1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adap: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 PCI_DMA_FROMDEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 PCI_DMA_FROMDEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 PCI_DMA_FROMDEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * @chip_ver: chip version 726 * 727 * Returns whether an Ethernet packet is small enough to fit as 728 * immediate data. Return value corresponds to headroom required. 729 */ 730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 731 { 732 int hdrlen = 0; 733 734 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 735 chip_ver > CHELSIO_T5) { 736 hdrlen = sizeof(struct cpl_tx_tnl_lso); 737 hdrlen += sizeof(struct cpl_tx_pkt_core); 738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 739 return 0; 740 } else { 741 hdrlen = skb_shinfo(skb)->gso_size ? 742 sizeof(struct cpl_tx_pkt_lso_core) : 0; 743 hdrlen += sizeof(struct cpl_tx_pkt); 744 } 745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 746 return hdrlen; 747 return 0; 748 } 749 750 /** 751 * calc_tx_flits - calculate the number of flits for a packet Tx WR 752 * @skb: the packet 753 * @chip_ver: chip version 754 * 755 * Returns the number of flits needed for a Tx WR for the given Ethernet 756 * packet, including the needed WR and CPL headers. 757 */ 758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 759 unsigned int chip_ver) 760 { 761 unsigned int flits; 762 int hdrlen = is_eth_imm(skb, chip_ver); 763 764 /* If the skb is small enough, we can pump it out as a work request 765 * with only immediate data. In that case we just have to have the 766 * TX Packet header plus the skb data in the Work Request. 767 */ 768 769 if (hdrlen) 770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 771 772 /* Otherwise, we're going to have to construct a Scatter gather list 773 * of the skb body and fragments. We also include the flits necessary 774 * for the TX Packet Work Request and CPL. We always have a firmware 775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 777 * message or, if we're doing a Large Send Offload, an LSO CPL message 778 * with an embedded TX Packet Write CPL message. 779 */ 780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 781 if (skb_shinfo(skb)->gso_size) { 782 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 784 sizeof(struct cpl_tx_tnl_lso); 785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 786 u32 pkt_hdrlen; 787 788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 789 skb_headlen(skb)); 790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 791 round_up(pkt_hdrlen, 16); 792 } else { 793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 794 sizeof(struct cpl_tx_pkt_lso_core); 795 } 796 797 hdrlen += sizeof(struct cpl_tx_pkt_core); 798 flits += (hdrlen / sizeof(__be64)); 799 } else { 800 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 802 } 803 return flits; 804 } 805 806 /** 807 * calc_tx_descs - calculate the number of Tx descriptors for a packet 808 * @skb: the packet 809 * @chip_ver: chip version 810 * 811 * Returns the number of Tx descriptors needed for the given Ethernet 812 * packet, including the needed WR and CPL headers. 813 */ 814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 815 unsigned int chip_ver) 816 { 817 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 818 } 819 820 /** 821 * cxgb4_write_sgl - populate a scatter/gather list for a packet 822 * @skb: the packet 823 * @q: the Tx queue we are writing into 824 * @sgl: starting location for writing the SGL 825 * @end: points right after the end of the SGL 826 * @start: start offset into skb main-body data to include in the SGL 827 * @addr: the list of bus addresses for the SGL elements 828 * 829 * Generates a gather list for the buffers that make up a packet. 830 * The caller must provide adequate space for the SGL that will be written. 831 * The SGL includes all of the packet's page fragments and the data in its 832 * main body except for the first @start bytes. @sgl must be 16-byte 833 * aligned and within a Tx descriptor with available space. @end points 834 * right after the end of the SGL but does not account for any potential 835 * wrap around, i.e., @end > @sgl. 836 */ 837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 838 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 839 const dma_addr_t *addr) 840 { 841 unsigned int i, len; 842 struct ulptx_sge_pair *to; 843 const struct skb_shared_info *si = skb_shinfo(skb); 844 unsigned int nfrags = si->nr_frags; 845 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 846 847 len = skb_headlen(skb) - start; 848 if (likely(len)) { 849 sgl->len0 = htonl(len); 850 sgl->addr0 = cpu_to_be64(addr[0] + start); 851 nfrags++; 852 } else { 853 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 854 sgl->addr0 = cpu_to_be64(addr[1]); 855 } 856 857 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 858 ULPTX_NSGE_V(nfrags)); 859 if (likely(--nfrags == 0)) 860 return; 861 /* 862 * Most of the complexity below deals with the possibility we hit the 863 * end of the queue in the middle of writing the SGL. For this case 864 * only we create the SGL in a temporary buffer and then copy it. 865 */ 866 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 867 868 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 869 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 870 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 871 to->addr[0] = cpu_to_be64(addr[i]); 872 to->addr[1] = cpu_to_be64(addr[++i]); 873 } 874 if (nfrags) { 875 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 876 to->len[1] = cpu_to_be32(0); 877 to->addr[0] = cpu_to_be64(addr[i + 1]); 878 } 879 if (unlikely((u8 *)end > (u8 *)q->stat)) { 880 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 881 882 if (likely(part0)) 883 memcpy(sgl->sge, buf, part0); 884 part1 = (u8 *)end - (u8 *)q->stat; 885 memcpy(q->desc, (u8 *)buf + part0, part1); 886 end = (void *)q->desc + part1; 887 } 888 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 889 *end = 0; 890 } 891 EXPORT_SYMBOL(cxgb4_write_sgl); 892 893 /* cxgb4_write_partial_sgl - populate SGL for partial packet 894 * @skb: the packet 895 * @q: the Tx queue we are writing into 896 * @sgl: starting location for writing the SGL 897 * @end: points right after the end of the SGL 898 * @addr: the list of bus addresses for the SGL elements 899 * @start: start offset in the SKB where partial data starts 900 * @len: length of data from @start to send out 901 * 902 * This API will handle sending out partial data of a skb if required. 903 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data, 904 * and @len will decide how much data after @start offset to send out. 905 */ 906 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q, 907 struct ulptx_sgl *sgl, u64 *end, 908 const dma_addr_t *addr, u32 start, u32 len) 909 { 910 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to; 911 u32 frag_size, skb_linear_data_len = skb_headlen(skb); 912 struct skb_shared_info *si = skb_shinfo(skb); 913 u8 i = 0, frag_idx = 0, nfrags = 0; 914 skb_frag_t *frag; 915 916 /* Fill the first SGL either from linear data or from partial 917 * frag based on @start. 918 */ 919 if (unlikely(start < skb_linear_data_len)) { 920 frag_size = min(len, skb_linear_data_len - start); 921 sgl->len0 = htonl(frag_size); 922 sgl->addr0 = cpu_to_be64(addr[0] + start); 923 len -= frag_size; 924 nfrags++; 925 } else { 926 start -= skb_linear_data_len; 927 frag = &si->frags[frag_idx]; 928 frag_size = skb_frag_size(frag); 929 /* find the first frag */ 930 while (start >= frag_size) { 931 start -= frag_size; 932 frag_idx++; 933 frag = &si->frags[frag_idx]; 934 frag_size = skb_frag_size(frag); 935 } 936 937 frag_size = min(len, skb_frag_size(frag) - start); 938 sgl->len0 = cpu_to_be32(frag_size); 939 sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start); 940 len -= frag_size; 941 nfrags++; 942 frag_idx++; 943 } 944 945 /* If the entire partial data fit in one SGL, then send it out 946 * now. 947 */ 948 if (!len) 949 goto done; 950 951 /* Most of the complexity below deals with the possibility we hit the 952 * end of the queue in the middle of writing the SGL. For this case 953 * only we create the SGL in a temporary buffer and then copy it. 954 */ 955 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 956 957 /* If the skb couldn't fit in first SGL completely, fill the 958 * rest of the frags in subsequent SGLs. Note that each SGL 959 * pair can store 2 frags. 960 */ 961 while (len) { 962 frag_size = min(len, skb_frag_size(&si->frags[frag_idx])); 963 to->len[i & 1] = cpu_to_be32(frag_size); 964 to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]); 965 if (i && (i & 1)) 966 to++; 967 nfrags++; 968 frag_idx++; 969 i++; 970 len -= frag_size; 971 } 972 973 /* If we ended in an odd boundary, then set the second SGL's 974 * length in the pair to 0. 975 */ 976 if (i & 1) 977 to->len[1] = cpu_to_be32(0); 978 979 /* Copy from temporary buffer to Tx ring, in case we hit the 980 * end of the queue in the middle of writing the SGL. 981 */ 982 if (unlikely((u8 *)end > (u8 *)q->stat)) { 983 u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 984 985 if (likely(part0)) 986 memcpy(sgl->sge, buf, part0); 987 part1 = (u8 *)end - (u8 *)q->stat; 988 memcpy(q->desc, (u8 *)buf + part0, part1); 989 end = (void *)q->desc + part1; 990 } 991 992 /* 0-pad to multiple of 16 */ 993 if ((uintptr_t)end & 8) 994 *end = 0; 995 done: 996 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 997 ULPTX_NSGE_V(nfrags)); 998 } 999 EXPORT_SYMBOL(cxgb4_write_partial_sgl); 1000 1001 /* This function copies 64 byte coalesced work request to 1002 * memory mapped BAR2 space. For coalesced WR SGE fetches 1003 * data from the FIFO instead of from Host. 1004 */ 1005 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 1006 { 1007 int count = 8; 1008 1009 while (count) { 1010 writeq(*src, dst); 1011 src++; 1012 dst++; 1013 count--; 1014 } 1015 } 1016 1017 /** 1018 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 1019 * @adap: the adapter 1020 * @q: the Tx queue 1021 * @n: number of new descriptors to give to HW 1022 * 1023 * Ring the doorbel for a Tx queue. 1024 */ 1025 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 1026 { 1027 /* Make sure that all writes to the TX Descriptors are committed 1028 * before we tell the hardware about them. 1029 */ 1030 wmb(); 1031 1032 /* If we don't have access to the new User Doorbell (T5+), use the old 1033 * doorbell mechanism; otherwise use the new BAR2 mechanism. 1034 */ 1035 if (unlikely(q->bar2_addr == NULL)) { 1036 u32 val = PIDX_V(n); 1037 unsigned long flags; 1038 1039 /* For T4 we need to participate in the Doorbell Recovery 1040 * mechanism. 1041 */ 1042 spin_lock_irqsave(&q->db_lock, flags); 1043 if (!q->db_disabled) 1044 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1045 QID_V(q->cntxt_id) | val); 1046 else 1047 q->db_pidx_inc += n; 1048 q->db_pidx = q->pidx; 1049 spin_unlock_irqrestore(&q->db_lock, flags); 1050 } else { 1051 u32 val = PIDX_T5_V(n); 1052 1053 /* T4 and later chips share the same PIDX field offset within 1054 * the doorbell, but T5 and later shrank the field in order to 1055 * gain a bit for Doorbell Priority. The field was absurdly 1056 * large in the first place (14 bits) so we just use the T5 1057 * and later limits and warn if a Queue ID is too large. 1058 */ 1059 WARN_ON(val & DBPRIO_F); 1060 1061 /* If we're only writing a single TX Descriptor and we can use 1062 * Inferred QID registers, we can use the Write Combining 1063 * Gather Buffer; otherwise we use the simple doorbell. 1064 */ 1065 if (n == 1 && q->bar2_qid == 0) { 1066 int index = (q->pidx 1067 ? (q->pidx - 1) 1068 : (q->size - 1)); 1069 u64 *wr = (u64 *)&q->desc[index]; 1070 1071 cxgb_pio_copy((u64 __iomem *) 1072 (q->bar2_addr + SGE_UDB_WCDOORBELL), 1073 wr); 1074 } else { 1075 writel(val | QID_V(q->bar2_qid), 1076 q->bar2_addr + SGE_UDB_KDOORBELL); 1077 } 1078 1079 /* This Write Memory Barrier will force the write to the User 1080 * Doorbell area to be flushed. This is needed to prevent 1081 * writes on different CPUs for the same queue from hitting 1082 * the adapter out of order. This is required when some Work 1083 * Requests take the Write Combine Gather Buffer path (user 1084 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1085 * take the traditional path where we simply increment the 1086 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1087 * hardware DMA read the actual Work Request. 1088 */ 1089 wmb(); 1090 } 1091 } 1092 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1093 1094 /** 1095 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1096 * @skb: the packet 1097 * @q: the Tx queue where the packet will be inlined 1098 * @pos: starting position in the Tx queue where to inline the packet 1099 * 1100 * Inline a packet's contents directly into Tx descriptors, starting at 1101 * the given position within the Tx DMA ring. 1102 * Most of the complexity of this operation is dealing with wrap arounds 1103 * in the middle of the packet we want to inline. 1104 */ 1105 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1106 const struct sge_txq *q, void *pos) 1107 { 1108 int left = (void *)q->stat - pos; 1109 u64 *p; 1110 1111 if (likely(skb->len <= left)) { 1112 if (likely(!skb->data_len)) 1113 skb_copy_from_linear_data(skb, pos, skb->len); 1114 else 1115 skb_copy_bits(skb, 0, pos, skb->len); 1116 pos += skb->len; 1117 } else { 1118 skb_copy_bits(skb, 0, pos, left); 1119 skb_copy_bits(skb, left, q->desc, skb->len - left); 1120 pos = (void *)q->desc + (skb->len - left); 1121 } 1122 1123 /* 0-pad to multiple of 16 */ 1124 p = PTR_ALIGN(pos, 8); 1125 if ((uintptr_t)p & 8) 1126 *p = 0; 1127 } 1128 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1129 1130 static void *inline_tx_skb_header(const struct sk_buff *skb, 1131 const struct sge_txq *q, void *pos, 1132 int length) 1133 { 1134 u64 *p; 1135 int left = (void *)q->stat - pos; 1136 1137 if (likely(length <= left)) { 1138 memcpy(pos, skb->data, length); 1139 pos += length; 1140 } else { 1141 memcpy(pos, skb->data, left); 1142 memcpy(q->desc, skb->data + left, length - left); 1143 pos = (void *)q->desc + (length - left); 1144 } 1145 /* 0-pad to multiple of 16 */ 1146 p = PTR_ALIGN(pos, 8); 1147 if ((uintptr_t)p & 8) { 1148 *p = 0; 1149 return p + 1; 1150 } 1151 return p; 1152 } 1153 1154 /* 1155 * Figure out what HW csum a packet wants and return the appropriate control 1156 * bits. 1157 */ 1158 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1159 { 1160 int csum_type; 1161 bool inner_hdr_csum = false; 1162 u16 proto, ver; 1163 1164 if (skb->encapsulation && 1165 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1166 inner_hdr_csum = true; 1167 1168 if (inner_hdr_csum) { 1169 ver = inner_ip_hdr(skb)->version; 1170 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1171 inner_ipv6_hdr(skb)->nexthdr; 1172 } else { 1173 ver = ip_hdr(skb)->version; 1174 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1175 ipv6_hdr(skb)->nexthdr; 1176 } 1177 1178 if (ver == 4) { 1179 if (proto == IPPROTO_TCP) 1180 csum_type = TX_CSUM_TCPIP; 1181 else if (proto == IPPROTO_UDP) 1182 csum_type = TX_CSUM_UDPIP; 1183 else { 1184 nocsum: /* 1185 * unknown protocol, disable HW csum 1186 * and hope a bad packet is detected 1187 */ 1188 return TXPKT_L4CSUM_DIS_F; 1189 } 1190 } else { 1191 /* 1192 * this doesn't work with extension headers 1193 */ 1194 if (proto == IPPROTO_TCP) 1195 csum_type = TX_CSUM_TCPIP6; 1196 else if (proto == IPPROTO_UDP) 1197 csum_type = TX_CSUM_UDPIP6; 1198 else 1199 goto nocsum; 1200 } 1201 1202 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1203 int eth_hdr_len, l4_len; 1204 u64 hdr_len; 1205 1206 if (inner_hdr_csum) { 1207 /* This allows checksum offload for all encapsulated 1208 * packets like GRE etc.. 1209 */ 1210 l4_len = skb_inner_network_header_len(skb); 1211 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1212 } else { 1213 l4_len = skb_network_header_len(skb); 1214 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1215 } 1216 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1217 1218 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1219 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1220 else 1221 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1222 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1223 } else { 1224 int start = skb_transport_offset(skb); 1225 1226 return TXPKT_CSUM_TYPE_V(csum_type) | 1227 TXPKT_CSUM_START_V(start) | 1228 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1229 } 1230 } 1231 1232 static void eth_txq_stop(struct sge_eth_txq *q) 1233 { 1234 netif_tx_stop_queue(q->txq); 1235 q->q.stops++; 1236 } 1237 1238 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1239 { 1240 q->in_use += n; 1241 q->pidx += n; 1242 if (q->pidx >= q->size) 1243 q->pidx -= q->size; 1244 } 1245 1246 #ifdef CONFIG_CHELSIO_T4_FCOE 1247 static inline int 1248 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1249 const struct port_info *pi, u64 *cntrl) 1250 { 1251 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1252 1253 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1254 return 0; 1255 1256 if (skb->protocol != htons(ETH_P_FCOE)) 1257 return 0; 1258 1259 skb_reset_mac_header(skb); 1260 skb->mac_len = sizeof(struct ethhdr); 1261 1262 skb_set_network_header(skb, skb->mac_len); 1263 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1264 1265 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1266 return -ENOTSUPP; 1267 1268 /* FC CRC offload */ 1269 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1270 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1271 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1272 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1273 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1274 return 0; 1275 } 1276 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1277 1278 /* Returns tunnel type if hardware supports offloading of the same. 1279 * It is called only for T5 and onwards. 1280 */ 1281 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1282 { 1283 u8 l4_hdr = 0; 1284 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1285 struct port_info *pi = netdev_priv(skb->dev); 1286 struct adapter *adapter = pi->adapter; 1287 1288 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1289 skb->inner_protocol != htons(ETH_P_TEB)) 1290 return tnl_type; 1291 1292 switch (vlan_get_protocol(skb)) { 1293 case htons(ETH_P_IP): 1294 l4_hdr = ip_hdr(skb)->protocol; 1295 break; 1296 case htons(ETH_P_IPV6): 1297 l4_hdr = ipv6_hdr(skb)->nexthdr; 1298 break; 1299 default: 1300 return tnl_type; 1301 } 1302 1303 switch (l4_hdr) { 1304 case IPPROTO_UDP: 1305 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1306 tnl_type = TX_TNL_TYPE_VXLAN; 1307 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1308 tnl_type = TX_TNL_TYPE_GENEVE; 1309 break; 1310 default: 1311 return tnl_type; 1312 } 1313 1314 return tnl_type; 1315 } 1316 1317 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1318 struct cpl_tx_tnl_lso *tnl_lso, 1319 enum cpl_tx_tnl_lso_type tnl_type) 1320 { 1321 u32 val; 1322 int in_eth_xtra_len; 1323 int l3hdr_len = skb_network_header_len(skb); 1324 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1325 const struct skb_shared_info *ssi = skb_shinfo(skb); 1326 bool v6 = (ip_hdr(skb)->version == 6); 1327 1328 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1329 CPL_TX_TNL_LSO_FIRST_F | 1330 CPL_TX_TNL_LSO_LAST_F | 1331 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1332 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1333 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1334 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1335 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1336 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1337 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1338 1339 tnl_lso->IpIdOffsetOut = 0; 1340 1341 /* Get the tunnel header length */ 1342 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1343 in_eth_xtra_len = skb_inner_network_header(skb) - 1344 skb_inner_mac_header(skb) - ETH_HLEN; 1345 1346 switch (tnl_type) { 1347 case TX_TNL_TYPE_VXLAN: 1348 case TX_TNL_TYPE_GENEVE: 1349 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1350 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1351 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1352 break; 1353 default: 1354 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1355 break; 1356 } 1357 1358 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1359 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1360 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1361 1362 tnl_lso->r1 = 0; 1363 1364 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1365 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1366 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1367 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1368 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1369 1370 tnl_lso->IpIdOffset = htons(0); 1371 1372 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1373 tnl_lso->TCPSeqOffset = htonl(0); 1374 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1375 } 1376 1377 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1378 struct cpl_tx_pkt_lso_core *lso) 1379 { 1380 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1381 int l3hdr_len = skb_network_header_len(skb); 1382 const struct skb_shared_info *ssi; 1383 bool ipv6 = false; 1384 1385 ssi = skb_shinfo(skb); 1386 if (ssi->gso_type & SKB_GSO_TCPV6) 1387 ipv6 = true; 1388 1389 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1390 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1391 LSO_IPV6_V(ipv6) | 1392 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1393 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1394 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1395 lso->ipid_ofst = htons(0); 1396 lso->mss = htons(ssi->gso_size); 1397 lso->seqno_offset = htonl(0); 1398 if (is_t4(adap->params.chip)) 1399 lso->len = htonl(skb->len); 1400 else 1401 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1402 1403 return (void *)(lso + 1); 1404 } 1405 1406 /** 1407 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1408 * @adap: the adapter 1409 * @eq: the Ethernet TX Queue 1410 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1411 * 1412 * We're typically called here to update the state of an Ethernet TX 1413 * Queue with respect to the hardware's progress in consuming the TX 1414 * Work Requests that we've put on that Egress Queue. This happens 1415 * when we get Egress Queue Update messages and also prophylactically 1416 * in regular timer-based Ethernet TX Queue maintenance. 1417 */ 1418 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1419 int maxreclaim) 1420 { 1421 unsigned int reclaimed, hw_cidx; 1422 struct sge_txq *q = &eq->q; 1423 int hw_in_use; 1424 1425 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1426 return 0; 1427 1428 /* Reclaim pending completed TX Descriptors. */ 1429 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1430 1431 hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1432 hw_in_use = q->pidx - hw_cidx; 1433 if (hw_in_use < 0) 1434 hw_in_use += q->size; 1435 1436 /* If the TX Queue is currently stopped and there's now more than half 1437 * the queue available, restart it. Otherwise bail out since the rest 1438 * of what we want do here is with the possibility of shipping any 1439 * currently buffered Coalesced TX Work Request. 1440 */ 1441 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { 1442 netif_tx_wake_queue(eq->txq); 1443 eq->q.restarts++; 1444 } 1445 1446 __netif_tx_unlock(eq->txq); 1447 return reclaimed; 1448 } 1449 1450 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1451 struct net_device *dev, 1452 u32 min_pkt_len) 1453 { 1454 u32 max_pkt_len; 1455 1456 /* The chip min packet length is 10 octets but some firmware 1457 * commands have a minimum packet length requirement. So, play 1458 * safe and reject anything shorter than @min_pkt_len. 1459 */ 1460 if (unlikely(skb->len < min_pkt_len)) 1461 return -EINVAL; 1462 1463 /* Discard the packet if the length is greater than mtu */ 1464 max_pkt_len = ETH_HLEN + dev->mtu; 1465 1466 if (skb_vlan_tagged(skb)) 1467 max_pkt_len += VLAN_HLEN; 1468 1469 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1470 return -EINVAL; 1471 1472 return 0; 1473 } 1474 1475 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1476 u32 hdr_len) 1477 { 1478 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1479 wr->u.udpseg.ethlen = skb_network_offset(skb); 1480 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1481 wr->u.udpseg.udplen = sizeof(struct udphdr); 1482 wr->u.udpseg.rtplen = 0; 1483 wr->u.udpseg.r4 = 0; 1484 if (skb_shinfo(skb)->gso_size) 1485 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1486 else 1487 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1488 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1489 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1490 1491 return (void *)(wr + 1); 1492 } 1493 1494 /** 1495 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1496 * @skb: the packet 1497 * @dev: the egress net device 1498 * 1499 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1500 */ 1501 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1502 { 1503 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1504 bool ptp_enabled = is_ptp_enabled(skb, dev); 1505 unsigned int last_desc, flits, ndesc; 1506 u32 wr_mid, ctrl0, op, sgl_off = 0; 1507 const struct skb_shared_info *ssi; 1508 int len, qidx, credits, ret, left; 1509 struct tx_sw_desc *sgl_sdesc; 1510 struct fw_eth_tx_eo_wr *eowr; 1511 struct fw_eth_tx_pkt_wr *wr; 1512 struct cpl_tx_pkt_core *cpl; 1513 const struct port_info *pi; 1514 bool immediate = false; 1515 u64 cntrl, *end, *sgl; 1516 struct sge_eth_txq *q; 1517 unsigned int chip_ver; 1518 struct adapter *adap; 1519 1520 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1521 if (ret) 1522 goto out_free; 1523 1524 pi = netdev_priv(dev); 1525 adap = pi->adapter; 1526 ssi = skb_shinfo(skb); 1527 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 1528 if (xfrm_offload(skb) && !ssi->gso_size) 1529 return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev); 1530 #endif /* CHELSIO_IPSEC_INLINE */ 1531 1532 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 1533 if (cxgb4_is_ktls_skb(skb) && 1534 (skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)))) 1535 return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev); 1536 #endif /* CHELSIO_TLS_DEVICE */ 1537 1538 qidx = skb_get_queue_mapping(skb); 1539 if (ptp_enabled) { 1540 if (!(adap->ptp_tx_skb)) { 1541 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1542 adap->ptp_tx_skb = skb_get(skb); 1543 } else { 1544 goto out_free; 1545 } 1546 q = &adap->sge.ptptxq; 1547 } else { 1548 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1549 } 1550 skb_tx_timestamp(skb); 1551 1552 reclaim_completed_tx(adap, &q->q, -1, true); 1553 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1554 1555 #ifdef CONFIG_CHELSIO_T4_FCOE 1556 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1557 if (unlikely(ret == -EOPNOTSUPP)) 1558 goto out_free; 1559 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1560 1561 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1562 flits = calc_tx_flits(skb, chip_ver); 1563 ndesc = flits_to_desc(flits); 1564 credits = txq_avail(&q->q) - ndesc; 1565 1566 if (unlikely(credits < 0)) { 1567 eth_txq_stop(q); 1568 dev_err(adap->pdev_dev, 1569 "%s: Tx ring %u full while queue awake!\n", 1570 dev->name, qidx); 1571 return NETDEV_TX_BUSY; 1572 } 1573 1574 if (is_eth_imm(skb, chip_ver)) 1575 immediate = true; 1576 1577 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1578 tnl_type = cxgb_encap_offload_supported(skb); 1579 1580 last_desc = q->q.pidx + ndesc - 1; 1581 if (last_desc >= q->q.size) 1582 last_desc -= q->q.size; 1583 sgl_sdesc = &q->q.sdesc[last_desc]; 1584 1585 if (!immediate && 1586 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1587 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1588 q->mapping_err++; 1589 goto out_free; 1590 } 1591 1592 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1593 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1594 /* After we're done injecting the Work Request for this 1595 * packet, we'll be below our "stop threshold" so stop the TX 1596 * Queue now and schedule a request for an SGE Egress Queue 1597 * Update message. The queue will get started later on when 1598 * the firmware processes this Work Request and sends us an 1599 * Egress Queue Status Update message indicating that space 1600 * has opened up. 1601 */ 1602 eth_txq_stop(q); 1603 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1604 } 1605 1606 wr = (void *)&q->q.desc[q->q.pidx]; 1607 eowr = (void *)&q->q.desc[q->q.pidx]; 1608 wr->equiq_to_len16 = htonl(wr_mid); 1609 wr->r3 = cpu_to_be64(0); 1610 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1611 end = (u64 *)eowr + flits; 1612 else 1613 end = (u64 *)wr + flits; 1614 1615 len = immediate ? skb->len : 0; 1616 len += sizeof(*cpl); 1617 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1618 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1619 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1620 1621 if (tnl_type) 1622 len += sizeof(*tnl_lso); 1623 else 1624 len += sizeof(*lso); 1625 1626 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1627 FW_WR_IMMDLEN_V(len)); 1628 if (tnl_type) { 1629 struct iphdr *iph = ip_hdr(skb); 1630 1631 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1632 cpl = (void *)(tnl_lso + 1); 1633 /* Driver is expected to compute partial checksum that 1634 * does not include the IP Total Length. 1635 */ 1636 if (iph->version == 4) { 1637 iph->check = 0; 1638 iph->tot_len = 0; 1639 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl); 1640 } 1641 if (skb->ip_summed == CHECKSUM_PARTIAL) 1642 cntrl = hwcsum(adap->params.chip, skb); 1643 } else { 1644 cpl = write_tso_wr(adap, skb, lso); 1645 cntrl = hwcsum(adap->params.chip, skb); 1646 } 1647 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1648 q->tso++; 1649 q->tx_cso += ssi->gso_segs; 1650 } else if (ssi->gso_size) { 1651 u64 *start; 1652 u32 hdrlen; 1653 1654 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1655 len += hdrlen; 1656 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1657 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1658 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1659 cntrl = hwcsum(adap->params.chip, skb); 1660 1661 start = (u64 *)(cpl + 1); 1662 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1663 hdrlen); 1664 if (unlikely(start > sgl)) { 1665 left = (u8 *)end - (u8 *)q->q.stat; 1666 end = (void *)q->q.desc + left; 1667 } 1668 sgl_off = hdrlen; 1669 q->uso++; 1670 q->tx_cso += ssi->gso_segs; 1671 } else { 1672 if (ptp_enabled) 1673 op = FW_PTP_TX_PKT_WR; 1674 else 1675 op = FW_ETH_TX_PKT_WR; 1676 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1677 FW_WR_IMMDLEN_V(len)); 1678 cpl = (void *)(wr + 1); 1679 sgl = (u64 *)(cpl + 1); 1680 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1681 cntrl = hwcsum(adap->params.chip, skb) | 1682 TXPKT_IPCSUM_DIS_F; 1683 q->tx_cso++; 1684 } 1685 } 1686 1687 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1688 /* If current position is already at the end of the 1689 * txq, reset the current to point to start of the queue 1690 * and update the end ptr as well. 1691 */ 1692 left = (u8 *)end - (u8 *)q->q.stat; 1693 end = (void *)q->q.desc + left; 1694 sgl = (void *)q->q.desc; 1695 } 1696 1697 if (skb_vlan_tag_present(skb)) { 1698 q->vlan_ins++; 1699 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1700 #ifdef CONFIG_CHELSIO_T4_FCOE 1701 if (skb->protocol == htons(ETH_P_FCOE)) 1702 cntrl |= TXPKT_VLAN_V( 1703 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1704 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1705 } 1706 1707 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1708 TXPKT_PF_V(adap->pf); 1709 if (ptp_enabled) 1710 ctrl0 |= TXPKT_TSTAMP_F; 1711 #ifdef CONFIG_CHELSIO_T4_DCB 1712 if (is_t4(adap->params.chip)) 1713 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1714 else 1715 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1716 #endif 1717 cpl->ctrl0 = htonl(ctrl0); 1718 cpl->pack = htons(0); 1719 cpl->len = htons(skb->len); 1720 cpl->ctrl1 = cpu_to_be64(cntrl); 1721 1722 if (immediate) { 1723 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1724 dev_consume_skb_any(skb); 1725 } else { 1726 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1727 sgl_sdesc->addr); 1728 skb_orphan(skb); 1729 sgl_sdesc->skb = skb; 1730 } 1731 1732 txq_advance(&q->q, ndesc); 1733 1734 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1735 return NETDEV_TX_OK; 1736 1737 out_free: 1738 dev_kfree_skb_any(skb); 1739 return NETDEV_TX_OK; 1740 } 1741 1742 /* Constants ... */ 1743 enum { 1744 /* Egress Queue sizes, producer and consumer indices are all in units 1745 * of Egress Context Units bytes. Note that as far as the hardware is 1746 * concerned, the free list is an Egress Queue (the host produces free 1747 * buffers which the hardware consumes) and free list entries are 1748 * 64-bit PCI DMA addresses. 1749 */ 1750 EQ_UNIT = SGE_EQ_IDXSIZE, 1751 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1752 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1753 1754 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1755 sizeof(struct cpl_tx_pkt_lso_core) + 1756 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1757 }; 1758 1759 /** 1760 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1761 * @skb: the packet 1762 * 1763 * Returns whether an Ethernet packet is small enough to fit completely as 1764 * immediate data. 1765 */ 1766 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1767 { 1768 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1769 * which does not accommodate immediate data. We could dike out all 1770 * of the support code for immediate data but that would tie our hands 1771 * too much if we ever want to enhace the firmware. It would also 1772 * create more differences between the PF and VF Drivers. 1773 */ 1774 return false; 1775 } 1776 1777 /** 1778 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1779 * @skb: the packet 1780 * 1781 * Returns the number of flits needed for a TX Work Request for the 1782 * given Ethernet packet, including the needed WR and CPL headers. 1783 */ 1784 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1785 { 1786 unsigned int flits; 1787 1788 /* If the skb is small enough, we can pump it out as a work request 1789 * with only immediate data. In that case we just have to have the 1790 * TX Packet header plus the skb data in the Work Request. 1791 */ 1792 if (t4vf_is_eth_imm(skb)) 1793 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1794 sizeof(__be64)); 1795 1796 /* Otherwise, we're going to have to construct a Scatter gather list 1797 * of the skb body and fragments. We also include the flits necessary 1798 * for the TX Packet Work Request and CPL. We always have a firmware 1799 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1800 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1801 * message or, if we're doing a Large Send Offload, an LSO CPL message 1802 * with an embedded TX Packet Write CPL message. 1803 */ 1804 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1805 if (skb_shinfo(skb)->gso_size) 1806 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1807 sizeof(struct cpl_tx_pkt_lso_core) + 1808 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1809 else 1810 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1811 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1812 return flits; 1813 } 1814 1815 /** 1816 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1817 * @skb: the packet 1818 * @dev: the egress net device 1819 * 1820 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1821 */ 1822 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1823 struct net_device *dev) 1824 { 1825 unsigned int last_desc, flits, ndesc; 1826 const struct skb_shared_info *ssi; 1827 struct fw_eth_tx_pkt_vm_wr *wr; 1828 struct tx_sw_desc *sgl_sdesc; 1829 struct cpl_tx_pkt_core *cpl; 1830 const struct port_info *pi; 1831 struct sge_eth_txq *txq; 1832 struct adapter *adapter; 1833 int qidx, credits, ret; 1834 size_t fw_hdr_copy_len; 1835 u64 cntrl, *end; 1836 u32 wr_mid; 1837 1838 /* The chip minimum packet length is 10 octets but the firmware 1839 * command that we are using requires that we copy the Ethernet header 1840 * (including the VLAN tag) into the header so we reject anything 1841 * smaller than that ... 1842 */ 1843 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1844 sizeof(wr->ethtype) + sizeof(wr->vlantci); 1845 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1846 if (ret) 1847 goto out_free; 1848 1849 /* Figure out which TX Queue we're going to use. */ 1850 pi = netdev_priv(dev); 1851 adapter = pi->adapter; 1852 qidx = skb_get_queue_mapping(skb); 1853 WARN_ON(qidx >= pi->nqsets); 1854 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1855 1856 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1857 * transfers have completed. 1858 */ 1859 reclaim_completed_tx(adapter, &txq->q, -1, true); 1860 1861 /* Calculate the number of flits and TX Descriptors we're going to 1862 * need along with how many TX Descriptors will be left over after 1863 * we inject our Work Request. 1864 */ 1865 flits = t4vf_calc_tx_flits(skb); 1866 ndesc = flits_to_desc(flits); 1867 credits = txq_avail(&txq->q) - ndesc; 1868 1869 if (unlikely(credits < 0)) { 1870 /* Not enough room for this packet's Work Request. Stop the 1871 * TX Queue and return a "busy" condition. The queue will get 1872 * started later on when the firmware informs us that space 1873 * has opened up. 1874 */ 1875 eth_txq_stop(txq); 1876 dev_err(adapter->pdev_dev, 1877 "%s: TX ring %u full while queue awake!\n", 1878 dev->name, qidx); 1879 return NETDEV_TX_BUSY; 1880 } 1881 1882 last_desc = txq->q.pidx + ndesc - 1; 1883 if (last_desc >= txq->q.size) 1884 last_desc -= txq->q.size; 1885 sgl_sdesc = &txq->q.sdesc[last_desc]; 1886 1887 if (!t4vf_is_eth_imm(skb) && 1888 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1889 sgl_sdesc->addr) < 0)) { 1890 /* We need to map the skb into PCI DMA space (because it can't 1891 * be in-lined directly into the Work Request) and the mapping 1892 * operation failed. Record the error and drop the packet. 1893 */ 1894 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1895 txq->mapping_err++; 1896 goto out_free; 1897 } 1898 1899 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1900 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1901 /* After we're done injecting the Work Request for this 1902 * packet, we'll be below our "stop threshold" so stop the TX 1903 * Queue now and schedule a request for an SGE Egress Queue 1904 * Update message. The queue will get started later on when 1905 * the firmware processes this Work Request and sends us an 1906 * Egress Queue Status Update message indicating that space 1907 * has opened up. 1908 */ 1909 eth_txq_stop(txq); 1910 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1911 } 1912 1913 /* Start filling in our Work Request. Note that we do _not_ handle 1914 * the WR Header wrapping around the TX Descriptor Ring. If our 1915 * maximum header size ever exceeds one TX Descriptor, we'll need to 1916 * do something else here. 1917 */ 1918 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1919 wr = (void *)&txq->q.desc[txq->q.pidx]; 1920 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1921 wr->r3[0] = cpu_to_be32(0); 1922 wr->r3[1] = cpu_to_be32(0); 1923 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1924 end = (u64 *)wr + flits; 1925 1926 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1927 * message with an encapsulated TX Packet CPL message. Otherwise we 1928 * just use a TX Packet CPL message. 1929 */ 1930 ssi = skb_shinfo(skb); 1931 if (ssi->gso_size) { 1932 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1933 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1934 int l3hdr_len = skb_network_header_len(skb); 1935 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1936 1937 wr->op_immdlen = 1938 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1939 FW_WR_IMMDLEN_V(sizeof(*lso) + 1940 sizeof(*cpl))); 1941 /* Fill in the LSO CPL message. */ 1942 lso->lso_ctrl = 1943 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1944 LSO_FIRST_SLICE_F | 1945 LSO_LAST_SLICE_F | 1946 LSO_IPV6_V(v6) | 1947 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1948 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1949 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1950 lso->ipid_ofst = cpu_to_be16(0); 1951 lso->mss = cpu_to_be16(ssi->gso_size); 1952 lso->seqno_offset = cpu_to_be32(0); 1953 if (is_t4(adapter->params.chip)) 1954 lso->len = cpu_to_be32(skb->len); 1955 else 1956 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1957 1958 /* Set up TX Packet CPL pointer, control word and perform 1959 * accounting. 1960 */ 1961 cpl = (void *)(lso + 1); 1962 1963 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1964 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1965 else 1966 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1967 1968 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1969 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1970 TXPKT_IPHDR_LEN_V(l3hdr_len); 1971 txq->tso++; 1972 txq->tx_cso += ssi->gso_segs; 1973 } else { 1974 int len; 1975 1976 len = (t4vf_is_eth_imm(skb) 1977 ? skb->len + sizeof(*cpl) 1978 : sizeof(*cpl)); 1979 wr->op_immdlen = 1980 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1981 FW_WR_IMMDLEN_V(len)); 1982 1983 /* Set up TX Packet CPL pointer, control word and perform 1984 * accounting. 1985 */ 1986 cpl = (void *)(wr + 1); 1987 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1988 cntrl = hwcsum(adapter->params.chip, skb) | 1989 TXPKT_IPCSUM_DIS_F; 1990 txq->tx_cso++; 1991 } else { 1992 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1993 } 1994 } 1995 1996 /* If there's a VLAN tag present, add that to the list of things to 1997 * do in this Work Request. 1998 */ 1999 if (skb_vlan_tag_present(skb)) { 2000 txq->vlan_ins++; 2001 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2002 } 2003 2004 /* Fill in the TX Packet CPL message header. */ 2005 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2006 TXPKT_INTF_V(pi->port_id) | 2007 TXPKT_PF_V(0)); 2008 cpl->pack = cpu_to_be16(0); 2009 cpl->len = cpu_to_be16(skb->len); 2010 cpl->ctrl1 = cpu_to_be64(cntrl); 2011 2012 /* Fill in the body of the TX Packet CPL message with either in-lined 2013 * data or a Scatter/Gather List. 2014 */ 2015 if (t4vf_is_eth_imm(skb)) { 2016 /* In-line the packet's data and free the skb since we don't 2017 * need it any longer. 2018 */ 2019 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 2020 dev_consume_skb_any(skb); 2021 } else { 2022 /* Write the skb's Scatter/Gather list into the TX Packet CPL 2023 * message and retain a pointer to the skb so we can free it 2024 * later when its DMA completes. (We store the skb pointer 2025 * in the Software Descriptor corresponding to the last TX 2026 * Descriptor used by the Work Request.) 2027 * 2028 * The retained skb will be freed when the corresponding TX 2029 * Descriptors are reclaimed after their DMAs complete. 2030 * However, this could take quite a while since, in general, 2031 * the hardware is set up to be lazy about sending DMA 2032 * completion notifications to us and we mostly perform TX 2033 * reclaims in the transmit routine. 2034 * 2035 * This is good for performamce but means that we rely on new 2036 * TX packets arriving to run the destructors of completed 2037 * packets, which open up space in their sockets' send queues. 2038 * Sometimes we do not get such new packets causing TX to 2039 * stall. A single UDP transmitter is a good example of this 2040 * situation. We have a clean up timer that periodically 2041 * reclaims completed packets but it doesn't run often enough 2042 * (nor do we want it to) to prevent lengthy stalls. A 2043 * solution to this problem is to run the destructor early, 2044 * after the packet is queued but before it's DMAd. A con is 2045 * that we lie to socket memory accounting, but the amount of 2046 * extra memory is reasonable (limited by the number of TX 2047 * descriptors), the packets do actually get freed quickly by 2048 * new packets almost always, and for protocols like TCP that 2049 * wait for acks to really free up the data the extra memory 2050 * is even less. On the positive side we run the destructors 2051 * on the sending CPU rather than on a potentially different 2052 * completing CPU, usually a good thing. 2053 * 2054 * Run the destructor before telling the DMA engine about the 2055 * packet to make sure it doesn't complete and get freed 2056 * prematurely. 2057 */ 2058 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 2059 struct sge_txq *tq = &txq->q; 2060 2061 /* If the Work Request header was an exact multiple of our TX 2062 * Descriptor length, then it's possible that the starting SGL 2063 * pointer lines up exactly with the end of our TX Descriptor 2064 * ring. If that's the case, wrap around to the beginning 2065 * here ... 2066 */ 2067 if (unlikely((void *)sgl == (void *)tq->stat)) { 2068 sgl = (void *)tq->desc; 2069 end = (void *)((void *)tq->desc + 2070 ((void *)end - (void *)tq->stat)); 2071 } 2072 2073 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 2074 skb_orphan(skb); 2075 sgl_sdesc->skb = skb; 2076 } 2077 2078 /* Advance our internal TX Queue state, tell the hardware about 2079 * the new TX descriptors and return success. 2080 */ 2081 txq_advance(&txq->q, ndesc); 2082 2083 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 2084 return NETDEV_TX_OK; 2085 2086 out_free: 2087 /* An error of some sort happened. Free the TX skb and tell the 2088 * OS that we've "dealt" with the packet ... 2089 */ 2090 dev_kfree_skb_any(skb); 2091 return NETDEV_TX_OK; 2092 } 2093 2094 /** 2095 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2096 * @q: the SGE control Tx queue 2097 * 2098 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2099 * for Tx queues that send only immediate data (presently just 2100 * the control queues) and thus do not have any sk_buffs to release. 2101 */ 2102 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2103 { 2104 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2105 int reclaim = hw_cidx - q->cidx; 2106 2107 if (reclaim < 0) 2108 reclaim += q->size; 2109 2110 q->in_use -= reclaim; 2111 q->cidx = hw_cidx; 2112 } 2113 2114 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2115 { 2116 u32 val = *idx + n; 2117 2118 if (val >= max) 2119 val -= max; 2120 2121 *idx = val; 2122 } 2123 2124 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2125 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2126 { 2127 struct tx_sw_desc *d; 2128 2129 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2130 while (ndesc--) { 2131 if (d->skb) { 2132 if (d->addr[0]) { 2133 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2134 memset(d->addr, 0, sizeof(d->addr)); 2135 } 2136 dev_consume_skb_any(d->skb); 2137 d->skb = NULL; 2138 } 2139 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2140 eosw_txq->ndesc); 2141 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2142 } 2143 } 2144 2145 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2146 { 2147 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2148 eosw_txq->inuse += n; 2149 } 2150 2151 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2152 struct sk_buff *skb) 2153 { 2154 if (eosw_txq->inuse == eosw_txq->ndesc) 2155 return -ENOMEM; 2156 2157 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2158 return 0; 2159 } 2160 2161 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2162 { 2163 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2164 } 2165 2166 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2167 struct sk_buff *skb, u32 hdr_len) 2168 { 2169 u8 flits, nsgl = 0; 2170 u32 wrlen; 2171 2172 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2173 if (skb_shinfo(skb)->gso_size && 2174 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2175 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2176 2177 wrlen += roundup(hdr_len, 16); 2178 2179 /* Packet headers + WR + CPLs */ 2180 flits = DIV_ROUND_UP(wrlen, 8); 2181 2182 if (skb_shinfo(skb)->nr_frags > 0) { 2183 if (skb_headlen(skb) - hdr_len) 2184 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2185 else 2186 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2187 } else if (skb->len - hdr_len) { 2188 nsgl = sgl_len(1); 2189 } 2190 2191 return flits + nsgl; 2192 } 2193 2194 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq, 2195 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2196 u32 hdr_len, u32 wrlen) 2197 { 2198 const struct skb_shared_info *ssi = skb_shinfo(skb); 2199 struct cpl_tx_pkt_core *cpl; 2200 u32 immd_len, wrlen16; 2201 bool compl = false; 2202 u8 ver, proto; 2203 2204 ver = ip_hdr(skb)->version; 2205 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2206 2207 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2208 immd_len = sizeof(struct cpl_tx_pkt_core); 2209 if (skb_shinfo(skb)->gso_size && 2210 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2211 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2212 immd_len += hdr_len; 2213 2214 if (!eosw_txq->ncompl || 2215 (eosw_txq->last_compl + wrlen16) >= 2216 (adap->params.ofldq_wr_cred / 2)) { 2217 compl = true; 2218 eosw_txq->ncompl++; 2219 eosw_txq->last_compl = 0; 2220 } 2221 2222 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2223 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2224 FW_WR_COMPL_V(compl)); 2225 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2226 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2227 wr->r3 = 0; 2228 if (proto == IPPROTO_UDP) { 2229 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2230 } else { 2231 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2232 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2233 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2234 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2235 wr->u.tcpseg.tsclk_tsoff = 0; 2236 wr->u.tcpseg.r4 = 0; 2237 wr->u.tcpseg.r5 = 0; 2238 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2239 2240 if (ssi->gso_size) { 2241 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2242 2243 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2244 cpl = write_tso_wr(adap, skb, lso); 2245 } else { 2246 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2247 cpl = (void *)(wr + 1); 2248 } 2249 } 2250 2251 eosw_txq->cred -= wrlen16; 2252 eosw_txq->last_compl += wrlen16; 2253 return cpl; 2254 } 2255 2256 static int ethofld_hard_xmit(struct net_device *dev, 2257 struct sge_eosw_txq *eosw_txq) 2258 { 2259 struct port_info *pi = netdev2pinfo(dev); 2260 struct adapter *adap = netdev2adap(dev); 2261 u32 wrlen, wrlen16, hdr_len, data_len; 2262 enum sge_eosw_state next_state; 2263 u64 cntrl, *start, *end, *sgl; 2264 struct sge_eohw_txq *eohw_txq; 2265 struct cpl_tx_pkt_core *cpl; 2266 struct fw_eth_tx_eo_wr *wr; 2267 bool skip_eotx_wr = false; 2268 struct tx_sw_desc *d; 2269 struct sk_buff *skb; 2270 int left, ret = 0; 2271 u8 flits, ndesc; 2272 2273 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2274 spin_lock(&eohw_txq->lock); 2275 reclaim_completed_tx_imm(&eohw_txq->q); 2276 2277 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2278 skb = d->skb; 2279 skb_tx_timestamp(skb); 2280 2281 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2282 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2283 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2284 hdr_len = skb->len; 2285 data_len = 0; 2286 flits = DIV_ROUND_UP(hdr_len, 8); 2287 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2288 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2289 else 2290 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2291 skip_eotx_wr = true; 2292 } else { 2293 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2294 data_len = skb->len - hdr_len; 2295 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2296 } 2297 ndesc = flits_to_desc(flits); 2298 wrlen = flits * 8; 2299 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2300 2301 left = txq_avail(&eohw_txq->q) - ndesc; 2302 2303 /* If there are no descriptors left in hardware queues or no 2304 * CPL credits left in software queues, then wait for them 2305 * to come back and retry again. Note that we always request 2306 * for credits update via interrupt for every half credits 2307 * consumed. So, the interrupt will eventually restore the 2308 * credits and invoke the Tx path again. 2309 */ 2310 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) { 2311 ret = -ENOMEM; 2312 goto out_unlock; 2313 } 2314 2315 if (unlikely(skip_eotx_wr)) { 2316 start = (u64 *)wr; 2317 eosw_txq->state = next_state; 2318 eosw_txq->cred -= wrlen16; 2319 eosw_txq->ncompl++; 2320 eosw_txq->last_compl = 0; 2321 goto write_wr_headers; 2322 } 2323 2324 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2325 cntrl = hwcsum(adap->params.chip, skb); 2326 if (skb_vlan_tag_present(skb)) 2327 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2328 2329 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2330 TXPKT_INTF_V(pi->tx_chan) | 2331 TXPKT_PF_V(adap->pf)); 2332 cpl->pack = 0; 2333 cpl->len = cpu_to_be16(skb->len); 2334 cpl->ctrl1 = cpu_to_be64(cntrl); 2335 2336 start = (u64 *)(cpl + 1); 2337 2338 write_wr_headers: 2339 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2340 hdr_len); 2341 if (data_len) { 2342 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr); 2343 if (unlikely(ret)) { 2344 memset(d->addr, 0, sizeof(d->addr)); 2345 eohw_txq->mapping_err++; 2346 goto out_unlock; 2347 } 2348 2349 end = (u64 *)wr + flits; 2350 if (unlikely(start > sgl)) { 2351 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2352 end = (void *)eohw_txq->q.desc + left; 2353 } 2354 2355 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2356 /* If current position is already at the end of the 2357 * txq, reset the current to point to start of the queue 2358 * and update the end ptr as well. 2359 */ 2360 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2361 2362 end = (void *)eohw_txq->q.desc + left; 2363 sgl = (void *)eohw_txq->q.desc; 2364 } 2365 2366 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2367 d->addr); 2368 } 2369 2370 if (skb_shinfo(skb)->gso_size) { 2371 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2372 eohw_txq->uso++; 2373 else 2374 eohw_txq->tso++; 2375 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2376 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2377 eohw_txq->tx_cso++; 2378 } 2379 2380 if (skb_vlan_tag_present(skb)) 2381 eohw_txq->vlan_ins++; 2382 2383 txq_advance(&eohw_txq->q, ndesc); 2384 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2385 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2386 2387 out_unlock: 2388 spin_unlock(&eohw_txq->lock); 2389 return ret; 2390 } 2391 2392 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2393 { 2394 struct sk_buff *skb; 2395 int pktcount, ret; 2396 2397 switch (eosw_txq->state) { 2398 case CXGB4_EO_STATE_ACTIVE: 2399 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2400 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2401 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2402 if (pktcount < 0) 2403 pktcount += eosw_txq->ndesc; 2404 break; 2405 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2406 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2407 case CXGB4_EO_STATE_CLOSED: 2408 default: 2409 return; 2410 } 2411 2412 while (pktcount--) { 2413 skb = eosw_txq_peek(eosw_txq); 2414 if (!skb) { 2415 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2416 eosw_txq->ndesc); 2417 continue; 2418 } 2419 2420 ret = ethofld_hard_xmit(dev, eosw_txq); 2421 if (ret) 2422 break; 2423 } 2424 } 2425 2426 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2427 struct net_device *dev) 2428 { 2429 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2430 struct port_info *pi = netdev2pinfo(dev); 2431 struct adapter *adap = netdev2adap(dev); 2432 struct sge_eosw_txq *eosw_txq; 2433 u32 qid; 2434 int ret; 2435 2436 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2437 if (ret) 2438 goto out_free; 2439 2440 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2441 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2442 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2443 spin_lock_bh(&eosw_txq->lock); 2444 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2445 goto out_unlock; 2446 2447 ret = eosw_txq_enqueue(eosw_txq, skb); 2448 if (ret) 2449 goto out_unlock; 2450 2451 /* SKB is queued for processing until credits are available. 2452 * So, call the destructor now and we'll free the skb later 2453 * after it has been successfully transmitted. 2454 */ 2455 skb_orphan(skb); 2456 2457 eosw_txq_advance(eosw_txq, 1); 2458 ethofld_xmit(dev, eosw_txq); 2459 spin_unlock_bh(&eosw_txq->lock); 2460 return NETDEV_TX_OK; 2461 2462 out_unlock: 2463 spin_unlock_bh(&eosw_txq->lock); 2464 out_free: 2465 dev_kfree_skb_any(skb); 2466 return NETDEV_TX_OK; 2467 } 2468 2469 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2470 { 2471 struct port_info *pi = netdev_priv(dev); 2472 u16 qid = skb_get_queue_mapping(skb); 2473 2474 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2475 return cxgb4_vf_eth_xmit(skb, dev); 2476 2477 if (unlikely(qid >= pi->nqsets)) 2478 return cxgb4_ethofld_xmit(skb, dev); 2479 2480 if (is_ptp_enabled(skb, dev)) { 2481 struct adapter *adap = netdev2adap(dev); 2482 netdev_tx_t ret; 2483 2484 spin_lock(&adap->ptp_lock); 2485 ret = cxgb4_eth_xmit(skb, dev); 2486 spin_unlock(&adap->ptp_lock); 2487 return ret; 2488 } 2489 2490 return cxgb4_eth_xmit(skb, dev); 2491 } 2492 2493 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq) 2494 { 2495 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2496 int pidx = eosw_txq->pidx; 2497 struct sk_buff *skb; 2498 2499 if (!pktcount) 2500 return; 2501 2502 if (pktcount < 0) 2503 pktcount += eosw_txq->ndesc; 2504 2505 while (pktcount--) { 2506 pidx--; 2507 if (pidx < 0) 2508 pidx += eosw_txq->ndesc; 2509 2510 skb = eosw_txq->desc[pidx].skb; 2511 if (skb) { 2512 dev_consume_skb_any(skb); 2513 eosw_txq->desc[pidx].skb = NULL; 2514 eosw_txq->inuse--; 2515 } 2516 } 2517 2518 eosw_txq->pidx = eosw_txq->last_pidx + 1; 2519 } 2520 2521 /** 2522 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2523 * @dev: netdevice 2524 * @eotid: ETHOFLD tid to bind/unbind 2525 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2526 * 2527 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2528 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2529 * a traffic class. 2530 */ 2531 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2532 { 2533 struct port_info *pi = netdev2pinfo(dev); 2534 struct adapter *adap = netdev2adap(dev); 2535 enum sge_eosw_state next_state; 2536 struct sge_eosw_txq *eosw_txq; 2537 u32 len, len16, nparams = 6; 2538 struct fw_flowc_wr *flowc; 2539 struct eotid_entry *entry; 2540 struct sge_ofld_rxq *rxq; 2541 struct sk_buff *skb; 2542 int ret = 0; 2543 2544 len = struct_size(flowc, mnemval, nparams); 2545 len16 = DIV_ROUND_UP(len, 16); 2546 2547 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2548 if (!entry) 2549 return -ENOMEM; 2550 2551 eosw_txq = (struct sge_eosw_txq *)entry->data; 2552 if (!eosw_txq) 2553 return -ENOMEM; 2554 2555 skb = alloc_skb(len, GFP_KERNEL); 2556 if (!skb) 2557 return -ENOMEM; 2558 2559 spin_lock_bh(&eosw_txq->lock); 2560 if (tc != FW_SCHED_CLS_NONE) { 2561 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2562 goto out_unlock; 2563 2564 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2565 } else { 2566 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2567 goto out_unlock; 2568 2569 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2570 } 2571 2572 flowc = __skb_put(skb, len); 2573 memset(flowc, 0, len); 2574 2575 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2576 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2577 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2578 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2579 FW_FLOWC_WR_NPARAMS_V(nparams) | 2580 FW_WR_COMPL_V(1)); 2581 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2582 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2583 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2584 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2585 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2586 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2587 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2588 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2589 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2590 flowc->mnemval[4].val = cpu_to_be32(tc); 2591 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2592 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2593 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2594 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2595 2596 /* Free up any pending skbs to ensure there's room for 2597 * termination FLOWC. 2598 */ 2599 if (tc == FW_SCHED_CLS_NONE) 2600 eosw_txq_flush_pending_skbs(eosw_txq); 2601 2602 ret = eosw_txq_enqueue(eosw_txq, skb); 2603 if (ret) { 2604 dev_consume_skb_any(skb); 2605 goto out_unlock; 2606 } 2607 2608 eosw_txq->state = next_state; 2609 eosw_txq->flowc_idx = eosw_txq->pidx; 2610 eosw_txq_advance(eosw_txq, 1); 2611 ethofld_xmit(dev, eosw_txq); 2612 2613 out_unlock: 2614 spin_unlock_bh(&eosw_txq->lock); 2615 return ret; 2616 } 2617 2618 /** 2619 * is_imm - check whether a packet can be sent as immediate data 2620 * @skb: the packet 2621 * 2622 * Returns true if a packet can be sent as a WR with immediate data. 2623 */ 2624 static inline int is_imm(const struct sk_buff *skb) 2625 { 2626 return skb->len <= MAX_CTRL_WR_LEN; 2627 } 2628 2629 /** 2630 * ctrlq_check_stop - check if a control queue is full and should stop 2631 * @q: the queue 2632 * @wr: most recent WR written to the queue 2633 * 2634 * Check if a control queue has become full and should be stopped. 2635 * We clean up control queue descriptors very lazily, only when we are out. 2636 * If the queue is still full after reclaiming any completed descriptors 2637 * we suspend it and have the last WR wake it up. 2638 */ 2639 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2640 { 2641 reclaim_completed_tx_imm(&q->q); 2642 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2643 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2644 q->q.stops++; 2645 q->full = 1; 2646 } 2647 } 2648 2649 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST" 2650 2651 int cxgb4_selftest_lb_pkt(struct net_device *netdev) 2652 { 2653 struct port_info *pi = netdev_priv(netdev); 2654 struct adapter *adap = pi->adapter; 2655 struct cxgb4_ethtool_lb_test *lb; 2656 int ret, i = 0, pkt_len, credits; 2657 struct fw_eth_tx_pkt_wr *wr; 2658 struct cpl_tx_pkt_core *cpl; 2659 u32 ctrl0, ndesc, flits; 2660 struct sge_eth_txq *q; 2661 u8 *sgl; 2662 2663 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR); 2664 2665 flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr), 2666 sizeof(__be64)); 2667 ndesc = flits_to_desc(flits); 2668 2669 lb = &pi->ethtool_lb; 2670 lb->loopback = 1; 2671 2672 q = &adap->sge.ethtxq[pi->first_qset]; 2673 __netif_tx_lock(q->txq, smp_processor_id()); 2674 2675 reclaim_completed_tx(adap, &q->q, -1, true); 2676 credits = txq_avail(&q->q) - ndesc; 2677 if (unlikely(credits < 0)) { 2678 __netif_tx_unlock(q->txq); 2679 return -ENOMEM; 2680 } 2681 2682 wr = (void *)&q->q.desc[q->q.pidx]; 2683 memset(wr, 0, sizeof(struct tx_desc)); 2684 2685 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 2686 FW_WR_IMMDLEN_V(pkt_len + 2687 sizeof(*cpl))); 2688 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2))); 2689 wr->r3 = cpu_to_be64(0); 2690 2691 cpl = (void *)(wr + 1); 2692 sgl = (u8 *)(cpl + 1); 2693 2694 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) | 2695 TXPKT_INTF_V(pi->tx_chan + 4); 2696 2697 cpl->ctrl0 = htonl(ctrl0); 2698 cpl->pack = htons(0); 2699 cpl->len = htons(pkt_len); 2700 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F); 2701 2702 eth_broadcast_addr(sgl); 2703 i += ETH_ALEN; 2704 ether_addr_copy(&sgl[i], netdev->dev_addr); 2705 i += ETH_ALEN; 2706 2707 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s", 2708 CXGB4_SELFTEST_LB_STR); 2709 2710 init_completion(&lb->completion); 2711 txq_advance(&q->q, ndesc); 2712 cxgb4_ring_tx_db(adap, &q->q, ndesc); 2713 __netif_tx_unlock(q->txq); 2714 2715 /* wait for the pkt to return */ 2716 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ); 2717 if (!ret) 2718 ret = -ETIMEDOUT; 2719 else 2720 ret = lb->result; 2721 2722 lb->loopback = 0; 2723 2724 return ret; 2725 } 2726 2727 /** 2728 * ctrl_xmit - send a packet through an SGE control Tx queue 2729 * @q: the control queue 2730 * @skb: the packet 2731 * 2732 * Send a packet through an SGE control Tx queue. Packets sent through 2733 * a control queue must fit entirely as immediate data. 2734 */ 2735 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2736 { 2737 unsigned int ndesc; 2738 struct fw_wr_hdr *wr; 2739 2740 if (unlikely(!is_imm(skb))) { 2741 WARN_ON(1); 2742 dev_kfree_skb(skb); 2743 return NET_XMIT_DROP; 2744 } 2745 2746 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2747 spin_lock(&q->sendq.lock); 2748 2749 if (unlikely(q->full)) { 2750 skb->priority = ndesc; /* save for restart */ 2751 __skb_queue_tail(&q->sendq, skb); 2752 spin_unlock(&q->sendq.lock); 2753 return NET_XMIT_CN; 2754 } 2755 2756 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2757 cxgb4_inline_tx_skb(skb, &q->q, wr); 2758 2759 txq_advance(&q->q, ndesc); 2760 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2761 ctrlq_check_stop(q, wr); 2762 2763 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2764 spin_unlock(&q->sendq.lock); 2765 2766 kfree_skb(skb); 2767 return NET_XMIT_SUCCESS; 2768 } 2769 2770 /** 2771 * restart_ctrlq - restart a suspended control queue 2772 * @t: pointer to the tasklet associated with this handler 2773 * 2774 * Resumes transmission on a suspended Tx control queue. 2775 */ 2776 static void restart_ctrlq(struct tasklet_struct *t) 2777 { 2778 struct sk_buff *skb; 2779 unsigned int written = 0; 2780 struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk); 2781 2782 spin_lock(&q->sendq.lock); 2783 reclaim_completed_tx_imm(&q->q); 2784 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2785 2786 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2787 struct fw_wr_hdr *wr; 2788 unsigned int ndesc = skb->priority; /* previously saved */ 2789 2790 written += ndesc; 2791 /* Write descriptors and free skbs outside the lock to limit 2792 * wait times. q->full is still set so new skbs will be queued. 2793 */ 2794 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2795 txq_advance(&q->q, ndesc); 2796 spin_unlock(&q->sendq.lock); 2797 2798 cxgb4_inline_tx_skb(skb, &q->q, wr); 2799 kfree_skb(skb); 2800 2801 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2802 unsigned long old = q->q.stops; 2803 2804 ctrlq_check_stop(q, wr); 2805 if (q->q.stops != old) { /* suspended anew */ 2806 spin_lock(&q->sendq.lock); 2807 goto ringdb; 2808 } 2809 } 2810 if (written > 16) { 2811 cxgb4_ring_tx_db(q->adap, &q->q, written); 2812 written = 0; 2813 } 2814 spin_lock(&q->sendq.lock); 2815 } 2816 q->full = 0; 2817 ringdb: 2818 if (written) 2819 cxgb4_ring_tx_db(q->adap, &q->q, written); 2820 spin_unlock(&q->sendq.lock); 2821 } 2822 2823 /** 2824 * t4_mgmt_tx - send a management message 2825 * @adap: the adapter 2826 * @skb: the packet containing the management message 2827 * 2828 * Send a management message through control queue 0. 2829 */ 2830 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2831 { 2832 int ret; 2833 2834 local_bh_disable(); 2835 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2836 local_bh_enable(); 2837 return ret; 2838 } 2839 2840 /** 2841 * is_ofld_imm - check whether a packet can be sent as immediate data 2842 * @skb: the packet 2843 * 2844 * Returns true if a packet can be sent as an offload WR with immediate 2845 * data. We currently use the same limit as for Ethernet packets. 2846 */ 2847 static inline int is_ofld_imm(const struct sk_buff *skb) 2848 { 2849 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2850 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2851 2852 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2853 return skb->len <= SGE_MAX_WR_LEN; 2854 else 2855 return skb->len <= MAX_IMM_TX_PKT_LEN; 2856 } 2857 2858 /** 2859 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2860 * @skb: the packet 2861 * 2862 * Returns the number of flits needed for the given offload packet. 2863 * These packets are already fully constructed and no additional headers 2864 * will be added. 2865 */ 2866 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2867 { 2868 unsigned int flits, cnt; 2869 2870 if (is_ofld_imm(skb)) 2871 return DIV_ROUND_UP(skb->len, 8); 2872 2873 flits = skb_transport_offset(skb) / 8U; /* headers */ 2874 cnt = skb_shinfo(skb)->nr_frags; 2875 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2876 cnt++; 2877 return flits + sgl_len(cnt); 2878 } 2879 2880 /** 2881 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2882 * @q: the queue to stop 2883 * 2884 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2885 * inability to map packets. A periodic timer attempts to restart 2886 * queues so marked. 2887 */ 2888 static void txq_stop_maperr(struct sge_uld_txq *q) 2889 { 2890 q->mapping_err++; 2891 q->q.stops++; 2892 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2893 q->adap->sge.txq_maperr); 2894 } 2895 2896 /** 2897 * ofldtxq_stop - stop an offload Tx queue that has become full 2898 * @q: the queue to stop 2899 * @wr: the Work Request causing the queue to become full 2900 * 2901 * Stops an offload Tx queue that has become full and modifies the packet 2902 * being written to request a wakeup. 2903 */ 2904 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2905 { 2906 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2907 q->q.stops++; 2908 q->full = 1; 2909 } 2910 2911 /** 2912 * service_ofldq - service/restart a suspended offload queue 2913 * @q: the offload queue 2914 * 2915 * Services an offload Tx queue by moving packets from its Pending Send 2916 * Queue to the Hardware TX ring. The function starts and ends with the 2917 * Send Queue locked, but drops the lock while putting the skb at the 2918 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2919 * allows more skbs to be added to the Send Queue by other threads. 2920 * The packet being processed at the head of the Pending Send Queue is 2921 * left on the queue in case we experience DMA Mapping errors, etc. 2922 * and need to give up and restart later. 2923 * 2924 * service_ofldq() can be thought of as a task which opportunistically 2925 * uses other threads execution contexts. We use the Offload Queue 2926 * boolean "service_ofldq_running" to make sure that only one instance 2927 * is ever running at a time ... 2928 */ 2929 static void service_ofldq(struct sge_uld_txq *q) 2930 __must_hold(&q->sendq.lock) 2931 { 2932 u64 *pos, *before, *end; 2933 int credits; 2934 struct sk_buff *skb; 2935 struct sge_txq *txq; 2936 unsigned int left; 2937 unsigned int written = 0; 2938 unsigned int flits, ndesc; 2939 2940 /* If another thread is currently in service_ofldq() processing the 2941 * Pending Send Queue then there's nothing to do. Otherwise, flag 2942 * that we're doing the work and continue. Examining/modifying 2943 * the Offload Queue boolean "service_ofldq_running" must be done 2944 * while holding the Pending Send Queue Lock. 2945 */ 2946 if (q->service_ofldq_running) 2947 return; 2948 q->service_ofldq_running = true; 2949 2950 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2951 /* We drop the lock while we're working with the skb at the 2952 * head of the Pending Send Queue. This allows more skbs to 2953 * be added to the Pending Send Queue while we're working on 2954 * this one. We don't need to lock to guard the TX Ring 2955 * updates because only one thread of execution is ever 2956 * allowed into service_ofldq() at a time. 2957 */ 2958 spin_unlock(&q->sendq.lock); 2959 2960 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2961 2962 flits = skb->priority; /* previously saved */ 2963 ndesc = flits_to_desc(flits); 2964 credits = txq_avail(&q->q) - ndesc; 2965 BUG_ON(credits < 0); 2966 if (unlikely(credits < TXQ_STOP_THRES)) 2967 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2968 2969 pos = (u64 *)&q->q.desc[q->q.pidx]; 2970 if (is_ofld_imm(skb)) 2971 cxgb4_inline_tx_skb(skb, &q->q, pos); 2972 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2973 (dma_addr_t *)skb->head)) { 2974 txq_stop_maperr(q); 2975 spin_lock(&q->sendq.lock); 2976 break; 2977 } else { 2978 int last_desc, hdr_len = skb_transport_offset(skb); 2979 2980 /* The WR headers may not fit within one descriptor. 2981 * So we need to deal with wrap-around here. 2982 */ 2983 before = (u64 *)pos; 2984 end = (u64 *)pos + flits; 2985 txq = &q->q; 2986 pos = (void *)inline_tx_skb_header(skb, &q->q, 2987 (void *)pos, 2988 hdr_len); 2989 if (before > (u64 *)pos) { 2990 left = (u8 *)end - (u8 *)txq->stat; 2991 end = (void *)txq->desc + left; 2992 } 2993 2994 /* If current position is already at the end of the 2995 * ofld queue, reset the current to point to 2996 * start of the queue and update the end ptr as well. 2997 */ 2998 if (pos == (u64 *)txq->stat) { 2999 left = (u8 *)end - (u8 *)txq->stat; 3000 end = (void *)txq->desc + left; 3001 pos = (void *)txq->desc; 3002 } 3003 3004 cxgb4_write_sgl(skb, &q->q, (void *)pos, 3005 end, hdr_len, 3006 (dma_addr_t *)skb->head); 3007 #ifdef CONFIG_NEED_DMA_MAP_STATE 3008 skb->dev = q->adap->port[0]; 3009 skb->destructor = deferred_unmap_destructor; 3010 #endif 3011 last_desc = q->q.pidx + ndesc - 1; 3012 if (last_desc >= q->q.size) 3013 last_desc -= q->q.size; 3014 q->q.sdesc[last_desc].skb = skb; 3015 } 3016 3017 txq_advance(&q->q, ndesc); 3018 written += ndesc; 3019 if (unlikely(written > 32)) { 3020 cxgb4_ring_tx_db(q->adap, &q->q, written); 3021 written = 0; 3022 } 3023 3024 /* Reacquire the Pending Send Queue Lock so we can unlink the 3025 * skb we've just successfully transferred to the TX Ring and 3026 * loop for the next skb which may be at the head of the 3027 * Pending Send Queue. 3028 */ 3029 spin_lock(&q->sendq.lock); 3030 __skb_unlink(skb, &q->sendq); 3031 if (is_ofld_imm(skb)) 3032 kfree_skb(skb); 3033 } 3034 if (likely(written)) 3035 cxgb4_ring_tx_db(q->adap, &q->q, written); 3036 3037 /*Indicate that no thread is processing the Pending Send Queue 3038 * currently. 3039 */ 3040 q->service_ofldq_running = false; 3041 } 3042 3043 /** 3044 * ofld_xmit - send a packet through an offload queue 3045 * @q: the Tx offload queue 3046 * @skb: the packet 3047 * 3048 * Send an offload packet through an SGE offload queue. 3049 */ 3050 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 3051 { 3052 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 3053 spin_lock(&q->sendq.lock); 3054 3055 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 3056 * that results in this new skb being the only one on the queue, start 3057 * servicing it. If there are other skbs already on the list, then 3058 * either the queue is currently being processed or it's been stopped 3059 * for some reason and it'll be restarted at a later time. Restart 3060 * paths are triggered by events like experiencing a DMA Mapping Error 3061 * or filling the Hardware TX Ring. 3062 */ 3063 __skb_queue_tail(&q->sendq, skb); 3064 if (q->sendq.qlen == 1) 3065 service_ofldq(q); 3066 3067 spin_unlock(&q->sendq.lock); 3068 return NET_XMIT_SUCCESS; 3069 } 3070 3071 /** 3072 * restart_ofldq - restart a suspended offload queue 3073 * @t: pointer to the tasklet associated with this handler 3074 * 3075 * Resumes transmission on a suspended Tx offload queue. 3076 */ 3077 static void restart_ofldq(struct tasklet_struct *t) 3078 { 3079 struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk); 3080 3081 spin_lock(&q->sendq.lock); 3082 q->full = 0; /* the queue actually is completely empty now */ 3083 service_ofldq(q); 3084 spin_unlock(&q->sendq.lock); 3085 } 3086 3087 /** 3088 * skb_txq - return the Tx queue an offload packet should use 3089 * @skb: the packet 3090 * 3091 * Returns the Tx queue an offload packet should use as indicated by bits 3092 * 1-15 in the packet's queue_mapping. 3093 */ 3094 static inline unsigned int skb_txq(const struct sk_buff *skb) 3095 { 3096 return skb->queue_mapping >> 1; 3097 } 3098 3099 /** 3100 * is_ctrl_pkt - return whether an offload packet is a control packet 3101 * @skb: the packet 3102 * 3103 * Returns whether an offload packet should use an OFLD or a CTRL 3104 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 3105 */ 3106 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 3107 { 3108 return skb->queue_mapping & 1; 3109 } 3110 3111 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 3112 unsigned int tx_uld_type) 3113 { 3114 struct sge_uld_txq_info *txq_info; 3115 struct sge_uld_txq *txq; 3116 unsigned int idx = skb_txq(skb); 3117 3118 if (unlikely(is_ctrl_pkt(skb))) { 3119 /* Single ctrl queue is a requirement for LE workaround path */ 3120 if (adap->tids.nsftids) 3121 idx = 0; 3122 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 3123 } 3124 3125 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 3126 if (unlikely(!txq_info)) { 3127 WARN_ON(true); 3128 kfree_skb(skb); 3129 return NET_XMIT_DROP; 3130 } 3131 3132 txq = &txq_info->uldtxq[idx]; 3133 return ofld_xmit(txq, skb); 3134 } 3135 3136 /** 3137 * t4_ofld_send - send an offload packet 3138 * @adap: the adapter 3139 * @skb: the packet 3140 * 3141 * Sends an offload packet. We use the packet queue_mapping to select the 3142 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3143 * should be sent as regular or control, bits 1-15 select the queue. 3144 */ 3145 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 3146 { 3147 int ret; 3148 3149 local_bh_disable(); 3150 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 3151 local_bh_enable(); 3152 return ret; 3153 } 3154 3155 /** 3156 * cxgb4_ofld_send - send an offload packet 3157 * @dev: the net device 3158 * @skb: the packet 3159 * 3160 * Sends an offload packet. This is an exported version of @t4_ofld_send, 3161 * intended for ULDs. 3162 */ 3163 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 3164 { 3165 return t4_ofld_send(netdev2adap(dev), skb); 3166 } 3167 EXPORT_SYMBOL(cxgb4_ofld_send); 3168 3169 static void *inline_tx_header(const void *src, 3170 const struct sge_txq *q, 3171 void *pos, int length) 3172 { 3173 int left = (void *)q->stat - pos; 3174 u64 *p; 3175 3176 if (likely(length <= left)) { 3177 memcpy(pos, src, length); 3178 pos += length; 3179 } else { 3180 memcpy(pos, src, left); 3181 memcpy(q->desc, src + left, length - left); 3182 pos = (void *)q->desc + (length - left); 3183 } 3184 /* 0-pad to multiple of 16 */ 3185 p = PTR_ALIGN(pos, 8); 3186 if ((uintptr_t)p & 8) { 3187 *p = 0; 3188 return p + 1; 3189 } 3190 return p; 3191 } 3192 3193 /** 3194 * ofld_xmit_direct - copy a WR into offload queue 3195 * @q: the Tx offload queue 3196 * @src: location of WR 3197 * @len: WR length 3198 * 3199 * Copy an immediate WR into an uncontended SGE offload queue. 3200 */ 3201 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 3202 unsigned int len) 3203 { 3204 unsigned int ndesc; 3205 int credits; 3206 u64 *pos; 3207 3208 /* Use the lower limit as the cut-off */ 3209 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 3210 WARN_ON(1); 3211 return NET_XMIT_DROP; 3212 } 3213 3214 /* Don't return NET_XMIT_CN here as the current 3215 * implementation doesn't queue the request 3216 * using an skb when the following conditions not met 3217 */ 3218 if (!spin_trylock(&q->sendq.lock)) 3219 return NET_XMIT_DROP; 3220 3221 if (q->full || !skb_queue_empty(&q->sendq) || 3222 q->service_ofldq_running) { 3223 spin_unlock(&q->sendq.lock); 3224 return NET_XMIT_DROP; 3225 } 3226 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3227 credits = txq_avail(&q->q) - ndesc; 3228 pos = (u64 *)&q->q.desc[q->q.pidx]; 3229 3230 /* ofldtxq_stop modifies WR header in-situ */ 3231 inline_tx_header(src, &q->q, pos, len); 3232 if (unlikely(credits < TXQ_STOP_THRES)) 3233 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3234 txq_advance(&q->q, ndesc); 3235 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3236 3237 spin_unlock(&q->sendq.lock); 3238 return NET_XMIT_SUCCESS; 3239 } 3240 3241 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3242 const void *src, unsigned int len) 3243 { 3244 struct sge_uld_txq_info *txq_info; 3245 struct sge_uld_txq *txq; 3246 struct adapter *adap; 3247 int ret; 3248 3249 adap = netdev2adap(dev); 3250 3251 local_bh_disable(); 3252 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3253 if (unlikely(!txq_info)) { 3254 WARN_ON(true); 3255 local_bh_enable(); 3256 return NET_XMIT_DROP; 3257 } 3258 txq = &txq_info->uldtxq[idx]; 3259 3260 ret = ofld_xmit_direct(txq, src, len); 3261 local_bh_enable(); 3262 return net_xmit_eval(ret); 3263 } 3264 EXPORT_SYMBOL(cxgb4_immdata_send); 3265 3266 /** 3267 * t4_crypto_send - send crypto packet 3268 * @adap: the adapter 3269 * @skb: the packet 3270 * 3271 * Sends crypto packet. We use the packet queue_mapping to select the 3272 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3273 * should be sent as regular or control, bits 1-15 select the queue. 3274 */ 3275 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3276 { 3277 int ret; 3278 3279 local_bh_disable(); 3280 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3281 local_bh_enable(); 3282 return ret; 3283 } 3284 3285 /** 3286 * cxgb4_crypto_send - send crypto packet 3287 * @dev: the net device 3288 * @skb: the packet 3289 * 3290 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3291 * intended for ULDs. 3292 */ 3293 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3294 { 3295 return t4_crypto_send(netdev2adap(dev), skb); 3296 } 3297 EXPORT_SYMBOL(cxgb4_crypto_send); 3298 3299 static inline void copy_frags(struct sk_buff *skb, 3300 const struct pkt_gl *gl, unsigned int offset) 3301 { 3302 int i; 3303 3304 /* usually there's just one frag */ 3305 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3306 gl->frags[0].offset + offset, 3307 gl->frags[0].size - offset); 3308 skb_shinfo(skb)->nr_frags = gl->nfrags; 3309 for (i = 1; i < gl->nfrags; i++) 3310 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3311 gl->frags[i].offset, 3312 gl->frags[i].size); 3313 3314 /* get a reference to the last page, we don't own it */ 3315 get_page(gl->frags[gl->nfrags - 1].page); 3316 } 3317 3318 /** 3319 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3320 * @gl: the gather list 3321 * @skb_len: size of sk_buff main body if it carries fragments 3322 * @pull_len: amount of data to move to the sk_buff's main body 3323 * 3324 * Builds an sk_buff from the given packet gather list. Returns the 3325 * sk_buff or %NULL if sk_buff allocation failed. 3326 */ 3327 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3328 unsigned int skb_len, unsigned int pull_len) 3329 { 3330 struct sk_buff *skb; 3331 3332 /* 3333 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3334 * size, which is expected since buffers are at least PAGE_SIZEd. 3335 * In this case packets up to RX_COPY_THRES have only one fragment. 3336 */ 3337 if (gl->tot_len <= RX_COPY_THRES) { 3338 skb = dev_alloc_skb(gl->tot_len); 3339 if (unlikely(!skb)) 3340 goto out; 3341 __skb_put(skb, gl->tot_len); 3342 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3343 } else { 3344 skb = dev_alloc_skb(skb_len); 3345 if (unlikely(!skb)) 3346 goto out; 3347 __skb_put(skb, pull_len); 3348 skb_copy_to_linear_data(skb, gl->va, pull_len); 3349 3350 copy_frags(skb, gl, pull_len); 3351 skb->len = gl->tot_len; 3352 skb->data_len = skb->len - pull_len; 3353 skb->truesize += skb->data_len; 3354 } 3355 out: return skb; 3356 } 3357 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3358 3359 /** 3360 * t4_pktgl_free - free a packet gather list 3361 * @gl: the gather list 3362 * 3363 * Releases the pages of a packet gather list. We do not own the last 3364 * page on the list and do not free it. 3365 */ 3366 static void t4_pktgl_free(const struct pkt_gl *gl) 3367 { 3368 int n; 3369 const struct page_frag *p; 3370 3371 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3372 put_page(p->page); 3373 } 3374 3375 /* 3376 * Process an MPS trace packet. Give it an unused protocol number so it won't 3377 * be delivered to anyone and send it to the stack for capture. 3378 */ 3379 static noinline int handle_trace_pkt(struct adapter *adap, 3380 const struct pkt_gl *gl) 3381 { 3382 struct sk_buff *skb; 3383 3384 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3385 if (unlikely(!skb)) { 3386 t4_pktgl_free(gl); 3387 return 0; 3388 } 3389 3390 if (is_t4(adap->params.chip)) 3391 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3392 else 3393 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3394 3395 skb_reset_mac_header(skb); 3396 skb->protocol = htons(0xffff); 3397 skb->dev = adap->port[0]; 3398 netif_receive_skb(skb); 3399 return 0; 3400 } 3401 3402 /** 3403 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3404 * @adap: the adapter 3405 * @hwtstamps: time stamp structure to update 3406 * @sgetstamp: 60bit iqe timestamp 3407 * 3408 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3409 * which is in Core Clock ticks into ktime_t and assign it 3410 **/ 3411 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3412 struct skb_shared_hwtstamps *hwtstamps, 3413 u64 sgetstamp) 3414 { 3415 u64 ns; 3416 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3417 3418 ns = div_u64(tmp, adap->params.vpd.cclk); 3419 3420 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3421 hwtstamps->hwtstamp = ns_to_ktime(ns); 3422 } 3423 3424 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3425 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3426 { 3427 struct adapter *adapter = rxq->rspq.adap; 3428 struct sge *s = &adapter->sge; 3429 struct port_info *pi; 3430 int ret; 3431 struct sk_buff *skb; 3432 3433 skb = napi_get_frags(&rxq->rspq.napi); 3434 if (unlikely(!skb)) { 3435 t4_pktgl_free(gl); 3436 rxq->stats.rx_drops++; 3437 return; 3438 } 3439 3440 copy_frags(skb, gl, s->pktshift); 3441 if (tnl_hdr_len) 3442 skb->csum_level = 1; 3443 skb->len = gl->tot_len - s->pktshift; 3444 skb->data_len = skb->len; 3445 skb->truesize += skb->data_len; 3446 skb->ip_summed = CHECKSUM_UNNECESSARY; 3447 skb_record_rx_queue(skb, rxq->rspq.idx); 3448 pi = netdev_priv(skb->dev); 3449 if (pi->rxtstamp) 3450 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3451 gl->sgetstamp); 3452 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3453 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3454 PKT_HASH_TYPE_L3); 3455 3456 if (unlikely(pkt->vlan_ex)) { 3457 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3458 rxq->stats.vlan_ex++; 3459 } 3460 ret = napi_gro_frags(&rxq->rspq.napi); 3461 if (ret == GRO_HELD) 3462 rxq->stats.lro_pkts++; 3463 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3464 rxq->stats.lro_merged++; 3465 rxq->stats.pkts++; 3466 rxq->stats.rx_cso++; 3467 } 3468 3469 enum { 3470 RX_NON_PTP_PKT = 0, 3471 RX_PTP_PKT_SUC = 1, 3472 RX_PTP_PKT_ERR = 2 3473 }; 3474 3475 /** 3476 * t4_systim_to_hwstamp - read hardware time stamp 3477 * @adapter: the adapter 3478 * @skb: the packet 3479 * 3480 * Read Time Stamp from MPS packet and insert in skb which 3481 * is forwarded to PTP application 3482 */ 3483 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3484 struct sk_buff *skb) 3485 { 3486 struct skb_shared_hwtstamps *hwtstamps; 3487 struct cpl_rx_mps_pkt *cpl = NULL; 3488 unsigned char *data; 3489 int offset; 3490 3491 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3492 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3493 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3494 return RX_PTP_PKT_ERR; 3495 3496 data = skb->data + sizeof(*cpl); 3497 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3498 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3499 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3500 return RX_PTP_PKT_ERR; 3501 3502 hwtstamps = skb_hwtstamps(skb); 3503 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3504 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data)); 3505 3506 return RX_PTP_PKT_SUC; 3507 } 3508 3509 /** 3510 * t4_rx_hststamp - Recv PTP Event Message 3511 * @adapter: the adapter 3512 * @rsp: the response queue descriptor holding the RX_PKT message 3513 * @rxq: the response queue holding the RX_PKT message 3514 * @skb: the packet 3515 * 3516 * PTP enabled and MPS packet, read HW timestamp 3517 */ 3518 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3519 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3520 { 3521 int ret; 3522 3523 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3524 !is_t4(adapter->params.chip))) { 3525 ret = t4_systim_to_hwstamp(adapter, skb); 3526 if (ret == RX_PTP_PKT_ERR) { 3527 kfree_skb(skb); 3528 rxq->stats.rx_drops++; 3529 } 3530 return ret; 3531 } 3532 return RX_NON_PTP_PKT; 3533 } 3534 3535 /** 3536 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3537 * @adapter: the adapter 3538 * @skb: the packet 3539 * @dev: the ingress net device 3540 * 3541 * Read hardware timestamp for the loopback PTP Tx event message 3542 */ 3543 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3544 struct net_device *dev) 3545 { 3546 struct port_info *pi = netdev_priv(dev); 3547 3548 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3549 cxgb4_ptp_read_hwstamp(adapter, pi); 3550 kfree_skb(skb); 3551 return 0; 3552 } 3553 return 1; 3554 } 3555 3556 /** 3557 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3558 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3559 * @rsp: Response Entry pointer into Response Queue 3560 * @gl: Gather List pointer 3561 * 3562 * For adapters which support the SGE Doorbell Queue Timer facility, 3563 * we configure the Ethernet TX Queues to send CIDX Updates to the 3564 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3565 * messages. This adds a small load to PCIe Link RX bandwidth and, 3566 * potentially, higher CPU Interrupt load, but allows us to respond 3567 * much more quickly to the CIDX Updates. This is important for 3568 * Upper Layer Software which isn't willing to have a large amount 3569 * of TX Data outstanding before receiving DMA Completions. 3570 */ 3571 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3572 const __be64 *rsp, 3573 const struct pkt_gl *gl) 3574 { 3575 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3576 struct port_info *pi = netdev_priv(rspq->netdev); 3577 struct adapter *adapter = rspq->adap; 3578 struct sge *s = &adapter->sge; 3579 struct sge_eth_txq *txq; 3580 3581 /* skip RSS header */ 3582 rsp++; 3583 3584 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3585 */ 3586 if (unlikely(opcode == CPL_FW4_MSG && 3587 ((const struct cpl_fw4_msg *)rsp)->type == 3588 FW_TYPE_RSSCPL)) { 3589 rsp++; 3590 opcode = ((const struct rss_header *)rsp)->opcode; 3591 rsp++; 3592 } 3593 3594 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3595 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3596 __func__, opcode); 3597 return; 3598 } 3599 3600 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3601 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3602 } 3603 3604 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si) 3605 { 3606 struct adapter *adap = pi->adapter; 3607 struct cxgb4_ethtool_lb_test *lb; 3608 struct sge *s = &adap->sge; 3609 struct net_device *netdev; 3610 u8 *data; 3611 int i; 3612 3613 netdev = adap->port[pi->port_id]; 3614 lb = &pi->ethtool_lb; 3615 data = si->va + s->pktshift; 3616 3617 i = ETH_ALEN; 3618 if (!ether_addr_equal(data + i, netdev->dev_addr)) 3619 return -1; 3620 3621 i += ETH_ALEN; 3622 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR)) 3623 lb->result = -EIO; 3624 3625 complete(&lb->completion); 3626 return 0; 3627 } 3628 3629 /** 3630 * t4_ethrx_handler - process an ingress ethernet packet 3631 * @q: the response queue that received the packet 3632 * @rsp: the response queue descriptor holding the RX_PKT message 3633 * @si: the gather list of packet fragments 3634 * 3635 * Process an ingress ethernet packet and deliver it to the stack. 3636 */ 3637 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3638 const struct pkt_gl *si) 3639 { 3640 bool csum_ok; 3641 struct sk_buff *skb; 3642 const struct cpl_rx_pkt *pkt; 3643 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3644 struct adapter *adapter = q->adap; 3645 struct sge *s = &q->adap->sge; 3646 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3647 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3648 u16 err_vec, tnl_hdr_len = 0; 3649 struct port_info *pi; 3650 int ret = 0; 3651 3652 pi = netdev_priv(q->netdev); 3653 /* If we're looking at TX Queue CIDX Update, handle that separately 3654 * and return. 3655 */ 3656 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3657 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3658 t4_tx_completion_handler(q, rsp, si); 3659 return 0; 3660 } 3661 3662 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3663 return handle_trace_pkt(q->adap, si); 3664 3665 pkt = (const struct cpl_rx_pkt *)rsp; 3666 /* Compressed error vector is enabled for T6 only */ 3667 if (q->adap->params.tp.rx_pkt_encap) { 3668 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3669 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3670 } else { 3671 err_vec = be16_to_cpu(pkt->err_vec); 3672 } 3673 3674 csum_ok = pkt->csum_calc && !err_vec && 3675 (q->netdev->features & NETIF_F_RXCSUM); 3676 3677 if (err_vec) 3678 rxq->stats.bad_rx_pkts++; 3679 3680 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) { 3681 ret = cxgb4_validate_lb_pkt(pi, si); 3682 if (!ret) 3683 return 0; 3684 } 3685 3686 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3687 tnl_hdr_len) && 3688 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3689 do_gro(rxq, si, pkt, tnl_hdr_len); 3690 return 0; 3691 } 3692 3693 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3694 if (unlikely(!skb)) { 3695 t4_pktgl_free(si); 3696 rxq->stats.rx_drops++; 3697 return 0; 3698 } 3699 3700 /* Handle PTP Event Rx packet */ 3701 if (unlikely(pi->ptp_enable)) { 3702 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3703 if (ret == RX_PTP_PKT_ERR) 3704 return 0; 3705 } 3706 if (likely(!ret)) 3707 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3708 3709 /* Handle the PTP Event Tx Loopback packet */ 3710 if (unlikely(pi->ptp_enable && !ret && 3711 (pkt->l2info & htonl(RXF_UDP_F)) && 3712 cxgb4_ptp_is_ptp_rx(skb))) { 3713 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3714 return 0; 3715 } 3716 3717 skb->protocol = eth_type_trans(skb, q->netdev); 3718 skb_record_rx_queue(skb, q->idx); 3719 if (skb->dev->features & NETIF_F_RXHASH) 3720 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3721 PKT_HASH_TYPE_L3); 3722 3723 rxq->stats.pkts++; 3724 3725 if (pi->rxtstamp) 3726 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3727 si->sgetstamp); 3728 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3729 if (!pkt->ip_frag) { 3730 skb->ip_summed = CHECKSUM_UNNECESSARY; 3731 rxq->stats.rx_cso++; 3732 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3733 __sum16 c = (__force __sum16)pkt->csum; 3734 skb->csum = csum_unfold(c); 3735 3736 if (tnl_hdr_len) { 3737 skb->ip_summed = CHECKSUM_UNNECESSARY; 3738 skb->csum_level = 1; 3739 } else { 3740 skb->ip_summed = CHECKSUM_COMPLETE; 3741 } 3742 rxq->stats.rx_cso++; 3743 } 3744 } else { 3745 skb_checksum_none_assert(skb); 3746 #ifdef CONFIG_CHELSIO_T4_FCOE 3747 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3748 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3749 3750 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3751 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3752 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3753 if (q->adap->params.tp.rx_pkt_encap) 3754 csum_ok = err_vec & 3755 T6_COMPR_RXERR_SUM_F; 3756 else 3757 csum_ok = err_vec & RXERR_CSUM_F; 3758 if (!csum_ok) 3759 skb->ip_summed = CHECKSUM_UNNECESSARY; 3760 } 3761 } 3762 3763 #undef CPL_RX_PKT_FLAGS 3764 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3765 } 3766 3767 if (unlikely(pkt->vlan_ex)) { 3768 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3769 rxq->stats.vlan_ex++; 3770 } 3771 skb_mark_napi_id(skb, &q->napi); 3772 netif_receive_skb(skb); 3773 return 0; 3774 } 3775 3776 /** 3777 * restore_rx_bufs - put back a packet's Rx buffers 3778 * @si: the packet gather list 3779 * @q: the SGE free list 3780 * @frags: number of FL buffers to restore 3781 * 3782 * Puts back on an FL the Rx buffers associated with @si. The buffers 3783 * have already been unmapped and are left unmapped, we mark them so to 3784 * prevent further unmapping attempts. 3785 * 3786 * This function undoes a series of @unmap_rx_buf calls when we find out 3787 * that the current packet can't be processed right away afterall and we 3788 * need to come back to it later. This is a very rare event and there's 3789 * no effort to make this particularly efficient. 3790 */ 3791 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3792 int frags) 3793 { 3794 struct rx_sw_desc *d; 3795 3796 while (frags--) { 3797 if (q->cidx == 0) 3798 q->cidx = q->size - 1; 3799 else 3800 q->cidx--; 3801 d = &q->sdesc[q->cidx]; 3802 d->page = si->frags[frags].page; 3803 d->dma_addr |= RX_UNMAPPED_BUF; 3804 q->avail++; 3805 } 3806 } 3807 3808 /** 3809 * is_new_response - check if a response is newly written 3810 * @r: the response descriptor 3811 * @q: the response queue 3812 * 3813 * Returns true if a response descriptor contains a yet unprocessed 3814 * response. 3815 */ 3816 static inline bool is_new_response(const struct rsp_ctrl *r, 3817 const struct sge_rspq *q) 3818 { 3819 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3820 } 3821 3822 /** 3823 * rspq_next - advance to the next entry in a response queue 3824 * @q: the queue 3825 * 3826 * Updates the state of a response queue to advance it to the next entry. 3827 */ 3828 static inline void rspq_next(struct sge_rspq *q) 3829 { 3830 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3831 if (unlikely(++q->cidx == q->size)) { 3832 q->cidx = 0; 3833 q->gen ^= 1; 3834 q->cur_desc = q->desc; 3835 } 3836 } 3837 3838 /** 3839 * process_responses - process responses from an SGE response queue 3840 * @q: the ingress queue to process 3841 * @budget: how many responses can be processed in this round 3842 * 3843 * Process responses from an SGE response queue up to the supplied budget. 3844 * Responses include received packets as well as control messages from FW 3845 * or HW. 3846 * 3847 * Additionally choose the interrupt holdoff time for the next interrupt 3848 * on this queue. If the system is under memory shortage use a fairly 3849 * long delay to help recovery. 3850 */ 3851 static int process_responses(struct sge_rspq *q, int budget) 3852 { 3853 int ret, rsp_type; 3854 int budget_left = budget; 3855 const struct rsp_ctrl *rc; 3856 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3857 struct adapter *adapter = q->adap; 3858 struct sge *s = &adapter->sge; 3859 3860 while (likely(budget_left)) { 3861 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3862 if (!is_new_response(rc, q)) { 3863 if (q->flush_handler) 3864 q->flush_handler(q); 3865 break; 3866 } 3867 3868 dma_rmb(); 3869 rsp_type = RSPD_TYPE_G(rc->type_gen); 3870 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3871 struct page_frag *fp; 3872 struct pkt_gl si; 3873 const struct rx_sw_desc *rsd; 3874 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3875 3876 if (len & RSPD_NEWBUF_F) { 3877 if (likely(q->offset > 0)) { 3878 free_rx_bufs(q->adap, &rxq->fl, 1); 3879 q->offset = 0; 3880 } 3881 len = RSPD_LEN_G(len); 3882 } 3883 si.tot_len = len; 3884 3885 /* gather packet fragments */ 3886 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3887 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3888 bufsz = get_buf_size(adapter, rsd); 3889 fp->page = rsd->page; 3890 fp->offset = q->offset; 3891 fp->size = min(bufsz, len); 3892 len -= fp->size; 3893 if (!len) 3894 break; 3895 unmap_rx_buf(q->adap, &rxq->fl); 3896 } 3897 3898 si.sgetstamp = SGE_TIMESTAMP_G( 3899 be64_to_cpu(rc->last_flit)); 3900 /* 3901 * Last buffer remains mapped so explicitly make it 3902 * coherent for CPU access. 3903 */ 3904 dma_sync_single_for_cpu(q->adap->pdev_dev, 3905 get_buf_addr(rsd), 3906 fp->size, DMA_FROM_DEVICE); 3907 3908 si.va = page_address(si.frags[0].page) + 3909 si.frags[0].offset; 3910 prefetch(si.va); 3911 3912 si.nfrags = frags + 1; 3913 ret = q->handler(q, q->cur_desc, &si); 3914 if (likely(ret == 0)) 3915 q->offset += ALIGN(fp->size, s->fl_align); 3916 else 3917 restore_rx_bufs(&si, &rxq->fl, frags); 3918 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3919 ret = q->handler(q, q->cur_desc, NULL); 3920 } else { 3921 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3922 } 3923 3924 if (unlikely(ret)) { 3925 /* couldn't process descriptor, back off for recovery */ 3926 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3927 break; 3928 } 3929 3930 rspq_next(q); 3931 budget_left--; 3932 } 3933 3934 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3935 __refill_fl(q->adap, &rxq->fl); 3936 return budget - budget_left; 3937 } 3938 3939 /** 3940 * napi_rx_handler - the NAPI handler for Rx processing 3941 * @napi: the napi instance 3942 * @budget: how many packets we can process in this round 3943 * 3944 * Handler for new data events when using NAPI. This does not need any 3945 * locking or protection from interrupts as data interrupts are off at 3946 * this point and other adapter interrupts do not interfere (the latter 3947 * in not a concern at all with MSI-X as non-data interrupts then have 3948 * a separate handler). 3949 */ 3950 static int napi_rx_handler(struct napi_struct *napi, int budget) 3951 { 3952 unsigned int params; 3953 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3954 int work_done; 3955 u32 val; 3956 3957 work_done = process_responses(q, budget); 3958 if (likely(work_done < budget)) { 3959 int timer_index; 3960 3961 napi_complete_done(napi, work_done); 3962 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3963 3964 if (q->adaptive_rx) { 3965 if (work_done > max(timer_pkt_quota[timer_index], 3966 MIN_NAPI_WORK)) 3967 timer_index = (timer_index + 1); 3968 else 3969 timer_index = timer_index - 1; 3970 3971 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3972 q->next_intr_params = 3973 QINTR_TIMER_IDX_V(timer_index) | 3974 QINTR_CNT_EN_V(0); 3975 params = q->next_intr_params; 3976 } else { 3977 params = q->next_intr_params; 3978 q->next_intr_params = q->intr_params; 3979 } 3980 } else 3981 params = QINTR_TIMER_IDX_V(7); 3982 3983 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3984 3985 /* If we don't have access to the new User GTS (T5+), use the old 3986 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3987 */ 3988 if (unlikely(q->bar2_addr == NULL)) { 3989 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 3990 val | INGRESSQID_V((u32)q->cntxt_id)); 3991 } else { 3992 writel(val | INGRESSQID_V(q->bar2_qid), 3993 q->bar2_addr + SGE_UDB_GTS); 3994 wmb(); 3995 } 3996 return work_done; 3997 } 3998 3999 void cxgb4_ethofld_restart(struct tasklet_struct *t) 4000 { 4001 struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t, 4002 qresume_tsk); 4003 int pktcount; 4004 4005 spin_lock(&eosw_txq->lock); 4006 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 4007 if (pktcount < 0) 4008 pktcount += eosw_txq->ndesc; 4009 4010 if (pktcount) { 4011 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 4012 eosw_txq, pktcount); 4013 eosw_txq->inuse -= pktcount; 4014 } 4015 4016 /* There may be some packets waiting for completions. So, 4017 * attempt to send these packets now. 4018 */ 4019 ethofld_xmit(eosw_txq->netdev, eosw_txq); 4020 spin_unlock(&eosw_txq->lock); 4021 } 4022 4023 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 4024 * @q: the response queue that received the packet 4025 * @rsp: the response queue descriptor holding the CPL message 4026 * @si: the gather list of packet fragments 4027 * 4028 * Process a ETHOFLD Tx completion. Increment the cidx here, but 4029 * free up the descriptors in a tasklet later. 4030 */ 4031 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 4032 const struct pkt_gl *si) 4033 { 4034 u8 opcode = ((const struct rss_header *)rsp)->opcode; 4035 4036 /* skip RSS header */ 4037 rsp++; 4038 4039 if (opcode == CPL_FW4_ACK) { 4040 const struct cpl_fw4_ack *cpl; 4041 struct sge_eosw_txq *eosw_txq; 4042 struct eotid_entry *entry; 4043 struct sk_buff *skb; 4044 u32 hdr_len, eotid; 4045 u8 flits, wrlen16; 4046 int credits; 4047 4048 cpl = (const struct cpl_fw4_ack *)rsp; 4049 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 4050 q->adap->tids.eotid_base; 4051 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 4052 if (!entry) 4053 goto out_done; 4054 4055 eosw_txq = (struct sge_eosw_txq *)entry->data; 4056 if (!eosw_txq) 4057 goto out_done; 4058 4059 spin_lock(&eosw_txq->lock); 4060 credits = cpl->credits; 4061 while (credits > 0) { 4062 skb = eosw_txq->desc[eosw_txq->cidx].skb; 4063 if (!skb) 4064 break; 4065 4066 if (unlikely((eosw_txq->state == 4067 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 4068 eosw_txq->state == 4069 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 4070 eosw_txq->cidx == eosw_txq->flowc_idx)) { 4071 flits = DIV_ROUND_UP(skb->len, 8); 4072 if (eosw_txq->state == 4073 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 4074 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 4075 else 4076 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 4077 complete(&eosw_txq->completion); 4078 } else { 4079 hdr_len = eth_get_headlen(eosw_txq->netdev, 4080 skb->data, 4081 skb_headlen(skb)); 4082 flits = ethofld_calc_tx_flits(q->adap, skb, 4083 hdr_len); 4084 } 4085 eosw_txq_advance_index(&eosw_txq->cidx, 1, 4086 eosw_txq->ndesc); 4087 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 4088 credits -= wrlen16; 4089 } 4090 4091 eosw_txq->cred += cpl->credits; 4092 eosw_txq->ncompl--; 4093 4094 spin_unlock(&eosw_txq->lock); 4095 4096 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 4097 * if there were packets waiting for completion. 4098 */ 4099 tasklet_schedule(&eosw_txq->qresume_tsk); 4100 } 4101 4102 out_done: 4103 return 0; 4104 } 4105 4106 /* 4107 * The MSI-X interrupt handler for an SGE response queue. 4108 */ 4109 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 4110 { 4111 struct sge_rspq *q = cookie; 4112 4113 napi_schedule(&q->napi); 4114 return IRQ_HANDLED; 4115 } 4116 4117 /* 4118 * Process the indirect interrupt entries in the interrupt queue and kick off 4119 * NAPI for each queue that has generated an entry. 4120 */ 4121 static unsigned int process_intrq(struct adapter *adap) 4122 { 4123 unsigned int credits; 4124 const struct rsp_ctrl *rc; 4125 struct sge_rspq *q = &adap->sge.intrq; 4126 u32 val; 4127 4128 spin_lock(&adap->sge.intrq_lock); 4129 for (credits = 0; ; credits++) { 4130 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 4131 if (!is_new_response(rc, q)) 4132 break; 4133 4134 dma_rmb(); 4135 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 4136 unsigned int qid = ntohl(rc->pldbuflen_qid); 4137 4138 qid -= adap->sge.ingr_start; 4139 napi_schedule(&adap->sge.ingr_map[qid]->napi); 4140 } 4141 4142 rspq_next(q); 4143 } 4144 4145 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 4146 4147 /* If we don't have access to the new User GTS (T5+), use the old 4148 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4149 */ 4150 if (unlikely(q->bar2_addr == NULL)) { 4151 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 4152 val | INGRESSQID_V(q->cntxt_id)); 4153 } else { 4154 writel(val | INGRESSQID_V(q->bar2_qid), 4155 q->bar2_addr + SGE_UDB_GTS); 4156 wmb(); 4157 } 4158 spin_unlock(&adap->sge.intrq_lock); 4159 return credits; 4160 } 4161 4162 /* 4163 * The MSI interrupt handler, which handles data events from SGE response queues 4164 * as well as error and other async events as they all use the same MSI vector. 4165 */ 4166 static irqreturn_t t4_intr_msi(int irq, void *cookie) 4167 { 4168 struct adapter *adap = cookie; 4169 4170 if (adap->flags & CXGB4_MASTER_PF) 4171 t4_slow_intr_handler(adap); 4172 process_intrq(adap); 4173 return IRQ_HANDLED; 4174 } 4175 4176 /* 4177 * Interrupt handler for legacy INTx interrupts. 4178 * Handles data events from SGE response queues as well as error and other 4179 * async events as they all use the same interrupt line. 4180 */ 4181 static irqreturn_t t4_intr_intx(int irq, void *cookie) 4182 { 4183 struct adapter *adap = cookie; 4184 4185 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 4186 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 4187 process_intrq(adap)) 4188 return IRQ_HANDLED; 4189 return IRQ_NONE; /* probably shared interrupt */ 4190 } 4191 4192 /** 4193 * t4_intr_handler - select the top-level interrupt handler 4194 * @adap: the adapter 4195 * 4196 * Selects the top-level interrupt handler based on the type of interrupts 4197 * (MSI-X, MSI, or INTx). 4198 */ 4199 irq_handler_t t4_intr_handler(struct adapter *adap) 4200 { 4201 if (adap->flags & CXGB4_USING_MSIX) 4202 return t4_sge_intr_msix; 4203 if (adap->flags & CXGB4_USING_MSI) 4204 return t4_intr_msi; 4205 return t4_intr_intx; 4206 } 4207 4208 static void sge_rx_timer_cb(struct timer_list *t) 4209 { 4210 unsigned long m; 4211 unsigned int i; 4212 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 4213 struct sge *s = &adap->sge; 4214 4215 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4216 for (m = s->starving_fl[i]; m; m &= m - 1) { 4217 struct sge_eth_rxq *rxq; 4218 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 4219 struct sge_fl *fl = s->egr_map[id]; 4220 4221 clear_bit(id, s->starving_fl); 4222 smp_mb__after_atomic(); 4223 4224 if (fl_starving(adap, fl)) { 4225 rxq = container_of(fl, struct sge_eth_rxq, fl); 4226 if (napi_reschedule(&rxq->rspq.napi)) 4227 fl->starving++; 4228 else 4229 set_bit(id, s->starving_fl); 4230 } 4231 } 4232 /* The remainder of the SGE RX Timer Callback routine is dedicated to 4233 * global Master PF activities like checking for chip ingress stalls, 4234 * etc. 4235 */ 4236 if (!(adap->flags & CXGB4_MASTER_PF)) 4237 goto done; 4238 4239 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4240 4241 done: 4242 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4243 } 4244 4245 static void sge_tx_timer_cb(struct timer_list *t) 4246 { 4247 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 4248 struct sge *s = &adap->sge; 4249 unsigned long m, period; 4250 unsigned int i, budget; 4251 4252 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4253 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4254 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4255 struct sge_uld_txq *txq = s->egr_map[id]; 4256 4257 clear_bit(id, s->txq_maperr); 4258 tasklet_schedule(&txq->qresume_tsk); 4259 } 4260 4261 if (!is_t4(adap->params.chip)) { 4262 struct sge_eth_txq *q = &s->ptptxq; 4263 int avail; 4264 4265 spin_lock(&adap->ptp_lock); 4266 avail = reclaimable(&q->q); 4267 4268 if (avail) { 4269 free_tx_desc(adap, &q->q, avail, false); 4270 q->q.in_use -= avail; 4271 } 4272 spin_unlock(&adap->ptp_lock); 4273 } 4274 4275 budget = MAX_TIMER_TX_RECLAIM; 4276 i = s->ethtxq_rover; 4277 do { 4278 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4279 budget); 4280 if (!budget) 4281 break; 4282 4283 if (++i >= s->ethqsets) 4284 i = 0; 4285 } while (i != s->ethtxq_rover); 4286 s->ethtxq_rover = i; 4287 4288 if (budget == 0) { 4289 /* If we found too many reclaimable packets schedule a timer 4290 * in the near future to continue where we left off. 4291 */ 4292 period = 2; 4293 } else { 4294 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4295 * at the normal period. 4296 */ 4297 period = TX_QCHECK_PERIOD; 4298 } 4299 4300 mod_timer(&s->tx_timer, jiffies + period); 4301 } 4302 4303 /** 4304 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4305 * @adapter: the adapter 4306 * @qid: the SGE Queue ID 4307 * @qtype: the SGE Queue Type (Egress or Ingress) 4308 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4309 * 4310 * Returns the BAR2 address for the SGE Queue Registers associated with 4311 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4312 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4313 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4314 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4315 */ 4316 static void __iomem *bar2_address(struct adapter *adapter, 4317 unsigned int qid, 4318 enum t4_bar2_qtype qtype, 4319 unsigned int *pbar2_qid) 4320 { 4321 u64 bar2_qoffset; 4322 int ret; 4323 4324 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4325 &bar2_qoffset, pbar2_qid); 4326 if (ret) 4327 return NULL; 4328 4329 return adapter->bar2 + bar2_qoffset; 4330 } 4331 4332 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4333 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4334 */ 4335 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4336 struct net_device *dev, int intr_idx, 4337 struct sge_fl *fl, rspq_handler_t hnd, 4338 rspq_flush_handler_t flush_hnd, int cong) 4339 { 4340 int ret, flsz = 0; 4341 struct fw_iq_cmd c; 4342 struct sge *s = &adap->sge; 4343 struct port_info *pi = netdev_priv(dev); 4344 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4345 4346 /* Size needs to be multiple of 16, including status entry. */ 4347 iq->size = roundup(iq->size, 16); 4348 4349 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4350 &iq->phys_addr, NULL, 0, 4351 dev_to_node(adap->pdev_dev)); 4352 if (!iq->desc) 4353 return -ENOMEM; 4354 4355 memset(&c, 0, sizeof(c)); 4356 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4357 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4358 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4359 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4360 FW_LEN16(c)); 4361 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4362 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4363 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4364 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4365 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4366 -intr_idx - 1)); 4367 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4368 FW_IQ_CMD_IQGTSMODE_F | 4369 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4370 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4371 c.iqsize = htons(iq->size); 4372 c.iqaddr = cpu_to_be64(iq->phys_addr); 4373 if (cong >= 0) 4374 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4375 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4376 : FW_IQ_IQTYPE_OFLD)); 4377 4378 if (fl) { 4379 unsigned int chip_ver = 4380 CHELSIO_CHIP_VERSION(adap->params.chip); 4381 4382 /* Allocate the ring for the hardware free list (with space 4383 * for its status page) along with the associated software 4384 * descriptor ring. The free list size needs to be a multiple 4385 * of the Egress Queue Unit and at least 2 Egress Units larger 4386 * than the SGE's Egress Congrestion Threshold 4387 * (fl_starve_thres - 1). 4388 */ 4389 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4390 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4391 fl->size = roundup(fl->size, 8); 4392 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4393 sizeof(struct rx_sw_desc), &fl->addr, 4394 &fl->sdesc, s->stat_len, 4395 dev_to_node(adap->pdev_dev)); 4396 if (!fl->desc) 4397 goto fl_nomem; 4398 4399 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4400 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4401 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4402 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4403 FW_IQ_CMD_FL0PADEN_F); 4404 if (cong >= 0) 4405 c.iqns_to_fl0congen |= 4406 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4407 FW_IQ_CMD_FL0CONGCIF_F | 4408 FW_IQ_CMD_FL0CONGEN_F); 4409 /* In T6, for egress queue type FL there is internal overhead 4410 * of 16B for header going into FLM module. Hence the maximum 4411 * allowed burst size is 448 bytes. For T4/T5, the hardware 4412 * doesn't coalesce fetch requests if more than 64 bytes of 4413 * Free List pointers are provided, so we use a 128-byte Fetch 4414 * Burst Minimum there (T6 implements coalescing so we can use 4415 * the smaller 64-byte value there). 4416 */ 4417 c.fl0dcaen_to_fl0cidxfthresh = 4418 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4419 FETCHBURSTMIN_128B_X : 4420 FETCHBURSTMIN_64B_T6_X) | 4421 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4422 FETCHBURSTMAX_512B_X : 4423 FETCHBURSTMAX_256B_X)); 4424 c.fl0size = htons(flsz); 4425 c.fl0addr = cpu_to_be64(fl->addr); 4426 } 4427 4428 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4429 if (ret) 4430 goto err; 4431 4432 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 4433 iq->cur_desc = iq->desc; 4434 iq->cidx = 0; 4435 iq->gen = 1; 4436 iq->next_intr_params = iq->intr_params; 4437 iq->cntxt_id = ntohs(c.iqid); 4438 iq->abs_id = ntohs(c.physiqid); 4439 iq->bar2_addr = bar2_address(adap, 4440 iq->cntxt_id, 4441 T4_BAR2_QTYPE_INGRESS, 4442 &iq->bar2_qid); 4443 iq->size--; /* subtract status entry */ 4444 iq->netdev = dev; 4445 iq->handler = hnd; 4446 iq->flush_handler = flush_hnd; 4447 4448 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4449 skb_queue_head_init(&iq->lro_mgr.lroq); 4450 4451 /* set offset to -1 to distinguish ingress queues without FL */ 4452 iq->offset = fl ? 0 : -1; 4453 4454 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4455 4456 if (fl) { 4457 fl->cntxt_id = ntohs(c.fl0id); 4458 fl->avail = fl->pend_cred = 0; 4459 fl->pidx = fl->cidx = 0; 4460 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4461 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4462 4463 /* Note, we must initialize the BAR2 Free List User Doorbell 4464 * information before refilling the Free List! 4465 */ 4466 fl->bar2_addr = bar2_address(adap, 4467 fl->cntxt_id, 4468 T4_BAR2_QTYPE_EGRESS, 4469 &fl->bar2_qid); 4470 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4471 } 4472 4473 /* For T5 and later we attempt to set up the Congestion Manager values 4474 * of the new RX Ethernet Queue. This should really be handled by 4475 * firmware because it's more complex than any host driver wants to 4476 * get involved with and it's different per chip and this is almost 4477 * certainly wrong. Firmware would be wrong as well, but it would be 4478 * a lot easier to fix in one place ... For now we do something very 4479 * simple (and hopefully less wrong). 4480 */ 4481 if (!is_t4(adap->params.chip) && cong >= 0) { 4482 u32 param, val, ch_map = 0; 4483 int i; 4484 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4485 4486 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4487 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4488 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4489 if (cong == 0) { 4490 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4491 } else { 4492 val = 4493 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4494 for (i = 0; i < 4; i++) { 4495 if (cong & (1 << i)) 4496 ch_map |= 1 << (i << cng_ch_bits_log); 4497 } 4498 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4499 } 4500 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4501 ¶m, &val); 4502 if (ret) 4503 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4504 " Manager Context for Ingress Queue %d: %d\n", 4505 iq->cntxt_id, -ret); 4506 } 4507 4508 return 0; 4509 4510 fl_nomem: 4511 ret = -ENOMEM; 4512 err: 4513 if (iq->desc) { 4514 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4515 iq->desc, iq->phys_addr); 4516 iq->desc = NULL; 4517 } 4518 if (fl && fl->desc) { 4519 kfree(fl->sdesc); 4520 fl->sdesc = NULL; 4521 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4522 fl->desc, fl->addr); 4523 fl->desc = NULL; 4524 } 4525 return ret; 4526 } 4527 4528 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4529 { 4530 q->cntxt_id = id; 4531 q->bar2_addr = bar2_address(adap, 4532 q->cntxt_id, 4533 T4_BAR2_QTYPE_EGRESS, 4534 &q->bar2_qid); 4535 q->in_use = 0; 4536 q->cidx = q->pidx = 0; 4537 q->stops = q->restarts = 0; 4538 q->stat = (void *)&q->desc[q->size]; 4539 spin_lock_init(&q->db_lock); 4540 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4541 } 4542 4543 /** 4544 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4545 * @adap: the adapter 4546 * @txq: the SGE Ethernet TX Queue to initialize 4547 * @dev: the Linux Network Device 4548 * @netdevq: the corresponding Linux TX Queue 4549 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4550 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4551 */ 4552 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4553 struct net_device *dev, struct netdev_queue *netdevq, 4554 unsigned int iqid, u8 dbqt) 4555 { 4556 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4557 struct port_info *pi = netdev_priv(dev); 4558 struct sge *s = &adap->sge; 4559 struct fw_eq_eth_cmd c; 4560 int ret, nentries; 4561 4562 /* Add status entries */ 4563 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4564 4565 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4566 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4567 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4568 netdev_queue_numa_node_read(netdevq)); 4569 if (!txq->q.desc) 4570 return -ENOMEM; 4571 4572 memset(&c, 0, sizeof(c)); 4573 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4574 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4575 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4576 FW_EQ_ETH_CMD_VFN_V(0)); 4577 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4578 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4579 4580 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4581 * mechanism, we use Ingress Queue messages for Hardware Consumer 4582 * Index Updates on the TX Queue. Otherwise we have the Hardware 4583 * write the CIDX Updates into the Status Page at the end of the 4584 * TX Queue. 4585 */ 4586 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 4587 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4588 4589 c.fetchszm_to_iqid = 4590 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4591 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4592 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4593 4594 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4595 c.dcaen_to_eqsize = 4596 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4597 ? FETCHBURSTMIN_64B_X 4598 : FETCHBURSTMIN_64B_T6_X) | 4599 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4600 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4601 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4602 4603 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4604 4605 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4606 * currently configured Timer Index. THis can be changed later via an 4607 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4608 * Doorbell Queue mode is currently automatically enabled in the 4609 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4610 */ 4611 if (dbqt) 4612 c.timeren_timerix = 4613 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4614 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4615 4616 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4617 if (ret) { 4618 kfree(txq->q.sdesc); 4619 txq->q.sdesc = NULL; 4620 dma_free_coherent(adap->pdev_dev, 4621 nentries * sizeof(struct tx_desc), 4622 txq->q.desc, txq->q.phys_addr); 4623 txq->q.desc = NULL; 4624 return ret; 4625 } 4626 4627 txq->q.q_type = CXGB4_TXQ_ETH; 4628 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4629 txq->txq = netdevq; 4630 txq->tso = 0; 4631 txq->uso = 0; 4632 txq->tx_cso = 0; 4633 txq->vlan_ins = 0; 4634 txq->mapping_err = 0; 4635 txq->dbqt = dbqt; 4636 4637 return 0; 4638 } 4639 4640 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4641 struct net_device *dev, unsigned int iqid, 4642 unsigned int cmplqid) 4643 { 4644 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4645 struct port_info *pi = netdev_priv(dev); 4646 struct sge *s = &adap->sge; 4647 struct fw_eq_ctrl_cmd c; 4648 int ret, nentries; 4649 4650 /* Add status entries */ 4651 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4652 4653 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4654 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4655 NULL, 0, dev_to_node(adap->pdev_dev)); 4656 if (!txq->q.desc) 4657 return -ENOMEM; 4658 4659 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4660 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4661 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4662 FW_EQ_CTRL_CMD_VFN_V(0)); 4663 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4664 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4665 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4666 c.physeqid_pkd = htonl(0); 4667 c.fetchszm_to_iqid = 4668 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4669 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4670 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4671 c.dcaen_to_eqsize = 4672 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4673 ? FETCHBURSTMIN_64B_X 4674 : FETCHBURSTMIN_64B_T6_X) | 4675 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4676 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4677 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4678 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4679 4680 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4681 if (ret) { 4682 dma_free_coherent(adap->pdev_dev, 4683 nentries * sizeof(struct tx_desc), 4684 txq->q.desc, txq->q.phys_addr); 4685 txq->q.desc = NULL; 4686 return ret; 4687 } 4688 4689 txq->q.q_type = CXGB4_TXQ_CTRL; 4690 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4691 txq->adap = adap; 4692 skb_queue_head_init(&txq->sendq); 4693 tasklet_setup(&txq->qresume_tsk, restart_ctrlq); 4694 txq->full = 0; 4695 return 0; 4696 } 4697 4698 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4699 unsigned int cmplqid) 4700 { 4701 u32 param, val; 4702 4703 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4704 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4705 FW_PARAMS_PARAM_YZ_V(eqid)); 4706 val = cmplqid; 4707 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4708 } 4709 4710 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4711 struct net_device *dev, u32 cmd, u32 iqid) 4712 { 4713 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4714 struct port_info *pi = netdev_priv(dev); 4715 struct sge *s = &adap->sge; 4716 struct fw_eq_ofld_cmd c; 4717 u32 fb_min, nentries; 4718 int ret; 4719 4720 /* Add status entries */ 4721 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4722 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4723 sizeof(struct tx_sw_desc), &q->phys_addr, 4724 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4725 if (!q->desc) 4726 return -ENOMEM; 4727 4728 if (chip_ver <= CHELSIO_T5) 4729 fb_min = FETCHBURSTMIN_64B_X; 4730 else 4731 fb_min = FETCHBURSTMIN_64B_T6_X; 4732 4733 memset(&c, 0, sizeof(c)); 4734 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4735 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4736 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4737 FW_EQ_OFLD_CMD_VFN_V(0)); 4738 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4739 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4740 c.fetchszm_to_iqid = 4741 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4742 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4743 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4744 c.dcaen_to_eqsize = 4745 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4746 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4747 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4748 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4749 c.eqaddr = cpu_to_be64(q->phys_addr); 4750 4751 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4752 if (ret) { 4753 kfree(q->sdesc); 4754 q->sdesc = NULL; 4755 dma_free_coherent(adap->pdev_dev, 4756 nentries * sizeof(struct tx_desc), 4757 q->desc, q->phys_addr); 4758 q->desc = NULL; 4759 return ret; 4760 } 4761 4762 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4763 return 0; 4764 } 4765 4766 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4767 struct net_device *dev, unsigned int iqid, 4768 unsigned int uld_type) 4769 { 4770 u32 cmd = FW_EQ_OFLD_CMD; 4771 int ret; 4772 4773 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4774 cmd = FW_EQ_CTRL_CMD; 4775 4776 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4777 if (ret) 4778 return ret; 4779 4780 txq->q.q_type = CXGB4_TXQ_ULD; 4781 txq->adap = adap; 4782 skb_queue_head_init(&txq->sendq); 4783 tasklet_setup(&txq->qresume_tsk, restart_ofldq); 4784 txq->full = 0; 4785 txq->mapping_err = 0; 4786 return 0; 4787 } 4788 4789 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4790 struct net_device *dev, u32 iqid) 4791 { 4792 int ret; 4793 4794 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4795 if (ret) 4796 return ret; 4797 4798 txq->q.q_type = CXGB4_TXQ_ULD; 4799 spin_lock_init(&txq->lock); 4800 txq->adap = adap; 4801 txq->tso = 0; 4802 txq->uso = 0; 4803 txq->tx_cso = 0; 4804 txq->vlan_ins = 0; 4805 txq->mapping_err = 0; 4806 return 0; 4807 } 4808 4809 void free_txq(struct adapter *adap, struct sge_txq *q) 4810 { 4811 struct sge *s = &adap->sge; 4812 4813 dma_free_coherent(adap->pdev_dev, 4814 q->size * sizeof(struct tx_desc) + s->stat_len, 4815 q->desc, q->phys_addr); 4816 q->cntxt_id = 0; 4817 q->sdesc = NULL; 4818 q->desc = NULL; 4819 } 4820 4821 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4822 struct sge_fl *fl) 4823 { 4824 struct sge *s = &adap->sge; 4825 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4826 4827 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4828 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4829 rq->cntxt_id, fl_id, 0xffff); 4830 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4831 rq->desc, rq->phys_addr); 4832 netif_napi_del(&rq->napi); 4833 rq->netdev = NULL; 4834 rq->cntxt_id = rq->abs_id = 0; 4835 rq->desc = NULL; 4836 4837 if (fl) { 4838 free_rx_bufs(adap, fl, fl->avail); 4839 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4840 fl->desc, fl->addr); 4841 kfree(fl->sdesc); 4842 fl->sdesc = NULL; 4843 fl->cntxt_id = 0; 4844 fl->desc = NULL; 4845 } 4846 } 4847 4848 /** 4849 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4850 * @adap: the adapter 4851 * @n: number of queues 4852 * @q: pointer to first queue 4853 * 4854 * Release the resources of a consecutive block of offload Rx queues. 4855 */ 4856 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4857 { 4858 for ( ; n; n--, q++) 4859 if (q->rspq.desc) 4860 free_rspq_fl(adap, &q->rspq, 4861 q->fl.size ? &q->fl : NULL); 4862 } 4863 4864 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4865 { 4866 if (txq->q.desc) { 4867 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4868 txq->q.cntxt_id); 4869 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4870 kfree(txq->q.sdesc); 4871 free_txq(adap, &txq->q); 4872 } 4873 } 4874 4875 /** 4876 * t4_free_sge_resources - free SGE resources 4877 * @adap: the adapter 4878 * 4879 * Frees resources used by the SGE queue sets. 4880 */ 4881 void t4_free_sge_resources(struct adapter *adap) 4882 { 4883 int i; 4884 struct sge_eth_rxq *eq; 4885 struct sge_eth_txq *etq; 4886 4887 /* stop all Rx queues in order to start them draining */ 4888 for (i = 0; i < adap->sge.ethqsets; i++) { 4889 eq = &adap->sge.ethrxq[i]; 4890 if (eq->rspq.desc) 4891 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4892 FW_IQ_TYPE_FL_INT_CAP, 4893 eq->rspq.cntxt_id, 4894 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4895 0xffff); 4896 } 4897 4898 /* clean up Ethernet Tx/Rx queues */ 4899 for (i = 0; i < adap->sge.ethqsets; i++) { 4900 eq = &adap->sge.ethrxq[i]; 4901 if (eq->rspq.desc) 4902 free_rspq_fl(adap, &eq->rspq, 4903 eq->fl.size ? &eq->fl : NULL); 4904 if (eq->msix) { 4905 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4906 eq->msix = NULL; 4907 } 4908 4909 etq = &adap->sge.ethtxq[i]; 4910 if (etq->q.desc) { 4911 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4912 etq->q.cntxt_id); 4913 __netif_tx_lock_bh(etq->txq); 4914 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4915 __netif_tx_unlock_bh(etq->txq); 4916 kfree(etq->q.sdesc); 4917 free_txq(adap, &etq->q); 4918 } 4919 } 4920 4921 /* clean up control Tx queues */ 4922 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4923 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4924 4925 if (cq->q.desc) { 4926 tasklet_kill(&cq->qresume_tsk); 4927 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4928 cq->q.cntxt_id); 4929 __skb_queue_purge(&cq->sendq); 4930 free_txq(adap, &cq->q); 4931 } 4932 } 4933 4934 if (adap->sge.fw_evtq.desc) { 4935 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4936 if (adap->sge.fwevtq_msix_idx >= 0) 4937 cxgb4_free_msix_idx_in_bmap(adap, 4938 adap->sge.fwevtq_msix_idx); 4939 } 4940 4941 if (adap->sge.nd_msix_idx >= 0) 4942 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4943 4944 if (adap->sge.intrq.desc) 4945 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4946 4947 if (!is_t4(adap->params.chip)) { 4948 etq = &adap->sge.ptptxq; 4949 if (etq->q.desc) { 4950 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4951 etq->q.cntxt_id); 4952 spin_lock_bh(&adap->ptp_lock); 4953 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4954 spin_unlock_bh(&adap->ptp_lock); 4955 kfree(etq->q.sdesc); 4956 free_txq(adap, &etq->q); 4957 } 4958 } 4959 4960 /* clear the reverse egress queue map */ 4961 memset(adap->sge.egr_map, 0, 4962 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4963 } 4964 4965 void t4_sge_start(struct adapter *adap) 4966 { 4967 adap->sge.ethtxq_rover = 0; 4968 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4969 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4970 } 4971 4972 /** 4973 * t4_sge_stop - disable SGE operation 4974 * @adap: the adapter 4975 * 4976 * Stop tasklets and timers associated with the DMA engine. Note that 4977 * this is effective only if measures have been taken to disable any HW 4978 * events that may restart them. 4979 */ 4980 void t4_sge_stop(struct adapter *adap) 4981 { 4982 int i; 4983 struct sge *s = &adap->sge; 4984 4985 if (s->rx_timer.function) 4986 del_timer_sync(&s->rx_timer); 4987 if (s->tx_timer.function) 4988 del_timer_sync(&s->tx_timer); 4989 4990 if (is_offload(adap)) { 4991 struct sge_uld_txq_info *txq_info; 4992 4993 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 4994 if (txq_info) { 4995 struct sge_uld_txq *txq = txq_info->uldtxq; 4996 4997 for_each_ofldtxq(&adap->sge, i) { 4998 if (txq->q.desc) 4999 tasklet_kill(&txq->qresume_tsk); 5000 } 5001 } 5002 } 5003 5004 if (is_pci_uld(adap)) { 5005 struct sge_uld_txq_info *txq_info; 5006 5007 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 5008 if (txq_info) { 5009 struct sge_uld_txq *txq = txq_info->uldtxq; 5010 5011 for_each_ofldtxq(&adap->sge, i) { 5012 if (txq->q.desc) 5013 tasklet_kill(&txq->qresume_tsk); 5014 } 5015 } 5016 } 5017 5018 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 5019 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 5020 5021 if (cq->q.desc) 5022 tasklet_kill(&cq->qresume_tsk); 5023 } 5024 } 5025 5026 /** 5027 * t4_sge_init_soft - grab core SGE values needed by SGE code 5028 * @adap: the adapter 5029 * 5030 * We need to grab the SGE operating parameters that we need to have 5031 * in order to do our job and make sure we can live with them. 5032 */ 5033 5034 static int t4_sge_init_soft(struct adapter *adap) 5035 { 5036 struct sge *s = &adap->sge; 5037 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 5038 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 5039 u32 ingress_rx_threshold; 5040 5041 /* 5042 * Verify that CPL messages are going to the Ingress Queue for 5043 * process_responses() and that only packet data is going to the 5044 * Free Lists. 5045 */ 5046 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 5047 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 5048 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 5049 return -EINVAL; 5050 } 5051 5052 /* 5053 * Validate the Host Buffer Register Array indices that we want to 5054 * use ... 5055 * 5056 * XXX Note that we should really read through the Host Buffer Size 5057 * XXX register array and find the indices of the Buffer Sizes which 5058 * XXX meet our needs! 5059 */ 5060 #define READ_FL_BUF(x) \ 5061 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 5062 5063 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 5064 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 5065 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 5066 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 5067 5068 /* We only bother using the Large Page logic if the Large Page Buffer 5069 * is larger than our Page Size Buffer. 5070 */ 5071 if (fl_large_pg <= fl_small_pg) 5072 fl_large_pg = 0; 5073 5074 #undef READ_FL_BUF 5075 5076 /* The Page Size Buffer must be exactly equal to our Page Size and the 5077 * Large Page Size Buffer should be 0 (per above) or a power of 2. 5078 */ 5079 if (fl_small_pg != PAGE_SIZE || 5080 (fl_large_pg & (fl_large_pg-1)) != 0) { 5081 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 5082 fl_small_pg, fl_large_pg); 5083 return -EINVAL; 5084 } 5085 if (fl_large_pg) 5086 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 5087 5088 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 5089 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 5090 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 5091 fl_small_mtu, fl_large_mtu); 5092 return -EINVAL; 5093 } 5094 5095 /* 5096 * Retrieve our RX interrupt holdoff timer values and counter 5097 * threshold values from the SGE parameters. 5098 */ 5099 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 5100 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 5101 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 5102 s->timer_val[0] = core_ticks_to_us(adap, 5103 TIMERVALUE0_G(timer_value_0_and_1)); 5104 s->timer_val[1] = core_ticks_to_us(adap, 5105 TIMERVALUE1_G(timer_value_0_and_1)); 5106 s->timer_val[2] = core_ticks_to_us(adap, 5107 TIMERVALUE2_G(timer_value_2_and_3)); 5108 s->timer_val[3] = core_ticks_to_us(adap, 5109 TIMERVALUE3_G(timer_value_2_and_3)); 5110 s->timer_val[4] = core_ticks_to_us(adap, 5111 TIMERVALUE4_G(timer_value_4_and_5)); 5112 s->timer_val[5] = core_ticks_to_us(adap, 5113 TIMERVALUE5_G(timer_value_4_and_5)); 5114 5115 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 5116 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 5117 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 5118 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 5119 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 5120 5121 return 0; 5122 } 5123 5124 /** 5125 * t4_sge_init - initialize SGE 5126 * @adap: the adapter 5127 * 5128 * Perform low-level SGE code initialization needed every time after a 5129 * chip reset. 5130 */ 5131 int t4_sge_init(struct adapter *adap) 5132 { 5133 struct sge *s = &adap->sge; 5134 u32 sge_control, sge_conm_ctrl; 5135 int ret, egress_threshold; 5136 5137 /* 5138 * Ingress Padding Boundary and Egress Status Page Size are set up by 5139 * t4_fixup_host_params(). 5140 */ 5141 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 5142 s->pktshift = PKTSHIFT_G(sge_control); 5143 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 5144 5145 s->fl_align = t4_fl_pkt_align(adap); 5146 ret = t4_sge_init_soft(adap); 5147 if (ret < 0) 5148 return ret; 5149 5150 /* 5151 * A FL with <= fl_starve_thres buffers is starving and a periodic 5152 * timer will attempt to refill it. This needs to be larger than the 5153 * SGE's Egress Congestion Threshold. If it isn't, then we can get 5154 * stuck waiting for new packets while the SGE is waiting for us to 5155 * give it more Free List entries. (Note that the SGE's Egress 5156 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 5157 * there was only a single field to control this. For T5 there's the 5158 * original field which now only applies to Unpacked Mode Free List 5159 * buffers and a new field which only applies to Packed Mode Free List 5160 * buffers. 5161 */ 5162 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 5163 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 5164 case CHELSIO_T4: 5165 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 5166 break; 5167 case CHELSIO_T5: 5168 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5169 break; 5170 case CHELSIO_T6: 5171 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5172 break; 5173 default: 5174 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 5175 CHELSIO_CHIP_VERSION(adap->params.chip)); 5176 return -EINVAL; 5177 } 5178 s->fl_starve_thres = 2*egress_threshold + 1; 5179 5180 t4_idma_monitor_init(adap, &s->idma_monitor); 5181 5182 /* Set up timers used for recuring callbacks to process RX and TX 5183 * administrative tasks. 5184 */ 5185 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 5186 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 5187 5188 spin_lock_init(&s->intrq_lock); 5189 5190 return 0; 5191 } 5192