xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/busy_poll.h>
47 #ifdef CONFIG_CHELSIO_T4_FCOE
48 #include <scsi/fc/fc_fcoe.h>
49 #endif /* CONFIG_CHELSIO_T4_FCOE */
50 #include "cxgb4.h"
51 #include "t4_regs.h"
52 #include "t4_values.h"
53 #include "t4_msg.h"
54 #include "t4fw_api.h"
55 #include "cxgb4_ptp.h"
56 
57 /*
58  * Rx buffer size.  We use largish buffers if possible but settle for single
59  * pages under memory shortage.
60  */
61 #if PAGE_SHIFT >= 16
62 # define FL_PG_ORDER 0
63 #else
64 # define FL_PG_ORDER (16 - PAGE_SHIFT)
65 #endif
66 
67 /* RX_PULL_LEN should be <= RX_COPY_THRES */
68 #define RX_COPY_THRES    256
69 #define RX_PULL_LEN      128
70 
71 /*
72  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
73  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
74  */
75 #define RX_PKT_SKB_LEN   512
76 
77 /*
78  * Max number of Tx descriptors we clean up at a time.  Should be modest as
79  * freeing skbs isn't cheap and it happens while holding locks.  We just need
80  * to free packets faster than they arrive, we eventually catch up and keep
81  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
82  */
83 #define MAX_TX_RECLAIM 16
84 
85 /*
86  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
87  * allocating buffers isn't cheap either.
88  */
89 #define MAX_RX_REFILL 16U
90 
91 /*
92  * Period of the Rx queue check timer.  This timer is infrequent as it has
93  * something to do only when the system experiences severe memory shortage.
94  */
95 #define RX_QCHECK_PERIOD (HZ / 2)
96 
97 /*
98  * Period of the Tx queue check timer.
99  */
100 #define TX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Max number of Tx descriptors to be reclaimed by the Tx timer.
104  */
105 #define MAX_TIMER_TX_RECLAIM 100
106 
107 /*
108  * Timer index used when backing off due to memory shortage.
109  */
110 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
111 
112 /*
113  * Suspend an Ethernet Tx queue with fewer available descriptors than this.
114  * This is the same as calc_tx_descs() for a TSO packet with
115  * nr_frags == MAX_SKB_FRAGS.
116  */
117 #define ETHTXQ_STOP_THRES \
118 	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
119 
120 /*
121  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
122  * for a full sized WR.
123  */
124 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
125 
126 /*
127  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
128  * into a WR.
129  */
130 #define MAX_IMM_TX_PKT_LEN 256
131 
132 /*
133  * Max size of a WR sent through a control Tx queue.
134  */
135 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
136 
137 struct tx_sw_desc {                /* SW state per Tx descriptor */
138 	struct sk_buff *skb;
139 	struct ulptx_sgl *sgl;
140 };
141 
142 struct rx_sw_desc {                /* SW state per Rx descriptor */
143 	struct page *page;
144 	dma_addr_t dma_addr;
145 };
146 
147 /*
148  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
149  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
150  * We could easily support more but there doesn't seem to be much need for
151  * that ...
152  */
153 #define FL_MTU_SMALL 1500
154 #define FL_MTU_LARGE 9000
155 
156 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
157 					  unsigned int mtu)
158 {
159 	struct sge *s = &adapter->sge;
160 
161 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
162 }
163 
164 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
165 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
166 
167 /*
168  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
169  * these to specify the buffer size as an index into the SGE Free List Buffer
170  * Size register array.  We also use bit 4, when the buffer has been unmapped
171  * for DMA, but this is of course never sent to the hardware and is only used
172  * to prevent double unmappings.  All of the above requires that the Free List
173  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
174  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
175  * Free List Buffer alignment is 32 bytes, this works out for us ...
176  */
177 enum {
178 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
179 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
180 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
181 
182 	/*
183 	 * XXX We shouldn't depend on being able to use these indices.
184 	 * XXX Especially when some other Master PF has initialized the
185 	 * XXX adapter or we use the Firmware Configuration File.  We
186 	 * XXX should really search through the Host Buffer Size register
187 	 * XXX array for the appropriately sized buffer indices.
188 	 */
189 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
190 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
191 
192 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
193 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
194 };
195 
196 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
197 #define MIN_NAPI_WORK  1
198 
199 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
200 {
201 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
202 }
203 
204 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
205 {
206 	return !(d->dma_addr & RX_UNMAPPED_BUF);
207 }
208 
209 /**
210  *	txq_avail - return the number of available slots in a Tx queue
211  *	@q: the Tx queue
212  *
213  *	Returns the number of descriptors in a Tx queue available to write new
214  *	packets.
215  */
216 static inline unsigned int txq_avail(const struct sge_txq *q)
217 {
218 	return q->size - 1 - q->in_use;
219 }
220 
221 /**
222  *	fl_cap - return the capacity of a free-buffer list
223  *	@fl: the FL
224  *
225  *	Returns the capacity of a free-buffer list.  The capacity is less than
226  *	the size because one descriptor needs to be left unpopulated, otherwise
227  *	HW will think the FL is empty.
228  */
229 static inline unsigned int fl_cap(const struct sge_fl *fl)
230 {
231 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
232 }
233 
234 /**
235  *	fl_starving - return whether a Free List is starving.
236  *	@adapter: pointer to the adapter
237  *	@fl: the Free List
238  *
239  *	Tests specified Free List to see whether the number of buffers
240  *	available to the hardware has falled below our "starvation"
241  *	threshold.
242  */
243 static inline bool fl_starving(const struct adapter *adapter,
244 			       const struct sge_fl *fl)
245 {
246 	const struct sge *s = &adapter->sge;
247 
248 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
249 }
250 
251 static int map_skb(struct device *dev, const struct sk_buff *skb,
252 		   dma_addr_t *addr)
253 {
254 	const skb_frag_t *fp, *end;
255 	const struct skb_shared_info *si;
256 
257 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
258 	if (dma_mapping_error(dev, *addr))
259 		goto out_err;
260 
261 	si = skb_shinfo(skb);
262 	end = &si->frags[si->nr_frags];
263 
264 	for (fp = si->frags; fp < end; fp++) {
265 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
266 					   DMA_TO_DEVICE);
267 		if (dma_mapping_error(dev, *addr))
268 			goto unwind;
269 	}
270 	return 0;
271 
272 unwind:
273 	while (fp-- > si->frags)
274 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
275 
276 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
277 out_err:
278 	return -ENOMEM;
279 }
280 
281 #ifdef CONFIG_NEED_DMA_MAP_STATE
282 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
283 		      const dma_addr_t *addr)
284 {
285 	const skb_frag_t *fp, *end;
286 	const struct skb_shared_info *si;
287 
288 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
289 
290 	si = skb_shinfo(skb);
291 	end = &si->frags[si->nr_frags];
292 	for (fp = si->frags; fp < end; fp++)
293 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
294 }
295 
296 /**
297  *	deferred_unmap_destructor - unmap a packet when it is freed
298  *	@skb: the packet
299  *
300  *	This is the packet destructor used for Tx packets that need to remain
301  *	mapped until they are freed rather than until their Tx descriptors are
302  *	freed.
303  */
304 static void deferred_unmap_destructor(struct sk_buff *skb)
305 {
306 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
307 }
308 #endif
309 
310 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
311 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
312 {
313 	const struct ulptx_sge_pair *p;
314 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
315 
316 	if (likely(skb_headlen(skb)))
317 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
318 				 DMA_TO_DEVICE);
319 	else {
320 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
321 			       DMA_TO_DEVICE);
322 		nfrags--;
323 	}
324 
325 	/*
326 	 * the complexity below is because of the possibility of a wrap-around
327 	 * in the middle of an SGL
328 	 */
329 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
330 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
331 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
332 				       ntohl(p->len[0]), DMA_TO_DEVICE);
333 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
334 				       ntohl(p->len[1]), DMA_TO_DEVICE);
335 			p++;
336 		} else if ((u8 *)p == (u8 *)q->stat) {
337 			p = (const struct ulptx_sge_pair *)q->desc;
338 			goto unmap;
339 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
340 			const __be64 *addr = (const __be64 *)q->desc;
341 
342 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
343 				       ntohl(p->len[0]), DMA_TO_DEVICE);
344 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
345 				       ntohl(p->len[1]), DMA_TO_DEVICE);
346 			p = (const struct ulptx_sge_pair *)&addr[2];
347 		} else {
348 			const __be64 *addr = (const __be64 *)q->desc;
349 
350 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
351 				       ntohl(p->len[0]), DMA_TO_DEVICE);
352 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
353 				       ntohl(p->len[1]), DMA_TO_DEVICE);
354 			p = (const struct ulptx_sge_pair *)&addr[1];
355 		}
356 	}
357 	if (nfrags) {
358 		__be64 addr;
359 
360 		if ((u8 *)p == (u8 *)q->stat)
361 			p = (const struct ulptx_sge_pair *)q->desc;
362 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
363 						       *(const __be64 *)q->desc;
364 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
365 			       DMA_TO_DEVICE);
366 	}
367 }
368 
369 /**
370  *	free_tx_desc - reclaims Tx descriptors and their buffers
371  *	@adapter: the adapter
372  *	@q: the Tx queue to reclaim descriptors from
373  *	@n: the number of descriptors to reclaim
374  *	@unmap: whether the buffers should be unmapped for DMA
375  *
376  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
377  *	Tx buffers.  Called with the Tx queue lock held.
378  */
379 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
380 		  unsigned int n, bool unmap)
381 {
382 	struct tx_sw_desc *d;
383 	unsigned int cidx = q->cidx;
384 	struct device *dev = adap->pdev_dev;
385 
386 	d = &q->sdesc[cidx];
387 	while (n--) {
388 		if (d->skb) {                       /* an SGL is present */
389 			if (unmap)
390 				unmap_sgl(dev, d->skb, d->sgl, q);
391 			dev_consume_skb_any(d->skb);
392 			d->skb = NULL;
393 		}
394 		++d;
395 		if (++cidx == q->size) {
396 			cidx = 0;
397 			d = q->sdesc;
398 		}
399 	}
400 	q->cidx = cidx;
401 }
402 
403 /*
404  * Return the number of reclaimable descriptors in a Tx queue.
405  */
406 static inline int reclaimable(const struct sge_txq *q)
407 {
408 	int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
409 	hw_cidx -= q->cidx;
410 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
411 }
412 
413 /**
414  *	reclaim_completed_tx - reclaims completed Tx descriptors
415  *	@adap: the adapter
416  *	@q: the Tx queue to reclaim completed descriptors from
417  *	@unmap: whether the buffers should be unmapped for DMA
418  *
419  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
420  *	and frees the associated buffers if possible.  Called with the Tx
421  *	queue locked.
422  */
423 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
424 					bool unmap)
425 {
426 	int avail = reclaimable(q);
427 
428 	if (avail) {
429 		/*
430 		 * Limit the amount of clean up work we do at a time to keep
431 		 * the Tx lock hold time O(1).
432 		 */
433 		if (avail > MAX_TX_RECLAIM)
434 			avail = MAX_TX_RECLAIM;
435 
436 		free_tx_desc(adap, q, avail, unmap);
437 		q->in_use -= avail;
438 	}
439 }
440 
441 static inline int get_buf_size(struct adapter *adapter,
442 			       const struct rx_sw_desc *d)
443 {
444 	struct sge *s = &adapter->sge;
445 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
446 	int buf_size;
447 
448 	switch (rx_buf_size_idx) {
449 	case RX_SMALL_PG_BUF:
450 		buf_size = PAGE_SIZE;
451 		break;
452 
453 	case RX_LARGE_PG_BUF:
454 		buf_size = PAGE_SIZE << s->fl_pg_order;
455 		break;
456 
457 	case RX_SMALL_MTU_BUF:
458 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
459 		break;
460 
461 	case RX_LARGE_MTU_BUF:
462 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
463 		break;
464 
465 	default:
466 		BUG_ON(1);
467 	}
468 
469 	return buf_size;
470 }
471 
472 /**
473  *	free_rx_bufs - free the Rx buffers on an SGE free list
474  *	@adap: the adapter
475  *	@q: the SGE free list to free buffers from
476  *	@n: how many buffers to free
477  *
478  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
479  *	buffers must be made inaccessible to HW before calling this function.
480  */
481 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
482 {
483 	while (n--) {
484 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
485 
486 		if (is_buf_mapped(d))
487 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
488 				       get_buf_size(adap, d),
489 				       PCI_DMA_FROMDEVICE);
490 		put_page(d->page);
491 		d->page = NULL;
492 		if (++q->cidx == q->size)
493 			q->cidx = 0;
494 		q->avail--;
495 	}
496 }
497 
498 /**
499  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
500  *	@adap: the adapter
501  *	@q: the SGE free list
502  *
503  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
504  *	buffer must be made inaccessible to HW before calling this function.
505  *
506  *	This is similar to @free_rx_bufs above but does not free the buffer.
507  *	Do note that the FL still loses any further access to the buffer.
508  */
509 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
510 {
511 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
512 
513 	if (is_buf_mapped(d))
514 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
515 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
516 	d->page = NULL;
517 	if (++q->cidx == q->size)
518 		q->cidx = 0;
519 	q->avail--;
520 }
521 
522 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
523 {
524 	if (q->pend_cred >= 8) {
525 		u32 val = adap->params.arch.sge_fl_db;
526 
527 		if (is_t4(adap->params.chip))
528 			val |= PIDX_V(q->pend_cred / 8);
529 		else
530 			val |= PIDX_T5_V(q->pend_cred / 8);
531 
532 		/* Make sure all memory writes to the Free List queue are
533 		 * committed before we tell the hardware about them.
534 		 */
535 		wmb();
536 
537 		/* If we don't have access to the new User Doorbell (T5+), use
538 		 * the old doorbell mechanism; otherwise use the new BAR2
539 		 * mechanism.
540 		 */
541 		if (unlikely(q->bar2_addr == NULL)) {
542 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
543 				     val | QID_V(q->cntxt_id));
544 		} else {
545 			writel(val | QID_V(q->bar2_qid),
546 			       q->bar2_addr + SGE_UDB_KDOORBELL);
547 
548 			/* This Write memory Barrier will force the write to
549 			 * the User Doorbell area to be flushed.
550 			 */
551 			wmb();
552 		}
553 		q->pend_cred &= 7;
554 	}
555 }
556 
557 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
558 				  dma_addr_t mapping)
559 {
560 	sd->page = pg;
561 	sd->dma_addr = mapping;      /* includes size low bits */
562 }
563 
564 /**
565  *	refill_fl - refill an SGE Rx buffer ring
566  *	@adap: the adapter
567  *	@q: the ring to refill
568  *	@n: the number of new buffers to allocate
569  *	@gfp: the gfp flags for the allocations
570  *
571  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
572  *	allocated with the supplied gfp flags.  The caller must assure that
573  *	@n does not exceed the queue's capacity.  If afterwards the queue is
574  *	found critically low mark it as starving in the bitmap of starving FLs.
575  *
576  *	Returns the number of buffers allocated.
577  */
578 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
579 			      gfp_t gfp)
580 {
581 	struct sge *s = &adap->sge;
582 	struct page *pg;
583 	dma_addr_t mapping;
584 	unsigned int cred = q->avail;
585 	__be64 *d = &q->desc[q->pidx];
586 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
587 	int node;
588 
589 #ifdef CONFIG_DEBUG_FS
590 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
591 		goto out;
592 #endif
593 
594 	gfp |= __GFP_NOWARN;
595 	node = dev_to_node(adap->pdev_dev);
596 
597 	if (s->fl_pg_order == 0)
598 		goto alloc_small_pages;
599 
600 	/*
601 	 * Prefer large buffers
602 	 */
603 	while (n) {
604 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
605 		if (unlikely(!pg)) {
606 			q->large_alloc_failed++;
607 			break;       /* fall back to single pages */
608 		}
609 
610 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
611 				       PAGE_SIZE << s->fl_pg_order,
612 				       PCI_DMA_FROMDEVICE);
613 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
614 			__free_pages(pg, s->fl_pg_order);
615 			q->mapping_err++;
616 			goto out;   /* do not try small pages for this error */
617 		}
618 		mapping |= RX_LARGE_PG_BUF;
619 		*d++ = cpu_to_be64(mapping);
620 
621 		set_rx_sw_desc(sd, pg, mapping);
622 		sd++;
623 
624 		q->avail++;
625 		if (++q->pidx == q->size) {
626 			q->pidx = 0;
627 			sd = q->sdesc;
628 			d = q->desc;
629 		}
630 		n--;
631 	}
632 
633 alloc_small_pages:
634 	while (n--) {
635 		pg = alloc_pages_node(node, gfp, 0);
636 		if (unlikely(!pg)) {
637 			q->alloc_failed++;
638 			break;
639 		}
640 
641 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
642 				       PCI_DMA_FROMDEVICE);
643 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
644 			put_page(pg);
645 			q->mapping_err++;
646 			goto out;
647 		}
648 		*d++ = cpu_to_be64(mapping);
649 
650 		set_rx_sw_desc(sd, pg, mapping);
651 		sd++;
652 
653 		q->avail++;
654 		if (++q->pidx == q->size) {
655 			q->pidx = 0;
656 			sd = q->sdesc;
657 			d = q->desc;
658 		}
659 	}
660 
661 out:	cred = q->avail - cred;
662 	q->pend_cred += cred;
663 	ring_fl_db(adap, q);
664 
665 	if (unlikely(fl_starving(adap, q))) {
666 		smp_wmb();
667 		q->low++;
668 		set_bit(q->cntxt_id - adap->sge.egr_start,
669 			adap->sge.starving_fl);
670 	}
671 
672 	return cred;
673 }
674 
675 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
676 {
677 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
678 		  GFP_ATOMIC);
679 }
680 
681 /**
682  *	alloc_ring - allocate resources for an SGE descriptor ring
683  *	@dev: the PCI device's core device
684  *	@nelem: the number of descriptors
685  *	@elem_size: the size of each descriptor
686  *	@sw_size: the size of the SW state associated with each ring element
687  *	@phys: the physical address of the allocated ring
688  *	@metadata: address of the array holding the SW state for the ring
689  *	@stat_size: extra space in HW ring for status information
690  *	@node: preferred node for memory allocations
691  *
692  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
693  *	free buffer lists, or response queues.  Each SGE ring requires
694  *	space for its HW descriptors plus, optionally, space for the SW state
695  *	associated with each HW entry (the metadata).  The function returns
696  *	three values: the virtual address for the HW ring (the return value
697  *	of the function), the bus address of the HW ring, and the address
698  *	of the SW ring.
699  */
700 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
701 			size_t sw_size, dma_addr_t *phys, void *metadata,
702 			size_t stat_size, int node)
703 {
704 	size_t len = nelem * elem_size + stat_size;
705 	void *s = NULL;
706 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
707 
708 	if (!p)
709 		return NULL;
710 	if (sw_size) {
711 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
712 
713 		if (!s) {
714 			dma_free_coherent(dev, len, p, *phys);
715 			return NULL;
716 		}
717 	}
718 	if (metadata)
719 		*(void **)metadata = s;
720 	memset(p, 0, len);
721 	return p;
722 }
723 
724 /**
725  *	sgl_len - calculates the size of an SGL of the given capacity
726  *	@n: the number of SGL entries
727  *
728  *	Calculates the number of flits needed for a scatter/gather list that
729  *	can hold the given number of entries.
730  */
731 static inline unsigned int sgl_len(unsigned int n)
732 {
733 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
734 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
735 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
736 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
737 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
738 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
739 	 * Address[N+1] is omitted.
740 	 *
741 	 * The following calculation incorporates all of the above.  It's
742 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
743 	 * first two flits which include the DSGL header, Length0 and
744 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
745 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
746 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
747 	 * (n-1) is odd ...
748 	 */
749 	n--;
750 	return (3 * n) / 2 + (n & 1) + 2;
751 }
752 
753 /**
754  *	flits_to_desc - returns the num of Tx descriptors for the given flits
755  *	@n: the number of flits
756  *
757  *	Returns the number of Tx descriptors needed for the supplied number
758  *	of flits.
759  */
760 static inline unsigned int flits_to_desc(unsigned int n)
761 {
762 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
763 	return DIV_ROUND_UP(n, 8);
764 }
765 
766 /**
767  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
768  *	@skb: the packet
769  *
770  *	Returns whether an Ethernet packet is small enough to fit as
771  *	immediate data. Return value corresponds to headroom required.
772  */
773 static inline int is_eth_imm(const struct sk_buff *skb)
774 {
775 	int hdrlen = skb_shinfo(skb)->gso_size ?
776 			sizeof(struct cpl_tx_pkt_lso_core) : 0;
777 
778 	hdrlen += sizeof(struct cpl_tx_pkt);
779 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
780 		return hdrlen;
781 	return 0;
782 }
783 
784 /**
785  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
786  *	@skb: the packet
787  *
788  *	Returns the number of flits needed for a Tx WR for the given Ethernet
789  *	packet, including the needed WR and CPL headers.
790  */
791 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
792 {
793 	unsigned int flits;
794 	int hdrlen = is_eth_imm(skb);
795 
796 	/* If the skb is small enough, we can pump it out as a work request
797 	 * with only immediate data.  In that case we just have to have the
798 	 * TX Packet header plus the skb data in the Work Request.
799 	 */
800 
801 	if (hdrlen)
802 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
803 
804 	/* Otherwise, we're going to have to construct a Scatter gather list
805 	 * of the skb body and fragments.  We also include the flits necessary
806 	 * for the TX Packet Work Request and CPL.  We always have a firmware
807 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
808 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
809 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
810 	 * with an embedded TX Packet Write CPL message.
811 	 */
812 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
813 	if (skb_shinfo(skb)->gso_size)
814 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
815 			  sizeof(struct cpl_tx_pkt_lso_core) +
816 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
817 	else
818 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
819 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
820 	return flits;
821 }
822 
823 /**
824  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
825  *	@skb: the packet
826  *
827  *	Returns the number of Tx descriptors needed for the given Ethernet
828  *	packet, including the needed WR and CPL headers.
829  */
830 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
831 {
832 	return flits_to_desc(calc_tx_flits(skb));
833 }
834 
835 /**
836  *	write_sgl - populate a scatter/gather list for a packet
837  *	@skb: the packet
838  *	@q: the Tx queue we are writing into
839  *	@sgl: starting location for writing the SGL
840  *	@end: points right after the end of the SGL
841  *	@start: start offset into skb main-body data to include in the SGL
842  *	@addr: the list of bus addresses for the SGL elements
843  *
844  *	Generates a gather list for the buffers that make up a packet.
845  *	The caller must provide adequate space for the SGL that will be written.
846  *	The SGL includes all of the packet's page fragments and the data in its
847  *	main body except for the first @start bytes.  @sgl must be 16-byte
848  *	aligned and within a Tx descriptor with available space.  @end points
849  *	right after the end of the SGL but does not account for any potential
850  *	wrap around, i.e., @end > @sgl.
851  */
852 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
853 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
854 		      const dma_addr_t *addr)
855 {
856 	unsigned int i, len;
857 	struct ulptx_sge_pair *to;
858 	const struct skb_shared_info *si = skb_shinfo(skb);
859 	unsigned int nfrags = si->nr_frags;
860 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
861 
862 	len = skb_headlen(skb) - start;
863 	if (likely(len)) {
864 		sgl->len0 = htonl(len);
865 		sgl->addr0 = cpu_to_be64(addr[0] + start);
866 		nfrags++;
867 	} else {
868 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
869 		sgl->addr0 = cpu_to_be64(addr[1]);
870 	}
871 
872 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
873 			      ULPTX_NSGE_V(nfrags));
874 	if (likely(--nfrags == 0))
875 		return;
876 	/*
877 	 * Most of the complexity below deals with the possibility we hit the
878 	 * end of the queue in the middle of writing the SGL.  For this case
879 	 * only we create the SGL in a temporary buffer and then copy it.
880 	 */
881 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
882 
883 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
884 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
885 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
886 		to->addr[0] = cpu_to_be64(addr[i]);
887 		to->addr[1] = cpu_to_be64(addr[++i]);
888 	}
889 	if (nfrags) {
890 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
891 		to->len[1] = cpu_to_be32(0);
892 		to->addr[0] = cpu_to_be64(addr[i + 1]);
893 	}
894 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
895 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
896 
897 		if (likely(part0))
898 			memcpy(sgl->sge, buf, part0);
899 		part1 = (u8 *)end - (u8 *)q->stat;
900 		memcpy(q->desc, (u8 *)buf + part0, part1);
901 		end = (void *)q->desc + part1;
902 	}
903 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
904 		*end = 0;
905 }
906 
907 /* This function copies 64 byte coalesced work request to
908  * memory mapped BAR2 space. For coalesced WR SGE fetches
909  * data from the FIFO instead of from Host.
910  */
911 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
912 {
913 	int count = 8;
914 
915 	while (count) {
916 		writeq(*src, dst);
917 		src++;
918 		dst++;
919 		count--;
920 	}
921 }
922 
923 /**
924  *	ring_tx_db - check and potentially ring a Tx queue's doorbell
925  *	@adap: the adapter
926  *	@q: the Tx queue
927  *	@n: number of new descriptors to give to HW
928  *
929  *	Ring the doorbel for a Tx queue.
930  */
931 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
932 {
933 	/* Make sure that all writes to the TX Descriptors are committed
934 	 * before we tell the hardware about them.
935 	 */
936 	wmb();
937 
938 	/* If we don't have access to the new User Doorbell (T5+), use the old
939 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
940 	 */
941 	if (unlikely(q->bar2_addr == NULL)) {
942 		u32 val = PIDX_V(n);
943 		unsigned long flags;
944 
945 		/* For T4 we need to participate in the Doorbell Recovery
946 		 * mechanism.
947 		 */
948 		spin_lock_irqsave(&q->db_lock, flags);
949 		if (!q->db_disabled)
950 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
951 				     QID_V(q->cntxt_id) | val);
952 		else
953 			q->db_pidx_inc += n;
954 		q->db_pidx = q->pidx;
955 		spin_unlock_irqrestore(&q->db_lock, flags);
956 	} else {
957 		u32 val = PIDX_T5_V(n);
958 
959 		/* T4 and later chips share the same PIDX field offset within
960 		 * the doorbell, but T5 and later shrank the field in order to
961 		 * gain a bit for Doorbell Priority.  The field was absurdly
962 		 * large in the first place (14 bits) so we just use the T5
963 		 * and later limits and warn if a Queue ID is too large.
964 		 */
965 		WARN_ON(val & DBPRIO_F);
966 
967 		/* If we're only writing a single TX Descriptor and we can use
968 		 * Inferred QID registers, we can use the Write Combining
969 		 * Gather Buffer; otherwise we use the simple doorbell.
970 		 */
971 		if (n == 1 && q->bar2_qid == 0) {
972 			int index = (q->pidx
973 				     ? (q->pidx - 1)
974 				     : (q->size - 1));
975 			u64 *wr = (u64 *)&q->desc[index];
976 
977 			cxgb_pio_copy((u64 __iomem *)
978 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
979 				      wr);
980 		} else {
981 			writel(val | QID_V(q->bar2_qid),
982 			       q->bar2_addr + SGE_UDB_KDOORBELL);
983 		}
984 
985 		/* This Write Memory Barrier will force the write to the User
986 		 * Doorbell area to be flushed.  This is needed to prevent
987 		 * writes on different CPUs for the same queue from hitting
988 		 * the adapter out of order.  This is required when some Work
989 		 * Requests take the Write Combine Gather Buffer path (user
990 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
991 		 * take the traditional path where we simply increment the
992 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
993 		 * hardware DMA read the actual Work Request.
994 		 */
995 		wmb();
996 	}
997 }
998 
999 /**
1000  *	inline_tx_skb - inline a packet's data into Tx descriptors
1001  *	@skb: the packet
1002  *	@q: the Tx queue where the packet will be inlined
1003  *	@pos: starting position in the Tx queue where to inline the packet
1004  *
1005  *	Inline a packet's contents directly into Tx descriptors, starting at
1006  *	the given position within the Tx DMA ring.
1007  *	Most of the complexity of this operation is dealing with wrap arounds
1008  *	in the middle of the packet we want to inline.
1009  */
1010 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
1011 			  void *pos)
1012 {
1013 	u64 *p;
1014 	int left = (void *)q->stat - pos;
1015 
1016 	if (likely(skb->len <= left)) {
1017 		if (likely(!skb->data_len))
1018 			skb_copy_from_linear_data(skb, pos, skb->len);
1019 		else
1020 			skb_copy_bits(skb, 0, pos, skb->len);
1021 		pos += skb->len;
1022 	} else {
1023 		skb_copy_bits(skb, 0, pos, left);
1024 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1025 		pos = (void *)q->desc + (skb->len - left);
1026 	}
1027 
1028 	/* 0-pad to multiple of 16 */
1029 	p = PTR_ALIGN(pos, 8);
1030 	if ((uintptr_t)p & 8)
1031 		*p = 0;
1032 }
1033 
1034 static void *inline_tx_skb_header(const struct sk_buff *skb,
1035 				  const struct sge_txq *q,  void *pos,
1036 				  int length)
1037 {
1038 	u64 *p;
1039 	int left = (void *)q->stat - pos;
1040 
1041 	if (likely(length <= left)) {
1042 		memcpy(pos, skb->data, length);
1043 		pos += length;
1044 	} else {
1045 		memcpy(pos, skb->data, left);
1046 		memcpy(q->desc, skb->data + left, length - left);
1047 		pos = (void *)q->desc + (length - left);
1048 	}
1049 	/* 0-pad to multiple of 16 */
1050 	p = PTR_ALIGN(pos, 8);
1051 	if ((uintptr_t)p & 8) {
1052 		*p = 0;
1053 		return p + 1;
1054 	}
1055 	return p;
1056 }
1057 
1058 /*
1059  * Figure out what HW csum a packet wants and return the appropriate control
1060  * bits.
1061  */
1062 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1063 {
1064 	int csum_type;
1065 	const struct iphdr *iph = ip_hdr(skb);
1066 
1067 	if (iph->version == 4) {
1068 		if (iph->protocol == IPPROTO_TCP)
1069 			csum_type = TX_CSUM_TCPIP;
1070 		else if (iph->protocol == IPPROTO_UDP)
1071 			csum_type = TX_CSUM_UDPIP;
1072 		else {
1073 nocsum:			/*
1074 			 * unknown protocol, disable HW csum
1075 			 * and hope a bad packet is detected
1076 			 */
1077 			return TXPKT_L4CSUM_DIS_F;
1078 		}
1079 	} else {
1080 		/*
1081 		 * this doesn't work with extension headers
1082 		 */
1083 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1084 
1085 		if (ip6h->nexthdr == IPPROTO_TCP)
1086 			csum_type = TX_CSUM_TCPIP6;
1087 		else if (ip6h->nexthdr == IPPROTO_UDP)
1088 			csum_type = TX_CSUM_UDPIP6;
1089 		else
1090 			goto nocsum;
1091 	}
1092 
1093 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1094 		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1095 		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1096 
1097 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1098 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1099 		else
1100 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1101 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1102 	} else {
1103 		int start = skb_transport_offset(skb);
1104 
1105 		return TXPKT_CSUM_TYPE_V(csum_type) |
1106 			TXPKT_CSUM_START_V(start) |
1107 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1108 	}
1109 }
1110 
1111 static void eth_txq_stop(struct sge_eth_txq *q)
1112 {
1113 	netif_tx_stop_queue(q->txq);
1114 	q->q.stops++;
1115 }
1116 
1117 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1118 {
1119 	q->in_use += n;
1120 	q->pidx += n;
1121 	if (q->pidx >= q->size)
1122 		q->pidx -= q->size;
1123 }
1124 
1125 #ifdef CONFIG_CHELSIO_T4_FCOE
1126 static inline int
1127 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1128 		  const struct port_info *pi, u64 *cntrl)
1129 {
1130 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1131 
1132 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1133 		return 0;
1134 
1135 	if (skb->protocol != htons(ETH_P_FCOE))
1136 		return 0;
1137 
1138 	skb_reset_mac_header(skb);
1139 	skb->mac_len = sizeof(struct ethhdr);
1140 
1141 	skb_set_network_header(skb, skb->mac_len);
1142 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1143 
1144 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1145 		return -ENOTSUPP;
1146 
1147 	/* FC CRC offload */
1148 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1149 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1150 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1151 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1152 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1153 	return 0;
1154 }
1155 #endif /* CONFIG_CHELSIO_T4_FCOE */
1156 
1157 /**
1158  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
1159  *	@skb: the packet
1160  *	@dev: the egress net device
1161  *
1162  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1163  */
1164 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1165 {
1166 	u32 wr_mid, ctrl0, op;
1167 	u64 cntrl, *end;
1168 	int qidx, credits;
1169 	unsigned int flits, ndesc;
1170 	struct adapter *adap;
1171 	struct sge_eth_txq *q;
1172 	const struct port_info *pi;
1173 	struct fw_eth_tx_pkt_wr *wr;
1174 	struct cpl_tx_pkt_core *cpl;
1175 	const struct skb_shared_info *ssi;
1176 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1177 	bool immediate = false;
1178 	int len, max_pkt_len;
1179 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1180 #ifdef CONFIG_CHELSIO_T4_FCOE
1181 	int err;
1182 #endif /* CONFIG_CHELSIO_T4_FCOE */
1183 
1184 	/*
1185 	 * The chip min packet length is 10 octets but play safe and reject
1186 	 * anything shorter than an Ethernet header.
1187 	 */
1188 	if (unlikely(skb->len < ETH_HLEN)) {
1189 out_free:	dev_kfree_skb_any(skb);
1190 		return NETDEV_TX_OK;
1191 	}
1192 
1193 	/* Discard the packet if the length is greater than mtu */
1194 	max_pkt_len = ETH_HLEN + dev->mtu;
1195 	if (skb_vlan_tagged(skb))
1196 		max_pkt_len += VLAN_HLEN;
1197 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1198 		goto out_free;
1199 
1200 	pi = netdev_priv(dev);
1201 	adap = pi->adapter;
1202 	qidx = skb_get_queue_mapping(skb);
1203 	if (ptp_enabled) {
1204 		spin_lock(&adap->ptp_lock);
1205 		if (!(adap->ptp_tx_skb)) {
1206 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1207 			adap->ptp_tx_skb = skb_get(skb);
1208 		} else {
1209 			spin_unlock(&adap->ptp_lock);
1210 			goto out_free;
1211 		}
1212 		q = &adap->sge.ptptxq;
1213 	} else {
1214 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1215 	}
1216 	skb_tx_timestamp(skb);
1217 
1218 	reclaim_completed_tx(adap, &q->q, true);
1219 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1220 
1221 #ifdef CONFIG_CHELSIO_T4_FCOE
1222 	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1223 	if (unlikely(err == -ENOTSUPP)) {
1224 		if (ptp_enabled)
1225 			spin_unlock(&adap->ptp_lock);
1226 		goto out_free;
1227 	}
1228 #endif /* CONFIG_CHELSIO_T4_FCOE */
1229 
1230 	flits = calc_tx_flits(skb);
1231 	ndesc = flits_to_desc(flits);
1232 	credits = txq_avail(&q->q) - ndesc;
1233 
1234 	if (unlikely(credits < 0)) {
1235 		eth_txq_stop(q);
1236 		dev_err(adap->pdev_dev,
1237 			"%s: Tx ring %u full while queue awake!\n",
1238 			dev->name, qidx);
1239 		if (ptp_enabled)
1240 			spin_unlock(&adap->ptp_lock);
1241 		return NETDEV_TX_BUSY;
1242 	}
1243 
1244 	if (is_eth_imm(skb))
1245 		immediate = true;
1246 
1247 	if (!immediate &&
1248 	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1249 		q->mapping_err++;
1250 		if (ptp_enabled)
1251 			spin_unlock(&adap->ptp_lock);
1252 		goto out_free;
1253 	}
1254 
1255 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1256 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1257 		eth_txq_stop(q);
1258 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1259 	}
1260 
1261 	wr = (void *)&q->q.desc[q->q.pidx];
1262 	wr->equiq_to_len16 = htonl(wr_mid);
1263 	wr->r3 = cpu_to_be64(0);
1264 	end = (u64 *)wr + flits;
1265 
1266 	len = immediate ? skb->len : 0;
1267 	ssi = skb_shinfo(skb);
1268 	if (ssi->gso_size) {
1269 		struct cpl_tx_pkt_lso *lso = (void *)wr;
1270 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1271 		int l3hdr_len = skb_network_header_len(skb);
1272 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1273 
1274 		len += sizeof(*lso);
1275 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1276 				       FW_WR_IMMDLEN_V(len));
1277 		lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1278 					LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1279 					LSO_IPV6_V(v6) |
1280 					LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1281 					LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1282 					LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1283 		lso->c.ipid_ofst = htons(0);
1284 		lso->c.mss = htons(ssi->gso_size);
1285 		lso->c.seqno_offset = htonl(0);
1286 		if (is_t4(adap->params.chip))
1287 			lso->c.len = htonl(skb->len);
1288 		else
1289 			lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1290 		cpl = (void *)(lso + 1);
1291 
1292 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1293 			cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1294 		else
1295 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1296 
1297 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1298 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1299 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1300 		q->tso++;
1301 		q->tx_cso += ssi->gso_segs;
1302 	} else {
1303 		len += sizeof(*cpl);
1304 		if (ptp_enabled)
1305 			op = FW_PTP_TX_PKT_WR;
1306 		else
1307 			op = FW_ETH_TX_PKT_WR;
1308 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1309 				       FW_WR_IMMDLEN_V(len));
1310 		cpl = (void *)(wr + 1);
1311 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1312 			cntrl = hwcsum(adap->params.chip, skb) |
1313 				TXPKT_IPCSUM_DIS_F;
1314 			q->tx_cso++;
1315 		}
1316 	}
1317 
1318 	if (skb_vlan_tag_present(skb)) {
1319 		q->vlan_ins++;
1320 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1321 #ifdef CONFIG_CHELSIO_T4_FCOE
1322 		if (skb->protocol == htons(ETH_P_FCOE))
1323 			cntrl |= TXPKT_VLAN_V(
1324 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1325 #endif /* CONFIG_CHELSIO_T4_FCOE */
1326 	}
1327 
1328 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1329 		TXPKT_PF_V(adap->pf);
1330 	if (ptp_enabled)
1331 		ctrl0 |= TXPKT_TSTAMP_F;
1332 #ifdef CONFIG_CHELSIO_T4_DCB
1333 	if (is_t4(adap->params.chip))
1334 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1335 	else
1336 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1337 #endif
1338 	cpl->ctrl0 = htonl(ctrl0);
1339 	cpl->pack = htons(0);
1340 	cpl->len = htons(skb->len);
1341 	cpl->ctrl1 = cpu_to_be64(cntrl);
1342 
1343 	if (immediate) {
1344 		inline_tx_skb(skb, &q->q, cpl + 1);
1345 		dev_consume_skb_any(skb);
1346 	} else {
1347 		int last_desc;
1348 
1349 		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1350 			  addr);
1351 		skb_orphan(skb);
1352 
1353 		last_desc = q->q.pidx + ndesc - 1;
1354 		if (last_desc >= q->q.size)
1355 			last_desc -= q->q.size;
1356 		q->q.sdesc[last_desc].skb = skb;
1357 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1358 	}
1359 
1360 	txq_advance(&q->q, ndesc);
1361 
1362 	ring_tx_db(adap, &q->q, ndesc);
1363 	if (ptp_enabled)
1364 		spin_unlock(&adap->ptp_lock);
1365 	return NETDEV_TX_OK;
1366 }
1367 
1368 /**
1369  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1370  *	@q: the SGE control Tx queue
1371  *
1372  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1373  *	that send only immediate data (presently just the control queues) and
1374  *	thus do not have any sk_buffs to release.
1375  */
1376 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1377 {
1378 	int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
1379 	int reclaim = hw_cidx - q->cidx;
1380 
1381 	if (reclaim < 0)
1382 		reclaim += q->size;
1383 
1384 	q->in_use -= reclaim;
1385 	q->cidx = hw_cidx;
1386 }
1387 
1388 /**
1389  *	is_imm - check whether a packet can be sent as immediate data
1390  *	@skb: the packet
1391  *
1392  *	Returns true if a packet can be sent as a WR with immediate data.
1393  */
1394 static inline int is_imm(const struct sk_buff *skb)
1395 {
1396 	return skb->len <= MAX_CTRL_WR_LEN;
1397 }
1398 
1399 /**
1400  *	ctrlq_check_stop - check if a control queue is full and should stop
1401  *	@q: the queue
1402  *	@wr: most recent WR written to the queue
1403  *
1404  *	Check if a control queue has become full and should be stopped.
1405  *	We clean up control queue descriptors very lazily, only when we are out.
1406  *	If the queue is still full after reclaiming any completed descriptors
1407  *	we suspend it and have the last WR wake it up.
1408  */
1409 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1410 {
1411 	reclaim_completed_tx_imm(&q->q);
1412 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1413 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1414 		q->q.stops++;
1415 		q->full = 1;
1416 	}
1417 }
1418 
1419 /**
1420  *	ctrl_xmit - send a packet through an SGE control Tx queue
1421  *	@q: the control queue
1422  *	@skb: the packet
1423  *
1424  *	Send a packet through an SGE control Tx queue.  Packets sent through
1425  *	a control queue must fit entirely as immediate data.
1426  */
1427 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1428 {
1429 	unsigned int ndesc;
1430 	struct fw_wr_hdr *wr;
1431 
1432 	if (unlikely(!is_imm(skb))) {
1433 		WARN_ON(1);
1434 		dev_kfree_skb(skb);
1435 		return NET_XMIT_DROP;
1436 	}
1437 
1438 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1439 	spin_lock(&q->sendq.lock);
1440 
1441 	if (unlikely(q->full)) {
1442 		skb->priority = ndesc;                  /* save for restart */
1443 		__skb_queue_tail(&q->sendq, skb);
1444 		spin_unlock(&q->sendq.lock);
1445 		return NET_XMIT_CN;
1446 	}
1447 
1448 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1449 	inline_tx_skb(skb, &q->q, wr);
1450 
1451 	txq_advance(&q->q, ndesc);
1452 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1453 		ctrlq_check_stop(q, wr);
1454 
1455 	ring_tx_db(q->adap, &q->q, ndesc);
1456 	spin_unlock(&q->sendq.lock);
1457 
1458 	kfree_skb(skb);
1459 	return NET_XMIT_SUCCESS;
1460 }
1461 
1462 /**
1463  *	restart_ctrlq - restart a suspended control queue
1464  *	@data: the control queue to restart
1465  *
1466  *	Resumes transmission on a suspended Tx control queue.
1467  */
1468 static void restart_ctrlq(unsigned long data)
1469 {
1470 	struct sk_buff *skb;
1471 	unsigned int written = 0;
1472 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1473 
1474 	spin_lock(&q->sendq.lock);
1475 	reclaim_completed_tx_imm(&q->q);
1476 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1477 
1478 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1479 		struct fw_wr_hdr *wr;
1480 		unsigned int ndesc = skb->priority;     /* previously saved */
1481 
1482 		written += ndesc;
1483 		/* Write descriptors and free skbs outside the lock to limit
1484 		 * wait times.  q->full is still set so new skbs will be queued.
1485 		 */
1486 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1487 		txq_advance(&q->q, ndesc);
1488 		spin_unlock(&q->sendq.lock);
1489 
1490 		inline_tx_skb(skb, &q->q, wr);
1491 		kfree_skb(skb);
1492 
1493 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1494 			unsigned long old = q->q.stops;
1495 
1496 			ctrlq_check_stop(q, wr);
1497 			if (q->q.stops != old) {          /* suspended anew */
1498 				spin_lock(&q->sendq.lock);
1499 				goto ringdb;
1500 			}
1501 		}
1502 		if (written > 16) {
1503 			ring_tx_db(q->adap, &q->q, written);
1504 			written = 0;
1505 		}
1506 		spin_lock(&q->sendq.lock);
1507 	}
1508 	q->full = 0;
1509 ringdb: if (written)
1510 		ring_tx_db(q->adap, &q->q, written);
1511 	spin_unlock(&q->sendq.lock);
1512 }
1513 
1514 /**
1515  *	t4_mgmt_tx - send a management message
1516  *	@adap: the adapter
1517  *	@skb: the packet containing the management message
1518  *
1519  *	Send a management message through control queue 0.
1520  */
1521 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1522 {
1523 	int ret;
1524 
1525 	local_bh_disable();
1526 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1527 	local_bh_enable();
1528 	return ret;
1529 }
1530 
1531 /**
1532  *	is_ofld_imm - check whether a packet can be sent as immediate data
1533  *	@skb: the packet
1534  *
1535  *	Returns true if a packet can be sent as an offload WR with immediate
1536  *	data.  We currently use the same limit as for Ethernet packets.
1537  */
1538 static inline int is_ofld_imm(const struct sk_buff *skb)
1539 {
1540 	return skb->len <= MAX_IMM_TX_PKT_LEN;
1541 }
1542 
1543 /**
1544  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1545  *	@skb: the packet
1546  *
1547  *	Returns the number of flits needed for the given offload packet.
1548  *	These packets are already fully constructed and no additional headers
1549  *	will be added.
1550  */
1551 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1552 {
1553 	unsigned int flits, cnt;
1554 
1555 	if (is_ofld_imm(skb))
1556 		return DIV_ROUND_UP(skb->len, 8);
1557 
1558 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1559 	cnt = skb_shinfo(skb)->nr_frags;
1560 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1561 		cnt++;
1562 	return flits + sgl_len(cnt);
1563 }
1564 
1565 /**
1566  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1567  *	@adap: the adapter
1568  *	@q: the queue to stop
1569  *
1570  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1571  *	inability to map packets.  A periodic timer attempts to restart
1572  *	queues so marked.
1573  */
1574 static void txq_stop_maperr(struct sge_uld_txq *q)
1575 {
1576 	q->mapping_err++;
1577 	q->q.stops++;
1578 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1579 		q->adap->sge.txq_maperr);
1580 }
1581 
1582 /**
1583  *	ofldtxq_stop - stop an offload Tx queue that has become full
1584  *	@q: the queue to stop
1585  *	@skb: the packet causing the queue to become full
1586  *
1587  *	Stops an offload Tx queue that has become full and modifies the packet
1588  *	being written to request a wakeup.
1589  */
1590 static void ofldtxq_stop(struct sge_uld_txq *q, struct sk_buff *skb)
1591 {
1592 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1593 
1594 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1595 	q->q.stops++;
1596 	q->full = 1;
1597 }
1598 
1599 /**
1600  *	service_ofldq - service/restart a suspended offload queue
1601  *	@q: the offload queue
1602  *
1603  *	Services an offload Tx queue by moving packets from its Pending Send
1604  *	Queue to the Hardware TX ring.  The function starts and ends with the
1605  *	Send Queue locked, but drops the lock while putting the skb at the
1606  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
1607  *	allows more skbs to be added to the Send Queue by other threads.
1608  *	The packet being processed at the head of the Pending Send Queue is
1609  *	left on the queue in case we experience DMA Mapping errors, etc.
1610  *	and need to give up and restart later.
1611  *
1612  *	service_ofldq() can be thought of as a task which opportunistically
1613  *	uses other threads execution contexts.  We use the Offload Queue
1614  *	boolean "service_ofldq_running" to make sure that only one instance
1615  *	is ever running at a time ...
1616  */
1617 static void service_ofldq(struct sge_uld_txq *q)
1618 {
1619 	u64 *pos, *before, *end;
1620 	int credits;
1621 	struct sk_buff *skb;
1622 	struct sge_txq *txq;
1623 	unsigned int left;
1624 	unsigned int written = 0;
1625 	unsigned int flits, ndesc;
1626 
1627 	/* If another thread is currently in service_ofldq() processing the
1628 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
1629 	 * that we're doing the work and continue.  Examining/modifying
1630 	 * the Offload Queue boolean "service_ofldq_running" must be done
1631 	 * while holding the Pending Send Queue Lock.
1632 	 */
1633 	if (q->service_ofldq_running)
1634 		return;
1635 	q->service_ofldq_running = true;
1636 
1637 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1638 		/* We drop the lock while we're working with the skb at the
1639 		 * head of the Pending Send Queue.  This allows more skbs to
1640 		 * be added to the Pending Send Queue while we're working on
1641 		 * this one.  We don't need to lock to guard the TX Ring
1642 		 * updates because only one thread of execution is ever
1643 		 * allowed into service_ofldq() at a time.
1644 		 */
1645 		spin_unlock(&q->sendq.lock);
1646 
1647 		reclaim_completed_tx(q->adap, &q->q, false);
1648 
1649 		flits = skb->priority;                /* previously saved */
1650 		ndesc = flits_to_desc(flits);
1651 		credits = txq_avail(&q->q) - ndesc;
1652 		BUG_ON(credits < 0);
1653 		if (unlikely(credits < TXQ_STOP_THRES))
1654 			ofldtxq_stop(q, skb);
1655 
1656 		pos = (u64 *)&q->q.desc[q->q.pidx];
1657 		if (is_ofld_imm(skb))
1658 			inline_tx_skb(skb, &q->q, pos);
1659 		else if (map_skb(q->adap->pdev_dev, skb,
1660 				 (dma_addr_t *)skb->head)) {
1661 			txq_stop_maperr(q);
1662 			spin_lock(&q->sendq.lock);
1663 			break;
1664 		} else {
1665 			int last_desc, hdr_len = skb_transport_offset(skb);
1666 
1667 			/* The WR headers  may not fit within one descriptor.
1668 			 * So we need to deal with wrap-around here.
1669 			 */
1670 			before = (u64 *)pos;
1671 			end = (u64 *)pos + flits;
1672 			txq = &q->q;
1673 			pos = (void *)inline_tx_skb_header(skb, &q->q,
1674 							   (void *)pos,
1675 							   hdr_len);
1676 			if (before > (u64 *)pos) {
1677 				left = (u8 *)end - (u8 *)txq->stat;
1678 				end = (void *)txq->desc + left;
1679 			}
1680 
1681 			/* If current position is already at the end of the
1682 			 * ofld queue, reset the current to point to
1683 			 * start of the queue and update the end ptr as well.
1684 			 */
1685 			if (pos == (u64 *)txq->stat) {
1686 				left = (u8 *)end - (u8 *)txq->stat;
1687 				end = (void *)txq->desc + left;
1688 				pos = (void *)txq->desc;
1689 			}
1690 
1691 			write_sgl(skb, &q->q, (void *)pos,
1692 				  end, hdr_len,
1693 				  (dma_addr_t *)skb->head);
1694 #ifdef CONFIG_NEED_DMA_MAP_STATE
1695 			skb->dev = q->adap->port[0];
1696 			skb->destructor = deferred_unmap_destructor;
1697 #endif
1698 			last_desc = q->q.pidx + ndesc - 1;
1699 			if (last_desc >= q->q.size)
1700 				last_desc -= q->q.size;
1701 			q->q.sdesc[last_desc].skb = skb;
1702 		}
1703 
1704 		txq_advance(&q->q, ndesc);
1705 		written += ndesc;
1706 		if (unlikely(written > 32)) {
1707 			ring_tx_db(q->adap, &q->q, written);
1708 			written = 0;
1709 		}
1710 
1711 		/* Reacquire the Pending Send Queue Lock so we can unlink the
1712 		 * skb we've just successfully transferred to the TX Ring and
1713 		 * loop for the next skb which may be at the head of the
1714 		 * Pending Send Queue.
1715 		 */
1716 		spin_lock(&q->sendq.lock);
1717 		__skb_unlink(skb, &q->sendq);
1718 		if (is_ofld_imm(skb))
1719 			kfree_skb(skb);
1720 	}
1721 	if (likely(written))
1722 		ring_tx_db(q->adap, &q->q, written);
1723 
1724 	/*Indicate that no thread is processing the Pending Send Queue
1725 	 * currently.
1726 	 */
1727 	q->service_ofldq_running = false;
1728 }
1729 
1730 /**
1731  *	ofld_xmit - send a packet through an offload queue
1732  *	@q: the Tx offload queue
1733  *	@skb: the packet
1734  *
1735  *	Send an offload packet through an SGE offload queue.
1736  */
1737 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
1738 {
1739 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1740 	spin_lock(&q->sendq.lock);
1741 
1742 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
1743 	 * that results in this new skb being the only one on the queue, start
1744 	 * servicing it.  If there are other skbs already on the list, then
1745 	 * either the queue is currently being processed or it's been stopped
1746 	 * for some reason and it'll be restarted at a later time.  Restart
1747 	 * paths are triggered by events like experiencing a DMA Mapping Error
1748 	 * or filling the Hardware TX Ring.
1749 	 */
1750 	__skb_queue_tail(&q->sendq, skb);
1751 	if (q->sendq.qlen == 1)
1752 		service_ofldq(q);
1753 
1754 	spin_unlock(&q->sendq.lock);
1755 	return NET_XMIT_SUCCESS;
1756 }
1757 
1758 /**
1759  *	restart_ofldq - restart a suspended offload queue
1760  *	@data: the offload queue to restart
1761  *
1762  *	Resumes transmission on a suspended Tx offload queue.
1763  */
1764 static void restart_ofldq(unsigned long data)
1765 {
1766 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
1767 
1768 	spin_lock(&q->sendq.lock);
1769 	q->full = 0;            /* the queue actually is completely empty now */
1770 	service_ofldq(q);
1771 	spin_unlock(&q->sendq.lock);
1772 }
1773 
1774 /**
1775  *	skb_txq - return the Tx queue an offload packet should use
1776  *	@skb: the packet
1777  *
1778  *	Returns the Tx queue an offload packet should use as indicated by bits
1779  *	1-15 in the packet's queue_mapping.
1780  */
1781 static inline unsigned int skb_txq(const struct sk_buff *skb)
1782 {
1783 	return skb->queue_mapping >> 1;
1784 }
1785 
1786 /**
1787  *	is_ctrl_pkt - return whether an offload packet is a control packet
1788  *	@skb: the packet
1789  *
1790  *	Returns whether an offload packet should use an OFLD or a CTRL
1791  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1792  */
1793 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1794 {
1795 	return skb->queue_mapping & 1;
1796 }
1797 
1798 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
1799 			   unsigned int tx_uld_type)
1800 {
1801 	struct sge_uld_txq_info *txq_info;
1802 	struct sge_uld_txq *txq;
1803 	unsigned int idx = skb_txq(skb);
1804 
1805 	if (unlikely(is_ctrl_pkt(skb))) {
1806 		/* Single ctrl queue is a requirement for LE workaround path */
1807 		if (adap->tids.nsftids)
1808 			idx = 0;
1809 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1810 	}
1811 
1812 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
1813 	if (unlikely(!txq_info)) {
1814 		WARN_ON(true);
1815 		return NET_XMIT_DROP;
1816 	}
1817 
1818 	txq = &txq_info->uldtxq[idx];
1819 	return ofld_xmit(txq, skb);
1820 }
1821 
1822 /**
1823  *	t4_ofld_send - send an offload packet
1824  *	@adap: the adapter
1825  *	@skb: the packet
1826  *
1827  *	Sends an offload packet.  We use the packet queue_mapping to select the
1828  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1829  *	should be sent as regular or control, bits 1-15 select the queue.
1830  */
1831 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1832 {
1833 	int ret;
1834 
1835 	local_bh_disable();
1836 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
1837 	local_bh_enable();
1838 	return ret;
1839 }
1840 
1841 /**
1842  *	cxgb4_ofld_send - send an offload packet
1843  *	@dev: the net device
1844  *	@skb: the packet
1845  *
1846  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
1847  *	intended for ULDs.
1848  */
1849 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1850 {
1851 	return t4_ofld_send(netdev2adap(dev), skb);
1852 }
1853 EXPORT_SYMBOL(cxgb4_ofld_send);
1854 
1855 /**
1856  *	t4_crypto_send - send crypto packet
1857  *	@adap: the adapter
1858  *	@skb: the packet
1859  *
1860  *	Sends crypto packet.  We use the packet queue_mapping to select the
1861  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1862  *	should be sent as regular or control, bits 1-15 select the queue.
1863  */
1864 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
1865 {
1866 	int ret;
1867 
1868 	local_bh_disable();
1869 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
1870 	local_bh_enable();
1871 	return ret;
1872 }
1873 
1874 /**
1875  *	cxgb4_crypto_send - send crypto packet
1876  *	@dev: the net device
1877  *	@skb: the packet
1878  *
1879  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
1880  *	intended for ULDs.
1881  */
1882 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
1883 {
1884 	return t4_crypto_send(netdev2adap(dev), skb);
1885 }
1886 EXPORT_SYMBOL(cxgb4_crypto_send);
1887 
1888 static inline void copy_frags(struct sk_buff *skb,
1889 			      const struct pkt_gl *gl, unsigned int offset)
1890 {
1891 	int i;
1892 
1893 	/* usually there's just one frag */
1894 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1895 			     gl->frags[0].offset + offset,
1896 			     gl->frags[0].size - offset);
1897 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1898 	for (i = 1; i < gl->nfrags; i++)
1899 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1900 				     gl->frags[i].offset,
1901 				     gl->frags[i].size);
1902 
1903 	/* get a reference to the last page, we don't own it */
1904 	get_page(gl->frags[gl->nfrags - 1].page);
1905 }
1906 
1907 /**
1908  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1909  *	@gl: the gather list
1910  *	@skb_len: size of sk_buff main body if it carries fragments
1911  *	@pull_len: amount of data to move to the sk_buff's main body
1912  *
1913  *	Builds an sk_buff from the given packet gather list.  Returns the
1914  *	sk_buff or %NULL if sk_buff allocation failed.
1915  */
1916 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1917 				   unsigned int skb_len, unsigned int pull_len)
1918 {
1919 	struct sk_buff *skb;
1920 
1921 	/*
1922 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1923 	 * size, which is expected since buffers are at least PAGE_SIZEd.
1924 	 * In this case packets up to RX_COPY_THRES have only one fragment.
1925 	 */
1926 	if (gl->tot_len <= RX_COPY_THRES) {
1927 		skb = dev_alloc_skb(gl->tot_len);
1928 		if (unlikely(!skb))
1929 			goto out;
1930 		__skb_put(skb, gl->tot_len);
1931 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1932 	} else {
1933 		skb = dev_alloc_skb(skb_len);
1934 		if (unlikely(!skb))
1935 			goto out;
1936 		__skb_put(skb, pull_len);
1937 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1938 
1939 		copy_frags(skb, gl, pull_len);
1940 		skb->len = gl->tot_len;
1941 		skb->data_len = skb->len - pull_len;
1942 		skb->truesize += skb->data_len;
1943 	}
1944 out:	return skb;
1945 }
1946 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1947 
1948 /**
1949  *	t4_pktgl_free - free a packet gather list
1950  *	@gl: the gather list
1951  *
1952  *	Releases the pages of a packet gather list.  We do not own the last
1953  *	page on the list and do not free it.
1954  */
1955 static void t4_pktgl_free(const struct pkt_gl *gl)
1956 {
1957 	int n;
1958 	const struct page_frag *p;
1959 
1960 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1961 		put_page(p->page);
1962 }
1963 
1964 /*
1965  * Process an MPS trace packet.  Give it an unused protocol number so it won't
1966  * be delivered to anyone and send it to the stack for capture.
1967  */
1968 static noinline int handle_trace_pkt(struct adapter *adap,
1969 				     const struct pkt_gl *gl)
1970 {
1971 	struct sk_buff *skb;
1972 
1973 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1974 	if (unlikely(!skb)) {
1975 		t4_pktgl_free(gl);
1976 		return 0;
1977 	}
1978 
1979 	if (is_t4(adap->params.chip))
1980 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
1981 	else
1982 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1983 
1984 	skb_reset_mac_header(skb);
1985 	skb->protocol = htons(0xffff);
1986 	skb->dev = adap->port[0];
1987 	netif_receive_skb(skb);
1988 	return 0;
1989 }
1990 
1991 /**
1992  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
1993  * @adap: the adapter
1994  * @hwtstamps: time stamp structure to update
1995  * @sgetstamp: 60bit iqe timestamp
1996  *
1997  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
1998  * which is in Core Clock ticks into ktime_t and assign it
1999  **/
2000 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
2001 				     struct skb_shared_hwtstamps *hwtstamps,
2002 				     u64 sgetstamp)
2003 {
2004 	u64 ns;
2005 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
2006 
2007 	ns = div_u64(tmp, adap->params.vpd.cclk);
2008 
2009 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2010 	hwtstamps->hwtstamp = ns_to_ktime(ns);
2011 }
2012 
2013 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
2014 		   const struct cpl_rx_pkt *pkt)
2015 {
2016 	struct adapter *adapter = rxq->rspq.adap;
2017 	struct sge *s = &adapter->sge;
2018 	struct port_info *pi;
2019 	int ret;
2020 	struct sk_buff *skb;
2021 
2022 	skb = napi_get_frags(&rxq->rspq.napi);
2023 	if (unlikely(!skb)) {
2024 		t4_pktgl_free(gl);
2025 		rxq->stats.rx_drops++;
2026 		return;
2027 	}
2028 
2029 	copy_frags(skb, gl, s->pktshift);
2030 	skb->len = gl->tot_len - s->pktshift;
2031 	skb->data_len = skb->len;
2032 	skb->truesize += skb->data_len;
2033 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2034 	skb_record_rx_queue(skb, rxq->rspq.idx);
2035 	pi = netdev_priv(skb->dev);
2036 	if (pi->rxtstamp)
2037 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
2038 					 gl->sgetstamp);
2039 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
2040 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2041 			     PKT_HASH_TYPE_L3);
2042 
2043 	if (unlikely(pkt->vlan_ex)) {
2044 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2045 		rxq->stats.vlan_ex++;
2046 	}
2047 	ret = napi_gro_frags(&rxq->rspq.napi);
2048 	if (ret == GRO_HELD)
2049 		rxq->stats.lro_pkts++;
2050 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
2051 		rxq->stats.lro_merged++;
2052 	rxq->stats.pkts++;
2053 	rxq->stats.rx_cso++;
2054 }
2055 
2056 enum {
2057 	RX_NON_PTP_PKT = 0,
2058 	RX_PTP_PKT_SUC = 1,
2059 	RX_PTP_PKT_ERR = 2
2060 };
2061 
2062 /**
2063  *     t4_systim_to_hwstamp - read hardware time stamp
2064  *     @adap: the adapter
2065  *     @skb: the packet
2066  *
2067  *     Read Time Stamp from MPS packet and insert in skb which
2068  *     is forwarded to PTP application
2069  */
2070 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
2071 					 struct sk_buff *skb)
2072 {
2073 	struct skb_shared_hwtstamps *hwtstamps;
2074 	struct cpl_rx_mps_pkt *cpl = NULL;
2075 	unsigned char *data;
2076 	int offset;
2077 
2078 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
2079 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
2080 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
2081 		return RX_PTP_PKT_ERR;
2082 
2083 	data = skb->data + sizeof(*cpl);
2084 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
2085 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
2086 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
2087 		return RX_PTP_PKT_ERR;
2088 
2089 	hwtstamps = skb_hwtstamps(skb);
2090 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2091 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
2092 
2093 	return RX_PTP_PKT_SUC;
2094 }
2095 
2096 /**
2097  *     t4_rx_hststamp - Recv PTP Event Message
2098  *     @adap: the adapter
2099  *     @rsp: the response queue descriptor holding the RX_PKT message
2100  *     @skb: the packet
2101  *
2102  *     PTP enabled and MPS packet, read HW timestamp
2103  */
2104 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
2105 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
2106 {
2107 	int ret;
2108 
2109 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
2110 		     !is_t4(adapter->params.chip))) {
2111 		ret = t4_systim_to_hwstamp(adapter, skb);
2112 		if (ret == RX_PTP_PKT_ERR) {
2113 			kfree_skb(skb);
2114 			rxq->stats.rx_drops++;
2115 		}
2116 		return ret;
2117 	}
2118 	return RX_NON_PTP_PKT;
2119 }
2120 
2121 /**
2122  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
2123  *      @adap: the adapter
2124  *      @skb: the packet
2125  *      @dev: the ingress net device
2126  *
2127  *      Read hardware timestamp for the loopback PTP Tx event message
2128  */
2129 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
2130 			  struct net_device *dev)
2131 {
2132 	struct port_info *pi = netdev_priv(dev);
2133 
2134 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
2135 		cxgb4_ptp_read_hwstamp(adapter, pi);
2136 		kfree_skb(skb);
2137 		return 0;
2138 	}
2139 	return 1;
2140 }
2141 
2142 /**
2143  *	t4_ethrx_handler - process an ingress ethernet packet
2144  *	@q: the response queue that received the packet
2145  *	@rsp: the response queue descriptor holding the RX_PKT message
2146  *	@si: the gather list of packet fragments
2147  *
2148  *	Process an ingress ethernet packet and deliver it to the stack.
2149  */
2150 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
2151 		     const struct pkt_gl *si)
2152 {
2153 	bool csum_ok;
2154 	struct sk_buff *skb;
2155 	const struct cpl_rx_pkt *pkt;
2156 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2157 	struct adapter *adapter = q->adap;
2158 	struct sge *s = &q->adap->sge;
2159 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2160 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2161 	u16 err_vec;
2162 	struct port_info *pi;
2163 	int ret = 0;
2164 
2165 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2166 		return handle_trace_pkt(q->adap, si);
2167 
2168 	pkt = (const struct cpl_rx_pkt *)rsp;
2169 	/* Compressed error vector is enabled for T6 only */
2170 	if (q->adap->params.tp.rx_pkt_encap)
2171 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
2172 	else
2173 		err_vec = be16_to_cpu(pkt->err_vec);
2174 
2175 	csum_ok = pkt->csum_calc && !err_vec &&
2176 		  (q->netdev->features & NETIF_F_RXCSUM);
2177 	if ((pkt->l2info & htonl(RXF_TCP_F)) &&
2178 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
2179 		do_gro(rxq, si, pkt);
2180 		return 0;
2181 	}
2182 
2183 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
2184 	if (unlikely(!skb)) {
2185 		t4_pktgl_free(si);
2186 		rxq->stats.rx_drops++;
2187 		return 0;
2188 	}
2189 	pi = netdev_priv(q->netdev);
2190 
2191 	/* Handle PTP Event Rx packet */
2192 	if (unlikely(pi->ptp_enable)) {
2193 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
2194 		if (ret == RX_PTP_PKT_ERR)
2195 			return 0;
2196 	}
2197 	if (likely(!ret))
2198 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
2199 
2200 	/* Handle the PTP Event Tx Loopback packet */
2201 	if (unlikely(pi->ptp_enable && !ret &&
2202 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
2203 		     cxgb4_ptp_is_ptp_rx(skb))) {
2204 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
2205 			return 0;
2206 	}
2207 
2208 	skb->protocol = eth_type_trans(skb, q->netdev);
2209 	skb_record_rx_queue(skb, q->idx);
2210 	if (skb->dev->features & NETIF_F_RXHASH)
2211 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2212 			     PKT_HASH_TYPE_L3);
2213 
2214 	rxq->stats.pkts++;
2215 
2216 	if (pi->rxtstamp)
2217 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
2218 					 si->sgetstamp);
2219 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
2220 		if (!pkt->ip_frag) {
2221 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2222 			rxq->stats.rx_cso++;
2223 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
2224 			__sum16 c = (__force __sum16)pkt->csum;
2225 			skb->csum = csum_unfold(c);
2226 			skb->ip_summed = CHECKSUM_COMPLETE;
2227 			rxq->stats.rx_cso++;
2228 		}
2229 	} else {
2230 		skb_checksum_none_assert(skb);
2231 #ifdef CONFIG_CHELSIO_T4_FCOE
2232 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
2233 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
2234 
2235 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
2236 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
2237 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
2238 				if (q->adap->params.tp.rx_pkt_encap)
2239 					csum_ok = err_vec &
2240 						  T6_COMPR_RXERR_SUM_F;
2241 				else
2242 					csum_ok = err_vec & RXERR_CSUM_F;
2243 				if (!csum_ok)
2244 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2245 			}
2246 		}
2247 
2248 #undef CPL_RX_PKT_FLAGS
2249 #endif /* CONFIG_CHELSIO_T4_FCOE */
2250 	}
2251 
2252 	if (unlikely(pkt->vlan_ex)) {
2253 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2254 		rxq->stats.vlan_ex++;
2255 	}
2256 	skb_mark_napi_id(skb, &q->napi);
2257 	netif_receive_skb(skb);
2258 	return 0;
2259 }
2260 
2261 /**
2262  *	restore_rx_bufs - put back a packet's Rx buffers
2263  *	@si: the packet gather list
2264  *	@q: the SGE free list
2265  *	@frags: number of FL buffers to restore
2266  *
2267  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
2268  *	have already been unmapped and are left unmapped, we mark them so to
2269  *	prevent further unmapping attempts.
2270  *
2271  *	This function undoes a series of @unmap_rx_buf calls when we find out
2272  *	that the current packet can't be processed right away afterall and we
2273  *	need to come back to it later.  This is a very rare event and there's
2274  *	no effort to make this particularly efficient.
2275  */
2276 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
2277 			    int frags)
2278 {
2279 	struct rx_sw_desc *d;
2280 
2281 	while (frags--) {
2282 		if (q->cidx == 0)
2283 			q->cidx = q->size - 1;
2284 		else
2285 			q->cidx--;
2286 		d = &q->sdesc[q->cidx];
2287 		d->page = si->frags[frags].page;
2288 		d->dma_addr |= RX_UNMAPPED_BUF;
2289 		q->avail++;
2290 	}
2291 }
2292 
2293 /**
2294  *	is_new_response - check if a response is newly written
2295  *	@r: the response descriptor
2296  *	@q: the response queue
2297  *
2298  *	Returns true if a response descriptor contains a yet unprocessed
2299  *	response.
2300  */
2301 static inline bool is_new_response(const struct rsp_ctrl *r,
2302 				   const struct sge_rspq *q)
2303 {
2304 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
2305 }
2306 
2307 /**
2308  *	rspq_next - advance to the next entry in a response queue
2309  *	@q: the queue
2310  *
2311  *	Updates the state of a response queue to advance it to the next entry.
2312  */
2313 static inline void rspq_next(struct sge_rspq *q)
2314 {
2315 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2316 	if (unlikely(++q->cidx == q->size)) {
2317 		q->cidx = 0;
2318 		q->gen ^= 1;
2319 		q->cur_desc = q->desc;
2320 	}
2321 }
2322 
2323 /**
2324  *	process_responses - process responses from an SGE response queue
2325  *	@q: the ingress queue to process
2326  *	@budget: how many responses can be processed in this round
2327  *
2328  *	Process responses from an SGE response queue up to the supplied budget.
2329  *	Responses include received packets as well as control messages from FW
2330  *	or HW.
2331  *
2332  *	Additionally choose the interrupt holdoff time for the next interrupt
2333  *	on this queue.  If the system is under memory shortage use a fairly
2334  *	long delay to help recovery.
2335  */
2336 static int process_responses(struct sge_rspq *q, int budget)
2337 {
2338 	int ret, rsp_type;
2339 	int budget_left = budget;
2340 	const struct rsp_ctrl *rc;
2341 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2342 	struct adapter *adapter = q->adap;
2343 	struct sge *s = &adapter->sge;
2344 
2345 	while (likely(budget_left)) {
2346 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2347 		if (!is_new_response(rc, q)) {
2348 			if (q->flush_handler)
2349 				q->flush_handler(q);
2350 			break;
2351 		}
2352 
2353 		dma_rmb();
2354 		rsp_type = RSPD_TYPE_G(rc->type_gen);
2355 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2356 			struct page_frag *fp;
2357 			struct pkt_gl si;
2358 			const struct rx_sw_desc *rsd;
2359 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2360 
2361 			if (len & RSPD_NEWBUF_F) {
2362 				if (likely(q->offset > 0)) {
2363 					free_rx_bufs(q->adap, &rxq->fl, 1);
2364 					q->offset = 0;
2365 				}
2366 				len = RSPD_LEN_G(len);
2367 			}
2368 			si.tot_len = len;
2369 
2370 			/* gather packet fragments */
2371 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
2372 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2373 				bufsz = get_buf_size(adapter, rsd);
2374 				fp->page = rsd->page;
2375 				fp->offset = q->offset;
2376 				fp->size = min(bufsz, len);
2377 				len -= fp->size;
2378 				if (!len)
2379 					break;
2380 				unmap_rx_buf(q->adap, &rxq->fl);
2381 			}
2382 
2383 			si.sgetstamp = SGE_TIMESTAMP_G(
2384 					be64_to_cpu(rc->last_flit));
2385 			/*
2386 			 * Last buffer remains mapped so explicitly make it
2387 			 * coherent for CPU access.
2388 			 */
2389 			dma_sync_single_for_cpu(q->adap->pdev_dev,
2390 						get_buf_addr(rsd),
2391 						fp->size, DMA_FROM_DEVICE);
2392 
2393 			si.va = page_address(si.frags[0].page) +
2394 				si.frags[0].offset;
2395 			prefetch(si.va);
2396 
2397 			si.nfrags = frags + 1;
2398 			ret = q->handler(q, q->cur_desc, &si);
2399 			if (likely(ret == 0))
2400 				q->offset += ALIGN(fp->size, s->fl_align);
2401 			else
2402 				restore_rx_bufs(&si, &rxq->fl, frags);
2403 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2404 			ret = q->handler(q, q->cur_desc, NULL);
2405 		} else {
2406 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2407 		}
2408 
2409 		if (unlikely(ret)) {
2410 			/* couldn't process descriptor, back off for recovery */
2411 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2412 			break;
2413 		}
2414 
2415 		rspq_next(q);
2416 		budget_left--;
2417 	}
2418 
2419 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
2420 		__refill_fl(q->adap, &rxq->fl);
2421 	return budget - budget_left;
2422 }
2423 
2424 /**
2425  *	napi_rx_handler - the NAPI handler for Rx processing
2426  *	@napi: the napi instance
2427  *	@budget: how many packets we can process in this round
2428  *
2429  *	Handler for new data events when using NAPI.  This does not need any
2430  *	locking or protection from interrupts as data interrupts are off at
2431  *	this point and other adapter interrupts do not interfere (the latter
2432  *	in not a concern at all with MSI-X as non-data interrupts then have
2433  *	a separate handler).
2434  */
2435 static int napi_rx_handler(struct napi_struct *napi, int budget)
2436 {
2437 	unsigned int params;
2438 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2439 	int work_done;
2440 	u32 val;
2441 
2442 	work_done = process_responses(q, budget);
2443 	if (likely(work_done < budget)) {
2444 		int timer_index;
2445 
2446 		napi_complete_done(napi, work_done);
2447 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2448 
2449 		if (q->adaptive_rx) {
2450 			if (work_done > max(timer_pkt_quota[timer_index],
2451 					    MIN_NAPI_WORK))
2452 				timer_index = (timer_index + 1);
2453 			else
2454 				timer_index = timer_index - 1;
2455 
2456 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2457 			q->next_intr_params =
2458 					QINTR_TIMER_IDX_V(timer_index) |
2459 					QINTR_CNT_EN_V(0);
2460 			params = q->next_intr_params;
2461 		} else {
2462 			params = q->next_intr_params;
2463 			q->next_intr_params = q->intr_params;
2464 		}
2465 	} else
2466 		params = QINTR_TIMER_IDX_V(7);
2467 
2468 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2469 
2470 	/* If we don't have access to the new User GTS (T5+), use the old
2471 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2472 	 */
2473 	if (unlikely(q->bar2_addr == NULL)) {
2474 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2475 			     val | INGRESSQID_V((u32)q->cntxt_id));
2476 	} else {
2477 		writel(val | INGRESSQID_V(q->bar2_qid),
2478 		       q->bar2_addr + SGE_UDB_GTS);
2479 		wmb();
2480 	}
2481 	return work_done;
2482 }
2483 
2484 /*
2485  * The MSI-X interrupt handler for an SGE response queue.
2486  */
2487 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2488 {
2489 	struct sge_rspq *q = cookie;
2490 
2491 	napi_schedule(&q->napi);
2492 	return IRQ_HANDLED;
2493 }
2494 
2495 /*
2496  * Process the indirect interrupt entries in the interrupt queue and kick off
2497  * NAPI for each queue that has generated an entry.
2498  */
2499 static unsigned int process_intrq(struct adapter *adap)
2500 {
2501 	unsigned int credits;
2502 	const struct rsp_ctrl *rc;
2503 	struct sge_rspq *q = &adap->sge.intrq;
2504 	u32 val;
2505 
2506 	spin_lock(&adap->sge.intrq_lock);
2507 	for (credits = 0; ; credits++) {
2508 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2509 		if (!is_new_response(rc, q))
2510 			break;
2511 
2512 		dma_rmb();
2513 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2514 			unsigned int qid = ntohl(rc->pldbuflen_qid);
2515 
2516 			qid -= adap->sge.ingr_start;
2517 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
2518 		}
2519 
2520 		rspq_next(q);
2521 	}
2522 
2523 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2524 
2525 	/* If we don't have access to the new User GTS (T5+), use the old
2526 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2527 	 */
2528 	if (unlikely(q->bar2_addr == NULL)) {
2529 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2530 			     val | INGRESSQID_V(q->cntxt_id));
2531 	} else {
2532 		writel(val | INGRESSQID_V(q->bar2_qid),
2533 		       q->bar2_addr + SGE_UDB_GTS);
2534 		wmb();
2535 	}
2536 	spin_unlock(&adap->sge.intrq_lock);
2537 	return credits;
2538 }
2539 
2540 /*
2541  * The MSI interrupt handler, which handles data events from SGE response queues
2542  * as well as error and other async events as they all use the same MSI vector.
2543  */
2544 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2545 {
2546 	struct adapter *adap = cookie;
2547 
2548 	if (adap->flags & MASTER_PF)
2549 		t4_slow_intr_handler(adap);
2550 	process_intrq(adap);
2551 	return IRQ_HANDLED;
2552 }
2553 
2554 /*
2555  * Interrupt handler for legacy INTx interrupts.
2556  * Handles data events from SGE response queues as well as error and other
2557  * async events as they all use the same interrupt line.
2558  */
2559 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2560 {
2561 	struct adapter *adap = cookie;
2562 
2563 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2564 	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2565 	    process_intrq(adap))
2566 		return IRQ_HANDLED;
2567 	return IRQ_NONE;             /* probably shared interrupt */
2568 }
2569 
2570 /**
2571  *	t4_intr_handler - select the top-level interrupt handler
2572  *	@adap: the adapter
2573  *
2574  *	Selects the top-level interrupt handler based on the type of interrupts
2575  *	(MSI-X, MSI, or INTx).
2576  */
2577 irq_handler_t t4_intr_handler(struct adapter *adap)
2578 {
2579 	if (adap->flags & USING_MSIX)
2580 		return t4_sge_intr_msix;
2581 	if (adap->flags & USING_MSI)
2582 		return t4_intr_msi;
2583 	return t4_intr_intx;
2584 }
2585 
2586 static void sge_rx_timer_cb(unsigned long data)
2587 {
2588 	unsigned long m;
2589 	unsigned int i;
2590 	struct adapter *adap = (struct adapter *)data;
2591 	struct sge *s = &adap->sge;
2592 
2593 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2594 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2595 			struct sge_eth_rxq *rxq;
2596 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2597 			struct sge_fl *fl = s->egr_map[id];
2598 
2599 			clear_bit(id, s->starving_fl);
2600 			smp_mb__after_atomic();
2601 
2602 			if (fl_starving(adap, fl)) {
2603 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2604 				if (napi_reschedule(&rxq->rspq.napi))
2605 					fl->starving++;
2606 				else
2607 					set_bit(id, s->starving_fl);
2608 			}
2609 		}
2610 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
2611 	 * global Master PF activities like checking for chip ingress stalls,
2612 	 * etc.
2613 	 */
2614 	if (!(adap->flags & MASTER_PF))
2615 		goto done;
2616 
2617 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2618 
2619 done:
2620 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2621 }
2622 
2623 static void sge_tx_timer_cb(unsigned long data)
2624 {
2625 	unsigned long m;
2626 	unsigned int i, budget;
2627 	struct adapter *adap = (struct adapter *)data;
2628 	struct sge *s = &adap->sge;
2629 
2630 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2631 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2632 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2633 			struct sge_uld_txq *txq = s->egr_map[id];
2634 
2635 			clear_bit(id, s->txq_maperr);
2636 			tasklet_schedule(&txq->qresume_tsk);
2637 		}
2638 
2639 	if (!is_t4(adap->params.chip)) {
2640 		struct sge_eth_txq *q = &s->ptptxq;
2641 		int avail;
2642 
2643 		spin_lock(&adap->ptp_lock);
2644 		avail = reclaimable(&q->q);
2645 
2646 		if (avail) {
2647 			free_tx_desc(adap, &q->q, avail, false);
2648 			q->q.in_use -= avail;
2649 		}
2650 		spin_unlock(&adap->ptp_lock);
2651 	}
2652 
2653 	budget = MAX_TIMER_TX_RECLAIM;
2654 	i = s->ethtxq_rover;
2655 	do {
2656 		struct sge_eth_txq *q = &s->ethtxq[i];
2657 
2658 		if (q->q.in_use &&
2659 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2660 		    __netif_tx_trylock(q->txq)) {
2661 			int avail = reclaimable(&q->q);
2662 
2663 			if (avail) {
2664 				if (avail > budget)
2665 					avail = budget;
2666 
2667 				free_tx_desc(adap, &q->q, avail, true);
2668 				q->q.in_use -= avail;
2669 				budget -= avail;
2670 			}
2671 			__netif_tx_unlock(q->txq);
2672 		}
2673 
2674 		if (++i >= s->ethqsets)
2675 			i = 0;
2676 	} while (budget && i != s->ethtxq_rover);
2677 	s->ethtxq_rover = i;
2678 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2679 }
2680 
2681 /**
2682  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2683  *	@adapter: the adapter
2684  *	@qid: the SGE Queue ID
2685  *	@qtype: the SGE Queue Type (Egress or Ingress)
2686  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2687  *
2688  *	Returns the BAR2 address for the SGE Queue Registers associated with
2689  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2690  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2691  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2692  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2693  */
2694 static void __iomem *bar2_address(struct adapter *adapter,
2695 				  unsigned int qid,
2696 				  enum t4_bar2_qtype qtype,
2697 				  unsigned int *pbar2_qid)
2698 {
2699 	u64 bar2_qoffset;
2700 	int ret;
2701 
2702 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2703 				&bar2_qoffset, pbar2_qid);
2704 	if (ret)
2705 		return NULL;
2706 
2707 	return adapter->bar2 + bar2_qoffset;
2708 }
2709 
2710 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
2711  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
2712  */
2713 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2714 		     struct net_device *dev, int intr_idx,
2715 		     struct sge_fl *fl, rspq_handler_t hnd,
2716 		     rspq_flush_handler_t flush_hnd, int cong)
2717 {
2718 	int ret, flsz = 0;
2719 	struct fw_iq_cmd c;
2720 	struct sge *s = &adap->sge;
2721 	struct port_info *pi = netdev_priv(dev);
2722 
2723 	/* Size needs to be multiple of 16, including status entry. */
2724 	iq->size = roundup(iq->size, 16);
2725 
2726 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2727 			      &iq->phys_addr, NULL, 0,
2728 			      dev_to_node(adap->pdev_dev));
2729 	if (!iq->desc)
2730 		return -ENOMEM;
2731 
2732 	memset(&c, 0, sizeof(c));
2733 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2734 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2735 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2736 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2737 				 FW_LEN16(c));
2738 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2739 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2740 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
2741 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2742 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2743 							-intr_idx - 1));
2744 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2745 		FW_IQ_CMD_IQGTSMODE_F |
2746 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2747 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2748 	c.iqsize = htons(iq->size);
2749 	c.iqaddr = cpu_to_be64(iq->phys_addr);
2750 	if (cong >= 0)
2751 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
2752 
2753 	if (fl) {
2754 		enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2755 
2756 		/* Allocate the ring for the hardware free list (with space
2757 		 * for its status page) along with the associated software
2758 		 * descriptor ring.  The free list size needs to be a multiple
2759 		 * of the Egress Queue Unit and at least 2 Egress Units larger
2760 		 * than the SGE's Egress Congrestion Threshold
2761 		 * (fl_starve_thres - 1).
2762 		 */
2763 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
2764 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
2765 		fl->size = roundup(fl->size, 8);
2766 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2767 				      sizeof(struct rx_sw_desc), &fl->addr,
2768 				      &fl->sdesc, s->stat_len,
2769 				      dev_to_node(adap->pdev_dev));
2770 		if (!fl->desc)
2771 			goto fl_nomem;
2772 
2773 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2774 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
2775 					     FW_IQ_CMD_FL0FETCHRO_F |
2776 					     FW_IQ_CMD_FL0DATARO_F |
2777 					     FW_IQ_CMD_FL0PADEN_F);
2778 		if (cong >= 0)
2779 			c.iqns_to_fl0congen |=
2780 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
2781 				      FW_IQ_CMD_FL0CONGCIF_F |
2782 				      FW_IQ_CMD_FL0CONGEN_F);
2783 		/* In T6, for egress queue type FL there is internal overhead
2784 		 * of 16B for header going into FLM module.  Hence the maximum
2785 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2786 		 * doesn't coalesce fetch requests if more than 64 bytes of
2787 		 * Free List pointers are provided, so we use a 128-byte Fetch
2788 		 * Burst Minimum there (T6 implements coalescing so we can use
2789 		 * the smaller 64-byte value there).
2790 		 */
2791 		c.fl0dcaen_to_fl0cidxfthresh =
2792 			htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
2793 						   FETCHBURSTMIN_128B_X :
2794 						   FETCHBURSTMIN_64B_X) |
2795 			      FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2796 						   FETCHBURSTMAX_512B_X :
2797 						   FETCHBURSTMAX_256B_X));
2798 		c.fl0size = htons(flsz);
2799 		c.fl0addr = cpu_to_be64(fl->addr);
2800 	}
2801 
2802 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2803 	if (ret)
2804 		goto err;
2805 
2806 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2807 	iq->cur_desc = iq->desc;
2808 	iq->cidx = 0;
2809 	iq->gen = 1;
2810 	iq->next_intr_params = iq->intr_params;
2811 	iq->cntxt_id = ntohs(c.iqid);
2812 	iq->abs_id = ntohs(c.physiqid);
2813 	iq->bar2_addr = bar2_address(adap,
2814 				     iq->cntxt_id,
2815 				     T4_BAR2_QTYPE_INGRESS,
2816 				     &iq->bar2_qid);
2817 	iq->size--;                           /* subtract status entry */
2818 	iq->netdev = dev;
2819 	iq->handler = hnd;
2820 	iq->flush_handler = flush_hnd;
2821 
2822 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
2823 	skb_queue_head_init(&iq->lro_mgr.lroq);
2824 
2825 	/* set offset to -1 to distinguish ingress queues without FL */
2826 	iq->offset = fl ? 0 : -1;
2827 
2828 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2829 
2830 	if (fl) {
2831 		fl->cntxt_id = ntohs(c.fl0id);
2832 		fl->avail = fl->pend_cred = 0;
2833 		fl->pidx = fl->cidx = 0;
2834 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2835 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2836 
2837 		/* Note, we must initialize the BAR2 Free List User Doorbell
2838 		 * information before refilling the Free List!
2839 		 */
2840 		fl->bar2_addr = bar2_address(adap,
2841 					     fl->cntxt_id,
2842 					     T4_BAR2_QTYPE_EGRESS,
2843 					     &fl->bar2_qid);
2844 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2845 	}
2846 
2847 	/* For T5 and later we attempt to set up the Congestion Manager values
2848 	 * of the new RX Ethernet Queue.  This should really be handled by
2849 	 * firmware because it's more complex than any host driver wants to
2850 	 * get involved with and it's different per chip and this is almost
2851 	 * certainly wrong.  Firmware would be wrong as well, but it would be
2852 	 * a lot easier to fix in one place ...  For now we do something very
2853 	 * simple (and hopefully less wrong).
2854 	 */
2855 	if (!is_t4(adap->params.chip) && cong >= 0) {
2856 		u32 param, val, ch_map = 0;
2857 		int i;
2858 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
2859 
2860 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2861 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2862 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
2863 		if (cong == 0) {
2864 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
2865 		} else {
2866 			val =
2867 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
2868 			for (i = 0; i < 4; i++) {
2869 				if (cong & (1 << i))
2870 					ch_map |= 1 << (i << cng_ch_bits_log);
2871 			}
2872 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
2873 		}
2874 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
2875 				    &param, &val);
2876 		if (ret)
2877 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
2878 				 " Manager Context for Ingress Queue %d: %d\n",
2879 				 iq->cntxt_id, -ret);
2880 	}
2881 
2882 	return 0;
2883 
2884 fl_nomem:
2885 	ret = -ENOMEM;
2886 err:
2887 	if (iq->desc) {
2888 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2889 				  iq->desc, iq->phys_addr);
2890 		iq->desc = NULL;
2891 	}
2892 	if (fl && fl->desc) {
2893 		kfree(fl->sdesc);
2894 		fl->sdesc = NULL;
2895 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2896 				  fl->desc, fl->addr);
2897 		fl->desc = NULL;
2898 	}
2899 	return ret;
2900 }
2901 
2902 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2903 {
2904 	q->cntxt_id = id;
2905 	q->bar2_addr = bar2_address(adap,
2906 				    q->cntxt_id,
2907 				    T4_BAR2_QTYPE_EGRESS,
2908 				    &q->bar2_qid);
2909 	q->in_use = 0;
2910 	q->cidx = q->pidx = 0;
2911 	q->stops = q->restarts = 0;
2912 	q->stat = (void *)&q->desc[q->size];
2913 	spin_lock_init(&q->db_lock);
2914 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2915 }
2916 
2917 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2918 			 struct net_device *dev, struct netdev_queue *netdevq,
2919 			 unsigned int iqid)
2920 {
2921 	int ret, nentries;
2922 	struct fw_eq_eth_cmd c;
2923 	struct sge *s = &adap->sge;
2924 	struct port_info *pi = netdev_priv(dev);
2925 
2926 	/* Add status entries */
2927 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2928 
2929 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2930 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2931 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2932 			netdev_queue_numa_node_read(netdevq));
2933 	if (!txq->q.desc)
2934 		return -ENOMEM;
2935 
2936 	memset(&c, 0, sizeof(c));
2937 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2938 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2939 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
2940 			    FW_EQ_ETH_CMD_VFN_V(0));
2941 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2942 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2943 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2944 			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2945 	c.fetchszm_to_iqid =
2946 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2947 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2948 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
2949 	c.dcaen_to_eqsize =
2950 		htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2951 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2952 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2953 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2954 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2955 
2956 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2957 	if (ret) {
2958 		kfree(txq->q.sdesc);
2959 		txq->q.sdesc = NULL;
2960 		dma_free_coherent(adap->pdev_dev,
2961 				  nentries * sizeof(struct tx_desc),
2962 				  txq->q.desc, txq->q.phys_addr);
2963 		txq->q.desc = NULL;
2964 		return ret;
2965 	}
2966 
2967 	txq->q.q_type = CXGB4_TXQ_ETH;
2968 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2969 	txq->txq = netdevq;
2970 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2971 	txq->mapping_err = 0;
2972 	return 0;
2973 }
2974 
2975 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2976 			  struct net_device *dev, unsigned int iqid,
2977 			  unsigned int cmplqid)
2978 {
2979 	int ret, nentries;
2980 	struct fw_eq_ctrl_cmd c;
2981 	struct sge *s = &adap->sge;
2982 	struct port_info *pi = netdev_priv(dev);
2983 
2984 	/* Add status entries */
2985 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2986 
2987 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2988 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2989 				 NULL, 0, dev_to_node(adap->pdev_dev));
2990 	if (!txq->q.desc)
2991 		return -ENOMEM;
2992 
2993 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2994 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2995 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
2996 			    FW_EQ_CTRL_CMD_VFN_V(0));
2997 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2998 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2999 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3000 	c.physeqid_pkd = htonl(0);
3001 	c.fetchszm_to_iqid =
3002 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3003 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
3004 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
3005 	c.dcaen_to_eqsize =
3006 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3007 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3008 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3009 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3010 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3011 
3012 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3013 	if (ret) {
3014 		dma_free_coherent(adap->pdev_dev,
3015 				  nentries * sizeof(struct tx_desc),
3016 				  txq->q.desc, txq->q.phys_addr);
3017 		txq->q.desc = NULL;
3018 		return ret;
3019 	}
3020 
3021 	txq->q.q_type = CXGB4_TXQ_CTRL;
3022 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3023 	txq->adap = adap;
3024 	skb_queue_head_init(&txq->sendq);
3025 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
3026 	txq->full = 0;
3027 	return 0;
3028 }
3029 
3030 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
3031 			unsigned int cmplqid)
3032 {
3033 	u32 param, val;
3034 
3035 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3036 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
3037 		 FW_PARAMS_PARAM_YZ_V(eqid));
3038 	val = cmplqid;
3039 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
3040 }
3041 
3042 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
3043 			 struct net_device *dev, unsigned int iqid,
3044 			 unsigned int uld_type)
3045 {
3046 	int ret, nentries;
3047 	struct fw_eq_ofld_cmd c;
3048 	struct sge *s = &adap->sge;
3049 	struct port_info *pi = netdev_priv(dev);
3050 	int cmd = FW_EQ_OFLD_CMD;
3051 
3052 	/* Add status entries */
3053 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3054 
3055 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3056 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3057 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3058 			NUMA_NO_NODE);
3059 	if (!txq->q.desc)
3060 		return -ENOMEM;
3061 
3062 	memset(&c, 0, sizeof(c));
3063 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
3064 		cmd = FW_EQ_CTRL_CMD;
3065 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3066 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3067 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3068 			    FW_EQ_OFLD_CMD_VFN_V(0));
3069 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
3070 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3071 	c.fetchszm_to_iqid =
3072 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3073 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
3074 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
3075 	c.dcaen_to_eqsize =
3076 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3077 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3078 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3079 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3080 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3081 
3082 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3083 	if (ret) {
3084 		kfree(txq->q.sdesc);
3085 		txq->q.sdesc = NULL;
3086 		dma_free_coherent(adap->pdev_dev,
3087 				  nentries * sizeof(struct tx_desc),
3088 				  txq->q.desc, txq->q.phys_addr);
3089 		txq->q.desc = NULL;
3090 		return ret;
3091 	}
3092 
3093 	txq->q.q_type = CXGB4_TXQ_ULD;
3094 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3095 	txq->adap = adap;
3096 	skb_queue_head_init(&txq->sendq);
3097 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
3098 	txq->full = 0;
3099 	txq->mapping_err = 0;
3100 	return 0;
3101 }
3102 
3103 void free_txq(struct adapter *adap, struct sge_txq *q)
3104 {
3105 	struct sge *s = &adap->sge;
3106 
3107 	dma_free_coherent(adap->pdev_dev,
3108 			  q->size * sizeof(struct tx_desc) + s->stat_len,
3109 			  q->desc, q->phys_addr);
3110 	q->cntxt_id = 0;
3111 	q->sdesc = NULL;
3112 	q->desc = NULL;
3113 }
3114 
3115 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
3116 		  struct sge_fl *fl)
3117 {
3118 	struct sge *s = &adap->sge;
3119 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
3120 
3121 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
3122 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3123 		   rq->cntxt_id, fl_id, 0xffff);
3124 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
3125 			  rq->desc, rq->phys_addr);
3126 	netif_napi_del(&rq->napi);
3127 	rq->netdev = NULL;
3128 	rq->cntxt_id = rq->abs_id = 0;
3129 	rq->desc = NULL;
3130 
3131 	if (fl) {
3132 		free_rx_bufs(adap, fl, fl->avail);
3133 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
3134 				  fl->desc, fl->addr);
3135 		kfree(fl->sdesc);
3136 		fl->sdesc = NULL;
3137 		fl->cntxt_id = 0;
3138 		fl->desc = NULL;
3139 	}
3140 }
3141 
3142 /**
3143  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
3144  *      @adap: the adapter
3145  *      @n: number of queues
3146  *      @q: pointer to first queue
3147  *
3148  *      Release the resources of a consecutive block of offload Rx queues.
3149  */
3150 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
3151 {
3152 	for ( ; n; n--, q++)
3153 		if (q->rspq.desc)
3154 			free_rspq_fl(adap, &q->rspq,
3155 				     q->fl.size ? &q->fl : NULL);
3156 }
3157 
3158 /**
3159  *	t4_free_sge_resources - free SGE resources
3160  *	@adap: the adapter
3161  *
3162  *	Frees resources used by the SGE queue sets.
3163  */
3164 void t4_free_sge_resources(struct adapter *adap)
3165 {
3166 	int i;
3167 	struct sge_eth_rxq *eq;
3168 	struct sge_eth_txq *etq;
3169 
3170 	/* stop all Rx queues in order to start them draining */
3171 	for (i = 0; i < adap->sge.ethqsets; i++) {
3172 		eq = &adap->sge.ethrxq[i];
3173 		if (eq->rspq.desc)
3174 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
3175 				   FW_IQ_TYPE_FL_INT_CAP,
3176 				   eq->rspq.cntxt_id,
3177 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
3178 				   0xffff);
3179 	}
3180 
3181 	/* clean up Ethernet Tx/Rx queues */
3182 	for (i = 0; i < adap->sge.ethqsets; i++) {
3183 		eq = &adap->sge.ethrxq[i];
3184 		if (eq->rspq.desc)
3185 			free_rspq_fl(adap, &eq->rspq,
3186 				     eq->fl.size ? &eq->fl : NULL);
3187 
3188 		etq = &adap->sge.ethtxq[i];
3189 		if (etq->q.desc) {
3190 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3191 				       etq->q.cntxt_id);
3192 			__netif_tx_lock_bh(etq->txq);
3193 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3194 			__netif_tx_unlock_bh(etq->txq);
3195 			kfree(etq->q.sdesc);
3196 			free_txq(adap, &etq->q);
3197 		}
3198 	}
3199 
3200 	/* clean up control Tx queues */
3201 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
3202 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
3203 
3204 		if (cq->q.desc) {
3205 			tasklet_kill(&cq->qresume_tsk);
3206 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
3207 					cq->q.cntxt_id);
3208 			__skb_queue_purge(&cq->sendq);
3209 			free_txq(adap, &cq->q);
3210 		}
3211 	}
3212 
3213 	if (adap->sge.fw_evtq.desc)
3214 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
3215 
3216 	if (adap->sge.intrq.desc)
3217 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
3218 
3219 	if (!is_t4(adap->params.chip)) {
3220 		etq = &adap->sge.ptptxq;
3221 		if (etq->q.desc) {
3222 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3223 				       etq->q.cntxt_id);
3224 			spin_lock_bh(&adap->ptp_lock);
3225 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3226 			spin_unlock_bh(&adap->ptp_lock);
3227 			kfree(etq->q.sdesc);
3228 			free_txq(adap, &etq->q);
3229 		}
3230 	}
3231 
3232 	/* clear the reverse egress queue map */
3233 	memset(adap->sge.egr_map, 0,
3234 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
3235 }
3236 
3237 void t4_sge_start(struct adapter *adap)
3238 {
3239 	adap->sge.ethtxq_rover = 0;
3240 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
3241 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
3242 }
3243 
3244 /**
3245  *	t4_sge_stop - disable SGE operation
3246  *	@adap: the adapter
3247  *
3248  *	Stop tasklets and timers associated with the DMA engine.  Note that
3249  *	this is effective only if measures have been taken to disable any HW
3250  *	events that may restart them.
3251  */
3252 void t4_sge_stop(struct adapter *adap)
3253 {
3254 	int i;
3255 	struct sge *s = &adap->sge;
3256 
3257 	if (in_interrupt())  /* actions below require waiting */
3258 		return;
3259 
3260 	if (s->rx_timer.function)
3261 		del_timer_sync(&s->rx_timer);
3262 	if (s->tx_timer.function)
3263 		del_timer_sync(&s->tx_timer);
3264 
3265 	if (is_offload(adap)) {
3266 		struct sge_uld_txq_info *txq_info;
3267 
3268 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3269 		if (txq_info) {
3270 			struct sge_uld_txq *txq = txq_info->uldtxq;
3271 
3272 			for_each_ofldtxq(&adap->sge, i) {
3273 				if (txq->q.desc)
3274 					tasklet_kill(&txq->qresume_tsk);
3275 			}
3276 		}
3277 	}
3278 
3279 	if (is_pci_uld(adap)) {
3280 		struct sge_uld_txq_info *txq_info;
3281 
3282 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
3283 		if (txq_info) {
3284 			struct sge_uld_txq *txq = txq_info->uldtxq;
3285 
3286 			for_each_ofldtxq(&adap->sge, i) {
3287 				if (txq->q.desc)
3288 					tasklet_kill(&txq->qresume_tsk);
3289 			}
3290 		}
3291 	}
3292 
3293 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
3294 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
3295 
3296 		if (cq->q.desc)
3297 			tasklet_kill(&cq->qresume_tsk);
3298 	}
3299 }
3300 
3301 /**
3302  *	t4_sge_init_soft - grab core SGE values needed by SGE code
3303  *	@adap: the adapter
3304  *
3305  *	We need to grab the SGE operating parameters that we need to have
3306  *	in order to do our job and make sure we can live with them.
3307  */
3308 
3309 static int t4_sge_init_soft(struct adapter *adap)
3310 {
3311 	struct sge *s = &adap->sge;
3312 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
3313 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
3314 	u32 ingress_rx_threshold;
3315 
3316 	/*
3317 	 * Verify that CPL messages are going to the Ingress Queue for
3318 	 * process_responses() and that only packet data is going to the
3319 	 * Free Lists.
3320 	 */
3321 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
3322 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
3323 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
3324 		return -EINVAL;
3325 	}
3326 
3327 	/*
3328 	 * Validate the Host Buffer Register Array indices that we want to
3329 	 * use ...
3330 	 *
3331 	 * XXX Note that we should really read through the Host Buffer Size
3332 	 * XXX register array and find the indices of the Buffer Sizes which
3333 	 * XXX meet our needs!
3334 	 */
3335 	#define READ_FL_BUF(x) \
3336 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
3337 
3338 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
3339 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
3340 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
3341 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
3342 
3343 	/* We only bother using the Large Page logic if the Large Page Buffer
3344 	 * is larger than our Page Size Buffer.
3345 	 */
3346 	if (fl_large_pg <= fl_small_pg)
3347 		fl_large_pg = 0;
3348 
3349 	#undef READ_FL_BUF
3350 
3351 	/* The Page Size Buffer must be exactly equal to our Page Size and the
3352 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
3353 	 */
3354 	if (fl_small_pg != PAGE_SIZE ||
3355 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
3356 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
3357 			fl_small_pg, fl_large_pg);
3358 		return -EINVAL;
3359 	}
3360 	if (fl_large_pg)
3361 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
3362 
3363 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
3364 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
3365 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
3366 			fl_small_mtu, fl_large_mtu);
3367 		return -EINVAL;
3368 	}
3369 
3370 	/*
3371 	 * Retrieve our RX interrupt holdoff timer values and counter
3372 	 * threshold values from the SGE parameters.
3373 	 */
3374 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
3375 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
3376 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3377 	s->timer_val[0] = core_ticks_to_us(adap,
3378 		TIMERVALUE0_G(timer_value_0_and_1));
3379 	s->timer_val[1] = core_ticks_to_us(adap,
3380 		TIMERVALUE1_G(timer_value_0_and_1));
3381 	s->timer_val[2] = core_ticks_to_us(adap,
3382 		TIMERVALUE2_G(timer_value_2_and_3));
3383 	s->timer_val[3] = core_ticks_to_us(adap,
3384 		TIMERVALUE3_G(timer_value_2_and_3));
3385 	s->timer_val[4] = core_ticks_to_us(adap,
3386 		TIMERVALUE4_G(timer_value_4_and_5));
3387 	s->timer_val[5] = core_ticks_to_us(adap,
3388 		TIMERVALUE5_G(timer_value_4_and_5));
3389 
3390 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
3391 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
3392 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
3393 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
3394 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3395 
3396 	return 0;
3397 }
3398 
3399 /**
3400  *     t4_sge_init - initialize SGE
3401  *     @adap: the adapter
3402  *
3403  *     Perform low-level SGE code initialization needed every time after a
3404  *     chip reset.
3405  */
3406 int t4_sge_init(struct adapter *adap)
3407 {
3408 	struct sge *s = &adap->sge;
3409 	u32 sge_control, sge_conm_ctrl;
3410 	int ret, egress_threshold;
3411 
3412 	/*
3413 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
3414 	 * t4_fixup_host_params().
3415 	 */
3416 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3417 	s->pktshift = PKTSHIFT_G(sge_control);
3418 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3419 
3420 	s->fl_align = t4_fl_pkt_align(adap);
3421 	ret = t4_sge_init_soft(adap);
3422 	if (ret < 0)
3423 		return ret;
3424 
3425 	/*
3426 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
3427 	 * timer will attempt to refill it.  This needs to be larger than the
3428 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3429 	 * stuck waiting for new packets while the SGE is waiting for us to
3430 	 * give it more Free List entries.  (Note that the SGE's Egress
3431 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3432 	 * there was only a single field to control this.  For T5 there's the
3433 	 * original field which now only applies to Unpacked Mode Free List
3434 	 * buffers and a new field which only applies to Packed Mode Free List
3435 	 * buffers.
3436 	 */
3437 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3438 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
3439 	case CHELSIO_T4:
3440 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3441 		break;
3442 	case CHELSIO_T5:
3443 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3444 		break;
3445 	case CHELSIO_T6:
3446 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3447 		break;
3448 	default:
3449 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
3450 			CHELSIO_CHIP_VERSION(adap->params.chip));
3451 		return -EINVAL;
3452 	}
3453 	s->fl_starve_thres = 2*egress_threshold + 1;
3454 
3455 	t4_idma_monitor_init(adap, &s->idma_monitor);
3456 
3457 	/* Set up timers used for recuring callbacks to process RX and TX
3458 	 * administrative tasks.
3459 	 */
3460 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
3461 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3462 
3463 	spin_lock_init(&s->intrq_lock);
3464 
3465 	return 0;
3466 }
3467