1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 59 /* 60 * Rx buffer size. We use largish buffers if possible but settle for single 61 * pages under memory shortage. 62 */ 63 #if PAGE_SHIFT >= 16 64 # define FL_PG_ORDER 0 65 #else 66 # define FL_PG_ORDER (16 - PAGE_SHIFT) 67 #endif 68 69 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 70 #define RX_COPY_THRES 256 71 #define RX_PULL_LEN 128 72 73 /* 74 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 75 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 76 */ 77 #define RX_PKT_SKB_LEN 512 78 79 /* 80 * Max number of Tx descriptors we clean up at a time. Should be modest as 81 * freeing skbs isn't cheap and it happens while holding locks. We just need 82 * to free packets faster than they arrive, we eventually catch up and keep 83 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 84 */ 85 #define MAX_TX_RECLAIM 16 86 87 /* 88 * Max number of Rx buffers we replenish at a time. Again keep this modest, 89 * allocating buffers isn't cheap either. 90 */ 91 #define MAX_RX_REFILL 16U 92 93 /* 94 * Period of the Rx queue check timer. This timer is infrequent as it has 95 * something to do only when the system experiences severe memory shortage. 96 */ 97 #define RX_QCHECK_PERIOD (HZ / 2) 98 99 /* 100 * Period of the Tx queue check timer. 101 */ 102 #define TX_QCHECK_PERIOD (HZ / 2) 103 104 /* 105 * Max number of Tx descriptors to be reclaimed by the Tx timer. 106 */ 107 #define MAX_TIMER_TX_RECLAIM 100 108 109 /* 110 * Timer index used when backing off due to memory shortage. 111 */ 112 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 113 114 /* 115 * Suspension threshold for non-Ethernet Tx queues. We require enough room 116 * for a full sized WR. 117 */ 118 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 119 120 /* 121 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 122 * into a WR. 123 */ 124 #define MAX_IMM_TX_PKT_LEN 256 125 126 /* 127 * Max size of a WR sent through a control Tx queue. 128 */ 129 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 130 131 struct rx_sw_desc { /* SW state per Rx descriptor */ 132 struct page *page; 133 dma_addr_t dma_addr; 134 }; 135 136 /* 137 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 138 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 139 * We could easily support more but there doesn't seem to be much need for 140 * that ... 141 */ 142 #define FL_MTU_SMALL 1500 143 #define FL_MTU_LARGE 9000 144 145 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 146 unsigned int mtu) 147 { 148 struct sge *s = &adapter->sge; 149 150 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 151 } 152 153 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 154 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 155 156 /* 157 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 158 * these to specify the buffer size as an index into the SGE Free List Buffer 159 * Size register array. We also use bit 4, when the buffer has been unmapped 160 * for DMA, but this is of course never sent to the hardware and is only used 161 * to prevent double unmappings. All of the above requires that the Free List 162 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 163 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 164 * Free List Buffer alignment is 32 bytes, this works out for us ... 165 */ 166 enum { 167 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 168 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 169 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 170 171 /* 172 * XXX We shouldn't depend on being able to use these indices. 173 * XXX Especially when some other Master PF has initialized the 174 * XXX adapter or we use the Firmware Configuration File. We 175 * XXX should really search through the Host Buffer Size register 176 * XXX array for the appropriately sized buffer indices. 177 */ 178 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 179 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 180 181 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 182 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 183 }; 184 185 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 186 #define MIN_NAPI_WORK 1 187 188 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 189 { 190 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 191 } 192 193 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 194 { 195 return !(d->dma_addr & RX_UNMAPPED_BUF); 196 } 197 198 /** 199 * txq_avail - return the number of available slots in a Tx queue 200 * @q: the Tx queue 201 * 202 * Returns the number of descriptors in a Tx queue available to write new 203 * packets. 204 */ 205 static inline unsigned int txq_avail(const struct sge_txq *q) 206 { 207 return q->size - 1 - q->in_use; 208 } 209 210 /** 211 * fl_cap - return the capacity of a free-buffer list 212 * @fl: the FL 213 * 214 * Returns the capacity of a free-buffer list. The capacity is less than 215 * the size because one descriptor needs to be left unpopulated, otherwise 216 * HW will think the FL is empty. 217 */ 218 static inline unsigned int fl_cap(const struct sge_fl *fl) 219 { 220 return fl->size - 8; /* 1 descriptor = 8 buffers */ 221 } 222 223 /** 224 * fl_starving - return whether a Free List is starving. 225 * @adapter: pointer to the adapter 226 * @fl: the Free List 227 * 228 * Tests specified Free List to see whether the number of buffers 229 * available to the hardware has falled below our "starvation" 230 * threshold. 231 */ 232 static inline bool fl_starving(const struct adapter *adapter, 233 const struct sge_fl *fl) 234 { 235 const struct sge *s = &adapter->sge; 236 237 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 238 } 239 240 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 241 dma_addr_t *addr) 242 { 243 const skb_frag_t *fp, *end; 244 const struct skb_shared_info *si; 245 246 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 247 if (dma_mapping_error(dev, *addr)) 248 goto out_err; 249 250 si = skb_shinfo(skb); 251 end = &si->frags[si->nr_frags]; 252 253 for (fp = si->frags; fp < end; fp++) { 254 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 255 DMA_TO_DEVICE); 256 if (dma_mapping_error(dev, *addr)) 257 goto unwind; 258 } 259 return 0; 260 261 unwind: 262 while (fp-- > si->frags) 263 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 264 265 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 266 out_err: 267 return -ENOMEM; 268 } 269 EXPORT_SYMBOL(cxgb4_map_skb); 270 271 #ifdef CONFIG_NEED_DMA_MAP_STATE 272 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 273 const dma_addr_t *addr) 274 { 275 const skb_frag_t *fp, *end; 276 const struct skb_shared_info *si; 277 278 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 279 280 si = skb_shinfo(skb); 281 end = &si->frags[si->nr_frags]; 282 for (fp = si->frags; fp < end; fp++) 283 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 284 } 285 286 /** 287 * deferred_unmap_destructor - unmap a packet when it is freed 288 * @skb: the packet 289 * 290 * This is the packet destructor used for Tx packets that need to remain 291 * mapped until they are freed rather than until their Tx descriptors are 292 * freed. 293 */ 294 static void deferred_unmap_destructor(struct sk_buff *skb) 295 { 296 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 297 } 298 #endif 299 300 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 301 const struct ulptx_sgl *sgl, const struct sge_txq *q) 302 { 303 const struct ulptx_sge_pair *p; 304 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 305 306 if (likely(skb_headlen(skb))) 307 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 308 DMA_TO_DEVICE); 309 else { 310 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 311 DMA_TO_DEVICE); 312 nfrags--; 313 } 314 315 /* 316 * the complexity below is because of the possibility of a wrap-around 317 * in the middle of an SGL 318 */ 319 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 320 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 321 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 322 ntohl(p->len[0]), DMA_TO_DEVICE); 323 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 324 ntohl(p->len[1]), DMA_TO_DEVICE); 325 p++; 326 } else if ((u8 *)p == (u8 *)q->stat) { 327 p = (const struct ulptx_sge_pair *)q->desc; 328 goto unmap; 329 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 330 const __be64 *addr = (const __be64 *)q->desc; 331 332 dma_unmap_page(dev, be64_to_cpu(addr[0]), 333 ntohl(p->len[0]), DMA_TO_DEVICE); 334 dma_unmap_page(dev, be64_to_cpu(addr[1]), 335 ntohl(p->len[1]), DMA_TO_DEVICE); 336 p = (const struct ulptx_sge_pair *)&addr[2]; 337 } else { 338 const __be64 *addr = (const __be64 *)q->desc; 339 340 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 341 ntohl(p->len[0]), DMA_TO_DEVICE); 342 dma_unmap_page(dev, be64_to_cpu(addr[0]), 343 ntohl(p->len[1]), DMA_TO_DEVICE); 344 p = (const struct ulptx_sge_pair *)&addr[1]; 345 } 346 } 347 if (nfrags) { 348 __be64 addr; 349 350 if ((u8 *)p == (u8 *)q->stat) 351 p = (const struct ulptx_sge_pair *)q->desc; 352 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 353 *(const __be64 *)q->desc; 354 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 355 DMA_TO_DEVICE); 356 } 357 } 358 359 /** 360 * free_tx_desc - reclaims Tx descriptors and their buffers 361 * @adapter: the adapter 362 * @q: the Tx queue to reclaim descriptors from 363 * @n: the number of descriptors to reclaim 364 * @unmap: whether the buffers should be unmapped for DMA 365 * 366 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 367 * Tx buffers. Called with the Tx queue lock held. 368 */ 369 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 370 unsigned int n, bool unmap) 371 { 372 struct tx_sw_desc *d; 373 unsigned int cidx = q->cidx; 374 struct device *dev = adap->pdev_dev; 375 376 d = &q->sdesc[cidx]; 377 while (n--) { 378 if (d->skb) { /* an SGL is present */ 379 if (unmap) 380 unmap_sgl(dev, d->skb, d->sgl, q); 381 dev_consume_skb_any(d->skb); 382 d->skb = NULL; 383 } 384 ++d; 385 if (++cidx == q->size) { 386 cidx = 0; 387 d = q->sdesc; 388 } 389 } 390 q->cidx = cidx; 391 } 392 393 /* 394 * Return the number of reclaimable descriptors in a Tx queue. 395 */ 396 static inline int reclaimable(const struct sge_txq *q) 397 { 398 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 399 hw_cidx -= q->cidx; 400 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 401 } 402 403 /** 404 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 405 * @adap: the adapter 406 * @q: the Tx queue to reclaim completed descriptors from 407 * @unmap: whether the buffers should be unmapped for DMA 408 * 409 * Reclaims Tx descriptors that the SGE has indicated it has processed, 410 * and frees the associated buffers if possible. Called with the Tx 411 * queue locked. 412 */ 413 inline void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 414 bool unmap) 415 { 416 int avail = reclaimable(q); 417 418 if (avail) { 419 /* 420 * Limit the amount of clean up work we do at a time to keep 421 * the Tx lock hold time O(1). 422 */ 423 if (avail > MAX_TX_RECLAIM) 424 avail = MAX_TX_RECLAIM; 425 426 free_tx_desc(adap, q, avail, unmap); 427 q->in_use -= avail; 428 } 429 } 430 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 431 432 static inline int get_buf_size(struct adapter *adapter, 433 const struct rx_sw_desc *d) 434 { 435 struct sge *s = &adapter->sge; 436 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 437 int buf_size; 438 439 switch (rx_buf_size_idx) { 440 case RX_SMALL_PG_BUF: 441 buf_size = PAGE_SIZE; 442 break; 443 444 case RX_LARGE_PG_BUF: 445 buf_size = PAGE_SIZE << s->fl_pg_order; 446 break; 447 448 case RX_SMALL_MTU_BUF: 449 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 450 break; 451 452 case RX_LARGE_MTU_BUF: 453 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 454 break; 455 456 default: 457 BUG_ON(1); 458 } 459 460 return buf_size; 461 } 462 463 /** 464 * free_rx_bufs - free the Rx buffers on an SGE free list 465 * @adap: the adapter 466 * @q: the SGE free list to free buffers from 467 * @n: how many buffers to free 468 * 469 * Release the next @n buffers on an SGE free-buffer Rx queue. The 470 * buffers must be made inaccessible to HW before calling this function. 471 */ 472 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 473 { 474 while (n--) { 475 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 476 477 if (is_buf_mapped(d)) 478 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 479 get_buf_size(adap, d), 480 PCI_DMA_FROMDEVICE); 481 put_page(d->page); 482 d->page = NULL; 483 if (++q->cidx == q->size) 484 q->cidx = 0; 485 q->avail--; 486 } 487 } 488 489 /** 490 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 491 * @adap: the adapter 492 * @q: the SGE free list 493 * 494 * Unmap the current buffer on an SGE free-buffer Rx queue. The 495 * buffer must be made inaccessible to HW before calling this function. 496 * 497 * This is similar to @free_rx_bufs above but does not free the buffer. 498 * Do note that the FL still loses any further access to the buffer. 499 */ 500 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 501 { 502 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 503 504 if (is_buf_mapped(d)) 505 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 506 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 507 d->page = NULL; 508 if (++q->cidx == q->size) 509 q->cidx = 0; 510 q->avail--; 511 } 512 513 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 514 { 515 if (q->pend_cred >= 8) { 516 u32 val = adap->params.arch.sge_fl_db; 517 518 if (is_t4(adap->params.chip)) 519 val |= PIDX_V(q->pend_cred / 8); 520 else 521 val |= PIDX_T5_V(q->pend_cred / 8); 522 523 /* Make sure all memory writes to the Free List queue are 524 * committed before we tell the hardware about them. 525 */ 526 wmb(); 527 528 /* If we don't have access to the new User Doorbell (T5+), use 529 * the old doorbell mechanism; otherwise use the new BAR2 530 * mechanism. 531 */ 532 if (unlikely(q->bar2_addr == NULL)) { 533 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 534 val | QID_V(q->cntxt_id)); 535 } else { 536 writel(val | QID_V(q->bar2_qid), 537 q->bar2_addr + SGE_UDB_KDOORBELL); 538 539 /* This Write memory Barrier will force the write to 540 * the User Doorbell area to be flushed. 541 */ 542 wmb(); 543 } 544 q->pend_cred &= 7; 545 } 546 } 547 548 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 549 dma_addr_t mapping) 550 { 551 sd->page = pg; 552 sd->dma_addr = mapping; /* includes size low bits */ 553 } 554 555 /** 556 * refill_fl - refill an SGE Rx buffer ring 557 * @adap: the adapter 558 * @q: the ring to refill 559 * @n: the number of new buffers to allocate 560 * @gfp: the gfp flags for the allocations 561 * 562 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 563 * allocated with the supplied gfp flags. The caller must assure that 564 * @n does not exceed the queue's capacity. If afterwards the queue is 565 * found critically low mark it as starving in the bitmap of starving FLs. 566 * 567 * Returns the number of buffers allocated. 568 */ 569 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 570 gfp_t gfp) 571 { 572 struct sge *s = &adap->sge; 573 struct page *pg; 574 dma_addr_t mapping; 575 unsigned int cred = q->avail; 576 __be64 *d = &q->desc[q->pidx]; 577 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 578 int node; 579 580 #ifdef CONFIG_DEBUG_FS 581 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 582 goto out; 583 #endif 584 585 gfp |= __GFP_NOWARN; 586 node = dev_to_node(adap->pdev_dev); 587 588 if (s->fl_pg_order == 0) 589 goto alloc_small_pages; 590 591 /* 592 * Prefer large buffers 593 */ 594 while (n) { 595 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 596 if (unlikely(!pg)) { 597 q->large_alloc_failed++; 598 break; /* fall back to single pages */ 599 } 600 601 mapping = dma_map_page(adap->pdev_dev, pg, 0, 602 PAGE_SIZE << s->fl_pg_order, 603 PCI_DMA_FROMDEVICE); 604 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 605 __free_pages(pg, s->fl_pg_order); 606 q->mapping_err++; 607 goto out; /* do not try small pages for this error */ 608 } 609 mapping |= RX_LARGE_PG_BUF; 610 *d++ = cpu_to_be64(mapping); 611 612 set_rx_sw_desc(sd, pg, mapping); 613 sd++; 614 615 q->avail++; 616 if (++q->pidx == q->size) { 617 q->pidx = 0; 618 sd = q->sdesc; 619 d = q->desc; 620 } 621 n--; 622 } 623 624 alloc_small_pages: 625 while (n--) { 626 pg = alloc_pages_node(node, gfp, 0); 627 if (unlikely(!pg)) { 628 q->alloc_failed++; 629 break; 630 } 631 632 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 633 PCI_DMA_FROMDEVICE); 634 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 635 put_page(pg); 636 q->mapping_err++; 637 goto out; 638 } 639 *d++ = cpu_to_be64(mapping); 640 641 set_rx_sw_desc(sd, pg, mapping); 642 sd++; 643 644 q->avail++; 645 if (++q->pidx == q->size) { 646 q->pidx = 0; 647 sd = q->sdesc; 648 d = q->desc; 649 } 650 } 651 652 out: cred = q->avail - cred; 653 q->pend_cred += cred; 654 ring_fl_db(adap, q); 655 656 if (unlikely(fl_starving(adap, q))) { 657 smp_wmb(); 658 q->low++; 659 set_bit(q->cntxt_id - adap->sge.egr_start, 660 adap->sge.starving_fl); 661 } 662 663 return cred; 664 } 665 666 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 667 { 668 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 669 GFP_ATOMIC); 670 } 671 672 /** 673 * alloc_ring - allocate resources for an SGE descriptor ring 674 * @dev: the PCI device's core device 675 * @nelem: the number of descriptors 676 * @elem_size: the size of each descriptor 677 * @sw_size: the size of the SW state associated with each ring element 678 * @phys: the physical address of the allocated ring 679 * @metadata: address of the array holding the SW state for the ring 680 * @stat_size: extra space in HW ring for status information 681 * @node: preferred node for memory allocations 682 * 683 * Allocates resources for an SGE descriptor ring, such as Tx queues, 684 * free buffer lists, or response queues. Each SGE ring requires 685 * space for its HW descriptors plus, optionally, space for the SW state 686 * associated with each HW entry (the metadata). The function returns 687 * three values: the virtual address for the HW ring (the return value 688 * of the function), the bus address of the HW ring, and the address 689 * of the SW ring. 690 */ 691 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 692 size_t sw_size, dma_addr_t *phys, void *metadata, 693 size_t stat_size, int node) 694 { 695 size_t len = nelem * elem_size + stat_size; 696 void *s = NULL; 697 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 698 699 if (!p) 700 return NULL; 701 if (sw_size) { 702 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 703 704 if (!s) { 705 dma_free_coherent(dev, len, p, *phys); 706 return NULL; 707 } 708 } 709 if (metadata) 710 *(void **)metadata = s; 711 memset(p, 0, len); 712 return p; 713 } 714 715 /** 716 * sgl_len - calculates the size of an SGL of the given capacity 717 * @n: the number of SGL entries 718 * 719 * Calculates the number of flits needed for a scatter/gather list that 720 * can hold the given number of entries. 721 */ 722 static inline unsigned int sgl_len(unsigned int n) 723 { 724 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 725 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 726 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 727 * repeated sequences of { Length[i], Length[i+1], Address[i], 728 * Address[i+1] } (this ensures that all addresses are on 64-bit 729 * boundaries). If N is even, then Length[N+1] should be set to 0 and 730 * Address[N+1] is omitted. 731 * 732 * The following calculation incorporates all of the above. It's 733 * somewhat hard to follow but, briefly: the "+2" accounts for the 734 * first two flits which include the DSGL header, Length0 and 735 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 736 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 737 * finally the "+((n-1)&1)" adds the one remaining flit needed if 738 * (n-1) is odd ... 739 */ 740 n--; 741 return (3 * n) / 2 + (n & 1) + 2; 742 } 743 744 /** 745 * flits_to_desc - returns the num of Tx descriptors for the given flits 746 * @n: the number of flits 747 * 748 * Returns the number of Tx descriptors needed for the supplied number 749 * of flits. 750 */ 751 static inline unsigned int flits_to_desc(unsigned int n) 752 { 753 BUG_ON(n > SGE_MAX_WR_LEN / 8); 754 return DIV_ROUND_UP(n, 8); 755 } 756 757 /** 758 * is_eth_imm - can an Ethernet packet be sent as immediate data? 759 * @skb: the packet 760 * 761 * Returns whether an Ethernet packet is small enough to fit as 762 * immediate data. Return value corresponds to headroom required. 763 */ 764 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 765 { 766 int hdrlen = 0; 767 768 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 769 chip_ver > CHELSIO_T5) { 770 hdrlen = sizeof(struct cpl_tx_tnl_lso); 771 hdrlen += sizeof(struct cpl_tx_pkt_core); 772 } else { 773 hdrlen = skb_shinfo(skb)->gso_size ? 774 sizeof(struct cpl_tx_pkt_lso_core) : 0; 775 hdrlen += sizeof(struct cpl_tx_pkt); 776 } 777 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 778 return hdrlen; 779 return 0; 780 } 781 782 /** 783 * calc_tx_flits - calculate the number of flits for a packet Tx WR 784 * @skb: the packet 785 * 786 * Returns the number of flits needed for a Tx WR for the given Ethernet 787 * packet, including the needed WR and CPL headers. 788 */ 789 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 790 unsigned int chip_ver) 791 { 792 unsigned int flits; 793 int hdrlen = is_eth_imm(skb, chip_ver); 794 795 /* If the skb is small enough, we can pump it out as a work request 796 * with only immediate data. In that case we just have to have the 797 * TX Packet header plus the skb data in the Work Request. 798 */ 799 800 if (hdrlen) 801 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 802 803 /* Otherwise, we're going to have to construct a Scatter gather list 804 * of the skb body and fragments. We also include the flits necessary 805 * for the TX Packet Work Request and CPL. We always have a firmware 806 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 807 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 808 * message or, if we're doing a Large Send Offload, an LSO CPL message 809 * with an embedded TX Packet Write CPL message. 810 */ 811 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 812 if (skb_shinfo(skb)->gso_size) { 813 if (skb->encapsulation && chip_ver > CHELSIO_T5) 814 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 815 sizeof(struct cpl_tx_tnl_lso); 816 else 817 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 818 sizeof(struct cpl_tx_pkt_lso_core); 819 820 hdrlen += sizeof(struct cpl_tx_pkt_core); 821 flits += (hdrlen / sizeof(__be64)); 822 } else { 823 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 824 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 825 } 826 return flits; 827 } 828 829 /** 830 * calc_tx_descs - calculate the number of Tx descriptors for a packet 831 * @skb: the packet 832 * 833 * Returns the number of Tx descriptors needed for the given Ethernet 834 * packet, including the needed WR and CPL headers. 835 */ 836 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 837 unsigned int chip_ver) 838 { 839 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 840 } 841 842 /** 843 * cxgb4_write_sgl - populate a scatter/gather list for a packet 844 * @skb: the packet 845 * @q: the Tx queue we are writing into 846 * @sgl: starting location for writing the SGL 847 * @end: points right after the end of the SGL 848 * @start: start offset into skb main-body data to include in the SGL 849 * @addr: the list of bus addresses for the SGL elements 850 * 851 * Generates a gather list for the buffers that make up a packet. 852 * The caller must provide adequate space for the SGL that will be written. 853 * The SGL includes all of the packet's page fragments and the data in its 854 * main body except for the first @start bytes. @sgl must be 16-byte 855 * aligned and within a Tx descriptor with available space. @end points 856 * right after the end of the SGL but does not account for any potential 857 * wrap around, i.e., @end > @sgl. 858 */ 859 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 860 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 861 const dma_addr_t *addr) 862 { 863 unsigned int i, len; 864 struct ulptx_sge_pair *to; 865 const struct skb_shared_info *si = skb_shinfo(skb); 866 unsigned int nfrags = si->nr_frags; 867 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 868 869 len = skb_headlen(skb) - start; 870 if (likely(len)) { 871 sgl->len0 = htonl(len); 872 sgl->addr0 = cpu_to_be64(addr[0] + start); 873 nfrags++; 874 } else { 875 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 876 sgl->addr0 = cpu_to_be64(addr[1]); 877 } 878 879 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 880 ULPTX_NSGE_V(nfrags)); 881 if (likely(--nfrags == 0)) 882 return; 883 /* 884 * Most of the complexity below deals with the possibility we hit the 885 * end of the queue in the middle of writing the SGL. For this case 886 * only we create the SGL in a temporary buffer and then copy it. 887 */ 888 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 889 890 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 891 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 892 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 893 to->addr[0] = cpu_to_be64(addr[i]); 894 to->addr[1] = cpu_to_be64(addr[++i]); 895 } 896 if (nfrags) { 897 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 898 to->len[1] = cpu_to_be32(0); 899 to->addr[0] = cpu_to_be64(addr[i + 1]); 900 } 901 if (unlikely((u8 *)end > (u8 *)q->stat)) { 902 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 903 904 if (likely(part0)) 905 memcpy(sgl->sge, buf, part0); 906 part1 = (u8 *)end - (u8 *)q->stat; 907 memcpy(q->desc, (u8 *)buf + part0, part1); 908 end = (void *)q->desc + part1; 909 } 910 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 911 *end = 0; 912 } 913 EXPORT_SYMBOL(cxgb4_write_sgl); 914 915 /* This function copies 64 byte coalesced work request to 916 * memory mapped BAR2 space. For coalesced WR SGE fetches 917 * data from the FIFO instead of from Host. 918 */ 919 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 920 { 921 int count = 8; 922 923 while (count) { 924 writeq(*src, dst); 925 src++; 926 dst++; 927 count--; 928 } 929 } 930 931 /** 932 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 933 * @adap: the adapter 934 * @q: the Tx queue 935 * @n: number of new descriptors to give to HW 936 * 937 * Ring the doorbel for a Tx queue. 938 */ 939 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 940 { 941 /* Make sure that all writes to the TX Descriptors are committed 942 * before we tell the hardware about them. 943 */ 944 wmb(); 945 946 /* If we don't have access to the new User Doorbell (T5+), use the old 947 * doorbell mechanism; otherwise use the new BAR2 mechanism. 948 */ 949 if (unlikely(q->bar2_addr == NULL)) { 950 u32 val = PIDX_V(n); 951 unsigned long flags; 952 953 /* For T4 we need to participate in the Doorbell Recovery 954 * mechanism. 955 */ 956 spin_lock_irqsave(&q->db_lock, flags); 957 if (!q->db_disabled) 958 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 959 QID_V(q->cntxt_id) | val); 960 else 961 q->db_pidx_inc += n; 962 q->db_pidx = q->pidx; 963 spin_unlock_irqrestore(&q->db_lock, flags); 964 } else { 965 u32 val = PIDX_T5_V(n); 966 967 /* T4 and later chips share the same PIDX field offset within 968 * the doorbell, but T5 and later shrank the field in order to 969 * gain a bit for Doorbell Priority. The field was absurdly 970 * large in the first place (14 bits) so we just use the T5 971 * and later limits and warn if a Queue ID is too large. 972 */ 973 WARN_ON(val & DBPRIO_F); 974 975 /* If we're only writing a single TX Descriptor and we can use 976 * Inferred QID registers, we can use the Write Combining 977 * Gather Buffer; otherwise we use the simple doorbell. 978 */ 979 if (n == 1 && q->bar2_qid == 0) { 980 int index = (q->pidx 981 ? (q->pidx - 1) 982 : (q->size - 1)); 983 u64 *wr = (u64 *)&q->desc[index]; 984 985 cxgb_pio_copy((u64 __iomem *) 986 (q->bar2_addr + SGE_UDB_WCDOORBELL), 987 wr); 988 } else { 989 writel(val | QID_V(q->bar2_qid), 990 q->bar2_addr + SGE_UDB_KDOORBELL); 991 } 992 993 /* This Write Memory Barrier will force the write to the User 994 * Doorbell area to be flushed. This is needed to prevent 995 * writes on different CPUs for the same queue from hitting 996 * the adapter out of order. This is required when some Work 997 * Requests take the Write Combine Gather Buffer path (user 998 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 999 * take the traditional path where we simply increment the 1000 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1001 * hardware DMA read the actual Work Request. 1002 */ 1003 wmb(); 1004 } 1005 } 1006 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1007 1008 /** 1009 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1010 * @skb: the packet 1011 * @q: the Tx queue where the packet will be inlined 1012 * @pos: starting position in the Tx queue where to inline the packet 1013 * 1014 * Inline a packet's contents directly into Tx descriptors, starting at 1015 * the given position within the Tx DMA ring. 1016 * Most of the complexity of this operation is dealing with wrap arounds 1017 * in the middle of the packet we want to inline. 1018 */ 1019 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1020 const struct sge_txq *q, void *pos) 1021 { 1022 u64 *p; 1023 int left = (void *)q->stat - pos; 1024 1025 if (likely(skb->len <= left)) { 1026 if (likely(!skb->data_len)) 1027 skb_copy_from_linear_data(skb, pos, skb->len); 1028 else 1029 skb_copy_bits(skb, 0, pos, skb->len); 1030 pos += skb->len; 1031 } else { 1032 skb_copy_bits(skb, 0, pos, left); 1033 skb_copy_bits(skb, left, q->desc, skb->len - left); 1034 pos = (void *)q->desc + (skb->len - left); 1035 } 1036 1037 /* 0-pad to multiple of 16 */ 1038 p = PTR_ALIGN(pos, 8); 1039 if ((uintptr_t)p & 8) 1040 *p = 0; 1041 } 1042 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1043 1044 static void *inline_tx_skb_header(const struct sk_buff *skb, 1045 const struct sge_txq *q, void *pos, 1046 int length) 1047 { 1048 u64 *p; 1049 int left = (void *)q->stat - pos; 1050 1051 if (likely(length <= left)) { 1052 memcpy(pos, skb->data, length); 1053 pos += length; 1054 } else { 1055 memcpy(pos, skb->data, left); 1056 memcpy(q->desc, skb->data + left, length - left); 1057 pos = (void *)q->desc + (length - left); 1058 } 1059 /* 0-pad to multiple of 16 */ 1060 p = PTR_ALIGN(pos, 8); 1061 if ((uintptr_t)p & 8) { 1062 *p = 0; 1063 return p + 1; 1064 } 1065 return p; 1066 } 1067 1068 /* 1069 * Figure out what HW csum a packet wants and return the appropriate control 1070 * bits. 1071 */ 1072 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1073 { 1074 int csum_type; 1075 const struct iphdr *iph = ip_hdr(skb); 1076 1077 if (iph->version == 4) { 1078 if (iph->protocol == IPPROTO_TCP) 1079 csum_type = TX_CSUM_TCPIP; 1080 else if (iph->protocol == IPPROTO_UDP) 1081 csum_type = TX_CSUM_UDPIP; 1082 else { 1083 nocsum: /* 1084 * unknown protocol, disable HW csum 1085 * and hope a bad packet is detected 1086 */ 1087 return TXPKT_L4CSUM_DIS_F; 1088 } 1089 } else { 1090 /* 1091 * this doesn't work with extension headers 1092 */ 1093 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1094 1095 if (ip6h->nexthdr == IPPROTO_TCP) 1096 csum_type = TX_CSUM_TCPIP6; 1097 else if (ip6h->nexthdr == IPPROTO_UDP) 1098 csum_type = TX_CSUM_UDPIP6; 1099 else 1100 goto nocsum; 1101 } 1102 1103 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1104 u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb)); 1105 int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1106 1107 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1108 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1109 else 1110 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1111 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1112 } else { 1113 int start = skb_transport_offset(skb); 1114 1115 return TXPKT_CSUM_TYPE_V(csum_type) | 1116 TXPKT_CSUM_START_V(start) | 1117 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1118 } 1119 } 1120 1121 static void eth_txq_stop(struct sge_eth_txq *q) 1122 { 1123 netif_tx_stop_queue(q->txq); 1124 q->q.stops++; 1125 } 1126 1127 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1128 { 1129 q->in_use += n; 1130 q->pidx += n; 1131 if (q->pidx >= q->size) 1132 q->pidx -= q->size; 1133 } 1134 1135 #ifdef CONFIG_CHELSIO_T4_FCOE 1136 static inline int 1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1138 const struct port_info *pi, u64 *cntrl) 1139 { 1140 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1141 1142 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1143 return 0; 1144 1145 if (skb->protocol != htons(ETH_P_FCOE)) 1146 return 0; 1147 1148 skb_reset_mac_header(skb); 1149 skb->mac_len = sizeof(struct ethhdr); 1150 1151 skb_set_network_header(skb, skb->mac_len); 1152 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1153 1154 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1155 return -ENOTSUPP; 1156 1157 /* FC CRC offload */ 1158 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1159 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1160 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1161 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1162 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1163 return 0; 1164 } 1165 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1166 1167 /* Returns tunnel type if hardware supports offloading of the same. 1168 * It is called only for T5 and onwards. 1169 */ 1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1171 { 1172 u8 l4_hdr = 0; 1173 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1174 struct port_info *pi = netdev_priv(skb->dev); 1175 struct adapter *adapter = pi->adapter; 1176 1177 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1178 skb->inner_protocol != htons(ETH_P_TEB)) 1179 return tnl_type; 1180 1181 switch (vlan_get_protocol(skb)) { 1182 case htons(ETH_P_IP): 1183 l4_hdr = ip_hdr(skb)->protocol; 1184 break; 1185 case htons(ETH_P_IPV6): 1186 l4_hdr = ipv6_hdr(skb)->nexthdr; 1187 break; 1188 default: 1189 return tnl_type; 1190 } 1191 1192 switch (l4_hdr) { 1193 case IPPROTO_UDP: 1194 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1195 tnl_type = TX_TNL_TYPE_VXLAN; 1196 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1197 tnl_type = TX_TNL_TYPE_GENEVE; 1198 break; 1199 default: 1200 return tnl_type; 1201 } 1202 1203 return tnl_type; 1204 } 1205 1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1207 struct cpl_tx_tnl_lso *tnl_lso, 1208 enum cpl_tx_tnl_lso_type tnl_type) 1209 { 1210 u32 val; 1211 int in_eth_xtra_len; 1212 int l3hdr_len = skb_network_header_len(skb); 1213 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1214 const struct skb_shared_info *ssi = skb_shinfo(skb); 1215 bool v6 = (ip_hdr(skb)->version == 6); 1216 1217 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1218 CPL_TX_TNL_LSO_FIRST_F | 1219 CPL_TX_TNL_LSO_LAST_F | 1220 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1221 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1222 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1223 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1224 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1225 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1226 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1227 1228 tnl_lso->IpIdOffsetOut = 0; 1229 1230 /* Get the tunnel header length */ 1231 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1232 in_eth_xtra_len = skb_inner_network_header(skb) - 1233 skb_inner_mac_header(skb) - ETH_HLEN; 1234 1235 switch (tnl_type) { 1236 case TX_TNL_TYPE_VXLAN: 1237 case TX_TNL_TYPE_GENEVE: 1238 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1239 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1240 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1241 break; 1242 default: 1243 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1244 break; 1245 } 1246 1247 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1248 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1249 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1250 1251 tnl_lso->r1 = 0; 1252 1253 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1254 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1255 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1256 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1257 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1258 1259 tnl_lso->IpIdOffset = htons(0); 1260 1261 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1262 tnl_lso->TCPSeqOffset = htonl(0); 1263 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1264 } 1265 1266 /** 1267 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1268 * @skb: the packet 1269 * @dev: the egress net device 1270 * 1271 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1272 */ 1273 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1274 { 1275 u32 wr_mid, ctrl0, op; 1276 u64 cntrl, *end; 1277 int qidx, credits; 1278 unsigned int flits, ndesc; 1279 struct adapter *adap; 1280 struct sge_eth_txq *q; 1281 const struct port_info *pi; 1282 struct fw_eth_tx_pkt_wr *wr; 1283 struct cpl_tx_pkt_core *cpl; 1284 const struct skb_shared_info *ssi; 1285 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1286 bool immediate = false; 1287 int len, max_pkt_len; 1288 bool ptp_enabled = is_ptp_enabled(skb, dev); 1289 unsigned int chip_ver; 1290 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1291 1292 #ifdef CONFIG_CHELSIO_T4_FCOE 1293 int err; 1294 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1295 1296 /* 1297 * The chip min packet length is 10 octets but play safe and reject 1298 * anything shorter than an Ethernet header. 1299 */ 1300 if (unlikely(skb->len < ETH_HLEN)) { 1301 out_free: dev_kfree_skb_any(skb); 1302 return NETDEV_TX_OK; 1303 } 1304 1305 /* Discard the packet if the length is greater than mtu */ 1306 max_pkt_len = ETH_HLEN + dev->mtu; 1307 if (skb_vlan_tagged(skb)) 1308 max_pkt_len += VLAN_HLEN; 1309 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1310 goto out_free; 1311 1312 pi = netdev_priv(dev); 1313 adap = pi->adapter; 1314 ssi = skb_shinfo(skb); 1315 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1316 if (xfrm_offload(skb) && !ssi->gso_size) 1317 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1318 #endif /* CHELSIO_IPSEC_INLINE */ 1319 1320 qidx = skb_get_queue_mapping(skb); 1321 if (ptp_enabled) { 1322 spin_lock(&adap->ptp_lock); 1323 if (!(adap->ptp_tx_skb)) { 1324 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1325 adap->ptp_tx_skb = skb_get(skb); 1326 } else { 1327 spin_unlock(&adap->ptp_lock); 1328 goto out_free; 1329 } 1330 q = &adap->sge.ptptxq; 1331 } else { 1332 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1333 } 1334 skb_tx_timestamp(skb); 1335 1336 cxgb4_reclaim_completed_tx(adap, &q->q, true); 1337 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1338 1339 #ifdef CONFIG_CHELSIO_T4_FCOE 1340 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1341 if (unlikely(err == -ENOTSUPP)) { 1342 if (ptp_enabled) 1343 spin_unlock(&adap->ptp_lock); 1344 goto out_free; 1345 } 1346 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1347 1348 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1349 flits = calc_tx_flits(skb, chip_ver); 1350 ndesc = flits_to_desc(flits); 1351 credits = txq_avail(&q->q) - ndesc; 1352 1353 if (unlikely(credits < 0)) { 1354 eth_txq_stop(q); 1355 dev_err(adap->pdev_dev, 1356 "%s: Tx ring %u full while queue awake!\n", 1357 dev->name, qidx); 1358 if (ptp_enabled) 1359 spin_unlock(&adap->ptp_lock); 1360 return NETDEV_TX_BUSY; 1361 } 1362 1363 if (is_eth_imm(skb, chip_ver)) 1364 immediate = true; 1365 1366 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1367 tnl_type = cxgb_encap_offload_supported(skb); 1368 1369 if (!immediate && 1370 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) { 1371 q->mapping_err++; 1372 if (ptp_enabled) 1373 spin_unlock(&adap->ptp_lock); 1374 goto out_free; 1375 } 1376 1377 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1378 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1379 eth_txq_stop(q); 1380 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1381 } 1382 1383 wr = (void *)&q->q.desc[q->q.pidx]; 1384 wr->equiq_to_len16 = htonl(wr_mid); 1385 wr->r3 = cpu_to_be64(0); 1386 end = (u64 *)wr + flits; 1387 1388 len = immediate ? skb->len : 0; 1389 if (ssi->gso_size) { 1390 struct cpl_tx_pkt_lso *lso = (void *)wr; 1391 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1392 int l3hdr_len = skb_network_header_len(skb); 1393 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1394 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1395 1396 if (tnl_type) 1397 len += sizeof(*tnl_lso); 1398 else 1399 len += sizeof(*lso); 1400 1401 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1402 FW_WR_IMMDLEN_V(len)); 1403 if (tnl_type) { 1404 struct iphdr *iph = ip_hdr(skb); 1405 1406 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1407 cpl = (void *)(tnl_lso + 1); 1408 /* Driver is expected to compute partial checksum that 1409 * does not include the IP Total Length. 1410 */ 1411 if (iph->version == 4) { 1412 iph->check = 0; 1413 iph->tot_len = 0; 1414 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1415 iph->ihl)); 1416 } 1417 if (skb->ip_summed == CHECKSUM_PARTIAL) 1418 cntrl = hwcsum(adap->params.chip, skb); 1419 } else { 1420 lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1421 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1422 LSO_IPV6_V(v6) | 1423 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1424 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1425 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1426 lso->c.ipid_ofst = htons(0); 1427 lso->c.mss = htons(ssi->gso_size); 1428 lso->c.seqno_offset = htonl(0); 1429 if (is_t4(adap->params.chip)) 1430 lso->c.len = htonl(skb->len); 1431 else 1432 lso->c.len = 1433 htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1434 cpl = (void *)(lso + 1); 1435 1436 if (CHELSIO_CHIP_VERSION(adap->params.chip) 1437 <= CHELSIO_T5) 1438 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1439 else 1440 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1441 1442 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1443 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1444 TXPKT_IPHDR_LEN_V(l3hdr_len); 1445 } 1446 q->tso++; 1447 q->tx_cso += ssi->gso_segs; 1448 } else { 1449 len += sizeof(*cpl); 1450 if (ptp_enabled) 1451 op = FW_PTP_TX_PKT_WR; 1452 else 1453 op = FW_ETH_TX_PKT_WR; 1454 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1455 FW_WR_IMMDLEN_V(len)); 1456 cpl = (void *)(wr + 1); 1457 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1458 cntrl = hwcsum(adap->params.chip, skb) | 1459 TXPKT_IPCSUM_DIS_F; 1460 q->tx_cso++; 1461 } 1462 } 1463 1464 if (skb_vlan_tag_present(skb)) { 1465 q->vlan_ins++; 1466 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1467 #ifdef CONFIG_CHELSIO_T4_FCOE 1468 if (skb->protocol == htons(ETH_P_FCOE)) 1469 cntrl |= TXPKT_VLAN_V( 1470 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1471 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1472 } 1473 1474 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1475 TXPKT_PF_V(adap->pf); 1476 if (ptp_enabled) 1477 ctrl0 |= TXPKT_TSTAMP_F; 1478 #ifdef CONFIG_CHELSIO_T4_DCB 1479 if (is_t4(adap->params.chip)) 1480 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1481 else 1482 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1483 #endif 1484 cpl->ctrl0 = htonl(ctrl0); 1485 cpl->pack = htons(0); 1486 cpl->len = htons(skb->len); 1487 cpl->ctrl1 = cpu_to_be64(cntrl); 1488 1489 if (immediate) { 1490 cxgb4_inline_tx_skb(skb, &q->q, cpl + 1); 1491 dev_consume_skb_any(skb); 1492 } else { 1493 int last_desc; 1494 1495 cxgb4_write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), 1496 end, 0, addr); 1497 skb_orphan(skb); 1498 1499 last_desc = q->q.pidx + ndesc - 1; 1500 if (last_desc >= q->q.size) 1501 last_desc -= q->q.size; 1502 q->q.sdesc[last_desc].skb = skb; 1503 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1504 } 1505 1506 txq_advance(&q->q, ndesc); 1507 1508 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1509 if (ptp_enabled) 1510 spin_unlock(&adap->ptp_lock); 1511 return NETDEV_TX_OK; 1512 } 1513 1514 /** 1515 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1516 * @q: the SGE control Tx queue 1517 * 1518 * This is a variant of cxgb4_reclaim_completed_tx() that is used 1519 * for Tx queues that send only immediate data (presently just 1520 * the control queues) and thus do not have any sk_buffs to release. 1521 */ 1522 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1523 { 1524 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1525 int reclaim = hw_cidx - q->cidx; 1526 1527 if (reclaim < 0) 1528 reclaim += q->size; 1529 1530 q->in_use -= reclaim; 1531 q->cidx = hw_cidx; 1532 } 1533 1534 /** 1535 * is_imm - check whether a packet can be sent as immediate data 1536 * @skb: the packet 1537 * 1538 * Returns true if a packet can be sent as a WR with immediate data. 1539 */ 1540 static inline int is_imm(const struct sk_buff *skb) 1541 { 1542 return skb->len <= MAX_CTRL_WR_LEN; 1543 } 1544 1545 /** 1546 * ctrlq_check_stop - check if a control queue is full and should stop 1547 * @q: the queue 1548 * @wr: most recent WR written to the queue 1549 * 1550 * Check if a control queue has become full and should be stopped. 1551 * We clean up control queue descriptors very lazily, only when we are out. 1552 * If the queue is still full after reclaiming any completed descriptors 1553 * we suspend it and have the last WR wake it up. 1554 */ 1555 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1556 { 1557 reclaim_completed_tx_imm(&q->q); 1558 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1559 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1560 q->q.stops++; 1561 q->full = 1; 1562 } 1563 } 1564 1565 /** 1566 * ctrl_xmit - send a packet through an SGE control Tx queue 1567 * @q: the control queue 1568 * @skb: the packet 1569 * 1570 * Send a packet through an SGE control Tx queue. Packets sent through 1571 * a control queue must fit entirely as immediate data. 1572 */ 1573 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1574 { 1575 unsigned int ndesc; 1576 struct fw_wr_hdr *wr; 1577 1578 if (unlikely(!is_imm(skb))) { 1579 WARN_ON(1); 1580 dev_kfree_skb(skb); 1581 return NET_XMIT_DROP; 1582 } 1583 1584 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1585 spin_lock(&q->sendq.lock); 1586 1587 if (unlikely(q->full)) { 1588 skb->priority = ndesc; /* save for restart */ 1589 __skb_queue_tail(&q->sendq, skb); 1590 spin_unlock(&q->sendq.lock); 1591 return NET_XMIT_CN; 1592 } 1593 1594 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1595 cxgb4_inline_tx_skb(skb, &q->q, wr); 1596 1597 txq_advance(&q->q, ndesc); 1598 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1599 ctrlq_check_stop(q, wr); 1600 1601 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 1602 spin_unlock(&q->sendq.lock); 1603 1604 kfree_skb(skb); 1605 return NET_XMIT_SUCCESS; 1606 } 1607 1608 /** 1609 * restart_ctrlq - restart a suspended control queue 1610 * @data: the control queue to restart 1611 * 1612 * Resumes transmission on a suspended Tx control queue. 1613 */ 1614 static void restart_ctrlq(unsigned long data) 1615 { 1616 struct sk_buff *skb; 1617 unsigned int written = 0; 1618 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1619 1620 spin_lock(&q->sendq.lock); 1621 reclaim_completed_tx_imm(&q->q); 1622 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1623 1624 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1625 struct fw_wr_hdr *wr; 1626 unsigned int ndesc = skb->priority; /* previously saved */ 1627 1628 written += ndesc; 1629 /* Write descriptors and free skbs outside the lock to limit 1630 * wait times. q->full is still set so new skbs will be queued. 1631 */ 1632 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1633 txq_advance(&q->q, ndesc); 1634 spin_unlock(&q->sendq.lock); 1635 1636 cxgb4_inline_tx_skb(skb, &q->q, wr); 1637 kfree_skb(skb); 1638 1639 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1640 unsigned long old = q->q.stops; 1641 1642 ctrlq_check_stop(q, wr); 1643 if (q->q.stops != old) { /* suspended anew */ 1644 spin_lock(&q->sendq.lock); 1645 goto ringdb; 1646 } 1647 } 1648 if (written > 16) { 1649 cxgb4_ring_tx_db(q->adap, &q->q, written); 1650 written = 0; 1651 } 1652 spin_lock(&q->sendq.lock); 1653 } 1654 q->full = 0; 1655 ringdb: 1656 if (written) 1657 cxgb4_ring_tx_db(q->adap, &q->q, written); 1658 spin_unlock(&q->sendq.lock); 1659 } 1660 1661 /** 1662 * t4_mgmt_tx - send a management message 1663 * @adap: the adapter 1664 * @skb: the packet containing the management message 1665 * 1666 * Send a management message through control queue 0. 1667 */ 1668 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1669 { 1670 int ret; 1671 1672 local_bh_disable(); 1673 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1674 local_bh_enable(); 1675 return ret; 1676 } 1677 1678 /** 1679 * is_ofld_imm - check whether a packet can be sent as immediate data 1680 * @skb: the packet 1681 * 1682 * Returns true if a packet can be sent as an offload WR with immediate 1683 * data. We currently use the same limit as for Ethernet packets. 1684 */ 1685 static inline int is_ofld_imm(const struct sk_buff *skb) 1686 { 1687 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 1688 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 1689 1690 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 1691 return skb->len <= SGE_MAX_WR_LEN; 1692 else 1693 return skb->len <= MAX_IMM_TX_PKT_LEN; 1694 } 1695 1696 /** 1697 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1698 * @skb: the packet 1699 * 1700 * Returns the number of flits needed for the given offload packet. 1701 * These packets are already fully constructed and no additional headers 1702 * will be added. 1703 */ 1704 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1705 { 1706 unsigned int flits, cnt; 1707 1708 if (is_ofld_imm(skb)) 1709 return DIV_ROUND_UP(skb->len, 8); 1710 1711 flits = skb_transport_offset(skb) / 8U; /* headers */ 1712 cnt = skb_shinfo(skb)->nr_frags; 1713 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1714 cnt++; 1715 return flits + sgl_len(cnt); 1716 } 1717 1718 /** 1719 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1720 * @adap: the adapter 1721 * @q: the queue to stop 1722 * 1723 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1724 * inability to map packets. A periodic timer attempts to restart 1725 * queues so marked. 1726 */ 1727 static void txq_stop_maperr(struct sge_uld_txq *q) 1728 { 1729 q->mapping_err++; 1730 q->q.stops++; 1731 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1732 q->adap->sge.txq_maperr); 1733 } 1734 1735 /** 1736 * ofldtxq_stop - stop an offload Tx queue that has become full 1737 * @q: the queue to stop 1738 * @skb: the packet causing the queue to become full 1739 * 1740 * Stops an offload Tx queue that has become full and modifies the packet 1741 * being written to request a wakeup. 1742 */ 1743 static void ofldtxq_stop(struct sge_uld_txq *q, struct sk_buff *skb) 1744 { 1745 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; 1746 1747 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1748 q->q.stops++; 1749 q->full = 1; 1750 } 1751 1752 /** 1753 * service_ofldq - service/restart a suspended offload queue 1754 * @q: the offload queue 1755 * 1756 * Services an offload Tx queue by moving packets from its Pending Send 1757 * Queue to the Hardware TX ring. The function starts and ends with the 1758 * Send Queue locked, but drops the lock while putting the skb at the 1759 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 1760 * allows more skbs to be added to the Send Queue by other threads. 1761 * The packet being processed at the head of the Pending Send Queue is 1762 * left on the queue in case we experience DMA Mapping errors, etc. 1763 * and need to give up and restart later. 1764 * 1765 * service_ofldq() can be thought of as a task which opportunistically 1766 * uses other threads execution contexts. We use the Offload Queue 1767 * boolean "service_ofldq_running" to make sure that only one instance 1768 * is ever running at a time ... 1769 */ 1770 static void service_ofldq(struct sge_uld_txq *q) 1771 { 1772 u64 *pos, *before, *end; 1773 int credits; 1774 struct sk_buff *skb; 1775 struct sge_txq *txq; 1776 unsigned int left; 1777 unsigned int written = 0; 1778 unsigned int flits, ndesc; 1779 1780 /* If another thread is currently in service_ofldq() processing the 1781 * Pending Send Queue then there's nothing to do. Otherwise, flag 1782 * that we're doing the work and continue. Examining/modifying 1783 * the Offload Queue boolean "service_ofldq_running" must be done 1784 * while holding the Pending Send Queue Lock. 1785 */ 1786 if (q->service_ofldq_running) 1787 return; 1788 q->service_ofldq_running = true; 1789 1790 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1791 /* We drop the lock while we're working with the skb at the 1792 * head of the Pending Send Queue. This allows more skbs to 1793 * be added to the Pending Send Queue while we're working on 1794 * this one. We don't need to lock to guard the TX Ring 1795 * updates because only one thread of execution is ever 1796 * allowed into service_ofldq() at a time. 1797 */ 1798 spin_unlock(&q->sendq.lock); 1799 1800 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 1801 1802 flits = skb->priority; /* previously saved */ 1803 ndesc = flits_to_desc(flits); 1804 credits = txq_avail(&q->q) - ndesc; 1805 BUG_ON(credits < 0); 1806 if (unlikely(credits < TXQ_STOP_THRES)) 1807 ofldtxq_stop(q, skb); 1808 1809 pos = (u64 *)&q->q.desc[q->q.pidx]; 1810 if (is_ofld_imm(skb)) 1811 cxgb4_inline_tx_skb(skb, &q->q, pos); 1812 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 1813 (dma_addr_t *)skb->head)) { 1814 txq_stop_maperr(q); 1815 spin_lock(&q->sendq.lock); 1816 break; 1817 } else { 1818 int last_desc, hdr_len = skb_transport_offset(skb); 1819 1820 /* The WR headers may not fit within one descriptor. 1821 * So we need to deal with wrap-around here. 1822 */ 1823 before = (u64 *)pos; 1824 end = (u64 *)pos + flits; 1825 txq = &q->q; 1826 pos = (void *)inline_tx_skb_header(skb, &q->q, 1827 (void *)pos, 1828 hdr_len); 1829 if (before > (u64 *)pos) { 1830 left = (u8 *)end - (u8 *)txq->stat; 1831 end = (void *)txq->desc + left; 1832 } 1833 1834 /* If current position is already at the end of the 1835 * ofld queue, reset the current to point to 1836 * start of the queue and update the end ptr as well. 1837 */ 1838 if (pos == (u64 *)txq->stat) { 1839 left = (u8 *)end - (u8 *)txq->stat; 1840 end = (void *)txq->desc + left; 1841 pos = (void *)txq->desc; 1842 } 1843 1844 cxgb4_write_sgl(skb, &q->q, (void *)pos, 1845 end, hdr_len, 1846 (dma_addr_t *)skb->head); 1847 #ifdef CONFIG_NEED_DMA_MAP_STATE 1848 skb->dev = q->adap->port[0]; 1849 skb->destructor = deferred_unmap_destructor; 1850 #endif 1851 last_desc = q->q.pidx + ndesc - 1; 1852 if (last_desc >= q->q.size) 1853 last_desc -= q->q.size; 1854 q->q.sdesc[last_desc].skb = skb; 1855 } 1856 1857 txq_advance(&q->q, ndesc); 1858 written += ndesc; 1859 if (unlikely(written > 32)) { 1860 cxgb4_ring_tx_db(q->adap, &q->q, written); 1861 written = 0; 1862 } 1863 1864 /* Reacquire the Pending Send Queue Lock so we can unlink the 1865 * skb we've just successfully transferred to the TX Ring and 1866 * loop for the next skb which may be at the head of the 1867 * Pending Send Queue. 1868 */ 1869 spin_lock(&q->sendq.lock); 1870 __skb_unlink(skb, &q->sendq); 1871 if (is_ofld_imm(skb)) 1872 kfree_skb(skb); 1873 } 1874 if (likely(written)) 1875 cxgb4_ring_tx_db(q->adap, &q->q, written); 1876 1877 /*Indicate that no thread is processing the Pending Send Queue 1878 * currently. 1879 */ 1880 q->service_ofldq_running = false; 1881 } 1882 1883 /** 1884 * ofld_xmit - send a packet through an offload queue 1885 * @q: the Tx offload queue 1886 * @skb: the packet 1887 * 1888 * Send an offload packet through an SGE offload queue. 1889 */ 1890 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 1891 { 1892 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1893 spin_lock(&q->sendq.lock); 1894 1895 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 1896 * that results in this new skb being the only one on the queue, start 1897 * servicing it. If there are other skbs already on the list, then 1898 * either the queue is currently being processed or it's been stopped 1899 * for some reason and it'll be restarted at a later time. Restart 1900 * paths are triggered by events like experiencing a DMA Mapping Error 1901 * or filling the Hardware TX Ring. 1902 */ 1903 __skb_queue_tail(&q->sendq, skb); 1904 if (q->sendq.qlen == 1) 1905 service_ofldq(q); 1906 1907 spin_unlock(&q->sendq.lock); 1908 return NET_XMIT_SUCCESS; 1909 } 1910 1911 /** 1912 * restart_ofldq - restart a suspended offload queue 1913 * @data: the offload queue to restart 1914 * 1915 * Resumes transmission on a suspended Tx offload queue. 1916 */ 1917 static void restart_ofldq(unsigned long data) 1918 { 1919 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 1920 1921 spin_lock(&q->sendq.lock); 1922 q->full = 0; /* the queue actually is completely empty now */ 1923 service_ofldq(q); 1924 spin_unlock(&q->sendq.lock); 1925 } 1926 1927 /** 1928 * skb_txq - return the Tx queue an offload packet should use 1929 * @skb: the packet 1930 * 1931 * Returns the Tx queue an offload packet should use as indicated by bits 1932 * 1-15 in the packet's queue_mapping. 1933 */ 1934 static inline unsigned int skb_txq(const struct sk_buff *skb) 1935 { 1936 return skb->queue_mapping >> 1; 1937 } 1938 1939 /** 1940 * is_ctrl_pkt - return whether an offload packet is a control packet 1941 * @skb: the packet 1942 * 1943 * Returns whether an offload packet should use an OFLD or a CTRL 1944 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1945 */ 1946 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1947 { 1948 return skb->queue_mapping & 1; 1949 } 1950 1951 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 1952 unsigned int tx_uld_type) 1953 { 1954 struct sge_uld_txq_info *txq_info; 1955 struct sge_uld_txq *txq; 1956 unsigned int idx = skb_txq(skb); 1957 1958 if (unlikely(is_ctrl_pkt(skb))) { 1959 /* Single ctrl queue is a requirement for LE workaround path */ 1960 if (adap->tids.nsftids) 1961 idx = 0; 1962 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1963 } 1964 1965 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 1966 if (unlikely(!txq_info)) { 1967 WARN_ON(true); 1968 return NET_XMIT_DROP; 1969 } 1970 1971 txq = &txq_info->uldtxq[idx]; 1972 return ofld_xmit(txq, skb); 1973 } 1974 1975 /** 1976 * t4_ofld_send - send an offload packet 1977 * @adap: the adapter 1978 * @skb: the packet 1979 * 1980 * Sends an offload packet. We use the packet queue_mapping to select the 1981 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1982 * should be sent as regular or control, bits 1-15 select the queue. 1983 */ 1984 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1985 { 1986 int ret; 1987 1988 local_bh_disable(); 1989 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 1990 local_bh_enable(); 1991 return ret; 1992 } 1993 1994 /** 1995 * cxgb4_ofld_send - send an offload packet 1996 * @dev: the net device 1997 * @skb: the packet 1998 * 1999 * Sends an offload packet. This is an exported version of @t4_ofld_send, 2000 * intended for ULDs. 2001 */ 2002 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2003 { 2004 return t4_ofld_send(netdev2adap(dev), skb); 2005 } 2006 EXPORT_SYMBOL(cxgb4_ofld_send); 2007 2008 /** 2009 * t4_crypto_send - send crypto packet 2010 * @adap: the adapter 2011 * @skb: the packet 2012 * 2013 * Sends crypto packet. We use the packet queue_mapping to select the 2014 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2015 * should be sent as regular or control, bits 1-15 select the queue. 2016 */ 2017 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 2018 { 2019 int ret; 2020 2021 local_bh_disable(); 2022 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 2023 local_bh_enable(); 2024 return ret; 2025 } 2026 2027 /** 2028 * cxgb4_crypto_send - send crypto packet 2029 * @dev: the net device 2030 * @skb: the packet 2031 * 2032 * Sends crypto packet. This is an exported version of @t4_crypto_send, 2033 * intended for ULDs. 2034 */ 2035 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 2036 { 2037 return t4_crypto_send(netdev2adap(dev), skb); 2038 } 2039 EXPORT_SYMBOL(cxgb4_crypto_send); 2040 2041 static inline void copy_frags(struct sk_buff *skb, 2042 const struct pkt_gl *gl, unsigned int offset) 2043 { 2044 int i; 2045 2046 /* usually there's just one frag */ 2047 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 2048 gl->frags[0].offset + offset, 2049 gl->frags[0].size - offset); 2050 skb_shinfo(skb)->nr_frags = gl->nfrags; 2051 for (i = 1; i < gl->nfrags; i++) 2052 __skb_fill_page_desc(skb, i, gl->frags[i].page, 2053 gl->frags[i].offset, 2054 gl->frags[i].size); 2055 2056 /* get a reference to the last page, we don't own it */ 2057 get_page(gl->frags[gl->nfrags - 1].page); 2058 } 2059 2060 /** 2061 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 2062 * @gl: the gather list 2063 * @skb_len: size of sk_buff main body if it carries fragments 2064 * @pull_len: amount of data to move to the sk_buff's main body 2065 * 2066 * Builds an sk_buff from the given packet gather list. Returns the 2067 * sk_buff or %NULL if sk_buff allocation failed. 2068 */ 2069 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 2070 unsigned int skb_len, unsigned int pull_len) 2071 { 2072 struct sk_buff *skb; 2073 2074 /* 2075 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 2076 * size, which is expected since buffers are at least PAGE_SIZEd. 2077 * In this case packets up to RX_COPY_THRES have only one fragment. 2078 */ 2079 if (gl->tot_len <= RX_COPY_THRES) { 2080 skb = dev_alloc_skb(gl->tot_len); 2081 if (unlikely(!skb)) 2082 goto out; 2083 __skb_put(skb, gl->tot_len); 2084 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 2085 } else { 2086 skb = dev_alloc_skb(skb_len); 2087 if (unlikely(!skb)) 2088 goto out; 2089 __skb_put(skb, pull_len); 2090 skb_copy_to_linear_data(skb, gl->va, pull_len); 2091 2092 copy_frags(skb, gl, pull_len); 2093 skb->len = gl->tot_len; 2094 skb->data_len = skb->len - pull_len; 2095 skb->truesize += skb->data_len; 2096 } 2097 out: return skb; 2098 } 2099 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 2100 2101 /** 2102 * t4_pktgl_free - free a packet gather list 2103 * @gl: the gather list 2104 * 2105 * Releases the pages of a packet gather list. We do not own the last 2106 * page on the list and do not free it. 2107 */ 2108 static void t4_pktgl_free(const struct pkt_gl *gl) 2109 { 2110 int n; 2111 const struct page_frag *p; 2112 2113 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 2114 put_page(p->page); 2115 } 2116 2117 /* 2118 * Process an MPS trace packet. Give it an unused protocol number so it won't 2119 * be delivered to anyone and send it to the stack for capture. 2120 */ 2121 static noinline int handle_trace_pkt(struct adapter *adap, 2122 const struct pkt_gl *gl) 2123 { 2124 struct sk_buff *skb; 2125 2126 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 2127 if (unlikely(!skb)) { 2128 t4_pktgl_free(gl); 2129 return 0; 2130 } 2131 2132 if (is_t4(adap->params.chip)) 2133 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 2134 else 2135 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 2136 2137 skb_reset_mac_header(skb); 2138 skb->protocol = htons(0xffff); 2139 skb->dev = adap->port[0]; 2140 netif_receive_skb(skb); 2141 return 0; 2142 } 2143 2144 /** 2145 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 2146 * @adap: the adapter 2147 * @hwtstamps: time stamp structure to update 2148 * @sgetstamp: 60bit iqe timestamp 2149 * 2150 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 2151 * which is in Core Clock ticks into ktime_t and assign it 2152 **/ 2153 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 2154 struct skb_shared_hwtstamps *hwtstamps, 2155 u64 sgetstamp) 2156 { 2157 u64 ns; 2158 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 2159 2160 ns = div_u64(tmp, adap->params.vpd.cclk); 2161 2162 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2163 hwtstamps->hwtstamp = ns_to_ktime(ns); 2164 } 2165 2166 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 2167 const struct cpl_rx_pkt *pkt) 2168 { 2169 struct adapter *adapter = rxq->rspq.adap; 2170 struct sge *s = &adapter->sge; 2171 struct port_info *pi; 2172 int ret; 2173 struct sk_buff *skb; 2174 2175 skb = napi_get_frags(&rxq->rspq.napi); 2176 if (unlikely(!skb)) { 2177 t4_pktgl_free(gl); 2178 rxq->stats.rx_drops++; 2179 return; 2180 } 2181 2182 copy_frags(skb, gl, s->pktshift); 2183 skb->len = gl->tot_len - s->pktshift; 2184 skb->data_len = skb->len; 2185 skb->truesize += skb->data_len; 2186 skb->ip_summed = CHECKSUM_UNNECESSARY; 2187 skb_record_rx_queue(skb, rxq->rspq.idx); 2188 pi = netdev_priv(skb->dev); 2189 if (pi->rxtstamp) 2190 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 2191 gl->sgetstamp); 2192 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 2193 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2194 PKT_HASH_TYPE_L3); 2195 2196 if (unlikely(pkt->vlan_ex)) { 2197 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2198 rxq->stats.vlan_ex++; 2199 } 2200 ret = napi_gro_frags(&rxq->rspq.napi); 2201 if (ret == GRO_HELD) 2202 rxq->stats.lro_pkts++; 2203 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 2204 rxq->stats.lro_merged++; 2205 rxq->stats.pkts++; 2206 rxq->stats.rx_cso++; 2207 } 2208 2209 enum { 2210 RX_NON_PTP_PKT = 0, 2211 RX_PTP_PKT_SUC = 1, 2212 RX_PTP_PKT_ERR = 2 2213 }; 2214 2215 /** 2216 * t4_systim_to_hwstamp - read hardware time stamp 2217 * @adap: the adapter 2218 * @skb: the packet 2219 * 2220 * Read Time Stamp from MPS packet and insert in skb which 2221 * is forwarded to PTP application 2222 */ 2223 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 2224 struct sk_buff *skb) 2225 { 2226 struct skb_shared_hwtstamps *hwtstamps; 2227 struct cpl_rx_mps_pkt *cpl = NULL; 2228 unsigned char *data; 2229 int offset; 2230 2231 cpl = (struct cpl_rx_mps_pkt *)skb->data; 2232 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 2233 X_CPL_RX_MPS_PKT_TYPE_PTP)) 2234 return RX_PTP_PKT_ERR; 2235 2236 data = skb->data + sizeof(*cpl); 2237 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 2238 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 2239 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 2240 return RX_PTP_PKT_ERR; 2241 2242 hwtstamps = skb_hwtstamps(skb); 2243 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2244 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 2245 2246 return RX_PTP_PKT_SUC; 2247 } 2248 2249 /** 2250 * t4_rx_hststamp - Recv PTP Event Message 2251 * @adap: the adapter 2252 * @rsp: the response queue descriptor holding the RX_PKT message 2253 * @skb: the packet 2254 * 2255 * PTP enabled and MPS packet, read HW timestamp 2256 */ 2257 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 2258 struct sge_eth_rxq *rxq, struct sk_buff *skb) 2259 { 2260 int ret; 2261 2262 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 2263 !is_t4(adapter->params.chip))) { 2264 ret = t4_systim_to_hwstamp(adapter, skb); 2265 if (ret == RX_PTP_PKT_ERR) { 2266 kfree_skb(skb); 2267 rxq->stats.rx_drops++; 2268 } 2269 return ret; 2270 } 2271 return RX_NON_PTP_PKT; 2272 } 2273 2274 /** 2275 * t4_tx_hststamp - Loopback PTP Transmit Event Message 2276 * @adap: the adapter 2277 * @skb: the packet 2278 * @dev: the ingress net device 2279 * 2280 * Read hardware timestamp for the loopback PTP Tx event message 2281 */ 2282 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 2283 struct net_device *dev) 2284 { 2285 struct port_info *pi = netdev_priv(dev); 2286 2287 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 2288 cxgb4_ptp_read_hwstamp(adapter, pi); 2289 kfree_skb(skb); 2290 return 0; 2291 } 2292 return 1; 2293 } 2294 2295 /** 2296 * t4_ethrx_handler - process an ingress ethernet packet 2297 * @q: the response queue that received the packet 2298 * @rsp: the response queue descriptor holding the RX_PKT message 2299 * @si: the gather list of packet fragments 2300 * 2301 * Process an ingress ethernet packet and deliver it to the stack. 2302 */ 2303 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 2304 const struct pkt_gl *si) 2305 { 2306 bool csum_ok; 2307 struct sk_buff *skb; 2308 const struct cpl_rx_pkt *pkt; 2309 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2310 struct adapter *adapter = q->adap; 2311 struct sge *s = &q->adap->sge; 2312 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 2313 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 2314 u16 err_vec; 2315 struct port_info *pi; 2316 int ret = 0; 2317 2318 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 2319 return handle_trace_pkt(q->adap, si); 2320 2321 pkt = (const struct cpl_rx_pkt *)rsp; 2322 /* Compressed error vector is enabled for T6 only */ 2323 if (q->adap->params.tp.rx_pkt_encap) 2324 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 2325 else 2326 err_vec = be16_to_cpu(pkt->err_vec); 2327 2328 csum_ok = pkt->csum_calc && !err_vec && 2329 (q->netdev->features & NETIF_F_RXCSUM); 2330 if ((pkt->l2info & htonl(RXF_TCP_F)) && 2331 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 2332 do_gro(rxq, si, pkt); 2333 return 0; 2334 } 2335 2336 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 2337 if (unlikely(!skb)) { 2338 t4_pktgl_free(si); 2339 rxq->stats.rx_drops++; 2340 return 0; 2341 } 2342 pi = netdev_priv(q->netdev); 2343 2344 /* Handle PTP Event Rx packet */ 2345 if (unlikely(pi->ptp_enable)) { 2346 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 2347 if (ret == RX_PTP_PKT_ERR) 2348 return 0; 2349 } 2350 if (likely(!ret)) 2351 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 2352 2353 /* Handle the PTP Event Tx Loopback packet */ 2354 if (unlikely(pi->ptp_enable && !ret && 2355 (pkt->l2info & htonl(RXF_UDP_F)) && 2356 cxgb4_ptp_is_ptp_rx(skb))) { 2357 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 2358 return 0; 2359 } 2360 2361 skb->protocol = eth_type_trans(skb, q->netdev); 2362 skb_record_rx_queue(skb, q->idx); 2363 if (skb->dev->features & NETIF_F_RXHASH) 2364 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2365 PKT_HASH_TYPE_L3); 2366 2367 rxq->stats.pkts++; 2368 2369 if (pi->rxtstamp) 2370 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 2371 si->sgetstamp); 2372 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 2373 if (!pkt->ip_frag) { 2374 skb->ip_summed = CHECKSUM_UNNECESSARY; 2375 rxq->stats.rx_cso++; 2376 } else if (pkt->l2info & htonl(RXF_IP_F)) { 2377 __sum16 c = (__force __sum16)pkt->csum; 2378 skb->csum = csum_unfold(c); 2379 skb->ip_summed = CHECKSUM_COMPLETE; 2380 rxq->stats.rx_cso++; 2381 } 2382 } else { 2383 skb_checksum_none_assert(skb); 2384 #ifdef CONFIG_CHELSIO_T4_FCOE 2385 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 2386 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 2387 2388 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 2389 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 2390 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 2391 if (q->adap->params.tp.rx_pkt_encap) 2392 csum_ok = err_vec & 2393 T6_COMPR_RXERR_SUM_F; 2394 else 2395 csum_ok = err_vec & RXERR_CSUM_F; 2396 if (!csum_ok) 2397 skb->ip_summed = CHECKSUM_UNNECESSARY; 2398 } 2399 } 2400 2401 #undef CPL_RX_PKT_FLAGS 2402 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2403 } 2404 2405 if (unlikely(pkt->vlan_ex)) { 2406 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2407 rxq->stats.vlan_ex++; 2408 } 2409 skb_mark_napi_id(skb, &q->napi); 2410 netif_receive_skb(skb); 2411 return 0; 2412 } 2413 2414 /** 2415 * restore_rx_bufs - put back a packet's Rx buffers 2416 * @si: the packet gather list 2417 * @q: the SGE free list 2418 * @frags: number of FL buffers to restore 2419 * 2420 * Puts back on an FL the Rx buffers associated with @si. The buffers 2421 * have already been unmapped and are left unmapped, we mark them so to 2422 * prevent further unmapping attempts. 2423 * 2424 * This function undoes a series of @unmap_rx_buf calls when we find out 2425 * that the current packet can't be processed right away afterall and we 2426 * need to come back to it later. This is a very rare event and there's 2427 * no effort to make this particularly efficient. 2428 */ 2429 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 2430 int frags) 2431 { 2432 struct rx_sw_desc *d; 2433 2434 while (frags--) { 2435 if (q->cidx == 0) 2436 q->cidx = q->size - 1; 2437 else 2438 q->cidx--; 2439 d = &q->sdesc[q->cidx]; 2440 d->page = si->frags[frags].page; 2441 d->dma_addr |= RX_UNMAPPED_BUF; 2442 q->avail++; 2443 } 2444 } 2445 2446 /** 2447 * is_new_response - check if a response is newly written 2448 * @r: the response descriptor 2449 * @q: the response queue 2450 * 2451 * Returns true if a response descriptor contains a yet unprocessed 2452 * response. 2453 */ 2454 static inline bool is_new_response(const struct rsp_ctrl *r, 2455 const struct sge_rspq *q) 2456 { 2457 return (r->type_gen >> RSPD_GEN_S) == q->gen; 2458 } 2459 2460 /** 2461 * rspq_next - advance to the next entry in a response queue 2462 * @q: the queue 2463 * 2464 * Updates the state of a response queue to advance it to the next entry. 2465 */ 2466 static inline void rspq_next(struct sge_rspq *q) 2467 { 2468 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 2469 if (unlikely(++q->cidx == q->size)) { 2470 q->cidx = 0; 2471 q->gen ^= 1; 2472 q->cur_desc = q->desc; 2473 } 2474 } 2475 2476 /** 2477 * process_responses - process responses from an SGE response queue 2478 * @q: the ingress queue to process 2479 * @budget: how many responses can be processed in this round 2480 * 2481 * Process responses from an SGE response queue up to the supplied budget. 2482 * Responses include received packets as well as control messages from FW 2483 * or HW. 2484 * 2485 * Additionally choose the interrupt holdoff time for the next interrupt 2486 * on this queue. If the system is under memory shortage use a fairly 2487 * long delay to help recovery. 2488 */ 2489 static int process_responses(struct sge_rspq *q, int budget) 2490 { 2491 int ret, rsp_type; 2492 int budget_left = budget; 2493 const struct rsp_ctrl *rc; 2494 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2495 struct adapter *adapter = q->adap; 2496 struct sge *s = &adapter->sge; 2497 2498 while (likely(budget_left)) { 2499 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2500 if (!is_new_response(rc, q)) { 2501 if (q->flush_handler) 2502 q->flush_handler(q); 2503 break; 2504 } 2505 2506 dma_rmb(); 2507 rsp_type = RSPD_TYPE_G(rc->type_gen); 2508 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 2509 struct page_frag *fp; 2510 struct pkt_gl si; 2511 const struct rx_sw_desc *rsd; 2512 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 2513 2514 if (len & RSPD_NEWBUF_F) { 2515 if (likely(q->offset > 0)) { 2516 free_rx_bufs(q->adap, &rxq->fl, 1); 2517 q->offset = 0; 2518 } 2519 len = RSPD_LEN_G(len); 2520 } 2521 si.tot_len = len; 2522 2523 /* gather packet fragments */ 2524 for (frags = 0, fp = si.frags; ; frags++, fp++) { 2525 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 2526 bufsz = get_buf_size(adapter, rsd); 2527 fp->page = rsd->page; 2528 fp->offset = q->offset; 2529 fp->size = min(bufsz, len); 2530 len -= fp->size; 2531 if (!len) 2532 break; 2533 unmap_rx_buf(q->adap, &rxq->fl); 2534 } 2535 2536 si.sgetstamp = SGE_TIMESTAMP_G( 2537 be64_to_cpu(rc->last_flit)); 2538 /* 2539 * Last buffer remains mapped so explicitly make it 2540 * coherent for CPU access. 2541 */ 2542 dma_sync_single_for_cpu(q->adap->pdev_dev, 2543 get_buf_addr(rsd), 2544 fp->size, DMA_FROM_DEVICE); 2545 2546 si.va = page_address(si.frags[0].page) + 2547 si.frags[0].offset; 2548 prefetch(si.va); 2549 2550 si.nfrags = frags + 1; 2551 ret = q->handler(q, q->cur_desc, &si); 2552 if (likely(ret == 0)) 2553 q->offset += ALIGN(fp->size, s->fl_align); 2554 else 2555 restore_rx_bufs(&si, &rxq->fl, frags); 2556 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 2557 ret = q->handler(q, q->cur_desc, NULL); 2558 } else { 2559 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 2560 } 2561 2562 if (unlikely(ret)) { 2563 /* couldn't process descriptor, back off for recovery */ 2564 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 2565 break; 2566 } 2567 2568 rspq_next(q); 2569 budget_left--; 2570 } 2571 2572 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 2573 __refill_fl(q->adap, &rxq->fl); 2574 return budget - budget_left; 2575 } 2576 2577 /** 2578 * napi_rx_handler - the NAPI handler for Rx processing 2579 * @napi: the napi instance 2580 * @budget: how many packets we can process in this round 2581 * 2582 * Handler for new data events when using NAPI. This does not need any 2583 * locking or protection from interrupts as data interrupts are off at 2584 * this point and other adapter interrupts do not interfere (the latter 2585 * in not a concern at all with MSI-X as non-data interrupts then have 2586 * a separate handler). 2587 */ 2588 static int napi_rx_handler(struct napi_struct *napi, int budget) 2589 { 2590 unsigned int params; 2591 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 2592 int work_done; 2593 u32 val; 2594 2595 work_done = process_responses(q, budget); 2596 if (likely(work_done < budget)) { 2597 int timer_index; 2598 2599 napi_complete_done(napi, work_done); 2600 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 2601 2602 if (q->adaptive_rx) { 2603 if (work_done > max(timer_pkt_quota[timer_index], 2604 MIN_NAPI_WORK)) 2605 timer_index = (timer_index + 1); 2606 else 2607 timer_index = timer_index - 1; 2608 2609 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 2610 q->next_intr_params = 2611 QINTR_TIMER_IDX_V(timer_index) | 2612 QINTR_CNT_EN_V(0); 2613 params = q->next_intr_params; 2614 } else { 2615 params = q->next_intr_params; 2616 q->next_intr_params = q->intr_params; 2617 } 2618 } else 2619 params = QINTR_TIMER_IDX_V(7); 2620 2621 val = CIDXINC_V(work_done) | SEINTARM_V(params); 2622 2623 /* If we don't have access to the new User GTS (T5+), use the old 2624 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2625 */ 2626 if (unlikely(q->bar2_addr == NULL)) { 2627 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 2628 val | INGRESSQID_V((u32)q->cntxt_id)); 2629 } else { 2630 writel(val | INGRESSQID_V(q->bar2_qid), 2631 q->bar2_addr + SGE_UDB_GTS); 2632 wmb(); 2633 } 2634 return work_done; 2635 } 2636 2637 /* 2638 * The MSI-X interrupt handler for an SGE response queue. 2639 */ 2640 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 2641 { 2642 struct sge_rspq *q = cookie; 2643 2644 napi_schedule(&q->napi); 2645 return IRQ_HANDLED; 2646 } 2647 2648 /* 2649 * Process the indirect interrupt entries in the interrupt queue and kick off 2650 * NAPI for each queue that has generated an entry. 2651 */ 2652 static unsigned int process_intrq(struct adapter *adap) 2653 { 2654 unsigned int credits; 2655 const struct rsp_ctrl *rc; 2656 struct sge_rspq *q = &adap->sge.intrq; 2657 u32 val; 2658 2659 spin_lock(&adap->sge.intrq_lock); 2660 for (credits = 0; ; credits++) { 2661 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2662 if (!is_new_response(rc, q)) 2663 break; 2664 2665 dma_rmb(); 2666 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 2667 unsigned int qid = ntohl(rc->pldbuflen_qid); 2668 2669 qid -= adap->sge.ingr_start; 2670 napi_schedule(&adap->sge.ingr_map[qid]->napi); 2671 } 2672 2673 rspq_next(q); 2674 } 2675 2676 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 2677 2678 /* If we don't have access to the new User GTS (T5+), use the old 2679 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2680 */ 2681 if (unlikely(q->bar2_addr == NULL)) { 2682 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 2683 val | INGRESSQID_V(q->cntxt_id)); 2684 } else { 2685 writel(val | INGRESSQID_V(q->bar2_qid), 2686 q->bar2_addr + SGE_UDB_GTS); 2687 wmb(); 2688 } 2689 spin_unlock(&adap->sge.intrq_lock); 2690 return credits; 2691 } 2692 2693 /* 2694 * The MSI interrupt handler, which handles data events from SGE response queues 2695 * as well as error and other async events as they all use the same MSI vector. 2696 */ 2697 static irqreturn_t t4_intr_msi(int irq, void *cookie) 2698 { 2699 struct adapter *adap = cookie; 2700 2701 if (adap->flags & MASTER_PF) 2702 t4_slow_intr_handler(adap); 2703 process_intrq(adap); 2704 return IRQ_HANDLED; 2705 } 2706 2707 /* 2708 * Interrupt handler for legacy INTx interrupts. 2709 * Handles data events from SGE response queues as well as error and other 2710 * async events as they all use the same interrupt line. 2711 */ 2712 static irqreturn_t t4_intr_intx(int irq, void *cookie) 2713 { 2714 struct adapter *adap = cookie; 2715 2716 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 2717 if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) | 2718 process_intrq(adap)) 2719 return IRQ_HANDLED; 2720 return IRQ_NONE; /* probably shared interrupt */ 2721 } 2722 2723 /** 2724 * t4_intr_handler - select the top-level interrupt handler 2725 * @adap: the adapter 2726 * 2727 * Selects the top-level interrupt handler based on the type of interrupts 2728 * (MSI-X, MSI, or INTx). 2729 */ 2730 irq_handler_t t4_intr_handler(struct adapter *adap) 2731 { 2732 if (adap->flags & USING_MSIX) 2733 return t4_sge_intr_msix; 2734 if (adap->flags & USING_MSI) 2735 return t4_intr_msi; 2736 return t4_intr_intx; 2737 } 2738 2739 static void sge_rx_timer_cb(struct timer_list *t) 2740 { 2741 unsigned long m; 2742 unsigned int i; 2743 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 2744 struct sge *s = &adap->sge; 2745 2746 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2747 for (m = s->starving_fl[i]; m; m &= m - 1) { 2748 struct sge_eth_rxq *rxq; 2749 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2750 struct sge_fl *fl = s->egr_map[id]; 2751 2752 clear_bit(id, s->starving_fl); 2753 smp_mb__after_atomic(); 2754 2755 if (fl_starving(adap, fl)) { 2756 rxq = container_of(fl, struct sge_eth_rxq, fl); 2757 if (napi_reschedule(&rxq->rspq.napi)) 2758 fl->starving++; 2759 else 2760 set_bit(id, s->starving_fl); 2761 } 2762 } 2763 /* The remainder of the SGE RX Timer Callback routine is dedicated to 2764 * global Master PF activities like checking for chip ingress stalls, 2765 * etc. 2766 */ 2767 if (!(adap->flags & MASTER_PF)) 2768 goto done; 2769 2770 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 2771 2772 done: 2773 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2774 } 2775 2776 static void sge_tx_timer_cb(struct timer_list *t) 2777 { 2778 unsigned long m; 2779 unsigned int i, budget; 2780 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 2781 struct sge *s = &adap->sge; 2782 2783 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2784 for (m = s->txq_maperr[i]; m; m &= m - 1) { 2785 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 2786 struct sge_uld_txq *txq = s->egr_map[id]; 2787 2788 clear_bit(id, s->txq_maperr); 2789 tasklet_schedule(&txq->qresume_tsk); 2790 } 2791 2792 if (!is_t4(adap->params.chip)) { 2793 struct sge_eth_txq *q = &s->ptptxq; 2794 int avail; 2795 2796 spin_lock(&adap->ptp_lock); 2797 avail = reclaimable(&q->q); 2798 2799 if (avail) { 2800 free_tx_desc(adap, &q->q, avail, false); 2801 q->q.in_use -= avail; 2802 } 2803 spin_unlock(&adap->ptp_lock); 2804 } 2805 2806 budget = MAX_TIMER_TX_RECLAIM; 2807 i = s->ethtxq_rover; 2808 do { 2809 struct sge_eth_txq *q = &s->ethtxq[i]; 2810 2811 if (q->q.in_use && 2812 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 2813 __netif_tx_trylock(q->txq)) { 2814 int avail = reclaimable(&q->q); 2815 2816 if (avail) { 2817 if (avail > budget) 2818 avail = budget; 2819 2820 free_tx_desc(adap, &q->q, avail, true); 2821 q->q.in_use -= avail; 2822 budget -= avail; 2823 } 2824 __netif_tx_unlock(q->txq); 2825 } 2826 2827 if (++i >= s->ethqsets) 2828 i = 0; 2829 } while (budget && i != s->ethtxq_rover); 2830 s->ethtxq_rover = i; 2831 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2832 } 2833 2834 /** 2835 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2836 * @adapter: the adapter 2837 * @qid: the SGE Queue ID 2838 * @qtype: the SGE Queue Type (Egress or Ingress) 2839 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2840 * 2841 * Returns the BAR2 address for the SGE Queue Registers associated with 2842 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2843 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2844 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2845 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2846 */ 2847 static void __iomem *bar2_address(struct adapter *adapter, 2848 unsigned int qid, 2849 enum t4_bar2_qtype qtype, 2850 unsigned int *pbar2_qid) 2851 { 2852 u64 bar2_qoffset; 2853 int ret; 2854 2855 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 2856 &bar2_qoffset, pbar2_qid); 2857 if (ret) 2858 return NULL; 2859 2860 return adapter->bar2 + bar2_qoffset; 2861 } 2862 2863 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 2864 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 2865 */ 2866 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 2867 struct net_device *dev, int intr_idx, 2868 struct sge_fl *fl, rspq_handler_t hnd, 2869 rspq_flush_handler_t flush_hnd, int cong) 2870 { 2871 int ret, flsz = 0; 2872 struct fw_iq_cmd c; 2873 struct sge *s = &adap->sge; 2874 struct port_info *pi = netdev_priv(dev); 2875 int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING); 2876 2877 /* Size needs to be multiple of 16, including status entry. */ 2878 iq->size = roundup(iq->size, 16); 2879 2880 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 2881 &iq->phys_addr, NULL, 0, 2882 dev_to_node(adap->pdev_dev)); 2883 if (!iq->desc) 2884 return -ENOMEM; 2885 2886 memset(&c, 0, sizeof(c)); 2887 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 2888 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2889 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 2890 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 2891 FW_LEN16(c)); 2892 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 2893 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 2894 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 2895 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 2896 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 2897 -intr_idx - 1)); 2898 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 2899 FW_IQ_CMD_IQGTSMODE_F | 2900 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 2901 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 2902 c.iqsize = htons(iq->size); 2903 c.iqaddr = cpu_to_be64(iq->phys_addr); 2904 if (cong >= 0) 2905 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F); 2906 2907 if (fl) { 2908 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 2909 2910 /* Allocate the ring for the hardware free list (with space 2911 * for its status page) along with the associated software 2912 * descriptor ring. The free list size needs to be a multiple 2913 * of the Egress Queue Unit and at least 2 Egress Units larger 2914 * than the SGE's Egress Congrestion Threshold 2915 * (fl_starve_thres - 1). 2916 */ 2917 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 2918 fl->size = s->fl_starve_thres - 1 + 2 * 8; 2919 fl->size = roundup(fl->size, 8); 2920 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 2921 sizeof(struct rx_sw_desc), &fl->addr, 2922 &fl->sdesc, s->stat_len, 2923 dev_to_node(adap->pdev_dev)); 2924 if (!fl->desc) 2925 goto fl_nomem; 2926 2927 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 2928 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 2929 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 2930 FW_IQ_CMD_FL0DATARO_V(relaxed) | 2931 FW_IQ_CMD_FL0PADEN_F); 2932 if (cong >= 0) 2933 c.iqns_to_fl0congen |= 2934 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 2935 FW_IQ_CMD_FL0CONGCIF_F | 2936 FW_IQ_CMD_FL0CONGEN_F); 2937 /* In T6, for egress queue type FL there is internal overhead 2938 * of 16B for header going into FLM module. Hence the maximum 2939 * allowed burst size is 448 bytes. For T4/T5, the hardware 2940 * doesn't coalesce fetch requests if more than 64 bytes of 2941 * Free List pointers are provided, so we use a 128-byte Fetch 2942 * Burst Minimum there (T6 implements coalescing so we can use 2943 * the smaller 64-byte value there). 2944 */ 2945 c.fl0dcaen_to_fl0cidxfthresh = 2946 htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ? 2947 FETCHBURSTMIN_128B_X : 2948 FETCHBURSTMIN_64B_X) | 2949 FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ? 2950 FETCHBURSTMAX_512B_X : 2951 FETCHBURSTMAX_256B_X)); 2952 c.fl0size = htons(flsz); 2953 c.fl0addr = cpu_to_be64(fl->addr); 2954 } 2955 2956 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2957 if (ret) 2958 goto err; 2959 2960 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 2961 iq->cur_desc = iq->desc; 2962 iq->cidx = 0; 2963 iq->gen = 1; 2964 iq->next_intr_params = iq->intr_params; 2965 iq->cntxt_id = ntohs(c.iqid); 2966 iq->abs_id = ntohs(c.physiqid); 2967 iq->bar2_addr = bar2_address(adap, 2968 iq->cntxt_id, 2969 T4_BAR2_QTYPE_INGRESS, 2970 &iq->bar2_qid); 2971 iq->size--; /* subtract status entry */ 2972 iq->netdev = dev; 2973 iq->handler = hnd; 2974 iq->flush_handler = flush_hnd; 2975 2976 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 2977 skb_queue_head_init(&iq->lro_mgr.lroq); 2978 2979 /* set offset to -1 to distinguish ingress queues without FL */ 2980 iq->offset = fl ? 0 : -1; 2981 2982 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 2983 2984 if (fl) { 2985 fl->cntxt_id = ntohs(c.fl0id); 2986 fl->avail = fl->pend_cred = 0; 2987 fl->pidx = fl->cidx = 0; 2988 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 2989 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 2990 2991 /* Note, we must initialize the BAR2 Free List User Doorbell 2992 * information before refilling the Free List! 2993 */ 2994 fl->bar2_addr = bar2_address(adap, 2995 fl->cntxt_id, 2996 T4_BAR2_QTYPE_EGRESS, 2997 &fl->bar2_qid); 2998 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 2999 } 3000 3001 /* For T5 and later we attempt to set up the Congestion Manager values 3002 * of the new RX Ethernet Queue. This should really be handled by 3003 * firmware because it's more complex than any host driver wants to 3004 * get involved with and it's different per chip and this is almost 3005 * certainly wrong. Firmware would be wrong as well, but it would be 3006 * a lot easier to fix in one place ... For now we do something very 3007 * simple (and hopefully less wrong). 3008 */ 3009 if (!is_t4(adap->params.chip) && cong >= 0) { 3010 u32 param, val, ch_map = 0; 3011 int i; 3012 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 3013 3014 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3015 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 3016 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 3017 if (cong == 0) { 3018 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 3019 } else { 3020 val = 3021 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 3022 for (i = 0; i < 4; i++) { 3023 if (cong & (1 << i)) 3024 ch_map |= 1 << (i << cng_ch_bits_log); 3025 } 3026 val |= CONMCTXT_CNGCHMAP_V(ch_map); 3027 } 3028 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 3029 ¶m, &val); 3030 if (ret) 3031 dev_warn(adap->pdev_dev, "Failed to set Congestion" 3032 " Manager Context for Ingress Queue %d: %d\n", 3033 iq->cntxt_id, -ret); 3034 } 3035 3036 return 0; 3037 3038 fl_nomem: 3039 ret = -ENOMEM; 3040 err: 3041 if (iq->desc) { 3042 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 3043 iq->desc, iq->phys_addr); 3044 iq->desc = NULL; 3045 } 3046 if (fl && fl->desc) { 3047 kfree(fl->sdesc); 3048 fl->sdesc = NULL; 3049 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 3050 fl->desc, fl->addr); 3051 fl->desc = NULL; 3052 } 3053 return ret; 3054 } 3055 3056 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 3057 { 3058 q->cntxt_id = id; 3059 q->bar2_addr = bar2_address(adap, 3060 q->cntxt_id, 3061 T4_BAR2_QTYPE_EGRESS, 3062 &q->bar2_qid); 3063 q->in_use = 0; 3064 q->cidx = q->pidx = 0; 3065 q->stops = q->restarts = 0; 3066 q->stat = (void *)&q->desc[q->size]; 3067 spin_lock_init(&q->db_lock); 3068 adap->sge.egr_map[id - adap->sge.egr_start] = q; 3069 } 3070 3071 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 3072 struct net_device *dev, struct netdev_queue *netdevq, 3073 unsigned int iqid) 3074 { 3075 int ret, nentries; 3076 struct fw_eq_eth_cmd c; 3077 struct sge *s = &adap->sge; 3078 struct port_info *pi = netdev_priv(dev); 3079 3080 /* Add status entries */ 3081 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3082 3083 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3084 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3085 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3086 netdev_queue_numa_node_read(netdevq)); 3087 if (!txq->q.desc) 3088 return -ENOMEM; 3089 3090 memset(&c, 0, sizeof(c)); 3091 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 3092 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3093 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 3094 FW_EQ_ETH_CMD_VFN_V(0)); 3095 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 3096 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 3097 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 3098 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 3099 c.fetchszm_to_iqid = 3100 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3101 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 3102 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 3103 c.dcaen_to_eqsize = 3104 htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3105 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3106 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3107 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 3108 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3109 3110 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3111 if (ret) { 3112 kfree(txq->q.sdesc); 3113 txq->q.sdesc = NULL; 3114 dma_free_coherent(adap->pdev_dev, 3115 nentries * sizeof(struct tx_desc), 3116 txq->q.desc, txq->q.phys_addr); 3117 txq->q.desc = NULL; 3118 return ret; 3119 } 3120 3121 txq->q.q_type = CXGB4_TXQ_ETH; 3122 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 3123 txq->txq = netdevq; 3124 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 3125 txq->mapping_err = 0; 3126 return 0; 3127 } 3128 3129 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 3130 struct net_device *dev, unsigned int iqid, 3131 unsigned int cmplqid) 3132 { 3133 int ret, nentries; 3134 struct fw_eq_ctrl_cmd c; 3135 struct sge *s = &adap->sge; 3136 struct port_info *pi = netdev_priv(dev); 3137 3138 /* Add status entries */ 3139 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3140 3141 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 3142 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 3143 NULL, 0, dev_to_node(adap->pdev_dev)); 3144 if (!txq->q.desc) 3145 return -ENOMEM; 3146 3147 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 3148 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3149 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 3150 FW_EQ_CTRL_CMD_VFN_V(0)); 3151 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 3152 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 3153 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 3154 c.physeqid_pkd = htonl(0); 3155 c.fetchszm_to_iqid = 3156 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3157 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 3158 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 3159 c.dcaen_to_eqsize = 3160 htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3161 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3162 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3163 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 3164 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3165 3166 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3167 if (ret) { 3168 dma_free_coherent(adap->pdev_dev, 3169 nentries * sizeof(struct tx_desc), 3170 txq->q.desc, txq->q.phys_addr); 3171 txq->q.desc = NULL; 3172 return ret; 3173 } 3174 3175 txq->q.q_type = CXGB4_TXQ_CTRL; 3176 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 3177 txq->adap = adap; 3178 skb_queue_head_init(&txq->sendq); 3179 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 3180 txq->full = 0; 3181 return 0; 3182 } 3183 3184 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 3185 unsigned int cmplqid) 3186 { 3187 u32 param, val; 3188 3189 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3190 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 3191 FW_PARAMS_PARAM_YZ_V(eqid)); 3192 val = cmplqid; 3193 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 3194 } 3195 3196 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 3197 struct net_device *dev, unsigned int iqid, 3198 unsigned int uld_type) 3199 { 3200 int ret, nentries; 3201 struct fw_eq_ofld_cmd c; 3202 struct sge *s = &adap->sge; 3203 struct port_info *pi = netdev_priv(dev); 3204 int cmd = FW_EQ_OFLD_CMD; 3205 3206 /* Add status entries */ 3207 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3208 3209 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3210 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3211 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3212 NUMA_NO_NODE); 3213 if (!txq->q.desc) 3214 return -ENOMEM; 3215 3216 memset(&c, 0, sizeof(c)); 3217 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 3218 cmd = FW_EQ_CTRL_CMD; 3219 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 3220 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3221 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 3222 FW_EQ_OFLD_CMD_VFN_V(0)); 3223 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 3224 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 3225 c.fetchszm_to_iqid = 3226 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3227 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 3228 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 3229 c.dcaen_to_eqsize = 3230 htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3231 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3232 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3233 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 3234 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3235 3236 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3237 if (ret) { 3238 kfree(txq->q.sdesc); 3239 txq->q.sdesc = NULL; 3240 dma_free_coherent(adap->pdev_dev, 3241 nentries * sizeof(struct tx_desc), 3242 txq->q.desc, txq->q.phys_addr); 3243 txq->q.desc = NULL; 3244 return ret; 3245 } 3246 3247 txq->q.q_type = CXGB4_TXQ_ULD; 3248 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 3249 txq->adap = adap; 3250 skb_queue_head_init(&txq->sendq); 3251 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 3252 txq->full = 0; 3253 txq->mapping_err = 0; 3254 return 0; 3255 } 3256 3257 void free_txq(struct adapter *adap, struct sge_txq *q) 3258 { 3259 struct sge *s = &adap->sge; 3260 3261 dma_free_coherent(adap->pdev_dev, 3262 q->size * sizeof(struct tx_desc) + s->stat_len, 3263 q->desc, q->phys_addr); 3264 q->cntxt_id = 0; 3265 q->sdesc = NULL; 3266 q->desc = NULL; 3267 } 3268 3269 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 3270 struct sge_fl *fl) 3271 { 3272 struct sge *s = &adap->sge; 3273 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 3274 3275 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 3276 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 3277 rq->cntxt_id, fl_id, 0xffff); 3278 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 3279 rq->desc, rq->phys_addr); 3280 netif_napi_del(&rq->napi); 3281 rq->netdev = NULL; 3282 rq->cntxt_id = rq->abs_id = 0; 3283 rq->desc = NULL; 3284 3285 if (fl) { 3286 free_rx_bufs(adap, fl, fl->avail); 3287 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 3288 fl->desc, fl->addr); 3289 kfree(fl->sdesc); 3290 fl->sdesc = NULL; 3291 fl->cntxt_id = 0; 3292 fl->desc = NULL; 3293 } 3294 } 3295 3296 /** 3297 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 3298 * @adap: the adapter 3299 * @n: number of queues 3300 * @q: pointer to first queue 3301 * 3302 * Release the resources of a consecutive block of offload Rx queues. 3303 */ 3304 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 3305 { 3306 for ( ; n; n--, q++) 3307 if (q->rspq.desc) 3308 free_rspq_fl(adap, &q->rspq, 3309 q->fl.size ? &q->fl : NULL); 3310 } 3311 3312 /** 3313 * t4_free_sge_resources - free SGE resources 3314 * @adap: the adapter 3315 * 3316 * Frees resources used by the SGE queue sets. 3317 */ 3318 void t4_free_sge_resources(struct adapter *adap) 3319 { 3320 int i; 3321 struct sge_eth_rxq *eq; 3322 struct sge_eth_txq *etq; 3323 3324 /* stop all Rx queues in order to start them draining */ 3325 for (i = 0; i < adap->sge.ethqsets; i++) { 3326 eq = &adap->sge.ethrxq[i]; 3327 if (eq->rspq.desc) 3328 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 3329 FW_IQ_TYPE_FL_INT_CAP, 3330 eq->rspq.cntxt_id, 3331 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 3332 0xffff); 3333 } 3334 3335 /* clean up Ethernet Tx/Rx queues */ 3336 for (i = 0; i < adap->sge.ethqsets; i++) { 3337 eq = &adap->sge.ethrxq[i]; 3338 if (eq->rspq.desc) 3339 free_rspq_fl(adap, &eq->rspq, 3340 eq->fl.size ? &eq->fl : NULL); 3341 3342 etq = &adap->sge.ethtxq[i]; 3343 if (etq->q.desc) { 3344 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3345 etq->q.cntxt_id); 3346 __netif_tx_lock_bh(etq->txq); 3347 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3348 __netif_tx_unlock_bh(etq->txq); 3349 kfree(etq->q.sdesc); 3350 free_txq(adap, &etq->q); 3351 } 3352 } 3353 3354 /* clean up control Tx queues */ 3355 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 3356 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 3357 3358 if (cq->q.desc) { 3359 tasklet_kill(&cq->qresume_tsk); 3360 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 3361 cq->q.cntxt_id); 3362 __skb_queue_purge(&cq->sendq); 3363 free_txq(adap, &cq->q); 3364 } 3365 } 3366 3367 if (adap->sge.fw_evtq.desc) 3368 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 3369 3370 if (adap->sge.intrq.desc) 3371 free_rspq_fl(adap, &adap->sge.intrq, NULL); 3372 3373 if (!is_t4(adap->params.chip)) { 3374 etq = &adap->sge.ptptxq; 3375 if (etq->q.desc) { 3376 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3377 etq->q.cntxt_id); 3378 spin_lock_bh(&adap->ptp_lock); 3379 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3380 spin_unlock_bh(&adap->ptp_lock); 3381 kfree(etq->q.sdesc); 3382 free_txq(adap, &etq->q); 3383 } 3384 } 3385 3386 /* clear the reverse egress queue map */ 3387 memset(adap->sge.egr_map, 0, 3388 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 3389 } 3390 3391 void t4_sge_start(struct adapter *adap) 3392 { 3393 adap->sge.ethtxq_rover = 0; 3394 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 3395 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 3396 } 3397 3398 /** 3399 * t4_sge_stop - disable SGE operation 3400 * @adap: the adapter 3401 * 3402 * Stop tasklets and timers associated with the DMA engine. Note that 3403 * this is effective only if measures have been taken to disable any HW 3404 * events that may restart them. 3405 */ 3406 void t4_sge_stop(struct adapter *adap) 3407 { 3408 int i; 3409 struct sge *s = &adap->sge; 3410 3411 if (in_interrupt()) /* actions below require waiting */ 3412 return; 3413 3414 if (s->rx_timer.function) 3415 del_timer_sync(&s->rx_timer); 3416 if (s->tx_timer.function) 3417 del_timer_sync(&s->tx_timer); 3418 3419 if (is_offload(adap)) { 3420 struct sge_uld_txq_info *txq_info; 3421 3422 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3423 if (txq_info) { 3424 struct sge_uld_txq *txq = txq_info->uldtxq; 3425 3426 for_each_ofldtxq(&adap->sge, i) { 3427 if (txq->q.desc) 3428 tasklet_kill(&txq->qresume_tsk); 3429 } 3430 } 3431 } 3432 3433 if (is_pci_uld(adap)) { 3434 struct sge_uld_txq_info *txq_info; 3435 3436 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 3437 if (txq_info) { 3438 struct sge_uld_txq *txq = txq_info->uldtxq; 3439 3440 for_each_ofldtxq(&adap->sge, i) { 3441 if (txq->q.desc) 3442 tasklet_kill(&txq->qresume_tsk); 3443 } 3444 } 3445 } 3446 3447 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 3448 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 3449 3450 if (cq->q.desc) 3451 tasklet_kill(&cq->qresume_tsk); 3452 } 3453 } 3454 3455 /** 3456 * t4_sge_init_soft - grab core SGE values needed by SGE code 3457 * @adap: the adapter 3458 * 3459 * We need to grab the SGE operating parameters that we need to have 3460 * in order to do our job and make sure we can live with them. 3461 */ 3462 3463 static int t4_sge_init_soft(struct adapter *adap) 3464 { 3465 struct sge *s = &adap->sge; 3466 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 3467 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 3468 u32 ingress_rx_threshold; 3469 3470 /* 3471 * Verify that CPL messages are going to the Ingress Queue for 3472 * process_responses() and that only packet data is going to the 3473 * Free Lists. 3474 */ 3475 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 3476 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 3477 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 3478 return -EINVAL; 3479 } 3480 3481 /* 3482 * Validate the Host Buffer Register Array indices that we want to 3483 * use ... 3484 * 3485 * XXX Note that we should really read through the Host Buffer Size 3486 * XXX register array and find the indices of the Buffer Sizes which 3487 * XXX meet our needs! 3488 */ 3489 #define READ_FL_BUF(x) \ 3490 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 3491 3492 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 3493 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 3494 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 3495 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 3496 3497 /* We only bother using the Large Page logic if the Large Page Buffer 3498 * is larger than our Page Size Buffer. 3499 */ 3500 if (fl_large_pg <= fl_small_pg) 3501 fl_large_pg = 0; 3502 3503 #undef READ_FL_BUF 3504 3505 /* The Page Size Buffer must be exactly equal to our Page Size and the 3506 * Large Page Size Buffer should be 0 (per above) or a power of 2. 3507 */ 3508 if (fl_small_pg != PAGE_SIZE || 3509 (fl_large_pg & (fl_large_pg-1)) != 0) { 3510 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 3511 fl_small_pg, fl_large_pg); 3512 return -EINVAL; 3513 } 3514 if (fl_large_pg) 3515 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 3516 3517 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 3518 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 3519 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 3520 fl_small_mtu, fl_large_mtu); 3521 return -EINVAL; 3522 } 3523 3524 /* 3525 * Retrieve our RX interrupt holdoff timer values and counter 3526 * threshold values from the SGE parameters. 3527 */ 3528 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 3529 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 3530 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 3531 s->timer_val[0] = core_ticks_to_us(adap, 3532 TIMERVALUE0_G(timer_value_0_and_1)); 3533 s->timer_val[1] = core_ticks_to_us(adap, 3534 TIMERVALUE1_G(timer_value_0_and_1)); 3535 s->timer_val[2] = core_ticks_to_us(adap, 3536 TIMERVALUE2_G(timer_value_2_and_3)); 3537 s->timer_val[3] = core_ticks_to_us(adap, 3538 TIMERVALUE3_G(timer_value_2_and_3)); 3539 s->timer_val[4] = core_ticks_to_us(adap, 3540 TIMERVALUE4_G(timer_value_4_and_5)); 3541 s->timer_val[5] = core_ticks_to_us(adap, 3542 TIMERVALUE5_G(timer_value_4_and_5)); 3543 3544 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 3545 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 3546 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 3547 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 3548 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 3549 3550 return 0; 3551 } 3552 3553 /** 3554 * t4_sge_init - initialize SGE 3555 * @adap: the adapter 3556 * 3557 * Perform low-level SGE code initialization needed every time after a 3558 * chip reset. 3559 */ 3560 int t4_sge_init(struct adapter *adap) 3561 { 3562 struct sge *s = &adap->sge; 3563 u32 sge_control, sge_conm_ctrl; 3564 int ret, egress_threshold; 3565 3566 /* 3567 * Ingress Padding Boundary and Egress Status Page Size are set up by 3568 * t4_fixup_host_params(). 3569 */ 3570 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 3571 s->pktshift = PKTSHIFT_G(sge_control); 3572 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 3573 3574 s->fl_align = t4_fl_pkt_align(adap); 3575 ret = t4_sge_init_soft(adap); 3576 if (ret < 0) 3577 return ret; 3578 3579 /* 3580 * A FL with <= fl_starve_thres buffers is starving and a periodic 3581 * timer will attempt to refill it. This needs to be larger than the 3582 * SGE's Egress Congestion Threshold. If it isn't, then we can get 3583 * stuck waiting for new packets while the SGE is waiting for us to 3584 * give it more Free List entries. (Note that the SGE's Egress 3585 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 3586 * there was only a single field to control this. For T5 there's the 3587 * original field which now only applies to Unpacked Mode Free List 3588 * buffers and a new field which only applies to Packed Mode Free List 3589 * buffers. 3590 */ 3591 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 3592 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 3593 case CHELSIO_T4: 3594 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 3595 break; 3596 case CHELSIO_T5: 3597 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3598 break; 3599 case CHELSIO_T6: 3600 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3601 break; 3602 default: 3603 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 3604 CHELSIO_CHIP_VERSION(adap->params.chip)); 3605 return -EINVAL; 3606 } 3607 s->fl_starve_thres = 2*egress_threshold + 1; 3608 3609 t4_idma_monitor_init(adap, &s->idma_monitor); 3610 3611 /* Set up timers used for recuring callbacks to process RX and TX 3612 * administrative tasks. 3613 */ 3614 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 3615 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 3616 3617 spin_lock_init(&s->intrq_lock); 3618 3619 return 0; 3620 } 3621