1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #ifdef CONFIG_NET_RX_BUSY_POLL 47 #include <net/busy_poll.h> 48 #endif /* CONFIG_NET_RX_BUSY_POLL */ 49 #ifdef CONFIG_CHELSIO_T4_FCOE 50 #include <scsi/fc/fc_fcoe.h> 51 #endif /* CONFIG_CHELSIO_T4_FCOE */ 52 #include "cxgb4.h" 53 #include "t4_regs.h" 54 #include "t4_values.h" 55 #include "t4_msg.h" 56 #include "t4fw_api.h" 57 58 /* 59 * Rx buffer size. We use largish buffers if possible but settle for single 60 * pages under memory shortage. 61 */ 62 #if PAGE_SHIFT >= 16 63 # define FL_PG_ORDER 0 64 #else 65 # define FL_PG_ORDER (16 - PAGE_SHIFT) 66 #endif 67 68 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 69 #define RX_COPY_THRES 256 70 #define RX_PULL_LEN 128 71 72 /* 73 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 74 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 75 */ 76 #define RX_PKT_SKB_LEN 512 77 78 /* 79 * Max number of Tx descriptors we clean up at a time. Should be modest as 80 * freeing skbs isn't cheap and it happens while holding locks. We just need 81 * to free packets faster than they arrive, we eventually catch up and keep 82 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 83 */ 84 #define MAX_TX_RECLAIM 16 85 86 /* 87 * Max number of Rx buffers we replenish at a time. Again keep this modest, 88 * allocating buffers isn't cheap either. 89 */ 90 #define MAX_RX_REFILL 16U 91 92 /* 93 * Period of the Rx queue check timer. This timer is infrequent as it has 94 * something to do only when the system experiences severe memory shortage. 95 */ 96 #define RX_QCHECK_PERIOD (HZ / 2) 97 98 /* 99 * Period of the Tx queue check timer. 100 */ 101 #define TX_QCHECK_PERIOD (HZ / 2) 102 103 /* 104 * Max number of Tx descriptors to be reclaimed by the Tx timer. 105 */ 106 #define MAX_TIMER_TX_RECLAIM 100 107 108 /* 109 * Timer index used when backing off due to memory shortage. 110 */ 111 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 112 113 /* 114 * Suspend an Ethernet Tx queue with fewer available descriptors than this. 115 * This is the same as calc_tx_descs() for a TSO packet with 116 * nr_frags == MAX_SKB_FRAGS. 117 */ 118 #define ETHTXQ_STOP_THRES \ 119 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) 120 121 /* 122 * Suspension threshold for non-Ethernet Tx queues. We require enough room 123 * for a full sized WR. 124 */ 125 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 126 127 /* 128 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 129 * into a WR. 130 */ 131 #define MAX_IMM_TX_PKT_LEN 256 132 133 /* 134 * Max size of a WR sent through a control Tx queue. 135 */ 136 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 137 138 struct tx_sw_desc { /* SW state per Tx descriptor */ 139 struct sk_buff *skb; 140 struct ulptx_sgl *sgl; 141 }; 142 143 struct rx_sw_desc { /* SW state per Rx descriptor */ 144 struct page *page; 145 dma_addr_t dma_addr; 146 }; 147 148 /* 149 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 150 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 151 * We could easily support more but there doesn't seem to be much need for 152 * that ... 153 */ 154 #define FL_MTU_SMALL 1500 155 #define FL_MTU_LARGE 9000 156 157 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 158 unsigned int mtu) 159 { 160 struct sge *s = &adapter->sge; 161 162 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 163 } 164 165 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 166 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 167 168 /* 169 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 170 * these to specify the buffer size as an index into the SGE Free List Buffer 171 * Size register array. We also use bit 4, when the buffer has been unmapped 172 * for DMA, but this is of course never sent to the hardware and is only used 173 * to prevent double unmappings. All of the above requires that the Free List 174 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 175 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 176 * Free List Buffer alignment is 32 bytes, this works out for us ... 177 */ 178 enum { 179 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 180 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 181 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 182 183 /* 184 * XXX We shouldn't depend on being able to use these indices. 185 * XXX Especially when some other Master PF has initialized the 186 * XXX adapter or we use the Firmware Configuration File. We 187 * XXX should really search through the Host Buffer Size register 188 * XXX array for the appropriately sized buffer indices. 189 */ 190 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 191 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 192 193 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 194 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 195 }; 196 197 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 198 #define MIN_NAPI_WORK 1 199 200 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 201 { 202 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 203 } 204 205 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 206 { 207 return !(d->dma_addr & RX_UNMAPPED_BUF); 208 } 209 210 /** 211 * txq_avail - return the number of available slots in a Tx queue 212 * @q: the Tx queue 213 * 214 * Returns the number of descriptors in a Tx queue available to write new 215 * packets. 216 */ 217 static inline unsigned int txq_avail(const struct sge_txq *q) 218 { 219 return q->size - 1 - q->in_use; 220 } 221 222 /** 223 * fl_cap - return the capacity of a free-buffer list 224 * @fl: the FL 225 * 226 * Returns the capacity of a free-buffer list. The capacity is less than 227 * the size because one descriptor needs to be left unpopulated, otherwise 228 * HW will think the FL is empty. 229 */ 230 static inline unsigned int fl_cap(const struct sge_fl *fl) 231 { 232 return fl->size - 8; /* 1 descriptor = 8 buffers */ 233 } 234 235 /** 236 * fl_starving - return whether a Free List is starving. 237 * @adapter: pointer to the adapter 238 * @fl: the Free List 239 * 240 * Tests specified Free List to see whether the number of buffers 241 * available to the hardware has falled below our "starvation" 242 * threshold. 243 */ 244 static inline bool fl_starving(const struct adapter *adapter, 245 const struct sge_fl *fl) 246 { 247 const struct sge *s = &adapter->sge; 248 249 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 250 } 251 252 static int map_skb(struct device *dev, const struct sk_buff *skb, 253 dma_addr_t *addr) 254 { 255 const skb_frag_t *fp, *end; 256 const struct skb_shared_info *si; 257 258 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto out_err; 261 262 si = skb_shinfo(skb); 263 end = &si->frags[si->nr_frags]; 264 265 for (fp = si->frags; fp < end; fp++) { 266 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 267 DMA_TO_DEVICE); 268 if (dma_mapping_error(dev, *addr)) 269 goto unwind; 270 } 271 return 0; 272 273 unwind: 274 while (fp-- > si->frags) 275 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 276 277 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 278 out_err: 279 return -ENOMEM; 280 } 281 282 #ifdef CONFIG_NEED_DMA_MAP_STATE 283 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 284 const dma_addr_t *addr) 285 { 286 const skb_frag_t *fp, *end; 287 const struct skb_shared_info *si; 288 289 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 290 291 si = skb_shinfo(skb); 292 end = &si->frags[si->nr_frags]; 293 for (fp = si->frags; fp < end; fp++) 294 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 295 } 296 297 /** 298 * deferred_unmap_destructor - unmap a packet when it is freed 299 * @skb: the packet 300 * 301 * This is the packet destructor used for Tx packets that need to remain 302 * mapped until they are freed rather than until their Tx descriptors are 303 * freed. 304 */ 305 static void deferred_unmap_destructor(struct sk_buff *skb) 306 { 307 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 308 } 309 #endif 310 311 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 312 const struct ulptx_sgl *sgl, const struct sge_txq *q) 313 { 314 const struct ulptx_sge_pair *p; 315 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 316 317 if (likely(skb_headlen(skb))) 318 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 319 DMA_TO_DEVICE); 320 else { 321 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 322 DMA_TO_DEVICE); 323 nfrags--; 324 } 325 326 /* 327 * the complexity below is because of the possibility of a wrap-around 328 * in the middle of an SGL 329 */ 330 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 331 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 332 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 333 ntohl(p->len[0]), DMA_TO_DEVICE); 334 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 335 ntohl(p->len[1]), DMA_TO_DEVICE); 336 p++; 337 } else if ((u8 *)p == (u8 *)q->stat) { 338 p = (const struct ulptx_sge_pair *)q->desc; 339 goto unmap; 340 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 341 const __be64 *addr = (const __be64 *)q->desc; 342 343 dma_unmap_page(dev, be64_to_cpu(addr[0]), 344 ntohl(p->len[0]), DMA_TO_DEVICE); 345 dma_unmap_page(dev, be64_to_cpu(addr[1]), 346 ntohl(p->len[1]), DMA_TO_DEVICE); 347 p = (const struct ulptx_sge_pair *)&addr[2]; 348 } else { 349 const __be64 *addr = (const __be64 *)q->desc; 350 351 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 352 ntohl(p->len[0]), DMA_TO_DEVICE); 353 dma_unmap_page(dev, be64_to_cpu(addr[0]), 354 ntohl(p->len[1]), DMA_TO_DEVICE); 355 p = (const struct ulptx_sge_pair *)&addr[1]; 356 } 357 } 358 if (nfrags) { 359 __be64 addr; 360 361 if ((u8 *)p == (u8 *)q->stat) 362 p = (const struct ulptx_sge_pair *)q->desc; 363 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 364 *(const __be64 *)q->desc; 365 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 366 DMA_TO_DEVICE); 367 } 368 } 369 370 /** 371 * free_tx_desc - reclaims Tx descriptors and their buffers 372 * @adapter: the adapter 373 * @q: the Tx queue to reclaim descriptors from 374 * @n: the number of descriptors to reclaim 375 * @unmap: whether the buffers should be unmapped for DMA 376 * 377 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 378 * Tx buffers. Called with the Tx queue lock held. 379 */ 380 static void free_tx_desc(struct adapter *adap, struct sge_txq *q, 381 unsigned int n, bool unmap) 382 { 383 struct tx_sw_desc *d; 384 unsigned int cidx = q->cidx; 385 struct device *dev = adap->pdev_dev; 386 387 d = &q->sdesc[cidx]; 388 while (n--) { 389 if (d->skb) { /* an SGL is present */ 390 if (unmap) 391 unmap_sgl(dev, d->skb, d->sgl, q); 392 dev_consume_skb_any(d->skb); 393 d->skb = NULL; 394 } 395 ++d; 396 if (++cidx == q->size) { 397 cidx = 0; 398 d = q->sdesc; 399 } 400 } 401 q->cidx = cidx; 402 } 403 404 /* 405 * Return the number of reclaimable descriptors in a Tx queue. 406 */ 407 static inline int reclaimable(const struct sge_txq *q) 408 { 409 int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx)); 410 hw_cidx -= q->cidx; 411 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 412 } 413 414 /** 415 * reclaim_completed_tx - reclaims completed Tx descriptors 416 * @adap: the adapter 417 * @q: the Tx queue to reclaim completed descriptors from 418 * @unmap: whether the buffers should be unmapped for DMA 419 * 420 * Reclaims Tx descriptors that the SGE has indicated it has processed, 421 * and frees the associated buffers if possible. Called with the Tx 422 * queue locked. 423 */ 424 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 425 bool unmap) 426 { 427 int avail = reclaimable(q); 428 429 if (avail) { 430 /* 431 * Limit the amount of clean up work we do at a time to keep 432 * the Tx lock hold time O(1). 433 */ 434 if (avail > MAX_TX_RECLAIM) 435 avail = MAX_TX_RECLAIM; 436 437 free_tx_desc(adap, q, avail, unmap); 438 q->in_use -= avail; 439 } 440 } 441 442 static inline int get_buf_size(struct adapter *adapter, 443 const struct rx_sw_desc *d) 444 { 445 struct sge *s = &adapter->sge; 446 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 447 int buf_size; 448 449 switch (rx_buf_size_idx) { 450 case RX_SMALL_PG_BUF: 451 buf_size = PAGE_SIZE; 452 break; 453 454 case RX_LARGE_PG_BUF: 455 buf_size = PAGE_SIZE << s->fl_pg_order; 456 break; 457 458 case RX_SMALL_MTU_BUF: 459 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 460 break; 461 462 case RX_LARGE_MTU_BUF: 463 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 464 break; 465 466 default: 467 BUG_ON(1); 468 } 469 470 return buf_size; 471 } 472 473 /** 474 * free_rx_bufs - free the Rx buffers on an SGE free list 475 * @adap: the adapter 476 * @q: the SGE free list to free buffers from 477 * @n: how many buffers to free 478 * 479 * Release the next @n buffers on an SGE free-buffer Rx queue. The 480 * buffers must be made inaccessible to HW before calling this function. 481 */ 482 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 483 { 484 while (n--) { 485 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 486 487 if (is_buf_mapped(d)) 488 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 489 get_buf_size(adap, d), 490 PCI_DMA_FROMDEVICE); 491 put_page(d->page); 492 d->page = NULL; 493 if (++q->cidx == q->size) 494 q->cidx = 0; 495 q->avail--; 496 } 497 } 498 499 /** 500 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 501 * @adap: the adapter 502 * @q: the SGE free list 503 * 504 * Unmap the current buffer on an SGE free-buffer Rx queue. The 505 * buffer must be made inaccessible to HW before calling this function. 506 * 507 * This is similar to @free_rx_bufs above but does not free the buffer. 508 * Do note that the FL still loses any further access to the buffer. 509 */ 510 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 511 { 512 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 513 514 if (is_buf_mapped(d)) 515 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 516 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 517 d->page = NULL; 518 if (++q->cidx == q->size) 519 q->cidx = 0; 520 q->avail--; 521 } 522 523 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 524 { 525 if (q->pend_cred >= 8) { 526 u32 val = adap->params.arch.sge_fl_db; 527 528 if (is_t4(adap->params.chip)) 529 val |= PIDX_V(q->pend_cred / 8); 530 else 531 val |= PIDX_T5_V(q->pend_cred / 8); 532 533 /* Make sure all memory writes to the Free List queue are 534 * committed before we tell the hardware about them. 535 */ 536 wmb(); 537 538 /* If we don't have access to the new User Doorbell (T5+), use 539 * the old doorbell mechanism; otherwise use the new BAR2 540 * mechanism. 541 */ 542 if (unlikely(q->bar2_addr == NULL)) { 543 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 544 val | QID_V(q->cntxt_id)); 545 } else { 546 writel(val | QID_V(q->bar2_qid), 547 q->bar2_addr + SGE_UDB_KDOORBELL); 548 549 /* This Write memory Barrier will force the write to 550 * the User Doorbell area to be flushed. 551 */ 552 wmb(); 553 } 554 q->pend_cred &= 7; 555 } 556 } 557 558 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 559 dma_addr_t mapping) 560 { 561 sd->page = pg; 562 sd->dma_addr = mapping; /* includes size low bits */ 563 } 564 565 /** 566 * refill_fl - refill an SGE Rx buffer ring 567 * @adap: the adapter 568 * @q: the ring to refill 569 * @n: the number of new buffers to allocate 570 * @gfp: the gfp flags for the allocations 571 * 572 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 573 * allocated with the supplied gfp flags. The caller must assure that 574 * @n does not exceed the queue's capacity. If afterwards the queue is 575 * found critically low mark it as starving in the bitmap of starving FLs. 576 * 577 * Returns the number of buffers allocated. 578 */ 579 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 580 gfp_t gfp) 581 { 582 struct sge *s = &adap->sge; 583 struct page *pg; 584 dma_addr_t mapping; 585 unsigned int cred = q->avail; 586 __be64 *d = &q->desc[q->pidx]; 587 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 588 int node; 589 590 #ifdef CONFIG_DEBUG_FS 591 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 592 goto out; 593 #endif 594 595 gfp |= __GFP_NOWARN; 596 node = dev_to_node(adap->pdev_dev); 597 598 if (s->fl_pg_order == 0) 599 goto alloc_small_pages; 600 601 /* 602 * Prefer large buffers 603 */ 604 while (n) { 605 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 606 if (unlikely(!pg)) { 607 q->large_alloc_failed++; 608 break; /* fall back to single pages */ 609 } 610 611 mapping = dma_map_page(adap->pdev_dev, pg, 0, 612 PAGE_SIZE << s->fl_pg_order, 613 PCI_DMA_FROMDEVICE); 614 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 615 __free_pages(pg, s->fl_pg_order); 616 q->mapping_err++; 617 goto out; /* do not try small pages for this error */ 618 } 619 mapping |= RX_LARGE_PG_BUF; 620 *d++ = cpu_to_be64(mapping); 621 622 set_rx_sw_desc(sd, pg, mapping); 623 sd++; 624 625 q->avail++; 626 if (++q->pidx == q->size) { 627 q->pidx = 0; 628 sd = q->sdesc; 629 d = q->desc; 630 } 631 n--; 632 } 633 634 alloc_small_pages: 635 while (n--) { 636 pg = alloc_pages_node(node, gfp, 0); 637 if (unlikely(!pg)) { 638 q->alloc_failed++; 639 break; 640 } 641 642 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 643 PCI_DMA_FROMDEVICE); 644 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 645 put_page(pg); 646 q->mapping_err++; 647 goto out; 648 } 649 *d++ = cpu_to_be64(mapping); 650 651 set_rx_sw_desc(sd, pg, mapping); 652 sd++; 653 654 q->avail++; 655 if (++q->pidx == q->size) { 656 q->pidx = 0; 657 sd = q->sdesc; 658 d = q->desc; 659 } 660 } 661 662 out: cred = q->avail - cred; 663 q->pend_cred += cred; 664 ring_fl_db(adap, q); 665 666 if (unlikely(fl_starving(adap, q))) { 667 smp_wmb(); 668 q->low++; 669 set_bit(q->cntxt_id - adap->sge.egr_start, 670 adap->sge.starving_fl); 671 } 672 673 return cred; 674 } 675 676 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 677 { 678 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 679 GFP_ATOMIC); 680 } 681 682 /** 683 * alloc_ring - allocate resources for an SGE descriptor ring 684 * @dev: the PCI device's core device 685 * @nelem: the number of descriptors 686 * @elem_size: the size of each descriptor 687 * @sw_size: the size of the SW state associated with each ring element 688 * @phys: the physical address of the allocated ring 689 * @metadata: address of the array holding the SW state for the ring 690 * @stat_size: extra space in HW ring for status information 691 * @node: preferred node for memory allocations 692 * 693 * Allocates resources for an SGE descriptor ring, such as Tx queues, 694 * free buffer lists, or response queues. Each SGE ring requires 695 * space for its HW descriptors plus, optionally, space for the SW state 696 * associated with each HW entry (the metadata). The function returns 697 * three values: the virtual address for the HW ring (the return value 698 * of the function), the bus address of the HW ring, and the address 699 * of the SW ring. 700 */ 701 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 702 size_t sw_size, dma_addr_t *phys, void *metadata, 703 size_t stat_size, int node) 704 { 705 size_t len = nelem * elem_size + stat_size; 706 void *s = NULL; 707 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 708 709 if (!p) 710 return NULL; 711 if (sw_size) { 712 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 713 714 if (!s) { 715 dma_free_coherent(dev, len, p, *phys); 716 return NULL; 717 } 718 } 719 if (metadata) 720 *(void **)metadata = s; 721 memset(p, 0, len); 722 return p; 723 } 724 725 /** 726 * sgl_len - calculates the size of an SGL of the given capacity 727 * @n: the number of SGL entries 728 * 729 * Calculates the number of flits needed for a scatter/gather list that 730 * can hold the given number of entries. 731 */ 732 static inline unsigned int sgl_len(unsigned int n) 733 { 734 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 735 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 736 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 737 * repeated sequences of { Length[i], Length[i+1], Address[i], 738 * Address[i+1] } (this ensures that all addresses are on 64-bit 739 * boundaries). If N is even, then Length[N+1] should be set to 0 and 740 * Address[N+1] is omitted. 741 * 742 * The following calculation incorporates all of the above. It's 743 * somewhat hard to follow but, briefly: the "+2" accounts for the 744 * first two flits which include the DSGL header, Length0 and 745 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 746 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 747 * finally the "+((n-1)&1)" adds the one remaining flit needed if 748 * (n-1) is odd ... 749 */ 750 n--; 751 return (3 * n) / 2 + (n & 1) + 2; 752 } 753 754 /** 755 * flits_to_desc - returns the num of Tx descriptors for the given flits 756 * @n: the number of flits 757 * 758 * Returns the number of Tx descriptors needed for the supplied number 759 * of flits. 760 */ 761 static inline unsigned int flits_to_desc(unsigned int n) 762 { 763 BUG_ON(n > SGE_MAX_WR_LEN / 8); 764 return DIV_ROUND_UP(n, 8); 765 } 766 767 /** 768 * is_eth_imm - can an Ethernet packet be sent as immediate data? 769 * @skb: the packet 770 * 771 * Returns whether an Ethernet packet is small enough to fit as 772 * immediate data. Return value corresponds to headroom required. 773 */ 774 static inline int is_eth_imm(const struct sk_buff *skb) 775 { 776 int hdrlen = skb_shinfo(skb)->gso_size ? 777 sizeof(struct cpl_tx_pkt_lso_core) : 0; 778 779 hdrlen += sizeof(struct cpl_tx_pkt); 780 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 781 return hdrlen; 782 return 0; 783 } 784 785 /** 786 * calc_tx_flits - calculate the number of flits for a packet Tx WR 787 * @skb: the packet 788 * 789 * Returns the number of flits needed for a Tx WR for the given Ethernet 790 * packet, including the needed WR and CPL headers. 791 */ 792 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 793 { 794 unsigned int flits; 795 int hdrlen = is_eth_imm(skb); 796 797 /* If the skb is small enough, we can pump it out as a work request 798 * with only immediate data. In that case we just have to have the 799 * TX Packet header plus the skb data in the Work Request. 800 */ 801 802 if (hdrlen) 803 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 804 805 /* Otherwise, we're going to have to construct a Scatter gather list 806 * of the skb body and fragments. We also include the flits necessary 807 * for the TX Packet Work Request and CPL. We always have a firmware 808 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 809 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 810 * message or, if we're doing a Large Send Offload, an LSO CPL message 811 * with an embedded TX Packet Write CPL message. 812 */ 813 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 814 if (skb_shinfo(skb)->gso_size) 815 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 816 sizeof(struct cpl_tx_pkt_lso_core) + 817 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 818 else 819 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 820 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 821 return flits; 822 } 823 824 /** 825 * calc_tx_descs - calculate the number of Tx descriptors for a packet 826 * @skb: the packet 827 * 828 * Returns the number of Tx descriptors needed for the given Ethernet 829 * packet, including the needed WR and CPL headers. 830 */ 831 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 832 { 833 return flits_to_desc(calc_tx_flits(skb)); 834 } 835 836 /** 837 * write_sgl - populate a scatter/gather list for a packet 838 * @skb: the packet 839 * @q: the Tx queue we are writing into 840 * @sgl: starting location for writing the SGL 841 * @end: points right after the end of the SGL 842 * @start: start offset into skb main-body data to include in the SGL 843 * @addr: the list of bus addresses for the SGL elements 844 * 845 * Generates a gather list for the buffers that make up a packet. 846 * The caller must provide adequate space for the SGL that will be written. 847 * The SGL includes all of the packet's page fragments and the data in its 848 * main body except for the first @start bytes. @sgl must be 16-byte 849 * aligned and within a Tx descriptor with available space. @end points 850 * right after the end of the SGL but does not account for any potential 851 * wrap around, i.e., @end > @sgl. 852 */ 853 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, 854 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 855 const dma_addr_t *addr) 856 { 857 unsigned int i, len; 858 struct ulptx_sge_pair *to; 859 const struct skb_shared_info *si = skb_shinfo(skb); 860 unsigned int nfrags = si->nr_frags; 861 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 862 863 len = skb_headlen(skb) - start; 864 if (likely(len)) { 865 sgl->len0 = htonl(len); 866 sgl->addr0 = cpu_to_be64(addr[0] + start); 867 nfrags++; 868 } else { 869 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 870 sgl->addr0 = cpu_to_be64(addr[1]); 871 } 872 873 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 874 ULPTX_NSGE_V(nfrags)); 875 if (likely(--nfrags == 0)) 876 return; 877 /* 878 * Most of the complexity below deals with the possibility we hit the 879 * end of the queue in the middle of writing the SGL. For this case 880 * only we create the SGL in a temporary buffer and then copy it. 881 */ 882 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 883 884 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 885 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 886 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 887 to->addr[0] = cpu_to_be64(addr[i]); 888 to->addr[1] = cpu_to_be64(addr[++i]); 889 } 890 if (nfrags) { 891 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 892 to->len[1] = cpu_to_be32(0); 893 to->addr[0] = cpu_to_be64(addr[i + 1]); 894 } 895 if (unlikely((u8 *)end > (u8 *)q->stat)) { 896 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 897 898 if (likely(part0)) 899 memcpy(sgl->sge, buf, part0); 900 part1 = (u8 *)end - (u8 *)q->stat; 901 memcpy(q->desc, (u8 *)buf + part0, part1); 902 end = (void *)q->desc + part1; 903 } 904 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 905 *end = 0; 906 } 907 908 /* This function copies 64 byte coalesced work request to 909 * memory mapped BAR2 space. For coalesced WR SGE fetches 910 * data from the FIFO instead of from Host. 911 */ 912 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 913 { 914 int count = 8; 915 916 while (count) { 917 writeq(*src, dst); 918 src++; 919 dst++; 920 count--; 921 } 922 } 923 924 /** 925 * ring_tx_db - check and potentially ring a Tx queue's doorbell 926 * @adap: the adapter 927 * @q: the Tx queue 928 * @n: number of new descriptors to give to HW 929 * 930 * Ring the doorbel for a Tx queue. 931 */ 932 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 933 { 934 /* Make sure that all writes to the TX Descriptors are committed 935 * before we tell the hardware about them. 936 */ 937 wmb(); 938 939 /* If we don't have access to the new User Doorbell (T5+), use the old 940 * doorbell mechanism; otherwise use the new BAR2 mechanism. 941 */ 942 if (unlikely(q->bar2_addr == NULL)) { 943 u32 val = PIDX_V(n); 944 unsigned long flags; 945 946 /* For T4 we need to participate in the Doorbell Recovery 947 * mechanism. 948 */ 949 spin_lock_irqsave(&q->db_lock, flags); 950 if (!q->db_disabled) 951 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 952 QID_V(q->cntxt_id) | val); 953 else 954 q->db_pidx_inc += n; 955 q->db_pidx = q->pidx; 956 spin_unlock_irqrestore(&q->db_lock, flags); 957 } else { 958 u32 val = PIDX_T5_V(n); 959 960 /* T4 and later chips share the same PIDX field offset within 961 * the doorbell, but T5 and later shrank the field in order to 962 * gain a bit for Doorbell Priority. The field was absurdly 963 * large in the first place (14 bits) so we just use the T5 964 * and later limits and warn if a Queue ID is too large. 965 */ 966 WARN_ON(val & DBPRIO_F); 967 968 /* If we're only writing a single TX Descriptor and we can use 969 * Inferred QID registers, we can use the Write Combining 970 * Gather Buffer; otherwise we use the simple doorbell. 971 */ 972 if (n == 1 && q->bar2_qid == 0) { 973 int index = (q->pidx 974 ? (q->pidx - 1) 975 : (q->size - 1)); 976 u64 *wr = (u64 *)&q->desc[index]; 977 978 cxgb_pio_copy((u64 __iomem *) 979 (q->bar2_addr + SGE_UDB_WCDOORBELL), 980 wr); 981 } else { 982 writel(val | QID_V(q->bar2_qid), 983 q->bar2_addr + SGE_UDB_KDOORBELL); 984 } 985 986 /* This Write Memory Barrier will force the write to the User 987 * Doorbell area to be flushed. This is needed to prevent 988 * writes on different CPUs for the same queue from hitting 989 * the adapter out of order. This is required when some Work 990 * Requests take the Write Combine Gather Buffer path (user 991 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 992 * take the traditional path where we simply increment the 993 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 994 * hardware DMA read the actual Work Request. 995 */ 996 wmb(); 997 } 998 } 999 1000 /** 1001 * inline_tx_skb - inline a packet's data into Tx descriptors 1002 * @skb: the packet 1003 * @q: the Tx queue where the packet will be inlined 1004 * @pos: starting position in the Tx queue where to inline the packet 1005 * 1006 * Inline a packet's contents directly into Tx descriptors, starting at 1007 * the given position within the Tx DMA ring. 1008 * Most of the complexity of this operation is dealing with wrap arounds 1009 * in the middle of the packet we want to inline. 1010 */ 1011 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, 1012 void *pos) 1013 { 1014 u64 *p; 1015 int left = (void *)q->stat - pos; 1016 1017 if (likely(skb->len <= left)) { 1018 if (likely(!skb->data_len)) 1019 skb_copy_from_linear_data(skb, pos, skb->len); 1020 else 1021 skb_copy_bits(skb, 0, pos, skb->len); 1022 pos += skb->len; 1023 } else { 1024 skb_copy_bits(skb, 0, pos, left); 1025 skb_copy_bits(skb, left, q->desc, skb->len - left); 1026 pos = (void *)q->desc + (skb->len - left); 1027 } 1028 1029 /* 0-pad to multiple of 16 */ 1030 p = PTR_ALIGN(pos, 8); 1031 if ((uintptr_t)p & 8) 1032 *p = 0; 1033 } 1034 1035 static void *inline_tx_skb_header(const struct sk_buff *skb, 1036 const struct sge_txq *q, void *pos, 1037 int length) 1038 { 1039 u64 *p; 1040 int left = (void *)q->stat - pos; 1041 1042 if (likely(length <= left)) { 1043 memcpy(pos, skb->data, length); 1044 pos += length; 1045 } else { 1046 memcpy(pos, skb->data, left); 1047 memcpy(q->desc, skb->data + left, length - left); 1048 pos = (void *)q->desc + (length - left); 1049 } 1050 /* 0-pad to multiple of 16 */ 1051 p = PTR_ALIGN(pos, 8); 1052 if ((uintptr_t)p & 8) { 1053 *p = 0; 1054 return p + 1; 1055 } 1056 return p; 1057 } 1058 1059 /* 1060 * Figure out what HW csum a packet wants and return the appropriate control 1061 * bits. 1062 */ 1063 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1064 { 1065 int csum_type; 1066 const struct iphdr *iph = ip_hdr(skb); 1067 1068 if (iph->version == 4) { 1069 if (iph->protocol == IPPROTO_TCP) 1070 csum_type = TX_CSUM_TCPIP; 1071 else if (iph->protocol == IPPROTO_UDP) 1072 csum_type = TX_CSUM_UDPIP; 1073 else { 1074 nocsum: /* 1075 * unknown protocol, disable HW csum 1076 * and hope a bad packet is detected 1077 */ 1078 return TXPKT_L4CSUM_DIS_F; 1079 } 1080 } else { 1081 /* 1082 * this doesn't work with extension headers 1083 */ 1084 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1085 1086 if (ip6h->nexthdr == IPPROTO_TCP) 1087 csum_type = TX_CSUM_TCPIP6; 1088 else if (ip6h->nexthdr == IPPROTO_UDP) 1089 csum_type = TX_CSUM_UDPIP6; 1090 else 1091 goto nocsum; 1092 } 1093 1094 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1095 u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb)); 1096 int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1097 1098 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1099 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1100 else 1101 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1102 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1103 } else { 1104 int start = skb_transport_offset(skb); 1105 1106 return TXPKT_CSUM_TYPE_V(csum_type) | 1107 TXPKT_CSUM_START_V(start) | 1108 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1109 } 1110 } 1111 1112 static void eth_txq_stop(struct sge_eth_txq *q) 1113 { 1114 netif_tx_stop_queue(q->txq); 1115 q->q.stops++; 1116 } 1117 1118 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1119 { 1120 q->in_use += n; 1121 q->pidx += n; 1122 if (q->pidx >= q->size) 1123 q->pidx -= q->size; 1124 } 1125 1126 #ifdef CONFIG_CHELSIO_T4_FCOE 1127 static inline int 1128 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1129 const struct port_info *pi, u64 *cntrl) 1130 { 1131 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1132 1133 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1134 return 0; 1135 1136 if (skb->protocol != htons(ETH_P_FCOE)) 1137 return 0; 1138 1139 skb_reset_mac_header(skb); 1140 skb->mac_len = sizeof(struct ethhdr); 1141 1142 skb_set_network_header(skb, skb->mac_len); 1143 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1144 1145 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1146 return -ENOTSUPP; 1147 1148 /* FC CRC offload */ 1149 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1150 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1151 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1152 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1153 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1154 return 0; 1155 } 1156 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1157 1158 /** 1159 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1160 * @skb: the packet 1161 * @dev: the egress net device 1162 * 1163 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1164 */ 1165 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1166 { 1167 u32 wr_mid, ctrl0; 1168 u64 cntrl, *end; 1169 int qidx, credits; 1170 unsigned int flits, ndesc; 1171 struct adapter *adap; 1172 struct sge_eth_txq *q; 1173 const struct port_info *pi; 1174 struct fw_eth_tx_pkt_wr *wr; 1175 struct cpl_tx_pkt_core *cpl; 1176 const struct skb_shared_info *ssi; 1177 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1178 bool immediate = false; 1179 int len, max_pkt_len; 1180 #ifdef CONFIG_CHELSIO_T4_FCOE 1181 int err; 1182 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1183 1184 /* 1185 * The chip min packet length is 10 octets but play safe and reject 1186 * anything shorter than an Ethernet header. 1187 */ 1188 if (unlikely(skb->len < ETH_HLEN)) { 1189 out_free: dev_kfree_skb_any(skb); 1190 return NETDEV_TX_OK; 1191 } 1192 1193 /* Discard the packet if the length is greater than mtu */ 1194 max_pkt_len = ETH_HLEN + dev->mtu; 1195 if (skb_vlan_tag_present(skb)) 1196 max_pkt_len += VLAN_HLEN; 1197 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1198 goto out_free; 1199 1200 pi = netdev_priv(dev); 1201 adap = pi->adapter; 1202 qidx = skb_get_queue_mapping(skb); 1203 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1204 1205 reclaim_completed_tx(adap, &q->q, true); 1206 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1207 1208 #ifdef CONFIG_CHELSIO_T4_FCOE 1209 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1210 if (unlikely(err == -ENOTSUPP)) 1211 goto out_free; 1212 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1213 1214 flits = calc_tx_flits(skb); 1215 ndesc = flits_to_desc(flits); 1216 credits = txq_avail(&q->q) - ndesc; 1217 1218 if (unlikely(credits < 0)) { 1219 eth_txq_stop(q); 1220 dev_err(adap->pdev_dev, 1221 "%s: Tx ring %u full while queue awake!\n", 1222 dev->name, qidx); 1223 return NETDEV_TX_BUSY; 1224 } 1225 1226 if (is_eth_imm(skb)) 1227 immediate = true; 1228 1229 if (!immediate && 1230 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { 1231 q->mapping_err++; 1232 goto out_free; 1233 } 1234 1235 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1236 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1237 eth_txq_stop(q); 1238 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1239 } 1240 1241 wr = (void *)&q->q.desc[q->q.pidx]; 1242 wr->equiq_to_len16 = htonl(wr_mid); 1243 wr->r3 = cpu_to_be64(0); 1244 end = (u64 *)wr + flits; 1245 1246 len = immediate ? skb->len : 0; 1247 ssi = skb_shinfo(skb); 1248 if (ssi->gso_size) { 1249 struct cpl_tx_pkt_lso *lso = (void *)wr; 1250 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1251 int l3hdr_len = skb_network_header_len(skb); 1252 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1253 1254 len += sizeof(*lso); 1255 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1256 FW_WR_IMMDLEN_V(len)); 1257 lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1258 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1259 LSO_IPV6_V(v6) | 1260 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1261 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1262 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1263 lso->c.ipid_ofst = htons(0); 1264 lso->c.mss = htons(ssi->gso_size); 1265 lso->c.seqno_offset = htonl(0); 1266 if (is_t4(adap->params.chip)) 1267 lso->c.len = htonl(skb->len); 1268 else 1269 lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1270 cpl = (void *)(lso + 1); 1271 1272 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1273 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1274 else 1275 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1276 1277 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1278 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1279 TXPKT_IPHDR_LEN_V(l3hdr_len); 1280 q->tso++; 1281 q->tx_cso += ssi->gso_segs; 1282 } else { 1283 len += sizeof(*cpl); 1284 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1285 FW_WR_IMMDLEN_V(len)); 1286 cpl = (void *)(wr + 1); 1287 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1288 cntrl = hwcsum(adap->params.chip, skb) | 1289 TXPKT_IPCSUM_DIS_F; 1290 q->tx_cso++; 1291 } 1292 } 1293 1294 if (skb_vlan_tag_present(skb)) { 1295 q->vlan_ins++; 1296 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1297 #ifdef CONFIG_CHELSIO_T4_FCOE 1298 if (skb->protocol == htons(ETH_P_FCOE)) 1299 cntrl |= TXPKT_VLAN_V( 1300 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1301 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1302 } 1303 1304 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1305 TXPKT_PF_V(adap->pf); 1306 #ifdef CONFIG_CHELSIO_T4_DCB 1307 if (is_t4(adap->params.chip)) 1308 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1309 else 1310 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1311 #endif 1312 cpl->ctrl0 = htonl(ctrl0); 1313 cpl->pack = htons(0); 1314 cpl->len = htons(skb->len); 1315 cpl->ctrl1 = cpu_to_be64(cntrl); 1316 1317 if (immediate) { 1318 inline_tx_skb(skb, &q->q, cpl + 1); 1319 dev_consume_skb_any(skb); 1320 } else { 1321 int last_desc; 1322 1323 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 1324 addr); 1325 skb_orphan(skb); 1326 1327 last_desc = q->q.pidx + ndesc - 1; 1328 if (last_desc >= q->q.size) 1329 last_desc -= q->q.size; 1330 q->q.sdesc[last_desc].skb = skb; 1331 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1332 } 1333 1334 txq_advance(&q->q, ndesc); 1335 1336 ring_tx_db(adap, &q->q, ndesc); 1337 return NETDEV_TX_OK; 1338 } 1339 1340 /** 1341 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1342 * @q: the SGE control Tx queue 1343 * 1344 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1345 * that send only immediate data (presently just the control queues) and 1346 * thus do not have any sk_buffs to release. 1347 */ 1348 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1349 { 1350 int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx)); 1351 int reclaim = hw_cidx - q->cidx; 1352 1353 if (reclaim < 0) 1354 reclaim += q->size; 1355 1356 q->in_use -= reclaim; 1357 q->cidx = hw_cidx; 1358 } 1359 1360 /** 1361 * is_imm - check whether a packet can be sent as immediate data 1362 * @skb: the packet 1363 * 1364 * Returns true if a packet can be sent as a WR with immediate data. 1365 */ 1366 static inline int is_imm(const struct sk_buff *skb) 1367 { 1368 return skb->len <= MAX_CTRL_WR_LEN; 1369 } 1370 1371 /** 1372 * ctrlq_check_stop - check if a control queue is full and should stop 1373 * @q: the queue 1374 * @wr: most recent WR written to the queue 1375 * 1376 * Check if a control queue has become full and should be stopped. 1377 * We clean up control queue descriptors very lazily, only when we are out. 1378 * If the queue is still full after reclaiming any completed descriptors 1379 * we suspend it and have the last WR wake it up. 1380 */ 1381 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1382 { 1383 reclaim_completed_tx_imm(&q->q); 1384 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1385 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1386 q->q.stops++; 1387 q->full = 1; 1388 } 1389 } 1390 1391 /** 1392 * ctrl_xmit - send a packet through an SGE control Tx queue 1393 * @q: the control queue 1394 * @skb: the packet 1395 * 1396 * Send a packet through an SGE control Tx queue. Packets sent through 1397 * a control queue must fit entirely as immediate data. 1398 */ 1399 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1400 { 1401 unsigned int ndesc; 1402 struct fw_wr_hdr *wr; 1403 1404 if (unlikely(!is_imm(skb))) { 1405 WARN_ON(1); 1406 dev_kfree_skb(skb); 1407 return NET_XMIT_DROP; 1408 } 1409 1410 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1411 spin_lock(&q->sendq.lock); 1412 1413 if (unlikely(q->full)) { 1414 skb->priority = ndesc; /* save for restart */ 1415 __skb_queue_tail(&q->sendq, skb); 1416 spin_unlock(&q->sendq.lock); 1417 return NET_XMIT_CN; 1418 } 1419 1420 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1421 inline_tx_skb(skb, &q->q, wr); 1422 1423 txq_advance(&q->q, ndesc); 1424 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1425 ctrlq_check_stop(q, wr); 1426 1427 ring_tx_db(q->adap, &q->q, ndesc); 1428 spin_unlock(&q->sendq.lock); 1429 1430 kfree_skb(skb); 1431 return NET_XMIT_SUCCESS; 1432 } 1433 1434 /** 1435 * restart_ctrlq - restart a suspended control queue 1436 * @data: the control queue to restart 1437 * 1438 * Resumes transmission on a suspended Tx control queue. 1439 */ 1440 static void restart_ctrlq(unsigned long data) 1441 { 1442 struct sk_buff *skb; 1443 unsigned int written = 0; 1444 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1445 1446 spin_lock(&q->sendq.lock); 1447 reclaim_completed_tx_imm(&q->q); 1448 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1449 1450 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1451 struct fw_wr_hdr *wr; 1452 unsigned int ndesc = skb->priority; /* previously saved */ 1453 1454 written += ndesc; 1455 /* Write descriptors and free skbs outside the lock to limit 1456 * wait times. q->full is still set so new skbs will be queued. 1457 */ 1458 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1459 txq_advance(&q->q, ndesc); 1460 spin_unlock(&q->sendq.lock); 1461 1462 inline_tx_skb(skb, &q->q, wr); 1463 kfree_skb(skb); 1464 1465 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1466 unsigned long old = q->q.stops; 1467 1468 ctrlq_check_stop(q, wr); 1469 if (q->q.stops != old) { /* suspended anew */ 1470 spin_lock(&q->sendq.lock); 1471 goto ringdb; 1472 } 1473 } 1474 if (written > 16) { 1475 ring_tx_db(q->adap, &q->q, written); 1476 written = 0; 1477 } 1478 spin_lock(&q->sendq.lock); 1479 } 1480 q->full = 0; 1481 ringdb: if (written) 1482 ring_tx_db(q->adap, &q->q, written); 1483 spin_unlock(&q->sendq.lock); 1484 } 1485 1486 /** 1487 * t4_mgmt_tx - send a management message 1488 * @adap: the adapter 1489 * @skb: the packet containing the management message 1490 * 1491 * Send a management message through control queue 0. 1492 */ 1493 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1494 { 1495 int ret; 1496 1497 local_bh_disable(); 1498 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1499 local_bh_enable(); 1500 return ret; 1501 } 1502 1503 /** 1504 * is_ofld_imm - check whether a packet can be sent as immediate data 1505 * @skb: the packet 1506 * 1507 * Returns true if a packet can be sent as an offload WR with immediate 1508 * data. We currently use the same limit as for Ethernet packets. 1509 */ 1510 static inline int is_ofld_imm(const struct sk_buff *skb) 1511 { 1512 return skb->len <= MAX_IMM_TX_PKT_LEN; 1513 } 1514 1515 /** 1516 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1517 * @skb: the packet 1518 * 1519 * Returns the number of flits needed for the given offload packet. 1520 * These packets are already fully constructed and no additional headers 1521 * will be added. 1522 */ 1523 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1524 { 1525 unsigned int flits, cnt; 1526 1527 if (is_ofld_imm(skb)) 1528 return DIV_ROUND_UP(skb->len, 8); 1529 1530 flits = skb_transport_offset(skb) / 8U; /* headers */ 1531 cnt = skb_shinfo(skb)->nr_frags; 1532 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1533 cnt++; 1534 return flits + sgl_len(cnt); 1535 } 1536 1537 /** 1538 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1539 * @adap: the adapter 1540 * @q: the queue to stop 1541 * 1542 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1543 * inability to map packets. A periodic timer attempts to restart 1544 * queues so marked. 1545 */ 1546 static void txq_stop_maperr(struct sge_ofld_txq *q) 1547 { 1548 q->mapping_err++; 1549 q->q.stops++; 1550 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1551 q->adap->sge.txq_maperr); 1552 } 1553 1554 /** 1555 * ofldtxq_stop - stop an offload Tx queue that has become full 1556 * @q: the queue to stop 1557 * @skb: the packet causing the queue to become full 1558 * 1559 * Stops an offload Tx queue that has become full and modifies the packet 1560 * being written to request a wakeup. 1561 */ 1562 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) 1563 { 1564 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; 1565 1566 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1567 q->q.stops++; 1568 q->full = 1; 1569 } 1570 1571 /** 1572 * service_ofldq - service/restart a suspended offload queue 1573 * @q: the offload queue 1574 * 1575 * Services an offload Tx queue by moving packets from its Pending Send 1576 * Queue to the Hardware TX ring. The function starts and ends with the 1577 * Send Queue locked, but drops the lock while putting the skb at the 1578 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 1579 * allows more skbs to be added to the Send Queue by other threads. 1580 * The packet being processed at the head of the Pending Send Queue is 1581 * left on the queue in case we experience DMA Mapping errors, etc. 1582 * and need to give up and restart later. 1583 * 1584 * service_ofldq() can be thought of as a task which opportunistically 1585 * uses other threads execution contexts. We use the Offload Queue 1586 * boolean "service_ofldq_running" to make sure that only one instance 1587 * is ever running at a time ... 1588 */ 1589 static void service_ofldq(struct sge_ofld_txq *q) 1590 { 1591 u64 *pos, *before, *end; 1592 int credits; 1593 struct sk_buff *skb; 1594 struct sge_txq *txq; 1595 unsigned int left; 1596 unsigned int written = 0; 1597 unsigned int flits, ndesc; 1598 1599 /* If another thread is currently in service_ofldq() processing the 1600 * Pending Send Queue then there's nothing to do. Otherwise, flag 1601 * that we're doing the work and continue. Examining/modifying 1602 * the Offload Queue boolean "service_ofldq_running" must be done 1603 * while holding the Pending Send Queue Lock. 1604 */ 1605 if (q->service_ofldq_running) 1606 return; 1607 q->service_ofldq_running = true; 1608 1609 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1610 /* We drop the lock while we're working with the skb at the 1611 * head of the Pending Send Queue. This allows more skbs to 1612 * be added to the Pending Send Queue while we're working on 1613 * this one. We don't need to lock to guard the TX Ring 1614 * updates because only one thread of execution is ever 1615 * allowed into service_ofldq() at a time. 1616 */ 1617 spin_unlock(&q->sendq.lock); 1618 1619 reclaim_completed_tx(q->adap, &q->q, false); 1620 1621 flits = skb->priority; /* previously saved */ 1622 ndesc = flits_to_desc(flits); 1623 credits = txq_avail(&q->q) - ndesc; 1624 BUG_ON(credits < 0); 1625 if (unlikely(credits < TXQ_STOP_THRES)) 1626 ofldtxq_stop(q, skb); 1627 1628 pos = (u64 *)&q->q.desc[q->q.pidx]; 1629 if (is_ofld_imm(skb)) 1630 inline_tx_skb(skb, &q->q, pos); 1631 else if (map_skb(q->adap->pdev_dev, skb, 1632 (dma_addr_t *)skb->head)) { 1633 txq_stop_maperr(q); 1634 spin_lock(&q->sendq.lock); 1635 break; 1636 } else { 1637 int last_desc, hdr_len = skb_transport_offset(skb); 1638 1639 /* The WR headers may not fit within one descriptor. 1640 * So we need to deal with wrap-around here. 1641 */ 1642 before = (u64 *)pos; 1643 end = (u64 *)pos + flits; 1644 txq = &q->q; 1645 pos = (void *)inline_tx_skb_header(skb, &q->q, 1646 (void *)pos, 1647 hdr_len); 1648 if (before > (u64 *)pos) { 1649 left = (u8 *)end - (u8 *)txq->stat; 1650 end = (void *)txq->desc + left; 1651 } 1652 1653 /* If current position is already at the end of the 1654 * ofld queue, reset the current to point to 1655 * start of the queue and update the end ptr as well. 1656 */ 1657 if (pos == (u64 *)txq->stat) { 1658 left = (u8 *)end - (u8 *)txq->stat; 1659 end = (void *)txq->desc + left; 1660 pos = (void *)txq->desc; 1661 } 1662 1663 write_sgl(skb, &q->q, (void *)pos, 1664 end, hdr_len, 1665 (dma_addr_t *)skb->head); 1666 #ifdef CONFIG_NEED_DMA_MAP_STATE 1667 skb->dev = q->adap->port[0]; 1668 skb->destructor = deferred_unmap_destructor; 1669 #endif 1670 last_desc = q->q.pidx + ndesc - 1; 1671 if (last_desc >= q->q.size) 1672 last_desc -= q->q.size; 1673 q->q.sdesc[last_desc].skb = skb; 1674 } 1675 1676 txq_advance(&q->q, ndesc); 1677 written += ndesc; 1678 if (unlikely(written > 32)) { 1679 ring_tx_db(q->adap, &q->q, written); 1680 written = 0; 1681 } 1682 1683 /* Reacquire the Pending Send Queue Lock so we can unlink the 1684 * skb we've just successfully transferred to the TX Ring and 1685 * loop for the next skb which may be at the head of the 1686 * Pending Send Queue. 1687 */ 1688 spin_lock(&q->sendq.lock); 1689 __skb_unlink(skb, &q->sendq); 1690 if (is_ofld_imm(skb)) 1691 kfree_skb(skb); 1692 } 1693 if (likely(written)) 1694 ring_tx_db(q->adap, &q->q, written); 1695 1696 /*Indicate that no thread is processing the Pending Send Queue 1697 * currently. 1698 */ 1699 q->service_ofldq_running = false; 1700 } 1701 1702 /** 1703 * ofld_xmit - send a packet through an offload queue 1704 * @q: the Tx offload queue 1705 * @skb: the packet 1706 * 1707 * Send an offload packet through an SGE offload queue. 1708 */ 1709 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) 1710 { 1711 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1712 spin_lock(&q->sendq.lock); 1713 1714 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 1715 * that results in this new skb being the only one on the queue, start 1716 * servicing it. If there are other skbs already on the list, then 1717 * either the queue is currently being processed or it's been stopped 1718 * for some reason and it'll be restarted at a later time. Restart 1719 * paths are triggered by events like experiencing a DMA Mapping Error 1720 * or filling the Hardware TX Ring. 1721 */ 1722 __skb_queue_tail(&q->sendq, skb); 1723 if (q->sendq.qlen == 1) 1724 service_ofldq(q); 1725 1726 spin_unlock(&q->sendq.lock); 1727 return NET_XMIT_SUCCESS; 1728 } 1729 1730 /** 1731 * restart_ofldq - restart a suspended offload queue 1732 * @data: the offload queue to restart 1733 * 1734 * Resumes transmission on a suspended Tx offload queue. 1735 */ 1736 static void restart_ofldq(unsigned long data) 1737 { 1738 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; 1739 1740 spin_lock(&q->sendq.lock); 1741 q->full = 0; /* the queue actually is completely empty now */ 1742 service_ofldq(q); 1743 spin_unlock(&q->sendq.lock); 1744 } 1745 1746 /** 1747 * skb_txq - return the Tx queue an offload packet should use 1748 * @skb: the packet 1749 * 1750 * Returns the Tx queue an offload packet should use as indicated by bits 1751 * 1-15 in the packet's queue_mapping. 1752 */ 1753 static inline unsigned int skb_txq(const struct sk_buff *skb) 1754 { 1755 return skb->queue_mapping >> 1; 1756 } 1757 1758 /** 1759 * is_ctrl_pkt - return whether an offload packet is a control packet 1760 * @skb: the packet 1761 * 1762 * Returns whether an offload packet should use an OFLD or a CTRL 1763 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1764 */ 1765 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1766 { 1767 return skb->queue_mapping & 1; 1768 } 1769 1770 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) 1771 { 1772 unsigned int idx = skb_txq(skb); 1773 1774 if (unlikely(is_ctrl_pkt(skb))) { 1775 /* Single ctrl queue is a requirement for LE workaround path */ 1776 if (adap->tids.nsftids) 1777 idx = 0; 1778 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1779 } 1780 return ofld_xmit(&adap->sge.ofldtxq[idx], skb); 1781 } 1782 1783 /** 1784 * t4_ofld_send - send an offload packet 1785 * @adap: the adapter 1786 * @skb: the packet 1787 * 1788 * Sends an offload packet. We use the packet queue_mapping to select the 1789 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1790 * should be sent as regular or control, bits 1-15 select the queue. 1791 */ 1792 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1793 { 1794 int ret; 1795 1796 local_bh_disable(); 1797 ret = ofld_send(adap, skb); 1798 local_bh_enable(); 1799 return ret; 1800 } 1801 1802 /** 1803 * cxgb4_ofld_send - send an offload packet 1804 * @dev: the net device 1805 * @skb: the packet 1806 * 1807 * Sends an offload packet. This is an exported version of @t4_ofld_send, 1808 * intended for ULDs. 1809 */ 1810 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 1811 { 1812 return t4_ofld_send(netdev2adap(dev), skb); 1813 } 1814 EXPORT_SYMBOL(cxgb4_ofld_send); 1815 1816 static inline void copy_frags(struct sk_buff *skb, 1817 const struct pkt_gl *gl, unsigned int offset) 1818 { 1819 int i; 1820 1821 /* usually there's just one frag */ 1822 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1823 gl->frags[0].offset + offset, 1824 gl->frags[0].size - offset); 1825 skb_shinfo(skb)->nr_frags = gl->nfrags; 1826 for (i = 1; i < gl->nfrags; i++) 1827 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1828 gl->frags[i].offset, 1829 gl->frags[i].size); 1830 1831 /* get a reference to the last page, we don't own it */ 1832 get_page(gl->frags[gl->nfrags - 1].page); 1833 } 1834 1835 /** 1836 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 1837 * @gl: the gather list 1838 * @skb_len: size of sk_buff main body if it carries fragments 1839 * @pull_len: amount of data to move to the sk_buff's main body 1840 * 1841 * Builds an sk_buff from the given packet gather list. Returns the 1842 * sk_buff or %NULL if sk_buff allocation failed. 1843 */ 1844 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 1845 unsigned int skb_len, unsigned int pull_len) 1846 { 1847 struct sk_buff *skb; 1848 1849 /* 1850 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 1851 * size, which is expected since buffers are at least PAGE_SIZEd. 1852 * In this case packets up to RX_COPY_THRES have only one fragment. 1853 */ 1854 if (gl->tot_len <= RX_COPY_THRES) { 1855 skb = dev_alloc_skb(gl->tot_len); 1856 if (unlikely(!skb)) 1857 goto out; 1858 __skb_put(skb, gl->tot_len); 1859 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1860 } else { 1861 skb = dev_alloc_skb(skb_len); 1862 if (unlikely(!skb)) 1863 goto out; 1864 __skb_put(skb, pull_len); 1865 skb_copy_to_linear_data(skb, gl->va, pull_len); 1866 1867 copy_frags(skb, gl, pull_len); 1868 skb->len = gl->tot_len; 1869 skb->data_len = skb->len - pull_len; 1870 skb->truesize += skb->data_len; 1871 } 1872 out: return skb; 1873 } 1874 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 1875 1876 /** 1877 * t4_pktgl_free - free a packet gather list 1878 * @gl: the gather list 1879 * 1880 * Releases the pages of a packet gather list. We do not own the last 1881 * page on the list and do not free it. 1882 */ 1883 static void t4_pktgl_free(const struct pkt_gl *gl) 1884 { 1885 int n; 1886 const struct page_frag *p; 1887 1888 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 1889 put_page(p->page); 1890 } 1891 1892 /* 1893 * Process an MPS trace packet. Give it an unused protocol number so it won't 1894 * be delivered to anyone and send it to the stack for capture. 1895 */ 1896 static noinline int handle_trace_pkt(struct adapter *adap, 1897 const struct pkt_gl *gl) 1898 { 1899 struct sk_buff *skb; 1900 1901 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 1902 if (unlikely(!skb)) { 1903 t4_pktgl_free(gl); 1904 return 0; 1905 } 1906 1907 if (is_t4(adap->params.chip)) 1908 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 1909 else 1910 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 1911 1912 skb_reset_mac_header(skb); 1913 skb->protocol = htons(0xffff); 1914 skb->dev = adap->port[0]; 1915 netif_receive_skb(skb); 1916 return 0; 1917 } 1918 1919 /** 1920 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 1921 * @adap: the adapter 1922 * @hwtstamps: time stamp structure to update 1923 * @sgetstamp: 60bit iqe timestamp 1924 * 1925 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 1926 * which is in Core Clock ticks into ktime_t and assign it 1927 **/ 1928 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 1929 struct skb_shared_hwtstamps *hwtstamps, 1930 u64 sgetstamp) 1931 { 1932 u64 ns; 1933 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 1934 1935 ns = div_u64(tmp, adap->params.vpd.cclk); 1936 1937 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1938 hwtstamps->hwtstamp = ns_to_ktime(ns); 1939 } 1940 1941 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1942 const struct cpl_rx_pkt *pkt) 1943 { 1944 struct adapter *adapter = rxq->rspq.adap; 1945 struct sge *s = &adapter->sge; 1946 struct port_info *pi; 1947 int ret; 1948 struct sk_buff *skb; 1949 1950 skb = napi_get_frags(&rxq->rspq.napi); 1951 if (unlikely(!skb)) { 1952 t4_pktgl_free(gl); 1953 rxq->stats.rx_drops++; 1954 return; 1955 } 1956 1957 copy_frags(skb, gl, s->pktshift); 1958 skb->len = gl->tot_len - s->pktshift; 1959 skb->data_len = skb->len; 1960 skb->truesize += skb->data_len; 1961 skb->ip_summed = CHECKSUM_UNNECESSARY; 1962 skb_record_rx_queue(skb, rxq->rspq.idx); 1963 pi = netdev_priv(skb->dev); 1964 if (pi->rxtstamp) 1965 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 1966 gl->sgetstamp); 1967 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 1968 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 1969 PKT_HASH_TYPE_L3); 1970 1971 if (unlikely(pkt->vlan_ex)) { 1972 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 1973 rxq->stats.vlan_ex++; 1974 } 1975 ret = napi_gro_frags(&rxq->rspq.napi); 1976 if (ret == GRO_HELD) 1977 rxq->stats.lro_pkts++; 1978 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1979 rxq->stats.lro_merged++; 1980 rxq->stats.pkts++; 1981 rxq->stats.rx_cso++; 1982 } 1983 1984 /** 1985 * t4_ethrx_handler - process an ingress ethernet packet 1986 * @q: the response queue that received the packet 1987 * @rsp: the response queue descriptor holding the RX_PKT message 1988 * @si: the gather list of packet fragments 1989 * 1990 * Process an ingress ethernet packet and deliver it to the stack. 1991 */ 1992 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 1993 const struct pkt_gl *si) 1994 { 1995 bool csum_ok; 1996 struct sk_buff *skb; 1997 const struct cpl_rx_pkt *pkt; 1998 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1999 struct sge *s = &q->adap->sge; 2000 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 2001 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 2002 struct port_info *pi; 2003 2004 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 2005 return handle_trace_pkt(q->adap, si); 2006 2007 pkt = (const struct cpl_rx_pkt *)rsp; 2008 csum_ok = pkt->csum_calc && !pkt->err_vec && 2009 (q->netdev->features & NETIF_F_RXCSUM); 2010 if ((pkt->l2info & htonl(RXF_TCP_F)) && 2011 !(cxgb_poll_busy_polling(q)) && 2012 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 2013 do_gro(rxq, si, pkt); 2014 return 0; 2015 } 2016 2017 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 2018 if (unlikely(!skb)) { 2019 t4_pktgl_free(si); 2020 rxq->stats.rx_drops++; 2021 return 0; 2022 } 2023 2024 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */ 2025 skb->protocol = eth_type_trans(skb, q->netdev); 2026 skb_record_rx_queue(skb, q->idx); 2027 if (skb->dev->features & NETIF_F_RXHASH) 2028 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2029 PKT_HASH_TYPE_L3); 2030 2031 rxq->stats.pkts++; 2032 2033 pi = netdev_priv(skb->dev); 2034 if (pi->rxtstamp) 2035 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 2036 si->sgetstamp); 2037 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 2038 if (!pkt->ip_frag) { 2039 skb->ip_summed = CHECKSUM_UNNECESSARY; 2040 rxq->stats.rx_cso++; 2041 } else if (pkt->l2info & htonl(RXF_IP_F)) { 2042 __sum16 c = (__force __sum16)pkt->csum; 2043 skb->csum = csum_unfold(c); 2044 skb->ip_summed = CHECKSUM_COMPLETE; 2045 rxq->stats.rx_cso++; 2046 } 2047 } else { 2048 skb_checksum_none_assert(skb); 2049 #ifdef CONFIG_CHELSIO_T4_FCOE 2050 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 2051 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 2052 2053 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 2054 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 2055 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 2056 if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F))) 2057 skb->ip_summed = CHECKSUM_UNNECESSARY; 2058 } 2059 } 2060 2061 #undef CPL_RX_PKT_FLAGS 2062 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2063 } 2064 2065 if (unlikely(pkt->vlan_ex)) { 2066 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2067 rxq->stats.vlan_ex++; 2068 } 2069 skb_mark_napi_id(skb, &q->napi); 2070 netif_receive_skb(skb); 2071 return 0; 2072 } 2073 2074 /** 2075 * restore_rx_bufs - put back a packet's Rx buffers 2076 * @si: the packet gather list 2077 * @q: the SGE free list 2078 * @frags: number of FL buffers to restore 2079 * 2080 * Puts back on an FL the Rx buffers associated with @si. The buffers 2081 * have already been unmapped and are left unmapped, we mark them so to 2082 * prevent further unmapping attempts. 2083 * 2084 * This function undoes a series of @unmap_rx_buf calls when we find out 2085 * that the current packet can't be processed right away afterall and we 2086 * need to come back to it later. This is a very rare event and there's 2087 * no effort to make this particularly efficient. 2088 */ 2089 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 2090 int frags) 2091 { 2092 struct rx_sw_desc *d; 2093 2094 while (frags--) { 2095 if (q->cidx == 0) 2096 q->cidx = q->size - 1; 2097 else 2098 q->cidx--; 2099 d = &q->sdesc[q->cidx]; 2100 d->page = si->frags[frags].page; 2101 d->dma_addr |= RX_UNMAPPED_BUF; 2102 q->avail++; 2103 } 2104 } 2105 2106 /** 2107 * is_new_response - check if a response is newly written 2108 * @r: the response descriptor 2109 * @q: the response queue 2110 * 2111 * Returns true if a response descriptor contains a yet unprocessed 2112 * response. 2113 */ 2114 static inline bool is_new_response(const struct rsp_ctrl *r, 2115 const struct sge_rspq *q) 2116 { 2117 return (r->type_gen >> RSPD_GEN_S) == q->gen; 2118 } 2119 2120 /** 2121 * rspq_next - advance to the next entry in a response queue 2122 * @q: the queue 2123 * 2124 * Updates the state of a response queue to advance it to the next entry. 2125 */ 2126 static inline void rspq_next(struct sge_rspq *q) 2127 { 2128 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 2129 if (unlikely(++q->cidx == q->size)) { 2130 q->cidx = 0; 2131 q->gen ^= 1; 2132 q->cur_desc = q->desc; 2133 } 2134 } 2135 2136 /** 2137 * process_responses - process responses from an SGE response queue 2138 * @q: the ingress queue to process 2139 * @budget: how many responses can be processed in this round 2140 * 2141 * Process responses from an SGE response queue up to the supplied budget. 2142 * Responses include received packets as well as control messages from FW 2143 * or HW. 2144 * 2145 * Additionally choose the interrupt holdoff time for the next interrupt 2146 * on this queue. If the system is under memory shortage use a fairly 2147 * long delay to help recovery. 2148 */ 2149 static int process_responses(struct sge_rspq *q, int budget) 2150 { 2151 int ret, rsp_type; 2152 int budget_left = budget; 2153 const struct rsp_ctrl *rc; 2154 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2155 struct adapter *adapter = q->adap; 2156 struct sge *s = &adapter->sge; 2157 2158 while (likely(budget_left)) { 2159 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2160 if (!is_new_response(rc, q)) { 2161 if (q->flush_handler) 2162 q->flush_handler(q); 2163 break; 2164 } 2165 2166 dma_rmb(); 2167 rsp_type = RSPD_TYPE_G(rc->type_gen); 2168 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 2169 struct page_frag *fp; 2170 struct pkt_gl si; 2171 const struct rx_sw_desc *rsd; 2172 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 2173 2174 if (len & RSPD_NEWBUF_F) { 2175 if (likely(q->offset > 0)) { 2176 free_rx_bufs(q->adap, &rxq->fl, 1); 2177 q->offset = 0; 2178 } 2179 len = RSPD_LEN_G(len); 2180 } 2181 si.tot_len = len; 2182 2183 /* gather packet fragments */ 2184 for (frags = 0, fp = si.frags; ; frags++, fp++) { 2185 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 2186 bufsz = get_buf_size(adapter, rsd); 2187 fp->page = rsd->page; 2188 fp->offset = q->offset; 2189 fp->size = min(bufsz, len); 2190 len -= fp->size; 2191 if (!len) 2192 break; 2193 unmap_rx_buf(q->adap, &rxq->fl); 2194 } 2195 2196 si.sgetstamp = SGE_TIMESTAMP_G( 2197 be64_to_cpu(rc->last_flit)); 2198 /* 2199 * Last buffer remains mapped so explicitly make it 2200 * coherent for CPU access. 2201 */ 2202 dma_sync_single_for_cpu(q->adap->pdev_dev, 2203 get_buf_addr(rsd), 2204 fp->size, DMA_FROM_DEVICE); 2205 2206 si.va = page_address(si.frags[0].page) + 2207 si.frags[0].offset; 2208 prefetch(si.va); 2209 2210 si.nfrags = frags + 1; 2211 ret = q->handler(q, q->cur_desc, &si); 2212 if (likely(ret == 0)) 2213 q->offset += ALIGN(fp->size, s->fl_align); 2214 else 2215 restore_rx_bufs(&si, &rxq->fl, frags); 2216 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 2217 ret = q->handler(q, q->cur_desc, NULL); 2218 } else { 2219 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 2220 } 2221 2222 if (unlikely(ret)) { 2223 /* couldn't process descriptor, back off for recovery */ 2224 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 2225 break; 2226 } 2227 2228 rspq_next(q); 2229 budget_left--; 2230 } 2231 2232 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 2233 __refill_fl(q->adap, &rxq->fl); 2234 return budget - budget_left; 2235 } 2236 2237 #ifdef CONFIG_NET_RX_BUSY_POLL 2238 int cxgb_busy_poll(struct napi_struct *napi) 2239 { 2240 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 2241 unsigned int params, work_done; 2242 u32 val; 2243 2244 if (!cxgb_poll_lock_poll(q)) 2245 return LL_FLUSH_BUSY; 2246 2247 work_done = process_responses(q, 4); 2248 params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1); 2249 q->next_intr_params = params; 2250 val = CIDXINC_V(work_done) | SEINTARM_V(params); 2251 2252 /* If we don't have access to the new User GTS (T5+), use the old 2253 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2254 */ 2255 if (unlikely(!q->bar2_addr)) 2256 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 2257 val | INGRESSQID_V((u32)q->cntxt_id)); 2258 else { 2259 writel(val | INGRESSQID_V(q->bar2_qid), 2260 q->bar2_addr + SGE_UDB_GTS); 2261 wmb(); 2262 } 2263 2264 cxgb_poll_unlock_poll(q); 2265 return work_done; 2266 } 2267 #endif /* CONFIG_NET_RX_BUSY_POLL */ 2268 2269 /** 2270 * napi_rx_handler - the NAPI handler for Rx processing 2271 * @napi: the napi instance 2272 * @budget: how many packets we can process in this round 2273 * 2274 * Handler for new data events when using NAPI. This does not need any 2275 * locking or protection from interrupts as data interrupts are off at 2276 * this point and other adapter interrupts do not interfere (the latter 2277 * in not a concern at all with MSI-X as non-data interrupts then have 2278 * a separate handler). 2279 */ 2280 static int napi_rx_handler(struct napi_struct *napi, int budget) 2281 { 2282 unsigned int params; 2283 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 2284 int work_done; 2285 u32 val; 2286 2287 if (!cxgb_poll_lock_napi(q)) 2288 return budget; 2289 2290 work_done = process_responses(q, budget); 2291 if (likely(work_done < budget)) { 2292 int timer_index; 2293 2294 napi_complete_done(napi, work_done); 2295 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 2296 2297 if (q->adaptive_rx) { 2298 if (work_done > max(timer_pkt_quota[timer_index], 2299 MIN_NAPI_WORK)) 2300 timer_index = (timer_index + 1); 2301 else 2302 timer_index = timer_index - 1; 2303 2304 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 2305 q->next_intr_params = 2306 QINTR_TIMER_IDX_V(timer_index) | 2307 QINTR_CNT_EN_V(0); 2308 params = q->next_intr_params; 2309 } else { 2310 params = q->next_intr_params; 2311 q->next_intr_params = q->intr_params; 2312 } 2313 } else 2314 params = QINTR_TIMER_IDX_V(7); 2315 2316 val = CIDXINC_V(work_done) | SEINTARM_V(params); 2317 2318 /* If we don't have access to the new User GTS (T5+), use the old 2319 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2320 */ 2321 if (unlikely(q->bar2_addr == NULL)) { 2322 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 2323 val | INGRESSQID_V((u32)q->cntxt_id)); 2324 } else { 2325 writel(val | INGRESSQID_V(q->bar2_qid), 2326 q->bar2_addr + SGE_UDB_GTS); 2327 wmb(); 2328 } 2329 cxgb_poll_unlock_napi(q); 2330 return work_done; 2331 } 2332 2333 /* 2334 * The MSI-X interrupt handler for an SGE response queue. 2335 */ 2336 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 2337 { 2338 struct sge_rspq *q = cookie; 2339 2340 napi_schedule(&q->napi); 2341 return IRQ_HANDLED; 2342 } 2343 2344 /* 2345 * Process the indirect interrupt entries in the interrupt queue and kick off 2346 * NAPI for each queue that has generated an entry. 2347 */ 2348 static unsigned int process_intrq(struct adapter *adap) 2349 { 2350 unsigned int credits; 2351 const struct rsp_ctrl *rc; 2352 struct sge_rspq *q = &adap->sge.intrq; 2353 u32 val; 2354 2355 spin_lock(&adap->sge.intrq_lock); 2356 for (credits = 0; ; credits++) { 2357 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2358 if (!is_new_response(rc, q)) 2359 break; 2360 2361 dma_rmb(); 2362 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 2363 unsigned int qid = ntohl(rc->pldbuflen_qid); 2364 2365 qid -= adap->sge.ingr_start; 2366 napi_schedule(&adap->sge.ingr_map[qid]->napi); 2367 } 2368 2369 rspq_next(q); 2370 } 2371 2372 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 2373 2374 /* If we don't have access to the new User GTS (T5+), use the old 2375 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2376 */ 2377 if (unlikely(q->bar2_addr == NULL)) { 2378 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 2379 val | INGRESSQID_V(q->cntxt_id)); 2380 } else { 2381 writel(val | INGRESSQID_V(q->bar2_qid), 2382 q->bar2_addr + SGE_UDB_GTS); 2383 wmb(); 2384 } 2385 spin_unlock(&adap->sge.intrq_lock); 2386 return credits; 2387 } 2388 2389 /* 2390 * The MSI interrupt handler, which handles data events from SGE response queues 2391 * as well as error and other async events as they all use the same MSI vector. 2392 */ 2393 static irqreturn_t t4_intr_msi(int irq, void *cookie) 2394 { 2395 struct adapter *adap = cookie; 2396 2397 if (adap->flags & MASTER_PF) 2398 t4_slow_intr_handler(adap); 2399 process_intrq(adap); 2400 return IRQ_HANDLED; 2401 } 2402 2403 /* 2404 * Interrupt handler for legacy INTx interrupts. 2405 * Handles data events from SGE response queues as well as error and other 2406 * async events as they all use the same interrupt line. 2407 */ 2408 static irqreturn_t t4_intr_intx(int irq, void *cookie) 2409 { 2410 struct adapter *adap = cookie; 2411 2412 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 2413 if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) | 2414 process_intrq(adap)) 2415 return IRQ_HANDLED; 2416 return IRQ_NONE; /* probably shared interrupt */ 2417 } 2418 2419 /** 2420 * t4_intr_handler - select the top-level interrupt handler 2421 * @adap: the adapter 2422 * 2423 * Selects the top-level interrupt handler based on the type of interrupts 2424 * (MSI-X, MSI, or INTx). 2425 */ 2426 irq_handler_t t4_intr_handler(struct adapter *adap) 2427 { 2428 if (adap->flags & USING_MSIX) 2429 return t4_sge_intr_msix; 2430 if (adap->flags & USING_MSI) 2431 return t4_intr_msi; 2432 return t4_intr_intx; 2433 } 2434 2435 static void sge_rx_timer_cb(unsigned long data) 2436 { 2437 unsigned long m; 2438 unsigned int i; 2439 struct adapter *adap = (struct adapter *)data; 2440 struct sge *s = &adap->sge; 2441 2442 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2443 for (m = s->starving_fl[i]; m; m &= m - 1) { 2444 struct sge_eth_rxq *rxq; 2445 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2446 struct sge_fl *fl = s->egr_map[id]; 2447 2448 clear_bit(id, s->starving_fl); 2449 smp_mb__after_atomic(); 2450 2451 if (fl_starving(adap, fl)) { 2452 rxq = container_of(fl, struct sge_eth_rxq, fl); 2453 if (napi_reschedule(&rxq->rspq.napi)) 2454 fl->starving++; 2455 else 2456 set_bit(id, s->starving_fl); 2457 } 2458 } 2459 /* The remainder of the SGE RX Timer Callback routine is dedicated to 2460 * global Master PF activities like checking for chip ingress stalls, 2461 * etc. 2462 */ 2463 if (!(adap->flags & MASTER_PF)) 2464 goto done; 2465 2466 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 2467 2468 done: 2469 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2470 } 2471 2472 static void sge_tx_timer_cb(unsigned long data) 2473 { 2474 unsigned long m; 2475 unsigned int i, budget; 2476 struct adapter *adap = (struct adapter *)data; 2477 struct sge *s = &adap->sge; 2478 2479 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2480 for (m = s->txq_maperr[i]; m; m &= m - 1) { 2481 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 2482 struct sge_ofld_txq *txq = s->egr_map[id]; 2483 2484 clear_bit(id, s->txq_maperr); 2485 tasklet_schedule(&txq->qresume_tsk); 2486 } 2487 2488 budget = MAX_TIMER_TX_RECLAIM; 2489 i = s->ethtxq_rover; 2490 do { 2491 struct sge_eth_txq *q = &s->ethtxq[i]; 2492 2493 if (q->q.in_use && 2494 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 2495 __netif_tx_trylock(q->txq)) { 2496 int avail = reclaimable(&q->q); 2497 2498 if (avail) { 2499 if (avail > budget) 2500 avail = budget; 2501 2502 free_tx_desc(adap, &q->q, avail, true); 2503 q->q.in_use -= avail; 2504 budget -= avail; 2505 } 2506 __netif_tx_unlock(q->txq); 2507 } 2508 2509 if (++i >= s->ethqsets) 2510 i = 0; 2511 } while (budget && i != s->ethtxq_rover); 2512 s->ethtxq_rover = i; 2513 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2514 } 2515 2516 /** 2517 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2518 * @adapter: the adapter 2519 * @qid: the SGE Queue ID 2520 * @qtype: the SGE Queue Type (Egress or Ingress) 2521 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2522 * 2523 * Returns the BAR2 address for the SGE Queue Registers associated with 2524 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2525 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2526 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2527 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2528 */ 2529 static void __iomem *bar2_address(struct adapter *adapter, 2530 unsigned int qid, 2531 enum t4_bar2_qtype qtype, 2532 unsigned int *pbar2_qid) 2533 { 2534 u64 bar2_qoffset; 2535 int ret; 2536 2537 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 2538 &bar2_qoffset, pbar2_qid); 2539 if (ret) 2540 return NULL; 2541 2542 return adapter->bar2 + bar2_qoffset; 2543 } 2544 2545 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 2546 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 2547 */ 2548 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 2549 struct net_device *dev, int intr_idx, 2550 struct sge_fl *fl, rspq_handler_t hnd, 2551 rspq_flush_handler_t flush_hnd, int cong) 2552 { 2553 int ret, flsz = 0; 2554 struct fw_iq_cmd c; 2555 struct sge *s = &adap->sge; 2556 struct port_info *pi = netdev_priv(dev); 2557 2558 /* Size needs to be multiple of 16, including status entry. */ 2559 iq->size = roundup(iq->size, 16); 2560 2561 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 2562 &iq->phys_addr, NULL, 0, 2563 dev_to_node(adap->pdev_dev)); 2564 if (!iq->desc) 2565 return -ENOMEM; 2566 2567 memset(&c, 0, sizeof(c)); 2568 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 2569 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2570 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 2571 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 2572 FW_LEN16(c)); 2573 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 2574 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 2575 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 2576 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 2577 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 2578 -intr_idx - 1)); 2579 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 2580 FW_IQ_CMD_IQGTSMODE_F | 2581 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 2582 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 2583 c.iqsize = htons(iq->size); 2584 c.iqaddr = cpu_to_be64(iq->phys_addr); 2585 if (cong >= 0) 2586 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F); 2587 2588 if (fl) { 2589 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 2590 2591 /* Allocate the ring for the hardware free list (with space 2592 * for its status page) along with the associated software 2593 * descriptor ring. The free list size needs to be a multiple 2594 * of the Egress Queue Unit and at least 2 Egress Units larger 2595 * than the SGE's Egress Congrestion Threshold 2596 * (fl_starve_thres - 1). 2597 */ 2598 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 2599 fl->size = s->fl_starve_thres - 1 + 2 * 8; 2600 fl->size = roundup(fl->size, 8); 2601 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 2602 sizeof(struct rx_sw_desc), &fl->addr, 2603 &fl->sdesc, s->stat_len, 2604 dev_to_node(adap->pdev_dev)); 2605 if (!fl->desc) 2606 goto fl_nomem; 2607 2608 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 2609 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 2610 FW_IQ_CMD_FL0FETCHRO_F | 2611 FW_IQ_CMD_FL0DATARO_F | 2612 FW_IQ_CMD_FL0PADEN_F); 2613 if (cong >= 0) 2614 c.iqns_to_fl0congen |= 2615 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 2616 FW_IQ_CMD_FL0CONGCIF_F | 2617 FW_IQ_CMD_FL0CONGEN_F); 2618 /* In T6, for egress queue type FL there is internal overhead 2619 * of 16B for header going into FLM module. Hence the maximum 2620 * allowed burst size is 448 bytes. For T4/T5, the hardware 2621 * doesn't coalesce fetch requests if more than 64 bytes of 2622 * Free List pointers are provided, so we use a 128-byte Fetch 2623 * Burst Minimum there (T6 implements coalescing so we can use 2624 * the smaller 64-byte value there). 2625 */ 2626 c.fl0dcaen_to_fl0cidxfthresh = 2627 htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ? 2628 FETCHBURSTMIN_128B_X : 2629 FETCHBURSTMIN_64B_X) | 2630 FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ? 2631 FETCHBURSTMAX_512B_X : 2632 FETCHBURSTMAX_256B_X)); 2633 c.fl0size = htons(flsz); 2634 c.fl0addr = cpu_to_be64(fl->addr); 2635 } 2636 2637 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2638 if (ret) 2639 goto err; 2640 2641 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 2642 iq->cur_desc = iq->desc; 2643 iq->cidx = 0; 2644 iq->gen = 1; 2645 iq->next_intr_params = iq->intr_params; 2646 iq->cntxt_id = ntohs(c.iqid); 2647 iq->abs_id = ntohs(c.physiqid); 2648 iq->bar2_addr = bar2_address(adap, 2649 iq->cntxt_id, 2650 T4_BAR2_QTYPE_INGRESS, 2651 &iq->bar2_qid); 2652 iq->size--; /* subtract status entry */ 2653 iq->netdev = dev; 2654 iq->handler = hnd; 2655 iq->flush_handler = flush_hnd; 2656 2657 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 2658 skb_queue_head_init(&iq->lro_mgr.lroq); 2659 2660 /* set offset to -1 to distinguish ingress queues without FL */ 2661 iq->offset = fl ? 0 : -1; 2662 2663 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 2664 2665 if (fl) { 2666 fl->cntxt_id = ntohs(c.fl0id); 2667 fl->avail = fl->pend_cred = 0; 2668 fl->pidx = fl->cidx = 0; 2669 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 2670 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 2671 2672 /* Note, we must initialize the BAR2 Free List User Doorbell 2673 * information before refilling the Free List! 2674 */ 2675 fl->bar2_addr = bar2_address(adap, 2676 fl->cntxt_id, 2677 T4_BAR2_QTYPE_EGRESS, 2678 &fl->bar2_qid); 2679 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 2680 } 2681 2682 /* For T5 and later we attempt to set up the Congestion Manager values 2683 * of the new RX Ethernet Queue. This should really be handled by 2684 * firmware because it's more complex than any host driver wants to 2685 * get involved with and it's different per chip and this is almost 2686 * certainly wrong. Firmware would be wrong as well, but it would be 2687 * a lot easier to fix in one place ... For now we do something very 2688 * simple (and hopefully less wrong). 2689 */ 2690 if (!is_t4(adap->params.chip) && cong >= 0) { 2691 u32 param, val, ch_map = 0; 2692 int i; 2693 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 2694 2695 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 2696 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2697 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 2698 if (cong == 0) { 2699 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 2700 } else { 2701 val = 2702 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 2703 for (i = 0; i < 4; i++) { 2704 if (cong & (1 << i)) 2705 ch_map |= 1 << (i << cng_ch_bits_log); 2706 } 2707 val |= CONMCTXT_CNGCHMAP_V(ch_map); 2708 } 2709 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 2710 ¶m, &val); 2711 if (ret) 2712 dev_warn(adap->pdev_dev, "Failed to set Congestion" 2713 " Manager Context for Ingress Queue %d: %d\n", 2714 iq->cntxt_id, -ret); 2715 } 2716 2717 return 0; 2718 2719 fl_nomem: 2720 ret = -ENOMEM; 2721 err: 2722 if (iq->desc) { 2723 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 2724 iq->desc, iq->phys_addr); 2725 iq->desc = NULL; 2726 } 2727 if (fl && fl->desc) { 2728 kfree(fl->sdesc); 2729 fl->sdesc = NULL; 2730 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 2731 fl->desc, fl->addr); 2732 fl->desc = NULL; 2733 } 2734 return ret; 2735 } 2736 2737 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 2738 { 2739 q->cntxt_id = id; 2740 q->bar2_addr = bar2_address(adap, 2741 q->cntxt_id, 2742 T4_BAR2_QTYPE_EGRESS, 2743 &q->bar2_qid); 2744 q->in_use = 0; 2745 q->cidx = q->pidx = 0; 2746 q->stops = q->restarts = 0; 2747 q->stat = (void *)&q->desc[q->size]; 2748 spin_lock_init(&q->db_lock); 2749 adap->sge.egr_map[id - adap->sge.egr_start] = q; 2750 } 2751 2752 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 2753 struct net_device *dev, struct netdev_queue *netdevq, 2754 unsigned int iqid) 2755 { 2756 int ret, nentries; 2757 struct fw_eq_eth_cmd c; 2758 struct sge *s = &adap->sge; 2759 struct port_info *pi = netdev_priv(dev); 2760 2761 /* Add status entries */ 2762 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2763 2764 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2765 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2766 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 2767 netdev_queue_numa_node_read(netdevq)); 2768 if (!txq->q.desc) 2769 return -ENOMEM; 2770 2771 memset(&c, 0, sizeof(c)); 2772 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 2773 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2774 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 2775 FW_EQ_ETH_CMD_VFN_V(0)); 2776 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 2777 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 2778 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 2779 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 2780 c.fetchszm_to_iqid = 2781 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 2782 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 2783 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 2784 c.dcaen_to_eqsize = 2785 htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 2786 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 2787 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 2788 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 2789 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2790 2791 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2792 if (ret) { 2793 kfree(txq->q.sdesc); 2794 txq->q.sdesc = NULL; 2795 dma_free_coherent(adap->pdev_dev, 2796 nentries * sizeof(struct tx_desc), 2797 txq->q.desc, txq->q.phys_addr); 2798 txq->q.desc = NULL; 2799 return ret; 2800 } 2801 2802 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 2803 txq->txq = netdevq; 2804 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 2805 txq->mapping_err = 0; 2806 return 0; 2807 } 2808 2809 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 2810 struct net_device *dev, unsigned int iqid, 2811 unsigned int cmplqid) 2812 { 2813 int ret, nentries; 2814 struct fw_eq_ctrl_cmd c; 2815 struct sge *s = &adap->sge; 2816 struct port_info *pi = netdev_priv(dev); 2817 2818 /* Add status entries */ 2819 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2820 2821 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 2822 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 2823 NULL, 0, dev_to_node(adap->pdev_dev)); 2824 if (!txq->q.desc) 2825 return -ENOMEM; 2826 2827 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 2828 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2829 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 2830 FW_EQ_CTRL_CMD_VFN_V(0)); 2831 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 2832 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 2833 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 2834 c.physeqid_pkd = htonl(0); 2835 c.fetchszm_to_iqid = 2836 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 2837 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 2838 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 2839 c.dcaen_to_eqsize = 2840 htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 2841 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 2842 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 2843 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 2844 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2845 2846 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2847 if (ret) { 2848 dma_free_coherent(adap->pdev_dev, 2849 nentries * sizeof(struct tx_desc), 2850 txq->q.desc, txq->q.phys_addr); 2851 txq->q.desc = NULL; 2852 return ret; 2853 } 2854 2855 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 2856 txq->adap = adap; 2857 skb_queue_head_init(&txq->sendq); 2858 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 2859 txq->full = 0; 2860 return 0; 2861 } 2862 2863 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, 2864 struct net_device *dev, unsigned int iqid) 2865 { 2866 int ret, nentries; 2867 struct fw_eq_ofld_cmd c; 2868 struct sge *s = &adap->sge; 2869 struct port_info *pi = netdev_priv(dev); 2870 2871 /* Add status entries */ 2872 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2873 2874 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2875 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2876 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 2877 NUMA_NO_NODE); 2878 if (!txq->q.desc) 2879 return -ENOMEM; 2880 2881 memset(&c, 0, sizeof(c)); 2882 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | 2883 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2884 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 2885 FW_EQ_OFLD_CMD_VFN_V(0)); 2886 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 2887 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 2888 c.fetchszm_to_iqid = 2889 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 2890 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 2891 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 2892 c.dcaen_to_eqsize = 2893 htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 2894 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 2895 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 2896 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 2897 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2898 2899 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2900 if (ret) { 2901 kfree(txq->q.sdesc); 2902 txq->q.sdesc = NULL; 2903 dma_free_coherent(adap->pdev_dev, 2904 nentries * sizeof(struct tx_desc), 2905 txq->q.desc, txq->q.phys_addr); 2906 txq->q.desc = NULL; 2907 return ret; 2908 } 2909 2910 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 2911 txq->adap = adap; 2912 skb_queue_head_init(&txq->sendq); 2913 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 2914 txq->full = 0; 2915 txq->mapping_err = 0; 2916 return 0; 2917 } 2918 2919 static void free_txq(struct adapter *adap, struct sge_txq *q) 2920 { 2921 struct sge *s = &adap->sge; 2922 2923 dma_free_coherent(adap->pdev_dev, 2924 q->size * sizeof(struct tx_desc) + s->stat_len, 2925 q->desc, q->phys_addr); 2926 q->cntxt_id = 0; 2927 q->sdesc = NULL; 2928 q->desc = NULL; 2929 } 2930 2931 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 2932 struct sge_fl *fl) 2933 { 2934 struct sge *s = &adap->sge; 2935 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 2936 2937 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 2938 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 2939 rq->cntxt_id, fl_id, 0xffff); 2940 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 2941 rq->desc, rq->phys_addr); 2942 napi_hash_del(&rq->napi); 2943 netif_napi_del(&rq->napi); 2944 rq->netdev = NULL; 2945 rq->cntxt_id = rq->abs_id = 0; 2946 rq->desc = NULL; 2947 2948 if (fl) { 2949 free_rx_bufs(adap, fl, fl->avail); 2950 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 2951 fl->desc, fl->addr); 2952 kfree(fl->sdesc); 2953 fl->sdesc = NULL; 2954 fl->cntxt_id = 0; 2955 fl->desc = NULL; 2956 } 2957 } 2958 2959 /** 2960 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 2961 * @adap: the adapter 2962 * @n: number of queues 2963 * @q: pointer to first queue 2964 * 2965 * Release the resources of a consecutive block of offload Rx queues. 2966 */ 2967 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 2968 { 2969 for ( ; n; n--, q++) 2970 if (q->rspq.desc) 2971 free_rspq_fl(adap, &q->rspq, 2972 q->fl.size ? &q->fl : NULL); 2973 } 2974 2975 /** 2976 * t4_free_sge_resources - free SGE resources 2977 * @adap: the adapter 2978 * 2979 * Frees resources used by the SGE queue sets. 2980 */ 2981 void t4_free_sge_resources(struct adapter *adap) 2982 { 2983 int i; 2984 struct sge_eth_rxq *eq; 2985 struct sge_eth_txq *etq; 2986 2987 /* stop all Rx queues in order to start them draining */ 2988 for (i = 0; i < adap->sge.ethqsets; i++) { 2989 eq = &adap->sge.ethrxq[i]; 2990 if (eq->rspq.desc) 2991 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 2992 FW_IQ_TYPE_FL_INT_CAP, 2993 eq->rspq.cntxt_id, 2994 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 2995 0xffff); 2996 } 2997 2998 /* clean up Ethernet Tx/Rx queues */ 2999 for (i = 0; i < adap->sge.ethqsets; i++) { 3000 eq = &adap->sge.ethrxq[i]; 3001 if (eq->rspq.desc) 3002 free_rspq_fl(adap, &eq->rspq, 3003 eq->fl.size ? &eq->fl : NULL); 3004 3005 etq = &adap->sge.ethtxq[i]; 3006 if (etq->q.desc) { 3007 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3008 etq->q.cntxt_id); 3009 __netif_tx_lock_bh(etq->txq); 3010 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3011 __netif_tx_unlock_bh(etq->txq); 3012 kfree(etq->q.sdesc); 3013 free_txq(adap, &etq->q); 3014 } 3015 } 3016 3017 /* clean up RDMA and iSCSI Rx queues */ 3018 t4_free_ofld_rxqs(adap, adap->sge.iscsiqsets, adap->sge.iscsirxq); 3019 t4_free_ofld_rxqs(adap, adap->sge.niscsitq, adap->sge.iscsitrxq); 3020 t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq); 3021 t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq); 3022 3023 /* clean up offload Tx queues */ 3024 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { 3025 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; 3026 3027 if (q->q.desc) { 3028 tasklet_kill(&q->qresume_tsk); 3029 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 3030 q->q.cntxt_id); 3031 free_tx_desc(adap, &q->q, q->q.in_use, false); 3032 kfree(q->q.sdesc); 3033 __skb_queue_purge(&q->sendq); 3034 free_txq(adap, &q->q); 3035 } 3036 } 3037 3038 /* clean up control Tx queues */ 3039 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 3040 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 3041 3042 if (cq->q.desc) { 3043 tasklet_kill(&cq->qresume_tsk); 3044 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 3045 cq->q.cntxt_id); 3046 __skb_queue_purge(&cq->sendq); 3047 free_txq(adap, &cq->q); 3048 } 3049 } 3050 3051 if (adap->sge.fw_evtq.desc) 3052 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 3053 3054 if (adap->sge.intrq.desc) 3055 free_rspq_fl(adap, &adap->sge.intrq, NULL); 3056 3057 /* clear the reverse egress queue map */ 3058 memset(adap->sge.egr_map, 0, 3059 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 3060 } 3061 3062 void t4_sge_start(struct adapter *adap) 3063 { 3064 adap->sge.ethtxq_rover = 0; 3065 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 3066 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 3067 } 3068 3069 /** 3070 * t4_sge_stop - disable SGE operation 3071 * @adap: the adapter 3072 * 3073 * Stop tasklets and timers associated with the DMA engine. Note that 3074 * this is effective only if measures have been taken to disable any HW 3075 * events that may restart them. 3076 */ 3077 void t4_sge_stop(struct adapter *adap) 3078 { 3079 int i; 3080 struct sge *s = &adap->sge; 3081 3082 if (in_interrupt()) /* actions below require waiting */ 3083 return; 3084 3085 if (s->rx_timer.function) 3086 del_timer_sync(&s->rx_timer); 3087 if (s->tx_timer.function) 3088 del_timer_sync(&s->tx_timer); 3089 3090 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { 3091 struct sge_ofld_txq *q = &s->ofldtxq[i]; 3092 3093 if (q->q.desc) 3094 tasklet_kill(&q->qresume_tsk); 3095 } 3096 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 3097 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 3098 3099 if (cq->q.desc) 3100 tasklet_kill(&cq->qresume_tsk); 3101 } 3102 } 3103 3104 /** 3105 * t4_sge_init_soft - grab core SGE values needed by SGE code 3106 * @adap: the adapter 3107 * 3108 * We need to grab the SGE operating parameters that we need to have 3109 * in order to do our job and make sure we can live with them. 3110 */ 3111 3112 static int t4_sge_init_soft(struct adapter *adap) 3113 { 3114 struct sge *s = &adap->sge; 3115 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 3116 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 3117 u32 ingress_rx_threshold; 3118 3119 /* 3120 * Verify that CPL messages are going to the Ingress Queue for 3121 * process_responses() and that only packet data is going to the 3122 * Free Lists. 3123 */ 3124 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 3125 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 3126 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 3127 return -EINVAL; 3128 } 3129 3130 /* 3131 * Validate the Host Buffer Register Array indices that we want to 3132 * use ... 3133 * 3134 * XXX Note that we should really read through the Host Buffer Size 3135 * XXX register array and find the indices of the Buffer Sizes which 3136 * XXX meet our needs! 3137 */ 3138 #define READ_FL_BUF(x) \ 3139 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 3140 3141 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 3142 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 3143 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 3144 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 3145 3146 /* We only bother using the Large Page logic if the Large Page Buffer 3147 * is larger than our Page Size Buffer. 3148 */ 3149 if (fl_large_pg <= fl_small_pg) 3150 fl_large_pg = 0; 3151 3152 #undef READ_FL_BUF 3153 3154 /* The Page Size Buffer must be exactly equal to our Page Size and the 3155 * Large Page Size Buffer should be 0 (per above) or a power of 2. 3156 */ 3157 if (fl_small_pg != PAGE_SIZE || 3158 (fl_large_pg & (fl_large_pg-1)) != 0) { 3159 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 3160 fl_small_pg, fl_large_pg); 3161 return -EINVAL; 3162 } 3163 if (fl_large_pg) 3164 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 3165 3166 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 3167 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 3168 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 3169 fl_small_mtu, fl_large_mtu); 3170 return -EINVAL; 3171 } 3172 3173 /* 3174 * Retrieve our RX interrupt holdoff timer values and counter 3175 * threshold values from the SGE parameters. 3176 */ 3177 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 3178 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 3179 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 3180 s->timer_val[0] = core_ticks_to_us(adap, 3181 TIMERVALUE0_G(timer_value_0_and_1)); 3182 s->timer_val[1] = core_ticks_to_us(adap, 3183 TIMERVALUE1_G(timer_value_0_and_1)); 3184 s->timer_val[2] = core_ticks_to_us(adap, 3185 TIMERVALUE2_G(timer_value_2_and_3)); 3186 s->timer_val[3] = core_ticks_to_us(adap, 3187 TIMERVALUE3_G(timer_value_2_and_3)); 3188 s->timer_val[4] = core_ticks_to_us(adap, 3189 TIMERVALUE4_G(timer_value_4_and_5)); 3190 s->timer_val[5] = core_ticks_to_us(adap, 3191 TIMERVALUE5_G(timer_value_4_and_5)); 3192 3193 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 3194 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 3195 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 3196 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 3197 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 3198 3199 return 0; 3200 } 3201 3202 /** 3203 * t4_sge_init - initialize SGE 3204 * @adap: the adapter 3205 * 3206 * Perform low-level SGE code initialization needed every time after a 3207 * chip reset. 3208 */ 3209 int t4_sge_init(struct adapter *adap) 3210 { 3211 struct sge *s = &adap->sge; 3212 u32 sge_control, sge_conm_ctrl; 3213 int ret, egress_threshold; 3214 3215 /* 3216 * Ingress Padding Boundary and Egress Status Page Size are set up by 3217 * t4_fixup_host_params(). 3218 */ 3219 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 3220 s->pktshift = PKTSHIFT_G(sge_control); 3221 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 3222 3223 s->fl_align = t4_fl_pkt_align(adap); 3224 ret = t4_sge_init_soft(adap); 3225 if (ret < 0) 3226 return ret; 3227 3228 /* 3229 * A FL with <= fl_starve_thres buffers is starving and a periodic 3230 * timer will attempt to refill it. This needs to be larger than the 3231 * SGE's Egress Congestion Threshold. If it isn't, then we can get 3232 * stuck waiting for new packets while the SGE is waiting for us to 3233 * give it more Free List entries. (Note that the SGE's Egress 3234 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 3235 * there was only a single field to control this. For T5 there's the 3236 * original field which now only applies to Unpacked Mode Free List 3237 * buffers and a new field which only applies to Packed Mode Free List 3238 * buffers. 3239 */ 3240 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 3241 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 3242 case CHELSIO_T4: 3243 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 3244 break; 3245 case CHELSIO_T5: 3246 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3247 break; 3248 case CHELSIO_T6: 3249 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3250 break; 3251 default: 3252 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 3253 CHELSIO_CHIP_VERSION(adap->params.chip)); 3254 return -EINVAL; 3255 } 3256 s->fl_starve_thres = 2*egress_threshold + 1; 3257 3258 t4_idma_monitor_init(adap, &s->idma_monitor); 3259 3260 /* Set up timers used for recuring callbacks to process RX and TX 3261 * administrative tasks. 3262 */ 3263 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); 3264 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); 3265 3266 spin_lock_init(&s->intrq_lock); 3267 3268 return 0; 3269 } 3270