1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60 
61 /*
62  * Rx buffer size.  We use largish buffers if possible but settle for single
63  * pages under memory shortage.
64  */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70 
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES    256
73 #define RX_PULL_LEN      128
74 
75 /*
76  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78  */
79 #define RX_PKT_SKB_LEN   512
80 
81 /*
82  * Max number of Tx descriptors we clean up at a time.  Should be modest as
83  * freeing skbs isn't cheap and it happens while holding locks.  We just need
84  * to free packets faster than they arrive, we eventually catch up and keep
85  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86  * also match the CIDX Flush Threshold.
87  */
88 #define MAX_TX_RECLAIM 32
89 
90 /*
91  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92  * allocating buffers isn't cheap either.
93  */
94 #define MAX_RX_REFILL 16U
95 
96 /*
97  * Period of the Rx queue check timer.  This timer is infrequent as it has
98  * something to do only when the system experiences severe memory shortage.
99  */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Period of the Tx queue check timer.
104  */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106 
107 /*
108  * Max number of Tx descriptors to be reclaimed by the Tx timer.
109  */
110 #define MAX_TIMER_TX_RECLAIM 100
111 
112 /*
113  * Timer index used when backing off due to memory shortage.
114  */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116 
117 /*
118  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119  * for a full sized WR.
120  */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122 
123 /*
124  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125  * into a WR.
126  */
127 #define MAX_IMM_TX_PKT_LEN 256
128 
129 /*
130  * Max size of a WR sent through a control Tx queue.
131  */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133 
134 struct rx_sw_desc {                /* SW state per Rx descriptor */
135 	struct page *page;
136 	dma_addr_t dma_addr;
137 };
138 
139 /*
140  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142  * We could easily support more but there doesn't seem to be much need for
143  * that ...
144  */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147 
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 					  unsigned int mtu)
150 {
151 	struct sge *s = &adapter->sge;
152 
153 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155 
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158 
159 /*
160  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161  * these to specify the buffer size as an index into the SGE Free List Buffer
162  * Size register array.  We also use bit 4, when the buffer has been unmapped
163  * for DMA, but this is of course never sent to the hardware and is only used
164  * to prevent double unmappings.  All of the above requires that the Free List
165  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167  * Free List Buffer alignment is 32 bytes, this works out for us ...
168  */
169 enum {
170 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173 
174 	/*
175 	 * XXX We shouldn't depend on being able to use these indices.
176 	 * XXX Especially when some other Master PF has initialized the
177 	 * XXX adapter or we use the Firmware Configuration File.  We
178 	 * XXX should really search through the Host Buffer Size register
179 	 * XXX array for the appropriately sized buffer indices.
180 	 */
181 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183 
184 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186 };
187 
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK  1
190 
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195 
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 	return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200 
201 /**
202  *	txq_avail - return the number of available slots in a Tx queue
203  *	@q: the Tx queue
204  *
205  *	Returns the number of descriptors in a Tx queue available to write new
206  *	packets.
207  */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 	return q->size - 1 - q->in_use;
211 }
212 
213 /**
214  *	fl_cap - return the capacity of a free-buffer list
215  *	@fl: the FL
216  *
217  *	Returns the capacity of a free-buffer list.  The capacity is less than
218  *	the size because one descriptor needs to be left unpopulated, otherwise
219  *	HW will think the FL is empty.
220  */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224 }
225 
226 /**
227  *	fl_starving - return whether a Free List is starving.
228  *	@adapter: pointer to the adapter
229  *	@fl: the Free List
230  *
231  *	Tests specified Free List to see whether the number of buffers
232  *	available to the hardware has falled below our "starvation"
233  *	threshold.
234  */
235 static inline bool fl_starving(const struct adapter *adapter,
236 			       const struct sge_fl *fl)
237 {
238 	const struct sge *s = &adapter->sge;
239 
240 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242 
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 		  dma_addr_t *addr)
245 {
246 	const skb_frag_t *fp, *end;
247 	const struct skb_shared_info *si;
248 
249 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 	if (dma_mapping_error(dev, *addr))
251 		goto out_err;
252 
253 	si = skb_shinfo(skb);
254 	end = &si->frags[si->nr_frags];
255 
256 	for (fp = si->frags; fp < end; fp++) {
257 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 					   DMA_TO_DEVICE);
259 		if (dma_mapping_error(dev, *addr))
260 			goto unwind;
261 	}
262 	return 0;
263 
264 unwind:
265 	while (fp-- > si->frags)
266 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267 
268 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 	return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273 
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 		      const dma_addr_t *addr)
276 {
277 	const skb_frag_t *fp, *end;
278 	const struct skb_shared_info *si;
279 
280 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281 
282 	si = skb_shinfo(skb);
283 	end = &si->frags[si->nr_frags];
284 	for (fp = si->frags; fp < end; fp++)
285 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287 
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290  *	deferred_unmap_destructor - unmap a packet when it is freed
291  *	@skb: the packet
292  *
293  *	This is the packet destructor used for Tx packets that need to remain
294  *	mapped until they are freed rather than until their Tx descriptors are
295  *	freed.
296  */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302 
303 /**
304  *	free_tx_desc - reclaims Tx descriptors and their buffers
305  *	@adapter: the adapter
306  *	@q: the Tx queue to reclaim descriptors from
307  *	@n: the number of descriptors to reclaim
308  *	@unmap: whether the buffers should be unmapped for DMA
309  *
310  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311  *	Tx buffers.  Called with the Tx queue lock held.
312  */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 		  unsigned int n, bool unmap)
315 {
316 	unsigned int cidx = q->cidx;
317 	struct tx_sw_desc *d;
318 
319 	d = &q->sdesc[cidx];
320 	while (n--) {
321 		if (d->skb) {                       /* an SGL is present */
322 			if (unmap && d->addr[0]) {
323 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 				memset(d->addr, 0, sizeof(d->addr));
325 			}
326 			dev_consume_skb_any(d->skb);
327 			d->skb = NULL;
328 		}
329 		++d;
330 		if (++cidx == q->size) {
331 			cidx = 0;
332 			d = q->sdesc;
333 		}
334 	}
335 	q->cidx = cidx;
336 }
337 
338 /*
339  * Return the number of reclaimable descriptors in a Tx queue.
340  */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 	hw_cidx -= q->cidx;
345 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347 
348 /**
349  *	reclaim_completed_tx - reclaims completed TX Descriptors
350  *	@adap: the adapter
351  *	@q: the Tx queue to reclaim completed descriptors from
352  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353  *	@unmap: whether the buffers should be unmapped for DMA
354  *
355  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356  *	and frees the associated buffers if possible.  If @max == -1, then
357  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358  */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 				       int maxreclaim, bool unmap)
361 {
362 	int reclaim = reclaimable(q);
363 
364 	if (reclaim) {
365 		/*
366 		 * Limit the amount of clean up work we do at a time to keep
367 		 * the Tx lock hold time O(1).
368 		 */
369 		if (maxreclaim < 0)
370 			maxreclaim = MAX_TX_RECLAIM;
371 		if (reclaim > maxreclaim)
372 			reclaim = maxreclaim;
373 
374 		free_tx_desc(adap, q, reclaim, unmap);
375 		q->in_use -= reclaim;
376 	}
377 
378 	return reclaim;
379 }
380 
381 /**
382  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383  *	@adap: the adapter
384  *	@q: the Tx queue to reclaim completed descriptors from
385  *	@unmap: whether the buffers should be unmapped for DMA
386  *
387  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388  *	and frees the associated buffers if possible.  Called with the Tx
389  *	queue locked.
390  */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 				bool unmap)
393 {
394 	(void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397 
398 static inline int get_buf_size(struct adapter *adapter,
399 			       const struct rx_sw_desc *d)
400 {
401 	struct sge *s = &adapter->sge;
402 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 	int buf_size;
404 
405 	switch (rx_buf_size_idx) {
406 	case RX_SMALL_PG_BUF:
407 		buf_size = PAGE_SIZE;
408 		break;
409 
410 	case RX_LARGE_PG_BUF:
411 		buf_size = PAGE_SIZE << s->fl_pg_order;
412 		break;
413 
414 	case RX_SMALL_MTU_BUF:
415 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 		break;
417 
418 	case RX_LARGE_MTU_BUF:
419 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 		break;
421 
422 	default:
423 		BUG();
424 	}
425 
426 	return buf_size;
427 }
428 
429 /**
430  *	free_rx_bufs - free the Rx buffers on an SGE free list
431  *	@adap: the adapter
432  *	@q: the SGE free list to free buffers from
433  *	@n: how many buffers to free
434  *
435  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436  *	buffers must be made inaccessible to HW before calling this function.
437  */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 	while (n--) {
441 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442 
443 		if (is_buf_mapped(d))
444 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 				       get_buf_size(adap, d),
446 				       PCI_DMA_FROMDEVICE);
447 		put_page(d->page);
448 		d->page = NULL;
449 		if (++q->cidx == q->size)
450 			q->cidx = 0;
451 		q->avail--;
452 	}
453 }
454 
455 /**
456  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457  *	@adap: the adapter
458  *	@q: the SGE free list
459  *
460  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461  *	buffer must be made inaccessible to HW before calling this function.
462  *
463  *	This is similar to @free_rx_bufs above but does not free the buffer.
464  *	Do note that the FL still loses any further access to the buffer.
465  */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469 
470 	if (is_buf_mapped(d))
471 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 	d->page = NULL;
474 	if (++q->cidx == q->size)
475 		q->cidx = 0;
476 	q->avail--;
477 }
478 
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 	if (q->pend_cred >= 8) {
482 		u32 val = adap->params.arch.sge_fl_db;
483 
484 		if (is_t4(adap->params.chip))
485 			val |= PIDX_V(q->pend_cred / 8);
486 		else
487 			val |= PIDX_T5_V(q->pend_cred / 8);
488 
489 		/* Make sure all memory writes to the Free List queue are
490 		 * committed before we tell the hardware about them.
491 		 */
492 		wmb();
493 
494 		/* If we don't have access to the new User Doorbell (T5+), use
495 		 * the old doorbell mechanism; otherwise use the new BAR2
496 		 * mechanism.
497 		 */
498 		if (unlikely(q->bar2_addr == NULL)) {
499 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 				     val | QID_V(q->cntxt_id));
501 		} else {
502 			writel(val | QID_V(q->bar2_qid),
503 			       q->bar2_addr + SGE_UDB_KDOORBELL);
504 
505 			/* This Write memory Barrier will force the write to
506 			 * the User Doorbell area to be flushed.
507 			 */
508 			wmb();
509 		}
510 		q->pend_cred &= 7;
511 	}
512 }
513 
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 				  dma_addr_t mapping)
516 {
517 	sd->page = pg;
518 	sd->dma_addr = mapping;      /* includes size low bits */
519 }
520 
521 /**
522  *	refill_fl - refill an SGE Rx buffer ring
523  *	@adap: the adapter
524  *	@q: the ring to refill
525  *	@n: the number of new buffers to allocate
526  *	@gfp: the gfp flags for the allocations
527  *
528  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529  *	allocated with the supplied gfp flags.  The caller must assure that
530  *	@n does not exceed the queue's capacity.  If afterwards the queue is
531  *	found critically low mark it as starving in the bitmap of starving FLs.
532  *
533  *	Returns the number of buffers allocated.
534  */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 			      gfp_t gfp)
537 {
538 	struct sge *s = &adap->sge;
539 	struct page *pg;
540 	dma_addr_t mapping;
541 	unsigned int cred = q->avail;
542 	__be64 *d = &q->desc[q->pidx];
543 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 	int node;
545 
546 #ifdef CONFIG_DEBUG_FS
547 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 		goto out;
549 #endif
550 
551 	gfp |= __GFP_NOWARN;
552 	node = dev_to_node(adap->pdev_dev);
553 
554 	if (s->fl_pg_order == 0)
555 		goto alloc_small_pages;
556 
557 	/*
558 	 * Prefer large buffers
559 	 */
560 	while (n) {
561 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 		if (unlikely(!pg)) {
563 			q->large_alloc_failed++;
564 			break;       /* fall back to single pages */
565 		}
566 
567 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 				       PAGE_SIZE << s->fl_pg_order,
569 				       PCI_DMA_FROMDEVICE);
570 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 			__free_pages(pg, s->fl_pg_order);
572 			q->mapping_err++;
573 			goto out;   /* do not try small pages for this error */
574 		}
575 		mapping |= RX_LARGE_PG_BUF;
576 		*d++ = cpu_to_be64(mapping);
577 
578 		set_rx_sw_desc(sd, pg, mapping);
579 		sd++;
580 
581 		q->avail++;
582 		if (++q->pidx == q->size) {
583 			q->pidx = 0;
584 			sd = q->sdesc;
585 			d = q->desc;
586 		}
587 		n--;
588 	}
589 
590 alloc_small_pages:
591 	while (n--) {
592 		pg = alloc_pages_node(node, gfp, 0);
593 		if (unlikely(!pg)) {
594 			q->alloc_failed++;
595 			break;
596 		}
597 
598 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 				       PCI_DMA_FROMDEVICE);
600 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 			put_page(pg);
602 			q->mapping_err++;
603 			goto out;
604 		}
605 		*d++ = cpu_to_be64(mapping);
606 
607 		set_rx_sw_desc(sd, pg, mapping);
608 		sd++;
609 
610 		q->avail++;
611 		if (++q->pidx == q->size) {
612 			q->pidx = 0;
613 			sd = q->sdesc;
614 			d = q->desc;
615 		}
616 	}
617 
618 out:	cred = q->avail - cred;
619 	q->pend_cred += cred;
620 	ring_fl_db(adap, q);
621 
622 	if (unlikely(fl_starving(adap, q))) {
623 		smp_wmb();
624 		q->low++;
625 		set_bit(q->cntxt_id - adap->sge.egr_start,
626 			adap->sge.starving_fl);
627 	}
628 
629 	return cred;
630 }
631 
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 		  GFP_ATOMIC);
636 }
637 
638 /**
639  *	alloc_ring - allocate resources for an SGE descriptor ring
640  *	@dev: the PCI device's core device
641  *	@nelem: the number of descriptors
642  *	@elem_size: the size of each descriptor
643  *	@sw_size: the size of the SW state associated with each ring element
644  *	@phys: the physical address of the allocated ring
645  *	@metadata: address of the array holding the SW state for the ring
646  *	@stat_size: extra space in HW ring for status information
647  *	@node: preferred node for memory allocations
648  *
649  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650  *	free buffer lists, or response queues.  Each SGE ring requires
651  *	space for its HW descriptors plus, optionally, space for the SW state
652  *	associated with each HW entry (the metadata).  The function returns
653  *	three values: the virtual address for the HW ring (the return value
654  *	of the function), the bus address of the HW ring, and the address
655  *	of the SW ring.
656  */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 			size_t sw_size, dma_addr_t *phys, void *metadata,
659 			size_t stat_size, int node)
660 {
661 	size_t len = nelem * elem_size + stat_size;
662 	void *s = NULL;
663 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664 
665 	if (!p)
666 		return NULL;
667 	if (sw_size) {
668 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669 
670 		if (!s) {
671 			dma_free_coherent(dev, len, p, *phys);
672 			return NULL;
673 		}
674 	}
675 	if (metadata)
676 		*(void **)metadata = s;
677 	return p;
678 }
679 
680 /**
681  *	sgl_len - calculates the size of an SGL of the given capacity
682  *	@n: the number of SGL entries
683  *
684  *	Calculates the number of flits needed for a scatter/gather list that
685  *	can hold the given number of entries.
686  */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695 	 * Address[N+1] is omitted.
696 	 *
697 	 * The following calculation incorporates all of the above.  It's
698 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 	 * first two flits which include the DSGL header, Length0 and
700 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 	 * (n-1) is odd ...
704 	 */
705 	n--;
706 	return (3 * n) / 2 + (n & 1) + 2;
707 }
708 
709 /**
710  *	flits_to_desc - returns the num of Tx descriptors for the given flits
711  *	@n: the number of flits
712  *
713  *	Returns the number of Tx descriptors needed for the supplied number
714  *	of flits.
715  */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 	return DIV_ROUND_UP(n, 8);
720 }
721 
722 /**
723  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724  *	@skb: the packet
725  *
726  *	Returns whether an Ethernet packet is small enough to fit as
727  *	immediate data. Return value corresponds to headroom required.
728  */
729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
730 {
731 	int hdrlen = 0;
732 
733 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
734 	    chip_ver > CHELSIO_T5) {
735 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
736 		hdrlen += sizeof(struct cpl_tx_pkt_core);
737 	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
738 		return 0;
739 	} else {
740 		hdrlen = skb_shinfo(skb)->gso_size ?
741 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
742 		hdrlen += sizeof(struct cpl_tx_pkt);
743 	}
744 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
745 		return hdrlen;
746 	return 0;
747 }
748 
749 /**
750  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
751  *	@skb: the packet
752  *
753  *	Returns the number of flits needed for a Tx WR for the given Ethernet
754  *	packet, including the needed WR and CPL headers.
755  */
756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
757 					 unsigned int chip_ver)
758 {
759 	unsigned int flits;
760 	int hdrlen = is_eth_imm(skb, chip_ver);
761 
762 	/* If the skb is small enough, we can pump it out as a work request
763 	 * with only immediate data.  In that case we just have to have the
764 	 * TX Packet header plus the skb data in the Work Request.
765 	 */
766 
767 	if (hdrlen)
768 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
769 
770 	/* Otherwise, we're going to have to construct a Scatter gather list
771 	 * of the skb body and fragments.  We also include the flits necessary
772 	 * for the TX Packet Work Request and CPL.  We always have a firmware
773 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
774 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
775 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
776 	 * with an embedded TX Packet Write CPL message.
777 	 */
778 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
779 	if (skb_shinfo(skb)->gso_size) {
780 		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
781 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
782 				 sizeof(struct cpl_tx_tnl_lso);
783 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
784 			u32 pkt_hdrlen;
785 
786 			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
787 						     skb_headlen(skb));
788 			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
789 				 round_up(pkt_hdrlen, 16);
790 		} else {
791 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
792 				 sizeof(struct cpl_tx_pkt_lso_core);
793 		}
794 
795 		hdrlen += sizeof(struct cpl_tx_pkt_core);
796 		flits += (hdrlen / sizeof(__be64));
797 	} else {
798 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
799 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
800 	}
801 	return flits;
802 }
803 
804 /**
805  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
806  *	@skb: the packet
807  *
808  *	Returns the number of Tx descriptors needed for the given Ethernet
809  *	packet, including the needed WR and CPL headers.
810  */
811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
812 					 unsigned int chip_ver)
813 {
814 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
815 }
816 
817 /**
818  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
819  *	@skb: the packet
820  *	@q: the Tx queue we are writing into
821  *	@sgl: starting location for writing the SGL
822  *	@end: points right after the end of the SGL
823  *	@start: start offset into skb main-body data to include in the SGL
824  *	@addr: the list of bus addresses for the SGL elements
825  *
826  *	Generates a gather list for the buffers that make up a packet.
827  *	The caller must provide adequate space for the SGL that will be written.
828  *	The SGL includes all of the packet's page fragments and the data in its
829  *	main body except for the first @start bytes.  @sgl must be 16-byte
830  *	aligned and within a Tx descriptor with available space.  @end points
831  *	right after the end of the SGL but does not account for any potential
832  *	wrap around, i.e., @end > @sgl.
833  */
834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
835 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
836 		     const dma_addr_t *addr)
837 {
838 	unsigned int i, len;
839 	struct ulptx_sge_pair *to;
840 	const struct skb_shared_info *si = skb_shinfo(skb);
841 	unsigned int nfrags = si->nr_frags;
842 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
843 
844 	len = skb_headlen(skb) - start;
845 	if (likely(len)) {
846 		sgl->len0 = htonl(len);
847 		sgl->addr0 = cpu_to_be64(addr[0] + start);
848 		nfrags++;
849 	} else {
850 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
851 		sgl->addr0 = cpu_to_be64(addr[1]);
852 	}
853 
854 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
855 			      ULPTX_NSGE_V(nfrags));
856 	if (likely(--nfrags == 0))
857 		return;
858 	/*
859 	 * Most of the complexity below deals with the possibility we hit the
860 	 * end of the queue in the middle of writing the SGL.  For this case
861 	 * only we create the SGL in a temporary buffer and then copy it.
862 	 */
863 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
864 
865 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
866 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
867 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
868 		to->addr[0] = cpu_to_be64(addr[i]);
869 		to->addr[1] = cpu_to_be64(addr[++i]);
870 	}
871 	if (nfrags) {
872 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
873 		to->len[1] = cpu_to_be32(0);
874 		to->addr[0] = cpu_to_be64(addr[i + 1]);
875 	}
876 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
877 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
878 
879 		if (likely(part0))
880 			memcpy(sgl->sge, buf, part0);
881 		part1 = (u8 *)end - (u8 *)q->stat;
882 		memcpy(q->desc, (u8 *)buf + part0, part1);
883 		end = (void *)q->desc + part1;
884 	}
885 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
886 		*end = 0;
887 }
888 EXPORT_SYMBOL(cxgb4_write_sgl);
889 
890 /* This function copies 64 byte coalesced work request to
891  * memory mapped BAR2 space. For coalesced WR SGE fetches
892  * data from the FIFO instead of from Host.
893  */
894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
895 {
896 	int count = 8;
897 
898 	while (count) {
899 		writeq(*src, dst);
900 		src++;
901 		dst++;
902 		count--;
903 	}
904 }
905 
906 /**
907  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
908  *	@adap: the adapter
909  *	@q: the Tx queue
910  *	@n: number of new descriptors to give to HW
911  *
912  *	Ring the doorbel for a Tx queue.
913  */
914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
915 {
916 	/* Make sure that all writes to the TX Descriptors are committed
917 	 * before we tell the hardware about them.
918 	 */
919 	wmb();
920 
921 	/* If we don't have access to the new User Doorbell (T5+), use the old
922 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
923 	 */
924 	if (unlikely(q->bar2_addr == NULL)) {
925 		u32 val = PIDX_V(n);
926 		unsigned long flags;
927 
928 		/* For T4 we need to participate in the Doorbell Recovery
929 		 * mechanism.
930 		 */
931 		spin_lock_irqsave(&q->db_lock, flags);
932 		if (!q->db_disabled)
933 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
934 				     QID_V(q->cntxt_id) | val);
935 		else
936 			q->db_pidx_inc += n;
937 		q->db_pidx = q->pidx;
938 		spin_unlock_irqrestore(&q->db_lock, flags);
939 	} else {
940 		u32 val = PIDX_T5_V(n);
941 
942 		/* T4 and later chips share the same PIDX field offset within
943 		 * the doorbell, but T5 and later shrank the field in order to
944 		 * gain a bit for Doorbell Priority.  The field was absurdly
945 		 * large in the first place (14 bits) so we just use the T5
946 		 * and later limits and warn if a Queue ID is too large.
947 		 */
948 		WARN_ON(val & DBPRIO_F);
949 
950 		/* If we're only writing a single TX Descriptor and we can use
951 		 * Inferred QID registers, we can use the Write Combining
952 		 * Gather Buffer; otherwise we use the simple doorbell.
953 		 */
954 		if (n == 1 && q->bar2_qid == 0) {
955 			int index = (q->pidx
956 				     ? (q->pidx - 1)
957 				     : (q->size - 1));
958 			u64 *wr = (u64 *)&q->desc[index];
959 
960 			cxgb_pio_copy((u64 __iomem *)
961 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
962 				      wr);
963 		} else {
964 			writel(val | QID_V(q->bar2_qid),
965 			       q->bar2_addr + SGE_UDB_KDOORBELL);
966 		}
967 
968 		/* This Write Memory Barrier will force the write to the User
969 		 * Doorbell area to be flushed.  This is needed to prevent
970 		 * writes on different CPUs for the same queue from hitting
971 		 * the adapter out of order.  This is required when some Work
972 		 * Requests take the Write Combine Gather Buffer path (user
973 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
974 		 * take the traditional path where we simply increment the
975 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
976 		 * hardware DMA read the actual Work Request.
977 		 */
978 		wmb();
979 	}
980 }
981 EXPORT_SYMBOL(cxgb4_ring_tx_db);
982 
983 /**
984  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
985  *	@skb: the packet
986  *	@q: the Tx queue where the packet will be inlined
987  *	@pos: starting position in the Tx queue where to inline the packet
988  *
989  *	Inline a packet's contents directly into Tx descriptors, starting at
990  *	the given position within the Tx DMA ring.
991  *	Most of the complexity of this operation is dealing with wrap arounds
992  *	in the middle of the packet we want to inline.
993  */
994 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
995 			 const struct sge_txq *q, void *pos)
996 {
997 	int left = (void *)q->stat - pos;
998 	u64 *p;
999 
1000 	if (likely(skb->len <= left)) {
1001 		if (likely(!skb->data_len))
1002 			skb_copy_from_linear_data(skb, pos, skb->len);
1003 		else
1004 			skb_copy_bits(skb, 0, pos, skb->len);
1005 		pos += skb->len;
1006 	} else {
1007 		skb_copy_bits(skb, 0, pos, left);
1008 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1009 		pos = (void *)q->desc + (skb->len - left);
1010 	}
1011 
1012 	/* 0-pad to multiple of 16 */
1013 	p = PTR_ALIGN(pos, 8);
1014 	if ((uintptr_t)p & 8)
1015 		*p = 0;
1016 }
1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1018 
1019 static void *inline_tx_skb_header(const struct sk_buff *skb,
1020 				  const struct sge_txq *q,  void *pos,
1021 				  int length)
1022 {
1023 	u64 *p;
1024 	int left = (void *)q->stat - pos;
1025 
1026 	if (likely(length <= left)) {
1027 		memcpy(pos, skb->data, length);
1028 		pos += length;
1029 	} else {
1030 		memcpy(pos, skb->data, left);
1031 		memcpy(q->desc, skb->data + left, length - left);
1032 		pos = (void *)q->desc + (length - left);
1033 	}
1034 	/* 0-pad to multiple of 16 */
1035 	p = PTR_ALIGN(pos, 8);
1036 	if ((uintptr_t)p & 8) {
1037 		*p = 0;
1038 		return p + 1;
1039 	}
1040 	return p;
1041 }
1042 
1043 /*
1044  * Figure out what HW csum a packet wants and return the appropriate control
1045  * bits.
1046  */
1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1048 {
1049 	int csum_type;
1050 	bool inner_hdr_csum = false;
1051 	u16 proto, ver;
1052 
1053 	if (skb->encapsulation &&
1054 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1055 		inner_hdr_csum = true;
1056 
1057 	if (inner_hdr_csum) {
1058 		ver = inner_ip_hdr(skb)->version;
1059 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1060 			inner_ipv6_hdr(skb)->nexthdr;
1061 	} else {
1062 		ver = ip_hdr(skb)->version;
1063 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1064 			ipv6_hdr(skb)->nexthdr;
1065 	}
1066 
1067 	if (ver == 4) {
1068 		if (proto == IPPROTO_TCP)
1069 			csum_type = TX_CSUM_TCPIP;
1070 		else if (proto == IPPROTO_UDP)
1071 			csum_type = TX_CSUM_UDPIP;
1072 		else {
1073 nocsum:			/*
1074 			 * unknown protocol, disable HW csum
1075 			 * and hope a bad packet is detected
1076 			 */
1077 			return TXPKT_L4CSUM_DIS_F;
1078 		}
1079 	} else {
1080 		/*
1081 		 * this doesn't work with extension headers
1082 		 */
1083 		if (proto == IPPROTO_TCP)
1084 			csum_type = TX_CSUM_TCPIP6;
1085 		else if (proto == IPPROTO_UDP)
1086 			csum_type = TX_CSUM_UDPIP6;
1087 		else
1088 			goto nocsum;
1089 	}
1090 
1091 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1092 		int eth_hdr_len, l4_len;
1093 		u64 hdr_len;
1094 
1095 		if (inner_hdr_csum) {
1096 			/* This allows checksum offload for all encapsulated
1097 			 * packets like GRE etc..
1098 			 */
1099 			l4_len = skb_inner_network_header_len(skb);
1100 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1101 		} else {
1102 			l4_len = skb_network_header_len(skb);
1103 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1104 		}
1105 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1106 
1107 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1108 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1109 		else
1110 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1111 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1112 	} else {
1113 		int start = skb_transport_offset(skb);
1114 
1115 		return TXPKT_CSUM_TYPE_V(csum_type) |
1116 			TXPKT_CSUM_START_V(start) |
1117 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1118 	}
1119 }
1120 
1121 static void eth_txq_stop(struct sge_eth_txq *q)
1122 {
1123 	netif_tx_stop_queue(q->txq);
1124 	q->q.stops++;
1125 }
1126 
1127 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1128 {
1129 	q->in_use += n;
1130 	q->pidx += n;
1131 	if (q->pidx >= q->size)
1132 		q->pidx -= q->size;
1133 }
1134 
1135 #ifdef CONFIG_CHELSIO_T4_FCOE
1136 static inline int
1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1138 		  const struct port_info *pi, u64 *cntrl)
1139 {
1140 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1141 
1142 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1143 		return 0;
1144 
1145 	if (skb->protocol != htons(ETH_P_FCOE))
1146 		return 0;
1147 
1148 	skb_reset_mac_header(skb);
1149 	skb->mac_len = sizeof(struct ethhdr);
1150 
1151 	skb_set_network_header(skb, skb->mac_len);
1152 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1153 
1154 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1155 		return -ENOTSUPP;
1156 
1157 	/* FC CRC offload */
1158 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1159 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1160 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1161 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1162 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1163 	return 0;
1164 }
1165 #endif /* CONFIG_CHELSIO_T4_FCOE */
1166 
1167 /* Returns tunnel type if hardware supports offloading of the same.
1168  * It is called only for T5 and onwards.
1169  */
1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1171 {
1172 	u8 l4_hdr = 0;
1173 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1174 	struct port_info *pi = netdev_priv(skb->dev);
1175 	struct adapter *adapter = pi->adapter;
1176 
1177 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1178 	    skb->inner_protocol != htons(ETH_P_TEB))
1179 		return tnl_type;
1180 
1181 	switch (vlan_get_protocol(skb)) {
1182 	case htons(ETH_P_IP):
1183 		l4_hdr = ip_hdr(skb)->protocol;
1184 		break;
1185 	case htons(ETH_P_IPV6):
1186 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1187 		break;
1188 	default:
1189 		return tnl_type;
1190 	}
1191 
1192 	switch (l4_hdr) {
1193 	case IPPROTO_UDP:
1194 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1195 			tnl_type = TX_TNL_TYPE_VXLAN;
1196 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1197 			tnl_type = TX_TNL_TYPE_GENEVE;
1198 		break;
1199 	default:
1200 		return tnl_type;
1201 	}
1202 
1203 	return tnl_type;
1204 }
1205 
1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1207 				   struct cpl_tx_tnl_lso *tnl_lso,
1208 				   enum cpl_tx_tnl_lso_type tnl_type)
1209 {
1210 	u32 val;
1211 	int in_eth_xtra_len;
1212 	int l3hdr_len = skb_network_header_len(skb);
1213 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1214 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1215 	bool v6 = (ip_hdr(skb)->version == 6);
1216 
1217 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1218 	      CPL_TX_TNL_LSO_FIRST_F |
1219 	      CPL_TX_TNL_LSO_LAST_F |
1220 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1221 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1222 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1223 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1224 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1225 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1226 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1227 
1228 	tnl_lso->IpIdOffsetOut = 0;
1229 
1230 	/* Get the tunnel header length */
1231 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1232 	in_eth_xtra_len = skb_inner_network_header(skb) -
1233 			  skb_inner_mac_header(skb) - ETH_HLEN;
1234 
1235 	switch (tnl_type) {
1236 	case TX_TNL_TYPE_VXLAN:
1237 	case TX_TNL_TYPE_GENEVE:
1238 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1239 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1240 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1241 		break;
1242 	default:
1243 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1244 		break;
1245 	}
1246 
1247 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1248 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1249 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1250 
1251 	tnl_lso->r1 = 0;
1252 
1253 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1254 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1255 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1256 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1257 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1258 
1259 	tnl_lso->IpIdOffset = htons(0);
1260 
1261 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1262 	tnl_lso->TCPSeqOffset = htonl(0);
1263 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1264 }
1265 
1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1267 				 struct cpl_tx_pkt_lso_core *lso)
1268 {
1269 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1270 	int l3hdr_len = skb_network_header_len(skb);
1271 	const struct skb_shared_info *ssi;
1272 	bool ipv6 = false;
1273 
1274 	ssi = skb_shinfo(skb);
1275 	if (ssi->gso_type & SKB_GSO_TCPV6)
1276 		ipv6 = true;
1277 
1278 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1279 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1280 			      LSO_IPV6_V(ipv6) |
1281 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1282 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1283 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1284 	lso->ipid_ofst = htons(0);
1285 	lso->mss = htons(ssi->gso_size);
1286 	lso->seqno_offset = htonl(0);
1287 	if (is_t4(adap->params.chip))
1288 		lso->len = htonl(skb->len);
1289 	else
1290 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1291 
1292 	return (void *)(lso + 1);
1293 }
1294 
1295 /**
1296  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1297  *	@adap: the adapter
1298  *	@eq: the Ethernet TX Queue
1299  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1300  *
1301  *	We're typically called here to update the state of an Ethernet TX
1302  *	Queue with respect to the hardware's progress in consuming the TX
1303  *	Work Requests that we've put on that Egress Queue.  This happens
1304  *	when we get Egress Queue Update messages and also prophylactically
1305  *	in regular timer-based Ethernet TX Queue maintenance.
1306  */
1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1308 				 int maxreclaim)
1309 {
1310 	unsigned int reclaimed, hw_cidx;
1311 	struct sge_txq *q = &eq->q;
1312 	int hw_in_use;
1313 
1314 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1315 		return 0;
1316 
1317 	/* Reclaim pending completed TX Descriptors. */
1318 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1319 
1320 	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1321 	hw_in_use = q->pidx - hw_cidx;
1322 	if (hw_in_use < 0)
1323 		hw_in_use += q->size;
1324 
1325 	/* If the TX Queue is currently stopped and there's now more than half
1326 	 * the queue available, restart it.  Otherwise bail out since the rest
1327 	 * of what we want do here is with the possibility of shipping any
1328 	 * currently buffered Coalesced TX Work Request.
1329 	 */
1330 	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1331 		netif_tx_wake_queue(eq->txq);
1332 		eq->q.restarts++;
1333 	}
1334 
1335 	__netif_tx_unlock(eq->txq);
1336 	return reclaimed;
1337 }
1338 
1339 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1340 				     struct net_device *dev,
1341 				     u32 min_pkt_len)
1342 {
1343 	u32 max_pkt_len;
1344 
1345 	/* The chip min packet length is 10 octets but some firmware
1346 	 * commands have a minimum packet length requirement. So, play
1347 	 * safe and reject anything shorter than @min_pkt_len.
1348 	 */
1349 	if (unlikely(skb->len < min_pkt_len))
1350 		return -EINVAL;
1351 
1352 	/* Discard the packet if the length is greater than mtu */
1353 	max_pkt_len = ETH_HLEN + dev->mtu;
1354 
1355 	if (skb_vlan_tagged(skb))
1356 		max_pkt_len += VLAN_HLEN;
1357 
1358 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1359 		return -EINVAL;
1360 
1361 	return 0;
1362 }
1363 
1364 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1365 			     u32 hdr_len)
1366 {
1367 	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1368 	wr->u.udpseg.ethlen = skb_network_offset(skb);
1369 	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1370 	wr->u.udpseg.udplen = sizeof(struct udphdr);
1371 	wr->u.udpseg.rtplen = 0;
1372 	wr->u.udpseg.r4 = 0;
1373 	if (skb_shinfo(skb)->gso_size)
1374 		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1375 	else
1376 		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1377 	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1378 	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1379 
1380 	return (void *)(wr + 1);
1381 }
1382 
1383 /**
1384  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1385  *	@skb: the packet
1386  *	@dev: the egress net device
1387  *
1388  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1389  */
1390 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1391 {
1392 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1393 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1394 	unsigned int last_desc, flits, ndesc;
1395 	u32 wr_mid, ctrl0, op, sgl_off = 0;
1396 	const struct skb_shared_info *ssi;
1397 	int len, qidx, credits, ret, left;
1398 	struct tx_sw_desc *sgl_sdesc;
1399 	struct fw_eth_tx_eo_wr *eowr;
1400 	struct fw_eth_tx_pkt_wr *wr;
1401 	struct cpl_tx_pkt_core *cpl;
1402 	const struct port_info *pi;
1403 	bool immediate = false;
1404 	u64 cntrl, *end, *sgl;
1405 	struct sge_eth_txq *q;
1406 	unsigned int chip_ver;
1407 	struct adapter *adap;
1408 
1409 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1410 	if (ret)
1411 		goto out_free;
1412 
1413 	pi = netdev_priv(dev);
1414 	adap = pi->adapter;
1415 	ssi = skb_shinfo(skb);
1416 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1417 	if (xfrm_offload(skb) && !ssi->gso_size)
1418 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1419 #endif /* CHELSIO_IPSEC_INLINE */
1420 
1421 	qidx = skb_get_queue_mapping(skb);
1422 	if (ptp_enabled) {
1423 		spin_lock(&adap->ptp_lock);
1424 		if (!(adap->ptp_tx_skb)) {
1425 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1426 			adap->ptp_tx_skb = skb_get(skb);
1427 		} else {
1428 			spin_unlock(&adap->ptp_lock);
1429 			goto out_free;
1430 		}
1431 		q = &adap->sge.ptptxq;
1432 	} else {
1433 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1434 	}
1435 	skb_tx_timestamp(skb);
1436 
1437 	reclaim_completed_tx(adap, &q->q, -1, true);
1438 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1439 
1440 #ifdef CONFIG_CHELSIO_T4_FCOE
1441 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1442 	if (unlikely(ret == -ENOTSUPP)) {
1443 		if (ptp_enabled)
1444 			spin_unlock(&adap->ptp_lock);
1445 		goto out_free;
1446 	}
1447 #endif /* CONFIG_CHELSIO_T4_FCOE */
1448 
1449 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1450 	flits = calc_tx_flits(skb, chip_ver);
1451 	ndesc = flits_to_desc(flits);
1452 	credits = txq_avail(&q->q) - ndesc;
1453 
1454 	if (unlikely(credits < 0)) {
1455 		eth_txq_stop(q);
1456 		dev_err(adap->pdev_dev,
1457 			"%s: Tx ring %u full while queue awake!\n",
1458 			dev->name, qidx);
1459 		if (ptp_enabled)
1460 			spin_unlock(&adap->ptp_lock);
1461 		return NETDEV_TX_BUSY;
1462 	}
1463 
1464 	if (is_eth_imm(skb, chip_ver))
1465 		immediate = true;
1466 
1467 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1468 		tnl_type = cxgb_encap_offload_supported(skb);
1469 
1470 	last_desc = q->q.pidx + ndesc - 1;
1471 	if (last_desc >= q->q.size)
1472 		last_desc -= q->q.size;
1473 	sgl_sdesc = &q->q.sdesc[last_desc];
1474 
1475 	if (!immediate &&
1476 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1477 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1478 		q->mapping_err++;
1479 		if (ptp_enabled)
1480 			spin_unlock(&adap->ptp_lock);
1481 		goto out_free;
1482 	}
1483 
1484 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1485 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1486 		/* After we're done injecting the Work Request for this
1487 		 * packet, we'll be below our "stop threshold" so stop the TX
1488 		 * Queue now and schedule a request for an SGE Egress Queue
1489 		 * Update message. The queue will get started later on when
1490 		 * the firmware processes this Work Request and sends us an
1491 		 * Egress Queue Status Update message indicating that space
1492 		 * has opened up.
1493 		 */
1494 		eth_txq_stop(q);
1495 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1496 	}
1497 
1498 	wr = (void *)&q->q.desc[q->q.pidx];
1499 	eowr = (void *)&q->q.desc[q->q.pidx];
1500 	wr->equiq_to_len16 = htonl(wr_mid);
1501 	wr->r3 = cpu_to_be64(0);
1502 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1503 		end = (u64 *)eowr + flits;
1504 	else
1505 		end = (u64 *)wr + flits;
1506 
1507 	len = immediate ? skb->len : 0;
1508 	len += sizeof(*cpl);
1509 	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1510 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1511 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1512 
1513 		if (tnl_type)
1514 			len += sizeof(*tnl_lso);
1515 		else
1516 			len += sizeof(*lso);
1517 
1518 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1519 				       FW_WR_IMMDLEN_V(len));
1520 		if (tnl_type) {
1521 			struct iphdr *iph = ip_hdr(skb);
1522 
1523 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1524 			cpl = (void *)(tnl_lso + 1);
1525 			/* Driver is expected to compute partial checksum that
1526 			 * does not include the IP Total Length.
1527 			 */
1528 			if (iph->version == 4) {
1529 				iph->check = 0;
1530 				iph->tot_len = 0;
1531 				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1532 								 iph->ihl));
1533 			}
1534 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1535 				cntrl = hwcsum(adap->params.chip, skb);
1536 		} else {
1537 			cpl = write_tso_wr(adap, skb, lso);
1538 			cntrl = hwcsum(adap->params.chip, skb);
1539 		}
1540 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1541 		q->tso++;
1542 		q->tx_cso += ssi->gso_segs;
1543 	} else if (ssi->gso_size) {
1544 		u64 *start;
1545 		u32 hdrlen;
1546 
1547 		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1548 		len += hdrlen;
1549 		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1550 					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1551 		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1552 		cntrl = hwcsum(adap->params.chip, skb);
1553 
1554 		start = (u64 *)(cpl + 1);
1555 		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1556 						  hdrlen);
1557 		if (unlikely(start > sgl)) {
1558 			left = (u8 *)end - (u8 *)q->q.stat;
1559 			end = (void *)q->q.desc + left;
1560 		}
1561 		sgl_off = hdrlen;
1562 		q->uso++;
1563 		q->tx_cso += ssi->gso_segs;
1564 	} else {
1565 		if (ptp_enabled)
1566 			op = FW_PTP_TX_PKT_WR;
1567 		else
1568 			op = FW_ETH_TX_PKT_WR;
1569 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1570 				       FW_WR_IMMDLEN_V(len));
1571 		cpl = (void *)(wr + 1);
1572 		sgl = (u64 *)(cpl + 1);
1573 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1574 			cntrl = hwcsum(adap->params.chip, skb) |
1575 				TXPKT_IPCSUM_DIS_F;
1576 			q->tx_cso++;
1577 		}
1578 	}
1579 
1580 	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1581 		/* If current position is already at the end of the
1582 		 * txq, reset the current to point to start of the queue
1583 		 * and update the end ptr as well.
1584 		 */
1585 		left = (u8 *)end - (u8 *)q->q.stat;
1586 		end = (void *)q->q.desc + left;
1587 		sgl = (void *)q->q.desc;
1588 	}
1589 
1590 	if (skb_vlan_tag_present(skb)) {
1591 		q->vlan_ins++;
1592 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1593 #ifdef CONFIG_CHELSIO_T4_FCOE
1594 		if (skb->protocol == htons(ETH_P_FCOE))
1595 			cntrl |= TXPKT_VLAN_V(
1596 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1597 #endif /* CONFIG_CHELSIO_T4_FCOE */
1598 	}
1599 
1600 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1601 		TXPKT_PF_V(adap->pf);
1602 	if (ptp_enabled)
1603 		ctrl0 |= TXPKT_TSTAMP_F;
1604 #ifdef CONFIG_CHELSIO_T4_DCB
1605 	if (is_t4(adap->params.chip))
1606 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1607 	else
1608 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1609 #endif
1610 	cpl->ctrl0 = htonl(ctrl0);
1611 	cpl->pack = htons(0);
1612 	cpl->len = htons(skb->len);
1613 	cpl->ctrl1 = cpu_to_be64(cntrl);
1614 
1615 	if (immediate) {
1616 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1617 		dev_consume_skb_any(skb);
1618 	} else {
1619 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1620 				sgl_sdesc->addr);
1621 		skb_orphan(skb);
1622 		sgl_sdesc->skb = skb;
1623 	}
1624 
1625 	txq_advance(&q->q, ndesc);
1626 
1627 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1628 	if (ptp_enabled)
1629 		spin_unlock(&adap->ptp_lock);
1630 	return NETDEV_TX_OK;
1631 
1632 out_free:
1633 	dev_kfree_skb_any(skb);
1634 	return NETDEV_TX_OK;
1635 }
1636 
1637 /* Constants ... */
1638 enum {
1639 	/* Egress Queue sizes, producer and consumer indices are all in units
1640 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1641 	 * concerned, the free list is an Egress Queue (the host produces free
1642 	 * buffers which the hardware consumes) and free list entries are
1643 	 * 64-bit PCI DMA addresses.
1644 	 */
1645 	EQ_UNIT = SGE_EQ_IDXSIZE,
1646 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1647 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1648 
1649 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1650 			       sizeof(struct cpl_tx_pkt_lso_core) +
1651 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1652 };
1653 
1654 /**
1655  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1656  *	@skb: the packet
1657  *
1658  *	Returns whether an Ethernet packet is small enough to fit completely as
1659  *	immediate data.
1660  */
1661 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1662 {
1663 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1664 	 * which does not accommodate immediate data.  We could dike out all
1665 	 * of the support code for immediate data but that would tie our hands
1666 	 * too much if we ever want to enhace the firmware.  It would also
1667 	 * create more differences between the PF and VF Drivers.
1668 	 */
1669 	return false;
1670 }
1671 
1672 /**
1673  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1674  *	@skb: the packet
1675  *
1676  *	Returns the number of flits needed for a TX Work Request for the
1677  *	given Ethernet packet, including the needed WR and CPL headers.
1678  */
1679 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1680 {
1681 	unsigned int flits;
1682 
1683 	/* If the skb is small enough, we can pump it out as a work request
1684 	 * with only immediate data.  In that case we just have to have the
1685 	 * TX Packet header plus the skb data in the Work Request.
1686 	 */
1687 	if (t4vf_is_eth_imm(skb))
1688 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1689 				    sizeof(__be64));
1690 
1691 	/* Otherwise, we're going to have to construct a Scatter gather list
1692 	 * of the skb body and fragments.  We also include the flits necessary
1693 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1694 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1695 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1696 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1697 	 * with an embedded TX Packet Write CPL message.
1698 	 */
1699 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1700 	if (skb_shinfo(skb)->gso_size)
1701 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1702 			  sizeof(struct cpl_tx_pkt_lso_core) +
1703 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1704 	else
1705 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1706 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1707 	return flits;
1708 }
1709 
1710 /**
1711  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1712  *	@skb: the packet
1713  *	@dev: the egress net device
1714  *
1715  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1716  */
1717 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1718 				     struct net_device *dev)
1719 {
1720 	unsigned int last_desc, flits, ndesc;
1721 	const struct skb_shared_info *ssi;
1722 	struct fw_eth_tx_pkt_vm_wr *wr;
1723 	struct tx_sw_desc *sgl_sdesc;
1724 	struct cpl_tx_pkt_core *cpl;
1725 	const struct port_info *pi;
1726 	struct sge_eth_txq *txq;
1727 	struct adapter *adapter;
1728 	int qidx, credits, ret;
1729 	size_t fw_hdr_copy_len;
1730 	u64 cntrl, *end;
1731 	u32 wr_mid;
1732 
1733 	/* The chip minimum packet length is 10 octets but the firmware
1734 	 * command that we are using requires that we copy the Ethernet header
1735 	 * (including the VLAN tag) into the header so we reject anything
1736 	 * smaller than that ...
1737 	 */
1738 	fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1739 			  sizeof(wr->ethtype) + sizeof(wr->vlantci);
1740 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1741 	if (ret)
1742 		goto out_free;
1743 
1744 	/* Figure out which TX Queue we're going to use. */
1745 	pi = netdev_priv(dev);
1746 	adapter = pi->adapter;
1747 	qidx = skb_get_queue_mapping(skb);
1748 	WARN_ON(qidx >= pi->nqsets);
1749 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1750 
1751 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1752 	 * transfers have completed.
1753 	 */
1754 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1755 
1756 	/* Calculate the number of flits and TX Descriptors we're going to
1757 	 * need along with how many TX Descriptors will be left over after
1758 	 * we inject our Work Request.
1759 	 */
1760 	flits = t4vf_calc_tx_flits(skb);
1761 	ndesc = flits_to_desc(flits);
1762 	credits = txq_avail(&txq->q) - ndesc;
1763 
1764 	if (unlikely(credits < 0)) {
1765 		/* Not enough room for this packet's Work Request.  Stop the
1766 		 * TX Queue and return a "busy" condition.  The queue will get
1767 		 * started later on when the firmware informs us that space
1768 		 * has opened up.
1769 		 */
1770 		eth_txq_stop(txq);
1771 		dev_err(adapter->pdev_dev,
1772 			"%s: TX ring %u full while queue awake!\n",
1773 			dev->name, qidx);
1774 		return NETDEV_TX_BUSY;
1775 	}
1776 
1777 	last_desc = txq->q.pidx + ndesc - 1;
1778 	if (last_desc >= txq->q.size)
1779 		last_desc -= txq->q.size;
1780 	sgl_sdesc = &txq->q.sdesc[last_desc];
1781 
1782 	if (!t4vf_is_eth_imm(skb) &&
1783 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1784 				   sgl_sdesc->addr) < 0)) {
1785 		/* We need to map the skb into PCI DMA space (because it can't
1786 		 * be in-lined directly into the Work Request) and the mapping
1787 		 * operation failed.  Record the error and drop the packet.
1788 		 */
1789 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1790 		txq->mapping_err++;
1791 		goto out_free;
1792 	}
1793 
1794 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1795 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1796 		/* After we're done injecting the Work Request for this
1797 		 * packet, we'll be below our "stop threshold" so stop the TX
1798 		 * Queue now and schedule a request for an SGE Egress Queue
1799 		 * Update message.  The queue will get started later on when
1800 		 * the firmware processes this Work Request and sends us an
1801 		 * Egress Queue Status Update message indicating that space
1802 		 * has opened up.
1803 		 */
1804 		eth_txq_stop(txq);
1805 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1806 	}
1807 
1808 	/* Start filling in our Work Request.  Note that we do _not_ handle
1809 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1810 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1811 	 * do something else here.
1812 	 */
1813 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1814 	wr = (void *)&txq->q.desc[txq->q.pidx];
1815 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1816 	wr->r3[0] = cpu_to_be32(0);
1817 	wr->r3[1] = cpu_to_be32(0);
1818 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1819 	end = (u64 *)wr + flits;
1820 
1821 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1822 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1823 	 * just use a TX Packet CPL message.
1824 	 */
1825 	ssi = skb_shinfo(skb);
1826 	if (ssi->gso_size) {
1827 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1828 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1829 		int l3hdr_len = skb_network_header_len(skb);
1830 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1831 
1832 		wr->op_immdlen =
1833 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1834 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1835 						    sizeof(*cpl)));
1836 		 /* Fill in the LSO CPL message. */
1837 		lso->lso_ctrl =
1838 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1839 				    LSO_FIRST_SLICE_F |
1840 				    LSO_LAST_SLICE_F |
1841 				    LSO_IPV6_V(v6) |
1842 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1843 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1844 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1845 		lso->ipid_ofst = cpu_to_be16(0);
1846 		lso->mss = cpu_to_be16(ssi->gso_size);
1847 		lso->seqno_offset = cpu_to_be32(0);
1848 		if (is_t4(adapter->params.chip))
1849 			lso->len = cpu_to_be32(skb->len);
1850 		else
1851 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1852 
1853 		/* Set up TX Packet CPL pointer, control word and perform
1854 		 * accounting.
1855 		 */
1856 		cpl = (void *)(lso + 1);
1857 
1858 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1859 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1860 		else
1861 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1862 
1863 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1864 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1865 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1866 		txq->tso++;
1867 		txq->tx_cso += ssi->gso_segs;
1868 	} else {
1869 		int len;
1870 
1871 		len = (t4vf_is_eth_imm(skb)
1872 		       ? skb->len + sizeof(*cpl)
1873 		       : sizeof(*cpl));
1874 		wr->op_immdlen =
1875 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1876 				    FW_WR_IMMDLEN_V(len));
1877 
1878 		/* Set up TX Packet CPL pointer, control word and perform
1879 		 * accounting.
1880 		 */
1881 		cpl = (void *)(wr + 1);
1882 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1883 			cntrl = hwcsum(adapter->params.chip, skb) |
1884 				TXPKT_IPCSUM_DIS_F;
1885 			txq->tx_cso++;
1886 		} else {
1887 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1888 		}
1889 	}
1890 
1891 	/* If there's a VLAN tag present, add that to the list of things to
1892 	 * do in this Work Request.
1893 	 */
1894 	if (skb_vlan_tag_present(skb)) {
1895 		txq->vlan_ins++;
1896 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1897 	}
1898 
1899 	 /* Fill in the TX Packet CPL message header. */
1900 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1901 				 TXPKT_INTF_V(pi->port_id) |
1902 				 TXPKT_PF_V(0));
1903 	cpl->pack = cpu_to_be16(0);
1904 	cpl->len = cpu_to_be16(skb->len);
1905 	cpl->ctrl1 = cpu_to_be64(cntrl);
1906 
1907 	/* Fill in the body of the TX Packet CPL message with either in-lined
1908 	 * data or a Scatter/Gather List.
1909 	 */
1910 	if (t4vf_is_eth_imm(skb)) {
1911 		/* In-line the packet's data and free the skb since we don't
1912 		 * need it any longer.
1913 		 */
1914 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1915 		dev_consume_skb_any(skb);
1916 	} else {
1917 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
1918 		 * message and retain a pointer to the skb so we can free it
1919 		 * later when its DMA completes.  (We store the skb pointer
1920 		 * in the Software Descriptor corresponding to the last TX
1921 		 * Descriptor used by the Work Request.)
1922 		 *
1923 		 * The retained skb will be freed when the corresponding TX
1924 		 * Descriptors are reclaimed after their DMAs complete.
1925 		 * However, this could take quite a while since, in general,
1926 		 * the hardware is set up to be lazy about sending DMA
1927 		 * completion notifications to us and we mostly perform TX
1928 		 * reclaims in the transmit routine.
1929 		 *
1930 		 * This is good for performamce but means that we rely on new
1931 		 * TX packets arriving to run the destructors of completed
1932 		 * packets, which open up space in their sockets' send queues.
1933 		 * Sometimes we do not get such new packets causing TX to
1934 		 * stall.  A single UDP transmitter is a good example of this
1935 		 * situation.  We have a clean up timer that periodically
1936 		 * reclaims completed packets but it doesn't run often enough
1937 		 * (nor do we want it to) to prevent lengthy stalls.  A
1938 		 * solution to this problem is to run the destructor early,
1939 		 * after the packet is queued but before it's DMAd.  A con is
1940 		 * that we lie to socket memory accounting, but the amount of
1941 		 * extra memory is reasonable (limited by the number of TX
1942 		 * descriptors), the packets do actually get freed quickly by
1943 		 * new packets almost always, and for protocols like TCP that
1944 		 * wait for acks to really free up the data the extra memory
1945 		 * is even less.  On the positive side we run the destructors
1946 		 * on the sending CPU rather than on a potentially different
1947 		 * completing CPU, usually a good thing.
1948 		 *
1949 		 * Run the destructor before telling the DMA engine about the
1950 		 * packet to make sure it doesn't complete and get freed
1951 		 * prematurely.
1952 		 */
1953 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1954 		struct sge_txq *tq = &txq->q;
1955 
1956 		/* If the Work Request header was an exact multiple of our TX
1957 		 * Descriptor length, then it's possible that the starting SGL
1958 		 * pointer lines up exactly with the end of our TX Descriptor
1959 		 * ring.  If that's the case, wrap around to the beginning
1960 		 * here ...
1961 		 */
1962 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1963 			sgl = (void *)tq->desc;
1964 			end = (void *)((void *)tq->desc +
1965 				       ((void *)end - (void *)tq->stat));
1966 		}
1967 
1968 		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
1969 		skb_orphan(skb);
1970 		sgl_sdesc->skb = skb;
1971 	}
1972 
1973 	/* Advance our internal TX Queue state, tell the hardware about
1974 	 * the new TX descriptors and return success.
1975 	 */
1976 	txq_advance(&txq->q, ndesc);
1977 
1978 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1979 	return NETDEV_TX_OK;
1980 
1981 out_free:
1982 	/* An error of some sort happened.  Free the TX skb and tell the
1983 	 * OS that we've "dealt" with the packet ...
1984 	 */
1985 	dev_kfree_skb_any(skb);
1986 	return NETDEV_TX_OK;
1987 }
1988 
1989 /**
1990  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1991  * @q: the SGE control Tx queue
1992  *
1993  * This is a variant of cxgb4_reclaim_completed_tx() that is used
1994  * for Tx queues that send only immediate data (presently just
1995  * the control queues) and	thus do not have any sk_buffs to release.
1996  */
1997 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1998 {
1999 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2000 	int reclaim = hw_cidx - q->cidx;
2001 
2002 	if (reclaim < 0)
2003 		reclaim += q->size;
2004 
2005 	q->in_use -= reclaim;
2006 	q->cidx = hw_cidx;
2007 }
2008 
2009 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2010 {
2011 	u32 val = *idx + n;
2012 
2013 	if (val >= max)
2014 		val -= max;
2015 
2016 	*idx = val;
2017 }
2018 
2019 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2020 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2021 {
2022 	struct tx_sw_desc *d;
2023 
2024 	d = &eosw_txq->desc[eosw_txq->last_cidx];
2025 	while (ndesc--) {
2026 		if (d->skb) {
2027 			if (d->addr[0]) {
2028 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2029 				memset(d->addr, 0, sizeof(d->addr));
2030 			}
2031 			dev_consume_skb_any(d->skb);
2032 			d->skb = NULL;
2033 		}
2034 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2035 				       eosw_txq->ndesc);
2036 		d = &eosw_txq->desc[eosw_txq->last_cidx];
2037 	}
2038 }
2039 
2040 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2041 {
2042 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2043 	eosw_txq->inuse += n;
2044 }
2045 
2046 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2047 				   struct sk_buff *skb)
2048 {
2049 	if (eosw_txq->inuse == eosw_txq->ndesc)
2050 		return -ENOMEM;
2051 
2052 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2053 	return 0;
2054 }
2055 
2056 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2057 {
2058 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2059 }
2060 
2061 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2062 				       struct sk_buff *skb, u32 hdr_len)
2063 {
2064 	u8 flits, nsgl = 0;
2065 	u32 wrlen;
2066 
2067 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2068 	if (skb_shinfo(skb)->gso_size &&
2069 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2070 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2071 
2072 	wrlen += roundup(hdr_len, 16);
2073 
2074 	/* Packet headers + WR + CPLs */
2075 	flits = DIV_ROUND_UP(wrlen, 8);
2076 
2077 	if (skb_shinfo(skb)->nr_frags > 0) {
2078 		if (skb_headlen(skb) - hdr_len)
2079 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2080 		else
2081 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2082 	} else if (skb->len - hdr_len) {
2083 		nsgl = sgl_len(1);
2084 	}
2085 
2086 	return flits + nsgl;
2087 }
2088 
2089 static inline void *write_eo_wr(struct adapter *adap,
2090 				struct sge_eosw_txq *eosw_txq,
2091 				struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2092 				u32 hdr_len, u32 wrlen)
2093 {
2094 	const struct skb_shared_info *ssi = skb_shinfo(skb);
2095 	struct cpl_tx_pkt_core *cpl;
2096 	u32 immd_len, wrlen16;
2097 	bool compl = false;
2098 	u8 ver, proto;
2099 
2100 	ver = ip_hdr(skb)->version;
2101 	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2102 
2103 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2104 	immd_len = sizeof(struct cpl_tx_pkt_core);
2105 	if (skb_shinfo(skb)->gso_size &&
2106 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2107 		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2108 	immd_len += hdr_len;
2109 
2110 	if (!eosw_txq->ncompl ||
2111 	    eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) {
2112 		compl = true;
2113 		eosw_txq->ncompl++;
2114 		eosw_txq->last_compl = 0;
2115 	}
2116 
2117 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2118 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2119 				     FW_WR_COMPL_V(compl));
2120 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2121 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2122 	wr->r3 = 0;
2123 	if (proto == IPPROTO_UDP) {
2124 		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2125 	} else {
2126 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2127 		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2128 		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2129 		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2130 		wr->u.tcpseg.tsclk_tsoff = 0;
2131 		wr->u.tcpseg.r4 = 0;
2132 		wr->u.tcpseg.r5 = 0;
2133 		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2134 
2135 		if (ssi->gso_size) {
2136 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2137 
2138 			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2139 			cpl = write_tso_wr(adap, skb, lso);
2140 		} else {
2141 			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2142 			cpl = (void *)(wr + 1);
2143 		}
2144 	}
2145 
2146 	eosw_txq->cred -= wrlen16;
2147 	eosw_txq->last_compl += wrlen16;
2148 	return cpl;
2149 }
2150 
2151 static void ethofld_hard_xmit(struct net_device *dev,
2152 			      struct sge_eosw_txq *eosw_txq)
2153 {
2154 	struct port_info *pi = netdev2pinfo(dev);
2155 	struct adapter *adap = netdev2adap(dev);
2156 	u32 wrlen, wrlen16, hdr_len, data_len;
2157 	enum sge_eosw_state next_state;
2158 	u64 cntrl, *start, *end, *sgl;
2159 	struct sge_eohw_txq *eohw_txq;
2160 	struct cpl_tx_pkt_core *cpl;
2161 	struct fw_eth_tx_eo_wr *wr;
2162 	bool skip_eotx_wr = false;
2163 	struct tx_sw_desc *d;
2164 	struct sk_buff *skb;
2165 	u8 flits, ndesc;
2166 	int left;
2167 
2168 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2169 	spin_lock(&eohw_txq->lock);
2170 	reclaim_completed_tx_imm(&eohw_txq->q);
2171 
2172 	d = &eosw_txq->desc[eosw_txq->last_pidx];
2173 	skb = d->skb;
2174 	skb_tx_timestamp(skb);
2175 
2176 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2177 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2178 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2179 		hdr_len = skb->len;
2180 		data_len = 0;
2181 		flits = DIV_ROUND_UP(hdr_len, 8);
2182 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2183 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2184 		else
2185 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2186 		skip_eotx_wr = true;
2187 	} else {
2188 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2189 		data_len = skb->len - hdr_len;
2190 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2191 	}
2192 	ndesc = flits_to_desc(flits);
2193 	wrlen = flits * 8;
2194 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2195 
2196 	/* If there are no CPL credits, then wait for credits
2197 	 * to come back and retry again
2198 	 */
2199 	if (unlikely(wrlen16 > eosw_txq->cred))
2200 		goto out_unlock;
2201 
2202 	if (unlikely(skip_eotx_wr)) {
2203 		start = (u64 *)wr;
2204 		eosw_txq->state = next_state;
2205 		goto write_wr_headers;
2206 	}
2207 
2208 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2209 	cntrl = hwcsum(adap->params.chip, skb);
2210 	if (skb_vlan_tag_present(skb))
2211 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2212 
2213 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2214 				 TXPKT_INTF_V(pi->tx_chan) |
2215 				 TXPKT_PF_V(adap->pf));
2216 	cpl->pack = 0;
2217 	cpl->len = cpu_to_be16(skb->len);
2218 	cpl->ctrl1 = cpu_to_be64(cntrl);
2219 
2220 	start = (u64 *)(cpl + 1);
2221 
2222 write_wr_headers:
2223 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2224 					  hdr_len);
2225 	if (data_len) {
2226 		if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) {
2227 			memset(d->addr, 0, sizeof(d->addr));
2228 			eohw_txq->mapping_err++;
2229 			goto out_unlock;
2230 		}
2231 
2232 		end = (u64 *)wr + flits;
2233 		if (unlikely(start > sgl)) {
2234 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2235 			end = (void *)eohw_txq->q.desc + left;
2236 		}
2237 
2238 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2239 			/* If current position is already at the end of the
2240 			 * txq, reset the current to point to start of the queue
2241 			 * and update the end ptr as well.
2242 			 */
2243 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2244 
2245 			end = (void *)eohw_txq->q.desc + left;
2246 			sgl = (void *)eohw_txq->q.desc;
2247 		}
2248 
2249 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2250 				d->addr);
2251 	}
2252 
2253 	if (skb_shinfo(skb)->gso_size) {
2254 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2255 			eohw_txq->uso++;
2256 		else
2257 			eohw_txq->tso++;
2258 		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2259 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2260 		eohw_txq->tx_cso++;
2261 	}
2262 
2263 	if (skb_vlan_tag_present(skb))
2264 		eohw_txq->vlan_ins++;
2265 
2266 	txq_advance(&eohw_txq->q, ndesc);
2267 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2268 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2269 
2270 out_unlock:
2271 	spin_unlock(&eohw_txq->lock);
2272 }
2273 
2274 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2275 {
2276 	struct sk_buff *skb;
2277 	int pktcount;
2278 
2279 	switch (eosw_txq->state) {
2280 	case CXGB4_EO_STATE_ACTIVE:
2281 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2282 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2283 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2284 		if (pktcount < 0)
2285 			pktcount += eosw_txq->ndesc;
2286 		break;
2287 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2288 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2289 	case CXGB4_EO_STATE_CLOSED:
2290 	default:
2291 		return;
2292 	}
2293 
2294 	while (pktcount--) {
2295 		skb = eosw_txq_peek(eosw_txq);
2296 		if (!skb) {
2297 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2298 					       eosw_txq->ndesc);
2299 			continue;
2300 		}
2301 
2302 		ethofld_hard_xmit(dev, eosw_txq);
2303 	}
2304 }
2305 
2306 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2307 				      struct net_device *dev)
2308 {
2309 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2310 	struct port_info *pi = netdev2pinfo(dev);
2311 	struct adapter *adap = netdev2adap(dev);
2312 	struct sge_eosw_txq *eosw_txq;
2313 	u32 qid;
2314 	int ret;
2315 
2316 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2317 	if (ret)
2318 		goto out_free;
2319 
2320 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2321 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2322 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2323 	spin_lock_bh(&eosw_txq->lock);
2324 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2325 		goto out_unlock;
2326 
2327 	ret = eosw_txq_enqueue(eosw_txq, skb);
2328 	if (ret)
2329 		goto out_unlock;
2330 
2331 	/* SKB is queued for processing until credits are available.
2332 	 * So, call the destructor now and we'll free the skb later
2333 	 * after it has been successfully transmitted.
2334 	 */
2335 	skb_orphan(skb);
2336 
2337 	eosw_txq_advance(eosw_txq, 1);
2338 	ethofld_xmit(dev, eosw_txq);
2339 	spin_unlock_bh(&eosw_txq->lock);
2340 	return NETDEV_TX_OK;
2341 
2342 out_unlock:
2343 	spin_unlock_bh(&eosw_txq->lock);
2344 out_free:
2345 	dev_kfree_skb_any(skb);
2346 	return NETDEV_TX_OK;
2347 }
2348 
2349 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2350 {
2351 	struct port_info *pi = netdev_priv(dev);
2352 	u16 qid = skb_get_queue_mapping(skb);
2353 
2354 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2355 		return cxgb4_vf_eth_xmit(skb, dev);
2356 
2357 	if (unlikely(qid >= pi->nqsets))
2358 		return cxgb4_ethofld_xmit(skb, dev);
2359 
2360 	return cxgb4_eth_xmit(skb, dev);
2361 }
2362 
2363 /**
2364  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2365  * @dev - netdevice
2366  * @eotid - ETHOFLD tid to bind/unbind
2367  * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2368  *
2369  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2370  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2371  * a traffic class.
2372  */
2373 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2374 {
2375 	struct port_info *pi = netdev2pinfo(dev);
2376 	struct adapter *adap = netdev2adap(dev);
2377 	enum sge_eosw_state next_state;
2378 	struct sge_eosw_txq *eosw_txq;
2379 	u32 len, len16, nparams = 6;
2380 	struct fw_flowc_wr *flowc;
2381 	struct eotid_entry *entry;
2382 	struct sge_ofld_rxq *rxq;
2383 	struct sk_buff *skb;
2384 	int ret = 0;
2385 
2386 	len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2387 	len16 = DIV_ROUND_UP(len, 16);
2388 
2389 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2390 	if (!entry)
2391 		return -ENOMEM;
2392 
2393 	eosw_txq = (struct sge_eosw_txq *)entry->data;
2394 	if (!eosw_txq)
2395 		return -ENOMEM;
2396 
2397 	skb = alloc_skb(len, GFP_KERNEL);
2398 	if (!skb)
2399 		return -ENOMEM;
2400 
2401 	spin_lock_bh(&eosw_txq->lock);
2402 	if (tc != FW_SCHED_CLS_NONE) {
2403 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2404 			goto out_unlock;
2405 
2406 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2407 	} else {
2408 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2409 			goto out_unlock;
2410 
2411 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2412 	}
2413 
2414 	flowc = __skb_put(skb, len);
2415 	memset(flowc, 0, len);
2416 
2417 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2418 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2419 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2420 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2421 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2422 					   FW_WR_COMPL_V(1));
2423 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2424 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2425 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2426 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2427 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2428 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2429 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2430 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2431 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2432 	flowc->mnemval[4].val = cpu_to_be32(tc);
2433 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2434 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2435 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2436 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2437 
2438 	eosw_txq->cred -= len16;
2439 	eosw_txq->ncompl++;
2440 	eosw_txq->last_compl = 0;
2441 
2442 	ret = eosw_txq_enqueue(eosw_txq, skb);
2443 	if (ret) {
2444 		dev_consume_skb_any(skb);
2445 		goto out_unlock;
2446 	}
2447 
2448 	eosw_txq->state = next_state;
2449 	eosw_txq->flowc_idx = eosw_txq->pidx;
2450 	eosw_txq_advance(eosw_txq, 1);
2451 	ethofld_xmit(dev, eosw_txq);
2452 
2453 out_unlock:
2454 	spin_unlock_bh(&eosw_txq->lock);
2455 	return ret;
2456 }
2457 
2458 /**
2459  *	is_imm - check whether a packet can be sent as immediate data
2460  *	@skb: the packet
2461  *
2462  *	Returns true if a packet can be sent as a WR with immediate data.
2463  */
2464 static inline int is_imm(const struct sk_buff *skb)
2465 {
2466 	return skb->len <= MAX_CTRL_WR_LEN;
2467 }
2468 
2469 /**
2470  *	ctrlq_check_stop - check if a control queue is full and should stop
2471  *	@q: the queue
2472  *	@wr: most recent WR written to the queue
2473  *
2474  *	Check if a control queue has become full and should be stopped.
2475  *	We clean up control queue descriptors very lazily, only when we are out.
2476  *	If the queue is still full after reclaiming any completed descriptors
2477  *	we suspend it and have the last WR wake it up.
2478  */
2479 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2480 {
2481 	reclaim_completed_tx_imm(&q->q);
2482 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2483 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2484 		q->q.stops++;
2485 		q->full = 1;
2486 	}
2487 }
2488 
2489 /**
2490  *	ctrl_xmit - send a packet through an SGE control Tx queue
2491  *	@q: the control queue
2492  *	@skb: the packet
2493  *
2494  *	Send a packet through an SGE control Tx queue.  Packets sent through
2495  *	a control queue must fit entirely as immediate data.
2496  */
2497 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2498 {
2499 	unsigned int ndesc;
2500 	struct fw_wr_hdr *wr;
2501 
2502 	if (unlikely(!is_imm(skb))) {
2503 		WARN_ON(1);
2504 		dev_kfree_skb(skb);
2505 		return NET_XMIT_DROP;
2506 	}
2507 
2508 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2509 	spin_lock(&q->sendq.lock);
2510 
2511 	if (unlikely(q->full)) {
2512 		skb->priority = ndesc;                  /* save for restart */
2513 		__skb_queue_tail(&q->sendq, skb);
2514 		spin_unlock(&q->sendq.lock);
2515 		return NET_XMIT_CN;
2516 	}
2517 
2518 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2519 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2520 
2521 	txq_advance(&q->q, ndesc);
2522 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2523 		ctrlq_check_stop(q, wr);
2524 
2525 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2526 	spin_unlock(&q->sendq.lock);
2527 
2528 	kfree_skb(skb);
2529 	return NET_XMIT_SUCCESS;
2530 }
2531 
2532 /**
2533  *	restart_ctrlq - restart a suspended control queue
2534  *	@data: the control queue to restart
2535  *
2536  *	Resumes transmission on a suspended Tx control queue.
2537  */
2538 static void restart_ctrlq(unsigned long data)
2539 {
2540 	struct sk_buff *skb;
2541 	unsigned int written = 0;
2542 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2543 
2544 	spin_lock(&q->sendq.lock);
2545 	reclaim_completed_tx_imm(&q->q);
2546 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2547 
2548 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2549 		struct fw_wr_hdr *wr;
2550 		unsigned int ndesc = skb->priority;     /* previously saved */
2551 
2552 		written += ndesc;
2553 		/* Write descriptors and free skbs outside the lock to limit
2554 		 * wait times.  q->full is still set so new skbs will be queued.
2555 		 */
2556 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2557 		txq_advance(&q->q, ndesc);
2558 		spin_unlock(&q->sendq.lock);
2559 
2560 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2561 		kfree_skb(skb);
2562 
2563 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2564 			unsigned long old = q->q.stops;
2565 
2566 			ctrlq_check_stop(q, wr);
2567 			if (q->q.stops != old) {          /* suspended anew */
2568 				spin_lock(&q->sendq.lock);
2569 				goto ringdb;
2570 			}
2571 		}
2572 		if (written > 16) {
2573 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2574 			written = 0;
2575 		}
2576 		spin_lock(&q->sendq.lock);
2577 	}
2578 	q->full = 0;
2579 ringdb:
2580 	if (written)
2581 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2582 	spin_unlock(&q->sendq.lock);
2583 }
2584 
2585 /**
2586  *	t4_mgmt_tx - send a management message
2587  *	@adap: the adapter
2588  *	@skb: the packet containing the management message
2589  *
2590  *	Send a management message through control queue 0.
2591  */
2592 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2593 {
2594 	int ret;
2595 
2596 	local_bh_disable();
2597 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2598 	local_bh_enable();
2599 	return ret;
2600 }
2601 
2602 /**
2603  *	is_ofld_imm - check whether a packet can be sent as immediate data
2604  *	@skb: the packet
2605  *
2606  *	Returns true if a packet can be sent as an offload WR with immediate
2607  *	data.  We currently use the same limit as for Ethernet packets.
2608  */
2609 static inline int is_ofld_imm(const struct sk_buff *skb)
2610 {
2611 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2612 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2613 
2614 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2615 		return skb->len <= SGE_MAX_WR_LEN;
2616 	else
2617 		return skb->len <= MAX_IMM_TX_PKT_LEN;
2618 }
2619 
2620 /**
2621  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2622  *	@skb: the packet
2623  *
2624  *	Returns the number of flits needed for the given offload packet.
2625  *	These packets are already fully constructed and no additional headers
2626  *	will be added.
2627  */
2628 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2629 {
2630 	unsigned int flits, cnt;
2631 
2632 	if (is_ofld_imm(skb))
2633 		return DIV_ROUND_UP(skb->len, 8);
2634 
2635 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2636 	cnt = skb_shinfo(skb)->nr_frags;
2637 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2638 		cnt++;
2639 	return flits + sgl_len(cnt);
2640 }
2641 
2642 /**
2643  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2644  *	@adap: the adapter
2645  *	@q: the queue to stop
2646  *
2647  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2648  *	inability to map packets.  A periodic timer attempts to restart
2649  *	queues so marked.
2650  */
2651 static void txq_stop_maperr(struct sge_uld_txq *q)
2652 {
2653 	q->mapping_err++;
2654 	q->q.stops++;
2655 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2656 		q->adap->sge.txq_maperr);
2657 }
2658 
2659 /**
2660  *	ofldtxq_stop - stop an offload Tx queue that has become full
2661  *	@q: the queue to stop
2662  *	@wr: the Work Request causing the queue to become full
2663  *
2664  *	Stops an offload Tx queue that has become full and modifies the packet
2665  *	being written to request a wakeup.
2666  */
2667 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2668 {
2669 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2670 	q->q.stops++;
2671 	q->full = 1;
2672 }
2673 
2674 /**
2675  *	service_ofldq - service/restart a suspended offload queue
2676  *	@q: the offload queue
2677  *
2678  *	Services an offload Tx queue by moving packets from its Pending Send
2679  *	Queue to the Hardware TX ring.  The function starts and ends with the
2680  *	Send Queue locked, but drops the lock while putting the skb at the
2681  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2682  *	allows more skbs to be added to the Send Queue by other threads.
2683  *	The packet being processed at the head of the Pending Send Queue is
2684  *	left on the queue in case we experience DMA Mapping errors, etc.
2685  *	and need to give up and restart later.
2686  *
2687  *	service_ofldq() can be thought of as a task which opportunistically
2688  *	uses other threads execution contexts.  We use the Offload Queue
2689  *	boolean "service_ofldq_running" to make sure that only one instance
2690  *	is ever running at a time ...
2691  */
2692 static void service_ofldq(struct sge_uld_txq *q)
2693 {
2694 	u64 *pos, *before, *end;
2695 	int credits;
2696 	struct sk_buff *skb;
2697 	struct sge_txq *txq;
2698 	unsigned int left;
2699 	unsigned int written = 0;
2700 	unsigned int flits, ndesc;
2701 
2702 	/* If another thread is currently in service_ofldq() processing the
2703 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2704 	 * that we're doing the work and continue.  Examining/modifying
2705 	 * the Offload Queue boolean "service_ofldq_running" must be done
2706 	 * while holding the Pending Send Queue Lock.
2707 	 */
2708 	if (q->service_ofldq_running)
2709 		return;
2710 	q->service_ofldq_running = true;
2711 
2712 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2713 		/* We drop the lock while we're working with the skb at the
2714 		 * head of the Pending Send Queue.  This allows more skbs to
2715 		 * be added to the Pending Send Queue while we're working on
2716 		 * this one.  We don't need to lock to guard the TX Ring
2717 		 * updates because only one thread of execution is ever
2718 		 * allowed into service_ofldq() at a time.
2719 		 */
2720 		spin_unlock(&q->sendq.lock);
2721 
2722 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2723 
2724 		flits = skb->priority;                /* previously saved */
2725 		ndesc = flits_to_desc(flits);
2726 		credits = txq_avail(&q->q) - ndesc;
2727 		BUG_ON(credits < 0);
2728 		if (unlikely(credits < TXQ_STOP_THRES))
2729 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2730 
2731 		pos = (u64 *)&q->q.desc[q->q.pidx];
2732 		if (is_ofld_imm(skb))
2733 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2734 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2735 				       (dma_addr_t *)skb->head)) {
2736 			txq_stop_maperr(q);
2737 			spin_lock(&q->sendq.lock);
2738 			break;
2739 		} else {
2740 			int last_desc, hdr_len = skb_transport_offset(skb);
2741 
2742 			/* The WR headers  may not fit within one descriptor.
2743 			 * So we need to deal with wrap-around here.
2744 			 */
2745 			before = (u64 *)pos;
2746 			end = (u64 *)pos + flits;
2747 			txq = &q->q;
2748 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2749 							   (void *)pos,
2750 							   hdr_len);
2751 			if (before > (u64 *)pos) {
2752 				left = (u8 *)end - (u8 *)txq->stat;
2753 				end = (void *)txq->desc + left;
2754 			}
2755 
2756 			/* If current position is already at the end of the
2757 			 * ofld queue, reset the current to point to
2758 			 * start of the queue and update the end ptr as well.
2759 			 */
2760 			if (pos == (u64 *)txq->stat) {
2761 				left = (u8 *)end - (u8 *)txq->stat;
2762 				end = (void *)txq->desc + left;
2763 				pos = (void *)txq->desc;
2764 			}
2765 
2766 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
2767 					end, hdr_len,
2768 					(dma_addr_t *)skb->head);
2769 #ifdef CONFIG_NEED_DMA_MAP_STATE
2770 			skb->dev = q->adap->port[0];
2771 			skb->destructor = deferred_unmap_destructor;
2772 #endif
2773 			last_desc = q->q.pidx + ndesc - 1;
2774 			if (last_desc >= q->q.size)
2775 				last_desc -= q->q.size;
2776 			q->q.sdesc[last_desc].skb = skb;
2777 		}
2778 
2779 		txq_advance(&q->q, ndesc);
2780 		written += ndesc;
2781 		if (unlikely(written > 32)) {
2782 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2783 			written = 0;
2784 		}
2785 
2786 		/* Reacquire the Pending Send Queue Lock so we can unlink the
2787 		 * skb we've just successfully transferred to the TX Ring and
2788 		 * loop for the next skb which may be at the head of the
2789 		 * Pending Send Queue.
2790 		 */
2791 		spin_lock(&q->sendq.lock);
2792 		__skb_unlink(skb, &q->sendq);
2793 		if (is_ofld_imm(skb))
2794 			kfree_skb(skb);
2795 	}
2796 	if (likely(written))
2797 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2798 
2799 	/*Indicate that no thread is processing the Pending Send Queue
2800 	 * currently.
2801 	 */
2802 	q->service_ofldq_running = false;
2803 }
2804 
2805 /**
2806  *	ofld_xmit - send a packet through an offload queue
2807  *	@q: the Tx offload queue
2808  *	@skb: the packet
2809  *
2810  *	Send an offload packet through an SGE offload queue.
2811  */
2812 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2813 {
2814 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
2815 	spin_lock(&q->sendq.lock);
2816 
2817 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
2818 	 * that results in this new skb being the only one on the queue, start
2819 	 * servicing it.  If there are other skbs already on the list, then
2820 	 * either the queue is currently being processed or it's been stopped
2821 	 * for some reason and it'll be restarted at a later time.  Restart
2822 	 * paths are triggered by events like experiencing a DMA Mapping Error
2823 	 * or filling the Hardware TX Ring.
2824 	 */
2825 	__skb_queue_tail(&q->sendq, skb);
2826 	if (q->sendq.qlen == 1)
2827 		service_ofldq(q);
2828 
2829 	spin_unlock(&q->sendq.lock);
2830 	return NET_XMIT_SUCCESS;
2831 }
2832 
2833 /**
2834  *	restart_ofldq - restart a suspended offload queue
2835  *	@data: the offload queue to restart
2836  *
2837  *	Resumes transmission on a suspended Tx offload queue.
2838  */
2839 static void restart_ofldq(unsigned long data)
2840 {
2841 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2842 
2843 	spin_lock(&q->sendq.lock);
2844 	q->full = 0;            /* the queue actually is completely empty now */
2845 	service_ofldq(q);
2846 	spin_unlock(&q->sendq.lock);
2847 }
2848 
2849 /**
2850  *	skb_txq - return the Tx queue an offload packet should use
2851  *	@skb: the packet
2852  *
2853  *	Returns the Tx queue an offload packet should use as indicated by bits
2854  *	1-15 in the packet's queue_mapping.
2855  */
2856 static inline unsigned int skb_txq(const struct sk_buff *skb)
2857 {
2858 	return skb->queue_mapping >> 1;
2859 }
2860 
2861 /**
2862  *	is_ctrl_pkt - return whether an offload packet is a control packet
2863  *	@skb: the packet
2864  *
2865  *	Returns whether an offload packet should use an OFLD or a CTRL
2866  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
2867  */
2868 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2869 {
2870 	return skb->queue_mapping & 1;
2871 }
2872 
2873 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2874 			   unsigned int tx_uld_type)
2875 {
2876 	struct sge_uld_txq_info *txq_info;
2877 	struct sge_uld_txq *txq;
2878 	unsigned int idx = skb_txq(skb);
2879 
2880 	if (unlikely(is_ctrl_pkt(skb))) {
2881 		/* Single ctrl queue is a requirement for LE workaround path */
2882 		if (adap->tids.nsftids)
2883 			idx = 0;
2884 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2885 	}
2886 
2887 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
2888 	if (unlikely(!txq_info)) {
2889 		WARN_ON(true);
2890 		return NET_XMIT_DROP;
2891 	}
2892 
2893 	txq = &txq_info->uldtxq[idx];
2894 	return ofld_xmit(txq, skb);
2895 }
2896 
2897 /**
2898  *	t4_ofld_send - send an offload packet
2899  *	@adap: the adapter
2900  *	@skb: the packet
2901  *
2902  *	Sends an offload packet.  We use the packet queue_mapping to select the
2903  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2904  *	should be sent as regular or control, bits 1-15 select the queue.
2905  */
2906 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2907 {
2908 	int ret;
2909 
2910 	local_bh_disable();
2911 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2912 	local_bh_enable();
2913 	return ret;
2914 }
2915 
2916 /**
2917  *	cxgb4_ofld_send - send an offload packet
2918  *	@dev: the net device
2919  *	@skb: the packet
2920  *
2921  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2922  *	intended for ULDs.
2923  */
2924 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2925 {
2926 	return t4_ofld_send(netdev2adap(dev), skb);
2927 }
2928 EXPORT_SYMBOL(cxgb4_ofld_send);
2929 
2930 static void *inline_tx_header(const void *src,
2931 			      const struct sge_txq *q,
2932 			      void *pos, int length)
2933 {
2934 	int left = (void *)q->stat - pos;
2935 	u64 *p;
2936 
2937 	if (likely(length <= left)) {
2938 		memcpy(pos, src, length);
2939 		pos += length;
2940 	} else {
2941 		memcpy(pos, src, left);
2942 		memcpy(q->desc, src + left, length - left);
2943 		pos = (void *)q->desc + (length - left);
2944 	}
2945 	/* 0-pad to multiple of 16 */
2946 	p = PTR_ALIGN(pos, 8);
2947 	if ((uintptr_t)p & 8) {
2948 		*p = 0;
2949 		return p + 1;
2950 	}
2951 	return p;
2952 }
2953 
2954 /**
2955  *      ofld_xmit_direct - copy a WR into offload queue
2956  *      @q: the Tx offload queue
2957  *      @src: location of WR
2958  *      @len: WR length
2959  *
2960  *      Copy an immediate WR into an uncontended SGE offload queue.
2961  */
2962 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2963 			    unsigned int len)
2964 {
2965 	unsigned int ndesc;
2966 	int credits;
2967 	u64 *pos;
2968 
2969 	/* Use the lower limit as the cut-off */
2970 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2971 		WARN_ON(1);
2972 		return NET_XMIT_DROP;
2973 	}
2974 
2975 	/* Don't return NET_XMIT_CN here as the current
2976 	 * implementation doesn't queue the request
2977 	 * using an skb when the following conditions not met
2978 	 */
2979 	if (!spin_trylock(&q->sendq.lock))
2980 		return NET_XMIT_DROP;
2981 
2982 	if (q->full || !skb_queue_empty(&q->sendq) ||
2983 	    q->service_ofldq_running) {
2984 		spin_unlock(&q->sendq.lock);
2985 		return NET_XMIT_DROP;
2986 	}
2987 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
2988 	credits = txq_avail(&q->q) - ndesc;
2989 	pos = (u64 *)&q->q.desc[q->q.pidx];
2990 
2991 	/* ofldtxq_stop modifies WR header in-situ */
2992 	inline_tx_header(src, &q->q, pos, len);
2993 	if (unlikely(credits < TXQ_STOP_THRES))
2994 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
2995 	txq_advance(&q->q, ndesc);
2996 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2997 
2998 	spin_unlock(&q->sendq.lock);
2999 	return NET_XMIT_SUCCESS;
3000 }
3001 
3002 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3003 		       const void *src, unsigned int len)
3004 {
3005 	struct sge_uld_txq_info *txq_info;
3006 	struct sge_uld_txq *txq;
3007 	struct adapter *adap;
3008 	int ret;
3009 
3010 	adap = netdev2adap(dev);
3011 
3012 	local_bh_disable();
3013 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3014 	if (unlikely(!txq_info)) {
3015 		WARN_ON(true);
3016 		local_bh_enable();
3017 		return NET_XMIT_DROP;
3018 	}
3019 	txq = &txq_info->uldtxq[idx];
3020 
3021 	ret = ofld_xmit_direct(txq, src, len);
3022 	local_bh_enable();
3023 	return net_xmit_eval(ret);
3024 }
3025 EXPORT_SYMBOL(cxgb4_immdata_send);
3026 
3027 /**
3028  *	t4_crypto_send - send crypto packet
3029  *	@adap: the adapter
3030  *	@skb: the packet
3031  *
3032  *	Sends crypto packet.  We use the packet queue_mapping to select the
3033  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3034  *	should be sent as regular or control, bits 1-15 select the queue.
3035  */
3036 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3037 {
3038 	int ret;
3039 
3040 	local_bh_disable();
3041 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3042 	local_bh_enable();
3043 	return ret;
3044 }
3045 
3046 /**
3047  *	cxgb4_crypto_send - send crypto packet
3048  *	@dev: the net device
3049  *	@skb: the packet
3050  *
3051  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3052  *	intended for ULDs.
3053  */
3054 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3055 {
3056 	return t4_crypto_send(netdev2adap(dev), skb);
3057 }
3058 EXPORT_SYMBOL(cxgb4_crypto_send);
3059 
3060 static inline void copy_frags(struct sk_buff *skb,
3061 			      const struct pkt_gl *gl, unsigned int offset)
3062 {
3063 	int i;
3064 
3065 	/* usually there's just one frag */
3066 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3067 			     gl->frags[0].offset + offset,
3068 			     gl->frags[0].size - offset);
3069 	skb_shinfo(skb)->nr_frags = gl->nfrags;
3070 	for (i = 1; i < gl->nfrags; i++)
3071 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3072 				     gl->frags[i].offset,
3073 				     gl->frags[i].size);
3074 
3075 	/* get a reference to the last page, we don't own it */
3076 	get_page(gl->frags[gl->nfrags - 1].page);
3077 }
3078 
3079 /**
3080  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3081  *	@gl: the gather list
3082  *	@skb_len: size of sk_buff main body if it carries fragments
3083  *	@pull_len: amount of data to move to the sk_buff's main body
3084  *
3085  *	Builds an sk_buff from the given packet gather list.  Returns the
3086  *	sk_buff or %NULL if sk_buff allocation failed.
3087  */
3088 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3089 				   unsigned int skb_len, unsigned int pull_len)
3090 {
3091 	struct sk_buff *skb;
3092 
3093 	/*
3094 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3095 	 * size, which is expected since buffers are at least PAGE_SIZEd.
3096 	 * In this case packets up to RX_COPY_THRES have only one fragment.
3097 	 */
3098 	if (gl->tot_len <= RX_COPY_THRES) {
3099 		skb = dev_alloc_skb(gl->tot_len);
3100 		if (unlikely(!skb))
3101 			goto out;
3102 		__skb_put(skb, gl->tot_len);
3103 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3104 	} else {
3105 		skb = dev_alloc_skb(skb_len);
3106 		if (unlikely(!skb))
3107 			goto out;
3108 		__skb_put(skb, pull_len);
3109 		skb_copy_to_linear_data(skb, gl->va, pull_len);
3110 
3111 		copy_frags(skb, gl, pull_len);
3112 		skb->len = gl->tot_len;
3113 		skb->data_len = skb->len - pull_len;
3114 		skb->truesize += skb->data_len;
3115 	}
3116 out:	return skb;
3117 }
3118 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3119 
3120 /**
3121  *	t4_pktgl_free - free a packet gather list
3122  *	@gl: the gather list
3123  *
3124  *	Releases the pages of a packet gather list.  We do not own the last
3125  *	page on the list and do not free it.
3126  */
3127 static void t4_pktgl_free(const struct pkt_gl *gl)
3128 {
3129 	int n;
3130 	const struct page_frag *p;
3131 
3132 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3133 		put_page(p->page);
3134 }
3135 
3136 /*
3137  * Process an MPS trace packet.  Give it an unused protocol number so it won't
3138  * be delivered to anyone and send it to the stack for capture.
3139  */
3140 static noinline int handle_trace_pkt(struct adapter *adap,
3141 				     const struct pkt_gl *gl)
3142 {
3143 	struct sk_buff *skb;
3144 
3145 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3146 	if (unlikely(!skb)) {
3147 		t4_pktgl_free(gl);
3148 		return 0;
3149 	}
3150 
3151 	if (is_t4(adap->params.chip))
3152 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3153 	else
3154 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3155 
3156 	skb_reset_mac_header(skb);
3157 	skb->protocol = htons(0xffff);
3158 	skb->dev = adap->port[0];
3159 	netif_receive_skb(skb);
3160 	return 0;
3161 }
3162 
3163 /**
3164  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3165  * @adap: the adapter
3166  * @hwtstamps: time stamp structure to update
3167  * @sgetstamp: 60bit iqe timestamp
3168  *
3169  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3170  * which is in Core Clock ticks into ktime_t and assign it
3171  **/
3172 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3173 				     struct skb_shared_hwtstamps *hwtstamps,
3174 				     u64 sgetstamp)
3175 {
3176 	u64 ns;
3177 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3178 
3179 	ns = div_u64(tmp, adap->params.vpd.cclk);
3180 
3181 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3182 	hwtstamps->hwtstamp = ns_to_ktime(ns);
3183 }
3184 
3185 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3186 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3187 {
3188 	struct adapter *adapter = rxq->rspq.adap;
3189 	struct sge *s = &adapter->sge;
3190 	struct port_info *pi;
3191 	int ret;
3192 	struct sk_buff *skb;
3193 
3194 	skb = napi_get_frags(&rxq->rspq.napi);
3195 	if (unlikely(!skb)) {
3196 		t4_pktgl_free(gl);
3197 		rxq->stats.rx_drops++;
3198 		return;
3199 	}
3200 
3201 	copy_frags(skb, gl, s->pktshift);
3202 	if (tnl_hdr_len)
3203 		skb->csum_level = 1;
3204 	skb->len = gl->tot_len - s->pktshift;
3205 	skb->data_len = skb->len;
3206 	skb->truesize += skb->data_len;
3207 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3208 	skb_record_rx_queue(skb, rxq->rspq.idx);
3209 	pi = netdev_priv(skb->dev);
3210 	if (pi->rxtstamp)
3211 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3212 					 gl->sgetstamp);
3213 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3214 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3215 			     PKT_HASH_TYPE_L3);
3216 
3217 	if (unlikely(pkt->vlan_ex)) {
3218 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3219 		rxq->stats.vlan_ex++;
3220 	}
3221 	ret = napi_gro_frags(&rxq->rspq.napi);
3222 	if (ret == GRO_HELD)
3223 		rxq->stats.lro_pkts++;
3224 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3225 		rxq->stats.lro_merged++;
3226 	rxq->stats.pkts++;
3227 	rxq->stats.rx_cso++;
3228 }
3229 
3230 enum {
3231 	RX_NON_PTP_PKT = 0,
3232 	RX_PTP_PKT_SUC = 1,
3233 	RX_PTP_PKT_ERR = 2
3234 };
3235 
3236 /**
3237  *     t4_systim_to_hwstamp - read hardware time stamp
3238  *     @adap: the adapter
3239  *     @skb: the packet
3240  *
3241  *     Read Time Stamp from MPS packet and insert in skb which
3242  *     is forwarded to PTP application
3243  */
3244 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3245 					 struct sk_buff *skb)
3246 {
3247 	struct skb_shared_hwtstamps *hwtstamps;
3248 	struct cpl_rx_mps_pkt *cpl = NULL;
3249 	unsigned char *data;
3250 	int offset;
3251 
3252 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3253 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3254 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3255 		return RX_PTP_PKT_ERR;
3256 
3257 	data = skb->data + sizeof(*cpl);
3258 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3259 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3260 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3261 		return RX_PTP_PKT_ERR;
3262 
3263 	hwtstamps = skb_hwtstamps(skb);
3264 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3265 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
3266 
3267 	return RX_PTP_PKT_SUC;
3268 }
3269 
3270 /**
3271  *     t4_rx_hststamp - Recv PTP Event Message
3272  *     @adap: the adapter
3273  *     @rsp: the response queue descriptor holding the RX_PKT message
3274  *     @skb: the packet
3275  *
3276  *     PTP enabled and MPS packet, read HW timestamp
3277  */
3278 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3279 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3280 {
3281 	int ret;
3282 
3283 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3284 		     !is_t4(adapter->params.chip))) {
3285 		ret = t4_systim_to_hwstamp(adapter, skb);
3286 		if (ret == RX_PTP_PKT_ERR) {
3287 			kfree_skb(skb);
3288 			rxq->stats.rx_drops++;
3289 		}
3290 		return ret;
3291 	}
3292 	return RX_NON_PTP_PKT;
3293 }
3294 
3295 /**
3296  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3297  *      @adap: the adapter
3298  *      @skb: the packet
3299  *      @dev: the ingress net device
3300  *
3301  *      Read hardware timestamp for the loopback PTP Tx event message
3302  */
3303 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3304 			  struct net_device *dev)
3305 {
3306 	struct port_info *pi = netdev_priv(dev);
3307 
3308 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3309 		cxgb4_ptp_read_hwstamp(adapter, pi);
3310 		kfree_skb(skb);
3311 		return 0;
3312 	}
3313 	return 1;
3314 }
3315 
3316 /**
3317  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3318  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3319  *	@rsp: Response Entry pointer into Response Queue
3320  *	@gl: Gather List pointer
3321  *
3322  *	For adapters which support the SGE Doorbell Queue Timer facility,
3323  *	we configure the Ethernet TX Queues to send CIDX Updates to the
3324  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3325  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3326  *	potentially, higher CPU Interrupt load, but allows us to respond
3327  *	much more quickly to the CIDX Updates.  This is important for
3328  *	Upper Layer Software which isn't willing to have a large amount
3329  *	of TX Data outstanding before receiving DMA Completions.
3330  */
3331 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3332 				     const __be64 *rsp,
3333 				     const struct pkt_gl *gl)
3334 {
3335 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3336 	struct port_info *pi = netdev_priv(rspq->netdev);
3337 	struct adapter *adapter = rspq->adap;
3338 	struct sge *s = &adapter->sge;
3339 	struct sge_eth_txq *txq;
3340 
3341 	/* skip RSS header */
3342 	rsp++;
3343 
3344 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3345 	 */
3346 	if (unlikely(opcode == CPL_FW4_MSG &&
3347 		     ((const struct cpl_fw4_msg *)rsp)->type ==
3348 							FW_TYPE_RSSCPL)) {
3349 		rsp++;
3350 		opcode = ((const struct rss_header *)rsp)->opcode;
3351 		rsp++;
3352 	}
3353 
3354 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3355 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3356 			__func__, opcode);
3357 		return;
3358 	}
3359 
3360 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3361 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3362 }
3363 
3364 /**
3365  *	t4_ethrx_handler - process an ingress ethernet packet
3366  *	@q: the response queue that received the packet
3367  *	@rsp: the response queue descriptor holding the RX_PKT message
3368  *	@si: the gather list of packet fragments
3369  *
3370  *	Process an ingress ethernet packet and deliver it to the stack.
3371  */
3372 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3373 		     const struct pkt_gl *si)
3374 {
3375 	bool csum_ok;
3376 	struct sk_buff *skb;
3377 	const struct cpl_rx_pkt *pkt;
3378 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3379 	struct adapter *adapter = q->adap;
3380 	struct sge *s = &q->adap->sge;
3381 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3382 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3383 	u16 err_vec, tnl_hdr_len = 0;
3384 	struct port_info *pi;
3385 	int ret = 0;
3386 
3387 	/* If we're looking at TX Queue CIDX Update, handle that separately
3388 	 * and return.
3389 	 */
3390 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3391 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3392 		t4_tx_completion_handler(q, rsp, si);
3393 		return 0;
3394 	}
3395 
3396 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3397 		return handle_trace_pkt(q->adap, si);
3398 
3399 	pkt = (const struct cpl_rx_pkt *)rsp;
3400 	/* Compressed error vector is enabled for T6 only */
3401 	if (q->adap->params.tp.rx_pkt_encap) {
3402 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3403 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3404 	} else {
3405 		err_vec = be16_to_cpu(pkt->err_vec);
3406 	}
3407 
3408 	csum_ok = pkt->csum_calc && !err_vec &&
3409 		  (q->netdev->features & NETIF_F_RXCSUM);
3410 
3411 	if (err_vec)
3412 		rxq->stats.bad_rx_pkts++;
3413 
3414 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3415 	     tnl_hdr_len) &&
3416 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3417 		do_gro(rxq, si, pkt, tnl_hdr_len);
3418 		return 0;
3419 	}
3420 
3421 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3422 	if (unlikely(!skb)) {
3423 		t4_pktgl_free(si);
3424 		rxq->stats.rx_drops++;
3425 		return 0;
3426 	}
3427 	pi = netdev_priv(q->netdev);
3428 
3429 	/* Handle PTP Event Rx packet */
3430 	if (unlikely(pi->ptp_enable)) {
3431 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3432 		if (ret == RX_PTP_PKT_ERR)
3433 			return 0;
3434 	}
3435 	if (likely(!ret))
3436 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3437 
3438 	/* Handle the PTP Event Tx Loopback packet */
3439 	if (unlikely(pi->ptp_enable && !ret &&
3440 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3441 		     cxgb4_ptp_is_ptp_rx(skb))) {
3442 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3443 			return 0;
3444 	}
3445 
3446 	skb->protocol = eth_type_trans(skb, q->netdev);
3447 	skb_record_rx_queue(skb, q->idx);
3448 	if (skb->dev->features & NETIF_F_RXHASH)
3449 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3450 			     PKT_HASH_TYPE_L3);
3451 
3452 	rxq->stats.pkts++;
3453 
3454 	if (pi->rxtstamp)
3455 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3456 					 si->sgetstamp);
3457 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3458 		if (!pkt->ip_frag) {
3459 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3460 			rxq->stats.rx_cso++;
3461 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3462 			__sum16 c = (__force __sum16)pkt->csum;
3463 			skb->csum = csum_unfold(c);
3464 
3465 			if (tnl_hdr_len) {
3466 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3467 				skb->csum_level = 1;
3468 			} else {
3469 				skb->ip_summed = CHECKSUM_COMPLETE;
3470 			}
3471 			rxq->stats.rx_cso++;
3472 		}
3473 	} else {
3474 		skb_checksum_none_assert(skb);
3475 #ifdef CONFIG_CHELSIO_T4_FCOE
3476 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3477 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3478 
3479 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3480 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3481 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3482 				if (q->adap->params.tp.rx_pkt_encap)
3483 					csum_ok = err_vec &
3484 						  T6_COMPR_RXERR_SUM_F;
3485 				else
3486 					csum_ok = err_vec & RXERR_CSUM_F;
3487 				if (!csum_ok)
3488 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3489 			}
3490 		}
3491 
3492 #undef CPL_RX_PKT_FLAGS
3493 #endif /* CONFIG_CHELSIO_T4_FCOE */
3494 	}
3495 
3496 	if (unlikely(pkt->vlan_ex)) {
3497 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3498 		rxq->stats.vlan_ex++;
3499 	}
3500 	skb_mark_napi_id(skb, &q->napi);
3501 	netif_receive_skb(skb);
3502 	return 0;
3503 }
3504 
3505 /**
3506  *	restore_rx_bufs - put back a packet's Rx buffers
3507  *	@si: the packet gather list
3508  *	@q: the SGE free list
3509  *	@frags: number of FL buffers to restore
3510  *
3511  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3512  *	have already been unmapped and are left unmapped, we mark them so to
3513  *	prevent further unmapping attempts.
3514  *
3515  *	This function undoes a series of @unmap_rx_buf calls when we find out
3516  *	that the current packet can't be processed right away afterall and we
3517  *	need to come back to it later.  This is a very rare event and there's
3518  *	no effort to make this particularly efficient.
3519  */
3520 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3521 			    int frags)
3522 {
3523 	struct rx_sw_desc *d;
3524 
3525 	while (frags--) {
3526 		if (q->cidx == 0)
3527 			q->cidx = q->size - 1;
3528 		else
3529 			q->cidx--;
3530 		d = &q->sdesc[q->cidx];
3531 		d->page = si->frags[frags].page;
3532 		d->dma_addr |= RX_UNMAPPED_BUF;
3533 		q->avail++;
3534 	}
3535 }
3536 
3537 /**
3538  *	is_new_response - check if a response is newly written
3539  *	@r: the response descriptor
3540  *	@q: the response queue
3541  *
3542  *	Returns true if a response descriptor contains a yet unprocessed
3543  *	response.
3544  */
3545 static inline bool is_new_response(const struct rsp_ctrl *r,
3546 				   const struct sge_rspq *q)
3547 {
3548 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3549 }
3550 
3551 /**
3552  *	rspq_next - advance to the next entry in a response queue
3553  *	@q: the queue
3554  *
3555  *	Updates the state of a response queue to advance it to the next entry.
3556  */
3557 static inline void rspq_next(struct sge_rspq *q)
3558 {
3559 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3560 	if (unlikely(++q->cidx == q->size)) {
3561 		q->cidx = 0;
3562 		q->gen ^= 1;
3563 		q->cur_desc = q->desc;
3564 	}
3565 }
3566 
3567 /**
3568  *	process_responses - process responses from an SGE response queue
3569  *	@q: the ingress queue to process
3570  *	@budget: how many responses can be processed in this round
3571  *
3572  *	Process responses from an SGE response queue up to the supplied budget.
3573  *	Responses include received packets as well as control messages from FW
3574  *	or HW.
3575  *
3576  *	Additionally choose the interrupt holdoff time for the next interrupt
3577  *	on this queue.  If the system is under memory shortage use a fairly
3578  *	long delay to help recovery.
3579  */
3580 static int process_responses(struct sge_rspq *q, int budget)
3581 {
3582 	int ret, rsp_type;
3583 	int budget_left = budget;
3584 	const struct rsp_ctrl *rc;
3585 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3586 	struct adapter *adapter = q->adap;
3587 	struct sge *s = &adapter->sge;
3588 
3589 	while (likely(budget_left)) {
3590 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3591 		if (!is_new_response(rc, q)) {
3592 			if (q->flush_handler)
3593 				q->flush_handler(q);
3594 			break;
3595 		}
3596 
3597 		dma_rmb();
3598 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3599 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3600 			struct page_frag *fp;
3601 			struct pkt_gl si;
3602 			const struct rx_sw_desc *rsd;
3603 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3604 
3605 			if (len & RSPD_NEWBUF_F) {
3606 				if (likely(q->offset > 0)) {
3607 					free_rx_bufs(q->adap, &rxq->fl, 1);
3608 					q->offset = 0;
3609 				}
3610 				len = RSPD_LEN_G(len);
3611 			}
3612 			si.tot_len = len;
3613 
3614 			/* gather packet fragments */
3615 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3616 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3617 				bufsz = get_buf_size(adapter, rsd);
3618 				fp->page = rsd->page;
3619 				fp->offset = q->offset;
3620 				fp->size = min(bufsz, len);
3621 				len -= fp->size;
3622 				if (!len)
3623 					break;
3624 				unmap_rx_buf(q->adap, &rxq->fl);
3625 			}
3626 
3627 			si.sgetstamp = SGE_TIMESTAMP_G(
3628 					be64_to_cpu(rc->last_flit));
3629 			/*
3630 			 * Last buffer remains mapped so explicitly make it
3631 			 * coherent for CPU access.
3632 			 */
3633 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3634 						get_buf_addr(rsd),
3635 						fp->size, DMA_FROM_DEVICE);
3636 
3637 			si.va = page_address(si.frags[0].page) +
3638 				si.frags[0].offset;
3639 			prefetch(si.va);
3640 
3641 			si.nfrags = frags + 1;
3642 			ret = q->handler(q, q->cur_desc, &si);
3643 			if (likely(ret == 0))
3644 				q->offset += ALIGN(fp->size, s->fl_align);
3645 			else
3646 				restore_rx_bufs(&si, &rxq->fl, frags);
3647 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3648 			ret = q->handler(q, q->cur_desc, NULL);
3649 		} else {
3650 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3651 		}
3652 
3653 		if (unlikely(ret)) {
3654 			/* couldn't process descriptor, back off for recovery */
3655 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3656 			break;
3657 		}
3658 
3659 		rspq_next(q);
3660 		budget_left--;
3661 	}
3662 
3663 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3664 		__refill_fl(q->adap, &rxq->fl);
3665 	return budget - budget_left;
3666 }
3667 
3668 /**
3669  *	napi_rx_handler - the NAPI handler for Rx processing
3670  *	@napi: the napi instance
3671  *	@budget: how many packets we can process in this round
3672  *
3673  *	Handler for new data events when using NAPI.  This does not need any
3674  *	locking or protection from interrupts as data interrupts are off at
3675  *	this point and other adapter interrupts do not interfere (the latter
3676  *	in not a concern at all with MSI-X as non-data interrupts then have
3677  *	a separate handler).
3678  */
3679 static int napi_rx_handler(struct napi_struct *napi, int budget)
3680 {
3681 	unsigned int params;
3682 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3683 	int work_done;
3684 	u32 val;
3685 
3686 	work_done = process_responses(q, budget);
3687 	if (likely(work_done < budget)) {
3688 		int timer_index;
3689 
3690 		napi_complete_done(napi, work_done);
3691 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3692 
3693 		if (q->adaptive_rx) {
3694 			if (work_done > max(timer_pkt_quota[timer_index],
3695 					    MIN_NAPI_WORK))
3696 				timer_index = (timer_index + 1);
3697 			else
3698 				timer_index = timer_index - 1;
3699 
3700 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3701 			q->next_intr_params =
3702 					QINTR_TIMER_IDX_V(timer_index) |
3703 					QINTR_CNT_EN_V(0);
3704 			params = q->next_intr_params;
3705 		} else {
3706 			params = q->next_intr_params;
3707 			q->next_intr_params = q->intr_params;
3708 		}
3709 	} else
3710 		params = QINTR_TIMER_IDX_V(7);
3711 
3712 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
3713 
3714 	/* If we don't have access to the new User GTS (T5+), use the old
3715 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3716 	 */
3717 	if (unlikely(q->bar2_addr == NULL)) {
3718 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3719 			     val | INGRESSQID_V((u32)q->cntxt_id));
3720 	} else {
3721 		writel(val | INGRESSQID_V(q->bar2_qid),
3722 		       q->bar2_addr + SGE_UDB_GTS);
3723 		wmb();
3724 	}
3725 	return work_done;
3726 }
3727 
3728 void cxgb4_ethofld_restart(unsigned long data)
3729 {
3730 	struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3731 	int pktcount;
3732 
3733 	spin_lock(&eosw_txq->lock);
3734 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3735 	if (pktcount < 0)
3736 		pktcount += eosw_txq->ndesc;
3737 
3738 	if (pktcount) {
3739 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3740 					 eosw_txq, pktcount);
3741 		eosw_txq->inuse -= pktcount;
3742 	}
3743 
3744 	/* There may be some packets waiting for completions. So,
3745 	 * attempt to send these packets now.
3746 	 */
3747 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
3748 	spin_unlock(&eosw_txq->lock);
3749 }
3750 
3751 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3752  * @q: the response queue that received the packet
3753  * @rsp: the response queue descriptor holding the CPL message
3754  * @si: the gather list of packet fragments
3755  *
3756  * Process a ETHOFLD Tx completion. Increment the cidx here, but
3757  * free up the descriptors in a tasklet later.
3758  */
3759 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3760 			     const struct pkt_gl *si)
3761 {
3762 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3763 
3764 	/* skip RSS header */
3765 	rsp++;
3766 
3767 	if (opcode == CPL_FW4_ACK) {
3768 		const struct cpl_fw4_ack *cpl;
3769 		struct sge_eosw_txq *eosw_txq;
3770 		struct eotid_entry *entry;
3771 		struct sk_buff *skb;
3772 		u32 hdr_len, eotid;
3773 		u8 flits, wrlen16;
3774 		int credits;
3775 
3776 		cpl = (const struct cpl_fw4_ack *)rsp;
3777 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3778 			q->adap->tids.eotid_base;
3779 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3780 		if (!entry)
3781 			goto out_done;
3782 
3783 		eosw_txq = (struct sge_eosw_txq *)entry->data;
3784 		if (!eosw_txq)
3785 			goto out_done;
3786 
3787 		spin_lock(&eosw_txq->lock);
3788 		credits = cpl->credits;
3789 		while (credits > 0) {
3790 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
3791 			if (!skb)
3792 				break;
3793 
3794 			if (unlikely((eosw_txq->state ==
3795 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3796 				      eosw_txq->state ==
3797 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3798 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
3799 				flits = DIV_ROUND_UP(skb->len, 8);
3800 				if (eosw_txq->state ==
3801 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3802 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3803 				else
3804 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3805 				complete(&eosw_txq->completion);
3806 			} else {
3807 				hdr_len = eth_get_headlen(eosw_txq->netdev,
3808 							  skb->data,
3809 							  skb_headlen(skb));
3810 				flits = ethofld_calc_tx_flits(q->adap, skb,
3811 							      hdr_len);
3812 			}
3813 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
3814 					       eosw_txq->ndesc);
3815 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3816 			credits -= wrlen16;
3817 		}
3818 
3819 		eosw_txq->cred += cpl->credits;
3820 		eosw_txq->ncompl--;
3821 
3822 		spin_unlock(&eosw_txq->lock);
3823 
3824 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3825 		 * if there were packets waiting for completion.
3826 		 */
3827 		tasklet_schedule(&eosw_txq->qresume_tsk);
3828 	}
3829 
3830 out_done:
3831 	return 0;
3832 }
3833 
3834 /*
3835  * The MSI-X interrupt handler for an SGE response queue.
3836  */
3837 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3838 {
3839 	struct sge_rspq *q = cookie;
3840 
3841 	napi_schedule(&q->napi);
3842 	return IRQ_HANDLED;
3843 }
3844 
3845 /*
3846  * Process the indirect interrupt entries in the interrupt queue and kick off
3847  * NAPI for each queue that has generated an entry.
3848  */
3849 static unsigned int process_intrq(struct adapter *adap)
3850 {
3851 	unsigned int credits;
3852 	const struct rsp_ctrl *rc;
3853 	struct sge_rspq *q = &adap->sge.intrq;
3854 	u32 val;
3855 
3856 	spin_lock(&adap->sge.intrq_lock);
3857 	for (credits = 0; ; credits++) {
3858 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3859 		if (!is_new_response(rc, q))
3860 			break;
3861 
3862 		dma_rmb();
3863 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3864 			unsigned int qid = ntohl(rc->pldbuflen_qid);
3865 
3866 			qid -= adap->sge.ingr_start;
3867 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
3868 		}
3869 
3870 		rspq_next(q);
3871 	}
3872 
3873 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3874 
3875 	/* If we don't have access to the new User GTS (T5+), use the old
3876 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3877 	 */
3878 	if (unlikely(q->bar2_addr == NULL)) {
3879 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3880 			     val | INGRESSQID_V(q->cntxt_id));
3881 	} else {
3882 		writel(val | INGRESSQID_V(q->bar2_qid),
3883 		       q->bar2_addr + SGE_UDB_GTS);
3884 		wmb();
3885 	}
3886 	spin_unlock(&adap->sge.intrq_lock);
3887 	return credits;
3888 }
3889 
3890 /*
3891  * The MSI interrupt handler, which handles data events from SGE response queues
3892  * as well as error and other async events as they all use the same MSI vector.
3893  */
3894 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3895 {
3896 	struct adapter *adap = cookie;
3897 
3898 	if (adap->flags & CXGB4_MASTER_PF)
3899 		t4_slow_intr_handler(adap);
3900 	process_intrq(adap);
3901 	return IRQ_HANDLED;
3902 }
3903 
3904 /*
3905  * Interrupt handler for legacy INTx interrupts.
3906  * Handles data events from SGE response queues as well as error and other
3907  * async events as they all use the same interrupt line.
3908  */
3909 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3910 {
3911 	struct adapter *adap = cookie;
3912 
3913 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3914 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3915 	    process_intrq(adap))
3916 		return IRQ_HANDLED;
3917 	return IRQ_NONE;             /* probably shared interrupt */
3918 }
3919 
3920 /**
3921  *	t4_intr_handler - select the top-level interrupt handler
3922  *	@adap: the adapter
3923  *
3924  *	Selects the top-level interrupt handler based on the type of interrupts
3925  *	(MSI-X, MSI, or INTx).
3926  */
3927 irq_handler_t t4_intr_handler(struct adapter *adap)
3928 {
3929 	if (adap->flags & CXGB4_USING_MSIX)
3930 		return t4_sge_intr_msix;
3931 	if (adap->flags & CXGB4_USING_MSI)
3932 		return t4_intr_msi;
3933 	return t4_intr_intx;
3934 }
3935 
3936 static void sge_rx_timer_cb(struct timer_list *t)
3937 {
3938 	unsigned long m;
3939 	unsigned int i;
3940 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3941 	struct sge *s = &adap->sge;
3942 
3943 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3944 		for (m = s->starving_fl[i]; m; m &= m - 1) {
3945 			struct sge_eth_rxq *rxq;
3946 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3947 			struct sge_fl *fl = s->egr_map[id];
3948 
3949 			clear_bit(id, s->starving_fl);
3950 			smp_mb__after_atomic();
3951 
3952 			if (fl_starving(adap, fl)) {
3953 				rxq = container_of(fl, struct sge_eth_rxq, fl);
3954 				if (napi_reschedule(&rxq->rspq.napi))
3955 					fl->starving++;
3956 				else
3957 					set_bit(id, s->starving_fl);
3958 			}
3959 		}
3960 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
3961 	 * global Master PF activities like checking for chip ingress stalls,
3962 	 * etc.
3963 	 */
3964 	if (!(adap->flags & CXGB4_MASTER_PF))
3965 		goto done;
3966 
3967 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
3968 
3969 done:
3970 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
3971 }
3972 
3973 static void sge_tx_timer_cb(struct timer_list *t)
3974 {
3975 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
3976 	struct sge *s = &adap->sge;
3977 	unsigned long m, period;
3978 	unsigned int i, budget;
3979 
3980 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3981 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
3982 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
3983 			struct sge_uld_txq *txq = s->egr_map[id];
3984 
3985 			clear_bit(id, s->txq_maperr);
3986 			tasklet_schedule(&txq->qresume_tsk);
3987 		}
3988 
3989 	if (!is_t4(adap->params.chip)) {
3990 		struct sge_eth_txq *q = &s->ptptxq;
3991 		int avail;
3992 
3993 		spin_lock(&adap->ptp_lock);
3994 		avail = reclaimable(&q->q);
3995 
3996 		if (avail) {
3997 			free_tx_desc(adap, &q->q, avail, false);
3998 			q->q.in_use -= avail;
3999 		}
4000 		spin_unlock(&adap->ptp_lock);
4001 	}
4002 
4003 	budget = MAX_TIMER_TX_RECLAIM;
4004 	i = s->ethtxq_rover;
4005 	do {
4006 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4007 						       budget);
4008 		if (!budget)
4009 			break;
4010 
4011 		if (++i >= s->ethqsets)
4012 			i = 0;
4013 	} while (i != s->ethtxq_rover);
4014 	s->ethtxq_rover = i;
4015 
4016 	if (budget == 0) {
4017 		/* If we found too many reclaimable packets schedule a timer
4018 		 * in the near future to continue where we left off.
4019 		 */
4020 		period = 2;
4021 	} else {
4022 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4023 		 * at the normal period.
4024 		 */
4025 		period = TX_QCHECK_PERIOD;
4026 	}
4027 
4028 	mod_timer(&s->tx_timer, jiffies + period);
4029 }
4030 
4031 /**
4032  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4033  *	@adapter: the adapter
4034  *	@qid: the SGE Queue ID
4035  *	@qtype: the SGE Queue Type (Egress or Ingress)
4036  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4037  *
4038  *	Returns the BAR2 address for the SGE Queue Registers associated with
4039  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4040  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4041  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4042  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4043  */
4044 static void __iomem *bar2_address(struct adapter *adapter,
4045 				  unsigned int qid,
4046 				  enum t4_bar2_qtype qtype,
4047 				  unsigned int *pbar2_qid)
4048 {
4049 	u64 bar2_qoffset;
4050 	int ret;
4051 
4052 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4053 				&bar2_qoffset, pbar2_qid);
4054 	if (ret)
4055 		return NULL;
4056 
4057 	return adapter->bar2 + bar2_qoffset;
4058 }
4059 
4060 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4061  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4062  */
4063 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4064 		     struct net_device *dev, int intr_idx,
4065 		     struct sge_fl *fl, rspq_handler_t hnd,
4066 		     rspq_flush_handler_t flush_hnd, int cong)
4067 {
4068 	int ret, flsz = 0;
4069 	struct fw_iq_cmd c;
4070 	struct sge *s = &adap->sge;
4071 	struct port_info *pi = netdev_priv(dev);
4072 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4073 
4074 	/* Size needs to be multiple of 16, including status entry. */
4075 	iq->size = roundup(iq->size, 16);
4076 
4077 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4078 			      &iq->phys_addr, NULL, 0,
4079 			      dev_to_node(adap->pdev_dev));
4080 	if (!iq->desc)
4081 		return -ENOMEM;
4082 
4083 	memset(&c, 0, sizeof(c));
4084 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4085 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4086 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4087 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4088 				 FW_LEN16(c));
4089 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4090 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4091 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4092 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4093 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4094 							-intr_idx - 1));
4095 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4096 		FW_IQ_CMD_IQGTSMODE_F |
4097 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4098 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4099 	c.iqsize = htons(iq->size);
4100 	c.iqaddr = cpu_to_be64(iq->phys_addr);
4101 	if (cong >= 0)
4102 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4103 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4104 							:  FW_IQ_IQTYPE_OFLD));
4105 
4106 	if (fl) {
4107 		unsigned int chip_ver =
4108 			CHELSIO_CHIP_VERSION(adap->params.chip);
4109 
4110 		/* Allocate the ring for the hardware free list (with space
4111 		 * for its status page) along with the associated software
4112 		 * descriptor ring.  The free list size needs to be a multiple
4113 		 * of the Egress Queue Unit and at least 2 Egress Units larger
4114 		 * than the SGE's Egress Congrestion Threshold
4115 		 * (fl_starve_thres - 1).
4116 		 */
4117 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4118 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4119 		fl->size = roundup(fl->size, 8);
4120 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4121 				      sizeof(struct rx_sw_desc), &fl->addr,
4122 				      &fl->sdesc, s->stat_len,
4123 				      dev_to_node(adap->pdev_dev));
4124 		if (!fl->desc)
4125 			goto fl_nomem;
4126 
4127 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4128 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4129 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4130 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4131 					     FW_IQ_CMD_FL0PADEN_F);
4132 		if (cong >= 0)
4133 			c.iqns_to_fl0congen |=
4134 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4135 				      FW_IQ_CMD_FL0CONGCIF_F |
4136 				      FW_IQ_CMD_FL0CONGEN_F);
4137 		/* In T6, for egress queue type FL there is internal overhead
4138 		 * of 16B for header going into FLM module.  Hence the maximum
4139 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4140 		 * doesn't coalesce fetch requests if more than 64 bytes of
4141 		 * Free List pointers are provided, so we use a 128-byte Fetch
4142 		 * Burst Minimum there (T6 implements coalescing so we can use
4143 		 * the smaller 64-byte value there).
4144 		 */
4145 		c.fl0dcaen_to_fl0cidxfthresh =
4146 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4147 						   FETCHBURSTMIN_128B_X :
4148 						   FETCHBURSTMIN_64B_T6_X) |
4149 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4150 						   FETCHBURSTMAX_512B_X :
4151 						   FETCHBURSTMAX_256B_X));
4152 		c.fl0size = htons(flsz);
4153 		c.fl0addr = cpu_to_be64(fl->addr);
4154 	}
4155 
4156 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4157 	if (ret)
4158 		goto err;
4159 
4160 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4161 	iq->cur_desc = iq->desc;
4162 	iq->cidx = 0;
4163 	iq->gen = 1;
4164 	iq->next_intr_params = iq->intr_params;
4165 	iq->cntxt_id = ntohs(c.iqid);
4166 	iq->abs_id = ntohs(c.physiqid);
4167 	iq->bar2_addr = bar2_address(adap,
4168 				     iq->cntxt_id,
4169 				     T4_BAR2_QTYPE_INGRESS,
4170 				     &iq->bar2_qid);
4171 	iq->size--;                           /* subtract status entry */
4172 	iq->netdev = dev;
4173 	iq->handler = hnd;
4174 	iq->flush_handler = flush_hnd;
4175 
4176 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4177 	skb_queue_head_init(&iq->lro_mgr.lroq);
4178 
4179 	/* set offset to -1 to distinguish ingress queues without FL */
4180 	iq->offset = fl ? 0 : -1;
4181 
4182 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4183 
4184 	if (fl) {
4185 		fl->cntxt_id = ntohs(c.fl0id);
4186 		fl->avail = fl->pend_cred = 0;
4187 		fl->pidx = fl->cidx = 0;
4188 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4189 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4190 
4191 		/* Note, we must initialize the BAR2 Free List User Doorbell
4192 		 * information before refilling the Free List!
4193 		 */
4194 		fl->bar2_addr = bar2_address(adap,
4195 					     fl->cntxt_id,
4196 					     T4_BAR2_QTYPE_EGRESS,
4197 					     &fl->bar2_qid);
4198 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4199 	}
4200 
4201 	/* For T5 and later we attempt to set up the Congestion Manager values
4202 	 * of the new RX Ethernet Queue.  This should really be handled by
4203 	 * firmware because it's more complex than any host driver wants to
4204 	 * get involved with and it's different per chip and this is almost
4205 	 * certainly wrong.  Firmware would be wrong as well, but it would be
4206 	 * a lot easier to fix in one place ...  For now we do something very
4207 	 * simple (and hopefully less wrong).
4208 	 */
4209 	if (!is_t4(adap->params.chip) && cong >= 0) {
4210 		u32 param, val, ch_map = 0;
4211 		int i;
4212 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4213 
4214 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4215 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4216 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4217 		if (cong == 0) {
4218 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4219 		} else {
4220 			val =
4221 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4222 			for (i = 0; i < 4; i++) {
4223 				if (cong & (1 << i))
4224 					ch_map |= 1 << (i << cng_ch_bits_log);
4225 			}
4226 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4227 		}
4228 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4229 				    &param, &val);
4230 		if (ret)
4231 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4232 				 " Manager Context for Ingress Queue %d: %d\n",
4233 				 iq->cntxt_id, -ret);
4234 	}
4235 
4236 	return 0;
4237 
4238 fl_nomem:
4239 	ret = -ENOMEM;
4240 err:
4241 	if (iq->desc) {
4242 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4243 				  iq->desc, iq->phys_addr);
4244 		iq->desc = NULL;
4245 	}
4246 	if (fl && fl->desc) {
4247 		kfree(fl->sdesc);
4248 		fl->sdesc = NULL;
4249 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4250 				  fl->desc, fl->addr);
4251 		fl->desc = NULL;
4252 	}
4253 	return ret;
4254 }
4255 
4256 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4257 {
4258 	q->cntxt_id = id;
4259 	q->bar2_addr = bar2_address(adap,
4260 				    q->cntxt_id,
4261 				    T4_BAR2_QTYPE_EGRESS,
4262 				    &q->bar2_qid);
4263 	q->in_use = 0;
4264 	q->cidx = q->pidx = 0;
4265 	q->stops = q->restarts = 0;
4266 	q->stat = (void *)&q->desc[q->size];
4267 	spin_lock_init(&q->db_lock);
4268 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4269 }
4270 
4271 /**
4272  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4273  *	@adap: the adapter
4274  *	@txq: the SGE Ethernet TX Queue to initialize
4275  *	@dev: the Linux Network Device
4276  *	@netdevq: the corresponding Linux TX Queue
4277  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4278  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4279  */
4280 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4281 			 struct net_device *dev, struct netdev_queue *netdevq,
4282 			 unsigned int iqid, u8 dbqt)
4283 {
4284 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4285 	struct port_info *pi = netdev_priv(dev);
4286 	struct sge *s = &adap->sge;
4287 	struct fw_eq_eth_cmd c;
4288 	int ret, nentries;
4289 
4290 	/* Add status entries */
4291 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4292 
4293 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4294 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4295 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4296 			netdev_queue_numa_node_read(netdevq));
4297 	if (!txq->q.desc)
4298 		return -ENOMEM;
4299 
4300 	memset(&c, 0, sizeof(c));
4301 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4302 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4303 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4304 			    FW_EQ_ETH_CMD_VFN_V(0));
4305 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4306 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4307 
4308 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4309 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4310 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4311 	 * write the CIDX Updates into the Status Page at the end of the
4312 	 * TX Queue.
4313 	 */
4314 	c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4315 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4316 
4317 	c.fetchszm_to_iqid =
4318 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4319 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4320 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4321 
4322 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4323 	c.dcaen_to_eqsize =
4324 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4325 					    ? FETCHBURSTMIN_64B_X
4326 					    : FETCHBURSTMIN_64B_T6_X) |
4327 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4328 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4329 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4330 
4331 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4332 
4333 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4334 	 * currently configured Timer Index.  THis can be changed later via an
4335 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4336 	 * Doorbell Queue mode is currently automatically enabled in the
4337 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4338 	 */
4339 	if (dbqt)
4340 		c.timeren_timerix =
4341 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4342 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4343 
4344 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4345 	if (ret) {
4346 		kfree(txq->q.sdesc);
4347 		txq->q.sdesc = NULL;
4348 		dma_free_coherent(adap->pdev_dev,
4349 				  nentries * sizeof(struct tx_desc),
4350 				  txq->q.desc, txq->q.phys_addr);
4351 		txq->q.desc = NULL;
4352 		return ret;
4353 	}
4354 
4355 	txq->q.q_type = CXGB4_TXQ_ETH;
4356 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4357 	txq->txq = netdevq;
4358 	txq->tso = 0;
4359 	txq->uso = 0;
4360 	txq->tx_cso = 0;
4361 	txq->vlan_ins = 0;
4362 	txq->mapping_err = 0;
4363 	txq->dbqt = dbqt;
4364 
4365 	return 0;
4366 }
4367 
4368 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4369 			  struct net_device *dev, unsigned int iqid,
4370 			  unsigned int cmplqid)
4371 {
4372 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4373 	struct port_info *pi = netdev_priv(dev);
4374 	struct sge *s = &adap->sge;
4375 	struct fw_eq_ctrl_cmd c;
4376 	int ret, nentries;
4377 
4378 	/* Add status entries */
4379 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4380 
4381 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4382 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4383 				 NULL, 0, dev_to_node(adap->pdev_dev));
4384 	if (!txq->q.desc)
4385 		return -ENOMEM;
4386 
4387 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4388 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4389 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4390 			    FW_EQ_CTRL_CMD_VFN_V(0));
4391 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4392 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4393 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4394 	c.physeqid_pkd = htonl(0);
4395 	c.fetchszm_to_iqid =
4396 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4397 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4398 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4399 	c.dcaen_to_eqsize =
4400 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4401 					     ? FETCHBURSTMIN_64B_X
4402 					     : FETCHBURSTMIN_64B_T6_X) |
4403 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4404 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4405 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4406 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4407 
4408 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4409 	if (ret) {
4410 		dma_free_coherent(adap->pdev_dev,
4411 				  nentries * sizeof(struct tx_desc),
4412 				  txq->q.desc, txq->q.phys_addr);
4413 		txq->q.desc = NULL;
4414 		return ret;
4415 	}
4416 
4417 	txq->q.q_type = CXGB4_TXQ_CTRL;
4418 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4419 	txq->adap = adap;
4420 	skb_queue_head_init(&txq->sendq);
4421 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4422 	txq->full = 0;
4423 	return 0;
4424 }
4425 
4426 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4427 			unsigned int cmplqid)
4428 {
4429 	u32 param, val;
4430 
4431 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4432 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4433 		 FW_PARAMS_PARAM_YZ_V(eqid));
4434 	val = cmplqid;
4435 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4436 }
4437 
4438 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4439 				 struct net_device *dev, u32 cmd, u32 iqid)
4440 {
4441 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4442 	struct port_info *pi = netdev_priv(dev);
4443 	struct sge *s = &adap->sge;
4444 	struct fw_eq_ofld_cmd c;
4445 	u32 fb_min, nentries;
4446 	int ret;
4447 
4448 	/* Add status entries */
4449 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4450 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4451 			     sizeof(struct tx_sw_desc), &q->phys_addr,
4452 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4453 	if (!q->desc)
4454 		return -ENOMEM;
4455 
4456 	if (chip_ver <= CHELSIO_T5)
4457 		fb_min = FETCHBURSTMIN_64B_X;
4458 	else
4459 		fb_min = FETCHBURSTMIN_64B_T6_X;
4460 
4461 	memset(&c, 0, sizeof(c));
4462 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4463 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4464 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4465 			    FW_EQ_OFLD_CMD_VFN_V(0));
4466 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4467 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4468 	c.fetchszm_to_iqid =
4469 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4470 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4471 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4472 	c.dcaen_to_eqsize =
4473 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4474 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4475 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4476 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4477 	c.eqaddr = cpu_to_be64(q->phys_addr);
4478 
4479 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4480 	if (ret) {
4481 		kfree(q->sdesc);
4482 		q->sdesc = NULL;
4483 		dma_free_coherent(adap->pdev_dev,
4484 				  nentries * sizeof(struct tx_desc),
4485 				  q->desc, q->phys_addr);
4486 		q->desc = NULL;
4487 		return ret;
4488 	}
4489 
4490 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4491 	return 0;
4492 }
4493 
4494 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4495 			 struct net_device *dev, unsigned int iqid,
4496 			 unsigned int uld_type)
4497 {
4498 	u32 cmd = FW_EQ_OFLD_CMD;
4499 	int ret;
4500 
4501 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4502 		cmd = FW_EQ_CTRL_CMD;
4503 
4504 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4505 	if (ret)
4506 		return ret;
4507 
4508 	txq->q.q_type = CXGB4_TXQ_ULD;
4509 	txq->adap = adap;
4510 	skb_queue_head_init(&txq->sendq);
4511 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4512 	txq->full = 0;
4513 	txq->mapping_err = 0;
4514 	return 0;
4515 }
4516 
4517 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4518 			     struct net_device *dev, u32 iqid)
4519 {
4520 	int ret;
4521 
4522 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4523 	if (ret)
4524 		return ret;
4525 
4526 	txq->q.q_type = CXGB4_TXQ_ULD;
4527 	spin_lock_init(&txq->lock);
4528 	txq->adap = adap;
4529 	txq->tso = 0;
4530 	txq->uso = 0;
4531 	txq->tx_cso = 0;
4532 	txq->vlan_ins = 0;
4533 	txq->mapping_err = 0;
4534 	return 0;
4535 }
4536 
4537 void free_txq(struct adapter *adap, struct sge_txq *q)
4538 {
4539 	struct sge *s = &adap->sge;
4540 
4541 	dma_free_coherent(adap->pdev_dev,
4542 			  q->size * sizeof(struct tx_desc) + s->stat_len,
4543 			  q->desc, q->phys_addr);
4544 	q->cntxt_id = 0;
4545 	q->sdesc = NULL;
4546 	q->desc = NULL;
4547 }
4548 
4549 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4550 		  struct sge_fl *fl)
4551 {
4552 	struct sge *s = &adap->sge;
4553 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4554 
4555 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4556 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4557 		   rq->cntxt_id, fl_id, 0xffff);
4558 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4559 			  rq->desc, rq->phys_addr);
4560 	netif_napi_del(&rq->napi);
4561 	rq->netdev = NULL;
4562 	rq->cntxt_id = rq->abs_id = 0;
4563 	rq->desc = NULL;
4564 
4565 	if (fl) {
4566 		free_rx_bufs(adap, fl, fl->avail);
4567 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4568 				  fl->desc, fl->addr);
4569 		kfree(fl->sdesc);
4570 		fl->sdesc = NULL;
4571 		fl->cntxt_id = 0;
4572 		fl->desc = NULL;
4573 	}
4574 }
4575 
4576 /**
4577  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4578  *      @adap: the adapter
4579  *      @n: number of queues
4580  *      @q: pointer to first queue
4581  *
4582  *      Release the resources of a consecutive block of offload Rx queues.
4583  */
4584 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4585 {
4586 	for ( ; n; n--, q++)
4587 		if (q->rspq.desc)
4588 			free_rspq_fl(adap, &q->rspq,
4589 				     q->fl.size ? &q->fl : NULL);
4590 }
4591 
4592 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4593 {
4594 	if (txq->q.desc) {
4595 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4596 				txq->q.cntxt_id);
4597 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4598 		kfree(txq->q.sdesc);
4599 		free_txq(adap, &txq->q);
4600 	}
4601 }
4602 
4603 /**
4604  *	t4_free_sge_resources - free SGE resources
4605  *	@adap: the adapter
4606  *
4607  *	Frees resources used by the SGE queue sets.
4608  */
4609 void t4_free_sge_resources(struct adapter *adap)
4610 {
4611 	int i;
4612 	struct sge_eth_rxq *eq;
4613 	struct sge_eth_txq *etq;
4614 
4615 	/* stop all Rx queues in order to start them draining */
4616 	for (i = 0; i < adap->sge.ethqsets; i++) {
4617 		eq = &adap->sge.ethrxq[i];
4618 		if (eq->rspq.desc)
4619 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4620 				   FW_IQ_TYPE_FL_INT_CAP,
4621 				   eq->rspq.cntxt_id,
4622 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4623 				   0xffff);
4624 	}
4625 
4626 	/* clean up Ethernet Tx/Rx queues */
4627 	for (i = 0; i < adap->sge.ethqsets; i++) {
4628 		eq = &adap->sge.ethrxq[i];
4629 		if (eq->rspq.desc)
4630 			free_rspq_fl(adap, &eq->rspq,
4631 				     eq->fl.size ? &eq->fl : NULL);
4632 		if (eq->msix) {
4633 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4634 			eq->msix = NULL;
4635 		}
4636 
4637 		etq = &adap->sge.ethtxq[i];
4638 		if (etq->q.desc) {
4639 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4640 				       etq->q.cntxt_id);
4641 			__netif_tx_lock_bh(etq->txq);
4642 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4643 			__netif_tx_unlock_bh(etq->txq);
4644 			kfree(etq->q.sdesc);
4645 			free_txq(adap, &etq->q);
4646 		}
4647 	}
4648 
4649 	/* clean up control Tx queues */
4650 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4651 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4652 
4653 		if (cq->q.desc) {
4654 			tasklet_kill(&cq->qresume_tsk);
4655 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4656 					cq->q.cntxt_id);
4657 			__skb_queue_purge(&cq->sendq);
4658 			free_txq(adap, &cq->q);
4659 		}
4660 	}
4661 
4662 	if (adap->sge.fw_evtq.desc) {
4663 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4664 		if (adap->sge.fwevtq_msix_idx >= 0)
4665 			cxgb4_free_msix_idx_in_bmap(adap,
4666 						    adap->sge.fwevtq_msix_idx);
4667 	}
4668 
4669 	if (adap->sge.nd_msix_idx >= 0)
4670 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4671 
4672 	if (adap->sge.intrq.desc)
4673 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4674 
4675 	if (!is_t4(adap->params.chip)) {
4676 		etq = &adap->sge.ptptxq;
4677 		if (etq->q.desc) {
4678 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4679 				       etq->q.cntxt_id);
4680 			spin_lock_bh(&adap->ptp_lock);
4681 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4682 			spin_unlock_bh(&adap->ptp_lock);
4683 			kfree(etq->q.sdesc);
4684 			free_txq(adap, &etq->q);
4685 		}
4686 	}
4687 
4688 	/* clear the reverse egress queue map */
4689 	memset(adap->sge.egr_map, 0,
4690 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4691 }
4692 
4693 void t4_sge_start(struct adapter *adap)
4694 {
4695 	adap->sge.ethtxq_rover = 0;
4696 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4697 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4698 }
4699 
4700 /**
4701  *	t4_sge_stop - disable SGE operation
4702  *	@adap: the adapter
4703  *
4704  *	Stop tasklets and timers associated with the DMA engine.  Note that
4705  *	this is effective only if measures have been taken to disable any HW
4706  *	events that may restart them.
4707  */
4708 void t4_sge_stop(struct adapter *adap)
4709 {
4710 	int i;
4711 	struct sge *s = &adap->sge;
4712 
4713 	if (in_interrupt())  /* actions below require waiting */
4714 		return;
4715 
4716 	if (s->rx_timer.function)
4717 		del_timer_sync(&s->rx_timer);
4718 	if (s->tx_timer.function)
4719 		del_timer_sync(&s->tx_timer);
4720 
4721 	if (is_offload(adap)) {
4722 		struct sge_uld_txq_info *txq_info;
4723 
4724 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4725 		if (txq_info) {
4726 			struct sge_uld_txq *txq = txq_info->uldtxq;
4727 
4728 			for_each_ofldtxq(&adap->sge, i) {
4729 				if (txq->q.desc)
4730 					tasklet_kill(&txq->qresume_tsk);
4731 			}
4732 		}
4733 	}
4734 
4735 	if (is_pci_uld(adap)) {
4736 		struct sge_uld_txq_info *txq_info;
4737 
4738 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4739 		if (txq_info) {
4740 			struct sge_uld_txq *txq = txq_info->uldtxq;
4741 
4742 			for_each_ofldtxq(&adap->sge, i) {
4743 				if (txq->q.desc)
4744 					tasklet_kill(&txq->qresume_tsk);
4745 			}
4746 		}
4747 	}
4748 
4749 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4750 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
4751 
4752 		if (cq->q.desc)
4753 			tasklet_kill(&cq->qresume_tsk);
4754 	}
4755 }
4756 
4757 /**
4758  *	t4_sge_init_soft - grab core SGE values needed by SGE code
4759  *	@adap: the adapter
4760  *
4761  *	We need to grab the SGE operating parameters that we need to have
4762  *	in order to do our job and make sure we can live with them.
4763  */
4764 
4765 static int t4_sge_init_soft(struct adapter *adap)
4766 {
4767 	struct sge *s = &adap->sge;
4768 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4769 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4770 	u32 ingress_rx_threshold;
4771 
4772 	/*
4773 	 * Verify that CPL messages are going to the Ingress Queue for
4774 	 * process_responses() and that only packet data is going to the
4775 	 * Free Lists.
4776 	 */
4777 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4778 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4779 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4780 		return -EINVAL;
4781 	}
4782 
4783 	/*
4784 	 * Validate the Host Buffer Register Array indices that we want to
4785 	 * use ...
4786 	 *
4787 	 * XXX Note that we should really read through the Host Buffer Size
4788 	 * XXX register array and find the indices of the Buffer Sizes which
4789 	 * XXX meet our needs!
4790 	 */
4791 	#define READ_FL_BUF(x) \
4792 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4793 
4794 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4795 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4796 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4797 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4798 
4799 	/* We only bother using the Large Page logic if the Large Page Buffer
4800 	 * is larger than our Page Size Buffer.
4801 	 */
4802 	if (fl_large_pg <= fl_small_pg)
4803 		fl_large_pg = 0;
4804 
4805 	#undef READ_FL_BUF
4806 
4807 	/* The Page Size Buffer must be exactly equal to our Page Size and the
4808 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4809 	 */
4810 	if (fl_small_pg != PAGE_SIZE ||
4811 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
4812 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4813 			fl_small_pg, fl_large_pg);
4814 		return -EINVAL;
4815 	}
4816 	if (fl_large_pg)
4817 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4818 
4819 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4820 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4821 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4822 			fl_small_mtu, fl_large_mtu);
4823 		return -EINVAL;
4824 	}
4825 
4826 	/*
4827 	 * Retrieve our RX interrupt holdoff timer values and counter
4828 	 * threshold values from the SGE parameters.
4829 	 */
4830 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4831 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4832 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4833 	s->timer_val[0] = core_ticks_to_us(adap,
4834 		TIMERVALUE0_G(timer_value_0_and_1));
4835 	s->timer_val[1] = core_ticks_to_us(adap,
4836 		TIMERVALUE1_G(timer_value_0_and_1));
4837 	s->timer_val[2] = core_ticks_to_us(adap,
4838 		TIMERVALUE2_G(timer_value_2_and_3));
4839 	s->timer_val[3] = core_ticks_to_us(adap,
4840 		TIMERVALUE3_G(timer_value_2_and_3));
4841 	s->timer_val[4] = core_ticks_to_us(adap,
4842 		TIMERVALUE4_G(timer_value_4_and_5));
4843 	s->timer_val[5] = core_ticks_to_us(adap,
4844 		TIMERVALUE5_G(timer_value_4_and_5));
4845 
4846 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4847 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4848 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4849 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4850 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4851 
4852 	return 0;
4853 }
4854 
4855 /**
4856  *     t4_sge_init - initialize SGE
4857  *     @adap: the adapter
4858  *
4859  *     Perform low-level SGE code initialization needed every time after a
4860  *     chip reset.
4861  */
4862 int t4_sge_init(struct adapter *adap)
4863 {
4864 	struct sge *s = &adap->sge;
4865 	u32 sge_control, sge_conm_ctrl;
4866 	int ret, egress_threshold;
4867 
4868 	/*
4869 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
4870 	 * t4_fixup_host_params().
4871 	 */
4872 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4873 	s->pktshift = PKTSHIFT_G(sge_control);
4874 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4875 
4876 	s->fl_align = t4_fl_pkt_align(adap);
4877 	ret = t4_sge_init_soft(adap);
4878 	if (ret < 0)
4879 		return ret;
4880 
4881 	/*
4882 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
4883 	 * timer will attempt to refill it.  This needs to be larger than the
4884 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
4885 	 * stuck waiting for new packets while the SGE is waiting for us to
4886 	 * give it more Free List entries.  (Note that the SGE's Egress
4887 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4888 	 * there was only a single field to control this.  For T5 there's the
4889 	 * original field which now only applies to Unpacked Mode Free List
4890 	 * buffers and a new field which only applies to Packed Mode Free List
4891 	 * buffers.
4892 	 */
4893 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4894 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4895 	case CHELSIO_T4:
4896 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4897 		break;
4898 	case CHELSIO_T5:
4899 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4900 		break;
4901 	case CHELSIO_T6:
4902 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4903 		break;
4904 	default:
4905 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4906 			CHELSIO_CHIP_VERSION(adap->params.chip));
4907 		return -EINVAL;
4908 	}
4909 	s->fl_starve_thres = 2*egress_threshold + 1;
4910 
4911 	t4_idma_monitor_init(adap, &s->idma_monitor);
4912 
4913 	/* Set up timers used for recuring callbacks to process RX and TX
4914 	 * administrative tasks.
4915 	 */
4916 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4917 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4918 
4919 	spin_lock_init(&s->intrq_lock);
4920 
4921 	return 0;
4922 }
4923