1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adapter: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 PCI_DMA_FROMDEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 PCI_DMA_FROMDEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 PCI_DMA_FROMDEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * 726 * Returns whether an Ethernet packet is small enough to fit as 727 * immediate data. Return value corresponds to headroom required. 728 */ 729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 730 { 731 int hdrlen = 0; 732 733 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 734 chip_ver > CHELSIO_T5) { 735 hdrlen = sizeof(struct cpl_tx_tnl_lso); 736 hdrlen += sizeof(struct cpl_tx_pkt_core); 737 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 738 return 0; 739 } else { 740 hdrlen = skb_shinfo(skb)->gso_size ? 741 sizeof(struct cpl_tx_pkt_lso_core) : 0; 742 hdrlen += sizeof(struct cpl_tx_pkt); 743 } 744 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 745 return hdrlen; 746 return 0; 747 } 748 749 /** 750 * calc_tx_flits - calculate the number of flits for a packet Tx WR 751 * @skb: the packet 752 * 753 * Returns the number of flits needed for a Tx WR for the given Ethernet 754 * packet, including the needed WR and CPL headers. 755 */ 756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 757 unsigned int chip_ver) 758 { 759 unsigned int flits; 760 int hdrlen = is_eth_imm(skb, chip_ver); 761 762 /* If the skb is small enough, we can pump it out as a work request 763 * with only immediate data. In that case we just have to have the 764 * TX Packet header plus the skb data in the Work Request. 765 */ 766 767 if (hdrlen) 768 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 769 770 /* Otherwise, we're going to have to construct a Scatter gather list 771 * of the skb body and fragments. We also include the flits necessary 772 * for the TX Packet Work Request and CPL. We always have a firmware 773 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 774 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 775 * message or, if we're doing a Large Send Offload, an LSO CPL message 776 * with an embedded TX Packet Write CPL message. 777 */ 778 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 779 if (skb_shinfo(skb)->gso_size) { 780 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 781 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 782 sizeof(struct cpl_tx_tnl_lso); 783 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 784 u32 pkt_hdrlen; 785 786 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 787 skb_headlen(skb)); 788 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 789 round_up(pkt_hdrlen, 16); 790 } else { 791 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 792 sizeof(struct cpl_tx_pkt_lso_core); 793 } 794 795 hdrlen += sizeof(struct cpl_tx_pkt_core); 796 flits += (hdrlen / sizeof(__be64)); 797 } else { 798 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 799 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 800 } 801 return flits; 802 } 803 804 /** 805 * calc_tx_descs - calculate the number of Tx descriptors for a packet 806 * @skb: the packet 807 * 808 * Returns the number of Tx descriptors needed for the given Ethernet 809 * packet, including the needed WR and CPL headers. 810 */ 811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 812 unsigned int chip_ver) 813 { 814 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 815 } 816 817 /** 818 * cxgb4_write_sgl - populate a scatter/gather list for a packet 819 * @skb: the packet 820 * @q: the Tx queue we are writing into 821 * @sgl: starting location for writing the SGL 822 * @end: points right after the end of the SGL 823 * @start: start offset into skb main-body data to include in the SGL 824 * @addr: the list of bus addresses for the SGL elements 825 * 826 * Generates a gather list for the buffers that make up a packet. 827 * The caller must provide adequate space for the SGL that will be written. 828 * The SGL includes all of the packet's page fragments and the data in its 829 * main body except for the first @start bytes. @sgl must be 16-byte 830 * aligned and within a Tx descriptor with available space. @end points 831 * right after the end of the SGL but does not account for any potential 832 * wrap around, i.e., @end > @sgl. 833 */ 834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 835 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 836 const dma_addr_t *addr) 837 { 838 unsigned int i, len; 839 struct ulptx_sge_pair *to; 840 const struct skb_shared_info *si = skb_shinfo(skb); 841 unsigned int nfrags = si->nr_frags; 842 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 843 844 len = skb_headlen(skb) - start; 845 if (likely(len)) { 846 sgl->len0 = htonl(len); 847 sgl->addr0 = cpu_to_be64(addr[0] + start); 848 nfrags++; 849 } else { 850 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 851 sgl->addr0 = cpu_to_be64(addr[1]); 852 } 853 854 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 855 ULPTX_NSGE_V(nfrags)); 856 if (likely(--nfrags == 0)) 857 return; 858 /* 859 * Most of the complexity below deals with the possibility we hit the 860 * end of the queue in the middle of writing the SGL. For this case 861 * only we create the SGL in a temporary buffer and then copy it. 862 */ 863 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 864 865 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 866 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 867 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 868 to->addr[0] = cpu_to_be64(addr[i]); 869 to->addr[1] = cpu_to_be64(addr[++i]); 870 } 871 if (nfrags) { 872 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 873 to->len[1] = cpu_to_be32(0); 874 to->addr[0] = cpu_to_be64(addr[i + 1]); 875 } 876 if (unlikely((u8 *)end > (u8 *)q->stat)) { 877 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 878 879 if (likely(part0)) 880 memcpy(sgl->sge, buf, part0); 881 part1 = (u8 *)end - (u8 *)q->stat; 882 memcpy(q->desc, (u8 *)buf + part0, part1); 883 end = (void *)q->desc + part1; 884 } 885 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 886 *end = 0; 887 } 888 EXPORT_SYMBOL(cxgb4_write_sgl); 889 890 /* This function copies 64 byte coalesced work request to 891 * memory mapped BAR2 space. For coalesced WR SGE fetches 892 * data from the FIFO instead of from Host. 893 */ 894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 895 { 896 int count = 8; 897 898 while (count) { 899 writeq(*src, dst); 900 src++; 901 dst++; 902 count--; 903 } 904 } 905 906 /** 907 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 908 * @adap: the adapter 909 * @q: the Tx queue 910 * @n: number of new descriptors to give to HW 911 * 912 * Ring the doorbel for a Tx queue. 913 */ 914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 915 { 916 /* Make sure that all writes to the TX Descriptors are committed 917 * before we tell the hardware about them. 918 */ 919 wmb(); 920 921 /* If we don't have access to the new User Doorbell (T5+), use the old 922 * doorbell mechanism; otherwise use the new BAR2 mechanism. 923 */ 924 if (unlikely(q->bar2_addr == NULL)) { 925 u32 val = PIDX_V(n); 926 unsigned long flags; 927 928 /* For T4 we need to participate in the Doorbell Recovery 929 * mechanism. 930 */ 931 spin_lock_irqsave(&q->db_lock, flags); 932 if (!q->db_disabled) 933 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 934 QID_V(q->cntxt_id) | val); 935 else 936 q->db_pidx_inc += n; 937 q->db_pidx = q->pidx; 938 spin_unlock_irqrestore(&q->db_lock, flags); 939 } else { 940 u32 val = PIDX_T5_V(n); 941 942 /* T4 and later chips share the same PIDX field offset within 943 * the doorbell, but T5 and later shrank the field in order to 944 * gain a bit for Doorbell Priority. The field was absurdly 945 * large in the first place (14 bits) so we just use the T5 946 * and later limits and warn if a Queue ID is too large. 947 */ 948 WARN_ON(val & DBPRIO_F); 949 950 /* If we're only writing a single TX Descriptor and we can use 951 * Inferred QID registers, we can use the Write Combining 952 * Gather Buffer; otherwise we use the simple doorbell. 953 */ 954 if (n == 1 && q->bar2_qid == 0) { 955 int index = (q->pidx 956 ? (q->pidx - 1) 957 : (q->size - 1)); 958 u64 *wr = (u64 *)&q->desc[index]; 959 960 cxgb_pio_copy((u64 __iomem *) 961 (q->bar2_addr + SGE_UDB_WCDOORBELL), 962 wr); 963 } else { 964 writel(val | QID_V(q->bar2_qid), 965 q->bar2_addr + SGE_UDB_KDOORBELL); 966 } 967 968 /* This Write Memory Barrier will force the write to the User 969 * Doorbell area to be flushed. This is needed to prevent 970 * writes on different CPUs for the same queue from hitting 971 * the adapter out of order. This is required when some Work 972 * Requests take the Write Combine Gather Buffer path (user 973 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 974 * take the traditional path where we simply increment the 975 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 976 * hardware DMA read the actual Work Request. 977 */ 978 wmb(); 979 } 980 } 981 EXPORT_SYMBOL(cxgb4_ring_tx_db); 982 983 /** 984 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 985 * @skb: the packet 986 * @q: the Tx queue where the packet will be inlined 987 * @pos: starting position in the Tx queue where to inline the packet 988 * 989 * Inline a packet's contents directly into Tx descriptors, starting at 990 * the given position within the Tx DMA ring. 991 * Most of the complexity of this operation is dealing with wrap arounds 992 * in the middle of the packet we want to inline. 993 */ 994 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 995 const struct sge_txq *q, void *pos) 996 { 997 int left = (void *)q->stat - pos; 998 u64 *p; 999 1000 if (likely(skb->len <= left)) { 1001 if (likely(!skb->data_len)) 1002 skb_copy_from_linear_data(skb, pos, skb->len); 1003 else 1004 skb_copy_bits(skb, 0, pos, skb->len); 1005 pos += skb->len; 1006 } else { 1007 skb_copy_bits(skb, 0, pos, left); 1008 skb_copy_bits(skb, left, q->desc, skb->len - left); 1009 pos = (void *)q->desc + (skb->len - left); 1010 } 1011 1012 /* 0-pad to multiple of 16 */ 1013 p = PTR_ALIGN(pos, 8); 1014 if ((uintptr_t)p & 8) 1015 *p = 0; 1016 } 1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1018 1019 static void *inline_tx_skb_header(const struct sk_buff *skb, 1020 const struct sge_txq *q, void *pos, 1021 int length) 1022 { 1023 u64 *p; 1024 int left = (void *)q->stat - pos; 1025 1026 if (likely(length <= left)) { 1027 memcpy(pos, skb->data, length); 1028 pos += length; 1029 } else { 1030 memcpy(pos, skb->data, left); 1031 memcpy(q->desc, skb->data + left, length - left); 1032 pos = (void *)q->desc + (length - left); 1033 } 1034 /* 0-pad to multiple of 16 */ 1035 p = PTR_ALIGN(pos, 8); 1036 if ((uintptr_t)p & 8) { 1037 *p = 0; 1038 return p + 1; 1039 } 1040 return p; 1041 } 1042 1043 /* 1044 * Figure out what HW csum a packet wants and return the appropriate control 1045 * bits. 1046 */ 1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1048 { 1049 int csum_type; 1050 bool inner_hdr_csum = false; 1051 u16 proto, ver; 1052 1053 if (skb->encapsulation && 1054 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1055 inner_hdr_csum = true; 1056 1057 if (inner_hdr_csum) { 1058 ver = inner_ip_hdr(skb)->version; 1059 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1060 inner_ipv6_hdr(skb)->nexthdr; 1061 } else { 1062 ver = ip_hdr(skb)->version; 1063 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1064 ipv6_hdr(skb)->nexthdr; 1065 } 1066 1067 if (ver == 4) { 1068 if (proto == IPPROTO_TCP) 1069 csum_type = TX_CSUM_TCPIP; 1070 else if (proto == IPPROTO_UDP) 1071 csum_type = TX_CSUM_UDPIP; 1072 else { 1073 nocsum: /* 1074 * unknown protocol, disable HW csum 1075 * and hope a bad packet is detected 1076 */ 1077 return TXPKT_L4CSUM_DIS_F; 1078 } 1079 } else { 1080 /* 1081 * this doesn't work with extension headers 1082 */ 1083 if (proto == IPPROTO_TCP) 1084 csum_type = TX_CSUM_TCPIP6; 1085 else if (proto == IPPROTO_UDP) 1086 csum_type = TX_CSUM_UDPIP6; 1087 else 1088 goto nocsum; 1089 } 1090 1091 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1092 int eth_hdr_len, l4_len; 1093 u64 hdr_len; 1094 1095 if (inner_hdr_csum) { 1096 /* This allows checksum offload for all encapsulated 1097 * packets like GRE etc.. 1098 */ 1099 l4_len = skb_inner_network_header_len(skb); 1100 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1101 } else { 1102 l4_len = skb_network_header_len(skb); 1103 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1104 } 1105 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1106 1107 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1108 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1109 else 1110 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1111 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1112 } else { 1113 int start = skb_transport_offset(skb); 1114 1115 return TXPKT_CSUM_TYPE_V(csum_type) | 1116 TXPKT_CSUM_START_V(start) | 1117 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1118 } 1119 } 1120 1121 static void eth_txq_stop(struct sge_eth_txq *q) 1122 { 1123 netif_tx_stop_queue(q->txq); 1124 q->q.stops++; 1125 } 1126 1127 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1128 { 1129 q->in_use += n; 1130 q->pidx += n; 1131 if (q->pidx >= q->size) 1132 q->pidx -= q->size; 1133 } 1134 1135 #ifdef CONFIG_CHELSIO_T4_FCOE 1136 static inline int 1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1138 const struct port_info *pi, u64 *cntrl) 1139 { 1140 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1141 1142 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1143 return 0; 1144 1145 if (skb->protocol != htons(ETH_P_FCOE)) 1146 return 0; 1147 1148 skb_reset_mac_header(skb); 1149 skb->mac_len = sizeof(struct ethhdr); 1150 1151 skb_set_network_header(skb, skb->mac_len); 1152 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1153 1154 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1155 return -ENOTSUPP; 1156 1157 /* FC CRC offload */ 1158 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1159 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1160 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1161 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1162 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1163 return 0; 1164 } 1165 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1166 1167 /* Returns tunnel type if hardware supports offloading of the same. 1168 * It is called only for T5 and onwards. 1169 */ 1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1171 { 1172 u8 l4_hdr = 0; 1173 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1174 struct port_info *pi = netdev_priv(skb->dev); 1175 struct adapter *adapter = pi->adapter; 1176 1177 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1178 skb->inner_protocol != htons(ETH_P_TEB)) 1179 return tnl_type; 1180 1181 switch (vlan_get_protocol(skb)) { 1182 case htons(ETH_P_IP): 1183 l4_hdr = ip_hdr(skb)->protocol; 1184 break; 1185 case htons(ETH_P_IPV6): 1186 l4_hdr = ipv6_hdr(skb)->nexthdr; 1187 break; 1188 default: 1189 return tnl_type; 1190 } 1191 1192 switch (l4_hdr) { 1193 case IPPROTO_UDP: 1194 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1195 tnl_type = TX_TNL_TYPE_VXLAN; 1196 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1197 tnl_type = TX_TNL_TYPE_GENEVE; 1198 break; 1199 default: 1200 return tnl_type; 1201 } 1202 1203 return tnl_type; 1204 } 1205 1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1207 struct cpl_tx_tnl_lso *tnl_lso, 1208 enum cpl_tx_tnl_lso_type tnl_type) 1209 { 1210 u32 val; 1211 int in_eth_xtra_len; 1212 int l3hdr_len = skb_network_header_len(skb); 1213 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1214 const struct skb_shared_info *ssi = skb_shinfo(skb); 1215 bool v6 = (ip_hdr(skb)->version == 6); 1216 1217 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1218 CPL_TX_TNL_LSO_FIRST_F | 1219 CPL_TX_TNL_LSO_LAST_F | 1220 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1221 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1222 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1223 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1224 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1225 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1226 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1227 1228 tnl_lso->IpIdOffsetOut = 0; 1229 1230 /* Get the tunnel header length */ 1231 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1232 in_eth_xtra_len = skb_inner_network_header(skb) - 1233 skb_inner_mac_header(skb) - ETH_HLEN; 1234 1235 switch (tnl_type) { 1236 case TX_TNL_TYPE_VXLAN: 1237 case TX_TNL_TYPE_GENEVE: 1238 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1239 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1240 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1241 break; 1242 default: 1243 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1244 break; 1245 } 1246 1247 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1248 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1249 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1250 1251 tnl_lso->r1 = 0; 1252 1253 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1254 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1255 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1256 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1257 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1258 1259 tnl_lso->IpIdOffset = htons(0); 1260 1261 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1262 tnl_lso->TCPSeqOffset = htonl(0); 1263 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1264 } 1265 1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1267 struct cpl_tx_pkt_lso_core *lso) 1268 { 1269 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1270 int l3hdr_len = skb_network_header_len(skb); 1271 const struct skb_shared_info *ssi; 1272 bool ipv6 = false; 1273 1274 ssi = skb_shinfo(skb); 1275 if (ssi->gso_type & SKB_GSO_TCPV6) 1276 ipv6 = true; 1277 1278 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1279 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1280 LSO_IPV6_V(ipv6) | 1281 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1282 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1283 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1284 lso->ipid_ofst = htons(0); 1285 lso->mss = htons(ssi->gso_size); 1286 lso->seqno_offset = htonl(0); 1287 if (is_t4(adap->params.chip)) 1288 lso->len = htonl(skb->len); 1289 else 1290 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1291 1292 return (void *)(lso + 1); 1293 } 1294 1295 /** 1296 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1297 * @adap: the adapter 1298 * @eq: the Ethernet TX Queue 1299 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1300 * 1301 * We're typically called here to update the state of an Ethernet TX 1302 * Queue with respect to the hardware's progress in consuming the TX 1303 * Work Requests that we've put on that Egress Queue. This happens 1304 * when we get Egress Queue Update messages and also prophylactically 1305 * in regular timer-based Ethernet TX Queue maintenance. 1306 */ 1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1308 int maxreclaim) 1309 { 1310 unsigned int reclaimed, hw_cidx; 1311 struct sge_txq *q = &eq->q; 1312 int hw_in_use; 1313 1314 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1315 return 0; 1316 1317 /* Reclaim pending completed TX Descriptors. */ 1318 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1319 1320 hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1321 hw_in_use = q->pidx - hw_cidx; 1322 if (hw_in_use < 0) 1323 hw_in_use += q->size; 1324 1325 /* If the TX Queue is currently stopped and there's now more than half 1326 * the queue available, restart it. Otherwise bail out since the rest 1327 * of what we want do here is with the possibility of shipping any 1328 * currently buffered Coalesced TX Work Request. 1329 */ 1330 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { 1331 netif_tx_wake_queue(eq->txq); 1332 eq->q.restarts++; 1333 } 1334 1335 __netif_tx_unlock(eq->txq); 1336 return reclaimed; 1337 } 1338 1339 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1340 struct net_device *dev, 1341 u32 min_pkt_len) 1342 { 1343 u32 max_pkt_len; 1344 1345 /* The chip min packet length is 10 octets but some firmware 1346 * commands have a minimum packet length requirement. So, play 1347 * safe and reject anything shorter than @min_pkt_len. 1348 */ 1349 if (unlikely(skb->len < min_pkt_len)) 1350 return -EINVAL; 1351 1352 /* Discard the packet if the length is greater than mtu */ 1353 max_pkt_len = ETH_HLEN + dev->mtu; 1354 1355 if (skb_vlan_tagged(skb)) 1356 max_pkt_len += VLAN_HLEN; 1357 1358 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1359 return -EINVAL; 1360 1361 return 0; 1362 } 1363 1364 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1365 u32 hdr_len) 1366 { 1367 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1368 wr->u.udpseg.ethlen = skb_network_offset(skb); 1369 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1370 wr->u.udpseg.udplen = sizeof(struct udphdr); 1371 wr->u.udpseg.rtplen = 0; 1372 wr->u.udpseg.r4 = 0; 1373 if (skb_shinfo(skb)->gso_size) 1374 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1375 else 1376 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1377 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1378 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1379 1380 return (void *)(wr + 1); 1381 } 1382 1383 /** 1384 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1385 * @skb: the packet 1386 * @dev: the egress net device 1387 * 1388 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1389 */ 1390 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1391 { 1392 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1393 bool ptp_enabled = is_ptp_enabled(skb, dev); 1394 unsigned int last_desc, flits, ndesc; 1395 u32 wr_mid, ctrl0, op, sgl_off = 0; 1396 const struct skb_shared_info *ssi; 1397 int len, qidx, credits, ret, left; 1398 struct tx_sw_desc *sgl_sdesc; 1399 struct fw_eth_tx_eo_wr *eowr; 1400 struct fw_eth_tx_pkt_wr *wr; 1401 struct cpl_tx_pkt_core *cpl; 1402 const struct port_info *pi; 1403 bool immediate = false; 1404 u64 cntrl, *end, *sgl; 1405 struct sge_eth_txq *q; 1406 unsigned int chip_ver; 1407 struct adapter *adap; 1408 1409 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1410 if (ret) 1411 goto out_free; 1412 1413 pi = netdev_priv(dev); 1414 adap = pi->adapter; 1415 ssi = skb_shinfo(skb); 1416 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1417 if (xfrm_offload(skb) && !ssi->gso_size) 1418 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1419 #endif /* CHELSIO_IPSEC_INLINE */ 1420 1421 qidx = skb_get_queue_mapping(skb); 1422 if (ptp_enabled) { 1423 spin_lock(&adap->ptp_lock); 1424 if (!(adap->ptp_tx_skb)) { 1425 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1426 adap->ptp_tx_skb = skb_get(skb); 1427 } else { 1428 spin_unlock(&adap->ptp_lock); 1429 goto out_free; 1430 } 1431 q = &adap->sge.ptptxq; 1432 } else { 1433 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1434 } 1435 skb_tx_timestamp(skb); 1436 1437 reclaim_completed_tx(adap, &q->q, -1, true); 1438 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1439 1440 #ifdef CONFIG_CHELSIO_T4_FCOE 1441 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1442 if (unlikely(ret == -ENOTSUPP)) { 1443 if (ptp_enabled) 1444 spin_unlock(&adap->ptp_lock); 1445 goto out_free; 1446 } 1447 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1448 1449 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1450 flits = calc_tx_flits(skb, chip_ver); 1451 ndesc = flits_to_desc(flits); 1452 credits = txq_avail(&q->q) - ndesc; 1453 1454 if (unlikely(credits < 0)) { 1455 eth_txq_stop(q); 1456 dev_err(adap->pdev_dev, 1457 "%s: Tx ring %u full while queue awake!\n", 1458 dev->name, qidx); 1459 if (ptp_enabled) 1460 spin_unlock(&adap->ptp_lock); 1461 return NETDEV_TX_BUSY; 1462 } 1463 1464 if (is_eth_imm(skb, chip_ver)) 1465 immediate = true; 1466 1467 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1468 tnl_type = cxgb_encap_offload_supported(skb); 1469 1470 last_desc = q->q.pidx + ndesc - 1; 1471 if (last_desc >= q->q.size) 1472 last_desc -= q->q.size; 1473 sgl_sdesc = &q->q.sdesc[last_desc]; 1474 1475 if (!immediate && 1476 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1477 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1478 q->mapping_err++; 1479 if (ptp_enabled) 1480 spin_unlock(&adap->ptp_lock); 1481 goto out_free; 1482 } 1483 1484 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1485 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1486 /* After we're done injecting the Work Request for this 1487 * packet, we'll be below our "stop threshold" so stop the TX 1488 * Queue now and schedule a request for an SGE Egress Queue 1489 * Update message. The queue will get started later on when 1490 * the firmware processes this Work Request and sends us an 1491 * Egress Queue Status Update message indicating that space 1492 * has opened up. 1493 */ 1494 eth_txq_stop(q); 1495 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1496 } 1497 1498 wr = (void *)&q->q.desc[q->q.pidx]; 1499 eowr = (void *)&q->q.desc[q->q.pidx]; 1500 wr->equiq_to_len16 = htonl(wr_mid); 1501 wr->r3 = cpu_to_be64(0); 1502 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1503 end = (u64 *)eowr + flits; 1504 else 1505 end = (u64 *)wr + flits; 1506 1507 len = immediate ? skb->len : 0; 1508 len += sizeof(*cpl); 1509 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1510 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1511 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1512 1513 if (tnl_type) 1514 len += sizeof(*tnl_lso); 1515 else 1516 len += sizeof(*lso); 1517 1518 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1519 FW_WR_IMMDLEN_V(len)); 1520 if (tnl_type) { 1521 struct iphdr *iph = ip_hdr(skb); 1522 1523 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1524 cpl = (void *)(tnl_lso + 1); 1525 /* Driver is expected to compute partial checksum that 1526 * does not include the IP Total Length. 1527 */ 1528 if (iph->version == 4) { 1529 iph->check = 0; 1530 iph->tot_len = 0; 1531 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1532 iph->ihl)); 1533 } 1534 if (skb->ip_summed == CHECKSUM_PARTIAL) 1535 cntrl = hwcsum(adap->params.chip, skb); 1536 } else { 1537 cpl = write_tso_wr(adap, skb, lso); 1538 cntrl = hwcsum(adap->params.chip, skb); 1539 } 1540 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1541 q->tso++; 1542 q->tx_cso += ssi->gso_segs; 1543 } else if (ssi->gso_size) { 1544 u64 *start; 1545 u32 hdrlen; 1546 1547 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1548 len += hdrlen; 1549 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1550 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1551 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1552 cntrl = hwcsum(adap->params.chip, skb); 1553 1554 start = (u64 *)(cpl + 1); 1555 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1556 hdrlen); 1557 if (unlikely(start > sgl)) { 1558 left = (u8 *)end - (u8 *)q->q.stat; 1559 end = (void *)q->q.desc + left; 1560 } 1561 sgl_off = hdrlen; 1562 q->uso++; 1563 q->tx_cso += ssi->gso_segs; 1564 } else { 1565 if (ptp_enabled) 1566 op = FW_PTP_TX_PKT_WR; 1567 else 1568 op = FW_ETH_TX_PKT_WR; 1569 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1570 FW_WR_IMMDLEN_V(len)); 1571 cpl = (void *)(wr + 1); 1572 sgl = (u64 *)(cpl + 1); 1573 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1574 cntrl = hwcsum(adap->params.chip, skb) | 1575 TXPKT_IPCSUM_DIS_F; 1576 q->tx_cso++; 1577 } 1578 } 1579 1580 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1581 /* If current position is already at the end of the 1582 * txq, reset the current to point to start of the queue 1583 * and update the end ptr as well. 1584 */ 1585 left = (u8 *)end - (u8 *)q->q.stat; 1586 end = (void *)q->q.desc + left; 1587 sgl = (void *)q->q.desc; 1588 } 1589 1590 if (skb_vlan_tag_present(skb)) { 1591 q->vlan_ins++; 1592 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1593 #ifdef CONFIG_CHELSIO_T4_FCOE 1594 if (skb->protocol == htons(ETH_P_FCOE)) 1595 cntrl |= TXPKT_VLAN_V( 1596 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1597 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1598 } 1599 1600 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1601 TXPKT_PF_V(adap->pf); 1602 if (ptp_enabled) 1603 ctrl0 |= TXPKT_TSTAMP_F; 1604 #ifdef CONFIG_CHELSIO_T4_DCB 1605 if (is_t4(adap->params.chip)) 1606 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1607 else 1608 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1609 #endif 1610 cpl->ctrl0 = htonl(ctrl0); 1611 cpl->pack = htons(0); 1612 cpl->len = htons(skb->len); 1613 cpl->ctrl1 = cpu_to_be64(cntrl); 1614 1615 if (immediate) { 1616 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1617 dev_consume_skb_any(skb); 1618 } else { 1619 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1620 sgl_sdesc->addr); 1621 skb_orphan(skb); 1622 sgl_sdesc->skb = skb; 1623 } 1624 1625 txq_advance(&q->q, ndesc); 1626 1627 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1628 if (ptp_enabled) 1629 spin_unlock(&adap->ptp_lock); 1630 return NETDEV_TX_OK; 1631 1632 out_free: 1633 dev_kfree_skb_any(skb); 1634 return NETDEV_TX_OK; 1635 } 1636 1637 /* Constants ... */ 1638 enum { 1639 /* Egress Queue sizes, producer and consumer indices are all in units 1640 * of Egress Context Units bytes. Note that as far as the hardware is 1641 * concerned, the free list is an Egress Queue (the host produces free 1642 * buffers which the hardware consumes) and free list entries are 1643 * 64-bit PCI DMA addresses. 1644 */ 1645 EQ_UNIT = SGE_EQ_IDXSIZE, 1646 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1647 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1648 1649 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1650 sizeof(struct cpl_tx_pkt_lso_core) + 1651 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1652 }; 1653 1654 /** 1655 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1656 * @skb: the packet 1657 * 1658 * Returns whether an Ethernet packet is small enough to fit completely as 1659 * immediate data. 1660 */ 1661 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1662 { 1663 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1664 * which does not accommodate immediate data. We could dike out all 1665 * of the support code for immediate data but that would tie our hands 1666 * too much if we ever want to enhace the firmware. It would also 1667 * create more differences between the PF and VF Drivers. 1668 */ 1669 return false; 1670 } 1671 1672 /** 1673 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1674 * @skb: the packet 1675 * 1676 * Returns the number of flits needed for a TX Work Request for the 1677 * given Ethernet packet, including the needed WR and CPL headers. 1678 */ 1679 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1680 { 1681 unsigned int flits; 1682 1683 /* If the skb is small enough, we can pump it out as a work request 1684 * with only immediate data. In that case we just have to have the 1685 * TX Packet header plus the skb data in the Work Request. 1686 */ 1687 if (t4vf_is_eth_imm(skb)) 1688 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1689 sizeof(__be64)); 1690 1691 /* Otherwise, we're going to have to construct a Scatter gather list 1692 * of the skb body and fragments. We also include the flits necessary 1693 * for the TX Packet Work Request and CPL. We always have a firmware 1694 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1695 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1696 * message or, if we're doing a Large Send Offload, an LSO CPL message 1697 * with an embedded TX Packet Write CPL message. 1698 */ 1699 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1700 if (skb_shinfo(skb)->gso_size) 1701 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1702 sizeof(struct cpl_tx_pkt_lso_core) + 1703 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1704 else 1705 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1706 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1707 return flits; 1708 } 1709 1710 /** 1711 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1712 * @skb: the packet 1713 * @dev: the egress net device 1714 * 1715 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1716 */ 1717 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1718 struct net_device *dev) 1719 { 1720 unsigned int last_desc, flits, ndesc; 1721 const struct skb_shared_info *ssi; 1722 struct fw_eth_tx_pkt_vm_wr *wr; 1723 struct tx_sw_desc *sgl_sdesc; 1724 struct cpl_tx_pkt_core *cpl; 1725 const struct port_info *pi; 1726 struct sge_eth_txq *txq; 1727 struct adapter *adapter; 1728 int qidx, credits, ret; 1729 size_t fw_hdr_copy_len; 1730 u64 cntrl, *end; 1731 u32 wr_mid; 1732 1733 /* The chip minimum packet length is 10 octets but the firmware 1734 * command that we are using requires that we copy the Ethernet header 1735 * (including the VLAN tag) into the header so we reject anything 1736 * smaller than that ... 1737 */ 1738 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1739 sizeof(wr->ethtype) + sizeof(wr->vlantci); 1740 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1741 if (ret) 1742 goto out_free; 1743 1744 /* Figure out which TX Queue we're going to use. */ 1745 pi = netdev_priv(dev); 1746 adapter = pi->adapter; 1747 qidx = skb_get_queue_mapping(skb); 1748 WARN_ON(qidx >= pi->nqsets); 1749 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1750 1751 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1752 * transfers have completed. 1753 */ 1754 reclaim_completed_tx(adapter, &txq->q, -1, true); 1755 1756 /* Calculate the number of flits and TX Descriptors we're going to 1757 * need along with how many TX Descriptors will be left over after 1758 * we inject our Work Request. 1759 */ 1760 flits = t4vf_calc_tx_flits(skb); 1761 ndesc = flits_to_desc(flits); 1762 credits = txq_avail(&txq->q) - ndesc; 1763 1764 if (unlikely(credits < 0)) { 1765 /* Not enough room for this packet's Work Request. Stop the 1766 * TX Queue and return a "busy" condition. The queue will get 1767 * started later on when the firmware informs us that space 1768 * has opened up. 1769 */ 1770 eth_txq_stop(txq); 1771 dev_err(adapter->pdev_dev, 1772 "%s: TX ring %u full while queue awake!\n", 1773 dev->name, qidx); 1774 return NETDEV_TX_BUSY; 1775 } 1776 1777 last_desc = txq->q.pidx + ndesc - 1; 1778 if (last_desc >= txq->q.size) 1779 last_desc -= txq->q.size; 1780 sgl_sdesc = &txq->q.sdesc[last_desc]; 1781 1782 if (!t4vf_is_eth_imm(skb) && 1783 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1784 sgl_sdesc->addr) < 0)) { 1785 /* We need to map the skb into PCI DMA space (because it can't 1786 * be in-lined directly into the Work Request) and the mapping 1787 * operation failed. Record the error and drop the packet. 1788 */ 1789 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1790 txq->mapping_err++; 1791 goto out_free; 1792 } 1793 1794 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1795 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1796 /* After we're done injecting the Work Request for this 1797 * packet, we'll be below our "stop threshold" so stop the TX 1798 * Queue now and schedule a request for an SGE Egress Queue 1799 * Update message. The queue will get started later on when 1800 * the firmware processes this Work Request and sends us an 1801 * Egress Queue Status Update message indicating that space 1802 * has opened up. 1803 */ 1804 eth_txq_stop(txq); 1805 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1806 } 1807 1808 /* Start filling in our Work Request. Note that we do _not_ handle 1809 * the WR Header wrapping around the TX Descriptor Ring. If our 1810 * maximum header size ever exceeds one TX Descriptor, we'll need to 1811 * do something else here. 1812 */ 1813 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1814 wr = (void *)&txq->q.desc[txq->q.pidx]; 1815 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1816 wr->r3[0] = cpu_to_be32(0); 1817 wr->r3[1] = cpu_to_be32(0); 1818 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1819 end = (u64 *)wr + flits; 1820 1821 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1822 * message with an encapsulated TX Packet CPL message. Otherwise we 1823 * just use a TX Packet CPL message. 1824 */ 1825 ssi = skb_shinfo(skb); 1826 if (ssi->gso_size) { 1827 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1828 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1829 int l3hdr_len = skb_network_header_len(skb); 1830 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1831 1832 wr->op_immdlen = 1833 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1834 FW_WR_IMMDLEN_V(sizeof(*lso) + 1835 sizeof(*cpl))); 1836 /* Fill in the LSO CPL message. */ 1837 lso->lso_ctrl = 1838 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1839 LSO_FIRST_SLICE_F | 1840 LSO_LAST_SLICE_F | 1841 LSO_IPV6_V(v6) | 1842 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1843 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1844 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1845 lso->ipid_ofst = cpu_to_be16(0); 1846 lso->mss = cpu_to_be16(ssi->gso_size); 1847 lso->seqno_offset = cpu_to_be32(0); 1848 if (is_t4(adapter->params.chip)) 1849 lso->len = cpu_to_be32(skb->len); 1850 else 1851 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1852 1853 /* Set up TX Packet CPL pointer, control word and perform 1854 * accounting. 1855 */ 1856 cpl = (void *)(lso + 1); 1857 1858 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1859 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1860 else 1861 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1862 1863 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1864 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1865 TXPKT_IPHDR_LEN_V(l3hdr_len); 1866 txq->tso++; 1867 txq->tx_cso += ssi->gso_segs; 1868 } else { 1869 int len; 1870 1871 len = (t4vf_is_eth_imm(skb) 1872 ? skb->len + sizeof(*cpl) 1873 : sizeof(*cpl)); 1874 wr->op_immdlen = 1875 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1876 FW_WR_IMMDLEN_V(len)); 1877 1878 /* Set up TX Packet CPL pointer, control word and perform 1879 * accounting. 1880 */ 1881 cpl = (void *)(wr + 1); 1882 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1883 cntrl = hwcsum(adapter->params.chip, skb) | 1884 TXPKT_IPCSUM_DIS_F; 1885 txq->tx_cso++; 1886 } else { 1887 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1888 } 1889 } 1890 1891 /* If there's a VLAN tag present, add that to the list of things to 1892 * do in this Work Request. 1893 */ 1894 if (skb_vlan_tag_present(skb)) { 1895 txq->vlan_ins++; 1896 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1897 } 1898 1899 /* Fill in the TX Packet CPL message header. */ 1900 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1901 TXPKT_INTF_V(pi->port_id) | 1902 TXPKT_PF_V(0)); 1903 cpl->pack = cpu_to_be16(0); 1904 cpl->len = cpu_to_be16(skb->len); 1905 cpl->ctrl1 = cpu_to_be64(cntrl); 1906 1907 /* Fill in the body of the TX Packet CPL message with either in-lined 1908 * data or a Scatter/Gather List. 1909 */ 1910 if (t4vf_is_eth_imm(skb)) { 1911 /* In-line the packet's data and free the skb since we don't 1912 * need it any longer. 1913 */ 1914 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 1915 dev_consume_skb_any(skb); 1916 } else { 1917 /* Write the skb's Scatter/Gather list into the TX Packet CPL 1918 * message and retain a pointer to the skb so we can free it 1919 * later when its DMA completes. (We store the skb pointer 1920 * in the Software Descriptor corresponding to the last TX 1921 * Descriptor used by the Work Request.) 1922 * 1923 * The retained skb will be freed when the corresponding TX 1924 * Descriptors are reclaimed after their DMAs complete. 1925 * However, this could take quite a while since, in general, 1926 * the hardware is set up to be lazy about sending DMA 1927 * completion notifications to us and we mostly perform TX 1928 * reclaims in the transmit routine. 1929 * 1930 * This is good for performamce but means that we rely on new 1931 * TX packets arriving to run the destructors of completed 1932 * packets, which open up space in their sockets' send queues. 1933 * Sometimes we do not get such new packets causing TX to 1934 * stall. A single UDP transmitter is a good example of this 1935 * situation. We have a clean up timer that periodically 1936 * reclaims completed packets but it doesn't run often enough 1937 * (nor do we want it to) to prevent lengthy stalls. A 1938 * solution to this problem is to run the destructor early, 1939 * after the packet is queued but before it's DMAd. A con is 1940 * that we lie to socket memory accounting, but the amount of 1941 * extra memory is reasonable (limited by the number of TX 1942 * descriptors), the packets do actually get freed quickly by 1943 * new packets almost always, and for protocols like TCP that 1944 * wait for acks to really free up the data the extra memory 1945 * is even less. On the positive side we run the destructors 1946 * on the sending CPU rather than on a potentially different 1947 * completing CPU, usually a good thing. 1948 * 1949 * Run the destructor before telling the DMA engine about the 1950 * packet to make sure it doesn't complete and get freed 1951 * prematurely. 1952 */ 1953 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1954 struct sge_txq *tq = &txq->q; 1955 1956 /* If the Work Request header was an exact multiple of our TX 1957 * Descriptor length, then it's possible that the starting SGL 1958 * pointer lines up exactly with the end of our TX Descriptor 1959 * ring. If that's the case, wrap around to the beginning 1960 * here ... 1961 */ 1962 if (unlikely((void *)sgl == (void *)tq->stat)) { 1963 sgl = (void *)tq->desc; 1964 end = (void *)((void *)tq->desc + 1965 ((void *)end - (void *)tq->stat)); 1966 } 1967 1968 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 1969 skb_orphan(skb); 1970 sgl_sdesc->skb = skb; 1971 } 1972 1973 /* Advance our internal TX Queue state, tell the hardware about 1974 * the new TX descriptors and return success. 1975 */ 1976 txq_advance(&txq->q, ndesc); 1977 1978 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 1979 return NETDEV_TX_OK; 1980 1981 out_free: 1982 /* An error of some sort happened. Free the TX skb and tell the 1983 * OS that we've "dealt" with the packet ... 1984 */ 1985 dev_kfree_skb_any(skb); 1986 return NETDEV_TX_OK; 1987 } 1988 1989 /** 1990 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1991 * @q: the SGE control Tx queue 1992 * 1993 * This is a variant of cxgb4_reclaim_completed_tx() that is used 1994 * for Tx queues that send only immediate data (presently just 1995 * the control queues) and thus do not have any sk_buffs to release. 1996 */ 1997 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1998 { 1999 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2000 int reclaim = hw_cidx - q->cidx; 2001 2002 if (reclaim < 0) 2003 reclaim += q->size; 2004 2005 q->in_use -= reclaim; 2006 q->cidx = hw_cidx; 2007 } 2008 2009 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2010 { 2011 u32 val = *idx + n; 2012 2013 if (val >= max) 2014 val -= max; 2015 2016 *idx = val; 2017 } 2018 2019 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2020 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2021 { 2022 struct tx_sw_desc *d; 2023 2024 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2025 while (ndesc--) { 2026 if (d->skb) { 2027 if (d->addr[0]) { 2028 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2029 memset(d->addr, 0, sizeof(d->addr)); 2030 } 2031 dev_consume_skb_any(d->skb); 2032 d->skb = NULL; 2033 } 2034 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2035 eosw_txq->ndesc); 2036 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2037 } 2038 } 2039 2040 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2041 { 2042 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2043 eosw_txq->inuse += n; 2044 } 2045 2046 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2047 struct sk_buff *skb) 2048 { 2049 if (eosw_txq->inuse == eosw_txq->ndesc) 2050 return -ENOMEM; 2051 2052 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2053 return 0; 2054 } 2055 2056 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2057 { 2058 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2059 } 2060 2061 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2062 struct sk_buff *skb, u32 hdr_len) 2063 { 2064 u8 flits, nsgl = 0; 2065 u32 wrlen; 2066 2067 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2068 if (skb_shinfo(skb)->gso_size && 2069 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2070 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2071 2072 wrlen += roundup(hdr_len, 16); 2073 2074 /* Packet headers + WR + CPLs */ 2075 flits = DIV_ROUND_UP(wrlen, 8); 2076 2077 if (skb_shinfo(skb)->nr_frags > 0) { 2078 if (skb_headlen(skb) - hdr_len) 2079 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2080 else 2081 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2082 } else if (skb->len - hdr_len) { 2083 nsgl = sgl_len(1); 2084 } 2085 2086 return flits + nsgl; 2087 } 2088 2089 static inline void *write_eo_wr(struct adapter *adap, 2090 struct sge_eosw_txq *eosw_txq, 2091 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2092 u32 hdr_len, u32 wrlen) 2093 { 2094 const struct skb_shared_info *ssi = skb_shinfo(skb); 2095 struct cpl_tx_pkt_core *cpl; 2096 u32 immd_len, wrlen16; 2097 bool compl = false; 2098 u8 ver, proto; 2099 2100 ver = ip_hdr(skb)->version; 2101 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2102 2103 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2104 immd_len = sizeof(struct cpl_tx_pkt_core); 2105 if (skb_shinfo(skb)->gso_size && 2106 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2107 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2108 immd_len += hdr_len; 2109 2110 if (!eosw_txq->ncompl || 2111 eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) { 2112 compl = true; 2113 eosw_txq->ncompl++; 2114 eosw_txq->last_compl = 0; 2115 } 2116 2117 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2118 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2119 FW_WR_COMPL_V(compl)); 2120 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2121 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2122 wr->r3 = 0; 2123 if (proto == IPPROTO_UDP) { 2124 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2125 } else { 2126 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2127 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2128 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2129 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2130 wr->u.tcpseg.tsclk_tsoff = 0; 2131 wr->u.tcpseg.r4 = 0; 2132 wr->u.tcpseg.r5 = 0; 2133 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2134 2135 if (ssi->gso_size) { 2136 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2137 2138 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2139 cpl = write_tso_wr(adap, skb, lso); 2140 } else { 2141 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2142 cpl = (void *)(wr + 1); 2143 } 2144 } 2145 2146 eosw_txq->cred -= wrlen16; 2147 eosw_txq->last_compl += wrlen16; 2148 return cpl; 2149 } 2150 2151 static void ethofld_hard_xmit(struct net_device *dev, 2152 struct sge_eosw_txq *eosw_txq) 2153 { 2154 struct port_info *pi = netdev2pinfo(dev); 2155 struct adapter *adap = netdev2adap(dev); 2156 u32 wrlen, wrlen16, hdr_len, data_len; 2157 enum sge_eosw_state next_state; 2158 u64 cntrl, *start, *end, *sgl; 2159 struct sge_eohw_txq *eohw_txq; 2160 struct cpl_tx_pkt_core *cpl; 2161 struct fw_eth_tx_eo_wr *wr; 2162 bool skip_eotx_wr = false; 2163 struct tx_sw_desc *d; 2164 struct sk_buff *skb; 2165 u8 flits, ndesc; 2166 int left; 2167 2168 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2169 spin_lock(&eohw_txq->lock); 2170 reclaim_completed_tx_imm(&eohw_txq->q); 2171 2172 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2173 skb = d->skb; 2174 skb_tx_timestamp(skb); 2175 2176 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2177 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2178 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2179 hdr_len = skb->len; 2180 data_len = 0; 2181 flits = DIV_ROUND_UP(hdr_len, 8); 2182 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2183 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2184 else 2185 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2186 skip_eotx_wr = true; 2187 } else { 2188 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2189 data_len = skb->len - hdr_len; 2190 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2191 } 2192 ndesc = flits_to_desc(flits); 2193 wrlen = flits * 8; 2194 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2195 2196 /* If there are no CPL credits, then wait for credits 2197 * to come back and retry again 2198 */ 2199 if (unlikely(wrlen16 > eosw_txq->cred)) 2200 goto out_unlock; 2201 2202 if (unlikely(skip_eotx_wr)) { 2203 start = (u64 *)wr; 2204 eosw_txq->state = next_state; 2205 goto write_wr_headers; 2206 } 2207 2208 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2209 cntrl = hwcsum(adap->params.chip, skb); 2210 if (skb_vlan_tag_present(skb)) 2211 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2212 2213 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2214 TXPKT_INTF_V(pi->tx_chan) | 2215 TXPKT_PF_V(adap->pf)); 2216 cpl->pack = 0; 2217 cpl->len = cpu_to_be16(skb->len); 2218 cpl->ctrl1 = cpu_to_be64(cntrl); 2219 2220 start = (u64 *)(cpl + 1); 2221 2222 write_wr_headers: 2223 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2224 hdr_len); 2225 if (data_len) { 2226 if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) { 2227 memset(d->addr, 0, sizeof(d->addr)); 2228 eohw_txq->mapping_err++; 2229 goto out_unlock; 2230 } 2231 2232 end = (u64 *)wr + flits; 2233 if (unlikely(start > sgl)) { 2234 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2235 end = (void *)eohw_txq->q.desc + left; 2236 } 2237 2238 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2239 /* If current position is already at the end of the 2240 * txq, reset the current to point to start of the queue 2241 * and update the end ptr as well. 2242 */ 2243 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2244 2245 end = (void *)eohw_txq->q.desc + left; 2246 sgl = (void *)eohw_txq->q.desc; 2247 } 2248 2249 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2250 d->addr); 2251 } 2252 2253 if (skb_shinfo(skb)->gso_size) { 2254 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2255 eohw_txq->uso++; 2256 else 2257 eohw_txq->tso++; 2258 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2259 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2260 eohw_txq->tx_cso++; 2261 } 2262 2263 if (skb_vlan_tag_present(skb)) 2264 eohw_txq->vlan_ins++; 2265 2266 txq_advance(&eohw_txq->q, ndesc); 2267 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2268 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2269 2270 out_unlock: 2271 spin_unlock(&eohw_txq->lock); 2272 } 2273 2274 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2275 { 2276 struct sk_buff *skb; 2277 int pktcount; 2278 2279 switch (eosw_txq->state) { 2280 case CXGB4_EO_STATE_ACTIVE: 2281 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2282 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2283 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2284 if (pktcount < 0) 2285 pktcount += eosw_txq->ndesc; 2286 break; 2287 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2288 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2289 case CXGB4_EO_STATE_CLOSED: 2290 default: 2291 return; 2292 } 2293 2294 while (pktcount--) { 2295 skb = eosw_txq_peek(eosw_txq); 2296 if (!skb) { 2297 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2298 eosw_txq->ndesc); 2299 continue; 2300 } 2301 2302 ethofld_hard_xmit(dev, eosw_txq); 2303 } 2304 } 2305 2306 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2307 struct net_device *dev) 2308 { 2309 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2310 struct port_info *pi = netdev2pinfo(dev); 2311 struct adapter *adap = netdev2adap(dev); 2312 struct sge_eosw_txq *eosw_txq; 2313 u32 qid; 2314 int ret; 2315 2316 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2317 if (ret) 2318 goto out_free; 2319 2320 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2321 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2322 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2323 spin_lock_bh(&eosw_txq->lock); 2324 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2325 goto out_unlock; 2326 2327 ret = eosw_txq_enqueue(eosw_txq, skb); 2328 if (ret) 2329 goto out_unlock; 2330 2331 /* SKB is queued for processing until credits are available. 2332 * So, call the destructor now and we'll free the skb later 2333 * after it has been successfully transmitted. 2334 */ 2335 skb_orphan(skb); 2336 2337 eosw_txq_advance(eosw_txq, 1); 2338 ethofld_xmit(dev, eosw_txq); 2339 spin_unlock_bh(&eosw_txq->lock); 2340 return NETDEV_TX_OK; 2341 2342 out_unlock: 2343 spin_unlock_bh(&eosw_txq->lock); 2344 out_free: 2345 dev_kfree_skb_any(skb); 2346 return NETDEV_TX_OK; 2347 } 2348 2349 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2350 { 2351 struct port_info *pi = netdev_priv(dev); 2352 u16 qid = skb_get_queue_mapping(skb); 2353 2354 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2355 return cxgb4_vf_eth_xmit(skb, dev); 2356 2357 if (unlikely(qid >= pi->nqsets)) 2358 return cxgb4_ethofld_xmit(skb, dev); 2359 2360 return cxgb4_eth_xmit(skb, dev); 2361 } 2362 2363 /** 2364 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2365 * @dev - netdevice 2366 * @eotid - ETHOFLD tid to bind/unbind 2367 * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2368 * 2369 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2370 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2371 * a traffic class. 2372 */ 2373 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2374 { 2375 struct port_info *pi = netdev2pinfo(dev); 2376 struct adapter *adap = netdev2adap(dev); 2377 enum sge_eosw_state next_state; 2378 struct sge_eosw_txq *eosw_txq; 2379 u32 len, len16, nparams = 6; 2380 struct fw_flowc_wr *flowc; 2381 struct eotid_entry *entry; 2382 struct sge_ofld_rxq *rxq; 2383 struct sk_buff *skb; 2384 int ret = 0; 2385 2386 len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams; 2387 len16 = DIV_ROUND_UP(len, 16); 2388 2389 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2390 if (!entry) 2391 return -ENOMEM; 2392 2393 eosw_txq = (struct sge_eosw_txq *)entry->data; 2394 if (!eosw_txq) 2395 return -ENOMEM; 2396 2397 skb = alloc_skb(len, GFP_KERNEL); 2398 if (!skb) 2399 return -ENOMEM; 2400 2401 spin_lock_bh(&eosw_txq->lock); 2402 if (tc != FW_SCHED_CLS_NONE) { 2403 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2404 goto out_unlock; 2405 2406 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2407 } else { 2408 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2409 goto out_unlock; 2410 2411 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2412 } 2413 2414 flowc = __skb_put(skb, len); 2415 memset(flowc, 0, len); 2416 2417 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2418 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2419 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2420 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2421 FW_FLOWC_WR_NPARAMS_V(nparams) | 2422 FW_WR_COMPL_V(1)); 2423 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2424 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2425 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2426 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2427 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2428 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2429 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2430 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2431 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2432 flowc->mnemval[4].val = cpu_to_be32(tc); 2433 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2434 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2435 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2436 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2437 2438 eosw_txq->cred -= len16; 2439 eosw_txq->ncompl++; 2440 eosw_txq->last_compl = 0; 2441 2442 ret = eosw_txq_enqueue(eosw_txq, skb); 2443 if (ret) { 2444 dev_consume_skb_any(skb); 2445 goto out_unlock; 2446 } 2447 2448 eosw_txq->state = next_state; 2449 eosw_txq->flowc_idx = eosw_txq->pidx; 2450 eosw_txq_advance(eosw_txq, 1); 2451 ethofld_xmit(dev, eosw_txq); 2452 2453 out_unlock: 2454 spin_unlock_bh(&eosw_txq->lock); 2455 return ret; 2456 } 2457 2458 /** 2459 * is_imm - check whether a packet can be sent as immediate data 2460 * @skb: the packet 2461 * 2462 * Returns true if a packet can be sent as a WR with immediate data. 2463 */ 2464 static inline int is_imm(const struct sk_buff *skb) 2465 { 2466 return skb->len <= MAX_CTRL_WR_LEN; 2467 } 2468 2469 /** 2470 * ctrlq_check_stop - check if a control queue is full and should stop 2471 * @q: the queue 2472 * @wr: most recent WR written to the queue 2473 * 2474 * Check if a control queue has become full and should be stopped. 2475 * We clean up control queue descriptors very lazily, only when we are out. 2476 * If the queue is still full after reclaiming any completed descriptors 2477 * we suspend it and have the last WR wake it up. 2478 */ 2479 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2480 { 2481 reclaim_completed_tx_imm(&q->q); 2482 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2483 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2484 q->q.stops++; 2485 q->full = 1; 2486 } 2487 } 2488 2489 /** 2490 * ctrl_xmit - send a packet through an SGE control Tx queue 2491 * @q: the control queue 2492 * @skb: the packet 2493 * 2494 * Send a packet through an SGE control Tx queue. Packets sent through 2495 * a control queue must fit entirely as immediate data. 2496 */ 2497 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2498 { 2499 unsigned int ndesc; 2500 struct fw_wr_hdr *wr; 2501 2502 if (unlikely(!is_imm(skb))) { 2503 WARN_ON(1); 2504 dev_kfree_skb(skb); 2505 return NET_XMIT_DROP; 2506 } 2507 2508 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2509 spin_lock(&q->sendq.lock); 2510 2511 if (unlikely(q->full)) { 2512 skb->priority = ndesc; /* save for restart */ 2513 __skb_queue_tail(&q->sendq, skb); 2514 spin_unlock(&q->sendq.lock); 2515 return NET_XMIT_CN; 2516 } 2517 2518 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2519 cxgb4_inline_tx_skb(skb, &q->q, wr); 2520 2521 txq_advance(&q->q, ndesc); 2522 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2523 ctrlq_check_stop(q, wr); 2524 2525 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2526 spin_unlock(&q->sendq.lock); 2527 2528 kfree_skb(skb); 2529 return NET_XMIT_SUCCESS; 2530 } 2531 2532 /** 2533 * restart_ctrlq - restart a suspended control queue 2534 * @data: the control queue to restart 2535 * 2536 * Resumes transmission on a suspended Tx control queue. 2537 */ 2538 static void restart_ctrlq(unsigned long data) 2539 { 2540 struct sk_buff *skb; 2541 unsigned int written = 0; 2542 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 2543 2544 spin_lock(&q->sendq.lock); 2545 reclaim_completed_tx_imm(&q->q); 2546 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2547 2548 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2549 struct fw_wr_hdr *wr; 2550 unsigned int ndesc = skb->priority; /* previously saved */ 2551 2552 written += ndesc; 2553 /* Write descriptors and free skbs outside the lock to limit 2554 * wait times. q->full is still set so new skbs will be queued. 2555 */ 2556 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2557 txq_advance(&q->q, ndesc); 2558 spin_unlock(&q->sendq.lock); 2559 2560 cxgb4_inline_tx_skb(skb, &q->q, wr); 2561 kfree_skb(skb); 2562 2563 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2564 unsigned long old = q->q.stops; 2565 2566 ctrlq_check_stop(q, wr); 2567 if (q->q.stops != old) { /* suspended anew */ 2568 spin_lock(&q->sendq.lock); 2569 goto ringdb; 2570 } 2571 } 2572 if (written > 16) { 2573 cxgb4_ring_tx_db(q->adap, &q->q, written); 2574 written = 0; 2575 } 2576 spin_lock(&q->sendq.lock); 2577 } 2578 q->full = 0; 2579 ringdb: 2580 if (written) 2581 cxgb4_ring_tx_db(q->adap, &q->q, written); 2582 spin_unlock(&q->sendq.lock); 2583 } 2584 2585 /** 2586 * t4_mgmt_tx - send a management message 2587 * @adap: the adapter 2588 * @skb: the packet containing the management message 2589 * 2590 * Send a management message through control queue 0. 2591 */ 2592 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2593 { 2594 int ret; 2595 2596 local_bh_disable(); 2597 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2598 local_bh_enable(); 2599 return ret; 2600 } 2601 2602 /** 2603 * is_ofld_imm - check whether a packet can be sent as immediate data 2604 * @skb: the packet 2605 * 2606 * Returns true if a packet can be sent as an offload WR with immediate 2607 * data. We currently use the same limit as for Ethernet packets. 2608 */ 2609 static inline int is_ofld_imm(const struct sk_buff *skb) 2610 { 2611 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2612 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2613 2614 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2615 return skb->len <= SGE_MAX_WR_LEN; 2616 else 2617 return skb->len <= MAX_IMM_TX_PKT_LEN; 2618 } 2619 2620 /** 2621 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2622 * @skb: the packet 2623 * 2624 * Returns the number of flits needed for the given offload packet. 2625 * These packets are already fully constructed and no additional headers 2626 * will be added. 2627 */ 2628 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2629 { 2630 unsigned int flits, cnt; 2631 2632 if (is_ofld_imm(skb)) 2633 return DIV_ROUND_UP(skb->len, 8); 2634 2635 flits = skb_transport_offset(skb) / 8U; /* headers */ 2636 cnt = skb_shinfo(skb)->nr_frags; 2637 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2638 cnt++; 2639 return flits + sgl_len(cnt); 2640 } 2641 2642 /** 2643 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2644 * @adap: the adapter 2645 * @q: the queue to stop 2646 * 2647 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2648 * inability to map packets. A periodic timer attempts to restart 2649 * queues so marked. 2650 */ 2651 static void txq_stop_maperr(struct sge_uld_txq *q) 2652 { 2653 q->mapping_err++; 2654 q->q.stops++; 2655 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2656 q->adap->sge.txq_maperr); 2657 } 2658 2659 /** 2660 * ofldtxq_stop - stop an offload Tx queue that has become full 2661 * @q: the queue to stop 2662 * @wr: the Work Request causing the queue to become full 2663 * 2664 * Stops an offload Tx queue that has become full and modifies the packet 2665 * being written to request a wakeup. 2666 */ 2667 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2668 { 2669 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2670 q->q.stops++; 2671 q->full = 1; 2672 } 2673 2674 /** 2675 * service_ofldq - service/restart a suspended offload queue 2676 * @q: the offload queue 2677 * 2678 * Services an offload Tx queue by moving packets from its Pending Send 2679 * Queue to the Hardware TX ring. The function starts and ends with the 2680 * Send Queue locked, but drops the lock while putting the skb at the 2681 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2682 * allows more skbs to be added to the Send Queue by other threads. 2683 * The packet being processed at the head of the Pending Send Queue is 2684 * left on the queue in case we experience DMA Mapping errors, etc. 2685 * and need to give up and restart later. 2686 * 2687 * service_ofldq() can be thought of as a task which opportunistically 2688 * uses other threads execution contexts. We use the Offload Queue 2689 * boolean "service_ofldq_running" to make sure that only one instance 2690 * is ever running at a time ... 2691 */ 2692 static void service_ofldq(struct sge_uld_txq *q) 2693 { 2694 u64 *pos, *before, *end; 2695 int credits; 2696 struct sk_buff *skb; 2697 struct sge_txq *txq; 2698 unsigned int left; 2699 unsigned int written = 0; 2700 unsigned int flits, ndesc; 2701 2702 /* If another thread is currently in service_ofldq() processing the 2703 * Pending Send Queue then there's nothing to do. Otherwise, flag 2704 * that we're doing the work and continue. Examining/modifying 2705 * the Offload Queue boolean "service_ofldq_running" must be done 2706 * while holding the Pending Send Queue Lock. 2707 */ 2708 if (q->service_ofldq_running) 2709 return; 2710 q->service_ofldq_running = true; 2711 2712 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2713 /* We drop the lock while we're working with the skb at the 2714 * head of the Pending Send Queue. This allows more skbs to 2715 * be added to the Pending Send Queue while we're working on 2716 * this one. We don't need to lock to guard the TX Ring 2717 * updates because only one thread of execution is ever 2718 * allowed into service_ofldq() at a time. 2719 */ 2720 spin_unlock(&q->sendq.lock); 2721 2722 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2723 2724 flits = skb->priority; /* previously saved */ 2725 ndesc = flits_to_desc(flits); 2726 credits = txq_avail(&q->q) - ndesc; 2727 BUG_ON(credits < 0); 2728 if (unlikely(credits < TXQ_STOP_THRES)) 2729 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2730 2731 pos = (u64 *)&q->q.desc[q->q.pidx]; 2732 if (is_ofld_imm(skb)) 2733 cxgb4_inline_tx_skb(skb, &q->q, pos); 2734 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2735 (dma_addr_t *)skb->head)) { 2736 txq_stop_maperr(q); 2737 spin_lock(&q->sendq.lock); 2738 break; 2739 } else { 2740 int last_desc, hdr_len = skb_transport_offset(skb); 2741 2742 /* The WR headers may not fit within one descriptor. 2743 * So we need to deal with wrap-around here. 2744 */ 2745 before = (u64 *)pos; 2746 end = (u64 *)pos + flits; 2747 txq = &q->q; 2748 pos = (void *)inline_tx_skb_header(skb, &q->q, 2749 (void *)pos, 2750 hdr_len); 2751 if (before > (u64 *)pos) { 2752 left = (u8 *)end - (u8 *)txq->stat; 2753 end = (void *)txq->desc + left; 2754 } 2755 2756 /* If current position is already at the end of the 2757 * ofld queue, reset the current to point to 2758 * start of the queue and update the end ptr as well. 2759 */ 2760 if (pos == (u64 *)txq->stat) { 2761 left = (u8 *)end - (u8 *)txq->stat; 2762 end = (void *)txq->desc + left; 2763 pos = (void *)txq->desc; 2764 } 2765 2766 cxgb4_write_sgl(skb, &q->q, (void *)pos, 2767 end, hdr_len, 2768 (dma_addr_t *)skb->head); 2769 #ifdef CONFIG_NEED_DMA_MAP_STATE 2770 skb->dev = q->adap->port[0]; 2771 skb->destructor = deferred_unmap_destructor; 2772 #endif 2773 last_desc = q->q.pidx + ndesc - 1; 2774 if (last_desc >= q->q.size) 2775 last_desc -= q->q.size; 2776 q->q.sdesc[last_desc].skb = skb; 2777 } 2778 2779 txq_advance(&q->q, ndesc); 2780 written += ndesc; 2781 if (unlikely(written > 32)) { 2782 cxgb4_ring_tx_db(q->adap, &q->q, written); 2783 written = 0; 2784 } 2785 2786 /* Reacquire the Pending Send Queue Lock so we can unlink the 2787 * skb we've just successfully transferred to the TX Ring and 2788 * loop for the next skb which may be at the head of the 2789 * Pending Send Queue. 2790 */ 2791 spin_lock(&q->sendq.lock); 2792 __skb_unlink(skb, &q->sendq); 2793 if (is_ofld_imm(skb)) 2794 kfree_skb(skb); 2795 } 2796 if (likely(written)) 2797 cxgb4_ring_tx_db(q->adap, &q->q, written); 2798 2799 /*Indicate that no thread is processing the Pending Send Queue 2800 * currently. 2801 */ 2802 q->service_ofldq_running = false; 2803 } 2804 2805 /** 2806 * ofld_xmit - send a packet through an offload queue 2807 * @q: the Tx offload queue 2808 * @skb: the packet 2809 * 2810 * Send an offload packet through an SGE offload queue. 2811 */ 2812 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 2813 { 2814 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 2815 spin_lock(&q->sendq.lock); 2816 2817 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 2818 * that results in this new skb being the only one on the queue, start 2819 * servicing it. If there are other skbs already on the list, then 2820 * either the queue is currently being processed or it's been stopped 2821 * for some reason and it'll be restarted at a later time. Restart 2822 * paths are triggered by events like experiencing a DMA Mapping Error 2823 * or filling the Hardware TX Ring. 2824 */ 2825 __skb_queue_tail(&q->sendq, skb); 2826 if (q->sendq.qlen == 1) 2827 service_ofldq(q); 2828 2829 spin_unlock(&q->sendq.lock); 2830 return NET_XMIT_SUCCESS; 2831 } 2832 2833 /** 2834 * restart_ofldq - restart a suspended offload queue 2835 * @data: the offload queue to restart 2836 * 2837 * Resumes transmission on a suspended Tx offload queue. 2838 */ 2839 static void restart_ofldq(unsigned long data) 2840 { 2841 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 2842 2843 spin_lock(&q->sendq.lock); 2844 q->full = 0; /* the queue actually is completely empty now */ 2845 service_ofldq(q); 2846 spin_unlock(&q->sendq.lock); 2847 } 2848 2849 /** 2850 * skb_txq - return the Tx queue an offload packet should use 2851 * @skb: the packet 2852 * 2853 * Returns the Tx queue an offload packet should use as indicated by bits 2854 * 1-15 in the packet's queue_mapping. 2855 */ 2856 static inline unsigned int skb_txq(const struct sk_buff *skb) 2857 { 2858 return skb->queue_mapping >> 1; 2859 } 2860 2861 /** 2862 * is_ctrl_pkt - return whether an offload packet is a control packet 2863 * @skb: the packet 2864 * 2865 * Returns whether an offload packet should use an OFLD or a CTRL 2866 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 2867 */ 2868 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 2869 { 2870 return skb->queue_mapping & 1; 2871 } 2872 2873 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 2874 unsigned int tx_uld_type) 2875 { 2876 struct sge_uld_txq_info *txq_info; 2877 struct sge_uld_txq *txq; 2878 unsigned int idx = skb_txq(skb); 2879 2880 if (unlikely(is_ctrl_pkt(skb))) { 2881 /* Single ctrl queue is a requirement for LE workaround path */ 2882 if (adap->tids.nsftids) 2883 idx = 0; 2884 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 2885 } 2886 2887 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 2888 if (unlikely(!txq_info)) { 2889 WARN_ON(true); 2890 return NET_XMIT_DROP; 2891 } 2892 2893 txq = &txq_info->uldtxq[idx]; 2894 return ofld_xmit(txq, skb); 2895 } 2896 2897 /** 2898 * t4_ofld_send - send an offload packet 2899 * @adap: the adapter 2900 * @skb: the packet 2901 * 2902 * Sends an offload packet. We use the packet queue_mapping to select the 2903 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2904 * should be sent as regular or control, bits 1-15 select the queue. 2905 */ 2906 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 2907 { 2908 int ret; 2909 2910 local_bh_disable(); 2911 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 2912 local_bh_enable(); 2913 return ret; 2914 } 2915 2916 /** 2917 * cxgb4_ofld_send - send an offload packet 2918 * @dev: the net device 2919 * @skb: the packet 2920 * 2921 * Sends an offload packet. This is an exported version of @t4_ofld_send, 2922 * intended for ULDs. 2923 */ 2924 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2925 { 2926 return t4_ofld_send(netdev2adap(dev), skb); 2927 } 2928 EXPORT_SYMBOL(cxgb4_ofld_send); 2929 2930 static void *inline_tx_header(const void *src, 2931 const struct sge_txq *q, 2932 void *pos, int length) 2933 { 2934 int left = (void *)q->stat - pos; 2935 u64 *p; 2936 2937 if (likely(length <= left)) { 2938 memcpy(pos, src, length); 2939 pos += length; 2940 } else { 2941 memcpy(pos, src, left); 2942 memcpy(q->desc, src + left, length - left); 2943 pos = (void *)q->desc + (length - left); 2944 } 2945 /* 0-pad to multiple of 16 */ 2946 p = PTR_ALIGN(pos, 8); 2947 if ((uintptr_t)p & 8) { 2948 *p = 0; 2949 return p + 1; 2950 } 2951 return p; 2952 } 2953 2954 /** 2955 * ofld_xmit_direct - copy a WR into offload queue 2956 * @q: the Tx offload queue 2957 * @src: location of WR 2958 * @len: WR length 2959 * 2960 * Copy an immediate WR into an uncontended SGE offload queue. 2961 */ 2962 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 2963 unsigned int len) 2964 { 2965 unsigned int ndesc; 2966 int credits; 2967 u64 *pos; 2968 2969 /* Use the lower limit as the cut-off */ 2970 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 2971 WARN_ON(1); 2972 return NET_XMIT_DROP; 2973 } 2974 2975 /* Don't return NET_XMIT_CN here as the current 2976 * implementation doesn't queue the request 2977 * using an skb when the following conditions not met 2978 */ 2979 if (!spin_trylock(&q->sendq.lock)) 2980 return NET_XMIT_DROP; 2981 2982 if (q->full || !skb_queue_empty(&q->sendq) || 2983 q->service_ofldq_running) { 2984 spin_unlock(&q->sendq.lock); 2985 return NET_XMIT_DROP; 2986 } 2987 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 2988 credits = txq_avail(&q->q) - ndesc; 2989 pos = (u64 *)&q->q.desc[q->q.pidx]; 2990 2991 /* ofldtxq_stop modifies WR header in-situ */ 2992 inline_tx_header(src, &q->q, pos, len); 2993 if (unlikely(credits < TXQ_STOP_THRES)) 2994 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 2995 txq_advance(&q->q, ndesc); 2996 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2997 2998 spin_unlock(&q->sendq.lock); 2999 return NET_XMIT_SUCCESS; 3000 } 3001 3002 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3003 const void *src, unsigned int len) 3004 { 3005 struct sge_uld_txq_info *txq_info; 3006 struct sge_uld_txq *txq; 3007 struct adapter *adap; 3008 int ret; 3009 3010 adap = netdev2adap(dev); 3011 3012 local_bh_disable(); 3013 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3014 if (unlikely(!txq_info)) { 3015 WARN_ON(true); 3016 local_bh_enable(); 3017 return NET_XMIT_DROP; 3018 } 3019 txq = &txq_info->uldtxq[idx]; 3020 3021 ret = ofld_xmit_direct(txq, src, len); 3022 local_bh_enable(); 3023 return net_xmit_eval(ret); 3024 } 3025 EXPORT_SYMBOL(cxgb4_immdata_send); 3026 3027 /** 3028 * t4_crypto_send - send crypto packet 3029 * @adap: the adapter 3030 * @skb: the packet 3031 * 3032 * Sends crypto packet. We use the packet queue_mapping to select the 3033 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3034 * should be sent as regular or control, bits 1-15 select the queue. 3035 */ 3036 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3037 { 3038 int ret; 3039 3040 local_bh_disable(); 3041 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3042 local_bh_enable(); 3043 return ret; 3044 } 3045 3046 /** 3047 * cxgb4_crypto_send - send crypto packet 3048 * @dev: the net device 3049 * @skb: the packet 3050 * 3051 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3052 * intended for ULDs. 3053 */ 3054 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3055 { 3056 return t4_crypto_send(netdev2adap(dev), skb); 3057 } 3058 EXPORT_SYMBOL(cxgb4_crypto_send); 3059 3060 static inline void copy_frags(struct sk_buff *skb, 3061 const struct pkt_gl *gl, unsigned int offset) 3062 { 3063 int i; 3064 3065 /* usually there's just one frag */ 3066 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3067 gl->frags[0].offset + offset, 3068 gl->frags[0].size - offset); 3069 skb_shinfo(skb)->nr_frags = gl->nfrags; 3070 for (i = 1; i < gl->nfrags; i++) 3071 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3072 gl->frags[i].offset, 3073 gl->frags[i].size); 3074 3075 /* get a reference to the last page, we don't own it */ 3076 get_page(gl->frags[gl->nfrags - 1].page); 3077 } 3078 3079 /** 3080 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3081 * @gl: the gather list 3082 * @skb_len: size of sk_buff main body if it carries fragments 3083 * @pull_len: amount of data to move to the sk_buff's main body 3084 * 3085 * Builds an sk_buff from the given packet gather list. Returns the 3086 * sk_buff or %NULL if sk_buff allocation failed. 3087 */ 3088 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3089 unsigned int skb_len, unsigned int pull_len) 3090 { 3091 struct sk_buff *skb; 3092 3093 /* 3094 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3095 * size, which is expected since buffers are at least PAGE_SIZEd. 3096 * In this case packets up to RX_COPY_THRES have only one fragment. 3097 */ 3098 if (gl->tot_len <= RX_COPY_THRES) { 3099 skb = dev_alloc_skb(gl->tot_len); 3100 if (unlikely(!skb)) 3101 goto out; 3102 __skb_put(skb, gl->tot_len); 3103 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3104 } else { 3105 skb = dev_alloc_skb(skb_len); 3106 if (unlikely(!skb)) 3107 goto out; 3108 __skb_put(skb, pull_len); 3109 skb_copy_to_linear_data(skb, gl->va, pull_len); 3110 3111 copy_frags(skb, gl, pull_len); 3112 skb->len = gl->tot_len; 3113 skb->data_len = skb->len - pull_len; 3114 skb->truesize += skb->data_len; 3115 } 3116 out: return skb; 3117 } 3118 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3119 3120 /** 3121 * t4_pktgl_free - free a packet gather list 3122 * @gl: the gather list 3123 * 3124 * Releases the pages of a packet gather list. We do not own the last 3125 * page on the list and do not free it. 3126 */ 3127 static void t4_pktgl_free(const struct pkt_gl *gl) 3128 { 3129 int n; 3130 const struct page_frag *p; 3131 3132 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3133 put_page(p->page); 3134 } 3135 3136 /* 3137 * Process an MPS trace packet. Give it an unused protocol number so it won't 3138 * be delivered to anyone and send it to the stack for capture. 3139 */ 3140 static noinline int handle_trace_pkt(struct adapter *adap, 3141 const struct pkt_gl *gl) 3142 { 3143 struct sk_buff *skb; 3144 3145 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3146 if (unlikely(!skb)) { 3147 t4_pktgl_free(gl); 3148 return 0; 3149 } 3150 3151 if (is_t4(adap->params.chip)) 3152 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3153 else 3154 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3155 3156 skb_reset_mac_header(skb); 3157 skb->protocol = htons(0xffff); 3158 skb->dev = adap->port[0]; 3159 netif_receive_skb(skb); 3160 return 0; 3161 } 3162 3163 /** 3164 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3165 * @adap: the adapter 3166 * @hwtstamps: time stamp structure to update 3167 * @sgetstamp: 60bit iqe timestamp 3168 * 3169 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3170 * which is in Core Clock ticks into ktime_t and assign it 3171 **/ 3172 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3173 struct skb_shared_hwtstamps *hwtstamps, 3174 u64 sgetstamp) 3175 { 3176 u64 ns; 3177 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3178 3179 ns = div_u64(tmp, adap->params.vpd.cclk); 3180 3181 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3182 hwtstamps->hwtstamp = ns_to_ktime(ns); 3183 } 3184 3185 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3186 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3187 { 3188 struct adapter *adapter = rxq->rspq.adap; 3189 struct sge *s = &adapter->sge; 3190 struct port_info *pi; 3191 int ret; 3192 struct sk_buff *skb; 3193 3194 skb = napi_get_frags(&rxq->rspq.napi); 3195 if (unlikely(!skb)) { 3196 t4_pktgl_free(gl); 3197 rxq->stats.rx_drops++; 3198 return; 3199 } 3200 3201 copy_frags(skb, gl, s->pktshift); 3202 if (tnl_hdr_len) 3203 skb->csum_level = 1; 3204 skb->len = gl->tot_len - s->pktshift; 3205 skb->data_len = skb->len; 3206 skb->truesize += skb->data_len; 3207 skb->ip_summed = CHECKSUM_UNNECESSARY; 3208 skb_record_rx_queue(skb, rxq->rspq.idx); 3209 pi = netdev_priv(skb->dev); 3210 if (pi->rxtstamp) 3211 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3212 gl->sgetstamp); 3213 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3214 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3215 PKT_HASH_TYPE_L3); 3216 3217 if (unlikely(pkt->vlan_ex)) { 3218 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3219 rxq->stats.vlan_ex++; 3220 } 3221 ret = napi_gro_frags(&rxq->rspq.napi); 3222 if (ret == GRO_HELD) 3223 rxq->stats.lro_pkts++; 3224 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3225 rxq->stats.lro_merged++; 3226 rxq->stats.pkts++; 3227 rxq->stats.rx_cso++; 3228 } 3229 3230 enum { 3231 RX_NON_PTP_PKT = 0, 3232 RX_PTP_PKT_SUC = 1, 3233 RX_PTP_PKT_ERR = 2 3234 }; 3235 3236 /** 3237 * t4_systim_to_hwstamp - read hardware time stamp 3238 * @adap: the adapter 3239 * @skb: the packet 3240 * 3241 * Read Time Stamp from MPS packet and insert in skb which 3242 * is forwarded to PTP application 3243 */ 3244 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3245 struct sk_buff *skb) 3246 { 3247 struct skb_shared_hwtstamps *hwtstamps; 3248 struct cpl_rx_mps_pkt *cpl = NULL; 3249 unsigned char *data; 3250 int offset; 3251 3252 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3253 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3254 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3255 return RX_PTP_PKT_ERR; 3256 3257 data = skb->data + sizeof(*cpl); 3258 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3259 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3260 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3261 return RX_PTP_PKT_ERR; 3262 3263 hwtstamps = skb_hwtstamps(skb); 3264 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3265 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 3266 3267 return RX_PTP_PKT_SUC; 3268 } 3269 3270 /** 3271 * t4_rx_hststamp - Recv PTP Event Message 3272 * @adap: the adapter 3273 * @rsp: the response queue descriptor holding the RX_PKT message 3274 * @skb: the packet 3275 * 3276 * PTP enabled and MPS packet, read HW timestamp 3277 */ 3278 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3279 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3280 { 3281 int ret; 3282 3283 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3284 !is_t4(adapter->params.chip))) { 3285 ret = t4_systim_to_hwstamp(adapter, skb); 3286 if (ret == RX_PTP_PKT_ERR) { 3287 kfree_skb(skb); 3288 rxq->stats.rx_drops++; 3289 } 3290 return ret; 3291 } 3292 return RX_NON_PTP_PKT; 3293 } 3294 3295 /** 3296 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3297 * @adap: the adapter 3298 * @skb: the packet 3299 * @dev: the ingress net device 3300 * 3301 * Read hardware timestamp for the loopback PTP Tx event message 3302 */ 3303 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3304 struct net_device *dev) 3305 { 3306 struct port_info *pi = netdev_priv(dev); 3307 3308 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3309 cxgb4_ptp_read_hwstamp(adapter, pi); 3310 kfree_skb(skb); 3311 return 0; 3312 } 3313 return 1; 3314 } 3315 3316 /** 3317 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3318 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3319 * @rsp: Response Entry pointer into Response Queue 3320 * @gl: Gather List pointer 3321 * 3322 * For adapters which support the SGE Doorbell Queue Timer facility, 3323 * we configure the Ethernet TX Queues to send CIDX Updates to the 3324 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3325 * messages. This adds a small load to PCIe Link RX bandwidth and, 3326 * potentially, higher CPU Interrupt load, but allows us to respond 3327 * much more quickly to the CIDX Updates. This is important for 3328 * Upper Layer Software which isn't willing to have a large amount 3329 * of TX Data outstanding before receiving DMA Completions. 3330 */ 3331 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3332 const __be64 *rsp, 3333 const struct pkt_gl *gl) 3334 { 3335 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3336 struct port_info *pi = netdev_priv(rspq->netdev); 3337 struct adapter *adapter = rspq->adap; 3338 struct sge *s = &adapter->sge; 3339 struct sge_eth_txq *txq; 3340 3341 /* skip RSS header */ 3342 rsp++; 3343 3344 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3345 */ 3346 if (unlikely(opcode == CPL_FW4_MSG && 3347 ((const struct cpl_fw4_msg *)rsp)->type == 3348 FW_TYPE_RSSCPL)) { 3349 rsp++; 3350 opcode = ((const struct rss_header *)rsp)->opcode; 3351 rsp++; 3352 } 3353 3354 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3355 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3356 __func__, opcode); 3357 return; 3358 } 3359 3360 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3361 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3362 } 3363 3364 /** 3365 * t4_ethrx_handler - process an ingress ethernet packet 3366 * @q: the response queue that received the packet 3367 * @rsp: the response queue descriptor holding the RX_PKT message 3368 * @si: the gather list of packet fragments 3369 * 3370 * Process an ingress ethernet packet and deliver it to the stack. 3371 */ 3372 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3373 const struct pkt_gl *si) 3374 { 3375 bool csum_ok; 3376 struct sk_buff *skb; 3377 const struct cpl_rx_pkt *pkt; 3378 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3379 struct adapter *adapter = q->adap; 3380 struct sge *s = &q->adap->sge; 3381 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3382 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3383 u16 err_vec, tnl_hdr_len = 0; 3384 struct port_info *pi; 3385 int ret = 0; 3386 3387 /* If we're looking at TX Queue CIDX Update, handle that separately 3388 * and return. 3389 */ 3390 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3391 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3392 t4_tx_completion_handler(q, rsp, si); 3393 return 0; 3394 } 3395 3396 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3397 return handle_trace_pkt(q->adap, si); 3398 3399 pkt = (const struct cpl_rx_pkt *)rsp; 3400 /* Compressed error vector is enabled for T6 only */ 3401 if (q->adap->params.tp.rx_pkt_encap) { 3402 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3403 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3404 } else { 3405 err_vec = be16_to_cpu(pkt->err_vec); 3406 } 3407 3408 csum_ok = pkt->csum_calc && !err_vec && 3409 (q->netdev->features & NETIF_F_RXCSUM); 3410 3411 if (err_vec) 3412 rxq->stats.bad_rx_pkts++; 3413 3414 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3415 tnl_hdr_len) && 3416 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3417 do_gro(rxq, si, pkt, tnl_hdr_len); 3418 return 0; 3419 } 3420 3421 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3422 if (unlikely(!skb)) { 3423 t4_pktgl_free(si); 3424 rxq->stats.rx_drops++; 3425 return 0; 3426 } 3427 pi = netdev_priv(q->netdev); 3428 3429 /* Handle PTP Event Rx packet */ 3430 if (unlikely(pi->ptp_enable)) { 3431 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3432 if (ret == RX_PTP_PKT_ERR) 3433 return 0; 3434 } 3435 if (likely(!ret)) 3436 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3437 3438 /* Handle the PTP Event Tx Loopback packet */ 3439 if (unlikely(pi->ptp_enable && !ret && 3440 (pkt->l2info & htonl(RXF_UDP_F)) && 3441 cxgb4_ptp_is_ptp_rx(skb))) { 3442 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3443 return 0; 3444 } 3445 3446 skb->protocol = eth_type_trans(skb, q->netdev); 3447 skb_record_rx_queue(skb, q->idx); 3448 if (skb->dev->features & NETIF_F_RXHASH) 3449 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3450 PKT_HASH_TYPE_L3); 3451 3452 rxq->stats.pkts++; 3453 3454 if (pi->rxtstamp) 3455 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3456 si->sgetstamp); 3457 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3458 if (!pkt->ip_frag) { 3459 skb->ip_summed = CHECKSUM_UNNECESSARY; 3460 rxq->stats.rx_cso++; 3461 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3462 __sum16 c = (__force __sum16)pkt->csum; 3463 skb->csum = csum_unfold(c); 3464 3465 if (tnl_hdr_len) { 3466 skb->ip_summed = CHECKSUM_UNNECESSARY; 3467 skb->csum_level = 1; 3468 } else { 3469 skb->ip_summed = CHECKSUM_COMPLETE; 3470 } 3471 rxq->stats.rx_cso++; 3472 } 3473 } else { 3474 skb_checksum_none_assert(skb); 3475 #ifdef CONFIG_CHELSIO_T4_FCOE 3476 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3477 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3478 3479 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3480 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3481 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3482 if (q->adap->params.tp.rx_pkt_encap) 3483 csum_ok = err_vec & 3484 T6_COMPR_RXERR_SUM_F; 3485 else 3486 csum_ok = err_vec & RXERR_CSUM_F; 3487 if (!csum_ok) 3488 skb->ip_summed = CHECKSUM_UNNECESSARY; 3489 } 3490 } 3491 3492 #undef CPL_RX_PKT_FLAGS 3493 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3494 } 3495 3496 if (unlikely(pkt->vlan_ex)) { 3497 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3498 rxq->stats.vlan_ex++; 3499 } 3500 skb_mark_napi_id(skb, &q->napi); 3501 netif_receive_skb(skb); 3502 return 0; 3503 } 3504 3505 /** 3506 * restore_rx_bufs - put back a packet's Rx buffers 3507 * @si: the packet gather list 3508 * @q: the SGE free list 3509 * @frags: number of FL buffers to restore 3510 * 3511 * Puts back on an FL the Rx buffers associated with @si. The buffers 3512 * have already been unmapped and are left unmapped, we mark them so to 3513 * prevent further unmapping attempts. 3514 * 3515 * This function undoes a series of @unmap_rx_buf calls when we find out 3516 * that the current packet can't be processed right away afterall and we 3517 * need to come back to it later. This is a very rare event and there's 3518 * no effort to make this particularly efficient. 3519 */ 3520 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3521 int frags) 3522 { 3523 struct rx_sw_desc *d; 3524 3525 while (frags--) { 3526 if (q->cidx == 0) 3527 q->cidx = q->size - 1; 3528 else 3529 q->cidx--; 3530 d = &q->sdesc[q->cidx]; 3531 d->page = si->frags[frags].page; 3532 d->dma_addr |= RX_UNMAPPED_BUF; 3533 q->avail++; 3534 } 3535 } 3536 3537 /** 3538 * is_new_response - check if a response is newly written 3539 * @r: the response descriptor 3540 * @q: the response queue 3541 * 3542 * Returns true if a response descriptor contains a yet unprocessed 3543 * response. 3544 */ 3545 static inline bool is_new_response(const struct rsp_ctrl *r, 3546 const struct sge_rspq *q) 3547 { 3548 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3549 } 3550 3551 /** 3552 * rspq_next - advance to the next entry in a response queue 3553 * @q: the queue 3554 * 3555 * Updates the state of a response queue to advance it to the next entry. 3556 */ 3557 static inline void rspq_next(struct sge_rspq *q) 3558 { 3559 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3560 if (unlikely(++q->cidx == q->size)) { 3561 q->cidx = 0; 3562 q->gen ^= 1; 3563 q->cur_desc = q->desc; 3564 } 3565 } 3566 3567 /** 3568 * process_responses - process responses from an SGE response queue 3569 * @q: the ingress queue to process 3570 * @budget: how many responses can be processed in this round 3571 * 3572 * Process responses from an SGE response queue up to the supplied budget. 3573 * Responses include received packets as well as control messages from FW 3574 * or HW. 3575 * 3576 * Additionally choose the interrupt holdoff time for the next interrupt 3577 * on this queue. If the system is under memory shortage use a fairly 3578 * long delay to help recovery. 3579 */ 3580 static int process_responses(struct sge_rspq *q, int budget) 3581 { 3582 int ret, rsp_type; 3583 int budget_left = budget; 3584 const struct rsp_ctrl *rc; 3585 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3586 struct adapter *adapter = q->adap; 3587 struct sge *s = &adapter->sge; 3588 3589 while (likely(budget_left)) { 3590 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3591 if (!is_new_response(rc, q)) { 3592 if (q->flush_handler) 3593 q->flush_handler(q); 3594 break; 3595 } 3596 3597 dma_rmb(); 3598 rsp_type = RSPD_TYPE_G(rc->type_gen); 3599 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3600 struct page_frag *fp; 3601 struct pkt_gl si; 3602 const struct rx_sw_desc *rsd; 3603 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3604 3605 if (len & RSPD_NEWBUF_F) { 3606 if (likely(q->offset > 0)) { 3607 free_rx_bufs(q->adap, &rxq->fl, 1); 3608 q->offset = 0; 3609 } 3610 len = RSPD_LEN_G(len); 3611 } 3612 si.tot_len = len; 3613 3614 /* gather packet fragments */ 3615 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3616 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3617 bufsz = get_buf_size(adapter, rsd); 3618 fp->page = rsd->page; 3619 fp->offset = q->offset; 3620 fp->size = min(bufsz, len); 3621 len -= fp->size; 3622 if (!len) 3623 break; 3624 unmap_rx_buf(q->adap, &rxq->fl); 3625 } 3626 3627 si.sgetstamp = SGE_TIMESTAMP_G( 3628 be64_to_cpu(rc->last_flit)); 3629 /* 3630 * Last buffer remains mapped so explicitly make it 3631 * coherent for CPU access. 3632 */ 3633 dma_sync_single_for_cpu(q->adap->pdev_dev, 3634 get_buf_addr(rsd), 3635 fp->size, DMA_FROM_DEVICE); 3636 3637 si.va = page_address(si.frags[0].page) + 3638 si.frags[0].offset; 3639 prefetch(si.va); 3640 3641 si.nfrags = frags + 1; 3642 ret = q->handler(q, q->cur_desc, &si); 3643 if (likely(ret == 0)) 3644 q->offset += ALIGN(fp->size, s->fl_align); 3645 else 3646 restore_rx_bufs(&si, &rxq->fl, frags); 3647 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3648 ret = q->handler(q, q->cur_desc, NULL); 3649 } else { 3650 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3651 } 3652 3653 if (unlikely(ret)) { 3654 /* couldn't process descriptor, back off for recovery */ 3655 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3656 break; 3657 } 3658 3659 rspq_next(q); 3660 budget_left--; 3661 } 3662 3663 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3664 __refill_fl(q->adap, &rxq->fl); 3665 return budget - budget_left; 3666 } 3667 3668 /** 3669 * napi_rx_handler - the NAPI handler for Rx processing 3670 * @napi: the napi instance 3671 * @budget: how many packets we can process in this round 3672 * 3673 * Handler for new data events when using NAPI. This does not need any 3674 * locking or protection from interrupts as data interrupts are off at 3675 * this point and other adapter interrupts do not interfere (the latter 3676 * in not a concern at all with MSI-X as non-data interrupts then have 3677 * a separate handler). 3678 */ 3679 static int napi_rx_handler(struct napi_struct *napi, int budget) 3680 { 3681 unsigned int params; 3682 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3683 int work_done; 3684 u32 val; 3685 3686 work_done = process_responses(q, budget); 3687 if (likely(work_done < budget)) { 3688 int timer_index; 3689 3690 napi_complete_done(napi, work_done); 3691 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3692 3693 if (q->adaptive_rx) { 3694 if (work_done > max(timer_pkt_quota[timer_index], 3695 MIN_NAPI_WORK)) 3696 timer_index = (timer_index + 1); 3697 else 3698 timer_index = timer_index - 1; 3699 3700 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3701 q->next_intr_params = 3702 QINTR_TIMER_IDX_V(timer_index) | 3703 QINTR_CNT_EN_V(0); 3704 params = q->next_intr_params; 3705 } else { 3706 params = q->next_intr_params; 3707 q->next_intr_params = q->intr_params; 3708 } 3709 } else 3710 params = QINTR_TIMER_IDX_V(7); 3711 3712 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3713 3714 /* If we don't have access to the new User GTS (T5+), use the old 3715 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3716 */ 3717 if (unlikely(q->bar2_addr == NULL)) { 3718 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 3719 val | INGRESSQID_V((u32)q->cntxt_id)); 3720 } else { 3721 writel(val | INGRESSQID_V(q->bar2_qid), 3722 q->bar2_addr + SGE_UDB_GTS); 3723 wmb(); 3724 } 3725 return work_done; 3726 } 3727 3728 void cxgb4_ethofld_restart(unsigned long data) 3729 { 3730 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data; 3731 int pktcount; 3732 3733 spin_lock(&eosw_txq->lock); 3734 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 3735 if (pktcount < 0) 3736 pktcount += eosw_txq->ndesc; 3737 3738 if (pktcount) { 3739 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 3740 eosw_txq, pktcount); 3741 eosw_txq->inuse -= pktcount; 3742 } 3743 3744 /* There may be some packets waiting for completions. So, 3745 * attempt to send these packets now. 3746 */ 3747 ethofld_xmit(eosw_txq->netdev, eosw_txq); 3748 spin_unlock(&eosw_txq->lock); 3749 } 3750 3751 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 3752 * @q: the response queue that received the packet 3753 * @rsp: the response queue descriptor holding the CPL message 3754 * @si: the gather list of packet fragments 3755 * 3756 * Process a ETHOFLD Tx completion. Increment the cidx here, but 3757 * free up the descriptors in a tasklet later. 3758 */ 3759 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 3760 const struct pkt_gl *si) 3761 { 3762 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3763 3764 /* skip RSS header */ 3765 rsp++; 3766 3767 if (opcode == CPL_FW4_ACK) { 3768 const struct cpl_fw4_ack *cpl; 3769 struct sge_eosw_txq *eosw_txq; 3770 struct eotid_entry *entry; 3771 struct sk_buff *skb; 3772 u32 hdr_len, eotid; 3773 u8 flits, wrlen16; 3774 int credits; 3775 3776 cpl = (const struct cpl_fw4_ack *)rsp; 3777 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 3778 q->adap->tids.eotid_base; 3779 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 3780 if (!entry) 3781 goto out_done; 3782 3783 eosw_txq = (struct sge_eosw_txq *)entry->data; 3784 if (!eosw_txq) 3785 goto out_done; 3786 3787 spin_lock(&eosw_txq->lock); 3788 credits = cpl->credits; 3789 while (credits > 0) { 3790 skb = eosw_txq->desc[eosw_txq->cidx].skb; 3791 if (!skb) 3792 break; 3793 3794 if (unlikely((eosw_txq->state == 3795 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 3796 eosw_txq->state == 3797 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 3798 eosw_txq->cidx == eosw_txq->flowc_idx)) { 3799 flits = DIV_ROUND_UP(skb->len, 8); 3800 if (eosw_txq->state == 3801 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 3802 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 3803 else 3804 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 3805 complete(&eosw_txq->completion); 3806 } else { 3807 hdr_len = eth_get_headlen(eosw_txq->netdev, 3808 skb->data, 3809 skb_headlen(skb)); 3810 flits = ethofld_calc_tx_flits(q->adap, skb, 3811 hdr_len); 3812 } 3813 eosw_txq_advance_index(&eosw_txq->cidx, 1, 3814 eosw_txq->ndesc); 3815 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 3816 credits -= wrlen16; 3817 } 3818 3819 eosw_txq->cred += cpl->credits; 3820 eosw_txq->ncompl--; 3821 3822 spin_unlock(&eosw_txq->lock); 3823 3824 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 3825 * if there were packets waiting for completion. 3826 */ 3827 tasklet_schedule(&eosw_txq->qresume_tsk); 3828 } 3829 3830 out_done: 3831 return 0; 3832 } 3833 3834 /* 3835 * The MSI-X interrupt handler for an SGE response queue. 3836 */ 3837 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 3838 { 3839 struct sge_rspq *q = cookie; 3840 3841 napi_schedule(&q->napi); 3842 return IRQ_HANDLED; 3843 } 3844 3845 /* 3846 * Process the indirect interrupt entries in the interrupt queue and kick off 3847 * NAPI for each queue that has generated an entry. 3848 */ 3849 static unsigned int process_intrq(struct adapter *adap) 3850 { 3851 unsigned int credits; 3852 const struct rsp_ctrl *rc; 3853 struct sge_rspq *q = &adap->sge.intrq; 3854 u32 val; 3855 3856 spin_lock(&adap->sge.intrq_lock); 3857 for (credits = 0; ; credits++) { 3858 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3859 if (!is_new_response(rc, q)) 3860 break; 3861 3862 dma_rmb(); 3863 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 3864 unsigned int qid = ntohl(rc->pldbuflen_qid); 3865 3866 qid -= adap->sge.ingr_start; 3867 napi_schedule(&adap->sge.ingr_map[qid]->napi); 3868 } 3869 3870 rspq_next(q); 3871 } 3872 3873 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 3874 3875 /* If we don't have access to the new User GTS (T5+), use the old 3876 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3877 */ 3878 if (unlikely(q->bar2_addr == NULL)) { 3879 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 3880 val | INGRESSQID_V(q->cntxt_id)); 3881 } else { 3882 writel(val | INGRESSQID_V(q->bar2_qid), 3883 q->bar2_addr + SGE_UDB_GTS); 3884 wmb(); 3885 } 3886 spin_unlock(&adap->sge.intrq_lock); 3887 return credits; 3888 } 3889 3890 /* 3891 * The MSI interrupt handler, which handles data events from SGE response queues 3892 * as well as error and other async events as they all use the same MSI vector. 3893 */ 3894 static irqreturn_t t4_intr_msi(int irq, void *cookie) 3895 { 3896 struct adapter *adap = cookie; 3897 3898 if (adap->flags & CXGB4_MASTER_PF) 3899 t4_slow_intr_handler(adap); 3900 process_intrq(adap); 3901 return IRQ_HANDLED; 3902 } 3903 3904 /* 3905 * Interrupt handler for legacy INTx interrupts. 3906 * Handles data events from SGE response queues as well as error and other 3907 * async events as they all use the same interrupt line. 3908 */ 3909 static irqreturn_t t4_intr_intx(int irq, void *cookie) 3910 { 3911 struct adapter *adap = cookie; 3912 3913 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 3914 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 3915 process_intrq(adap)) 3916 return IRQ_HANDLED; 3917 return IRQ_NONE; /* probably shared interrupt */ 3918 } 3919 3920 /** 3921 * t4_intr_handler - select the top-level interrupt handler 3922 * @adap: the adapter 3923 * 3924 * Selects the top-level interrupt handler based on the type of interrupts 3925 * (MSI-X, MSI, or INTx). 3926 */ 3927 irq_handler_t t4_intr_handler(struct adapter *adap) 3928 { 3929 if (adap->flags & CXGB4_USING_MSIX) 3930 return t4_sge_intr_msix; 3931 if (adap->flags & CXGB4_USING_MSI) 3932 return t4_intr_msi; 3933 return t4_intr_intx; 3934 } 3935 3936 static void sge_rx_timer_cb(struct timer_list *t) 3937 { 3938 unsigned long m; 3939 unsigned int i; 3940 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 3941 struct sge *s = &adap->sge; 3942 3943 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3944 for (m = s->starving_fl[i]; m; m &= m - 1) { 3945 struct sge_eth_rxq *rxq; 3946 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 3947 struct sge_fl *fl = s->egr_map[id]; 3948 3949 clear_bit(id, s->starving_fl); 3950 smp_mb__after_atomic(); 3951 3952 if (fl_starving(adap, fl)) { 3953 rxq = container_of(fl, struct sge_eth_rxq, fl); 3954 if (napi_reschedule(&rxq->rspq.napi)) 3955 fl->starving++; 3956 else 3957 set_bit(id, s->starving_fl); 3958 } 3959 } 3960 /* The remainder of the SGE RX Timer Callback routine is dedicated to 3961 * global Master PF activities like checking for chip ingress stalls, 3962 * etc. 3963 */ 3964 if (!(adap->flags & CXGB4_MASTER_PF)) 3965 goto done; 3966 3967 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 3968 3969 done: 3970 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 3971 } 3972 3973 static void sge_tx_timer_cb(struct timer_list *t) 3974 { 3975 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 3976 struct sge *s = &adap->sge; 3977 unsigned long m, period; 3978 unsigned int i, budget; 3979 3980 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3981 for (m = s->txq_maperr[i]; m; m &= m - 1) { 3982 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 3983 struct sge_uld_txq *txq = s->egr_map[id]; 3984 3985 clear_bit(id, s->txq_maperr); 3986 tasklet_schedule(&txq->qresume_tsk); 3987 } 3988 3989 if (!is_t4(adap->params.chip)) { 3990 struct sge_eth_txq *q = &s->ptptxq; 3991 int avail; 3992 3993 spin_lock(&adap->ptp_lock); 3994 avail = reclaimable(&q->q); 3995 3996 if (avail) { 3997 free_tx_desc(adap, &q->q, avail, false); 3998 q->q.in_use -= avail; 3999 } 4000 spin_unlock(&adap->ptp_lock); 4001 } 4002 4003 budget = MAX_TIMER_TX_RECLAIM; 4004 i = s->ethtxq_rover; 4005 do { 4006 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4007 budget); 4008 if (!budget) 4009 break; 4010 4011 if (++i >= s->ethqsets) 4012 i = 0; 4013 } while (i != s->ethtxq_rover); 4014 s->ethtxq_rover = i; 4015 4016 if (budget == 0) { 4017 /* If we found too many reclaimable packets schedule a timer 4018 * in the near future to continue where we left off. 4019 */ 4020 period = 2; 4021 } else { 4022 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4023 * at the normal period. 4024 */ 4025 period = TX_QCHECK_PERIOD; 4026 } 4027 4028 mod_timer(&s->tx_timer, jiffies + period); 4029 } 4030 4031 /** 4032 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4033 * @adapter: the adapter 4034 * @qid: the SGE Queue ID 4035 * @qtype: the SGE Queue Type (Egress or Ingress) 4036 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4037 * 4038 * Returns the BAR2 address for the SGE Queue Registers associated with 4039 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4040 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4041 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4042 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4043 */ 4044 static void __iomem *bar2_address(struct adapter *adapter, 4045 unsigned int qid, 4046 enum t4_bar2_qtype qtype, 4047 unsigned int *pbar2_qid) 4048 { 4049 u64 bar2_qoffset; 4050 int ret; 4051 4052 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4053 &bar2_qoffset, pbar2_qid); 4054 if (ret) 4055 return NULL; 4056 4057 return adapter->bar2 + bar2_qoffset; 4058 } 4059 4060 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4061 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4062 */ 4063 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4064 struct net_device *dev, int intr_idx, 4065 struct sge_fl *fl, rspq_handler_t hnd, 4066 rspq_flush_handler_t flush_hnd, int cong) 4067 { 4068 int ret, flsz = 0; 4069 struct fw_iq_cmd c; 4070 struct sge *s = &adap->sge; 4071 struct port_info *pi = netdev_priv(dev); 4072 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4073 4074 /* Size needs to be multiple of 16, including status entry. */ 4075 iq->size = roundup(iq->size, 16); 4076 4077 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4078 &iq->phys_addr, NULL, 0, 4079 dev_to_node(adap->pdev_dev)); 4080 if (!iq->desc) 4081 return -ENOMEM; 4082 4083 memset(&c, 0, sizeof(c)); 4084 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4085 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4086 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4087 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4088 FW_LEN16(c)); 4089 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4090 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4091 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4092 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4093 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4094 -intr_idx - 1)); 4095 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4096 FW_IQ_CMD_IQGTSMODE_F | 4097 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4098 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4099 c.iqsize = htons(iq->size); 4100 c.iqaddr = cpu_to_be64(iq->phys_addr); 4101 if (cong >= 0) 4102 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4103 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4104 : FW_IQ_IQTYPE_OFLD)); 4105 4106 if (fl) { 4107 unsigned int chip_ver = 4108 CHELSIO_CHIP_VERSION(adap->params.chip); 4109 4110 /* Allocate the ring for the hardware free list (with space 4111 * for its status page) along with the associated software 4112 * descriptor ring. The free list size needs to be a multiple 4113 * of the Egress Queue Unit and at least 2 Egress Units larger 4114 * than the SGE's Egress Congrestion Threshold 4115 * (fl_starve_thres - 1). 4116 */ 4117 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4118 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4119 fl->size = roundup(fl->size, 8); 4120 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4121 sizeof(struct rx_sw_desc), &fl->addr, 4122 &fl->sdesc, s->stat_len, 4123 dev_to_node(adap->pdev_dev)); 4124 if (!fl->desc) 4125 goto fl_nomem; 4126 4127 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4128 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4129 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4130 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4131 FW_IQ_CMD_FL0PADEN_F); 4132 if (cong >= 0) 4133 c.iqns_to_fl0congen |= 4134 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4135 FW_IQ_CMD_FL0CONGCIF_F | 4136 FW_IQ_CMD_FL0CONGEN_F); 4137 /* In T6, for egress queue type FL there is internal overhead 4138 * of 16B for header going into FLM module. Hence the maximum 4139 * allowed burst size is 448 bytes. For T4/T5, the hardware 4140 * doesn't coalesce fetch requests if more than 64 bytes of 4141 * Free List pointers are provided, so we use a 128-byte Fetch 4142 * Burst Minimum there (T6 implements coalescing so we can use 4143 * the smaller 64-byte value there). 4144 */ 4145 c.fl0dcaen_to_fl0cidxfthresh = 4146 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4147 FETCHBURSTMIN_128B_X : 4148 FETCHBURSTMIN_64B_T6_X) | 4149 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4150 FETCHBURSTMAX_512B_X : 4151 FETCHBURSTMAX_256B_X)); 4152 c.fl0size = htons(flsz); 4153 c.fl0addr = cpu_to_be64(fl->addr); 4154 } 4155 4156 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4157 if (ret) 4158 goto err; 4159 4160 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 4161 iq->cur_desc = iq->desc; 4162 iq->cidx = 0; 4163 iq->gen = 1; 4164 iq->next_intr_params = iq->intr_params; 4165 iq->cntxt_id = ntohs(c.iqid); 4166 iq->abs_id = ntohs(c.physiqid); 4167 iq->bar2_addr = bar2_address(adap, 4168 iq->cntxt_id, 4169 T4_BAR2_QTYPE_INGRESS, 4170 &iq->bar2_qid); 4171 iq->size--; /* subtract status entry */ 4172 iq->netdev = dev; 4173 iq->handler = hnd; 4174 iq->flush_handler = flush_hnd; 4175 4176 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4177 skb_queue_head_init(&iq->lro_mgr.lroq); 4178 4179 /* set offset to -1 to distinguish ingress queues without FL */ 4180 iq->offset = fl ? 0 : -1; 4181 4182 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4183 4184 if (fl) { 4185 fl->cntxt_id = ntohs(c.fl0id); 4186 fl->avail = fl->pend_cred = 0; 4187 fl->pidx = fl->cidx = 0; 4188 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4189 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4190 4191 /* Note, we must initialize the BAR2 Free List User Doorbell 4192 * information before refilling the Free List! 4193 */ 4194 fl->bar2_addr = bar2_address(adap, 4195 fl->cntxt_id, 4196 T4_BAR2_QTYPE_EGRESS, 4197 &fl->bar2_qid); 4198 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4199 } 4200 4201 /* For T5 and later we attempt to set up the Congestion Manager values 4202 * of the new RX Ethernet Queue. This should really be handled by 4203 * firmware because it's more complex than any host driver wants to 4204 * get involved with and it's different per chip and this is almost 4205 * certainly wrong. Firmware would be wrong as well, but it would be 4206 * a lot easier to fix in one place ... For now we do something very 4207 * simple (and hopefully less wrong). 4208 */ 4209 if (!is_t4(adap->params.chip) && cong >= 0) { 4210 u32 param, val, ch_map = 0; 4211 int i; 4212 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4213 4214 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4215 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4216 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4217 if (cong == 0) { 4218 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4219 } else { 4220 val = 4221 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4222 for (i = 0; i < 4; i++) { 4223 if (cong & (1 << i)) 4224 ch_map |= 1 << (i << cng_ch_bits_log); 4225 } 4226 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4227 } 4228 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4229 ¶m, &val); 4230 if (ret) 4231 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4232 " Manager Context for Ingress Queue %d: %d\n", 4233 iq->cntxt_id, -ret); 4234 } 4235 4236 return 0; 4237 4238 fl_nomem: 4239 ret = -ENOMEM; 4240 err: 4241 if (iq->desc) { 4242 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4243 iq->desc, iq->phys_addr); 4244 iq->desc = NULL; 4245 } 4246 if (fl && fl->desc) { 4247 kfree(fl->sdesc); 4248 fl->sdesc = NULL; 4249 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4250 fl->desc, fl->addr); 4251 fl->desc = NULL; 4252 } 4253 return ret; 4254 } 4255 4256 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4257 { 4258 q->cntxt_id = id; 4259 q->bar2_addr = bar2_address(adap, 4260 q->cntxt_id, 4261 T4_BAR2_QTYPE_EGRESS, 4262 &q->bar2_qid); 4263 q->in_use = 0; 4264 q->cidx = q->pidx = 0; 4265 q->stops = q->restarts = 0; 4266 q->stat = (void *)&q->desc[q->size]; 4267 spin_lock_init(&q->db_lock); 4268 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4269 } 4270 4271 /** 4272 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4273 * @adap: the adapter 4274 * @txq: the SGE Ethernet TX Queue to initialize 4275 * @dev: the Linux Network Device 4276 * @netdevq: the corresponding Linux TX Queue 4277 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4278 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4279 */ 4280 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4281 struct net_device *dev, struct netdev_queue *netdevq, 4282 unsigned int iqid, u8 dbqt) 4283 { 4284 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4285 struct port_info *pi = netdev_priv(dev); 4286 struct sge *s = &adap->sge; 4287 struct fw_eq_eth_cmd c; 4288 int ret, nentries; 4289 4290 /* Add status entries */ 4291 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4292 4293 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4294 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4295 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4296 netdev_queue_numa_node_read(netdevq)); 4297 if (!txq->q.desc) 4298 return -ENOMEM; 4299 4300 memset(&c, 0, sizeof(c)); 4301 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4302 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4303 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4304 FW_EQ_ETH_CMD_VFN_V(0)); 4305 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4306 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4307 4308 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4309 * mechanism, we use Ingress Queue messages for Hardware Consumer 4310 * Index Updates on the TX Queue. Otherwise we have the Hardware 4311 * write the CIDX Updates into the Status Page at the end of the 4312 * TX Queue. 4313 */ 4314 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 4315 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4316 4317 c.fetchszm_to_iqid = 4318 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4319 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4320 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4321 4322 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4323 c.dcaen_to_eqsize = 4324 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4325 ? FETCHBURSTMIN_64B_X 4326 : FETCHBURSTMIN_64B_T6_X) | 4327 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4328 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4329 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4330 4331 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4332 4333 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4334 * currently configured Timer Index. THis can be changed later via an 4335 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4336 * Doorbell Queue mode is currently automatically enabled in the 4337 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4338 */ 4339 if (dbqt) 4340 c.timeren_timerix = 4341 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4342 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4343 4344 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4345 if (ret) { 4346 kfree(txq->q.sdesc); 4347 txq->q.sdesc = NULL; 4348 dma_free_coherent(adap->pdev_dev, 4349 nentries * sizeof(struct tx_desc), 4350 txq->q.desc, txq->q.phys_addr); 4351 txq->q.desc = NULL; 4352 return ret; 4353 } 4354 4355 txq->q.q_type = CXGB4_TXQ_ETH; 4356 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4357 txq->txq = netdevq; 4358 txq->tso = 0; 4359 txq->uso = 0; 4360 txq->tx_cso = 0; 4361 txq->vlan_ins = 0; 4362 txq->mapping_err = 0; 4363 txq->dbqt = dbqt; 4364 4365 return 0; 4366 } 4367 4368 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4369 struct net_device *dev, unsigned int iqid, 4370 unsigned int cmplqid) 4371 { 4372 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4373 struct port_info *pi = netdev_priv(dev); 4374 struct sge *s = &adap->sge; 4375 struct fw_eq_ctrl_cmd c; 4376 int ret, nentries; 4377 4378 /* Add status entries */ 4379 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4380 4381 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4382 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4383 NULL, 0, dev_to_node(adap->pdev_dev)); 4384 if (!txq->q.desc) 4385 return -ENOMEM; 4386 4387 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4388 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4389 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4390 FW_EQ_CTRL_CMD_VFN_V(0)); 4391 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4392 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4393 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4394 c.physeqid_pkd = htonl(0); 4395 c.fetchszm_to_iqid = 4396 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4397 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4398 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4399 c.dcaen_to_eqsize = 4400 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4401 ? FETCHBURSTMIN_64B_X 4402 : FETCHBURSTMIN_64B_T6_X) | 4403 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4404 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4405 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4406 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4407 4408 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4409 if (ret) { 4410 dma_free_coherent(adap->pdev_dev, 4411 nentries * sizeof(struct tx_desc), 4412 txq->q.desc, txq->q.phys_addr); 4413 txq->q.desc = NULL; 4414 return ret; 4415 } 4416 4417 txq->q.q_type = CXGB4_TXQ_CTRL; 4418 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4419 txq->adap = adap; 4420 skb_queue_head_init(&txq->sendq); 4421 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 4422 txq->full = 0; 4423 return 0; 4424 } 4425 4426 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4427 unsigned int cmplqid) 4428 { 4429 u32 param, val; 4430 4431 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4432 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4433 FW_PARAMS_PARAM_YZ_V(eqid)); 4434 val = cmplqid; 4435 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4436 } 4437 4438 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4439 struct net_device *dev, u32 cmd, u32 iqid) 4440 { 4441 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4442 struct port_info *pi = netdev_priv(dev); 4443 struct sge *s = &adap->sge; 4444 struct fw_eq_ofld_cmd c; 4445 u32 fb_min, nentries; 4446 int ret; 4447 4448 /* Add status entries */ 4449 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4450 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4451 sizeof(struct tx_sw_desc), &q->phys_addr, 4452 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4453 if (!q->desc) 4454 return -ENOMEM; 4455 4456 if (chip_ver <= CHELSIO_T5) 4457 fb_min = FETCHBURSTMIN_64B_X; 4458 else 4459 fb_min = FETCHBURSTMIN_64B_T6_X; 4460 4461 memset(&c, 0, sizeof(c)); 4462 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4463 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4464 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4465 FW_EQ_OFLD_CMD_VFN_V(0)); 4466 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4467 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4468 c.fetchszm_to_iqid = 4469 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4470 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4471 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4472 c.dcaen_to_eqsize = 4473 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4474 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4475 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4476 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4477 c.eqaddr = cpu_to_be64(q->phys_addr); 4478 4479 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4480 if (ret) { 4481 kfree(q->sdesc); 4482 q->sdesc = NULL; 4483 dma_free_coherent(adap->pdev_dev, 4484 nentries * sizeof(struct tx_desc), 4485 q->desc, q->phys_addr); 4486 q->desc = NULL; 4487 return ret; 4488 } 4489 4490 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4491 return 0; 4492 } 4493 4494 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4495 struct net_device *dev, unsigned int iqid, 4496 unsigned int uld_type) 4497 { 4498 u32 cmd = FW_EQ_OFLD_CMD; 4499 int ret; 4500 4501 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4502 cmd = FW_EQ_CTRL_CMD; 4503 4504 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4505 if (ret) 4506 return ret; 4507 4508 txq->q.q_type = CXGB4_TXQ_ULD; 4509 txq->adap = adap; 4510 skb_queue_head_init(&txq->sendq); 4511 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 4512 txq->full = 0; 4513 txq->mapping_err = 0; 4514 return 0; 4515 } 4516 4517 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4518 struct net_device *dev, u32 iqid) 4519 { 4520 int ret; 4521 4522 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4523 if (ret) 4524 return ret; 4525 4526 txq->q.q_type = CXGB4_TXQ_ULD; 4527 spin_lock_init(&txq->lock); 4528 txq->adap = adap; 4529 txq->tso = 0; 4530 txq->uso = 0; 4531 txq->tx_cso = 0; 4532 txq->vlan_ins = 0; 4533 txq->mapping_err = 0; 4534 return 0; 4535 } 4536 4537 void free_txq(struct adapter *adap, struct sge_txq *q) 4538 { 4539 struct sge *s = &adap->sge; 4540 4541 dma_free_coherent(adap->pdev_dev, 4542 q->size * sizeof(struct tx_desc) + s->stat_len, 4543 q->desc, q->phys_addr); 4544 q->cntxt_id = 0; 4545 q->sdesc = NULL; 4546 q->desc = NULL; 4547 } 4548 4549 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4550 struct sge_fl *fl) 4551 { 4552 struct sge *s = &adap->sge; 4553 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4554 4555 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4556 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4557 rq->cntxt_id, fl_id, 0xffff); 4558 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4559 rq->desc, rq->phys_addr); 4560 netif_napi_del(&rq->napi); 4561 rq->netdev = NULL; 4562 rq->cntxt_id = rq->abs_id = 0; 4563 rq->desc = NULL; 4564 4565 if (fl) { 4566 free_rx_bufs(adap, fl, fl->avail); 4567 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4568 fl->desc, fl->addr); 4569 kfree(fl->sdesc); 4570 fl->sdesc = NULL; 4571 fl->cntxt_id = 0; 4572 fl->desc = NULL; 4573 } 4574 } 4575 4576 /** 4577 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4578 * @adap: the adapter 4579 * @n: number of queues 4580 * @q: pointer to first queue 4581 * 4582 * Release the resources of a consecutive block of offload Rx queues. 4583 */ 4584 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4585 { 4586 for ( ; n; n--, q++) 4587 if (q->rspq.desc) 4588 free_rspq_fl(adap, &q->rspq, 4589 q->fl.size ? &q->fl : NULL); 4590 } 4591 4592 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4593 { 4594 if (txq->q.desc) { 4595 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4596 txq->q.cntxt_id); 4597 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4598 kfree(txq->q.sdesc); 4599 free_txq(adap, &txq->q); 4600 } 4601 } 4602 4603 /** 4604 * t4_free_sge_resources - free SGE resources 4605 * @adap: the adapter 4606 * 4607 * Frees resources used by the SGE queue sets. 4608 */ 4609 void t4_free_sge_resources(struct adapter *adap) 4610 { 4611 int i; 4612 struct sge_eth_rxq *eq; 4613 struct sge_eth_txq *etq; 4614 4615 /* stop all Rx queues in order to start them draining */ 4616 for (i = 0; i < adap->sge.ethqsets; i++) { 4617 eq = &adap->sge.ethrxq[i]; 4618 if (eq->rspq.desc) 4619 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4620 FW_IQ_TYPE_FL_INT_CAP, 4621 eq->rspq.cntxt_id, 4622 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4623 0xffff); 4624 } 4625 4626 /* clean up Ethernet Tx/Rx queues */ 4627 for (i = 0; i < adap->sge.ethqsets; i++) { 4628 eq = &adap->sge.ethrxq[i]; 4629 if (eq->rspq.desc) 4630 free_rspq_fl(adap, &eq->rspq, 4631 eq->fl.size ? &eq->fl : NULL); 4632 if (eq->msix) { 4633 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4634 eq->msix = NULL; 4635 } 4636 4637 etq = &adap->sge.ethtxq[i]; 4638 if (etq->q.desc) { 4639 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4640 etq->q.cntxt_id); 4641 __netif_tx_lock_bh(etq->txq); 4642 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4643 __netif_tx_unlock_bh(etq->txq); 4644 kfree(etq->q.sdesc); 4645 free_txq(adap, &etq->q); 4646 } 4647 } 4648 4649 /* clean up control Tx queues */ 4650 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4651 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4652 4653 if (cq->q.desc) { 4654 tasklet_kill(&cq->qresume_tsk); 4655 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4656 cq->q.cntxt_id); 4657 __skb_queue_purge(&cq->sendq); 4658 free_txq(adap, &cq->q); 4659 } 4660 } 4661 4662 if (adap->sge.fw_evtq.desc) { 4663 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4664 if (adap->sge.fwevtq_msix_idx >= 0) 4665 cxgb4_free_msix_idx_in_bmap(adap, 4666 adap->sge.fwevtq_msix_idx); 4667 } 4668 4669 if (adap->sge.nd_msix_idx >= 0) 4670 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4671 4672 if (adap->sge.intrq.desc) 4673 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4674 4675 if (!is_t4(adap->params.chip)) { 4676 etq = &adap->sge.ptptxq; 4677 if (etq->q.desc) { 4678 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4679 etq->q.cntxt_id); 4680 spin_lock_bh(&adap->ptp_lock); 4681 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4682 spin_unlock_bh(&adap->ptp_lock); 4683 kfree(etq->q.sdesc); 4684 free_txq(adap, &etq->q); 4685 } 4686 } 4687 4688 /* clear the reverse egress queue map */ 4689 memset(adap->sge.egr_map, 0, 4690 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4691 } 4692 4693 void t4_sge_start(struct adapter *adap) 4694 { 4695 adap->sge.ethtxq_rover = 0; 4696 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4697 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4698 } 4699 4700 /** 4701 * t4_sge_stop - disable SGE operation 4702 * @adap: the adapter 4703 * 4704 * Stop tasklets and timers associated with the DMA engine. Note that 4705 * this is effective only if measures have been taken to disable any HW 4706 * events that may restart them. 4707 */ 4708 void t4_sge_stop(struct adapter *adap) 4709 { 4710 int i; 4711 struct sge *s = &adap->sge; 4712 4713 if (in_interrupt()) /* actions below require waiting */ 4714 return; 4715 4716 if (s->rx_timer.function) 4717 del_timer_sync(&s->rx_timer); 4718 if (s->tx_timer.function) 4719 del_timer_sync(&s->tx_timer); 4720 4721 if (is_offload(adap)) { 4722 struct sge_uld_txq_info *txq_info; 4723 4724 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 4725 if (txq_info) { 4726 struct sge_uld_txq *txq = txq_info->uldtxq; 4727 4728 for_each_ofldtxq(&adap->sge, i) { 4729 if (txq->q.desc) 4730 tasklet_kill(&txq->qresume_tsk); 4731 } 4732 } 4733 } 4734 4735 if (is_pci_uld(adap)) { 4736 struct sge_uld_txq_info *txq_info; 4737 4738 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 4739 if (txq_info) { 4740 struct sge_uld_txq *txq = txq_info->uldtxq; 4741 4742 for_each_ofldtxq(&adap->sge, i) { 4743 if (txq->q.desc) 4744 tasklet_kill(&txq->qresume_tsk); 4745 } 4746 } 4747 } 4748 4749 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 4750 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 4751 4752 if (cq->q.desc) 4753 tasklet_kill(&cq->qresume_tsk); 4754 } 4755 } 4756 4757 /** 4758 * t4_sge_init_soft - grab core SGE values needed by SGE code 4759 * @adap: the adapter 4760 * 4761 * We need to grab the SGE operating parameters that we need to have 4762 * in order to do our job and make sure we can live with them. 4763 */ 4764 4765 static int t4_sge_init_soft(struct adapter *adap) 4766 { 4767 struct sge *s = &adap->sge; 4768 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 4769 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 4770 u32 ingress_rx_threshold; 4771 4772 /* 4773 * Verify that CPL messages are going to the Ingress Queue for 4774 * process_responses() and that only packet data is going to the 4775 * Free Lists. 4776 */ 4777 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 4778 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 4779 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 4780 return -EINVAL; 4781 } 4782 4783 /* 4784 * Validate the Host Buffer Register Array indices that we want to 4785 * use ... 4786 * 4787 * XXX Note that we should really read through the Host Buffer Size 4788 * XXX register array and find the indices of the Buffer Sizes which 4789 * XXX meet our needs! 4790 */ 4791 #define READ_FL_BUF(x) \ 4792 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 4793 4794 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 4795 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 4796 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 4797 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 4798 4799 /* We only bother using the Large Page logic if the Large Page Buffer 4800 * is larger than our Page Size Buffer. 4801 */ 4802 if (fl_large_pg <= fl_small_pg) 4803 fl_large_pg = 0; 4804 4805 #undef READ_FL_BUF 4806 4807 /* The Page Size Buffer must be exactly equal to our Page Size and the 4808 * Large Page Size Buffer should be 0 (per above) or a power of 2. 4809 */ 4810 if (fl_small_pg != PAGE_SIZE || 4811 (fl_large_pg & (fl_large_pg-1)) != 0) { 4812 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 4813 fl_small_pg, fl_large_pg); 4814 return -EINVAL; 4815 } 4816 if (fl_large_pg) 4817 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 4818 4819 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 4820 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 4821 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 4822 fl_small_mtu, fl_large_mtu); 4823 return -EINVAL; 4824 } 4825 4826 /* 4827 * Retrieve our RX interrupt holdoff timer values and counter 4828 * threshold values from the SGE parameters. 4829 */ 4830 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 4831 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 4832 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 4833 s->timer_val[0] = core_ticks_to_us(adap, 4834 TIMERVALUE0_G(timer_value_0_and_1)); 4835 s->timer_val[1] = core_ticks_to_us(adap, 4836 TIMERVALUE1_G(timer_value_0_and_1)); 4837 s->timer_val[2] = core_ticks_to_us(adap, 4838 TIMERVALUE2_G(timer_value_2_and_3)); 4839 s->timer_val[3] = core_ticks_to_us(adap, 4840 TIMERVALUE3_G(timer_value_2_and_3)); 4841 s->timer_val[4] = core_ticks_to_us(adap, 4842 TIMERVALUE4_G(timer_value_4_and_5)); 4843 s->timer_val[5] = core_ticks_to_us(adap, 4844 TIMERVALUE5_G(timer_value_4_and_5)); 4845 4846 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 4847 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 4848 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 4849 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 4850 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 4851 4852 return 0; 4853 } 4854 4855 /** 4856 * t4_sge_init - initialize SGE 4857 * @adap: the adapter 4858 * 4859 * Perform low-level SGE code initialization needed every time after a 4860 * chip reset. 4861 */ 4862 int t4_sge_init(struct adapter *adap) 4863 { 4864 struct sge *s = &adap->sge; 4865 u32 sge_control, sge_conm_ctrl; 4866 int ret, egress_threshold; 4867 4868 /* 4869 * Ingress Padding Boundary and Egress Status Page Size are set up by 4870 * t4_fixup_host_params(). 4871 */ 4872 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 4873 s->pktshift = PKTSHIFT_G(sge_control); 4874 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 4875 4876 s->fl_align = t4_fl_pkt_align(adap); 4877 ret = t4_sge_init_soft(adap); 4878 if (ret < 0) 4879 return ret; 4880 4881 /* 4882 * A FL with <= fl_starve_thres buffers is starving and a periodic 4883 * timer will attempt to refill it. This needs to be larger than the 4884 * SGE's Egress Congestion Threshold. If it isn't, then we can get 4885 * stuck waiting for new packets while the SGE is waiting for us to 4886 * give it more Free List entries. (Note that the SGE's Egress 4887 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 4888 * there was only a single field to control this. For T5 there's the 4889 * original field which now only applies to Unpacked Mode Free List 4890 * buffers and a new field which only applies to Packed Mode Free List 4891 * buffers. 4892 */ 4893 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 4894 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 4895 case CHELSIO_T4: 4896 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 4897 break; 4898 case CHELSIO_T5: 4899 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4900 break; 4901 case CHELSIO_T6: 4902 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4903 break; 4904 default: 4905 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 4906 CHELSIO_CHIP_VERSION(adap->params.chip)); 4907 return -EINVAL; 4908 } 4909 s->fl_starve_thres = 2*egress_threshold + 1; 4910 4911 t4_idma_monitor_init(adap, &s->idma_monitor); 4912 4913 /* Set up timers used for recuring callbacks to process RX and TX 4914 * administrative tasks. 4915 */ 4916 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 4917 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 4918 4919 spin_lock_init(&s->intrq_lock); 4920 4921 return 0; 4922 } 4923