1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #include <net/busy_poll.h> 47 #ifdef CONFIG_CHELSIO_T4_FCOE 48 #include <scsi/fc/fc_fcoe.h> 49 #endif /* CONFIG_CHELSIO_T4_FCOE */ 50 #include "cxgb4.h" 51 #include "t4_regs.h" 52 #include "t4_values.h" 53 #include "t4_msg.h" 54 #include "t4fw_api.h" 55 #include "cxgb4_ptp.h" 56 57 /* 58 * Rx buffer size. We use largish buffers if possible but settle for single 59 * pages under memory shortage. 60 */ 61 #if PAGE_SHIFT >= 16 62 # define FL_PG_ORDER 0 63 #else 64 # define FL_PG_ORDER (16 - PAGE_SHIFT) 65 #endif 66 67 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 68 #define RX_COPY_THRES 256 69 #define RX_PULL_LEN 128 70 71 /* 72 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 73 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 74 */ 75 #define RX_PKT_SKB_LEN 512 76 77 /* 78 * Max number of Tx descriptors we clean up at a time. Should be modest as 79 * freeing skbs isn't cheap and it happens while holding locks. We just need 80 * to free packets faster than they arrive, we eventually catch up and keep 81 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 82 */ 83 #define MAX_TX_RECLAIM 16 84 85 /* 86 * Max number of Rx buffers we replenish at a time. Again keep this modest, 87 * allocating buffers isn't cheap either. 88 */ 89 #define MAX_RX_REFILL 16U 90 91 /* 92 * Period of the Rx queue check timer. This timer is infrequent as it has 93 * something to do only when the system experiences severe memory shortage. 94 */ 95 #define RX_QCHECK_PERIOD (HZ / 2) 96 97 /* 98 * Period of the Tx queue check timer. 99 */ 100 #define TX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Max number of Tx descriptors to be reclaimed by the Tx timer. 104 */ 105 #define MAX_TIMER_TX_RECLAIM 100 106 107 /* 108 * Timer index used when backing off due to memory shortage. 109 */ 110 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 111 112 /* 113 * Suspend an Ethernet Tx queue with fewer available descriptors than this. 114 * This is the same as calc_tx_descs() for a TSO packet with 115 * nr_frags == MAX_SKB_FRAGS. 116 */ 117 #define ETHTXQ_STOP_THRES \ 118 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) 119 120 /* 121 * Suspension threshold for non-Ethernet Tx queues. We require enough room 122 * for a full sized WR. 123 */ 124 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 125 126 /* 127 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 128 * into a WR. 129 */ 130 #define MAX_IMM_TX_PKT_LEN 256 131 132 /* 133 * Max size of a WR sent through a control Tx queue. 134 */ 135 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 136 137 struct tx_sw_desc { /* SW state per Tx descriptor */ 138 struct sk_buff *skb; 139 struct ulptx_sgl *sgl; 140 }; 141 142 struct rx_sw_desc { /* SW state per Rx descriptor */ 143 struct page *page; 144 dma_addr_t dma_addr; 145 }; 146 147 /* 148 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 149 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 150 * We could easily support more but there doesn't seem to be much need for 151 * that ... 152 */ 153 #define FL_MTU_SMALL 1500 154 #define FL_MTU_LARGE 9000 155 156 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 157 unsigned int mtu) 158 { 159 struct sge *s = &adapter->sge; 160 161 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 162 } 163 164 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 165 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 166 167 /* 168 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 169 * these to specify the buffer size as an index into the SGE Free List Buffer 170 * Size register array. We also use bit 4, when the buffer has been unmapped 171 * for DMA, but this is of course never sent to the hardware and is only used 172 * to prevent double unmappings. All of the above requires that the Free List 173 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 174 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 175 * Free List Buffer alignment is 32 bytes, this works out for us ... 176 */ 177 enum { 178 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 179 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 180 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 181 182 /* 183 * XXX We shouldn't depend on being able to use these indices. 184 * XXX Especially when some other Master PF has initialized the 185 * XXX adapter or we use the Firmware Configuration File. We 186 * XXX should really search through the Host Buffer Size register 187 * XXX array for the appropriately sized buffer indices. 188 */ 189 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 190 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 191 192 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 193 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 194 }; 195 196 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 197 #define MIN_NAPI_WORK 1 198 199 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 200 { 201 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 202 } 203 204 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 205 { 206 return !(d->dma_addr & RX_UNMAPPED_BUF); 207 } 208 209 /** 210 * txq_avail - return the number of available slots in a Tx queue 211 * @q: the Tx queue 212 * 213 * Returns the number of descriptors in a Tx queue available to write new 214 * packets. 215 */ 216 static inline unsigned int txq_avail(const struct sge_txq *q) 217 { 218 return q->size - 1 - q->in_use; 219 } 220 221 /** 222 * fl_cap - return the capacity of a free-buffer list 223 * @fl: the FL 224 * 225 * Returns the capacity of a free-buffer list. The capacity is less than 226 * the size because one descriptor needs to be left unpopulated, otherwise 227 * HW will think the FL is empty. 228 */ 229 static inline unsigned int fl_cap(const struct sge_fl *fl) 230 { 231 return fl->size - 8; /* 1 descriptor = 8 buffers */ 232 } 233 234 /** 235 * fl_starving - return whether a Free List is starving. 236 * @adapter: pointer to the adapter 237 * @fl: the Free List 238 * 239 * Tests specified Free List to see whether the number of buffers 240 * available to the hardware has falled below our "starvation" 241 * threshold. 242 */ 243 static inline bool fl_starving(const struct adapter *adapter, 244 const struct sge_fl *fl) 245 { 246 const struct sge *s = &adapter->sge; 247 248 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 249 } 250 251 static int map_skb(struct device *dev, const struct sk_buff *skb, 252 dma_addr_t *addr) 253 { 254 const skb_frag_t *fp, *end; 255 const struct skb_shared_info *si; 256 257 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 258 if (dma_mapping_error(dev, *addr)) 259 goto out_err; 260 261 si = skb_shinfo(skb); 262 end = &si->frags[si->nr_frags]; 263 264 for (fp = si->frags; fp < end; fp++) { 265 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 266 DMA_TO_DEVICE); 267 if (dma_mapping_error(dev, *addr)) 268 goto unwind; 269 } 270 return 0; 271 272 unwind: 273 while (fp-- > si->frags) 274 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 275 276 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 277 out_err: 278 return -ENOMEM; 279 } 280 281 #ifdef CONFIG_NEED_DMA_MAP_STATE 282 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 283 const dma_addr_t *addr) 284 { 285 const skb_frag_t *fp, *end; 286 const struct skb_shared_info *si; 287 288 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 289 290 si = skb_shinfo(skb); 291 end = &si->frags[si->nr_frags]; 292 for (fp = si->frags; fp < end; fp++) 293 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 294 } 295 296 /** 297 * deferred_unmap_destructor - unmap a packet when it is freed 298 * @skb: the packet 299 * 300 * This is the packet destructor used for Tx packets that need to remain 301 * mapped until they are freed rather than until their Tx descriptors are 302 * freed. 303 */ 304 static void deferred_unmap_destructor(struct sk_buff *skb) 305 { 306 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 307 } 308 #endif 309 310 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 311 const struct ulptx_sgl *sgl, const struct sge_txq *q) 312 { 313 const struct ulptx_sge_pair *p; 314 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 315 316 if (likely(skb_headlen(skb))) 317 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 318 DMA_TO_DEVICE); 319 else { 320 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 321 DMA_TO_DEVICE); 322 nfrags--; 323 } 324 325 /* 326 * the complexity below is because of the possibility of a wrap-around 327 * in the middle of an SGL 328 */ 329 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 330 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 331 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 332 ntohl(p->len[0]), DMA_TO_DEVICE); 333 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 334 ntohl(p->len[1]), DMA_TO_DEVICE); 335 p++; 336 } else if ((u8 *)p == (u8 *)q->stat) { 337 p = (const struct ulptx_sge_pair *)q->desc; 338 goto unmap; 339 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 340 const __be64 *addr = (const __be64 *)q->desc; 341 342 dma_unmap_page(dev, be64_to_cpu(addr[0]), 343 ntohl(p->len[0]), DMA_TO_DEVICE); 344 dma_unmap_page(dev, be64_to_cpu(addr[1]), 345 ntohl(p->len[1]), DMA_TO_DEVICE); 346 p = (const struct ulptx_sge_pair *)&addr[2]; 347 } else { 348 const __be64 *addr = (const __be64 *)q->desc; 349 350 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 351 ntohl(p->len[0]), DMA_TO_DEVICE); 352 dma_unmap_page(dev, be64_to_cpu(addr[0]), 353 ntohl(p->len[1]), DMA_TO_DEVICE); 354 p = (const struct ulptx_sge_pair *)&addr[1]; 355 } 356 } 357 if (nfrags) { 358 __be64 addr; 359 360 if ((u8 *)p == (u8 *)q->stat) 361 p = (const struct ulptx_sge_pair *)q->desc; 362 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 363 *(const __be64 *)q->desc; 364 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 365 DMA_TO_DEVICE); 366 } 367 } 368 369 /** 370 * free_tx_desc - reclaims Tx descriptors and their buffers 371 * @adapter: the adapter 372 * @q: the Tx queue to reclaim descriptors from 373 * @n: the number of descriptors to reclaim 374 * @unmap: whether the buffers should be unmapped for DMA 375 * 376 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 377 * Tx buffers. Called with the Tx queue lock held. 378 */ 379 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 380 unsigned int n, bool unmap) 381 { 382 struct tx_sw_desc *d; 383 unsigned int cidx = q->cidx; 384 struct device *dev = adap->pdev_dev; 385 386 d = &q->sdesc[cidx]; 387 while (n--) { 388 if (d->skb) { /* an SGL is present */ 389 if (unmap) 390 unmap_sgl(dev, d->skb, d->sgl, q); 391 dev_consume_skb_any(d->skb); 392 d->skb = NULL; 393 } 394 ++d; 395 if (++cidx == q->size) { 396 cidx = 0; 397 d = q->sdesc; 398 } 399 } 400 q->cidx = cidx; 401 } 402 403 /* 404 * Return the number of reclaimable descriptors in a Tx queue. 405 */ 406 static inline int reclaimable(const struct sge_txq *q) 407 { 408 int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx)); 409 hw_cidx -= q->cidx; 410 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 411 } 412 413 /** 414 * reclaim_completed_tx - reclaims completed Tx descriptors 415 * @adap: the adapter 416 * @q: the Tx queue to reclaim completed descriptors from 417 * @unmap: whether the buffers should be unmapped for DMA 418 * 419 * Reclaims Tx descriptors that the SGE has indicated it has processed, 420 * and frees the associated buffers if possible. Called with the Tx 421 * queue locked. 422 */ 423 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 424 bool unmap) 425 { 426 int avail = reclaimable(q); 427 428 if (avail) { 429 /* 430 * Limit the amount of clean up work we do at a time to keep 431 * the Tx lock hold time O(1). 432 */ 433 if (avail > MAX_TX_RECLAIM) 434 avail = MAX_TX_RECLAIM; 435 436 free_tx_desc(adap, q, avail, unmap); 437 q->in_use -= avail; 438 } 439 } 440 441 static inline int get_buf_size(struct adapter *adapter, 442 const struct rx_sw_desc *d) 443 { 444 struct sge *s = &adapter->sge; 445 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 446 int buf_size; 447 448 switch (rx_buf_size_idx) { 449 case RX_SMALL_PG_BUF: 450 buf_size = PAGE_SIZE; 451 break; 452 453 case RX_LARGE_PG_BUF: 454 buf_size = PAGE_SIZE << s->fl_pg_order; 455 break; 456 457 case RX_SMALL_MTU_BUF: 458 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 459 break; 460 461 case RX_LARGE_MTU_BUF: 462 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 463 break; 464 465 default: 466 BUG_ON(1); 467 } 468 469 return buf_size; 470 } 471 472 /** 473 * free_rx_bufs - free the Rx buffers on an SGE free list 474 * @adap: the adapter 475 * @q: the SGE free list to free buffers from 476 * @n: how many buffers to free 477 * 478 * Release the next @n buffers on an SGE free-buffer Rx queue. The 479 * buffers must be made inaccessible to HW before calling this function. 480 */ 481 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 482 { 483 while (n--) { 484 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 485 486 if (is_buf_mapped(d)) 487 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 488 get_buf_size(adap, d), 489 PCI_DMA_FROMDEVICE); 490 put_page(d->page); 491 d->page = NULL; 492 if (++q->cidx == q->size) 493 q->cidx = 0; 494 q->avail--; 495 } 496 } 497 498 /** 499 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 500 * @adap: the adapter 501 * @q: the SGE free list 502 * 503 * Unmap the current buffer on an SGE free-buffer Rx queue. The 504 * buffer must be made inaccessible to HW before calling this function. 505 * 506 * This is similar to @free_rx_bufs above but does not free the buffer. 507 * Do note that the FL still loses any further access to the buffer. 508 */ 509 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 510 { 511 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 512 513 if (is_buf_mapped(d)) 514 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 515 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 516 d->page = NULL; 517 if (++q->cidx == q->size) 518 q->cidx = 0; 519 q->avail--; 520 } 521 522 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 523 { 524 if (q->pend_cred >= 8) { 525 u32 val = adap->params.arch.sge_fl_db; 526 527 if (is_t4(adap->params.chip)) 528 val |= PIDX_V(q->pend_cred / 8); 529 else 530 val |= PIDX_T5_V(q->pend_cred / 8); 531 532 /* Make sure all memory writes to the Free List queue are 533 * committed before we tell the hardware about them. 534 */ 535 wmb(); 536 537 /* If we don't have access to the new User Doorbell (T5+), use 538 * the old doorbell mechanism; otherwise use the new BAR2 539 * mechanism. 540 */ 541 if (unlikely(q->bar2_addr == NULL)) { 542 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 543 val | QID_V(q->cntxt_id)); 544 } else { 545 writel(val | QID_V(q->bar2_qid), 546 q->bar2_addr + SGE_UDB_KDOORBELL); 547 548 /* This Write memory Barrier will force the write to 549 * the User Doorbell area to be flushed. 550 */ 551 wmb(); 552 } 553 q->pend_cred &= 7; 554 } 555 } 556 557 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 558 dma_addr_t mapping) 559 { 560 sd->page = pg; 561 sd->dma_addr = mapping; /* includes size low bits */ 562 } 563 564 /** 565 * refill_fl - refill an SGE Rx buffer ring 566 * @adap: the adapter 567 * @q: the ring to refill 568 * @n: the number of new buffers to allocate 569 * @gfp: the gfp flags for the allocations 570 * 571 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 572 * allocated with the supplied gfp flags. The caller must assure that 573 * @n does not exceed the queue's capacity. If afterwards the queue is 574 * found critically low mark it as starving in the bitmap of starving FLs. 575 * 576 * Returns the number of buffers allocated. 577 */ 578 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 579 gfp_t gfp) 580 { 581 struct sge *s = &adap->sge; 582 struct page *pg; 583 dma_addr_t mapping; 584 unsigned int cred = q->avail; 585 __be64 *d = &q->desc[q->pidx]; 586 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 587 int node; 588 589 #ifdef CONFIG_DEBUG_FS 590 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 591 goto out; 592 #endif 593 594 gfp |= __GFP_NOWARN; 595 node = dev_to_node(adap->pdev_dev); 596 597 if (s->fl_pg_order == 0) 598 goto alloc_small_pages; 599 600 /* 601 * Prefer large buffers 602 */ 603 while (n) { 604 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 605 if (unlikely(!pg)) { 606 q->large_alloc_failed++; 607 break; /* fall back to single pages */ 608 } 609 610 mapping = dma_map_page(adap->pdev_dev, pg, 0, 611 PAGE_SIZE << s->fl_pg_order, 612 PCI_DMA_FROMDEVICE); 613 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 614 __free_pages(pg, s->fl_pg_order); 615 q->mapping_err++; 616 goto out; /* do not try small pages for this error */ 617 } 618 mapping |= RX_LARGE_PG_BUF; 619 *d++ = cpu_to_be64(mapping); 620 621 set_rx_sw_desc(sd, pg, mapping); 622 sd++; 623 624 q->avail++; 625 if (++q->pidx == q->size) { 626 q->pidx = 0; 627 sd = q->sdesc; 628 d = q->desc; 629 } 630 n--; 631 } 632 633 alloc_small_pages: 634 while (n--) { 635 pg = alloc_pages_node(node, gfp, 0); 636 if (unlikely(!pg)) { 637 q->alloc_failed++; 638 break; 639 } 640 641 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 642 PCI_DMA_FROMDEVICE); 643 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 644 put_page(pg); 645 q->mapping_err++; 646 goto out; 647 } 648 *d++ = cpu_to_be64(mapping); 649 650 set_rx_sw_desc(sd, pg, mapping); 651 sd++; 652 653 q->avail++; 654 if (++q->pidx == q->size) { 655 q->pidx = 0; 656 sd = q->sdesc; 657 d = q->desc; 658 } 659 } 660 661 out: cred = q->avail - cred; 662 q->pend_cred += cred; 663 ring_fl_db(adap, q); 664 665 if (unlikely(fl_starving(adap, q))) { 666 smp_wmb(); 667 q->low++; 668 set_bit(q->cntxt_id - adap->sge.egr_start, 669 adap->sge.starving_fl); 670 } 671 672 return cred; 673 } 674 675 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 676 { 677 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 678 GFP_ATOMIC); 679 } 680 681 /** 682 * alloc_ring - allocate resources for an SGE descriptor ring 683 * @dev: the PCI device's core device 684 * @nelem: the number of descriptors 685 * @elem_size: the size of each descriptor 686 * @sw_size: the size of the SW state associated with each ring element 687 * @phys: the physical address of the allocated ring 688 * @metadata: address of the array holding the SW state for the ring 689 * @stat_size: extra space in HW ring for status information 690 * @node: preferred node for memory allocations 691 * 692 * Allocates resources for an SGE descriptor ring, such as Tx queues, 693 * free buffer lists, or response queues. Each SGE ring requires 694 * space for its HW descriptors plus, optionally, space for the SW state 695 * associated with each HW entry (the metadata). The function returns 696 * three values: the virtual address for the HW ring (the return value 697 * of the function), the bus address of the HW ring, and the address 698 * of the SW ring. 699 */ 700 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 701 size_t sw_size, dma_addr_t *phys, void *metadata, 702 size_t stat_size, int node) 703 { 704 size_t len = nelem * elem_size + stat_size; 705 void *s = NULL; 706 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 707 708 if (!p) 709 return NULL; 710 if (sw_size) { 711 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 712 713 if (!s) { 714 dma_free_coherent(dev, len, p, *phys); 715 return NULL; 716 } 717 } 718 if (metadata) 719 *(void **)metadata = s; 720 memset(p, 0, len); 721 return p; 722 } 723 724 /** 725 * sgl_len - calculates the size of an SGL of the given capacity 726 * @n: the number of SGL entries 727 * 728 * Calculates the number of flits needed for a scatter/gather list that 729 * can hold the given number of entries. 730 */ 731 static inline unsigned int sgl_len(unsigned int n) 732 { 733 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 734 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 735 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 736 * repeated sequences of { Length[i], Length[i+1], Address[i], 737 * Address[i+1] } (this ensures that all addresses are on 64-bit 738 * boundaries). If N is even, then Length[N+1] should be set to 0 and 739 * Address[N+1] is omitted. 740 * 741 * The following calculation incorporates all of the above. It's 742 * somewhat hard to follow but, briefly: the "+2" accounts for the 743 * first two flits which include the DSGL header, Length0 and 744 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 745 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 746 * finally the "+((n-1)&1)" adds the one remaining flit needed if 747 * (n-1) is odd ... 748 */ 749 n--; 750 return (3 * n) / 2 + (n & 1) + 2; 751 } 752 753 /** 754 * flits_to_desc - returns the num of Tx descriptors for the given flits 755 * @n: the number of flits 756 * 757 * Returns the number of Tx descriptors needed for the supplied number 758 * of flits. 759 */ 760 static inline unsigned int flits_to_desc(unsigned int n) 761 { 762 BUG_ON(n > SGE_MAX_WR_LEN / 8); 763 return DIV_ROUND_UP(n, 8); 764 } 765 766 /** 767 * is_eth_imm - can an Ethernet packet be sent as immediate data? 768 * @skb: the packet 769 * 770 * Returns whether an Ethernet packet is small enough to fit as 771 * immediate data. Return value corresponds to headroom required. 772 */ 773 static inline int is_eth_imm(const struct sk_buff *skb) 774 { 775 int hdrlen = skb_shinfo(skb)->gso_size ? 776 sizeof(struct cpl_tx_pkt_lso_core) : 0; 777 778 hdrlen += sizeof(struct cpl_tx_pkt); 779 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 780 return hdrlen; 781 return 0; 782 } 783 784 /** 785 * calc_tx_flits - calculate the number of flits for a packet Tx WR 786 * @skb: the packet 787 * 788 * Returns the number of flits needed for a Tx WR for the given Ethernet 789 * packet, including the needed WR and CPL headers. 790 */ 791 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 792 { 793 unsigned int flits; 794 int hdrlen = is_eth_imm(skb); 795 796 /* If the skb is small enough, we can pump it out as a work request 797 * with only immediate data. In that case we just have to have the 798 * TX Packet header plus the skb data in the Work Request. 799 */ 800 801 if (hdrlen) 802 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 803 804 /* Otherwise, we're going to have to construct a Scatter gather list 805 * of the skb body and fragments. We also include the flits necessary 806 * for the TX Packet Work Request and CPL. We always have a firmware 807 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 808 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 809 * message or, if we're doing a Large Send Offload, an LSO CPL message 810 * with an embedded TX Packet Write CPL message. 811 */ 812 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 813 if (skb_shinfo(skb)->gso_size) 814 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 815 sizeof(struct cpl_tx_pkt_lso_core) + 816 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 817 else 818 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 819 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 820 return flits; 821 } 822 823 /** 824 * calc_tx_descs - calculate the number of Tx descriptors for a packet 825 * @skb: the packet 826 * 827 * Returns the number of Tx descriptors needed for the given Ethernet 828 * packet, including the needed WR and CPL headers. 829 */ 830 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 831 { 832 return flits_to_desc(calc_tx_flits(skb)); 833 } 834 835 /** 836 * write_sgl - populate a scatter/gather list for a packet 837 * @skb: the packet 838 * @q: the Tx queue we are writing into 839 * @sgl: starting location for writing the SGL 840 * @end: points right after the end of the SGL 841 * @start: start offset into skb main-body data to include in the SGL 842 * @addr: the list of bus addresses for the SGL elements 843 * 844 * Generates a gather list for the buffers that make up a packet. 845 * The caller must provide adequate space for the SGL that will be written. 846 * The SGL includes all of the packet's page fragments and the data in its 847 * main body except for the first @start bytes. @sgl must be 16-byte 848 * aligned and within a Tx descriptor with available space. @end points 849 * right after the end of the SGL but does not account for any potential 850 * wrap around, i.e., @end > @sgl. 851 */ 852 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, 853 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 854 const dma_addr_t *addr) 855 { 856 unsigned int i, len; 857 struct ulptx_sge_pair *to; 858 const struct skb_shared_info *si = skb_shinfo(skb); 859 unsigned int nfrags = si->nr_frags; 860 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 861 862 len = skb_headlen(skb) - start; 863 if (likely(len)) { 864 sgl->len0 = htonl(len); 865 sgl->addr0 = cpu_to_be64(addr[0] + start); 866 nfrags++; 867 } else { 868 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 869 sgl->addr0 = cpu_to_be64(addr[1]); 870 } 871 872 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 873 ULPTX_NSGE_V(nfrags)); 874 if (likely(--nfrags == 0)) 875 return; 876 /* 877 * Most of the complexity below deals with the possibility we hit the 878 * end of the queue in the middle of writing the SGL. For this case 879 * only we create the SGL in a temporary buffer and then copy it. 880 */ 881 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 882 883 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 884 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 885 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 886 to->addr[0] = cpu_to_be64(addr[i]); 887 to->addr[1] = cpu_to_be64(addr[++i]); 888 } 889 if (nfrags) { 890 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 891 to->len[1] = cpu_to_be32(0); 892 to->addr[0] = cpu_to_be64(addr[i + 1]); 893 } 894 if (unlikely((u8 *)end > (u8 *)q->stat)) { 895 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 896 897 if (likely(part0)) 898 memcpy(sgl->sge, buf, part0); 899 part1 = (u8 *)end - (u8 *)q->stat; 900 memcpy(q->desc, (u8 *)buf + part0, part1); 901 end = (void *)q->desc + part1; 902 } 903 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 904 *end = 0; 905 } 906 907 /* This function copies 64 byte coalesced work request to 908 * memory mapped BAR2 space. For coalesced WR SGE fetches 909 * data from the FIFO instead of from Host. 910 */ 911 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 912 { 913 int count = 8; 914 915 while (count) { 916 writeq(*src, dst); 917 src++; 918 dst++; 919 count--; 920 } 921 } 922 923 /** 924 * ring_tx_db - check and potentially ring a Tx queue's doorbell 925 * @adap: the adapter 926 * @q: the Tx queue 927 * @n: number of new descriptors to give to HW 928 * 929 * Ring the doorbel for a Tx queue. 930 */ 931 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 932 { 933 /* Make sure that all writes to the TX Descriptors are committed 934 * before we tell the hardware about them. 935 */ 936 wmb(); 937 938 /* If we don't have access to the new User Doorbell (T5+), use the old 939 * doorbell mechanism; otherwise use the new BAR2 mechanism. 940 */ 941 if (unlikely(q->bar2_addr == NULL)) { 942 u32 val = PIDX_V(n); 943 unsigned long flags; 944 945 /* For T4 we need to participate in the Doorbell Recovery 946 * mechanism. 947 */ 948 spin_lock_irqsave(&q->db_lock, flags); 949 if (!q->db_disabled) 950 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 951 QID_V(q->cntxt_id) | val); 952 else 953 q->db_pidx_inc += n; 954 q->db_pidx = q->pidx; 955 spin_unlock_irqrestore(&q->db_lock, flags); 956 } else { 957 u32 val = PIDX_T5_V(n); 958 959 /* T4 and later chips share the same PIDX field offset within 960 * the doorbell, but T5 and later shrank the field in order to 961 * gain a bit for Doorbell Priority. The field was absurdly 962 * large in the first place (14 bits) so we just use the T5 963 * and later limits and warn if a Queue ID is too large. 964 */ 965 WARN_ON(val & DBPRIO_F); 966 967 /* If we're only writing a single TX Descriptor and we can use 968 * Inferred QID registers, we can use the Write Combining 969 * Gather Buffer; otherwise we use the simple doorbell. 970 */ 971 if (n == 1 && q->bar2_qid == 0) { 972 int index = (q->pidx 973 ? (q->pidx - 1) 974 : (q->size - 1)); 975 u64 *wr = (u64 *)&q->desc[index]; 976 977 cxgb_pio_copy((u64 __iomem *) 978 (q->bar2_addr + SGE_UDB_WCDOORBELL), 979 wr); 980 } else { 981 writel(val | QID_V(q->bar2_qid), 982 q->bar2_addr + SGE_UDB_KDOORBELL); 983 } 984 985 /* This Write Memory Barrier will force the write to the User 986 * Doorbell area to be flushed. This is needed to prevent 987 * writes on different CPUs for the same queue from hitting 988 * the adapter out of order. This is required when some Work 989 * Requests take the Write Combine Gather Buffer path (user 990 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 991 * take the traditional path where we simply increment the 992 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 993 * hardware DMA read the actual Work Request. 994 */ 995 wmb(); 996 } 997 } 998 999 /** 1000 * inline_tx_skb - inline a packet's data into Tx descriptors 1001 * @skb: the packet 1002 * @q: the Tx queue where the packet will be inlined 1003 * @pos: starting position in the Tx queue where to inline the packet 1004 * 1005 * Inline a packet's contents directly into Tx descriptors, starting at 1006 * the given position within the Tx DMA ring. 1007 * Most of the complexity of this operation is dealing with wrap arounds 1008 * in the middle of the packet we want to inline. 1009 */ 1010 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, 1011 void *pos) 1012 { 1013 u64 *p; 1014 int left = (void *)q->stat - pos; 1015 1016 if (likely(skb->len <= left)) { 1017 if (likely(!skb->data_len)) 1018 skb_copy_from_linear_data(skb, pos, skb->len); 1019 else 1020 skb_copy_bits(skb, 0, pos, skb->len); 1021 pos += skb->len; 1022 } else { 1023 skb_copy_bits(skb, 0, pos, left); 1024 skb_copy_bits(skb, left, q->desc, skb->len - left); 1025 pos = (void *)q->desc + (skb->len - left); 1026 } 1027 1028 /* 0-pad to multiple of 16 */ 1029 p = PTR_ALIGN(pos, 8); 1030 if ((uintptr_t)p & 8) 1031 *p = 0; 1032 } 1033 1034 static void *inline_tx_skb_header(const struct sk_buff *skb, 1035 const struct sge_txq *q, void *pos, 1036 int length) 1037 { 1038 u64 *p; 1039 int left = (void *)q->stat - pos; 1040 1041 if (likely(length <= left)) { 1042 memcpy(pos, skb->data, length); 1043 pos += length; 1044 } else { 1045 memcpy(pos, skb->data, left); 1046 memcpy(q->desc, skb->data + left, length - left); 1047 pos = (void *)q->desc + (length - left); 1048 } 1049 /* 0-pad to multiple of 16 */ 1050 p = PTR_ALIGN(pos, 8); 1051 if ((uintptr_t)p & 8) { 1052 *p = 0; 1053 return p + 1; 1054 } 1055 return p; 1056 } 1057 1058 /* 1059 * Figure out what HW csum a packet wants and return the appropriate control 1060 * bits. 1061 */ 1062 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1063 { 1064 int csum_type; 1065 const struct iphdr *iph = ip_hdr(skb); 1066 1067 if (iph->version == 4) { 1068 if (iph->protocol == IPPROTO_TCP) 1069 csum_type = TX_CSUM_TCPIP; 1070 else if (iph->protocol == IPPROTO_UDP) 1071 csum_type = TX_CSUM_UDPIP; 1072 else { 1073 nocsum: /* 1074 * unknown protocol, disable HW csum 1075 * and hope a bad packet is detected 1076 */ 1077 return TXPKT_L4CSUM_DIS_F; 1078 } 1079 } else { 1080 /* 1081 * this doesn't work with extension headers 1082 */ 1083 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1084 1085 if (ip6h->nexthdr == IPPROTO_TCP) 1086 csum_type = TX_CSUM_TCPIP6; 1087 else if (ip6h->nexthdr == IPPROTO_UDP) 1088 csum_type = TX_CSUM_UDPIP6; 1089 else 1090 goto nocsum; 1091 } 1092 1093 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1094 u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb)); 1095 int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1096 1097 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1098 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1099 else 1100 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1101 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1102 } else { 1103 int start = skb_transport_offset(skb); 1104 1105 return TXPKT_CSUM_TYPE_V(csum_type) | 1106 TXPKT_CSUM_START_V(start) | 1107 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1108 } 1109 } 1110 1111 static void eth_txq_stop(struct sge_eth_txq *q) 1112 { 1113 netif_tx_stop_queue(q->txq); 1114 q->q.stops++; 1115 } 1116 1117 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1118 { 1119 q->in_use += n; 1120 q->pidx += n; 1121 if (q->pidx >= q->size) 1122 q->pidx -= q->size; 1123 } 1124 1125 #ifdef CONFIG_CHELSIO_T4_FCOE 1126 static inline int 1127 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1128 const struct port_info *pi, u64 *cntrl) 1129 { 1130 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1131 1132 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1133 return 0; 1134 1135 if (skb->protocol != htons(ETH_P_FCOE)) 1136 return 0; 1137 1138 skb_reset_mac_header(skb); 1139 skb->mac_len = sizeof(struct ethhdr); 1140 1141 skb_set_network_header(skb, skb->mac_len); 1142 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1143 1144 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1145 return -ENOTSUPP; 1146 1147 /* FC CRC offload */ 1148 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1149 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1150 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1151 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1152 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1153 return 0; 1154 } 1155 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1156 1157 /** 1158 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1159 * @skb: the packet 1160 * @dev: the egress net device 1161 * 1162 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1163 */ 1164 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1165 { 1166 u32 wr_mid, ctrl0, op; 1167 u64 cntrl, *end; 1168 int qidx, credits; 1169 unsigned int flits, ndesc; 1170 struct adapter *adap; 1171 struct sge_eth_txq *q; 1172 const struct port_info *pi; 1173 struct fw_eth_tx_pkt_wr *wr; 1174 struct cpl_tx_pkt_core *cpl; 1175 const struct skb_shared_info *ssi; 1176 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1177 bool immediate = false; 1178 int len, max_pkt_len; 1179 bool ptp_enabled = is_ptp_enabled(skb, dev); 1180 #ifdef CONFIG_CHELSIO_T4_FCOE 1181 int err; 1182 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1183 1184 /* 1185 * The chip min packet length is 10 octets but play safe and reject 1186 * anything shorter than an Ethernet header. 1187 */ 1188 if (unlikely(skb->len < ETH_HLEN)) { 1189 out_free: dev_kfree_skb_any(skb); 1190 return NETDEV_TX_OK; 1191 } 1192 1193 /* Discard the packet if the length is greater than mtu */ 1194 max_pkt_len = ETH_HLEN + dev->mtu; 1195 if (skb_vlan_tagged(skb)) 1196 max_pkt_len += VLAN_HLEN; 1197 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1198 goto out_free; 1199 1200 pi = netdev_priv(dev); 1201 adap = pi->adapter; 1202 qidx = skb_get_queue_mapping(skb); 1203 if (ptp_enabled) { 1204 spin_lock(&adap->ptp_lock); 1205 if (!(adap->ptp_tx_skb)) { 1206 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1207 adap->ptp_tx_skb = skb_get(skb); 1208 } else { 1209 spin_unlock(&adap->ptp_lock); 1210 goto out_free; 1211 } 1212 q = &adap->sge.ptptxq; 1213 } else { 1214 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1215 } 1216 skb_tx_timestamp(skb); 1217 1218 reclaim_completed_tx(adap, &q->q, true); 1219 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1220 1221 #ifdef CONFIG_CHELSIO_T4_FCOE 1222 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1223 if (unlikely(err == -ENOTSUPP)) { 1224 if (ptp_enabled) 1225 spin_unlock(&adap->ptp_lock); 1226 goto out_free; 1227 } 1228 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1229 1230 flits = calc_tx_flits(skb); 1231 ndesc = flits_to_desc(flits); 1232 credits = txq_avail(&q->q) - ndesc; 1233 1234 if (unlikely(credits < 0)) { 1235 eth_txq_stop(q); 1236 dev_err(adap->pdev_dev, 1237 "%s: Tx ring %u full while queue awake!\n", 1238 dev->name, qidx); 1239 if (ptp_enabled) 1240 spin_unlock(&adap->ptp_lock); 1241 return NETDEV_TX_BUSY; 1242 } 1243 1244 if (is_eth_imm(skb)) 1245 immediate = true; 1246 1247 if (!immediate && 1248 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { 1249 q->mapping_err++; 1250 if (ptp_enabled) 1251 spin_unlock(&adap->ptp_lock); 1252 goto out_free; 1253 } 1254 1255 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1256 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1257 eth_txq_stop(q); 1258 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1259 } 1260 1261 wr = (void *)&q->q.desc[q->q.pidx]; 1262 wr->equiq_to_len16 = htonl(wr_mid); 1263 wr->r3 = cpu_to_be64(0); 1264 end = (u64 *)wr + flits; 1265 1266 len = immediate ? skb->len : 0; 1267 ssi = skb_shinfo(skb); 1268 if (ssi->gso_size) { 1269 struct cpl_tx_pkt_lso *lso = (void *)wr; 1270 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1271 int l3hdr_len = skb_network_header_len(skb); 1272 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1273 1274 len += sizeof(*lso); 1275 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1276 FW_WR_IMMDLEN_V(len)); 1277 lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1278 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1279 LSO_IPV6_V(v6) | 1280 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1281 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1282 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1283 lso->c.ipid_ofst = htons(0); 1284 lso->c.mss = htons(ssi->gso_size); 1285 lso->c.seqno_offset = htonl(0); 1286 if (is_t4(adap->params.chip)) 1287 lso->c.len = htonl(skb->len); 1288 else 1289 lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1290 cpl = (void *)(lso + 1); 1291 1292 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1293 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1294 else 1295 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1296 1297 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1298 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1299 TXPKT_IPHDR_LEN_V(l3hdr_len); 1300 q->tso++; 1301 q->tx_cso += ssi->gso_segs; 1302 } else { 1303 len += sizeof(*cpl); 1304 if (ptp_enabled) 1305 op = FW_PTP_TX_PKT_WR; 1306 else 1307 op = FW_ETH_TX_PKT_WR; 1308 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1309 FW_WR_IMMDLEN_V(len)); 1310 cpl = (void *)(wr + 1); 1311 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1312 cntrl = hwcsum(adap->params.chip, skb) | 1313 TXPKT_IPCSUM_DIS_F; 1314 q->tx_cso++; 1315 } 1316 } 1317 1318 if (skb_vlan_tag_present(skb)) { 1319 q->vlan_ins++; 1320 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1321 #ifdef CONFIG_CHELSIO_T4_FCOE 1322 if (skb->protocol == htons(ETH_P_FCOE)) 1323 cntrl |= TXPKT_VLAN_V( 1324 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1325 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1326 } 1327 1328 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1329 TXPKT_PF_V(adap->pf); 1330 if (ptp_enabled) 1331 ctrl0 |= TXPKT_TSTAMP_F; 1332 #ifdef CONFIG_CHELSIO_T4_DCB 1333 if (is_t4(adap->params.chip)) 1334 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1335 else 1336 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1337 #endif 1338 cpl->ctrl0 = htonl(ctrl0); 1339 cpl->pack = htons(0); 1340 cpl->len = htons(skb->len); 1341 cpl->ctrl1 = cpu_to_be64(cntrl); 1342 1343 if (immediate) { 1344 inline_tx_skb(skb, &q->q, cpl + 1); 1345 dev_consume_skb_any(skb); 1346 } else { 1347 int last_desc; 1348 1349 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 1350 addr); 1351 skb_orphan(skb); 1352 1353 last_desc = q->q.pidx + ndesc - 1; 1354 if (last_desc >= q->q.size) 1355 last_desc -= q->q.size; 1356 q->q.sdesc[last_desc].skb = skb; 1357 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1358 } 1359 1360 txq_advance(&q->q, ndesc); 1361 1362 ring_tx_db(adap, &q->q, ndesc); 1363 if (ptp_enabled) 1364 spin_unlock(&adap->ptp_lock); 1365 return NETDEV_TX_OK; 1366 } 1367 1368 /** 1369 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1370 * @q: the SGE control Tx queue 1371 * 1372 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1373 * that send only immediate data (presently just the control queues) and 1374 * thus do not have any sk_buffs to release. 1375 */ 1376 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1377 { 1378 int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx)); 1379 int reclaim = hw_cidx - q->cidx; 1380 1381 if (reclaim < 0) 1382 reclaim += q->size; 1383 1384 q->in_use -= reclaim; 1385 q->cidx = hw_cidx; 1386 } 1387 1388 /** 1389 * is_imm - check whether a packet can be sent as immediate data 1390 * @skb: the packet 1391 * 1392 * Returns true if a packet can be sent as a WR with immediate data. 1393 */ 1394 static inline int is_imm(const struct sk_buff *skb) 1395 { 1396 return skb->len <= MAX_CTRL_WR_LEN; 1397 } 1398 1399 /** 1400 * ctrlq_check_stop - check if a control queue is full and should stop 1401 * @q: the queue 1402 * @wr: most recent WR written to the queue 1403 * 1404 * Check if a control queue has become full and should be stopped. 1405 * We clean up control queue descriptors very lazily, only when we are out. 1406 * If the queue is still full after reclaiming any completed descriptors 1407 * we suspend it and have the last WR wake it up. 1408 */ 1409 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1410 { 1411 reclaim_completed_tx_imm(&q->q); 1412 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1413 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1414 q->q.stops++; 1415 q->full = 1; 1416 } 1417 } 1418 1419 /** 1420 * ctrl_xmit - send a packet through an SGE control Tx queue 1421 * @q: the control queue 1422 * @skb: the packet 1423 * 1424 * Send a packet through an SGE control Tx queue. Packets sent through 1425 * a control queue must fit entirely as immediate data. 1426 */ 1427 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1428 { 1429 unsigned int ndesc; 1430 struct fw_wr_hdr *wr; 1431 1432 if (unlikely(!is_imm(skb))) { 1433 WARN_ON(1); 1434 dev_kfree_skb(skb); 1435 return NET_XMIT_DROP; 1436 } 1437 1438 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1439 spin_lock(&q->sendq.lock); 1440 1441 if (unlikely(q->full)) { 1442 skb->priority = ndesc; /* save for restart */ 1443 __skb_queue_tail(&q->sendq, skb); 1444 spin_unlock(&q->sendq.lock); 1445 return NET_XMIT_CN; 1446 } 1447 1448 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1449 inline_tx_skb(skb, &q->q, wr); 1450 1451 txq_advance(&q->q, ndesc); 1452 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1453 ctrlq_check_stop(q, wr); 1454 1455 ring_tx_db(q->adap, &q->q, ndesc); 1456 spin_unlock(&q->sendq.lock); 1457 1458 kfree_skb(skb); 1459 return NET_XMIT_SUCCESS; 1460 } 1461 1462 /** 1463 * restart_ctrlq - restart a suspended control queue 1464 * @data: the control queue to restart 1465 * 1466 * Resumes transmission on a suspended Tx control queue. 1467 */ 1468 static void restart_ctrlq(unsigned long data) 1469 { 1470 struct sk_buff *skb; 1471 unsigned int written = 0; 1472 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1473 1474 spin_lock(&q->sendq.lock); 1475 reclaim_completed_tx_imm(&q->q); 1476 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1477 1478 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1479 struct fw_wr_hdr *wr; 1480 unsigned int ndesc = skb->priority; /* previously saved */ 1481 1482 written += ndesc; 1483 /* Write descriptors and free skbs outside the lock to limit 1484 * wait times. q->full is still set so new skbs will be queued. 1485 */ 1486 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1487 txq_advance(&q->q, ndesc); 1488 spin_unlock(&q->sendq.lock); 1489 1490 inline_tx_skb(skb, &q->q, wr); 1491 kfree_skb(skb); 1492 1493 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1494 unsigned long old = q->q.stops; 1495 1496 ctrlq_check_stop(q, wr); 1497 if (q->q.stops != old) { /* suspended anew */ 1498 spin_lock(&q->sendq.lock); 1499 goto ringdb; 1500 } 1501 } 1502 if (written > 16) { 1503 ring_tx_db(q->adap, &q->q, written); 1504 written = 0; 1505 } 1506 spin_lock(&q->sendq.lock); 1507 } 1508 q->full = 0; 1509 ringdb: if (written) 1510 ring_tx_db(q->adap, &q->q, written); 1511 spin_unlock(&q->sendq.lock); 1512 } 1513 1514 /** 1515 * t4_mgmt_tx - send a management message 1516 * @adap: the adapter 1517 * @skb: the packet containing the management message 1518 * 1519 * Send a management message through control queue 0. 1520 */ 1521 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1522 { 1523 int ret; 1524 1525 local_bh_disable(); 1526 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1527 local_bh_enable(); 1528 return ret; 1529 } 1530 1531 /** 1532 * is_ofld_imm - check whether a packet can be sent as immediate data 1533 * @skb: the packet 1534 * 1535 * Returns true if a packet can be sent as an offload WR with immediate 1536 * data. We currently use the same limit as for Ethernet packets. 1537 */ 1538 static inline int is_ofld_imm(const struct sk_buff *skb) 1539 { 1540 return skb->len <= MAX_IMM_TX_PKT_LEN; 1541 } 1542 1543 /** 1544 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1545 * @skb: the packet 1546 * 1547 * Returns the number of flits needed for the given offload packet. 1548 * These packets are already fully constructed and no additional headers 1549 * will be added. 1550 */ 1551 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1552 { 1553 unsigned int flits, cnt; 1554 1555 if (is_ofld_imm(skb)) 1556 return DIV_ROUND_UP(skb->len, 8); 1557 1558 flits = skb_transport_offset(skb) / 8U; /* headers */ 1559 cnt = skb_shinfo(skb)->nr_frags; 1560 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1561 cnt++; 1562 return flits + sgl_len(cnt); 1563 } 1564 1565 /** 1566 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1567 * @adap: the adapter 1568 * @q: the queue to stop 1569 * 1570 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1571 * inability to map packets. A periodic timer attempts to restart 1572 * queues so marked. 1573 */ 1574 static void txq_stop_maperr(struct sge_uld_txq *q) 1575 { 1576 q->mapping_err++; 1577 q->q.stops++; 1578 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1579 q->adap->sge.txq_maperr); 1580 } 1581 1582 /** 1583 * ofldtxq_stop - stop an offload Tx queue that has become full 1584 * @q: the queue to stop 1585 * @skb: the packet causing the queue to become full 1586 * 1587 * Stops an offload Tx queue that has become full and modifies the packet 1588 * being written to request a wakeup. 1589 */ 1590 static void ofldtxq_stop(struct sge_uld_txq *q, struct sk_buff *skb) 1591 { 1592 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; 1593 1594 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1595 q->q.stops++; 1596 q->full = 1; 1597 } 1598 1599 /** 1600 * service_ofldq - service/restart a suspended offload queue 1601 * @q: the offload queue 1602 * 1603 * Services an offload Tx queue by moving packets from its Pending Send 1604 * Queue to the Hardware TX ring. The function starts and ends with the 1605 * Send Queue locked, but drops the lock while putting the skb at the 1606 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 1607 * allows more skbs to be added to the Send Queue by other threads. 1608 * The packet being processed at the head of the Pending Send Queue is 1609 * left on the queue in case we experience DMA Mapping errors, etc. 1610 * and need to give up and restart later. 1611 * 1612 * service_ofldq() can be thought of as a task which opportunistically 1613 * uses other threads execution contexts. We use the Offload Queue 1614 * boolean "service_ofldq_running" to make sure that only one instance 1615 * is ever running at a time ... 1616 */ 1617 static void service_ofldq(struct sge_uld_txq *q) 1618 { 1619 u64 *pos, *before, *end; 1620 int credits; 1621 struct sk_buff *skb; 1622 struct sge_txq *txq; 1623 unsigned int left; 1624 unsigned int written = 0; 1625 unsigned int flits, ndesc; 1626 1627 /* If another thread is currently in service_ofldq() processing the 1628 * Pending Send Queue then there's nothing to do. Otherwise, flag 1629 * that we're doing the work and continue. Examining/modifying 1630 * the Offload Queue boolean "service_ofldq_running" must be done 1631 * while holding the Pending Send Queue Lock. 1632 */ 1633 if (q->service_ofldq_running) 1634 return; 1635 q->service_ofldq_running = true; 1636 1637 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1638 /* We drop the lock while we're working with the skb at the 1639 * head of the Pending Send Queue. This allows more skbs to 1640 * be added to the Pending Send Queue while we're working on 1641 * this one. We don't need to lock to guard the TX Ring 1642 * updates because only one thread of execution is ever 1643 * allowed into service_ofldq() at a time. 1644 */ 1645 spin_unlock(&q->sendq.lock); 1646 1647 reclaim_completed_tx(q->adap, &q->q, false); 1648 1649 flits = skb->priority; /* previously saved */ 1650 ndesc = flits_to_desc(flits); 1651 credits = txq_avail(&q->q) - ndesc; 1652 BUG_ON(credits < 0); 1653 if (unlikely(credits < TXQ_STOP_THRES)) 1654 ofldtxq_stop(q, skb); 1655 1656 pos = (u64 *)&q->q.desc[q->q.pidx]; 1657 if (is_ofld_imm(skb)) 1658 inline_tx_skb(skb, &q->q, pos); 1659 else if (map_skb(q->adap->pdev_dev, skb, 1660 (dma_addr_t *)skb->head)) { 1661 txq_stop_maperr(q); 1662 spin_lock(&q->sendq.lock); 1663 break; 1664 } else { 1665 int last_desc, hdr_len = skb_transport_offset(skb); 1666 1667 /* The WR headers may not fit within one descriptor. 1668 * So we need to deal with wrap-around here. 1669 */ 1670 before = (u64 *)pos; 1671 end = (u64 *)pos + flits; 1672 txq = &q->q; 1673 pos = (void *)inline_tx_skb_header(skb, &q->q, 1674 (void *)pos, 1675 hdr_len); 1676 if (before > (u64 *)pos) { 1677 left = (u8 *)end - (u8 *)txq->stat; 1678 end = (void *)txq->desc + left; 1679 } 1680 1681 /* If current position is already at the end of the 1682 * ofld queue, reset the current to point to 1683 * start of the queue and update the end ptr as well. 1684 */ 1685 if (pos == (u64 *)txq->stat) { 1686 left = (u8 *)end - (u8 *)txq->stat; 1687 end = (void *)txq->desc + left; 1688 pos = (void *)txq->desc; 1689 } 1690 1691 write_sgl(skb, &q->q, (void *)pos, 1692 end, hdr_len, 1693 (dma_addr_t *)skb->head); 1694 #ifdef CONFIG_NEED_DMA_MAP_STATE 1695 skb->dev = q->adap->port[0]; 1696 skb->destructor = deferred_unmap_destructor; 1697 #endif 1698 last_desc = q->q.pidx + ndesc - 1; 1699 if (last_desc >= q->q.size) 1700 last_desc -= q->q.size; 1701 q->q.sdesc[last_desc].skb = skb; 1702 } 1703 1704 txq_advance(&q->q, ndesc); 1705 written += ndesc; 1706 if (unlikely(written > 32)) { 1707 ring_tx_db(q->adap, &q->q, written); 1708 written = 0; 1709 } 1710 1711 /* Reacquire the Pending Send Queue Lock so we can unlink the 1712 * skb we've just successfully transferred to the TX Ring and 1713 * loop for the next skb which may be at the head of the 1714 * Pending Send Queue. 1715 */ 1716 spin_lock(&q->sendq.lock); 1717 __skb_unlink(skb, &q->sendq); 1718 if (is_ofld_imm(skb)) 1719 kfree_skb(skb); 1720 } 1721 if (likely(written)) 1722 ring_tx_db(q->adap, &q->q, written); 1723 1724 /*Indicate that no thread is processing the Pending Send Queue 1725 * currently. 1726 */ 1727 q->service_ofldq_running = false; 1728 } 1729 1730 /** 1731 * ofld_xmit - send a packet through an offload queue 1732 * @q: the Tx offload queue 1733 * @skb: the packet 1734 * 1735 * Send an offload packet through an SGE offload queue. 1736 */ 1737 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 1738 { 1739 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1740 spin_lock(&q->sendq.lock); 1741 1742 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 1743 * that results in this new skb being the only one on the queue, start 1744 * servicing it. If there are other skbs already on the list, then 1745 * either the queue is currently being processed or it's been stopped 1746 * for some reason and it'll be restarted at a later time. Restart 1747 * paths are triggered by events like experiencing a DMA Mapping Error 1748 * or filling the Hardware TX Ring. 1749 */ 1750 __skb_queue_tail(&q->sendq, skb); 1751 if (q->sendq.qlen == 1) 1752 service_ofldq(q); 1753 1754 spin_unlock(&q->sendq.lock); 1755 return NET_XMIT_SUCCESS; 1756 } 1757 1758 /** 1759 * restart_ofldq - restart a suspended offload queue 1760 * @data: the offload queue to restart 1761 * 1762 * Resumes transmission on a suspended Tx offload queue. 1763 */ 1764 static void restart_ofldq(unsigned long data) 1765 { 1766 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 1767 1768 spin_lock(&q->sendq.lock); 1769 q->full = 0; /* the queue actually is completely empty now */ 1770 service_ofldq(q); 1771 spin_unlock(&q->sendq.lock); 1772 } 1773 1774 /** 1775 * skb_txq - return the Tx queue an offload packet should use 1776 * @skb: the packet 1777 * 1778 * Returns the Tx queue an offload packet should use as indicated by bits 1779 * 1-15 in the packet's queue_mapping. 1780 */ 1781 static inline unsigned int skb_txq(const struct sk_buff *skb) 1782 { 1783 return skb->queue_mapping >> 1; 1784 } 1785 1786 /** 1787 * is_ctrl_pkt - return whether an offload packet is a control packet 1788 * @skb: the packet 1789 * 1790 * Returns whether an offload packet should use an OFLD or a CTRL 1791 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1792 */ 1793 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1794 { 1795 return skb->queue_mapping & 1; 1796 } 1797 1798 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 1799 unsigned int tx_uld_type) 1800 { 1801 struct sge_uld_txq_info *txq_info; 1802 struct sge_uld_txq *txq; 1803 unsigned int idx = skb_txq(skb); 1804 1805 if (unlikely(is_ctrl_pkt(skb))) { 1806 /* Single ctrl queue is a requirement for LE workaround path */ 1807 if (adap->tids.nsftids) 1808 idx = 0; 1809 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1810 } 1811 1812 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 1813 if (unlikely(!txq_info)) { 1814 WARN_ON(true); 1815 return NET_XMIT_DROP; 1816 } 1817 1818 txq = &txq_info->uldtxq[idx]; 1819 return ofld_xmit(txq, skb); 1820 } 1821 1822 /** 1823 * t4_ofld_send - send an offload packet 1824 * @adap: the adapter 1825 * @skb: the packet 1826 * 1827 * Sends an offload packet. We use the packet queue_mapping to select the 1828 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1829 * should be sent as regular or control, bits 1-15 select the queue. 1830 */ 1831 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1832 { 1833 int ret; 1834 1835 local_bh_disable(); 1836 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 1837 local_bh_enable(); 1838 return ret; 1839 } 1840 1841 /** 1842 * cxgb4_ofld_send - send an offload packet 1843 * @dev: the net device 1844 * @skb: the packet 1845 * 1846 * Sends an offload packet. This is an exported version of @t4_ofld_send, 1847 * intended for ULDs. 1848 */ 1849 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 1850 { 1851 return t4_ofld_send(netdev2adap(dev), skb); 1852 } 1853 EXPORT_SYMBOL(cxgb4_ofld_send); 1854 1855 /** 1856 * t4_crypto_send - send crypto packet 1857 * @adap: the adapter 1858 * @skb: the packet 1859 * 1860 * Sends crypto packet. We use the packet queue_mapping to select the 1861 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1862 * should be sent as regular or control, bits 1-15 select the queue. 1863 */ 1864 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 1865 { 1866 int ret; 1867 1868 local_bh_disable(); 1869 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 1870 local_bh_enable(); 1871 return ret; 1872 } 1873 1874 /** 1875 * cxgb4_crypto_send - send crypto packet 1876 * @dev: the net device 1877 * @skb: the packet 1878 * 1879 * Sends crypto packet. This is an exported version of @t4_crypto_send, 1880 * intended for ULDs. 1881 */ 1882 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 1883 { 1884 return t4_crypto_send(netdev2adap(dev), skb); 1885 } 1886 EXPORT_SYMBOL(cxgb4_crypto_send); 1887 1888 static inline void copy_frags(struct sk_buff *skb, 1889 const struct pkt_gl *gl, unsigned int offset) 1890 { 1891 int i; 1892 1893 /* usually there's just one frag */ 1894 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1895 gl->frags[0].offset + offset, 1896 gl->frags[0].size - offset); 1897 skb_shinfo(skb)->nr_frags = gl->nfrags; 1898 for (i = 1; i < gl->nfrags; i++) 1899 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1900 gl->frags[i].offset, 1901 gl->frags[i].size); 1902 1903 /* get a reference to the last page, we don't own it */ 1904 get_page(gl->frags[gl->nfrags - 1].page); 1905 } 1906 1907 /** 1908 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 1909 * @gl: the gather list 1910 * @skb_len: size of sk_buff main body if it carries fragments 1911 * @pull_len: amount of data to move to the sk_buff's main body 1912 * 1913 * Builds an sk_buff from the given packet gather list. Returns the 1914 * sk_buff or %NULL if sk_buff allocation failed. 1915 */ 1916 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 1917 unsigned int skb_len, unsigned int pull_len) 1918 { 1919 struct sk_buff *skb; 1920 1921 /* 1922 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 1923 * size, which is expected since buffers are at least PAGE_SIZEd. 1924 * In this case packets up to RX_COPY_THRES have only one fragment. 1925 */ 1926 if (gl->tot_len <= RX_COPY_THRES) { 1927 skb = dev_alloc_skb(gl->tot_len); 1928 if (unlikely(!skb)) 1929 goto out; 1930 __skb_put(skb, gl->tot_len); 1931 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1932 } else { 1933 skb = dev_alloc_skb(skb_len); 1934 if (unlikely(!skb)) 1935 goto out; 1936 __skb_put(skb, pull_len); 1937 skb_copy_to_linear_data(skb, gl->va, pull_len); 1938 1939 copy_frags(skb, gl, pull_len); 1940 skb->len = gl->tot_len; 1941 skb->data_len = skb->len - pull_len; 1942 skb->truesize += skb->data_len; 1943 } 1944 out: return skb; 1945 } 1946 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 1947 1948 /** 1949 * t4_pktgl_free - free a packet gather list 1950 * @gl: the gather list 1951 * 1952 * Releases the pages of a packet gather list. We do not own the last 1953 * page on the list and do not free it. 1954 */ 1955 static void t4_pktgl_free(const struct pkt_gl *gl) 1956 { 1957 int n; 1958 const struct page_frag *p; 1959 1960 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 1961 put_page(p->page); 1962 } 1963 1964 /* 1965 * Process an MPS trace packet. Give it an unused protocol number so it won't 1966 * be delivered to anyone and send it to the stack for capture. 1967 */ 1968 static noinline int handle_trace_pkt(struct adapter *adap, 1969 const struct pkt_gl *gl) 1970 { 1971 struct sk_buff *skb; 1972 1973 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 1974 if (unlikely(!skb)) { 1975 t4_pktgl_free(gl); 1976 return 0; 1977 } 1978 1979 if (is_t4(adap->params.chip)) 1980 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 1981 else 1982 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 1983 1984 skb_reset_mac_header(skb); 1985 skb->protocol = htons(0xffff); 1986 skb->dev = adap->port[0]; 1987 netif_receive_skb(skb); 1988 return 0; 1989 } 1990 1991 /** 1992 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 1993 * @adap: the adapter 1994 * @hwtstamps: time stamp structure to update 1995 * @sgetstamp: 60bit iqe timestamp 1996 * 1997 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 1998 * which is in Core Clock ticks into ktime_t and assign it 1999 **/ 2000 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 2001 struct skb_shared_hwtstamps *hwtstamps, 2002 u64 sgetstamp) 2003 { 2004 u64 ns; 2005 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 2006 2007 ns = div_u64(tmp, adap->params.vpd.cclk); 2008 2009 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2010 hwtstamps->hwtstamp = ns_to_ktime(ns); 2011 } 2012 2013 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 2014 const struct cpl_rx_pkt *pkt) 2015 { 2016 struct adapter *adapter = rxq->rspq.adap; 2017 struct sge *s = &adapter->sge; 2018 struct port_info *pi; 2019 int ret; 2020 struct sk_buff *skb; 2021 2022 skb = napi_get_frags(&rxq->rspq.napi); 2023 if (unlikely(!skb)) { 2024 t4_pktgl_free(gl); 2025 rxq->stats.rx_drops++; 2026 return; 2027 } 2028 2029 copy_frags(skb, gl, s->pktshift); 2030 skb->len = gl->tot_len - s->pktshift; 2031 skb->data_len = skb->len; 2032 skb->truesize += skb->data_len; 2033 skb->ip_summed = CHECKSUM_UNNECESSARY; 2034 skb_record_rx_queue(skb, rxq->rspq.idx); 2035 pi = netdev_priv(skb->dev); 2036 if (pi->rxtstamp) 2037 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 2038 gl->sgetstamp); 2039 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 2040 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2041 PKT_HASH_TYPE_L3); 2042 2043 if (unlikely(pkt->vlan_ex)) { 2044 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2045 rxq->stats.vlan_ex++; 2046 } 2047 ret = napi_gro_frags(&rxq->rspq.napi); 2048 if (ret == GRO_HELD) 2049 rxq->stats.lro_pkts++; 2050 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 2051 rxq->stats.lro_merged++; 2052 rxq->stats.pkts++; 2053 rxq->stats.rx_cso++; 2054 } 2055 2056 enum { 2057 RX_NON_PTP_PKT = 0, 2058 RX_PTP_PKT_SUC = 1, 2059 RX_PTP_PKT_ERR = 2 2060 }; 2061 2062 /** 2063 * t4_systim_to_hwstamp - read hardware time stamp 2064 * @adap: the adapter 2065 * @skb: the packet 2066 * 2067 * Read Time Stamp from MPS packet and insert in skb which 2068 * is forwarded to PTP application 2069 */ 2070 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 2071 struct sk_buff *skb) 2072 { 2073 struct skb_shared_hwtstamps *hwtstamps; 2074 struct cpl_rx_mps_pkt *cpl = NULL; 2075 unsigned char *data; 2076 int offset; 2077 2078 cpl = (struct cpl_rx_mps_pkt *)skb->data; 2079 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 2080 X_CPL_RX_MPS_PKT_TYPE_PTP)) 2081 return RX_PTP_PKT_ERR; 2082 2083 data = skb->data + sizeof(*cpl); 2084 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 2085 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 2086 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 2087 return RX_PTP_PKT_ERR; 2088 2089 hwtstamps = skb_hwtstamps(skb); 2090 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2091 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 2092 2093 return RX_PTP_PKT_SUC; 2094 } 2095 2096 /** 2097 * t4_rx_hststamp - Recv PTP Event Message 2098 * @adap: the adapter 2099 * @rsp: the response queue descriptor holding the RX_PKT message 2100 * @skb: the packet 2101 * 2102 * PTP enabled and MPS packet, read HW timestamp 2103 */ 2104 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 2105 struct sge_eth_rxq *rxq, struct sk_buff *skb) 2106 { 2107 int ret; 2108 2109 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 2110 !is_t4(adapter->params.chip))) { 2111 ret = t4_systim_to_hwstamp(adapter, skb); 2112 if (ret == RX_PTP_PKT_ERR) { 2113 kfree_skb(skb); 2114 rxq->stats.rx_drops++; 2115 } 2116 return ret; 2117 } 2118 return RX_NON_PTP_PKT; 2119 } 2120 2121 /** 2122 * t4_tx_hststamp - Loopback PTP Transmit Event Message 2123 * @adap: the adapter 2124 * @skb: the packet 2125 * @dev: the ingress net device 2126 * 2127 * Read hardware timestamp for the loopback PTP Tx event message 2128 */ 2129 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 2130 struct net_device *dev) 2131 { 2132 struct port_info *pi = netdev_priv(dev); 2133 2134 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 2135 cxgb4_ptp_read_hwstamp(adapter, pi); 2136 kfree_skb(skb); 2137 return 0; 2138 } 2139 return 1; 2140 } 2141 2142 /** 2143 * t4_ethrx_handler - process an ingress ethernet packet 2144 * @q: the response queue that received the packet 2145 * @rsp: the response queue descriptor holding the RX_PKT message 2146 * @si: the gather list of packet fragments 2147 * 2148 * Process an ingress ethernet packet and deliver it to the stack. 2149 */ 2150 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 2151 const struct pkt_gl *si) 2152 { 2153 bool csum_ok; 2154 struct sk_buff *skb; 2155 const struct cpl_rx_pkt *pkt; 2156 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2157 struct adapter *adapter = q->adap; 2158 struct sge *s = &q->adap->sge; 2159 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 2160 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 2161 u16 err_vec; 2162 struct port_info *pi; 2163 int ret = 0; 2164 2165 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 2166 return handle_trace_pkt(q->adap, si); 2167 2168 pkt = (const struct cpl_rx_pkt *)rsp; 2169 /* Compressed error vector is enabled for T6 only */ 2170 if (q->adap->params.tp.rx_pkt_encap) 2171 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 2172 else 2173 err_vec = be16_to_cpu(pkt->err_vec); 2174 2175 csum_ok = pkt->csum_calc && !err_vec && 2176 (q->netdev->features & NETIF_F_RXCSUM); 2177 if ((pkt->l2info & htonl(RXF_TCP_F)) && 2178 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 2179 do_gro(rxq, si, pkt); 2180 return 0; 2181 } 2182 2183 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 2184 if (unlikely(!skb)) { 2185 t4_pktgl_free(si); 2186 rxq->stats.rx_drops++; 2187 return 0; 2188 } 2189 pi = netdev_priv(q->netdev); 2190 2191 /* Handle PTP Event Rx packet */ 2192 if (unlikely(pi->ptp_enable)) { 2193 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 2194 if (ret == RX_PTP_PKT_ERR) 2195 return 0; 2196 } 2197 if (likely(!ret)) 2198 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 2199 2200 /* Handle the PTP Event Tx Loopback packet */ 2201 if (unlikely(pi->ptp_enable && !ret && 2202 (pkt->l2info & htonl(RXF_UDP_F)) && 2203 cxgb4_ptp_is_ptp_rx(skb))) { 2204 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 2205 return 0; 2206 } 2207 2208 skb->protocol = eth_type_trans(skb, q->netdev); 2209 skb_record_rx_queue(skb, q->idx); 2210 if (skb->dev->features & NETIF_F_RXHASH) 2211 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2212 PKT_HASH_TYPE_L3); 2213 2214 rxq->stats.pkts++; 2215 2216 if (pi->rxtstamp) 2217 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 2218 si->sgetstamp); 2219 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 2220 if (!pkt->ip_frag) { 2221 skb->ip_summed = CHECKSUM_UNNECESSARY; 2222 rxq->stats.rx_cso++; 2223 } else if (pkt->l2info & htonl(RXF_IP_F)) { 2224 __sum16 c = (__force __sum16)pkt->csum; 2225 skb->csum = csum_unfold(c); 2226 skb->ip_summed = CHECKSUM_COMPLETE; 2227 rxq->stats.rx_cso++; 2228 } 2229 } else { 2230 skb_checksum_none_assert(skb); 2231 #ifdef CONFIG_CHELSIO_T4_FCOE 2232 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 2233 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 2234 2235 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 2236 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 2237 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 2238 if (q->adap->params.tp.rx_pkt_encap) 2239 csum_ok = err_vec & 2240 T6_COMPR_RXERR_SUM_F; 2241 else 2242 csum_ok = err_vec & RXERR_CSUM_F; 2243 if (!csum_ok) 2244 skb->ip_summed = CHECKSUM_UNNECESSARY; 2245 } 2246 } 2247 2248 #undef CPL_RX_PKT_FLAGS 2249 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2250 } 2251 2252 if (unlikely(pkt->vlan_ex)) { 2253 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2254 rxq->stats.vlan_ex++; 2255 } 2256 skb_mark_napi_id(skb, &q->napi); 2257 netif_receive_skb(skb); 2258 return 0; 2259 } 2260 2261 /** 2262 * restore_rx_bufs - put back a packet's Rx buffers 2263 * @si: the packet gather list 2264 * @q: the SGE free list 2265 * @frags: number of FL buffers to restore 2266 * 2267 * Puts back on an FL the Rx buffers associated with @si. The buffers 2268 * have already been unmapped and are left unmapped, we mark them so to 2269 * prevent further unmapping attempts. 2270 * 2271 * This function undoes a series of @unmap_rx_buf calls when we find out 2272 * that the current packet can't be processed right away afterall and we 2273 * need to come back to it later. This is a very rare event and there's 2274 * no effort to make this particularly efficient. 2275 */ 2276 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 2277 int frags) 2278 { 2279 struct rx_sw_desc *d; 2280 2281 while (frags--) { 2282 if (q->cidx == 0) 2283 q->cidx = q->size - 1; 2284 else 2285 q->cidx--; 2286 d = &q->sdesc[q->cidx]; 2287 d->page = si->frags[frags].page; 2288 d->dma_addr |= RX_UNMAPPED_BUF; 2289 q->avail++; 2290 } 2291 } 2292 2293 /** 2294 * is_new_response - check if a response is newly written 2295 * @r: the response descriptor 2296 * @q: the response queue 2297 * 2298 * Returns true if a response descriptor contains a yet unprocessed 2299 * response. 2300 */ 2301 static inline bool is_new_response(const struct rsp_ctrl *r, 2302 const struct sge_rspq *q) 2303 { 2304 return (r->type_gen >> RSPD_GEN_S) == q->gen; 2305 } 2306 2307 /** 2308 * rspq_next - advance to the next entry in a response queue 2309 * @q: the queue 2310 * 2311 * Updates the state of a response queue to advance it to the next entry. 2312 */ 2313 static inline void rspq_next(struct sge_rspq *q) 2314 { 2315 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 2316 if (unlikely(++q->cidx == q->size)) { 2317 q->cidx = 0; 2318 q->gen ^= 1; 2319 q->cur_desc = q->desc; 2320 } 2321 } 2322 2323 /** 2324 * process_responses - process responses from an SGE response queue 2325 * @q: the ingress queue to process 2326 * @budget: how many responses can be processed in this round 2327 * 2328 * Process responses from an SGE response queue up to the supplied budget. 2329 * Responses include received packets as well as control messages from FW 2330 * or HW. 2331 * 2332 * Additionally choose the interrupt holdoff time for the next interrupt 2333 * on this queue. If the system is under memory shortage use a fairly 2334 * long delay to help recovery. 2335 */ 2336 static int process_responses(struct sge_rspq *q, int budget) 2337 { 2338 int ret, rsp_type; 2339 int budget_left = budget; 2340 const struct rsp_ctrl *rc; 2341 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2342 struct adapter *adapter = q->adap; 2343 struct sge *s = &adapter->sge; 2344 2345 while (likely(budget_left)) { 2346 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2347 if (!is_new_response(rc, q)) { 2348 if (q->flush_handler) 2349 q->flush_handler(q); 2350 break; 2351 } 2352 2353 dma_rmb(); 2354 rsp_type = RSPD_TYPE_G(rc->type_gen); 2355 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 2356 struct page_frag *fp; 2357 struct pkt_gl si; 2358 const struct rx_sw_desc *rsd; 2359 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 2360 2361 if (len & RSPD_NEWBUF_F) { 2362 if (likely(q->offset > 0)) { 2363 free_rx_bufs(q->adap, &rxq->fl, 1); 2364 q->offset = 0; 2365 } 2366 len = RSPD_LEN_G(len); 2367 } 2368 si.tot_len = len; 2369 2370 /* gather packet fragments */ 2371 for (frags = 0, fp = si.frags; ; frags++, fp++) { 2372 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 2373 bufsz = get_buf_size(adapter, rsd); 2374 fp->page = rsd->page; 2375 fp->offset = q->offset; 2376 fp->size = min(bufsz, len); 2377 len -= fp->size; 2378 if (!len) 2379 break; 2380 unmap_rx_buf(q->adap, &rxq->fl); 2381 } 2382 2383 si.sgetstamp = SGE_TIMESTAMP_G( 2384 be64_to_cpu(rc->last_flit)); 2385 /* 2386 * Last buffer remains mapped so explicitly make it 2387 * coherent for CPU access. 2388 */ 2389 dma_sync_single_for_cpu(q->adap->pdev_dev, 2390 get_buf_addr(rsd), 2391 fp->size, DMA_FROM_DEVICE); 2392 2393 si.va = page_address(si.frags[0].page) + 2394 si.frags[0].offset; 2395 prefetch(si.va); 2396 2397 si.nfrags = frags + 1; 2398 ret = q->handler(q, q->cur_desc, &si); 2399 if (likely(ret == 0)) 2400 q->offset += ALIGN(fp->size, s->fl_align); 2401 else 2402 restore_rx_bufs(&si, &rxq->fl, frags); 2403 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 2404 ret = q->handler(q, q->cur_desc, NULL); 2405 } else { 2406 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 2407 } 2408 2409 if (unlikely(ret)) { 2410 /* couldn't process descriptor, back off for recovery */ 2411 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 2412 break; 2413 } 2414 2415 rspq_next(q); 2416 budget_left--; 2417 } 2418 2419 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 2420 __refill_fl(q->adap, &rxq->fl); 2421 return budget - budget_left; 2422 } 2423 2424 /** 2425 * napi_rx_handler - the NAPI handler for Rx processing 2426 * @napi: the napi instance 2427 * @budget: how many packets we can process in this round 2428 * 2429 * Handler for new data events when using NAPI. This does not need any 2430 * locking or protection from interrupts as data interrupts are off at 2431 * this point and other adapter interrupts do not interfere (the latter 2432 * in not a concern at all with MSI-X as non-data interrupts then have 2433 * a separate handler). 2434 */ 2435 static int napi_rx_handler(struct napi_struct *napi, int budget) 2436 { 2437 unsigned int params; 2438 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 2439 int work_done; 2440 u32 val; 2441 2442 work_done = process_responses(q, budget); 2443 if (likely(work_done < budget)) { 2444 int timer_index; 2445 2446 napi_complete_done(napi, work_done); 2447 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 2448 2449 if (q->adaptive_rx) { 2450 if (work_done > max(timer_pkt_quota[timer_index], 2451 MIN_NAPI_WORK)) 2452 timer_index = (timer_index + 1); 2453 else 2454 timer_index = timer_index - 1; 2455 2456 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 2457 q->next_intr_params = 2458 QINTR_TIMER_IDX_V(timer_index) | 2459 QINTR_CNT_EN_V(0); 2460 params = q->next_intr_params; 2461 } else { 2462 params = q->next_intr_params; 2463 q->next_intr_params = q->intr_params; 2464 } 2465 } else 2466 params = QINTR_TIMER_IDX_V(7); 2467 2468 val = CIDXINC_V(work_done) | SEINTARM_V(params); 2469 2470 /* If we don't have access to the new User GTS (T5+), use the old 2471 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2472 */ 2473 if (unlikely(q->bar2_addr == NULL)) { 2474 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 2475 val | INGRESSQID_V((u32)q->cntxt_id)); 2476 } else { 2477 writel(val | INGRESSQID_V(q->bar2_qid), 2478 q->bar2_addr + SGE_UDB_GTS); 2479 wmb(); 2480 } 2481 return work_done; 2482 } 2483 2484 /* 2485 * The MSI-X interrupt handler for an SGE response queue. 2486 */ 2487 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 2488 { 2489 struct sge_rspq *q = cookie; 2490 2491 napi_schedule(&q->napi); 2492 return IRQ_HANDLED; 2493 } 2494 2495 /* 2496 * Process the indirect interrupt entries in the interrupt queue and kick off 2497 * NAPI for each queue that has generated an entry. 2498 */ 2499 static unsigned int process_intrq(struct adapter *adap) 2500 { 2501 unsigned int credits; 2502 const struct rsp_ctrl *rc; 2503 struct sge_rspq *q = &adap->sge.intrq; 2504 u32 val; 2505 2506 spin_lock(&adap->sge.intrq_lock); 2507 for (credits = 0; ; credits++) { 2508 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2509 if (!is_new_response(rc, q)) 2510 break; 2511 2512 dma_rmb(); 2513 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 2514 unsigned int qid = ntohl(rc->pldbuflen_qid); 2515 2516 qid -= adap->sge.ingr_start; 2517 napi_schedule(&adap->sge.ingr_map[qid]->napi); 2518 } 2519 2520 rspq_next(q); 2521 } 2522 2523 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 2524 2525 /* If we don't have access to the new User GTS (T5+), use the old 2526 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2527 */ 2528 if (unlikely(q->bar2_addr == NULL)) { 2529 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 2530 val | INGRESSQID_V(q->cntxt_id)); 2531 } else { 2532 writel(val | INGRESSQID_V(q->bar2_qid), 2533 q->bar2_addr + SGE_UDB_GTS); 2534 wmb(); 2535 } 2536 spin_unlock(&adap->sge.intrq_lock); 2537 return credits; 2538 } 2539 2540 /* 2541 * The MSI interrupt handler, which handles data events from SGE response queues 2542 * as well as error and other async events as they all use the same MSI vector. 2543 */ 2544 static irqreturn_t t4_intr_msi(int irq, void *cookie) 2545 { 2546 struct adapter *adap = cookie; 2547 2548 if (adap->flags & MASTER_PF) 2549 t4_slow_intr_handler(adap); 2550 process_intrq(adap); 2551 return IRQ_HANDLED; 2552 } 2553 2554 /* 2555 * Interrupt handler for legacy INTx interrupts. 2556 * Handles data events from SGE response queues as well as error and other 2557 * async events as they all use the same interrupt line. 2558 */ 2559 static irqreturn_t t4_intr_intx(int irq, void *cookie) 2560 { 2561 struct adapter *adap = cookie; 2562 2563 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 2564 if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) | 2565 process_intrq(adap)) 2566 return IRQ_HANDLED; 2567 return IRQ_NONE; /* probably shared interrupt */ 2568 } 2569 2570 /** 2571 * t4_intr_handler - select the top-level interrupt handler 2572 * @adap: the adapter 2573 * 2574 * Selects the top-level interrupt handler based on the type of interrupts 2575 * (MSI-X, MSI, or INTx). 2576 */ 2577 irq_handler_t t4_intr_handler(struct adapter *adap) 2578 { 2579 if (adap->flags & USING_MSIX) 2580 return t4_sge_intr_msix; 2581 if (adap->flags & USING_MSI) 2582 return t4_intr_msi; 2583 return t4_intr_intx; 2584 } 2585 2586 static void sge_rx_timer_cb(unsigned long data) 2587 { 2588 unsigned long m; 2589 unsigned int i; 2590 struct adapter *adap = (struct adapter *)data; 2591 struct sge *s = &adap->sge; 2592 2593 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2594 for (m = s->starving_fl[i]; m; m &= m - 1) { 2595 struct sge_eth_rxq *rxq; 2596 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2597 struct sge_fl *fl = s->egr_map[id]; 2598 2599 clear_bit(id, s->starving_fl); 2600 smp_mb__after_atomic(); 2601 2602 if (fl_starving(adap, fl)) { 2603 rxq = container_of(fl, struct sge_eth_rxq, fl); 2604 if (napi_reschedule(&rxq->rspq.napi)) 2605 fl->starving++; 2606 else 2607 set_bit(id, s->starving_fl); 2608 } 2609 } 2610 /* The remainder of the SGE RX Timer Callback routine is dedicated to 2611 * global Master PF activities like checking for chip ingress stalls, 2612 * etc. 2613 */ 2614 if (!(adap->flags & MASTER_PF)) 2615 goto done; 2616 2617 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 2618 2619 done: 2620 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2621 } 2622 2623 static void sge_tx_timer_cb(unsigned long data) 2624 { 2625 unsigned long m; 2626 unsigned int i, budget; 2627 struct adapter *adap = (struct adapter *)data; 2628 struct sge *s = &adap->sge; 2629 2630 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2631 for (m = s->txq_maperr[i]; m; m &= m - 1) { 2632 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 2633 struct sge_uld_txq *txq = s->egr_map[id]; 2634 2635 clear_bit(id, s->txq_maperr); 2636 tasklet_schedule(&txq->qresume_tsk); 2637 } 2638 2639 if (!is_t4(adap->params.chip)) { 2640 struct sge_eth_txq *q = &s->ptptxq; 2641 int avail; 2642 2643 spin_lock(&adap->ptp_lock); 2644 avail = reclaimable(&q->q); 2645 2646 if (avail) { 2647 free_tx_desc(adap, &q->q, avail, false); 2648 q->q.in_use -= avail; 2649 } 2650 spin_unlock(&adap->ptp_lock); 2651 } 2652 2653 budget = MAX_TIMER_TX_RECLAIM; 2654 i = s->ethtxq_rover; 2655 do { 2656 struct sge_eth_txq *q = &s->ethtxq[i]; 2657 2658 if (q->q.in_use && 2659 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 2660 __netif_tx_trylock(q->txq)) { 2661 int avail = reclaimable(&q->q); 2662 2663 if (avail) { 2664 if (avail > budget) 2665 avail = budget; 2666 2667 free_tx_desc(adap, &q->q, avail, true); 2668 q->q.in_use -= avail; 2669 budget -= avail; 2670 } 2671 __netif_tx_unlock(q->txq); 2672 } 2673 2674 if (++i >= s->ethqsets) 2675 i = 0; 2676 } while (budget && i != s->ethtxq_rover); 2677 s->ethtxq_rover = i; 2678 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2679 } 2680 2681 /** 2682 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2683 * @adapter: the adapter 2684 * @qid: the SGE Queue ID 2685 * @qtype: the SGE Queue Type (Egress or Ingress) 2686 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2687 * 2688 * Returns the BAR2 address for the SGE Queue Registers associated with 2689 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2690 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2691 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2692 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2693 */ 2694 static void __iomem *bar2_address(struct adapter *adapter, 2695 unsigned int qid, 2696 enum t4_bar2_qtype qtype, 2697 unsigned int *pbar2_qid) 2698 { 2699 u64 bar2_qoffset; 2700 int ret; 2701 2702 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 2703 &bar2_qoffset, pbar2_qid); 2704 if (ret) 2705 return NULL; 2706 2707 return adapter->bar2 + bar2_qoffset; 2708 } 2709 2710 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 2711 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 2712 */ 2713 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 2714 struct net_device *dev, int intr_idx, 2715 struct sge_fl *fl, rspq_handler_t hnd, 2716 rspq_flush_handler_t flush_hnd, int cong) 2717 { 2718 int ret, flsz = 0; 2719 struct fw_iq_cmd c; 2720 struct sge *s = &adap->sge; 2721 struct port_info *pi = netdev_priv(dev); 2722 2723 /* Size needs to be multiple of 16, including status entry. */ 2724 iq->size = roundup(iq->size, 16); 2725 2726 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 2727 &iq->phys_addr, NULL, 0, 2728 dev_to_node(adap->pdev_dev)); 2729 if (!iq->desc) 2730 return -ENOMEM; 2731 2732 memset(&c, 0, sizeof(c)); 2733 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 2734 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2735 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 2736 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 2737 FW_LEN16(c)); 2738 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 2739 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 2740 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 2741 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 2742 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 2743 -intr_idx - 1)); 2744 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 2745 FW_IQ_CMD_IQGTSMODE_F | 2746 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 2747 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 2748 c.iqsize = htons(iq->size); 2749 c.iqaddr = cpu_to_be64(iq->phys_addr); 2750 if (cong >= 0) 2751 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F); 2752 2753 if (fl) { 2754 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 2755 2756 /* Allocate the ring for the hardware free list (with space 2757 * for its status page) along with the associated software 2758 * descriptor ring. The free list size needs to be a multiple 2759 * of the Egress Queue Unit and at least 2 Egress Units larger 2760 * than the SGE's Egress Congrestion Threshold 2761 * (fl_starve_thres - 1). 2762 */ 2763 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 2764 fl->size = s->fl_starve_thres - 1 + 2 * 8; 2765 fl->size = roundup(fl->size, 8); 2766 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 2767 sizeof(struct rx_sw_desc), &fl->addr, 2768 &fl->sdesc, s->stat_len, 2769 dev_to_node(adap->pdev_dev)); 2770 if (!fl->desc) 2771 goto fl_nomem; 2772 2773 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 2774 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 2775 FW_IQ_CMD_FL0FETCHRO_F | 2776 FW_IQ_CMD_FL0DATARO_F | 2777 FW_IQ_CMD_FL0PADEN_F); 2778 if (cong >= 0) 2779 c.iqns_to_fl0congen |= 2780 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 2781 FW_IQ_CMD_FL0CONGCIF_F | 2782 FW_IQ_CMD_FL0CONGEN_F); 2783 /* In T6, for egress queue type FL there is internal overhead 2784 * of 16B for header going into FLM module. Hence the maximum 2785 * allowed burst size is 448 bytes. For T4/T5, the hardware 2786 * doesn't coalesce fetch requests if more than 64 bytes of 2787 * Free List pointers are provided, so we use a 128-byte Fetch 2788 * Burst Minimum there (T6 implements coalescing so we can use 2789 * the smaller 64-byte value there). 2790 */ 2791 c.fl0dcaen_to_fl0cidxfthresh = 2792 htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ? 2793 FETCHBURSTMIN_128B_X : 2794 FETCHBURSTMIN_64B_X) | 2795 FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ? 2796 FETCHBURSTMAX_512B_X : 2797 FETCHBURSTMAX_256B_X)); 2798 c.fl0size = htons(flsz); 2799 c.fl0addr = cpu_to_be64(fl->addr); 2800 } 2801 2802 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2803 if (ret) 2804 goto err; 2805 2806 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 2807 iq->cur_desc = iq->desc; 2808 iq->cidx = 0; 2809 iq->gen = 1; 2810 iq->next_intr_params = iq->intr_params; 2811 iq->cntxt_id = ntohs(c.iqid); 2812 iq->abs_id = ntohs(c.physiqid); 2813 iq->bar2_addr = bar2_address(adap, 2814 iq->cntxt_id, 2815 T4_BAR2_QTYPE_INGRESS, 2816 &iq->bar2_qid); 2817 iq->size--; /* subtract status entry */ 2818 iq->netdev = dev; 2819 iq->handler = hnd; 2820 iq->flush_handler = flush_hnd; 2821 2822 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 2823 skb_queue_head_init(&iq->lro_mgr.lroq); 2824 2825 /* set offset to -1 to distinguish ingress queues without FL */ 2826 iq->offset = fl ? 0 : -1; 2827 2828 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 2829 2830 if (fl) { 2831 fl->cntxt_id = ntohs(c.fl0id); 2832 fl->avail = fl->pend_cred = 0; 2833 fl->pidx = fl->cidx = 0; 2834 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 2835 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 2836 2837 /* Note, we must initialize the BAR2 Free List User Doorbell 2838 * information before refilling the Free List! 2839 */ 2840 fl->bar2_addr = bar2_address(adap, 2841 fl->cntxt_id, 2842 T4_BAR2_QTYPE_EGRESS, 2843 &fl->bar2_qid); 2844 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 2845 } 2846 2847 /* For T5 and later we attempt to set up the Congestion Manager values 2848 * of the new RX Ethernet Queue. This should really be handled by 2849 * firmware because it's more complex than any host driver wants to 2850 * get involved with and it's different per chip and this is almost 2851 * certainly wrong. Firmware would be wrong as well, but it would be 2852 * a lot easier to fix in one place ... For now we do something very 2853 * simple (and hopefully less wrong). 2854 */ 2855 if (!is_t4(adap->params.chip) && cong >= 0) { 2856 u32 param, val, ch_map = 0; 2857 int i; 2858 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 2859 2860 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 2861 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2862 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 2863 if (cong == 0) { 2864 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 2865 } else { 2866 val = 2867 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 2868 for (i = 0; i < 4; i++) { 2869 if (cong & (1 << i)) 2870 ch_map |= 1 << (i << cng_ch_bits_log); 2871 } 2872 val |= CONMCTXT_CNGCHMAP_V(ch_map); 2873 } 2874 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 2875 ¶m, &val); 2876 if (ret) 2877 dev_warn(adap->pdev_dev, "Failed to set Congestion" 2878 " Manager Context for Ingress Queue %d: %d\n", 2879 iq->cntxt_id, -ret); 2880 } 2881 2882 return 0; 2883 2884 fl_nomem: 2885 ret = -ENOMEM; 2886 err: 2887 if (iq->desc) { 2888 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 2889 iq->desc, iq->phys_addr); 2890 iq->desc = NULL; 2891 } 2892 if (fl && fl->desc) { 2893 kfree(fl->sdesc); 2894 fl->sdesc = NULL; 2895 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 2896 fl->desc, fl->addr); 2897 fl->desc = NULL; 2898 } 2899 return ret; 2900 } 2901 2902 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 2903 { 2904 q->cntxt_id = id; 2905 q->bar2_addr = bar2_address(adap, 2906 q->cntxt_id, 2907 T4_BAR2_QTYPE_EGRESS, 2908 &q->bar2_qid); 2909 q->in_use = 0; 2910 q->cidx = q->pidx = 0; 2911 q->stops = q->restarts = 0; 2912 q->stat = (void *)&q->desc[q->size]; 2913 spin_lock_init(&q->db_lock); 2914 adap->sge.egr_map[id - adap->sge.egr_start] = q; 2915 } 2916 2917 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 2918 struct net_device *dev, struct netdev_queue *netdevq, 2919 unsigned int iqid) 2920 { 2921 int ret, nentries; 2922 struct fw_eq_eth_cmd c; 2923 struct sge *s = &adap->sge; 2924 struct port_info *pi = netdev_priv(dev); 2925 2926 /* Add status entries */ 2927 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2928 2929 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2930 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2931 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 2932 netdev_queue_numa_node_read(netdevq)); 2933 if (!txq->q.desc) 2934 return -ENOMEM; 2935 2936 memset(&c, 0, sizeof(c)); 2937 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 2938 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2939 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 2940 FW_EQ_ETH_CMD_VFN_V(0)); 2941 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 2942 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 2943 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 2944 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 2945 c.fetchszm_to_iqid = 2946 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 2947 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 2948 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 2949 c.dcaen_to_eqsize = 2950 htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 2951 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 2952 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 2953 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 2954 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2955 2956 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 2957 if (ret) { 2958 kfree(txq->q.sdesc); 2959 txq->q.sdesc = NULL; 2960 dma_free_coherent(adap->pdev_dev, 2961 nentries * sizeof(struct tx_desc), 2962 txq->q.desc, txq->q.phys_addr); 2963 txq->q.desc = NULL; 2964 return ret; 2965 } 2966 2967 txq->q.q_type = CXGB4_TXQ_ETH; 2968 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 2969 txq->txq = netdevq; 2970 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 2971 txq->mapping_err = 0; 2972 return 0; 2973 } 2974 2975 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 2976 struct net_device *dev, unsigned int iqid, 2977 unsigned int cmplqid) 2978 { 2979 int ret, nentries; 2980 struct fw_eq_ctrl_cmd c; 2981 struct sge *s = &adap->sge; 2982 struct port_info *pi = netdev_priv(dev); 2983 2984 /* Add status entries */ 2985 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2986 2987 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 2988 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 2989 NULL, 0, dev_to_node(adap->pdev_dev)); 2990 if (!txq->q.desc) 2991 return -ENOMEM; 2992 2993 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 2994 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2995 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 2996 FW_EQ_CTRL_CMD_VFN_V(0)); 2997 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 2998 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 2999 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 3000 c.physeqid_pkd = htonl(0); 3001 c.fetchszm_to_iqid = 3002 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3003 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 3004 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 3005 c.dcaen_to_eqsize = 3006 htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3007 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3008 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3009 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 3010 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3011 3012 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3013 if (ret) { 3014 dma_free_coherent(adap->pdev_dev, 3015 nentries * sizeof(struct tx_desc), 3016 txq->q.desc, txq->q.phys_addr); 3017 txq->q.desc = NULL; 3018 return ret; 3019 } 3020 3021 txq->q.q_type = CXGB4_TXQ_CTRL; 3022 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 3023 txq->adap = adap; 3024 skb_queue_head_init(&txq->sendq); 3025 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 3026 txq->full = 0; 3027 return 0; 3028 } 3029 3030 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 3031 unsigned int cmplqid) 3032 { 3033 u32 param, val; 3034 3035 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3036 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 3037 FW_PARAMS_PARAM_YZ_V(eqid)); 3038 val = cmplqid; 3039 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 3040 } 3041 3042 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 3043 struct net_device *dev, unsigned int iqid, 3044 unsigned int uld_type) 3045 { 3046 int ret, nentries; 3047 struct fw_eq_ofld_cmd c; 3048 struct sge *s = &adap->sge; 3049 struct port_info *pi = netdev_priv(dev); 3050 int cmd = FW_EQ_OFLD_CMD; 3051 3052 /* Add status entries */ 3053 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3054 3055 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3056 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3057 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3058 NUMA_NO_NODE); 3059 if (!txq->q.desc) 3060 return -ENOMEM; 3061 3062 memset(&c, 0, sizeof(c)); 3063 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 3064 cmd = FW_EQ_CTRL_CMD; 3065 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 3066 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3067 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 3068 FW_EQ_OFLD_CMD_VFN_V(0)); 3069 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 3070 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 3071 c.fetchszm_to_iqid = 3072 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3073 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 3074 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 3075 c.dcaen_to_eqsize = 3076 htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3077 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3078 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3079 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 3080 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3081 3082 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3083 if (ret) { 3084 kfree(txq->q.sdesc); 3085 txq->q.sdesc = NULL; 3086 dma_free_coherent(adap->pdev_dev, 3087 nentries * sizeof(struct tx_desc), 3088 txq->q.desc, txq->q.phys_addr); 3089 txq->q.desc = NULL; 3090 return ret; 3091 } 3092 3093 txq->q.q_type = CXGB4_TXQ_ULD; 3094 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 3095 txq->adap = adap; 3096 skb_queue_head_init(&txq->sendq); 3097 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 3098 txq->full = 0; 3099 txq->mapping_err = 0; 3100 return 0; 3101 } 3102 3103 void free_txq(struct adapter *adap, struct sge_txq *q) 3104 { 3105 struct sge *s = &adap->sge; 3106 3107 dma_free_coherent(adap->pdev_dev, 3108 q->size * sizeof(struct tx_desc) + s->stat_len, 3109 q->desc, q->phys_addr); 3110 q->cntxt_id = 0; 3111 q->sdesc = NULL; 3112 q->desc = NULL; 3113 } 3114 3115 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 3116 struct sge_fl *fl) 3117 { 3118 struct sge *s = &adap->sge; 3119 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 3120 3121 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 3122 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 3123 rq->cntxt_id, fl_id, 0xffff); 3124 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 3125 rq->desc, rq->phys_addr); 3126 netif_napi_del(&rq->napi); 3127 rq->netdev = NULL; 3128 rq->cntxt_id = rq->abs_id = 0; 3129 rq->desc = NULL; 3130 3131 if (fl) { 3132 free_rx_bufs(adap, fl, fl->avail); 3133 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 3134 fl->desc, fl->addr); 3135 kfree(fl->sdesc); 3136 fl->sdesc = NULL; 3137 fl->cntxt_id = 0; 3138 fl->desc = NULL; 3139 } 3140 } 3141 3142 /** 3143 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 3144 * @adap: the adapter 3145 * @n: number of queues 3146 * @q: pointer to first queue 3147 * 3148 * Release the resources of a consecutive block of offload Rx queues. 3149 */ 3150 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 3151 { 3152 for ( ; n; n--, q++) 3153 if (q->rspq.desc) 3154 free_rspq_fl(adap, &q->rspq, 3155 q->fl.size ? &q->fl : NULL); 3156 } 3157 3158 /** 3159 * t4_free_sge_resources - free SGE resources 3160 * @adap: the adapter 3161 * 3162 * Frees resources used by the SGE queue sets. 3163 */ 3164 void t4_free_sge_resources(struct adapter *adap) 3165 { 3166 int i; 3167 struct sge_eth_rxq *eq; 3168 struct sge_eth_txq *etq; 3169 3170 /* stop all Rx queues in order to start them draining */ 3171 for (i = 0; i < adap->sge.ethqsets; i++) { 3172 eq = &adap->sge.ethrxq[i]; 3173 if (eq->rspq.desc) 3174 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 3175 FW_IQ_TYPE_FL_INT_CAP, 3176 eq->rspq.cntxt_id, 3177 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 3178 0xffff); 3179 } 3180 3181 /* clean up Ethernet Tx/Rx queues */ 3182 for (i = 0; i < adap->sge.ethqsets; i++) { 3183 eq = &adap->sge.ethrxq[i]; 3184 if (eq->rspq.desc) 3185 free_rspq_fl(adap, &eq->rspq, 3186 eq->fl.size ? &eq->fl : NULL); 3187 3188 etq = &adap->sge.ethtxq[i]; 3189 if (etq->q.desc) { 3190 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3191 etq->q.cntxt_id); 3192 __netif_tx_lock_bh(etq->txq); 3193 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3194 __netif_tx_unlock_bh(etq->txq); 3195 kfree(etq->q.sdesc); 3196 free_txq(adap, &etq->q); 3197 } 3198 } 3199 3200 /* clean up control Tx queues */ 3201 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 3202 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 3203 3204 if (cq->q.desc) { 3205 tasklet_kill(&cq->qresume_tsk); 3206 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 3207 cq->q.cntxt_id); 3208 __skb_queue_purge(&cq->sendq); 3209 free_txq(adap, &cq->q); 3210 } 3211 } 3212 3213 if (adap->sge.fw_evtq.desc) 3214 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 3215 3216 if (adap->sge.intrq.desc) 3217 free_rspq_fl(adap, &adap->sge.intrq, NULL); 3218 3219 if (!is_t4(adap->params.chip)) { 3220 etq = &adap->sge.ptptxq; 3221 if (etq->q.desc) { 3222 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3223 etq->q.cntxt_id); 3224 spin_lock_bh(&adap->ptp_lock); 3225 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3226 spin_unlock_bh(&adap->ptp_lock); 3227 kfree(etq->q.sdesc); 3228 free_txq(adap, &etq->q); 3229 } 3230 } 3231 3232 /* clear the reverse egress queue map */ 3233 memset(adap->sge.egr_map, 0, 3234 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 3235 } 3236 3237 void t4_sge_start(struct adapter *adap) 3238 { 3239 adap->sge.ethtxq_rover = 0; 3240 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 3241 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 3242 } 3243 3244 /** 3245 * t4_sge_stop - disable SGE operation 3246 * @adap: the adapter 3247 * 3248 * Stop tasklets and timers associated with the DMA engine. Note that 3249 * this is effective only if measures have been taken to disable any HW 3250 * events that may restart them. 3251 */ 3252 void t4_sge_stop(struct adapter *adap) 3253 { 3254 int i; 3255 struct sge *s = &adap->sge; 3256 3257 if (in_interrupt()) /* actions below require waiting */ 3258 return; 3259 3260 if (s->rx_timer.function) 3261 del_timer_sync(&s->rx_timer); 3262 if (s->tx_timer.function) 3263 del_timer_sync(&s->tx_timer); 3264 3265 if (is_offload(adap)) { 3266 struct sge_uld_txq_info *txq_info; 3267 3268 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3269 if (txq_info) { 3270 struct sge_uld_txq *txq = txq_info->uldtxq; 3271 3272 for_each_ofldtxq(&adap->sge, i) { 3273 if (txq->q.desc) 3274 tasklet_kill(&txq->qresume_tsk); 3275 } 3276 } 3277 } 3278 3279 if (is_pci_uld(adap)) { 3280 struct sge_uld_txq_info *txq_info; 3281 3282 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 3283 if (txq_info) { 3284 struct sge_uld_txq *txq = txq_info->uldtxq; 3285 3286 for_each_ofldtxq(&adap->sge, i) { 3287 if (txq->q.desc) 3288 tasklet_kill(&txq->qresume_tsk); 3289 } 3290 } 3291 } 3292 3293 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 3294 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 3295 3296 if (cq->q.desc) 3297 tasklet_kill(&cq->qresume_tsk); 3298 } 3299 } 3300 3301 /** 3302 * t4_sge_init_soft - grab core SGE values needed by SGE code 3303 * @adap: the adapter 3304 * 3305 * We need to grab the SGE operating parameters that we need to have 3306 * in order to do our job and make sure we can live with them. 3307 */ 3308 3309 static int t4_sge_init_soft(struct adapter *adap) 3310 { 3311 struct sge *s = &adap->sge; 3312 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 3313 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 3314 u32 ingress_rx_threshold; 3315 3316 /* 3317 * Verify that CPL messages are going to the Ingress Queue for 3318 * process_responses() and that only packet data is going to the 3319 * Free Lists. 3320 */ 3321 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 3322 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 3323 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 3324 return -EINVAL; 3325 } 3326 3327 /* 3328 * Validate the Host Buffer Register Array indices that we want to 3329 * use ... 3330 * 3331 * XXX Note that we should really read through the Host Buffer Size 3332 * XXX register array and find the indices of the Buffer Sizes which 3333 * XXX meet our needs! 3334 */ 3335 #define READ_FL_BUF(x) \ 3336 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 3337 3338 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 3339 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 3340 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 3341 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 3342 3343 /* We only bother using the Large Page logic if the Large Page Buffer 3344 * is larger than our Page Size Buffer. 3345 */ 3346 if (fl_large_pg <= fl_small_pg) 3347 fl_large_pg = 0; 3348 3349 #undef READ_FL_BUF 3350 3351 /* The Page Size Buffer must be exactly equal to our Page Size and the 3352 * Large Page Size Buffer should be 0 (per above) or a power of 2. 3353 */ 3354 if (fl_small_pg != PAGE_SIZE || 3355 (fl_large_pg & (fl_large_pg-1)) != 0) { 3356 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 3357 fl_small_pg, fl_large_pg); 3358 return -EINVAL; 3359 } 3360 if (fl_large_pg) 3361 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 3362 3363 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 3364 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 3365 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 3366 fl_small_mtu, fl_large_mtu); 3367 return -EINVAL; 3368 } 3369 3370 /* 3371 * Retrieve our RX interrupt holdoff timer values and counter 3372 * threshold values from the SGE parameters. 3373 */ 3374 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 3375 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 3376 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 3377 s->timer_val[0] = core_ticks_to_us(adap, 3378 TIMERVALUE0_G(timer_value_0_and_1)); 3379 s->timer_val[1] = core_ticks_to_us(adap, 3380 TIMERVALUE1_G(timer_value_0_and_1)); 3381 s->timer_val[2] = core_ticks_to_us(adap, 3382 TIMERVALUE2_G(timer_value_2_and_3)); 3383 s->timer_val[3] = core_ticks_to_us(adap, 3384 TIMERVALUE3_G(timer_value_2_and_3)); 3385 s->timer_val[4] = core_ticks_to_us(adap, 3386 TIMERVALUE4_G(timer_value_4_and_5)); 3387 s->timer_val[5] = core_ticks_to_us(adap, 3388 TIMERVALUE5_G(timer_value_4_and_5)); 3389 3390 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 3391 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 3392 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 3393 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 3394 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 3395 3396 return 0; 3397 } 3398 3399 /** 3400 * t4_sge_init - initialize SGE 3401 * @adap: the adapter 3402 * 3403 * Perform low-level SGE code initialization needed every time after a 3404 * chip reset. 3405 */ 3406 int t4_sge_init(struct adapter *adap) 3407 { 3408 struct sge *s = &adap->sge; 3409 u32 sge_control, sge_conm_ctrl; 3410 int ret, egress_threshold; 3411 3412 /* 3413 * Ingress Padding Boundary and Egress Status Page Size are set up by 3414 * t4_fixup_host_params(). 3415 */ 3416 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 3417 s->pktshift = PKTSHIFT_G(sge_control); 3418 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 3419 3420 s->fl_align = t4_fl_pkt_align(adap); 3421 ret = t4_sge_init_soft(adap); 3422 if (ret < 0) 3423 return ret; 3424 3425 /* 3426 * A FL with <= fl_starve_thres buffers is starving and a periodic 3427 * timer will attempt to refill it. This needs to be larger than the 3428 * SGE's Egress Congestion Threshold. If it isn't, then we can get 3429 * stuck waiting for new packets while the SGE is waiting for us to 3430 * give it more Free List entries. (Note that the SGE's Egress 3431 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 3432 * there was only a single field to control this. For T5 there's the 3433 * original field which now only applies to Unpacked Mode Free List 3434 * buffers and a new field which only applies to Packed Mode Free List 3435 * buffers. 3436 */ 3437 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 3438 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 3439 case CHELSIO_T4: 3440 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 3441 break; 3442 case CHELSIO_T5: 3443 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3444 break; 3445 case CHELSIO_T6: 3446 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3447 break; 3448 default: 3449 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 3450 CHELSIO_CHIP_VERSION(adap->params.chip)); 3451 return -EINVAL; 3452 } 3453 s->fl_starve_thres = 2*egress_threshold + 1; 3454 3455 t4_idma_monitor_init(adap, &s->idma_monitor); 3456 3457 /* Set up timers used for recuring callbacks to process RX and TX 3458 * administrative tasks. 3459 */ 3460 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); 3461 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); 3462 3463 spin_lock_init(&s->intrq_lock); 3464 3465 return 0; 3466 } 3467