pidx -= q->size; 1133 } 1134 1135 #ifdef CONFIG_CHELSIO_T4_FCOE 1136 static inline int 1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1138 const struct port_info *pi, u64 *cntrl) 1139 { 1140 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1141 1142 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1143 return 0; 1144 1145 if (skb->protocol != htons(ETH_P_FCOE)) 1146 return 0; 1147 1148 skb_reset_mac_header(skb); 1149 skb->mac_len = sizeof(struct ethhdr); 1150 1151 skb_set_network_header(skb, skb->mac_len); 1152 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1153 1154 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1155 return -ENOTSUPP; 1156 1157 /* FC CRC offload */ 1158 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1159 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1160 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1161 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1162 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1163 return 0; 1164 } 1165 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1166 1167 /* Returns tunnel type if hardware supports offloading of the same. 1168 * It is called only for T5 and onwards. 1169 */ 1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1171 { 1172 u8 l4_hdr = 0; 1173 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1174 struct port_info *pi = netdev_priv(skb->dev); 1175 struct adapter *adapter = pi->adapter; 1176 1177 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1178 skb->inner_protocol != htons(ETH_P_TEB)) 1179 return tnl_type; 1180 1181 switch (vlan_get_protocol(skb)) { 1182 case htons(ETH_P_IP): 1183 l4_hdr = ip_hdr(skb)->protocol; 1184 break; 1185 case htons(ETH_P_IPV6): 1186 l4_hdr = ipv6_hdr(skb)->nexthdr; 1187 break; 1188 default: 1189 return tnl_type; 1190 } 1191 1192 switch (l4_hdr) { 1193 case IPPROTO_UDP: 1194 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1195 tnl_type = TX_TNL_TYPE_VXLAN; 1196 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1197 tnl_type = TX_TNL_TYPE_GENEVE; 1198 break; 1199 default: 1200 return tnl_type; 1201 } 1202 1203 return tnl_type; 1204 } 1205 1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1207 struct cpl_tx_tnl_lso *tnl_lso, 1208 enum cpl_tx_tnl_lso_type tnl_type) 1209 { 1210 u32 val; 1211 int in_eth_xtra_len; 1212 int l3hdr_len = skb_network_header_len(skb); 1213 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1214 const struct skb_shared_info *ssi = skb_shinfo(skb); 1215 bool v6 = (ip_hdr(skb)->version == 6); 1216 1217 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1218 CPL_TX_TNL_LSO_FIRST_F | 1219 CPL_TX_TNL_LSO_LAST_F | 1220 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1221 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1222 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1223 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1224 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1225 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1226 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1227 1228 tnl_lso->IpIdOffsetOut = 0; 1229 1230 /* Get the tunnel header length */ 1231 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1232 in_eth_xtra_len = skb_inner_network_header(skb) - 1233 skb_inner_mac_header(skb) - ETH_HLEN; 1234 1235 switch (tnl_type) { 1236 case TX_TNL_TYPE_VXLAN: 1237 case TX_TNL_TYPE_GENEVE: 1238 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1239 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1240 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1241 break; 1242 default: 1243 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1244 break; 1245 } 1246 1247 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1248 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1249 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1250 1251 tnl_lso->r1 = 0; 1252 1253 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1254 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1255 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1256 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1257 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1258 1259 tnl_lso->IpIdOffset = htons(0); 1260 1261 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1262 tnl_lso->TCPSeqOffset = htonl(0); 1263 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1264 } 1265 1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1267 struct cpl_tx_pkt_lso_core *lso) 1268 { 1269 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1270 int l3hdr_len = skb_network_header_len(skb); 1271 const struct skb_shared_info *ssi; 1272 bool ipv6 = false; 1273 1274 ssi = skb_shinfo(skb); 1275 if (ssi->gso_type & SKB_GSO_TCPV6) 1276 ipv6 = true; 1277 1278 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1279 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1280 LSO_IPV6_V(ipv6) | 1281 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1282 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1283 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1284 lso->ipid_ofst = htons(0); 1285 lso->mss = htons(ssi->gso_size); 1286 lso->seqno_offset = htonl(0); 1287 if (is_t4(adap->params.chip)) 1288 lso->len = htonl(skb->len); 1289 else 1290 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1291 1292 return (void *)(lso + 1); 1293 } 1294 1295 /** 1296 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1297 * @adap: the adapter 1298 * @eq: the Ethernet TX Queue 1299 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1300 * 1301 * We're typically called here to update the state of an Ethernet TX 1302 * Queue with respect to the hardware's progress in consuming the TX 1303 * Work Requests that we've put on that Egress Queue. This happens 1304 * when we get Egress Queue Update messages and also prophylactically 1305 * in regular timer-based Ethernet TX Queue maintenance. 1306 */ 1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1308 int maxreclaim) 1309 { 1310 struct sge_txq *q = &eq->q; 1311 unsigned int reclaimed; 1312 1313 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1314 return 0; 1315 1316 /* Reclaim pending completed TX Descriptors. */ 1317 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1318 1319 /* If the TX Queue is currently stopped and there's now more than half 1320 * the queue available, restart it. Otherwise bail out since the rest 1321 * of what we want do here is with the possibility of shipping any 1322 * currently buffered Coalesced TX Work Request. 1323 */ 1324 if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) { 1325 netif_tx_wake_queue(eq->txq); 1326 eq->q.restarts++; 1327 } 1328 1329 __netif_tx_unlock(eq->txq); 1330 return reclaimed; 1331 } 1332 1333 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1334 struct net_device *dev, 1335 u32 min_pkt_len) 1336 { 1337 u32 max_pkt_len; 1338 1339 /* The chip min packet length is 10 octets but some firmware 1340 * commands have a minimum packet length requirement. So, play 1341 * safe and reject anything shorter than @min_pkt_len. 1342 */ 1343 if (unlikely(skb->len < min_pkt_len)) 1344 return -EINVAL; 1345 1346 /* Discard the packet if the length is greater than mtu */ 1347 max_pkt_len = ETH_HLEN + dev->mtu; 1348 1349 if (skb_vlan_tagged(skb)) 1350 max_pkt_len += VLAN_HLEN; 1351 1352 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1353 return -EINVAL; 1354 1355 return 0; 1356 } 1357 1358 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1359 u32 hdr_len) 1360 { 1361 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1362 wr->u.udpseg.ethlen = skb_network_offset(skb); 1363 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1364 wr->u.udpseg.udplen = sizeof(struct udphdr); 1365 wr->u.udpseg.rtplen = 0; 1366 wr->u.udpseg.r4 = 0; 1367 if (skb_shinfo(skb)->gso_size) 1368 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1369 else 1370 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1371 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1372 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1373 1374 return (void *)(wr + 1); 1375 } 1376 1377 /** 1378 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1379 * @skb: the packet 1380 * @dev: the egress net device 1381 * 1382 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1383 */ 1384 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1385 { 1386 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1387 bool ptp_enabled = is_ptp_enabled(skb, dev); 1388 unsigned int last_desc, flits, ndesc; 1389 u32 wr_mid, ctrl0, op, sgl_off = 0; 1390 const struct skb_shared_info *ssi; 1391 int len, qidx, credits, ret, left; 1392 struct tx_sw_desc *sgl_sdesc; 1393 struct fw_eth_tx_eo_wr *eowr; 1394 struct fw_eth_tx_pkt_wr *wr; 1395 struct cpl_tx_pkt_core *cpl; 1396 const struct port_info *pi; 1397 bool immediate = false; 1398 u64 cntrl, *end, *sgl; 1399 struct sge_eth_txq *q; 1400 unsigned int chip_ver; 1401 struct adapter *adap; 1402 1403 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1404 if (ret) 1405 goto out_free; 1406 1407 pi = netdev_priv(dev); 1408 adap = pi->adapter; 1409 ssi = skb_shinfo(skb); 1410 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1411 if (xfrm_offload(skb) && !ssi->gso_size) 1412 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1413 #endif /* CHELSIO_IPSEC_INLINE */ 1414 1415 #ifdef CONFIG_CHELSIO_TLS_DEVICE 1416 if (skb->decrypted) 1417 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1418 #endif /* CHELSIO_TLS_DEVICE */ 1419 1420 qidx = skb_get_queue_mapping(skb); 1421 if (ptp_enabled) { 1422 spin_lock(&adap->ptp_lock); 1423 if (!(adap->ptp_tx_skb)) { 1424 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1425 adap->ptp_tx_skb = skb_get(skb); 1426 } else { 1427 spin_unlock(&adap->ptp_lock); 1428 goto out_free; 1429 } 1430 q = &adap->sge.ptptxq; 1431 } else { 1432 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1433 } 1434 skb_tx_timestamp(skb); 1435 1436 reclaim_completed_tx(adap, &q->q, -1, true); 1437 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1438 1439 #ifdef CONFIG_CHELSIO_T4_FCOE 1440 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1441 if (unlikely(ret == -ENOTSUPP)) { 1442 if (ptp_enabled) 1443 spin_unlock(&adap->ptp_lock); 1444 goto out_free; 1445 } 1446 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1447 1448 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1449 flits = calc_tx_flits(skb, chip_ver); 1450 ndesc = flits_to_desc(flits); 1451 credits = txq_avail(&q->q) - ndesc; 1452 1453 if (unlikely(credits < 0)) { 1454 eth_txq_stop(q); 1455 dev_err(adap->pdev_dev, 1456 "%s: Tx ring %u full while queue awake!\n", 1457 dev->name, qidx); 1458 if (ptp_enabled) 1459 spin_unlock(&adap->ptp_lock); 1460 return NETDEV_TX_BUSY; 1461 } 1462 1463 if (is_eth_imm(skb, chip_ver)) 1464 immediate = true; 1465 1466 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1467 tnl_type = cxgb_encap_offload_supported(skb); 1468 1469 last_desc = q->q.pidx + ndesc - 1; 1470 if (last_desc >= q->q.size) 1471 last_desc -= q->q.size; 1472 sgl_sdesc = &q->q.sdesc[last_desc]; 1473 1474 if (!immediate && 1475 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1476 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1477 q->mapping_err++; 1478 if (ptp_enabled) 1479 spin_unlock(&adap->ptp_lock); 1480 goto out_free; 1481 } 1482 1483 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1484 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1485 /* After we're done injecting the Work Request for this 1486 * packet, we'll be below our "stop threshold" so stop the TX 1487 * Queue now and schedule a request for an SGE Egress Queue 1488 * Update message. The queue will get started later on when 1489 * the firmware processes this Work Request and sends us an 1490 * Egress Queue Status Update message indicating that space 1491 * has opened up. 1492 */ 1493 eth_txq_stop(q); 1494 1495 /* If we're using the SGE Doorbell Queue Timer facility, we 1496 * don't need to ask the Firmware to send us Egress Queue CIDX 1497 * Updates: the Hardware will do this automatically. And 1498 * since we send the Ingress Queue CIDX Updates to the 1499 * corresponding Ethernet Response Queue, we'll get them very 1500 * quickly. 1501 */ 1502 if (!q->dbqt) 1503 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1504 } 1505 1506 wr = (void *)&q->q.desc[q->q.pidx]; 1507 eowr = (void *)&q->q.desc[q->q.pidx]; 1508 wr->equiq_to_len16 = htonl(wr_mid); 1509 wr->r3 = cpu_to_be64(0); 1510 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1511 end = (u64 *)eowr + flits; 1512 else 1513 end = (u64 *)wr + flits; 1514 1515 len = immediate ? skb->len : 0; 1516 len += sizeof(*cpl); 1517 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1518 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1519 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1520 1521 if (tnl_type) 1522 len += sizeof(*tnl_lso); 1523 else 1524 len += sizeof(*lso); 1525 1526 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1527 FW_WR_IMMDLEN_V(len)); 1528 if (tnl_type) { 1529 struct iphdr *iph = ip_hdr(skb); 1530 1531 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1532 cpl = (void *)(tnl_lso + 1); 1533 /* Driver is expected to compute partial checksum that 1534 * does not include the IP Total Length. 1535 */ 1536 if (iph->version == 4) { 1537 iph->check = 0; 1538 iph->tot_len = 0; 1539 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1540 iph->ihl)); 1541 } 1542 if (skb->ip_summed == CHECKSUM_PARTIAL) 1543 cntrl = hwcsum(adap->params.chip, skb); 1544 } else { 1545 cpl = write_tso_wr(adap, skb, lso); 1546 cntrl = hwcsum(adap->params.chip, skb); 1547 } 1548 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1549 q->tso++; 1550 q->tx_cso += ssi->gso_segs; 1551 } else if (ssi->gso_size) { 1552 u64 *start; 1553 u32 hdrlen; 1554 1555 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1556 len += hdrlen; 1557 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1558 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1559 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1560 cntrl = hwcsum(adap->params.chip, skb); 1561 1562 start = (u64 *)(cpl + 1); 1563 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1564 hdrlen); 1565 if (unlikely(start > sgl)) { 1566 left = (u8 *)end - (u8 *)q->q.stat; 1567 end = (void *)q->q.desc + left; 1568 } 1569 sgl_off = hdrlen; 1570 q->uso++; 1571 q->tx_cso += ssi->gso_segs; 1572 } else { 1573 if (ptp_enabled) 1574 op = FW_PTP_TX_PKT_WR; 1575 else 1576 op = FW_ETH_TX_PKT_WR; 1577 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1578 FW_WR_IMMDLEN_V(len)); 1579 cpl = (void *)(wr + 1); 1580 sgl = (u64 *)(cpl + 1); 1581 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1582 cntrl = hwcsum(adap->params.chip, skb) | 1583 TXPKT_IPCSUM_DIS_F; 1584 q->tx_cso++; 1585 } 1586 } 1587 1588 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1589 /* If current position is already at the end of the 1590 * txq, reset the current to point to start of the queue 1591 * and update the end ptr as well. 1592 */ 1593 left = (u8 *)end - (u8 *)q->q.stat; 1594 end = (void *)q->q.desc + left; 1595 sgl = (void *)q->q.desc; 1596 } 1597 1598 if (skb_vlan_tag_present(skb)) { 1599 q->vlan_ins++; 1600 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1601 #ifdef CONFIG_CHELSIO_T4_FCOE 1602 if (skb->protocol == htons(ETH_P_FCOE)) 1603 cntrl |= TXPKT_VLAN_V( 1604 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1605 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1606 } 1607 1608 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1609 TXPKT_PF_V(adap->pf); 1610 if (ptp_enabled) 1611 ctrl0 |= TXPKT_TSTAMP_F; 1612 #ifdef CONFIG_CHELSIO_T4_DCB 1613 if (is_t4(adap->params.chip)) 1614 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1615 else 1616 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1617 #endif 1618 cpl->ctrl0 = htonl(ctrl0); 1619 cpl->pack = htons(0); 1620 cpl->len = htons(skb->len); 1621 cpl->ctrl1 = cpu_to_be64(cntrl); 1622 1623 if (immediate) { 1624 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1625 dev_consume_skb_any(skb); 1626 } else { 1627 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1628 sgl_sdesc->addr); 1629 skb_orphan(skb); 1630 sgl_sdesc->skb = skb; 1631 } 1632 1633 txq_advance(&q->q, ndesc); 1634 1635 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1636 if (ptp_enabled) 1637 spin_unlock(&adap->ptp_lock); 1638 return NETDEV_TX_OK; 1639 1640 out_free: 1641 dev_kfree_skb_any(skb); 1642 return NETDEV_TX_OK; 1643 } 1644 1645 /* Constants ... */ 1646 enum { 1647 /* Egress Queue sizes, producer and consumer indices are all in units 1648 * of Egress Context Units bytes. Note that as far as the hardware is 1649 * concerned, the free list is an Egress Queue (the host produces free 1650 * buffers which the hardware consumes) and free list entries are 1651 * 64-bit PCI DMA addresses. 1652 */ 1653 EQ_UNIT = SGE_EQ_IDXSIZE, 1654 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1655 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1656 1657 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1658 sizeof(struct cpl_tx_pkt_lso_core) + 1659 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1660 }; 1661 1662 /** 1663 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1664 * @skb: the packet 1665 * 1666 * Returns whether an Ethernet packet is small enough to fit completely as 1667 * immediate data. 1668 */ 1669 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1670 { 1671 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1672 * which does not accommodate immediate data. We could dike out all 1673 * of the support code for immediate data but that would tie our hands 1674 * too much if we ever want to enhace the firmware. It would also 1675 * create more differences between the PF and VF Drivers. 1676 */ 1677 return false; 1678 } 1679 1680 /** 1681 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1682 * @skb: the packet 1683 * 1684 * Returns the number of flits needed for a TX Work Request for the 1685 * given Ethernet packet, including the needed WR and CPL headers. 1686 */ 1687 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1688 { 1689 unsigned int flits; 1690 1691 /* If the skb is small enough, we can pump it out as a work request 1692 * with only immediate data. In that case we just have to have the 1693 * TX Packet header plus the skb data in the Work Request. 1694 */ 1695 if (t4vf_is_eth_imm(skb)) 1696 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1697 sizeof(__be64)); 1698 1699 /* Otherwise, we're going to have to construct a Scatter gather list 1700 * of the skb body and fragments. We also include the flits necessary 1701 * for the TX Packet Work Request and CPL. We always have a firmware 1702 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1703 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1704 * message or, if we're doing a Large Send Offload, an LSO CPL message 1705 * with an embedded TX Packet Write CPL message. 1706 */ 1707 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1708 if (skb_shinfo(skb)->gso_size) 1709 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1710 sizeof(struct cpl_tx_pkt_lso_core) + 1711 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1712 else 1713 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1714 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1715 return flits; 1716 } 1717 1718 /** 1719 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1720 * @skb: the packet 1721 * @dev: the egress net device 1722 * 1723 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1724 */ 1725 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1726 struct net_device *dev) 1727 { 1728 unsigned int last_desc, flits, ndesc; 1729 const struct skb_shared_info *ssi; 1730 struct fw_eth_tx_pkt_vm_wr *wr; 1731 struct tx_sw_desc *sgl_sdesc; 1732 struct cpl_tx_pkt_core *cpl; 1733 const struct port_info *pi; 1734 struct sge_eth_txq *txq; 1735 struct adapter *adapter; 1736 int qidx, credits, ret; 1737 size_t fw_hdr_copy_len; 1738 u64 cntrl, *end; 1739 u32 wr_mid; 1740 1741 /* The chip minimum packet length is 10 octets but the firmware 1742 * command that we are using requires that we copy the Ethernet header 1743 * (including the VLAN tag) into the header so we reject anything 1744 * smaller than that ... 1745 */ 1746 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1747 sizeof(wr->ethtype) + sizeof(wr->vlantci); 1748 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1749 if (ret) 1750 goto out_free; 1751 1752 /* Figure out which TX Queue we're going to use. */ 1753 pi = netdev_priv(dev); 1754 adapter = pi->adapter; 1755 qidx = skb_get_queue_mapping(skb); 1756 WARN_ON(qidx >= pi->nqsets); 1757 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1758 1759 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1760 * transfers have completed. 1761 */ 1762 reclaim_completed_tx(adapter, &txq->q, -1, true); 1763 1764 /* Calculate the number of flits and TX Descriptors we're going to 1765 * need along with how many TX Descriptors will be left over after 1766 * we inject our Work Request. 1767 */ 1768 flits = t4vf_calc_tx_flits(skb); 1769 ndesc = flits_to_desc(flits); 1770 credits = txq_avail(&txq->q) - ndesc; 1771 1772 if (unlikely(credits < 0)) { 1773 /* Not enough room for this packet's Work Request. Stop the 1774 * TX Queue and return a "busy" condition. The queue will get 1775 * started later on when the firmware informs us that space 1776 * has opened up. 1777 */ 1778 eth_txq_stop(txq); 1779 dev_err(adapter->pdev_dev, 1780 "%s: TX ring %u full while queue awake!\n", 1781 dev->name, qidx); 1782 return NETDEV_TX_BUSY; 1783 } 1784 1785 last_desc = txq->q.pidx + ndesc - 1; 1786 if (last_desc >= txq->q.size) 1787 last_desc -= txq->q.size; 1788 sgl_sdesc = &txq->q.sdesc[last_desc]; 1789 1790 if (!t4vf_is_eth_imm(skb) && 1791 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1792 sgl_sdesc->addr) < 0)) { 1793 /* We need to map the skb into PCI DMA space (because it can't 1794 * be in-lined directly into the Work Request) and the mapping 1795 * operation failed. Record the error and drop the packet. 1796 */ 1797 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1798 txq->mapping_err++; 1799 goto out_free; 1800 } 1801 1802 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1803 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1804 /* After we're done injecting the Work Request for this 1805 * packet, we'll be below our "stop threshold" so stop the TX 1806 * Queue now and schedule a request for an SGE Egress Queue 1807 * Update message. The queue will get started later on when 1808 * the firmware processes this Work Request and sends us an 1809 * Egress Queue Status Update message indicating that space 1810 * has opened up. 1811 */ 1812 eth_txq_stop(txq); 1813 1814 /* If we're using the SGE Doorbell Queue Timer facility, we 1815 * don't need to ask the Firmware to send us Egress Queue CIDX 1816 * Updates: the Hardware will do this automatically. And 1817 * since we send the Ingress Queue CIDX Updates to the 1818 * corresponding Ethernet Response Queue, we'll get them very 1819 * quickly. 1820 */ 1821 if (!txq->dbqt) 1822 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1823 } 1824 1825 /* Start filling in our Work Request. Note that we do _not_ handle 1826 * the WR Header wrapping around the TX Descriptor Ring. If our 1827 * maximum header size ever exceeds one TX Descriptor, we'll need to 1828 * do something else here. 1829 */ 1830 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1831 wr = (void *)&txq->q.desc[txq->q.pidx]; 1832 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1833 wr->r3[0] = cpu_to_be32(0); 1834 wr->r3[1] = cpu_to_be32(0); 1835 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1836 end = (u64 *)wr + flits; 1837 1838 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1839 * message with an encapsulated TX Packet CPL message. Otherwise we 1840 * just use a TX Packet CPL message. 1841 */ 1842 ssi = skb_shinfo(skb); 1843 if (ssi->gso_size) { 1844 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1845 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1846 int l3hdr_len = skb_network_header_len(skb); 1847 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1848 1849 wr->op_immdlen = 1850 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1851 FW_WR_IMMDLEN_V(sizeof(*lso) + 1852 sizeof(*cpl))); 1853 /* Fill in the LSO CPL message. */ 1854 lso->lso_ctrl = 1855 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1856 LSO_FIRST_SLICE_F | 1857 LSO_LAST_SLICE_F | 1858 LSO_IPV6_V(v6) | 1859 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1860 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1861 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1862 lso->ipid_ofst = cpu_to_be16(0); 1863 lso->mss = cpu_to_be16(ssi->gso_size); 1864 lso->seqno_offset = cpu_to_be32(0); 1865 if (is_t4(adapter->params.chip)) 1866 lso->len = cpu_to_be32(skb->len); 1867 else 1868 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1869 1870 /* Set up TX Packet CPL pointer, control word and perform 1871 * accounting. 1872 */ 1873 cpl = (void *)(lso + 1); 1874 1875 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1876 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1877 else 1878 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1879 1880 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1881 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1882 TXPKT_IPHDR_LEN_V(l3hdr_len); 1883 txq->tso++; 1884 txq->tx_cso += ssi->gso_segs; 1885 } else { 1886 int len; 1887 1888 len = (t4vf_is_eth_imm(skb) 1889 ? skb->len + sizeof(*cpl) 1890 : sizeof(*cpl)); 1891 wr->op_immdlen = 1892 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1893 FW_WR_IMMDLEN_V(len)); 1894 1895 /* Set up TX Packet CPL pointer, control word and perform 1896 * accounting. 1897 */ 1898 cpl = (void *)(wr + 1); 1899 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1900 cntrl = hwcsum(adapter->params.chip, skb) | 1901 TXPKT_IPCSUM_DIS_F; 1902 txq->tx_cso++; 1903 } else { 1904 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1905 } 1906 } 1907 1908 /* If there's a VLAN tag present, add that to the list of things to 1909 * do in this Work Request. 1910 */ 1911 if (skb_vlan_tag_present(skb)) { 1912 txq->vlan_ins++; 1913 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1914 } 1915 1916 /* Fill in the TX Packet CPL message header. */ 1917 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1918 TXPKT_INTF_V(pi->port_id) | 1919 TXPKT_PF_V(0)); 1920 cpl->pack = cpu_to_be16(0); 1921 cpl->len = cpu_to_be16(skb->len); 1922 cpl->ctrl1 = cpu_to_be64(cntrl); 1923 1924 /* Fill in the body of the TX Packet CPL message with either in-lined 1925 * data or a Scatter/Gather List. 1926 */ 1927 if (t4vf_is_eth_imm(skb)) { 1928 /* In-line the packet's data and free the skb since we don't 1929 * need it any longer. 1930 */ 1931 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 1932 dev_consume_skb_any(skb); 1933 } else { 1934 /* Write the skb's Scatter/Gather list into the TX Packet CPL 1935 * message and retain a pointer to the skb so we can free it 1936 * later when its DMA completes. (We store the skb pointer 1937 * in the Software Descriptor corresponding to the last TX 1938 * Descriptor used by the Work Request.) 1939 * 1940 * The retained skb will be freed when the corresponding TX 1941 * Descriptors are reclaimed after their DMAs complete. 1942 * However, this could take quite a while since, in general, 1943 * the hardware is set up to be lazy about sending DMA 1944 * completion notifications to us and we mostly perform TX 1945 * reclaims in the transmit routine. 1946 * 1947 * This is good for performamce but means that we rely on new 1948 * TX packets arriving to run the destructors of completed 1949 * packets, which open up space in their sockets' send queues. 1950 * Sometimes we do not get such new packets causing TX to 1951 * stall. A single UDP transmitter is a good example of this 1952 * situation. We have a clean up timer that periodically 1953 * reclaims completed packets but it doesn't run often enough 1954 * (nor do we want it to) to prevent lengthy stalls. A 1955 * solution to this problem is to run the destructor early, 1956 * after the packet is queued but before it's DMAd. A con is 1957 * that we lie to socket memory accounting, but the amount of 1958 * extra memory is reasonable (limited by the number of TX 1959 * descriptors), the packets do actually get freed quickly by 1960 * new packets almost always, and for protocols like TCP that 1961 * wait for acks to really free up the data the extra memory 1962 * is even less. On the positive side we run the destructors 1963 * on the sending CPU rather than on a potentially different 1964 * completing CPU, usually a good thing. 1965 * 1966 * Run the destructor before telling the DMA engine about the 1967 * packet to make sure it doesn't complete and get freed 1968 * prematurely. 1969 */ 1970 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1971 struct sge_txq *tq = &txq->q; 1972 1973 /* If the Work Request header was an exact multiple of our TX 1974 * Descriptor length, then it's possible that the starting SGL 1975 * pointer lines up exactly with the end of our TX Descriptor 1976 * ring. If that's the case, wrap around to the beginning 1977 * here ... 1978 */ 1979 if (unlikely((void *)sgl == (void *)tq->stat)) { 1980 sgl = (void *)tq->desc; 1981 end = (void *)((void *)tq->desc + 1982 ((void *)end - (void *)tq->stat)); 1983 } 1984 1985 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 1986 skb_orphan(skb); 1987 sgl_sdesc->skb = skb; 1988 } 1989 1990 /* Advance our internal TX Queue state, tell the hardware about 1991 * the new TX descriptors and return success. 1992 */ 1993 txq_advance(&txq->q, ndesc); 1994 1995 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 1996 return NETDEV_TX_OK; 1997 1998 out_free: 1999 /* An error of some sort happened. Free the TX skb and tell the 2000 * OS that we've "dealt" with the packet ... 2001 */ 2002 dev_kfree_skb_any(skb); 2003 return NETDEV_TX_OK; 2004 } 2005 2006 /** 2007 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2008 * @q: the SGE control Tx queue 2009 * 2010 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2011 * for Tx queues that send only immediate data (presently just 2012 * the control queues) and thus do not have any sk_buffs to release. 2013 */ 2014 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2015 { 2016 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2017 int reclaim = hw_cidx - q->cidx; 2018 2019 if (reclaim < 0) 2020 reclaim += q->size; 2021 2022 q->in_use -= reclaim; 2023 q->cidx = hw_cidx; 2024 } 2025 2026 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2027 { 2028 u32 val = *idx + n; 2029 2030 if (val >= max) 2031 val -= max; 2032 2033 *idx = val; 2034 } 2035 2036 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2037 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2038 { 2039 struct tx_sw_desc *d; 2040 2041 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2042 while (ndesc--) { 2043 if (d->skb) { 2044 if (d->addr[0]) { 2045 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2046 memset(d->addr, 0, sizeof(d->addr)); 2047 } 2048 dev_consume_skb_any(d->skb); 2049 d->skb = NULL; 2050 } 2051 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2052 eosw_txq->ndesc); 2053 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2054 } 2055 } 2056 2057 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2058 { 2059 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2060 eosw_txq->inuse += n; 2061 } 2062 2063 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2064 struct sk_buff *skb) 2065 { 2066 if (eosw_txq->inuse == eosw_txq->ndesc) 2067 return -ENOMEM; 2068 2069 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2070 return 0; 2071 } 2072 2073 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2074 { 2075 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2076 } 2077 2078 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2079 struct sk_buff *skb, u32 hdr_len) 2080 { 2081 u8 flits, nsgl = 0; 2082 u32 wrlen; 2083 2084 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2085 if (skb_shinfo(skb)->gso_size && 2086 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2087 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2088 2089 wrlen += roundup(hdr_len, 16); 2090 2091 /* Packet headers + WR + CPLs */ 2092 flits = DIV_ROUND_UP(wrlen, 8); 2093 2094 if (skb_shinfo(skb)->nr_frags > 0) { 2095 if (skb_headlen(skb) - hdr_len) 2096 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2097 else 2098 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2099 } else if (skb->len - hdr_len) { 2100 nsgl = sgl_len(1); 2101 } 2102 2103 return flits + nsgl; 2104 } 2105 2106 static inline void *write_eo_wr(struct adapter *adap, 2107 struct sge_eosw_txq *eosw_txq, 2108 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2109 u32 hdr_len, u32 wrlen) 2110 { 2111 const struct skb_shared_info *ssi = skb_shinfo(skb); 2112 struct cpl_tx_pkt_core *cpl; 2113 u32 immd_len, wrlen16; 2114 bool compl = false; 2115 u8 ver, proto; 2116 2117 ver = ip_hdr(skb)->version; 2118 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2119 2120 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2121 immd_len = sizeof(struct cpl_tx_pkt_core); 2122 if (skb_shinfo(skb)->gso_size && 2123 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2124 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2125 immd_len += hdr_len; 2126 2127 if (!eosw_txq->ncompl || 2128 eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) { 2129 compl = true; 2130 eosw_txq->ncompl++; 2131 eosw_txq->last_compl = 0; 2132 } 2133 2134 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2135 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2136 FW_WR_COMPL_V(compl)); 2137 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2138 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2139 wr->r3 = 0; 2140 if (proto == IPPROTO_UDP) { 2141 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2142 } else { 2143 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2144 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2145 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2146 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2147 wr->u.tcpseg.tsclk_tsoff = 0; 2148 wr->u.tcpseg.r4 = 0; 2149 wr->u.tcpseg.r5 = 0; 2150 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2151 2152 if (ssi->gso_size) { 2153 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2154 2155 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2156 cpl = write_tso_wr(adap, skb, lso); 2157 } else { 2158 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2159 cpl = (void *)(wr + 1); 2160 } 2161 } 2162 2163 eosw_txq->cred -= wrlen16; 2164 eosw_txq->last_compl += wrlen16; 2165 return cpl; 2166 } 2167 2168 static void ethofld_hard_xmit(struct net_device *dev, 2169 struct sge_eosw_txq *eosw_txq) 2170 { 2171 struct port_info *pi = netdev2pinfo(dev); 2172 struct adapter *adap = netdev2adap(dev); 2173 u32 wrlen, wrlen16, hdr_len, data_len; 2174 enum sge_eosw_state next_state; 2175 u64 cntrl, *start, *end, *sgl; 2176 struct sge_eohw_txq *eohw_txq; 2177 struct cpl_tx_pkt_core *cpl; 2178 struct fw_eth_tx_eo_wr *wr; 2179 bool skip_eotx_wr = false; 2180 struct tx_sw_desc *d; 2181 struct sk_buff *skb; 2182 u8 flits, ndesc; 2183 int left; 2184 2185 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2186 spin_lock(&eohw_txq->lock); 2187 reclaim_completed_tx_imm(&eohw_txq->q); 2188 2189 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2190 skb = d->skb; 2191 skb_tx_timestamp(skb); 2192 2193 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2194 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2195 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2196 hdr_len = skb->len; 2197 data_len = 0; 2198 flits = DIV_ROUND_UP(hdr_len, 8); 2199 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2200 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2201 else 2202 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2203 skip_eotx_wr = true; 2204 } else { 2205 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2206 data_len = skb->len - hdr_len; 2207 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2208 } 2209 ndesc = flits_to_desc(flits); 2210 wrlen = flits * 8; 2211 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2212 2213 /* If there are no CPL credits, then wait for credits 2214 * to come back and retry again 2215 */ 2216 if (unlikely(wrlen16 > eosw_txq->cred)) 2217 goto out_unlock; 2218 2219 if (unlikely(skip_eotx_wr)) { 2220 start = (u64 *)wr; 2221 eosw_txq->state = next_state; 2222 goto write_wr_headers; 2223 } 2224 2225 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2226 cntrl = hwcsum(adap->params.chip, skb); 2227 if (skb_vlan_tag_present(skb)) 2228 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2229 2230 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2231 TXPKT_INTF_V(pi->tx_chan) | 2232 TXPKT_PF_V(adap->pf)); 2233 cpl->pack = 0; 2234 cpl->len = cpu_to_be16(skb->len); 2235 cpl->ctrl1 = cpu_to_be64(cntrl); 2236 2237 start = (u64 *)(cpl + 1); 2238 2239 write_wr_headers: 2240 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2241 hdr_len); 2242 if (data_len) { 2243 if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) { 2244 memset(d->addr, 0, sizeof(d->addr)); 2245 eohw_txq->mapping_err++; 2246 goto out_unlock; 2247 } 2248 2249 end = (u64 *)wr + flits; 2250 if (unlikely(start > sgl)) { 2251 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2252 end = (void *)eohw_txq->q.desc + left; 2253 } 2254 2255 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2256 /* If current position is already at the end of the 2257 * txq, reset the current to point to start of the queue 2258 * and update the end ptr as well. 2259 */ 2260 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2261 2262 end = (void *)eohw_txq->q.desc + left; 2263 sgl = (void *)eohw_txq->q.desc; 2264 } 2265 2266 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2267 d->addr); 2268 } 2269 2270 if (skb_shinfo(skb)->gso_size) { 2271 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2272 eohw_txq->uso++; 2273 else 2274 eohw_txq->tso++; 2275 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2276 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2277 eohw_txq->tx_cso++; 2278 } 2279 2280 if (skb_vlan_tag_present(skb)) 2281 eohw_txq->vlan_ins++; 2282 2283 txq_advance(&eohw_txq->q, ndesc); 2284 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2285 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2286 2287 out_unlock: 2288 spin_unlock(&eohw_txq->lock); 2289 } 2290 2291 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2292 { 2293 struct sk_buff *skb; 2294 int pktcount; 2295 2296 switch (eosw_txq->state) { 2297 case CXGB4_EO_STATE_ACTIVE: 2298 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2299 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2300 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2301 if (pktcount < 0) 2302 pktcount += eosw_txq->ndesc; 2303 break; 2304 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2305 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2306 case CXGB4_EO_STATE_CLOSED: 2307 default: 2308 return; 2309 } 2310 2311 while (pktcount--) { 2312 skb = eosw_txq_peek(eosw_txq); 2313 if (!skb) { 2314 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2315 eosw_txq->ndesc); 2316 continue; 2317 } 2318 2319 ethofld_hard_xmit(dev, eosw_txq); 2320 } 2321 } 2322 2323 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2324 struct net_device *dev) 2325 { 2326 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2327 struct port_info *pi = netdev2pinfo(dev); 2328 struct adapter *adap = netdev2adap(dev); 2329 struct sge_eosw_txq *eosw_txq; 2330 u32 qid; 2331 int ret; 2332 2333 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2334 if (ret) 2335 goto out_free; 2336 2337 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2338 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2339 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2340 spin_lock_bh(&eosw_txq->lock); 2341 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2342 goto out_unlock; 2343 2344 ret = eosw_txq_enqueue(eosw_txq, skb); 2345 if (ret) 2346 goto out_unlock; 2347 2348 /* SKB is queued for processing until credits are available. 2349 * So, call the destructor now and we'll free the skb later 2350 * after it has been successfully transmitted. 2351 */ 2352 skb_orphan(skb); 2353 2354 eosw_txq_advance(eosw_txq, 1); 2355 ethofld_xmit(dev, eosw_txq); 2356 spin_unlock_bh(&eosw_txq->lock); 2357 return NETDEV_TX_OK; 2358 2359 out_unlock: 2360 spin_unlock_bh(&eosw_txq->lock); 2361 out_free: 2362 dev_kfree_skb_any(skb); 2363 return NETDEV_TX_OK; 2364 } 2365 2366 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2367 { 2368 struct port_info *pi = netdev_priv(dev); 2369 u16 qid = skb_get_queue_mapping(skb); 2370 2371 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2372 return cxgb4_vf_eth_xmit(skb, dev); 2373 2374 if (unlikely(qid >= pi->nqsets)) 2375 return cxgb4_ethofld_xmit(skb, dev); 2376 2377 return cxgb4_eth_xmit(skb, dev); 2378 } 2379 2380 /** 2381 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2382 * @dev - netdevice 2383 * @eotid - ETHOFLD tid to bind/unbind 2384 * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2385 * 2386 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2387 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2388 * a traffic class. 2389 */ 2390 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2391 { 2392 struct port_info *pi = netdev2pinfo(dev); 2393 struct adapter *adap = netdev2adap(dev); 2394 enum sge_eosw_state next_state; 2395 struct sge_eosw_txq *eosw_txq; 2396 u32 len, len16, nparams = 6; 2397 struct fw_flowc_wr *flowc; 2398 struct eotid_entry *entry; 2399 struct sge_ofld_rxq *rxq; 2400 struct sk_buff *skb; 2401 int ret = 0; 2402 2403 len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams; 2404 len16 = DIV_ROUND_UP(len, 16); 2405 2406 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2407 if (!entry) 2408 return -ENOMEM; 2409 2410 eosw_txq = (struct sge_eosw_txq *)entry->data; 2411 if (!eosw_txq) 2412 return -ENOMEM; 2413 2414 skb = alloc_skb(len, GFP_KERNEL); 2415 if (!skb) 2416 return -ENOMEM; 2417 2418 spin_lock_bh(&eosw_txq->lock); 2419 if (tc != FW_SCHED_CLS_NONE) { 2420 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2421 goto out_unlock; 2422 2423 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2424 } else { 2425 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2426 goto out_unlock; 2427 2428 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2429 } 2430 2431 flowc = __skb_put(skb, len); 2432 memset(flowc, 0, len); 2433 2434 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2435 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2436 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2437 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2438 FW_FLOWC_WR_NPARAMS_V(nparams) | 2439 FW_WR_COMPL_V(1)); 2440 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2441 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2442 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2443 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2444 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2445 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2446 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2447 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2448 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2449 flowc->mnemval[4].val = cpu_to_be32(tc); 2450 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2451 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2452 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2453 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2454 2455 eosw_txq->cred -= len16; 2456 eosw_txq->ncompl++; 2457 eosw_txq->last_compl = 0; 2458 2459 ret = eosw_txq_enqueue(eosw_txq, skb); 2460 if (ret) { 2461 dev_consume_skb_any(skb); 2462 goto out_unlock; 2463 } 2464 2465 eosw_txq->state = next_state; 2466 eosw_txq->flowc_idx = eosw_txq->pidx; 2467 eosw_txq_advance(eosw_txq, 1); 2468 ethofld_xmit(dev, eosw_txq); 2469 2470 out_unlock: 2471 spin_unlock_bh(&eosw_txq->lock); 2472 return ret; 2473 } 2474 2475 /** 2476 * is_imm - check whether a packet can be sent as immediate data 2477 * @skb: the packet 2478 * 2479 * Returns true if a packet can be sent as a WR with immediate data. 2480 */ 2481 static inline int is_imm(const struct sk_buff *skb) 2482 { 2483 return skb->len <= MAX_CTRL_WR_LEN; 2484 } 2485 2486 /** 2487 * ctrlq_check_stop - check if a control queue is full and should stop 2488 * @q: the queue 2489 * @wr: most recent WR written to the queue 2490 * 2491 * Check if a control queue has become full and should be stopped. 2492 * We clean up control queue descriptors very lazily, only when we are out. 2493 * If the queue is still full after reclaiming any completed descriptors 2494 * we suspend it and have the last WR wake it up. 2495 */ 2496 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2497 { 2498 reclaim_completed_tx_imm(&q->q); 2499 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2500 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2501 q->q.stops++; 2502 q->full = 1; 2503 } 2504 } 2505 2506 /** 2507 * ctrl_xmit - send a packet through an SGE control Tx queue 2508 * @q: the control queue 2509 * @skb: the packet 2510 * 2511 * Send a packet through an SGE control Tx queue. Packets sent through 2512 * a control queue must fit entirely as immediate data. 2513 */ 2514 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2515 { 2516 unsigned int ndesc; 2517 struct fw_wr_hdr *wr; 2518 2519 if (unlikely(!is_imm(skb))) { 2520 WARN_ON(1); 2521 dev_kfree_skb(skb); 2522 return NET_XMIT_DROP; 2523 } 2524 2525 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2526 spin_lock(&q->sendq.lock); 2527 2528 if (unlikely(q->full)) { 2529 skb->priority = ndesc; /* save for restart */ 2530 __skb_queue_tail(&q->sendq, skb); 2531 spin_unlock(&q->sendq.lock); 2532 return NET_XMIT_CN; 2533 } 2534 2535 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2536 cxgb4_inline_tx_skb(skb, &q->q, wr); 2537 2538 txq_advance(&q->q, ndesc); 2539 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2540 ctrlq_check_stop(q, wr); 2541 2542 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2543 spin_unlock(&q->sendq.lock); 2544 2545 kfree_skb(skb); 2546 return NET_XMIT_SUCCESS; 2547 } 2548 2549 /** 2550 * restart_ctrlq - restart a suspended control queue 2551 * @data: the control queue to restart 2552 * 2553 * Resumes transmission on a suspended Tx control queue. 2554 */ 2555 static void restart_ctrlq(unsigned long data) 2556 { 2557 struct sk_buff *skb; 2558 unsigned int written = 0; 2559 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 2560 2561 spin_lock(&q->sendq.lock); 2562 reclaim_completed_tx_imm(&q->q); 2563 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2564 2565 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2566 struct fw_wr_hdr *wr; 2567 unsigned int ndesc = skb->priority; /* previously saved */ 2568 2569 written += ndesc; 2570 /* Write descriptors and free skbs outside the lock to limit 2571 * wait times. q->full is still set so new skbs will be queued. 2572 */ 2573 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2574 txq_advance(&q->q, ndesc); 2575 spin_unlock(&q->sendq.lock); 2576 2577 cxgb4_inline_tx_skb(skb, &q->q, wr); 2578 kfree_skb(skb); 2579 2580 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2581 unsigned long old = q->q.stops; 2582 2583 ctrlq_check_stop(q, wr); 2584 if (q->q.stops != old) { /* suspended anew */ 2585 spin_lock(&q->sendq.lock); 2586 goto ringdb; 2587 } 2588 } 2589 if (written > 16) { 2590 cxgb4_ring_tx_db(q->adap, &q->q, written); 2591 written = 0; 2592 } 2593 spin_lock(&q->sendq.lock); 2594 } 2595 q->full = 0; 2596 ringdb: 2597 if (written) 2598 cxgb4_ring_tx_db(q->adap, &q->q, written); 2599 spin_unlock(&q->sendq.lock); 2600 } 2601 2602 /** 2603 * t4_mgmt_tx - send a management message 2604 * @adap: the adapter 2605 * @skb: the packet containing the management message 2606 * 2607 * Send a management message through control queue 0. 2608 */ 2609 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2610 { 2611 int ret; 2612 2613 local_bh_disable(); 2614 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2615 local_bh_enable(); 2616 return ret; 2617 } 2618 2619 /** 2620 * is_ofld_imm - check whether a packet can be sent as immediate data 2621 * @skb: the packet 2622 * 2623 * Returns true if a packet can be sent as an offload WR with immediate 2624 * data. We currently use the same limit as for Ethernet packets. 2625 */ 2626 static inline int is_ofld_imm(const struct sk_buff *skb) 2627 { 2628 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2629 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2630 2631 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2632 return skb->len <= SGE_MAX_WR_LEN; 2633 else 2634 return skb->len <= MAX_IMM_TX_PKT_LEN; 2635 } 2636 2637 /** 2638 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2639 * @skb: the packet 2640 * 2641 * Returns the number of flits needed for the given offload packet. 2642 * These packets are already fully constructed and no additional headers 2643 * will be added. 2644 */ 2645 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2646 { 2647 unsigned int flits, cnt; 2648 2649 if (is_ofld_imm(skb)) 2650 return DIV_ROUND_UP(skb->len, 8); 2651 2652 flits = skb_transport_offset(skb) / 8U; /* headers */ 2653 cnt = skb_shinfo(skb)->nr_frags; 2654 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2655 cnt++; 2656 return flits + sgl_len(cnt); 2657 } 2658 2659 /** 2660 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2661 * @adap: the adapter 2662 * @q: the queue to stop 2663 * 2664 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2665 * inability to map packets. A periodic timer attempts to restart 2666 * queues so marked. 2667 */ 2668 static void txq_stop_maperr(struct sge_uld_txq *q) 2669 { 2670 q->mapping_err++; 2671 q->q.stops++; 2672 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2673 q->adap->sge.txq_maperr); 2674 } 2675 2676 /** 2677 * ofldtxq_stop - stop an offload Tx queue that has become full 2678 * @q: the queue to stop 2679 * @wr: the Work Request causing the queue to become full 2680 * 2681 * Stops an offload Tx queue that has become full and modifies the packet 2682 * being written to request a wakeup. 2683 */ 2684 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2685 { 2686 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2687 q->q.stops++; 2688 q->full = 1; 2689 } 2690 2691 /** 2692 * service_ofldq - service/restart a suspended offload queue 2693 * @q: the offload queue 2694 * 2695 * Services an offload Tx queue by moving packets from its Pending Send 2696 * Queue to the Hardware TX ring. The function starts and ends with the 2697 * Send Queue locked, but drops the lock while putting the skb at the 2698 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2699 * allows more skbs to be added to the Send Queue by other threads. 2700 * The packet being processed at the head of the Pending Send Queue is 2701 * left on the queue in case we experience DMA Mapping errors, etc. 2702 * and need to give up and restart later. 2703 * 2704 * service_ofldq() can be thought of as a task which opportunistically 2705 * uses other threads execution contexts. We use the Offload Queue 2706 * boolean "service_ofldq_running" to make sure that only one instance 2707 * is ever running at a time ... 2708 */ 2709 static void service_ofldq(struct sge_uld_txq *q) 2710 { 2711 u64 *pos, *before, *end; 2712 int credits; 2713 struct sk_buff *skb; 2714 struct sge_txq *txq; 2715 unsigned int left; 2716 unsigned int written = 0; 2717 unsigned int flits, ndesc; 2718 2719 /* If another thread is currently in service_ofldq() processing the 2720 * Pending Send Queue then there's nothing to do. Otherwise, flag 2721 * that we're doing the work and continue. Examining/modifying 2722 * the Offload Queue boolean "service_ofldq_running" must be done 2723 * while holding the Pending Send Queue Lock. 2724 */ 2725 if (q->service_ofldq_running) 2726 return; 2727 q->service_ofldq_running = true; 2728 2729 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2730 /* We drop the lock while we're working with the skb at the 2731 * head of the Pending Send Queue. This allows more skbs to 2732 * be added to the Pending Send Queue while we're working on 2733 * this one. We don't need to lock to guard the TX Ring 2734 * updates because only one thread of execution is ever 2735 * allowed into service_ofldq() at a time. 2736 */ 2737 spin_unlock(&q->sendq.lock); 2738 2739 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2740 2741 flits = skb->priority; /* previously saved */ 2742 ndesc = flits_to_desc(flits); 2743 credits = txq_avail(&q->q) - ndesc; 2744 BUG_ON(credits < 0); 2745 if (unlikely(credits < TXQ_STOP_THRES)) 2746 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2747 2748 pos = (u64 *)&q->q.desc[q->q.pidx]; 2749 if (is_ofld_imm(skb)) 2750 cxgb4_inline_tx_skb(skb, &q->q, pos); 2751 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2752 (dma_addr_t *)skb->head)) { 2753 txq_stop_maperr(q); 2754 spin_lock(&q->sendq.lock); 2755 break; 2756 } else { 2757 int last_desc, hdr_len = skb_transport_offset(skb); 2758 2759 /* The WR headers may not fit within one descriptor. 2760 * So we need to deal with wrap-around here. 2761 */ 2762 before = (u64 *)pos; 2763 end = (u64 *)pos + flits; 2764 txq = &q->q; 2765 pos = (void *)inline_tx_skb_header(skb, &q->q, 2766 (void *)pos, 2767 hdr_len); 2768 if (before > (u64 *)pos) { 2769 left = (u8 *)end - (u8 *)txq->stat; 2770 end = (void *)txq->desc + left; 2771 } 2772 2773 /* If current position is already at the end of the 2774 * ofld queue, reset the current to point to 2775 * start of the queue and update the end ptr as well. 2776 */ 2777 if (pos == (u64 *)txq->stat) { 2778 left = (u8 *)end - (u8 *)txq->stat; 2779 end = (void *)txq->desc + left; 2780 pos = (void *)txq->desc; 2781 } 2782 2783 cxgb4_write_sgl(skb, &q->q, (void *)pos, 2784 end, hdr_len, 2785 (dma_addr_t *)skb->head); 2786 #ifdef CONFIG_NEED_DMA_MAP_STATE 2787 skb->dev = q->adap->port[0]; 2788 skb->destructor = deferred_unmap_destructor; 2789 #endif 2790 last_desc = q->q.pidx + ndesc - 1; 2791 if (last_desc >= q->q.size) 2792 last_desc -= q->q.size; 2793 q->q.sdesc[last_desc].skb = skb; 2794 } 2795 2796 txq_advance(&q->q, ndesc); 2797 written += ndesc; 2798 if (unlikely(written > 32)) { 2799 cxgb4_ring_tx_db(q->adap, &q->q, written); 2800 written = 0; 2801 } 2802 2803 /* Reacquire the Pending Send Queue Lock so we can unlink the 2804 * skb we've just successfully transferred to the TX Ring and 2805 * loop for the next skb which may be at the head of the 2806 * Pending Send Queue. 2807 */ 2808 spin_lock(&q->sendq.lock); 2809 __skb_unlink(skb, &q->sendq); 2810 if (is_ofld_imm(skb)) 2811 kfree_skb(skb); 2812 } 2813 if (likely(written)) 2814 cxgb4_ring_tx_db(q->adap, &q->q, written); 2815 2816 /*Indicate that no thread is processing the Pending Send Queue 2817 * currently. 2818 */ 2819 q->service_ofldq_running = false; 2820 } 2821 2822 /** 2823 * ofld_xmit - send a packet through an offload queue 2824 * @q: the Tx offload queue 2825 * @skb: the packet 2826 * 2827 * Send an offload packet through an SGE offload queue. 2828 */ 2829 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 2830 { 2831 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 2832 spin_lock(&q->sendq.lock); 2833 2834 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 2835 * that results in this new skb being the only one on the queue, start 2836 * servicing it. If there are other skbs already on the list, then 2837 * either the queue is currently being processed or it's been stopped 2838 * for some reason and it'll be restarted at a later time. Restart 2839 * paths are triggered by events like experiencing a DMA Mapping Error 2840 * or filling the Hardware TX Ring. 2841 */ 2842 __skb_queue_tail(&q->sendq, skb); 2843 if (q->sendq.qlen == 1) 2844 service_ofldq(q); 2845 2846 spin_unlock(&q->sendq.lock); 2847 return NET_XMIT_SUCCESS; 2848 } 2849 2850 /** 2851 * restart_ofldq - restart a suspended offload queue 2852 * @data: the offload queue to restart 2853 * 2854 * Resumes transmission on a suspended Tx offload queue. 2855 */ 2856 static void restart_ofldq(unsigned long data) 2857 { 2858 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 2859 2860 spin_lock(&q->sendq.lock); 2861 q->full = 0; /* the queue actually is completely empty now */ 2862 service_ofldq(q); 2863 spin_unlock(&q->sendq.lock); 2864 } 2865 2866 /** 2867 * skb_txq - return the Tx queue an offload packet should use 2868 * @skb: the packet 2869 * 2870 * Returns the Tx queue an offload packet should use as indicated by bits 2871 * 1-15 in the packet's queue_mapping. 2872 */ 2873 static inline unsigned int skb_txq(const struct sk_buff *skb) 2874 { 2875 return skb->queue_mapping >> 1; 2876 } 2877 2878 /** 2879 * is_ctrl_pkt - return whether an offload packet is a control packet 2880 * @skb: the packet 2881 * 2882 * Returns whether an offload packet should use an OFLD or a CTRL 2883 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 2884 */ 2885 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 2886 { 2887 return skb->queue_mapping & 1; 2888 } 2889 2890 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 2891 unsigned int tx_uld_type) 2892 { 2893 struct sge_uld_txq_info *txq_info; 2894 struct sge_uld_txq *txq; 2895 unsigned int idx = skb_txq(skb); 2896 2897 if (unlikely(is_ctrl_pkt(skb))) { 2898 /* Single ctrl queue is a requirement for LE workaround path */ 2899 if (adap->tids.nsftids) 2900 idx = 0; 2901 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 2902 } 2903 2904 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 2905 if (unlikely(!txq_info)) { 2906 WARN_ON(true); 2907 return NET_XMIT_DROP; 2908 } 2909 2910 txq = &txq_info->uldtxq[idx]; 2911 return ofld_xmit(txq, skb); 2912 } 2913 2914 /** 2915 * t4_ofld_send - send an offload packet 2916 * @adap: the adapter 2917 * @skb: the packet 2918 * 2919 * Sends an offload packet. We use the packet queue_mapping to select the 2920 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2921 * should be sent as regular or control, bits 1-15 select the queue. 2922 */ 2923 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 2924 { 2925 int ret; 2926 2927 local_bh_disable(); 2928 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 2929 local_bh_enable(); 2930 return ret; 2931 } 2932 2933 /** 2934 * cxgb4_ofld_send - send an offload packet 2935 * @dev: the net device 2936 * @skb: the packet 2937 * 2938 * Sends an offload packet. This is an exported version of @t4_ofld_send, 2939 * intended for ULDs. 2940 */ 2941 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2942 { 2943 return t4_ofld_send(netdev2adap(dev), skb); 2944 } 2945 EXPORT_SYMBOL(cxgb4_ofld_send); 2946 2947 static void *inline_tx_header(const void *src, 2948 const struct sge_txq *q, 2949 void *pos, int length) 2950 { 2951 int left = (void *)q->stat - pos; 2952 u64 *p; 2953 2954 if (likely(length <= left)) { 2955 memcpy(pos, src, length); 2956 pos += length; 2957 } else { 2958 memcpy(pos, src, left); 2959 memcpy(q->desc, src + left, length - left); 2960 pos = (void *)q->desc + (length - left); 2961 } 2962 /* 0-pad to multiple of 16 */ 2963 p = PTR_ALIGN(pos, 8); 2964 if ((uintptr_t)p & 8) { 2965 *p = 0; 2966 return p + 1; 2967 } 2968 return p; 2969 } 2970 2971 /** 2972 * ofld_xmit_direct - copy a WR into offload queue 2973 * @q: the Tx offload queue 2974 * @src: location of WR 2975 * @len: WR length 2976 * 2977 * Copy an immediate WR into an uncontended SGE offload queue. 2978 */ 2979 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 2980 unsigned int len) 2981 { 2982 unsigned int ndesc; 2983 int credits; 2984 u64 *pos; 2985 2986 /* Use the lower limit as the cut-off */ 2987 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 2988 WARN_ON(1); 2989 return NET_XMIT_DROP; 2990 } 2991 2992 /* Don't return NET_XMIT_CN here as the current 2993 * implementation doesn't queue the request 2994 * using an skb when the following conditions not met 2995 */ 2996 if (!spin_trylock(&q->sendq.lock)) 2997 return NET_XMIT_DROP; 2998 2999 if (q->full || !skb_queue_empty(&q->sendq) || 3000 q->service_ofldq_running) { 3001 spin_unlock(&q->sendq.lock); 3002 return NET_XMIT_DROP; 3003 } 3004 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3005 credits = txq_avail(&q->q) - ndesc; 3006 pos = (u64 *)&q->q.desc[q->q.pidx]; 3007 3008 /* ofldtxq_stop modifies WR header in-situ */ 3009 inline_tx_header(src, &q->q, pos, len); 3010 if (unlikely(credits < TXQ_STOP_THRES)) 3011 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3012 txq_advance(&q->q, ndesc); 3013 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3014 3015 spin_unlock(&q->sendq.lock); 3016 return NET_XMIT_SUCCESS; 3017 } 3018 3019 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3020 const void *src, unsigned int len) 3021 { 3022 struct sge_uld_txq_info *txq_info; 3023 struct sge_uld_txq *txq; 3024 struct adapter *adap; 3025 int ret; 3026 3027 adap = netdev2adap(dev); 3028 3029 local_bh_disable(); 3030 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3031 if (unlikely(!txq_info)) { 3032 WARN_ON(true); 3033 local_bh_enable(); 3034 return NET_XMIT_DROP; 3035 } 3036 txq = &txq_info->uldtxq[idx]; 3037 3038 ret = ofld_xmit_direct(txq, src, len); 3039 local_bh_enable(); 3040 return net_xmit_eval(ret); 3041 } 3042 EXPORT_SYMBOL(cxgb4_immdata_send); 3043 3044 /** 3045 * t4_crypto_send - send crypto packet 3046 * @adap: the adapter 3047 * @skb: the packet 3048 * 3049 * Sends crypto packet. We use the packet queue_mapping to select the 3050 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3051 * should be sent as regular or control, bits 1-15 select the queue. 3052 */ 3053 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3054 { 3055 int ret; 3056 3057 local_bh_disable(); 3058 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3059 local_bh_enable(); 3060 return ret; 3061 } 3062 3063 /** 3064 * cxgb4_crypto_send - send crypto packet 3065 * @dev: the net device 3066 * @skb: the packet 3067 * 3068 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3069 * intended for ULDs. 3070 */ 3071 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3072 { 3073 return t4_crypto_send(netdev2adap(dev), skb); 3074 } 3075 EXPORT_SYMBOL(cxgb4_crypto_send); 3076 3077 static inline void copy_frags(struct sk_buff *skb, 3078 const struct pkt_gl *gl, unsigned int offset) 3079 { 3080 int i; 3081 3082 /* usually there's just one frag */ 3083 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3084 gl->frags[0].offset + offset, 3085 gl->frags[0].size - offset); 3086 skb_shinfo(skb)->nr_frags = gl->nfrags; 3087 for (i = 1; i < gl->nfrags; i++) 3088 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3089 gl->frags[i].offset, 3090 gl->frags[i].size); 3091 3092 /* get a reference to the last page, we don't own it */ 3093 get_page(gl->frags[gl->nfrags - 1].page); 3094 } 3095 3096 /** 3097 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3098 * @gl: the gather list 3099 * @skb_len: size of sk_buff main body if it carries fragments 3100 * @pull_len: amount of data to move to the sk_buff's main body 3101 * 3102 * Builds an sk_buff from the given packet gather list. Returns the 3103 * sk_buff or %NULL if sk_buff allocation failed. 3104 */ 3105 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3106 unsigned int skb_len, unsigned int pull_len) 3107 { 3108 struct sk_buff *skb; 3109 3110 /* 3111 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3112 * size, which is expected since buffers are at least PAGE_SIZEd. 3113 * In this case packets up to RX_COPY_THRES have only one fragment. 3114 */ 3115 if (gl->tot_len <= RX_COPY_THRES) { 3116 skb = dev_alloc_skb(gl->tot_len); 3117 if (unlikely(!skb)) 3118 goto out; 3119 __skb_put(skb, gl->tot_len); 3120 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3121 } else { 3122 skb = dev_alloc_skb(skb_len); 3123 if (unlikely(!skb)) 3124 goto out; 3125 __skb_put(skb, pull_len); 3126 skb_copy_to_linear_data(skb, gl->va, pull_len); 3127 3128 copy_frags(skb, gl, pull_len); 3129 skb->len = gl->tot_len; 3130 skb->data_len = skb->len - pull_len; 3131 skb->truesize += skb->data_len; 3132 } 3133 out: return skb; 3134 } 3135 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3136 3137 /** 3138 * t4_pktgl_free - free a packet gather list 3139 * @gl: the gather list 3140 * 3141 * Releases the pages of a packet gather list. We do not own the last 3142 * page on the list and do not free it. 3143 */ 3144 static void t4_pktgl_free(const struct pkt_gl *gl) 3145 { 3146 int n; 3147 const struct page_frag *p; 3148 3149 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3150 put_page(p->page); 3151 } 3152 3153 /* 3154 * Process an MPS trace packet. Give it an unused protocol number so it won't 3155 * be delivered to anyone and send it to the stack for capture. 3156 */ 3157 static noinline int handle_trace_pkt(struct adapter *adap, 3158 const struct pkt_gl *gl) 3159 { 3160 struct sk_buff *skb; 3161 3162 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3163 if (unlikely(!skb)) { 3164 t4_pktgl_free(gl); 3165 return 0; 3166 } 3167 3168 if (is_t4(adap->params.chip)) 3169 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3170 else 3171 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3172 3173 skb_reset_mac_header(skb); 3174 skb->protocol = htons(0xffff); 3175 skb->dev = adap->port[0]; 3176 netif_receive_skb(skb); 3177 return 0; 3178 } 3179 3180 /** 3181 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3182 * @adap: the adapter 3183 * @hwtstamps: time stamp structure to update 3184 * @sgetstamp: 60bit iqe timestamp 3185 * 3186 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3187 * which is in Core Clock ticks into ktime_t and assign it 3188 **/ 3189 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3190 struct skb_shared_hwtstamps *hwtstamps, 3191 u64 sgetstamp) 3192 { 3193 u64 ns; 3194 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3195 3196 ns = div_u64(tmp, adap->params.vpd.cclk); 3197 3198 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3199 hwtstamps->hwtstamp = ns_to_ktime(ns); 3200 } 3201 3202 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3203 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3204 { 3205 struct adapter *adapter = rxq->rspq.adap; 3206 struct sge *s = &adapter->sge; 3207 struct port_info *pi; 3208 int ret; 3209 struct sk_buff *skb; 3210 3211 skb = napi_get_frags(&rxq->rspq.napi); 3212 if (unlikely(!skb)) { 3213 t4_pktgl_free(gl); 3214 rxq->stats.rx_drops++; 3215 return; 3216 } 3217 3218 copy_frags(skb, gl, s->pktshift); 3219 if (tnl_hdr_len) 3220 skb->csum_level = 1; 3221 skb->len = gl->tot_len - s->pktshift; 3222 skb->data_len = skb->len; 3223 skb->truesize += skb->data_len; 3224 skb->ip_summed = CHECKSUM_UNNECESSARY; 3225 skb_record_rx_queue(skb, rxq->rspq.idx); 3226 pi = netdev_priv(skb->dev); 3227 if (pi->rxtstamp) 3228 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3229 gl->sgetstamp); 3230 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3231 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3232 PKT_HASH_TYPE_L3); 3233 3234 if (unlikely(pkt->vlan_ex)) { 3235 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3236 rxq->stats.vlan_ex++; 3237 } 3238 ret = napi_gro_frags(&rxq->rspq.napi); 3239 if (ret == GRO_HELD) 3240 rxq->stats.lro_pkts++; 3241 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3242 rxq->stats.lro_merged++; 3243 rxq->stats.pkts++; 3244 rxq->stats.rx_cso++; 3245 } 3246 3247 enum { 3248 RX_NON_PTP_PKT = 0, 3249 RX_PTP_PKT_SUC = 1, 3250 RX_PTP_PKT_ERR = 2 3251 }; 3252 3253 /** 3254 * t4_systim_to_hwstamp - read hardware time stamp 3255 * @adap: the adapter 3256 * @skb: the packet 3257 * 3258 * Read Time Stamp from MPS packet and insert in skb which 3259 * is forwarded to PTP application 3260 */ 3261 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3262 struct sk_buff *skb) 3263 { 3264 struct skb_shared_hwtstamps *hwtstamps; 3265 struct cpl_rx_mps_pkt *cpl = NULL; 3266 unsigned char *data; 3267 int offset; 3268 3269 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3270 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3271 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3272 return RX_PTP_PKT_ERR; 3273 3274 data = skb->data + sizeof(*cpl); 3275 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3276 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3277 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3278 return RX_PTP_PKT_ERR; 3279 3280 hwtstamps = skb_hwtstamps(skb); 3281 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3282 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 3283 3284 return RX_PTP_PKT_SUC; 3285 } 3286 3287 /** 3288 * t4_rx_hststamp - Recv PTP Event Message 3289 * @adap: the adapter 3290 * @rsp: the response queue descriptor holding the RX_PKT message 3291 * @skb: the packet 3292 * 3293 * PTP enabled and MPS packet, read HW timestamp 3294 */ 3295 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3296 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3297 { 3298 int ret; 3299 3300 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3301 !is_t4(adapter->params.chip))) { 3302 ret = t4_systim_to_hwstamp(adapter, skb); 3303 if (ret == RX_PTP_PKT_ERR) { 3304 kfree_skb(skb); 3305 rxq->stats.rx_drops++; 3306 } 3307 return ret; 3308 } 3309 return RX_NON_PTP_PKT; 3310 } 3311 3312 /** 3313 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3314 * @adap: the adapter 3315 * @skb: the packet 3316 * @dev: the ingress net device 3317 * 3318 * Read hardware timestamp for the loopback PTP Tx event message 3319 */ 3320 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3321 struct net_device *dev) 3322 { 3323 struct port_info *pi = netdev_priv(dev); 3324 3325 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3326 cxgb4_ptp_read_hwstamp(adapter, pi); 3327 kfree_skb(skb); 3328 return 0; 3329 } 3330 return 1; 3331 } 3332 3333 /** 3334 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3335 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3336 * @rsp: Response Entry pointer into Response Queue 3337 * @gl: Gather List pointer 3338 * 3339 * For adapters which support the SGE Doorbell Queue Timer facility, 3340 * we configure the Ethernet TX Queues to send CIDX Updates to the 3341 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3342 * messages. This adds a small load to PCIe Link RX bandwidth and, 3343 * potentially, higher CPU Interrupt load, but allows us to respond 3344 * much more quickly to the CIDX Updates. This is important for 3345 * Upper Layer Software which isn't willing to have a large amount 3346 * of TX Data outstanding before receiving DMA Completions. 3347 */ 3348 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3349 const __be64 *rsp, 3350 const struct pkt_gl *gl) 3351 { 3352 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3353 struct port_info *pi = netdev_priv(rspq->netdev); 3354 struct adapter *adapter = rspq->adap; 3355 struct sge *s = &adapter->sge; 3356 struct sge_eth_txq *txq; 3357 3358 /* skip RSS header */ 3359 rsp++; 3360 3361 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3362 */ 3363 if (unlikely(opcode == CPL_FW4_MSG && 3364 ((const struct cpl_fw4_msg *)rsp)->type == 3365 FW_TYPE_RSSCPL)) { 3366 rsp++; 3367 opcode = ((const struct rss_header *)rsp)->opcode; 3368 rsp++; 3369 } 3370 3371 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3372 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3373 __func__, opcode); 3374 return; 3375 } 3376 3377 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3378 3379 /* We've got the Hardware Consumer Index Update in the Egress Update 3380 * message. If we're using the SGE Doorbell Queue Timer mechanism, 3381 * these Egress Update messages will be our sole CIDX Updates we get 3382 * since we don't want to chew up PCIe bandwidth for both Ingress 3383 * Messages and Status Page writes. However, The code which manages 3384 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value 3385 * stored in the Status Page at the end of the TX Queue. It's easiest 3386 * to simply copy the CIDX Update value from the Egress Update message 3387 * to the Status Page. Also note that no Endian issues need to be 3388 * considered here since both are Big Endian and we're just copying 3389 * bytes consistently ... 3390 */ 3391 if (txq->dbqt) { 3392 struct cpl_sge_egr_update *egr; 3393 3394 egr = (struct cpl_sge_egr_update *)rsp; 3395 WRITE_ONCE(txq->q.stat->cidx, egr->cidx); 3396 } 3397 3398 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3399 } 3400 3401 /** 3402 * t4_ethrx_handler - process an ingress ethernet packet 3403 * @q: the response queue that received the packet 3404 * @rsp: the response queue descriptor holding the RX_PKT message 3405 * @si: the gather list of packet fragments 3406 * 3407 * Process an ingress ethernet packet and deliver it to the stack. 3408 */ 3409 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3410 const struct pkt_gl *si) 3411 { 3412 bool csum_ok; 3413 struct sk_buff *skb; 3414 const struct cpl_rx_pkt *pkt; 3415 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3416 struct adapter *adapter = q->adap; 3417 struct sge *s = &q->adap->sge; 3418 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3419 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3420 u16 err_vec, tnl_hdr_len = 0; 3421 struct port_info *pi; 3422 int ret = 0; 3423 3424 /* If we're looking at TX Queue CIDX Update, handle that separately 3425 * and return. 3426 */ 3427 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3428 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3429 t4_tx_completion_handler(q, rsp, si); 3430 return 0; 3431 } 3432 3433 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3434 return handle_trace_pkt(q->adap, si); 3435 3436 pkt = (const struct cpl_rx_pkt *)rsp; 3437 /* Compressed error vector is enabled for T6 only */ 3438 if (q->adap->params.tp.rx_pkt_encap) { 3439 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3440 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3441 } else { 3442 err_vec = be16_to_cpu(pkt->err_vec); 3443 } 3444 3445 csum_ok = pkt->csum_calc && !err_vec && 3446 (q->netdev->features & NETIF_F_RXCSUM); 3447 3448 if (err_vec) 3449 rxq->stats.bad_rx_pkts++; 3450 3451 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3452 tnl_hdr_len) && 3453 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3454 do_gro(rxq, si, pkt, tnl_hdr_len); 3455 return 0; 3456 } 3457 3458 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3459 if (unlikely(!skb)) { 3460 t4_pktgl_free(si); 3461 rxq->stats.rx_drops++; 3462 return 0; 3463 } 3464 pi = netdev_priv(q->netdev); 3465 3466 /* Handle PTP Event Rx packet */ 3467 if (unlikely(pi->ptp_enable)) { 3468 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3469 if (ret == RX_PTP_PKT_ERR) 3470 return 0; 3471 } 3472 if (likely(!ret)) 3473 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3474 3475 /* Handle the PTP Event Tx Loopback packet */ 3476 if (unlikely(pi->ptp_enable && !ret && 3477 (pkt->l2info & htonl(RXF_UDP_F)) && 3478 cxgb4_ptp_is_ptp_rx(skb))) { 3479 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3480 return 0; 3481 } 3482 3483 skb->protocol = eth_type_trans(skb, q->netdev); 3484 skb_record_rx_queue(skb, q->idx); 3485 if (skb->dev->features & NETIF_F_RXHASH) 3486 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3487 PKT_HASH_TYPE_L3); 3488 3489 rxq->stats.pkts++; 3490 3491 if (pi->rxtstamp) 3492 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3493 si->sgetstamp); 3494 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3495 if (!pkt->ip_frag) { 3496 skb->ip_summed = CHECKSUM_UNNECESSARY; 3497 rxq->stats.rx_cso++; 3498 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3499 __sum16 c = (__force __sum16)pkt->csum; 3500 skb->csum = csum_unfold(c); 3501 3502 if (tnl_hdr_len) { 3503 skb->ip_summed = CHECKSUM_UNNECESSARY; 3504 skb->csum_level = 1; 3505 } else { 3506 skb->ip_summed = CHECKSUM_COMPLETE; 3507 } 3508 rxq->stats.rx_cso++; 3509 } 3510 } else { 3511 skb_checksum_none_assert(skb); 3512 #ifdef CONFIG_CHELSIO_T4_FCOE 3513 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3514 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3515 3516 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3517 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3518 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3519 if (q->adap->params.tp.rx_pkt_encap) 3520 csum_ok = err_vec & 3521 T6_COMPR_RXERR_SUM_F; 3522 else 3523 csum_ok = err_vec & RXERR_CSUM_F; 3524 if (!csum_ok) 3525 skb->ip_summed = CHECKSUM_UNNECESSARY; 3526 } 3527 } 3528 3529 #undef CPL_RX_PKT_FLAGS 3530 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3531 } 3532 3533 if (unlikely(pkt->vlan_ex)) { 3534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3535 rxq->stats.vlan_ex++; 3536 } 3537 skb_mark_napi_id(skb, &q->napi); 3538 netif_receive_skb(skb); 3539 return 0; 3540 } 3541 3542 /** 3543 * restore_rx_bufs - put back a packet's Rx buffers 3544 * @si: the packet gather list 3545 * @q: the SGE free list 3546 * @frags: number of FL buffers to restore 3547 * 3548 * Puts back on an FL the Rx buffers associated with @si. The buffers 3549 * have already been unmapped and are left unmapped, we mark them so to 3550 * prevent further unmapping attempts. 3551 * 3552 * This function undoes a series of @unmap_rx_buf calls when we find out 3553 * that the current packet can't be processed right away afterall and we 3554 * need to come back to it later. This is a very rare event and there's 3555 * no effort to make this particularly efficient. 3556 */ 3557 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3558 int frags) 3559 { 3560 struct rx_sw_desc *d; 3561 3562 while (frags--) { 3563 if (q->cidx == 0) 3564 q->cidx = q->size - 1; 3565 else 3566 q->cidx--; 3567 d = &q->sdesc[q->cidx]; 3568 d->page = si->frags[frags].page; 3569 d->dma_addr |= RX_UNMAPPED_BUF; 3570 q->avail++; 3571 } 3572 } 3573 3574 /** 3575 * is_new_response - check if a response is newly written 3576 * @r: the response descriptor 3577 * @q: the response queue 3578 * 3579 * Returns true if a response descriptor contains a yet unprocessed 3580 * response. 3581 */ 3582 static inline bool is_new_response(const struct rsp_ctrl *r, 3583 const struct sge_rspq *q) 3584 { 3585 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3586 } 3587 3588 /** 3589 * rspq_next - advance to the next entry in a response queue 3590 * @q: the queue 3591 * 3592 * Updates the state of a response queue to advance it to the next entry. 3593 */ 3594 static inline void rspq_next(struct sge_rspq *q) 3595 { 3596 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3597 if (unlikely(++q->cidx == q->size)) { 3598 q->cidx = 0; 3599 q->gen ^= 1; 3600 q->cur_desc = q->desc; 3601 } 3602 } 3603 3604 /** 3605 * process_responses - process responses from an SGE response queue 3606 * @q: the ingress queue to process 3607 * @budget: how many responses can be processed in this round 3608 * 3609 * Process responses from an SGE response queue up to the supplied budget. 3610 * Responses include received packets as well as control messages from FW 3611 * or HW. 3612 * 3613 * Additionally choose the interrupt holdoff time for the next interrupt 3614 * on this queue. If the system is under memory shortage use a fairly 3615 * long delay to help recovery. 3616 */ 3617 static int process_responses(struct sge_rspq *q, int budget) 3618 { 3619 int ret, rsp_type; 3620 int budget_left = budget; 3621 const struct rsp_ctrl *rc; 3622 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3623 struct adapter *adapter = q->adap; 3624 struct sge *s = &adapter->sge; 3625 3626 while (likely(budget_left)) { 3627 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3628 if (!is_new_response(rc, q)) { 3629 if (q->flush_handler) 3630 q->flush_handler(q); 3631 break; 3632 } 3633 3634 dma_rmb(); 3635 rsp_type = RSPD_TYPE_G(rc->type_gen); 3636 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3637 struct page_frag *fp; 3638 struct pkt_gl si; 3639 const struct rx_sw_desc *rsd; 3640 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3641 3642 if (len & RSPD_NEWBUF_F) { 3643 if (likely(q->offset > 0)) { 3644 free_rx_bufs(q->adap, &rxq->fl, 1); 3645 q->offset = 0; 3646 } 3647 len = RSPD_LEN_G(len); 3648 } 3649 si.tot_len = len; 3650 3651 /* gather packet fragments */ 3652 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3653 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3654 bufsz = get_buf_size(adapter, rsd); 3655 fp->page = rsd->page; 3656 fp->offset = q->offset; 3657 fp->size = min(bufsz, len); 3658 len -= fp->size; 3659 if (!len) 3660 break; 3661 unmap_rx_buf(q->adap, &rxq->fl); 3662 } 3663 3664 si.sgetstamp = SGE_TIMESTAMP_G( 3665 be64_to_cpu(rc->last_flit)); 3666 /* 3667 * Last buffer remains mapped so explicitly make it 3668 * coherent for CPU access. 3669 */ 3670 dma_sync_single_for_cpu(q->adap->pdev_dev, 3671 get_buf_addr(rsd), 3672 fp->size, DMA_FROM_DEVICE); 3673 3674 si.va = page_address(si.frags[0].page) + 3675 si.frags[0].offset; 3676 prefetch(si.va); 3677 3678 si.nfrags = frags + 1; 3679 ret = q->handler(q, q->cur_desc, &si); 3680 if (likely(ret == 0)) 3681 q->offset += ALIGN(fp->size, s->fl_align); 3682 else 3683 restore_rx_bufs(&si, &rxq->fl, frags); 3684 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3685 ret = q->handler(q, q->cur_desc, NULL); 3686 } else { 3687 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3688 } 3689 3690 if (unlikely(ret)) { 3691 /* couldn't process descriptor, back off for recovery */ 3692 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3693 break; 3694 } 3695 3696 rspq_next(q); 3697 budget_left--; 3698 } 3699 3700 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3701 __refill_fl(q->adap, &rxq->fl); 3702 return budget - budget_left; 3703 } 3704 3705 /** 3706 * napi_rx_handler - the NAPI handler for Rx processing 3707 * @napi: the napi instance 3708 * @budget: how many packets we can process in this round 3709 * 3710 * Handler for new data events when using NAPI. This does not need any 3711 * locking or protection from interrupts as data interrupts are off at 3712 * this point and other adapter interrupts do not interfere (the latter 3713 * in not a concern at all with MSI-X as non-data interrupts then have 3714 * a separate handler). 3715 */ 3716 static int napi_rx_handler(struct napi_struct *napi, int budget) 3717 { 3718 unsigned int params; 3719 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3720 int work_done; 3721 u32 val; 3722 3723 work_done = process_responses(q, budget); 3724 if (likely(work_done < budget)) { 3725 int timer_index; 3726 3727 napi_complete_done(napi, work_done); 3728 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3729 3730 if (q->adaptive_rx) { 3731 if (work_done > max(timer_pkt_quota[timer_index], 3732 MIN_NAPI_WORK)) 3733 timer_index = (timer_index + 1); 3734 else 3735 timer_index = timer_index - 1; 3736 3737 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3738 q->next_intr_params = 3739 QINTR_TIMER_IDX_V(timer_index) | 3740 QINTR_CNT_EN_V(0); 3741 params = q->next_intr_params; 3742 } else { 3743 params = q->next_intr_params; 3744 q->next_intr_params = q->intr_params; 3745 } 3746 } else 3747 params = QINTR_TIMER_IDX_V(7); 3748 3749 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3750 3751 /* If we don't have access to the new User GTS (T5+), use the old 3752 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3753 */ 3754 if (unlikely(q->bar2_addr == NULL)) { 3755 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 3756 val | INGRESSQID_V((u32)q->cntxt_id)); 3757 } else { 3758 writel(val | INGRESSQID_V(q->bar2_qid), 3759 q->bar2_addr + SGE_UDB_GTS); 3760 wmb(); 3761 } 3762 return work_done; 3763 } 3764 3765 void cxgb4_ethofld_restart(unsigned long data) 3766 { 3767 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data; 3768 int pktcount; 3769 3770 spin_lock(&eosw_txq->lock); 3771 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 3772 if (pktcount < 0) 3773 pktcount += eosw_txq->ndesc; 3774 3775 if (pktcount) { 3776 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 3777 eosw_txq, pktcount); 3778 eosw_txq->inuse -= pktcount; 3779 } 3780 3781 /* There may be some packets waiting for completions. So, 3782 * attempt to send these packets now. 3783 */ 3784 ethofld_xmit(eosw_txq->netdev, eosw_txq); 3785 spin_unlock(&eosw_txq->lock); 3786 } 3787 3788 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 3789 * @q: the response queue that received the packet 3790 * @rsp: the response queue descriptor holding the CPL message 3791 * @si: the gather list of packet fragments 3792 * 3793 * Process a ETHOFLD Tx completion. Increment the cidx here, but 3794 * free up the descriptors in a tasklet later. 3795 */ 3796 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 3797 const struct pkt_gl *si) 3798 { 3799 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3800 3801 /* skip RSS header */ 3802 rsp++; 3803 3804 if (opcode == CPL_FW4_ACK) { 3805 const struct cpl_fw4_ack *cpl; 3806 struct sge_eosw_txq *eosw_txq; 3807 struct eotid_entry *entry; 3808 struct sk_buff *skb; 3809 u32 hdr_len, eotid; 3810 u8 flits, wrlen16; 3811 int credits; 3812 3813 cpl = (const struct cpl_fw4_ack *)rsp; 3814 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 3815 q->adap->tids.eotid_base; 3816 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 3817 if (!entry) 3818 goto out_done; 3819 3820 eosw_txq = (struct sge_eosw_txq *)entry->data; 3821 if (!eosw_txq) 3822 goto out_done; 3823 3824 spin_lock(&eosw_txq->lock); 3825 credits = cpl->credits; 3826 while (credits > 0) { 3827 skb = eosw_txq->desc[eosw_txq->cidx].skb; 3828 if (!skb) 3829 break; 3830 3831 if (unlikely((eosw_txq->state == 3832 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 3833 eosw_txq->state == 3834 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 3835 eosw_txq->cidx == eosw_txq->flowc_idx)) { 3836 flits = DIV_ROUND_UP(skb->len, 8); 3837 if (eosw_txq->state == 3838 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 3839 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 3840 else 3841 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 3842 complete(&eosw_txq->completion); 3843 } else { 3844 hdr_len = eth_get_headlen(eosw_txq->netdev, 3845 skb->data, 3846 skb_headlen(skb)); 3847 flits = ethofld_calc_tx_flits(q->adap, skb, 3848 hdr_len); 3849 } 3850 eosw_txq_advance_index(&eosw_txq->cidx, 1, 3851 eosw_txq->ndesc); 3852 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 3853 credits -= wrlen16; 3854 } 3855 3856 eosw_txq->cred += cpl->credits; 3857 eosw_txq->ncompl--; 3858 3859 spin_unlock(&eosw_txq->lock); 3860 3861 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 3862 * if there were packets waiting for completion. 3863 */ 3864 tasklet_schedule(&eosw_txq->qresume_tsk); 3865 } 3866 3867 out_done: 3868 return 0; 3869 } 3870 3871 /* 3872 * The MSI-X interrupt handler for an SGE response queue. 3873 */ 3874 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 3875 { 3876 struct sge_rspq *q = cookie; 3877 3878 napi_schedule(&q->napi); 3879 return IRQ_HANDLED; 3880 } 3881 3882 /* 3883 * Process the indirect interrupt entries in the interrupt queue and kick off 3884 * NAPI for each queue that has generated an entry. 3885 */ 3886 static unsigned int process_intrq(struct adapter *adap) 3887 { 3888 unsigned int credits; 3889 const struct rsp_ctrl *rc; 3890 struct sge_rspq *q = &adap->sge.intrq; 3891 u32 val; 3892 3893 spin_lock(&adap->sge.intrq_lock); 3894 for (credits = 0; ; credits++) { 3895 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3896 if (!is_new_response(rc, q)) 3897 break; 3898 3899 dma_rmb(); 3900 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 3901 unsigned int qid = ntohl(rc->pldbuflen_qid); 3902 3903 qid -= adap->sge.ingr_start; 3904 napi_schedule(&adap->sge.ingr_map[qid]->napi); 3905 } 3906 3907 rspq_next(q); 3908 } 3909 3910 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 3911 3912 /* If we don't have access to the new User GTS (T5+), use the old 3913 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3914 */ 3915 if (unlikely(q->bar2_addr == NULL)) { 3916 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 3917 val | INGRESSQID_V(q->cntxt_id)); 3918 } else { 3919 writel(val | INGRESSQID_V(q->bar2_qid), 3920 q->bar2_addr + SGE_UDB_GTS); 3921 wmb(); 3922 } 3923 spin_unlock(&adap->sge.intrq_lock); 3924 return credits; 3925 } 3926 3927 /* 3928 * The MSI interrupt handler, which handles data events from SGE response queues 3929 * as well as error and other async events as they all use the same MSI vector. 3930 */ 3931 static irqreturn_t t4_intr_msi(int irq, void *cookie) 3932 { 3933 struct adapter *adap = cookie; 3934 3935 if (adap->flags & CXGB4_MASTER_PF) 3936 t4_slow_intr_handler(adap); 3937 process_intrq(adap); 3938 return IRQ_HANDLED; 3939 } 3940 3941 /* 3942 * Interrupt handler for legacy INTx interrupts. 3943 * Handles data events from SGE response queues as well as error and other 3944 * async events as they all use the same interrupt line. 3945 */ 3946 static irqreturn_t t4_intr_intx(int irq, void *cookie) 3947 { 3948 struct adapter *adap = cookie; 3949 3950 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 3951 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 3952 process_intrq(adap)) 3953 return IRQ_HANDLED; 3954 return IRQ_NONE; /* probably shared interrupt */ 3955 } 3956 3957 /** 3958 * t4_intr_handler - select the top-level interrupt handler 3959 * @adap: the adapter 3960 * 3961 * Selects the top-level interrupt handler based on the type of interrupts 3962 * (MSI-X, MSI, or INTx). 3963 */ 3964 irq_handler_t t4_intr_handler(struct adapter *adap) 3965 { 3966 if (adap->flags & CXGB4_USING_MSIX) 3967 return t4_sge_intr_msix; 3968 if (adap->flags & CXGB4_USING_MSI) 3969 return t4_intr_msi; 3970 return t4_intr_intx; 3971 } 3972 3973 static void sge_rx_timer_cb(struct timer_list *t) 3974 { 3975 unsigned long m; 3976 unsigned int i; 3977 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 3978 struct sge *s = &adap->sge; 3979 3980 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3981 for (m = s->starving_fl[i]; m; m &= m - 1) { 3982 struct sge_eth_rxq *rxq; 3983 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 3984 struct sge_fl *fl = s->egr_map[id]; 3985 3986 clear_bit(id, s->starving_fl); 3987 smp_mb__after_atomic(); 3988 3989 if (fl_starving(adap, fl)) { 3990 rxq = container_of(fl, struct sge_eth_rxq, fl); 3991 if (napi_reschedule(&rxq->rspq.napi)) 3992 fl->starving++; 3993 else 3994 set_bit(id, s->starving_fl); 3995 } 3996 } 3997 /* The remainder of the SGE RX Timer Callback routine is dedicated to 3998 * global Master PF activities like checking for chip ingress stalls, 3999 * etc. 4000 */ 4001 if (!(adap->flags & CXGB4_MASTER_PF)) 4002 goto done; 4003 4004 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4005 4006 done: 4007 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4008 } 4009 4010 static void sge_tx_timer_cb(struct timer_list *t) 4011 { 4012 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 4013 struct sge *s = &adap->sge; 4014 unsigned long m, period; 4015 unsigned int i, budget; 4016 4017 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4018 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4019 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4020 struct sge_uld_txq *txq = s->egr_map[id]; 4021 4022 clear_bit(id, s->txq_maperr); 4023 tasklet_schedule(&txq->qresume_tsk); 4024 } 4025 4026 if (!is_t4(adap->params.chip)) { 4027 struct sge_eth_txq *q = &s->ptptxq; 4028 int avail; 4029 4030 spin_lock(&adap->ptp_lock); 4031 avail = reclaimable(&q->q); 4032 4033 if (avail) { 4034 free_tx_desc(adap, &q->q, avail, false); 4035 q->q.in_use -= avail; 4036 } 4037 spin_unlock(&adap->ptp_lock); 4038 } 4039 4040 budget = MAX_TIMER_TX_RECLAIM; 4041 i = s->ethtxq_rover; 4042 do { 4043 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4044 budget); 4045 if (!budget) 4046 break; 4047 4048 if (++i >= s->ethqsets) 4049 i = 0; 4050 } while (i != s->ethtxq_rover); 4051 s->ethtxq_rover = i; 4052 4053 if (budget == 0) { 4054 /* If we found too many reclaimable packets schedule a timer 4055 * in the near future to continue where we left off. 4056 */ 4057 period = 2; 4058 } else { 4059 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4060 * at the normal period. 4061 */ 4062 period = TX_QCHECK_PERIOD; 4063 } 4064 4065 mod_timer(&s->tx_timer, jiffies + period); 4066 } 4067 4068 /** 4069 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4070 * @adapter: the adapter 4071 * @qid: the SGE Queue ID 4072 * @qtype: the SGE Queue Type (Egress or Ingress) 4073 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4074 * 4075 * Returns the BAR2 address for the SGE Queue Registers associated with 4076 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4077 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4078 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4079 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4080 */ 4081 static void __iomem *bar2_address(struct adapter *adapter, 4082 unsigned int qid, 4083 enum t4_bar2_qtype qtype, 4084 unsigned int *pbar2_qid) 4085 { 4086 u64 bar2_qoffset; 4087 int ret; 4088 4089 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4090 &bar2_qoffset, pbar2_qid); 4091 if (ret) 4092 return NULL; 4093 4094 return adapter->bar2 + bar2_qoffset; 4095 } 4096 4097 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4098 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4099 */ 4100 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4101 struct net_device *dev, int intr_idx, 4102 struct sge_fl *fl, rspq_handler_t hnd, 4103 rspq_flush_handler_t flush_hnd, int cong) 4104 { 4105 int ret, flsz = 0; 4106 struct fw_iq_cmd c; 4107 struct sge *s = &adap->sge; 4108 struct port_info *pi = netdev_priv(dev); 4109 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4110 4111 /* Size needs to be multiple of 16, including status entry. */ 4112 iq->size = roundup(iq->size, 16); 4113 4114 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4115 &iq->phys_addr, NULL, 0, 4116 dev_to_node(adap->pdev_dev)); 4117 if (!iq->desc) 4118 return -ENOMEM; 4119 4120 memset(&c, 0, sizeof(c)); 4121 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4122 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4123 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4124 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4125 FW_LEN16(c)); 4126 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4127 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4128 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4129 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4130 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4131 -intr_idx - 1)); 4132 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4133 FW_IQ_CMD_IQGTSMODE_F | 4134 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4135 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4136 c.iqsize = htons(iq->size); 4137 c.iqaddr = cpu_to_be64(iq->phys_addr); 4138 if (cong >= 0) 4139 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4140 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4141 : FW_IQ_IQTYPE_OFLD)); 4142 4143 if (fl) { 4144 unsigned int chip_ver = 4145 CHELSIO_CHIP_VERSION(adap->params.chip); 4146 4147 /* Allocate the ring for the hardware free list (with space 4148 * for its status page) along with the associated software 4149 * descriptor ring. The free list size needs to be a multiple 4150 * of the Egress Queue Unit and at least 2 Egress Units larger 4151 * than the SGE's Egress Congrestion Threshold 4152 * (fl_starve_thres - 1). 4153 */ 4154 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4155 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4156 fl->size = roundup(fl->size, 8); 4157 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4158 sizeof(struct rx_sw_desc), &fl->addr, 4159 &fl->sdesc, s->stat_len, 4160 dev_to_node(adap->pdev_dev)); 4161 if (!fl->desc) 4162 goto fl_nomem; 4163 4164 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4165 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4166 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4167 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4168 FW_IQ_CMD_FL0PADEN_F); 4169 if (cong >= 0) 4170 c.iqns_to_fl0congen |= 4171 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4172 FW_IQ_CMD_FL0CONGCIF_F | 4173 FW_IQ_CMD_FL0CONGEN_F); 4174 /* In T6, for egress queue type FL there is internal overhead 4175 * of 16B for header going into FLM module. Hence the maximum 4176 * allowed burst size is 448 bytes. For T4/T5, the hardware 4177 * doesn't coalesce fetch requests if more than 64 bytes of 4178 * Free List pointers are provided, so we use a 128-byte Fetch 4179 * Burst Minimum there (T6 implements coalescing so we can use 4180 * the smaller 64-byte value there). 4181 */ 4182 c.fl0dcaen_to_fl0cidxfthresh = 4183 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4184 FETCHBURSTMIN_128B_X : 4185 FETCHBURSTMIN_64B_T6_X) | 4186 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4187 FETCHBURSTMAX_512B_X : 4188 FETCHBURSTMAX_256B_X)); 4189 c.fl0size = htons(flsz); 4190 c.fl0addr = cpu_to_be64(fl->addr); 4191 } 4192 4193 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4194 if (ret) 4195 goto err; 4196 4197 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 4198 iq->cur_desc = iq->desc; 4199 iq->cidx = 0; 4200 iq->gen = 1; 4201 iq->next_intr_params = iq->intr_params; 4202 iq->cntxt_id = ntohs(c.iqid); 4203 iq->abs_id = ntohs(c.physiqid); 4204 iq->bar2_addr = bar2_address(adap, 4205 iq->cntxt_id, 4206 T4_BAR2_QTYPE_INGRESS, 4207 &iq->bar2_qid); 4208 iq->size--; /* subtract status entry */ 4209 iq->netdev = dev; 4210 iq->handler = hnd; 4211 iq->flush_handler = flush_hnd; 4212 4213 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4214 skb_queue_head_init(&iq->lro_mgr.lroq); 4215 4216 /* set offset to -1 to distinguish ingress queues without FL */ 4217 iq->offset = fl ? 0 : -1; 4218 4219 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4220 4221 if (fl) { 4222 fl->cntxt_id = ntohs(c.fl0id); 4223 fl->avail = fl->pend_cred = 0; 4224 fl->pidx = fl->cidx = 0; 4225 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4226 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4227 4228 /* Note, we must initialize the BAR2 Free List User Doorbell 4229 * information before refilling the Free List! 4230 */ 4231 fl->bar2_addr = bar2_address(adap, 4232 fl->cntxt_id, 4233 T4_BAR2_QTYPE_EGRESS, 4234 &fl->bar2_qid); 4235 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4236 } 4237 4238 /* For T5 and later we attempt to set up the Congestion Manager values 4239 * of the new RX Ethernet Queue. This should really be handled by 4240 * firmware because it's more complex than any host driver wants to 4241 * get involved with and it's different per chip and this is almost 4242 * certainly wrong. Firmware would be wrong as well, but it would be 4243 * a lot easier to fix in one place ... For now we do something very 4244 * simple (and hopefully less wrong). 4245 */ 4246 if (!is_t4(adap->params.chip) && cong >= 0) { 4247 u32 param, val, ch_map = 0; 4248 int i; 4249 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4250 4251 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4252 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4253 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4254 if (cong == 0) { 4255 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4256 } else { 4257 val = 4258 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4259 for (i = 0; i < 4; i++) { 4260 if (cong & (1 << i)) 4261 ch_map |= 1 << (i << cng_ch_bits_log); 4262 } 4263 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4264 } 4265 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4266 ¶m, &val); 4267 if (ret) 4268 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4269 " Manager Context for Ingress Queue %d: %d\n", 4270 iq->cntxt_id, -ret); 4271 } 4272 4273 return 0; 4274 4275 fl_nomem: 4276 ret = -ENOMEM; 4277 err: 4278 if (iq->desc) { 4279 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4280 iq->desc, iq->phys_addr); 4281 iq->desc = NULL; 4282 } 4283 if (fl && fl->desc) { 4284 kfree(fl->sdesc); 4285 fl->sdesc = NULL; 4286 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4287 fl->desc, fl->addr); 4288 fl->desc = NULL; 4289 } 4290 return ret; 4291 } 4292 4293 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4294 { 4295 q->cntxt_id = id; 4296 q->bar2_addr = bar2_address(adap, 4297 q->cntxt_id, 4298 T4_BAR2_QTYPE_EGRESS, 4299 &q->bar2_qid); 4300 q->in_use = 0; 4301 q->cidx = q->pidx = 0; 4302 q->stops = q->restarts = 0; 4303 q->stat = (void *)&q->desc[q->size]; 4304 spin_lock_init(&q->db_lock); 4305 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4306 } 4307 4308 /** 4309 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4310 * @adap: the adapter 4311 * @txq: the SGE Ethernet TX Queue to initialize 4312 * @dev: the Linux Network Device 4313 * @netdevq: the corresponding Linux TX Queue 4314 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4315 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4316 */ 4317 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4318 struct net_device *dev, struct netdev_queue *netdevq, 4319 unsigned int iqid, u8 dbqt) 4320 { 4321 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4322 struct port_info *pi = netdev_priv(dev); 4323 struct sge *s = &adap->sge; 4324 struct fw_eq_eth_cmd c; 4325 int ret, nentries; 4326 4327 /* Add status entries */ 4328 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4329 4330 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4331 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4332 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4333 netdev_queue_numa_node_read(netdevq)); 4334 if (!txq->q.desc) 4335 return -ENOMEM; 4336 4337 memset(&c, 0, sizeof(c)); 4338 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4339 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4340 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4341 FW_EQ_ETH_CMD_VFN_V(0)); 4342 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4343 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4344 4345 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4346 * mechanism, we use Ingress Queue messages for Hardware Consumer 4347 * Index Updates on the TX Queue. Otherwise we have the Hardware 4348 * write the CIDX Updates into the Status Page at the end of the 4349 * TX Queue. 4350 */ 4351 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 4352 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4353 4354 c.fetchszm_to_iqid = 4355 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4356 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4357 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4358 4359 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4360 c.dcaen_to_eqsize = 4361 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4362 ? FETCHBURSTMIN_64B_X 4363 : FETCHBURSTMIN_64B_T6_X) | 4364 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4365 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4366 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4367 4368 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4369 4370 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4371 * currently configured Timer Index. THis can be changed later via an 4372 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4373 * Doorbell Queue mode is currently automatically enabled in the 4374 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4375 */ 4376 if (dbqt) 4377 c.timeren_timerix = 4378 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4379 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4380 4381 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4382 if (ret) { 4383 kfree(txq->q.sdesc); 4384 txq->q.sdesc = NULL; 4385 dma_free_coherent(adap->pdev_dev, 4386 nentries * sizeof(struct tx_desc), 4387 txq->q.desc, txq->q.phys_addr); 4388 txq->q.desc = NULL; 4389 return ret; 4390 } 4391 4392 txq->q.q_type = CXGB4_TXQ_ETH; 4393 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4394 txq->txq = netdevq; 4395 txq->tso = 0; 4396 txq->uso = 0; 4397 txq->tx_cso = 0; 4398 txq->vlan_ins = 0; 4399 txq->mapping_err = 0; 4400 txq->dbqt = dbqt; 4401 4402 return 0; 4403 } 4404 4405 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4406 struct net_device *dev, unsigned int iqid, 4407 unsigned int cmplqid) 4408 { 4409 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4410 struct port_info *pi = netdev_priv(dev); 4411 struct sge *s = &adap->sge; 4412 struct fw_eq_ctrl_cmd c; 4413 int ret, nentries; 4414 4415 /* Add status entries */ 4416 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4417 4418 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4419 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4420 NULL, 0, dev_to_node(adap->pdev_dev)); 4421 if (!txq->q.desc) 4422 return -ENOMEM; 4423 4424 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4425 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4426 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4427 FW_EQ_CTRL_CMD_VFN_V(0)); 4428 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4429 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4430 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4431 c.physeqid_pkd = htonl(0); 4432 c.fetchszm_to_iqid = 4433 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4434 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4435 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4436 c.dcaen_to_eqsize = 4437 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4438 ? FETCHBURSTMIN_64B_X 4439 : FETCHBURSTMIN_64B_T6_X) | 4440 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4441 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4442 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4443 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4444 4445 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4446 if (ret) { 4447 dma_free_coherent(adap->pdev_dev, 4448 nentries * sizeof(struct tx_desc), 4449 txq->q.desc, txq->q.phys_addr); 4450 txq->q.desc = NULL; 4451 return ret; 4452 } 4453 4454 txq->q.q_type = CXGB4_TXQ_CTRL; 4455 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4456 txq->adap = adap; 4457 skb_queue_head_init(&txq->sendq); 4458 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 4459 txq->full = 0; 4460 return 0; 4461 } 4462 4463 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4464 unsigned int cmplqid) 4465 { 4466 u32 param, val; 4467 4468 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4469 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4470 FW_PARAMS_PARAM_YZ_V(eqid)); 4471 val = cmplqid; 4472 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4473 } 4474 4475 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4476 struct net_device *dev, u32 cmd, u32 iqid) 4477 { 4478 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4479 struct port_info *pi = netdev_priv(dev); 4480 struct sge *s = &adap->sge; 4481 struct fw_eq_ofld_cmd c; 4482 u32 fb_min, nentries; 4483 int ret; 4484 4485 /* Add status entries */ 4486 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4487 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4488 sizeof(struct tx_sw_desc), &q->phys_addr, 4489 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4490 if (!q->desc) 4491 return -ENOMEM; 4492 4493 if (chip_ver <= CHELSIO_T5) 4494 fb_min = FETCHBURSTMIN_64B_X; 4495 else 4496 fb_min = FETCHBURSTMIN_64B_T6_X; 4497 4498 memset(&c, 0, sizeof(c)); 4499 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4500 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4501 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4502 FW_EQ_OFLD_CMD_VFN_V(0)); 4503 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4504 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4505 c.fetchszm_to_iqid = 4506 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4507 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4508 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4509 c.dcaen_to_eqsize = 4510 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4511 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4512 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4513 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4514 c.eqaddr = cpu_to_be64(q->phys_addr); 4515 4516 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4517 if (ret) { 4518 kfree(q->sdesc); 4519 q->sdesc = NULL; 4520 dma_free_coherent(adap->pdev_dev, 4521 nentries * sizeof(struct tx_desc), 4522 q->desc, q->phys_addr); 4523 q->desc = NULL; 4524 return ret; 4525 } 4526 4527 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4528 return 0; 4529 } 4530 4531 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4532 struct net_device *dev, unsigned int iqid, 4533 unsigned int uld_type) 4534 { 4535 u32 cmd = FW_EQ_OFLD_CMD; 4536 int ret; 4537 4538 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4539 cmd = FW_EQ_CTRL_CMD; 4540 4541 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4542 if (ret) 4543 return ret; 4544 4545 txq->q.q_type = CXGB4_TXQ_ULD; 4546 txq->adap = adap; 4547 skb_queue_head_init(&txq->sendq); 4548 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 4549 txq->full = 0; 4550 txq->mapping_err = 0; 4551 return 0; 4552 } 4553 4554 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4555 struct net_device *dev, u32 iqid) 4556 { 4557 int ret; 4558 4559 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4560 if (ret) 4561 return ret; 4562 4563 txq->q.q_type = CXGB4_TXQ_ULD; 4564 spin_lock_init(&txq->lock); 4565 txq->adap = adap; 4566 txq->tso = 0; 4567 txq->uso = 0; 4568 txq->tx_cso = 0; 4569 txq->vlan_ins = 0; 4570 txq->mapping_err = 0; 4571 return 0; 4572 } 4573 4574 void free_txq(struct adapter *adap, struct sge_txq *q) 4575 { 4576 struct sge *s = &adap->sge; 4577 4578 dma_free_coherent(adap->pdev_dev, 4579 q->size * sizeof(struct tx_desc) + s->stat_len, 4580 q->desc, q->phys_addr); 4581 q->cntxt_id = 0; 4582 q->sdesc = NULL; 4583 q->desc = NULL; 4584 } 4585 4586 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4587 struct sge_fl *fl) 4588 { 4589 struct sge *s = &adap->sge; 4590 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4591 4592 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4593 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4594 rq->cntxt_id, fl_id, 0xffff); 4595 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4596 rq->desc, rq->phys_addr); 4597 netif_napi_del(&rq->napi); 4598 rq->netdev = NULL; 4599 rq->cntxt_id = rq->abs_id = 0; 4600 rq->desc = NULL; 4601 4602 if (fl) { 4603 free_rx_bufs(adap, fl, fl->avail); 4604 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4605 fl->desc, fl->addr); 4606 kfree(fl->sdesc); 4607 fl->sdesc = NULL; 4608 fl->cntxt_id = 0; 4609 fl->desc = NULL; 4610 } 4611 } 4612 4613 /** 4614 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4615 * @adap: the adapter 4616 * @n: number of queues 4617 * @q: pointer to first queue 4618 * 4619 * Release the resources of a consecutive block of offload Rx queues. 4620 */ 4621 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4622 { 4623 for ( ; n; n--, q++) 4624 if (q->rspq.desc) 4625 free_rspq_fl(adap, &q->rspq, 4626 q->fl.size ? &q->fl : NULL); 4627 } 4628 4629 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4630 { 4631 if (txq->q.desc) { 4632 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4633 txq->q.cntxt_id); 4634 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4635 kfree(txq->q.sdesc); 4636 free_txq(adap, &txq->q); 4637 } 4638 } 4639 4640 /** 4641 * t4_free_sge_resources - free SGE resources 4642 * @adap: the adapter 4643 * 4644 * Frees resources used by the SGE queue sets. 4645 */ 4646 void t4_free_sge_resources(struct adapter *adap) 4647 { 4648 int i; 4649 struct sge_eth_rxq *eq; 4650 struct sge_eth_txq *etq; 4651 4652 /* stop all Rx queues in order to start them draining */ 4653 for (i = 0; i < adap->sge.ethqsets; i++) { 4654 eq = &adap->sge.ethrxq[i]; 4655 if (eq->rspq.desc) 4656 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4657 FW_IQ_TYPE_FL_INT_CAP, 4658 eq->rspq.cntxt_id, 4659 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4660 0xffff); 4661 } 4662 4663 /* clean up Ethernet Tx/Rx queues */ 4664 for (i = 0; i < adap->sge.ethqsets; i++) { 4665 eq = &adap->sge.ethrxq[i]; 4666 if (eq->rspq.desc) 4667 free_rspq_fl(adap, &eq->rspq, 4668 eq->fl.size ? &eq->fl : NULL); 4669 if (eq->msix) { 4670 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4671 eq->msix = NULL; 4672 } 4673 4674 etq = &adap->sge.ethtxq[i]; 4675 if (etq->q.desc) { 4676 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4677 etq->q.cntxt_id); 4678 __netif_tx_lock_bh(etq->txq); 4679 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4680 __netif_tx_unlock_bh(etq->txq); 4681 kfree(etq->q.sdesc); 4682 free_txq(adap, &etq->q); 4683 } 4684 } 4685 4686 /* clean up control Tx queues */ 4687 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4688 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4689 4690 if (cq->q.desc) { 4691 tasklet_kill(&cq->qresume_tsk); 4692 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4693 cq->q.cntxt_id); 4694 __skb_queue_purge(&cq->sendq); 4695 free_txq(adap, &cq->q); 4696 } 4697 } 4698 4699 if (adap->sge.fw_evtq.desc) { 4700 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4701 if (adap->sge.fwevtq_msix_idx >= 0) 4702 cxgb4_free_msix_idx_in_bmap(adap, 4703 adap->sge.fwevtq_msix_idx); 4704 } 4705 4706 if (adap->sge.nd_msix_idx >= 0) 4707 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4708 4709 if (adap->sge.intrq.desc) 4710 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4711 4712 if (!is_t4(adap->params.chip)) { 4713 etq = &adap->sge.ptptxq; 4714 if (etq->q.desc) { 4715 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4716 etq->q.cntxt_id); 4717 spin_lock_bh(&adap->ptp_lock); 4718 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4719 spin_unlock_bh(&adap->ptp_lock); 4720 kfree(etq->q.sdesc); 4721 free_txq(adap, &etq->q); 4722 } 4723 } 4724 4725 /* clear the reverse egress queue map */ 4726 memset(adap->sge.egr_map, 0, 4727 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4728 } 4729 4730 void t4_sge_start(struct adapter *adap) 4731 { 4732 adap->sge.ethtxq_rover = 0; 4733 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4734 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4735 } 4736 4737 /** 4738 * t4_sge_stop - disable SGE operation 4739 * @adap: the adapter 4740 * 4741 * Stop tasklets and timers associated with the DMA engine. Note that 4742 * this is effective only if measures have been taken to disable any HW 4743 * events that may restart them. 4744 */ 4745 void t4_sge_stop(struct adapter *adap) 4746 { 4747 int i; 4748 struct sge *s = &adap->sge; 4749 4750 if (in_interrupt()) /* actions below require waiting */ 4751 return; 4752 4753 if (s->rx_timer.function) 4754 del_timer_sync(&s->rx_timer); 4755 if (s->tx_timer.function) 4756 del_timer_sync(&s->tx_timer); 4757 4758 if (is_offload(adap)) { 4759 struct sge_uld_txq_info *txq_info; 4760 4761 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 4762 if (txq_info) { 4763 struct sge_uld_txq *txq = txq_info->uldtxq; 4764 4765 for_each_ofldtxq(&adap->sge, i) { 4766 if (txq->q.desc) 4767 tasklet_kill(&txq->qresume_tsk); 4768 } 4769 } 4770 } 4771 4772 if (is_pci_uld(adap)) { 4773 struct sge_uld_txq_info *txq_info; 4774 4775 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 4776 if (txq_info) { 4777 struct sge_uld_txq *txq = txq_info->uldtxq; 4778 4779 for_each_ofldtxq(&adap->sge, i) { 4780 if (txq->q.desc) 4781 tasklet_kill(&txq->qresume_tsk); 4782 } 4783 } 4784 } 4785 4786 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 4787 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 4788 4789 if (cq->q.desc) 4790 tasklet_kill(&cq->qresume_tsk); 4791 } 4792 } 4793 4794 /** 4795 * t4_sge_init_soft - grab core SGE values needed by SGE code 4796 * @adap: the adapter 4797 * 4798 * We need to grab the SGE operating parameters that we need to have 4799 * in order to do our job and make sure we can live with them. 4800 */ 4801 4802 static int t4_sge_init_soft(struct adapter *adap) 4803 { 4804 struct sge *s = &adap->sge; 4805 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 4806 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 4807 u32 ingress_rx_threshold; 4808 4809 /* 4810 * Verify that CPL messages are going to the Ingress Queue for 4811 * process_responses() and that only packet data is going to the 4812 * Free Lists. 4813 */ 4814 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 4815 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 4816 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 4817 return -EINVAL; 4818 } 4819 4820 /* 4821 * Validate the Host Buffer Register Array indices that we want to 4822 * use ... 4823 * 4824 * XXX Note that we should really read through the Host Buffer Size 4825 * XXX register array and find the indices of the Buffer Sizes which 4826 * XXX meet our needs! 4827 */ 4828 #define READ_FL_BUF(x) \ 4829 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 4830 4831 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 4832 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 4833 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 4834 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 4835 4836 /* We only bother using the Large Page logic if the Large Page Buffer 4837 * is larger than our Page Size Buffer. 4838 */ 4839 if (fl_large_pg <= fl_small_pg) 4840 fl_large_pg = 0; 4841 4842 #undef READ_FL_BUF 4843 4844 /* The Page Size Buffer must be exactly equal to our Page Size and the 4845 * Large Page Size Buffer should be 0 (per above) or a power of 2. 4846 */ 4847 if (fl_small_pg != PAGE_SIZE || 4848 (fl_large_pg & (fl_large_pg-1)) != 0) { 4849 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 4850 fl_small_pg, fl_large_pg); 4851 return -EINVAL; 4852 } 4853 if (fl_large_pg) 4854 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 4855 4856 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 4857 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 4858 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 4859 fl_small_mtu, fl_large_mtu); 4860 return -EINVAL; 4861 } 4862 4863 /* 4864 * Retrieve our RX interrupt holdoff timer values and counter 4865 * threshold values from the SGE parameters. 4866 */ 4867 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 4868 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 4869 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 4870 s->timer_val[0] = core_ticks_to_us(adap, 4871 TIMERVALUE0_G(timer_value_0_and_1)); 4872 s->timer_val[1] = core_ticks_to_us(adap, 4873 TIMERVALUE1_G(timer_value_0_and_1)); 4874 s->timer_val[2] = core_ticks_to_us(adap, 4875 TIMERVALUE2_G(timer_value_2_and_3)); 4876 s->timer_val[3] = core_ticks_to_us(adap, 4877 TIMERVALUE3_G(timer_value_2_and_3)); 4878 s->timer_val[4] = core_ticks_to_us(adap, 4879 TIMERVALUE4_G(timer_value_4_and_5)); 4880 s->timer_val[5] = core_ticks_to_us(adap, 4881 TIMERVALUE5_G(timer_value_4_and_5)); 4882 4883 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 4884 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 4885 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 4886 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 4887 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 4888 4889 return 0; 4890 } 4891 4892 /** 4893 * t4_sge_init - initialize SGE 4894 * @adap: the adapter 4895 * 4896 * Perform low-level SGE code initialization needed every time after a 4897 * chip reset. 4898 */ 4899 int t4_sge_init(struct adapter *adap) 4900 { 4901 struct sge *s = &adap->sge; 4902 u32 sge_control, sge_conm_ctrl; 4903 int ret, egress_threshold; 4904 4905 /* 4906 * Ingress Padding Boundary and Egress Status Page Size are set up by 4907 * t4_fixup_host_params(). 4908 */ 4909 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 4910 s->pktshift = PKTSHIFT_G(sge_control); 4911 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 4912 4913 s->fl_align = t4_fl_pkt_align(adap); 4914 ret = t4_sge_init_soft(adap); 4915 if (ret < 0) 4916 return ret; 4917 4918 /* 4919 * A FL with <= fl_starve_thres buffers is starving and a periodic 4920 * timer will attempt to refill it. This needs to be larger than the 4921 * SGE's Egress Congestion Threshold. If it isn't, then we can get 4922 * stuck waiting for new packets while the SGE is waiting for us to 4923 * give it more Free List entries. (Note that the SGE's Egress 4924 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 4925 * there was only a single field to control this. For T5 there's the 4926 * original field which now only applies to Unpacked Mode Free List 4927 * buffers and a new field which only applies to Packed Mode Free List 4928 * buffers. 4929 */ 4930 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 4931 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 4932 case CHELSIO_T4: 4933 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 4934 break; 4935 case CHELSIO_T5: 4936 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4937 break; 4938 case CHELSIO_T6: 4939 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4940 break; 4941 default: 4942 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 4943 CHELSIO_CHIP_VERSION(adap->params.chip)); 4944 return -EINVAL; 4945 } 4946 s->fl_starve_thres = 2*egress_threshold + 1; 4947 4948 t4_idma_monitor_init(adap, &s->idma_monitor); 4949 4950 /* Set up timers used for recuring callbacks to process RX and TX 4951 * administrative tasks. 4952 */ 4953 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 4954 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 4955 4956 spin_lock_init(&s->intrq_lock); 4957 4958 return 0; 4959 } 4960