xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60 
61 /*
62  * Rx buffer size.  We use largish buffers if possible but settle for single
63  * pages under memory shortage.
64  */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70 
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES    256
73 #define RX_PULL_LEN      128
74 
75 /*
76  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78  */
79 #define RX_PKT_SKB_LEN   512
80 
81 /*
82  * Max number of Tx descriptors we clean up at a time.  Should be modest as
83  * freeing skbs isn't cheap and it happens while holding locks.  We just need
84  * to free packets faster than they arrive, we eventually catch up and keep
85  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86  * also match the CIDX Flush Threshold.
87  */
88 #define MAX_TX_RECLAIM 32
89 
90 /*
91  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92  * allocating buffers isn't cheap either.
93  */
94 #define MAX_RX_REFILL 16U
95 
96 /*
97  * Period of the Rx queue check timer.  This timer is infrequent as it has
98  * something to do only when the system experiences severe memory shortage.
99  */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Period of the Tx queue check timer.
104  */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106 
107 /*
108  * Max number of Tx descriptors to be reclaimed by the Tx timer.
109  */
110 #define MAX_TIMER_TX_RECLAIM 100
111 
112 /*
113  * Timer index used when backing off due to memory shortage.
114  */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116 
117 /*
118  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119  * for a full sized WR.
120  */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122 
123 /*
124  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125  * into a WR.
126  */
127 #define MAX_IMM_TX_PKT_LEN 256
128 
129 /*
130  * Max size of a WR sent through a control Tx queue.
131  */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133 
134 struct rx_sw_desc {                /* SW state per Rx descriptor */
135 	struct page *page;
136 	dma_addr_t dma_addr;
137 };
138 
139 /*
140  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142  * We could easily support more but there doesn't seem to be much need for
143  * that ...
144  */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147 
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 					  unsigned int mtu)
150 {
151 	struct sge *s = &adapter->sge;
152 
153 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155 
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158 
159 /*
160  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161  * these to specify the buffer size as an index into the SGE Free List Buffer
162  * Size register array.  We also use bit 4, when the buffer has been unmapped
163  * for DMA, but this is of course never sent to the hardware and is only used
164  * to prevent double unmappings.  All of the above requires that the Free List
165  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167  * Free List Buffer alignment is 32 bytes, this works out for us ...
168  */
169 enum {
170 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173 
174 	/*
175 	 * XXX We shouldn't depend on being able to use these indices.
176 	 * XXX Especially when some other Master PF has initialized the
177 	 * XXX adapter or we use the Firmware Configuration File.  We
178 	 * XXX should really search through the Host Buffer Size register
179 	 * XXX array for the appropriately sized buffer indices.
180 	 */
181 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183 
184 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186 };
187 
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK  1
190 
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195 
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 	return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200 
201 /**
202  *	txq_avail - return the number of available slots in a Tx queue
203  *	@q: the Tx queue
204  *
205  *	Returns the number of descriptors in a Tx queue available to write new
206  *	packets.
207  */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 	return q->size - 1 - q->in_use;
211 }
212 
213 /**
214  *	fl_cap - return the capacity of a free-buffer list
215  *	@fl: the FL
216  *
217  *	Returns the capacity of a free-buffer list.  The capacity is less than
218  *	the size because one descriptor needs to be left unpopulated, otherwise
219  *	HW will think the FL is empty.
220  */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224 }
225 
226 /**
227  *	fl_starving - return whether a Free List is starving.
228  *	@adapter: pointer to the adapter
229  *	@fl: the Free List
230  *
231  *	Tests specified Free List to see whether the number of buffers
232  *	available to the hardware has falled below our "starvation"
233  *	threshold.
234  */
235 static inline bool fl_starving(const struct adapter *adapter,
236 			       const struct sge_fl *fl)
237 {
238 	const struct sge *s = &adapter->sge;
239 
240 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242 
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 		  dma_addr_t *addr)
245 {
246 	const skb_frag_t *fp, *end;
247 	const struct skb_shared_info *si;
248 
249 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 	if (dma_mapping_error(dev, *addr))
251 		goto out_err;
252 
253 	si = skb_shinfo(skb);
254 	end = &si->frags[si->nr_frags];
255 
256 	for (fp = si->frags; fp < end; fp++) {
257 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 					   DMA_TO_DEVICE);
259 		if (dma_mapping_error(dev, *addr))
260 			goto unwind;
261 	}
262 	return 0;
263 
264 unwind:
265 	while (fp-- > si->frags)
266 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267 
268 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 	return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273 
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 		      const dma_addr_t *addr)
276 {
277 	const skb_frag_t *fp, *end;
278 	const struct skb_shared_info *si;
279 
280 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281 
282 	si = skb_shinfo(skb);
283 	end = &si->frags[si->nr_frags];
284 	for (fp = si->frags; fp < end; fp++)
285 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287 
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290  *	deferred_unmap_destructor - unmap a packet when it is freed
291  *	@skb: the packet
292  *
293  *	This is the packet destructor used for Tx packets that need to remain
294  *	mapped until they are freed rather than until their Tx descriptors are
295  *	freed.
296  */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302 
303 /**
304  *	free_tx_desc - reclaims Tx descriptors and their buffers
305  *	@adapter: the adapter
306  *	@q: the Tx queue to reclaim descriptors from
307  *	@n: the number of descriptors to reclaim
308  *	@unmap: whether the buffers should be unmapped for DMA
309  *
310  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311  *	Tx buffers.  Called with the Tx queue lock held.
312  */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 		  unsigned int n, bool unmap)
315 {
316 	unsigned int cidx = q->cidx;
317 	struct tx_sw_desc *d;
318 
319 	d = &q->sdesc[cidx];
320 	while (n--) {
321 		if (d->skb) {                       /* an SGL is present */
322 			if (unmap && d->addr[0]) {
323 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 				memset(d->addr, 0, sizeof(d->addr));
325 			}
326 			dev_consume_skb_any(d->skb);
327 			d->skb = NULL;
328 		}
329 		++d;
330 		if (++cidx == q->size) {
331 			cidx = 0;
332 			d = q->sdesc;
333 		}
334 	}
335 	q->cidx = cidx;
336 }
337 
338 /*
339  * Return the number of reclaimable descriptors in a Tx queue.
340  */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 	hw_cidx -= q->cidx;
345 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347 
348 /**
349  *	reclaim_completed_tx - reclaims completed TX Descriptors
350  *	@adap: the adapter
351  *	@q: the Tx queue to reclaim completed descriptors from
352  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353  *	@unmap: whether the buffers should be unmapped for DMA
354  *
355  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356  *	and frees the associated buffers if possible.  If @max == -1, then
357  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358  */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 				       int maxreclaim, bool unmap)
361 {
362 	int reclaim = reclaimable(q);
363 
364 	if (reclaim) {
365 		/*
366 		 * Limit the amount of clean up work we do at a time to keep
367 		 * the Tx lock hold time O(1).
368 		 */
369 		if (maxreclaim < 0)
370 			maxreclaim = MAX_TX_RECLAIM;
371 		if (reclaim > maxreclaim)
372 			reclaim = maxreclaim;
373 
374 		free_tx_desc(adap, q, reclaim, unmap);
375 		q->in_use -= reclaim;
376 	}
377 
378 	return reclaim;
379 }
380 
381 /**
382  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383  *	@adap: the adapter
384  *	@q: the Tx queue to reclaim completed descriptors from
385  *	@unmap: whether the buffers should be unmapped for DMA
386  *
387  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388  *	and frees the associated buffers if possible.  Called with the Tx
389  *	queue locked.
390  */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 				bool unmap)
393 {
394 	(void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397 
398 static inline int get_buf_size(struct adapter *adapter,
399 			       const struct rx_sw_desc *d)
400 {
401 	struct sge *s = &adapter->sge;
402 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 	int buf_size;
404 
405 	switch (rx_buf_size_idx) {
406 	case RX_SMALL_PG_BUF:
407 		buf_size = PAGE_SIZE;
408 		break;
409 
410 	case RX_LARGE_PG_BUF:
411 		buf_size = PAGE_SIZE << s->fl_pg_order;
412 		break;
413 
414 	case RX_SMALL_MTU_BUF:
415 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 		break;
417 
418 	case RX_LARGE_MTU_BUF:
419 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 		break;
421 
422 	default:
423 		BUG();
424 	}
425 
426 	return buf_size;
427 }
428 
429 /**
430  *	free_rx_bufs - free the Rx buffers on an SGE free list
431  *	@adap: the adapter
432  *	@q: the SGE free list to free buffers from
433  *	@n: how many buffers to free
434  *
435  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436  *	buffers must be made inaccessible to HW before calling this function.
437  */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 	while (n--) {
441 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442 
443 		if (is_buf_mapped(d))
444 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 				       get_buf_size(adap, d),
446 				       PCI_DMA_FROMDEVICE);
447 		put_page(d->page);
448 		d->page = NULL;
449 		if (++q->cidx == q->size)
450 			q->cidx = 0;
451 		q->avail--;
452 	}
453 }
454 
455 /**
456  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457  *	@adap: the adapter
458  *	@q: the SGE free list
459  *
460  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461  *	buffer must be made inaccessible to HW before calling this function.
462  *
463  *	This is similar to @free_rx_bufs above but does not free the buffer.
464  *	Do note that the FL still loses any further access to the buffer.
465  */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469 
470 	if (is_buf_mapped(d))
471 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 	d->page = NULL;
474 	if (++q->cidx == q->size)
475 		q->cidx = 0;
476 	q->avail--;
477 }
478 
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 	if (q->pend_cred >= 8) {
482 		u32 val = adap->params.arch.sge_fl_db;
483 
484 		if (is_t4(adap->params.chip))
485 			val |= PIDX_V(q->pend_cred / 8);
486 		else
487 			val |= PIDX_T5_V(q->pend_cred / 8);
488 
489 		/* Make sure all memory writes to the Free List queue are
490 		 * committed before we tell the hardware about them.
491 		 */
492 		wmb();
493 
494 		/* If we don't have access to the new User Doorbell (T5+), use
495 		 * the old doorbell mechanism; otherwise use the new BAR2
496 		 * mechanism.
497 		 */
498 		if (unlikely(q->bar2_addr == NULL)) {
499 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 				     val | QID_V(q->cntxt_id));
501 		} else {
502 			writel(val | QID_V(q->bar2_qid),
503 			       q->bar2_addr + SGE_UDB_KDOORBELL);
504 
505 			/* This Write memory Barrier will force the write to
506 			 * the User Doorbell area to be flushed.
507 			 */
508 			wmb();
509 		}
510 		q->pend_cred &= 7;
511 	}
512 }
513 
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 				  dma_addr_t mapping)
516 {
517 	sd->page = pg;
518 	sd->dma_addr = mapping;      /* includes size low bits */
519 }
520 
521 /**
522  *	refill_fl - refill an SGE Rx buffer ring
523  *	@adap: the adapter
524  *	@q: the ring to refill
525  *	@n: the number of new buffers to allocate
526  *	@gfp: the gfp flags for the allocations
527  *
528  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529  *	allocated with the supplied gfp flags.  The caller must assure that
530  *	@n does not exceed the queue's capacity.  If afterwards the queue is
531  *	found critically low mark it as starving in the bitmap of starving FLs.
532  *
533  *	Returns the number of buffers allocated.
534  */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 			      gfp_t gfp)
537 {
538 	struct sge *s = &adap->sge;
539 	struct page *pg;
540 	dma_addr_t mapping;
541 	unsigned int cred = q->avail;
542 	__be64 *d = &q->desc[q->pidx];
543 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 	int node;
545 
546 #ifdef CONFIG_DEBUG_FS
547 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 		goto out;
549 #endif
550 
551 	gfp |= __GFP_NOWARN;
552 	node = dev_to_node(adap->pdev_dev);
553 
554 	if (s->fl_pg_order == 0)
555 		goto alloc_small_pages;
556 
557 	/*
558 	 * Prefer large buffers
559 	 */
560 	while (n) {
561 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 		if (unlikely(!pg)) {
563 			q->large_alloc_failed++;
564 			break;       /* fall back to single pages */
565 		}
566 
567 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 				       PAGE_SIZE << s->fl_pg_order,
569 				       PCI_DMA_FROMDEVICE);
570 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 			__free_pages(pg, s->fl_pg_order);
572 			q->mapping_err++;
573 			goto out;   /* do not try small pages for this error */
574 		}
575 		mapping |= RX_LARGE_PG_BUF;
576 		*d++ = cpu_to_be64(mapping);
577 
578 		set_rx_sw_desc(sd, pg, mapping);
579 		sd++;
580 
581 		q->avail++;
582 		if (++q->pidx == q->size) {
583 			q->pidx = 0;
584 			sd = q->sdesc;
585 			d = q->desc;
586 		}
587 		n--;
588 	}
589 
590 alloc_small_pages:
591 	while (n--) {
592 		pg = alloc_pages_node(node, gfp, 0);
593 		if (unlikely(!pg)) {
594 			q->alloc_failed++;
595 			break;
596 		}
597 
598 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 				       PCI_DMA_FROMDEVICE);
600 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 			put_page(pg);
602 			q->mapping_err++;
603 			goto out;
604 		}
605 		*d++ = cpu_to_be64(mapping);
606 
607 		set_rx_sw_desc(sd, pg, mapping);
608 		sd++;
609 
610 		q->avail++;
611 		if (++q->pidx == q->size) {
612 			q->pidx = 0;
613 			sd = q->sdesc;
614 			d = q->desc;
615 		}
616 	}
617 
618 out:	cred = q->avail - cred;
619 	q->pend_cred += cred;
620 	ring_fl_db(adap, q);
621 
622 	if (unlikely(fl_starving(adap, q))) {
623 		smp_wmb();
624 		q->low++;
625 		set_bit(q->cntxt_id - adap->sge.egr_start,
626 			adap->sge.starving_fl);
627 	}
628 
629 	return cred;
630 }
631 
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 		  GFP_ATOMIC);
636 }
637 
638 /**
639  *	alloc_ring - allocate resources for an SGE descriptor ring
640  *	@dev: the PCI device's core device
641  *	@nelem: the number of descriptors
642  *	@elem_size: the size of each descriptor
643  *	@sw_size: the size of the SW state associated with each ring element
644  *	@phys: the physical address of the allocated ring
645  *	@metadata: address of the array holding the SW state for the ring
646  *	@stat_size: extra space in HW ring for status information
647  *	@node: preferred node for memory allocations
648  *
649  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650  *	free buffer lists, or response queues.  Each SGE ring requires
651  *	space for its HW descriptors plus, optionally, space for the SW state
652  *	associated with each HW entry (the metadata).  The function returns
653  *	three values: the virtual address for the HW ring (the return value
654  *	of the function), the bus address of the HW ring, and the address
655  *	of the SW ring.
656  */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 			size_t sw_size, dma_addr_t *phys, void *metadata,
659 			size_t stat_size, int node)
660 {
661 	size_t len = nelem * elem_size + stat_size;
662 	void *s = NULL;
663 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664 
665 	if (!p)
666 		return NULL;
667 	if (sw_size) {
668 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669 
670 		if (!s) {
671 			dma_free_coherent(dev, len, p, *phys);
672 			return NULL;
673 		}
674 	}
675 	if (metadata)
676 		*(void **)metadata = s;
677 	return p;
678 }
679 
680 /**
681  *	sgl_len - calculates the size of an SGL of the given capacity
682  *	@n: the number of SGL entries
683  *
684  *	Calculates the number of flits needed for a scatter/gather list that
685  *	can hold the given number of entries.
686  */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695 	 * Address[N+1] is omitted.
696 	 *
697 	 * The following calculation incorporates all of the above.  It's
698 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 	 * first two flits which include the DSGL header, Length0 and
700 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 	 * (n-1) is odd ...
704 	 */
705 	n--;
706 	return (3 * n) / 2 + (n & 1) + 2;
707 }
708 
709 /**
710  *	flits_to_desc - returns the num of Tx descriptors for the given flits
711  *	@n: the number of flits
712  *
713  *	Returns the number of Tx descriptors needed for the supplied number
714  *	of flits.
715  */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 	return DIV_ROUND_UP(n, 8);
720 }
721 
722 /**
723  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724  *	@skb: the packet
725  *
726  *	Returns whether an Ethernet packet is small enough to fit as
727  *	immediate data. Return value corresponds to headroom required.
728  */
729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
730 {
731 	int hdrlen = 0;
732 
733 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
734 	    chip_ver > CHELSIO_T5) {
735 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
736 		hdrlen += sizeof(struct cpl_tx_pkt_core);
737 	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
738 		return 0;
739 	} else {
740 		hdrlen = skb_shinfo(skb)->gso_size ?
741 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
742 		hdrlen += sizeof(struct cpl_tx_pkt);
743 	}
744 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
745 		return hdrlen;
746 	return 0;
747 }
748 
749 /**
750  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
751  *	@skb: the packet
752  *
753  *	Returns the number of flits needed for a Tx WR for the given Ethernet
754  *	packet, including the needed WR and CPL headers.
755  */
756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
757 					 unsigned int chip_ver)
758 {
759 	unsigned int flits;
760 	int hdrlen = is_eth_imm(skb, chip_ver);
761 
762 	/* If the skb is small enough, we can pump it out as a work request
763 	 * with only immediate data.  In that case we just have to have the
764 	 * TX Packet header plus the skb data in the Work Request.
765 	 */
766 
767 	if (hdrlen)
768 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
769 
770 	/* Otherwise, we're going to have to construct a Scatter gather list
771 	 * of the skb body and fragments.  We also include the flits necessary
772 	 * for the TX Packet Work Request and CPL.  We always have a firmware
773 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
774 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
775 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
776 	 * with an embedded TX Packet Write CPL message.
777 	 */
778 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
779 	if (skb_shinfo(skb)->gso_size) {
780 		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
781 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
782 				 sizeof(struct cpl_tx_tnl_lso);
783 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
784 			u32 pkt_hdrlen;
785 
786 			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
787 						     skb_headlen(skb));
788 			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
789 				 round_up(pkt_hdrlen, 16);
790 		} else {
791 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
792 				 sizeof(struct cpl_tx_pkt_lso_core);
793 		}
794 
795 		hdrlen += sizeof(struct cpl_tx_pkt_core);
796 		flits += (hdrlen / sizeof(__be64));
797 	} else {
798 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
799 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
800 	}
801 	return flits;
802 }
803 
804 /**
805  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
806  *	@skb: the packet
807  *
808  *	Returns the number of Tx descriptors needed for the given Ethernet
809  *	packet, including the needed WR and CPL headers.
810  */
811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
812 					 unsigned int chip_ver)
813 {
814 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
815 }
816 
817 /**
818  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
819  *	@skb: the packet
820  *	@q: the Tx queue we are writing into
821  *	@sgl: starting location for writing the SGL
822  *	@end: points right after the end of the SGL
823  *	@start: start offset into skb main-body data to include in the SGL
824  *	@addr: the list of bus addresses for the SGL elements
825  *
826  *	Generates a gather list for the buffers that make up a packet.
827  *	The caller must provide adequate space for the SGL that will be written.
828  *	The SGL includes all of the packet's page fragments and the data in its
829  *	main body except for the first @start bytes.  @sgl must be 16-byte
830  *	aligned and within a Tx descriptor with available space.  @end points
831  *	right after the end of the SGL but does not account for any potential
832  *	wrap around, i.e., @end > @sgl.
833  */
834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
835 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
836 		     const dma_addr_t *addr)
837 {
838 	unsigned int i, len;
839 	struct ulptx_sge_pair *to;
840 	const struct skb_shared_info *si = skb_shinfo(skb);
841 	unsigned int nfrags = si->nr_frags;
842 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
843 
844 	len = skb_headlen(skb) - start;
845 	if (likely(len)) {
846 		sgl->len0 = htonl(len);
847 		sgl->addr0 = cpu_to_be64(addr[0] + start);
848 		nfrags++;
849 	} else {
850 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
851 		sgl->addr0 = cpu_to_be64(addr[1]);
852 	}
853 
854 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
855 			      ULPTX_NSGE_V(nfrags));
856 	if (likely(--nfrags == 0))
857 		return;
858 	/*
859 	 * Most of the complexity below deals with the possibility we hit the
860 	 * end of the queue in the middle of writing the SGL.  For this case
861 	 * only we create the SGL in a temporary buffer and then copy it.
862 	 */
863 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
864 
865 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
866 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
867 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
868 		to->addr[0] = cpu_to_be64(addr[i]);
869 		to->addr[1] = cpu_to_be64(addr[++i]);
870 	}
871 	if (nfrags) {
872 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
873 		to->len[1] = cpu_to_be32(0);
874 		to->addr[0] = cpu_to_be64(addr[i + 1]);
875 	}
876 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
877 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
878 
879 		if (likely(part0))
880 			memcpy(sgl->sge, buf, part0);
881 		part1 = (u8 *)end - (u8 *)q->stat;
882 		memcpy(q->desc, (u8 *)buf + part0, part1);
883 		end = (void *)q->desc + part1;
884 	}
885 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
886 		*end = 0;
887 }
888 EXPORT_SYMBOL(cxgb4_write_sgl);
889 
890 /* This function copies 64 byte coalesced work request to
891  * memory mapped BAR2 space. For coalesced WR SGE fetches
892  * data from the FIFO instead of from Host.
893  */
894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
895 {
896 	int count = 8;
897 
898 	while (count) {
899 		writeq(*src, dst);
900 		src++;
901 		dst++;
902 		count--;
903 	}
904 }
905 
906 /**
907  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
908  *	@adap: the adapter
909  *	@q: the Tx queue
910  *	@n: number of new descriptors to give to HW
911  *
912  *	Ring the doorbel for a Tx queue.
913  */
914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
915 {
916 	/* Make sure that all writes to the TX Descriptors are committed
917 	 * before we tell the hardware about them.
918 	 */
919 	wmb();
920 
921 	/* If we don't have access to the new User Doorbell (T5+), use the old
922 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
923 	 */
924 	if (unlikely(q->bar2_addr == NULL)) {
925 		u32 val = PIDX_V(n);
926 		unsigned long flags;
927 
928 		/* For T4 we need to participate in the Doorbell Recovery
929 		 * mechanism.
930 		 */
931 		spin_lock_irqsave(&q->db_lock, flags);
932 		if (!q->db_disabled)
933 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
934 				     QID_V(q->cntxt_id) | val);
935 		else
936 			q->db_pidx_inc += n;
937 		q->db_pidx = q->pidx;
938 		spin_unlock_irqrestore(&q->db_lock, flags);
939 	} else {
940 		u32 val = PIDX_T5_V(n);
941 
942 		/* T4 and later chips share the same PIDX field offset within
943 		 * the doorbell, but T5 and later shrank the field in order to
944 		 * gain a bit for Doorbell Priority.  The field was absurdly
945 		 * large in the first place (14 bits) so we just use the T5
946 		 * and later limits and warn if a Queue ID is too large.
947 		 */
948 		WARN_ON(val & DBPRIO_F);
949 
950 		/* If we're only writing a single TX Descriptor and we can use
951 		 * Inferred QID registers, we can use the Write Combining
952 		 * Gather Buffer; otherwise we use the simple doorbell.
953 		 */
954 		if (n == 1 && q->bar2_qid == 0) {
955 			int index = (q->pidx
956 				     ? (q->pidx - 1)
957 				     : (q->size - 1));
958 			u64 *wr = (u64 *)&q->desc[index];
959 
960 			cxgb_pio_copy((u64 __iomem *)
961 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
962 				      wr);
963 		} else {
964 			writel(val | QID_V(q->bar2_qid),
965 			       q->bar2_addr + SGE_UDB_KDOORBELL);
966 		}
967 
968 		/* This Write Memory Barrier will force the write to the User
969 		 * Doorbell area to be flushed.  This is needed to prevent
970 		 * writes on different CPUs for the same queue from hitting
971 		 * the adapter out of order.  This is required when some Work
972 		 * Requests take the Write Combine Gather Buffer path (user
973 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
974 		 * take the traditional path where we simply increment the
975 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
976 		 * hardware DMA read the actual Work Request.
977 		 */
978 		wmb();
979 	}
980 }
981 EXPORT_SYMBOL(cxgb4_ring_tx_db);
982 
983 /**
984  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
985  *	@skb: the packet
986  *	@q: the Tx queue where the packet will be inlined
987  *	@pos: starting position in the Tx queue where to inline the packet
988  *
989  *	Inline a packet's contents directly into Tx descriptors, starting at
990  *	the given position within the Tx DMA ring.
991  *	Most of the complexity of this operation is dealing with wrap arounds
992  *	in the middle of the packet we want to inline.
993  */
994 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
995 			 const struct sge_txq *q, void *pos)
996 {
997 	int left = (void *)q->stat - pos;
998 	u64 *p;
999 
1000 	if (likely(skb->len <= left)) {
1001 		if (likely(!skb->data_len))
1002 			skb_copy_from_linear_data(skb, pos, skb->len);
1003 		else
1004 			skb_copy_bits(skb, 0, pos, skb->len);
1005 		pos += skb->len;
1006 	} else {
1007 		skb_copy_bits(skb, 0, pos, left);
1008 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1009 		pos = (void *)q->desc + (skb->len - left);
1010 	}
1011 
1012 	/* 0-pad to multiple of 16 */
1013 	p = PTR_ALIGN(pos, 8);
1014 	if ((uintptr_t)p & 8)
1015 		*p = 0;
1016 }
1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1018 
1019 static void *inline_tx_skb_header(const struct sk_buff *skb,
1020 				  const struct sge_txq *q,  void *pos,
1021 				  int length)
1022 {
1023 	u64 *p;
1024 	int left = (void *)q->stat - pos;
1025 
1026 	if (likely(length <= left)) {
1027 		memcpy(pos, skb->data, length);
1028 		pos += length;
1029 	} else {
1030 		memcpy(pos, skb->data, left);
1031 		memcpy(q->desc, skb->data + left, length - left);
1032 		pos = (void *)q->desc + (length - left);
1033 	}
1034 	/* 0-pad to multiple of 16 */
1035 	p = PTR_ALIGN(pos, 8);
1036 	if ((uintptr_t)p & 8) {
1037 		*p = 0;
1038 		return p + 1;
1039 	}
1040 	return p;
1041 }
1042 
1043 /*
1044  * Figure out what HW csum a packet wants and return the appropriate control
1045  * bits.
1046  */
1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1048 {
1049 	int csum_type;
1050 	bool inner_hdr_csum = false;
1051 	u16 proto, ver;
1052 
1053 	if (skb->encapsulation &&
1054 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1055 		inner_hdr_csum = true;
1056 
1057 	if (inner_hdr_csum) {
1058 		ver = inner_ip_hdr(skb)->version;
1059 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1060 			inner_ipv6_hdr(skb)->nexthdr;
1061 	} else {
1062 		ver = ip_hdr(skb)->version;
1063 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1064 			ipv6_hdr(skb)->nexthdr;
1065 	}
1066 
1067 	if (ver == 4) {
1068 		if (proto == IPPROTO_TCP)
1069 			csum_type = TX_CSUM_TCPIP;
1070 		else if (proto == IPPROTO_UDP)
1071 			csum_type = TX_CSUM_UDPIP;
1072 		else {
1073 nocsum:			/*
1074 			 * unknown protocol, disable HW csum
1075 			 * and hope a bad packet is detected
1076 			 */
1077 			return TXPKT_L4CSUM_DIS_F;
1078 		}
1079 	} else {
1080 		/*
1081 		 * this doesn't work with extension headers
1082 		 */
1083 		if (proto == IPPROTO_TCP)
1084 			csum_type = TX_CSUM_TCPIP6;
1085 		else if (proto == IPPROTO_UDP)
1086 			csum_type = TX_CSUM_UDPIP6;
1087 		else
1088 			goto nocsum;
1089 	}
1090 
1091 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1092 		int eth_hdr_len, l4_len;
1093 		u64 hdr_len;
1094 
1095 		if (inner_hdr_csum) {
1096 			/* This allows checksum offload for all encapsulated
1097 			 * packets like GRE etc..
1098 			 */
1099 			l4_len = skb_inner_network_header_len(skb);
1100 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1101 		} else {
1102 			l4_len = skb_network_header_len(skb);
1103 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1104 		}
1105 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1106 
1107 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1108 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1109 		else
1110 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1111 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1112 	} else {
1113 		int start = skb_transport_offset(skb);
1114 
1115 		return TXPKT_CSUM_TYPE_V(csum_type) |
1116 			TXPKT_CSUM_START_V(start) |
1117 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1118 	}
1119 }
1120 
1121 static void eth_txq_stop(struct sge_eth_txq *q)
1122 {
1123 	netif_tx_stop_queue(q->txq);
1124 	q->q.stops++;
1125 }
1126 
1127 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1128 {
1129 	q->in_use += n;
1130 	q->pidx += n;
1131 	if (q->pidx >= q->size)
1132 		q->pidx -= q->size;
1133 }
1134 
1135 #ifdef CONFIG_CHELSIO_T4_FCOE
1136 static inline int
1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1138 		  const struct port_info *pi, u64 *cntrl)
1139 {
1140 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1141 
1142 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1143 		return 0;
1144 
1145 	if (skb->protocol != htons(ETH_P_FCOE))
1146 		return 0;
1147 
1148 	skb_reset_mac_header(skb);
1149 	skb->mac_len = sizeof(struct ethhdr);
1150 
1151 	skb_set_network_header(skb, skb->mac_len);
1152 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1153 
1154 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1155 		return -ENOTSUPP;
1156 
1157 	/* FC CRC offload */
1158 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1159 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1160 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1161 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1162 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1163 	return 0;
1164 }
1165 #endif /* CONFIG_CHELSIO_T4_FCOE */
1166 
1167 /* Returns tunnel type if hardware supports offloading of the same.
1168  * It is called only for T5 and onwards.
1169  */
1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1171 {
1172 	u8 l4_hdr = 0;
1173 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1174 	struct port_info *pi = netdev_priv(skb->dev);
1175 	struct adapter *adapter = pi->adapter;
1176 
1177 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1178 	    skb->inner_protocol != htons(ETH_P_TEB))
1179 		return tnl_type;
1180 
1181 	switch (vlan_get_protocol(skb)) {
1182 	case htons(ETH_P_IP):
1183 		l4_hdr = ip_hdr(skb)->protocol;
1184 		break;
1185 	case htons(ETH_P_IPV6):
1186 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1187 		break;
1188 	default:
1189 		return tnl_type;
1190 	}
1191 
1192 	switch (l4_hdr) {
1193 	case IPPROTO_UDP:
1194 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1195 			tnl_type = TX_TNL_TYPE_VXLAN;
1196 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1197 			tnl_type = TX_TNL_TYPE_GENEVE;
1198 		break;
1199 	default:
1200 		return tnl_type;
1201 	}
1202 
1203 	return tnl_type;
1204 }
1205 
1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1207 				   struct cpl_tx_tnl_lso *tnl_lso,
1208 				   enum cpl_tx_tnl_lso_type tnl_type)
1209 {
1210 	u32 val;
1211 	int in_eth_xtra_len;
1212 	int l3hdr_len = skb_network_header_len(skb);
1213 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1214 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1215 	bool v6 = (ip_hdr(skb)->version == 6);
1216 
1217 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1218 	      CPL_TX_TNL_LSO_FIRST_F |
1219 	      CPL_TX_TNL_LSO_LAST_F |
1220 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1221 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1222 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1223 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1224 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1225 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1226 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1227 
1228 	tnl_lso->IpIdOffsetOut = 0;
1229 
1230 	/* Get the tunnel header length */
1231 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1232 	in_eth_xtra_len = skb_inner_network_header(skb) -
1233 			  skb_inner_mac_header(skb) - ETH_HLEN;
1234 
1235 	switch (tnl_type) {
1236 	case TX_TNL_TYPE_VXLAN:
1237 	case TX_TNL_TYPE_GENEVE:
1238 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1239 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1240 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1241 		break;
1242 	default:
1243 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1244 		break;
1245 	}
1246 
1247 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1248 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1249 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1250 
1251 	tnl_lso->r1 = 0;
1252 
1253 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1254 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1255 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1256 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1257 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1258 
1259 	tnl_lso->IpIdOffset = htons(0);
1260 
1261 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1262 	tnl_lso->TCPSeqOffset = htonl(0);
1263 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1264 }
1265 
1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1267 				 struct cpl_tx_pkt_lso_core *lso)
1268 {
1269 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1270 	int l3hdr_len = skb_network_header_len(skb);
1271 	const struct skb_shared_info *ssi;
1272 	bool ipv6 = false;
1273 
1274 	ssi = skb_shinfo(skb);
1275 	if (ssi->gso_type & SKB_GSO_TCPV6)
1276 		ipv6 = true;
1277 
1278 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1279 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1280 			      LSO_IPV6_V(ipv6) |
1281 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1282 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1283 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1284 	lso->ipid_ofst = htons(0);
1285 	lso->mss = htons(ssi->gso_size);
1286 	lso->seqno_offset = htonl(0);
1287 	if (is_t4(adap->params.chip))
1288 		lso->len = htonl(skb->len);
1289 	else
1290 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1291 
1292 	return (void *)(lso + 1);
1293 }
1294 
1295 /**
1296  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1297  *	@adap: the adapter
1298  *	@eq: the Ethernet TX Queue
1299  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1300  *
1301  *	We're typically called here to update the state of an Ethernet TX
1302  *	Queue with respect to the hardware's progress in consuming the TX
1303  *	Work Requests that we've put on that Egress Queue.  This happens
1304  *	when we get Egress Queue Update messages and also prophylactically
1305  *	in regular timer-based Ethernet TX Queue maintenance.
1306  */
1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1308 				 int maxreclaim)
1309 {
1310 	unsigned int reclaimed, hw_cidx;
1311 	struct sge_txq *q = &eq->q;
1312 	int hw_in_use;
1313 
1314 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1315 		return 0;
1316 
1317 	/* Reclaim pending completed TX Descriptors. */
1318 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1319 
1320 	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1321 	hw_in_use = q->pidx - hw_cidx;
1322 	if (hw_in_use < 0)
1323 		hw_in_use += q->size;
1324 
1325 	/* If the TX Queue is currently stopped and there's now more than half
1326 	 * the queue available, restart it.  Otherwise bail out since the rest
1327 	 * of what we want do here is with the possibility of shipping any
1328 	 * currently buffered Coalesced TX Work Request.
1329 	 */
1330 	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1331 		netif_tx_wake_queue(eq->txq);
1332 		eq->q.restarts++;
1333 	}
1334 
1335 	__netif_tx_unlock(eq->txq);
1336 	return reclaimed;
1337 }
1338 
1339 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1340 				     struct net_device *dev,
1341 				     u32 min_pkt_len)
1342 {
1343 	u32 max_pkt_len;
1344 
1345 	/* The chip min packet length is 10 octets but some firmware
1346 	 * commands have a minimum packet length requirement. So, play
1347 	 * safe and reject anything shorter than @min_pkt_len.
1348 	 */
1349 	if (unlikely(skb->len < min_pkt_len))
1350 		return -EINVAL;
1351 
1352 	/* Discard the packet if the length is greater than mtu */
1353 	max_pkt_len = ETH_HLEN + dev->mtu;
1354 
1355 	if (skb_vlan_tagged(skb))
1356 		max_pkt_len += VLAN_HLEN;
1357 
1358 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1359 		return -EINVAL;
1360 
1361 	return 0;
1362 }
1363 
1364 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1365 			     u32 hdr_len)
1366 {
1367 	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1368 	wr->u.udpseg.ethlen = skb_network_offset(skb);
1369 	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1370 	wr->u.udpseg.udplen = sizeof(struct udphdr);
1371 	wr->u.udpseg.rtplen = 0;
1372 	wr->u.udpseg.r4 = 0;
1373 	if (skb_shinfo(skb)->gso_size)
1374 		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1375 	else
1376 		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1377 	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1378 	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1379 
1380 	return (void *)(wr + 1);
1381 }
1382 
1383 /**
1384  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1385  *	@skb: the packet
1386  *	@dev: the egress net device
1387  *
1388  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1389  */
1390 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1391 {
1392 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1393 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1394 	unsigned int last_desc, flits, ndesc;
1395 	u32 wr_mid, ctrl0, op, sgl_off = 0;
1396 	const struct skb_shared_info *ssi;
1397 	int len, qidx, credits, ret, left;
1398 	struct tx_sw_desc *sgl_sdesc;
1399 	struct fw_eth_tx_eo_wr *eowr;
1400 	struct fw_eth_tx_pkt_wr *wr;
1401 	struct cpl_tx_pkt_core *cpl;
1402 	const struct port_info *pi;
1403 	bool immediate = false;
1404 	u64 cntrl, *end, *sgl;
1405 	struct sge_eth_txq *q;
1406 	unsigned int chip_ver;
1407 	struct adapter *adap;
1408 
1409 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1410 	if (ret)
1411 		goto out_free;
1412 
1413 	pi = netdev_priv(dev);
1414 	adap = pi->adapter;
1415 	ssi = skb_shinfo(skb);
1416 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1417 	if (xfrm_offload(skb) && !ssi->gso_size)
1418 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1419 #endif /* CHELSIO_IPSEC_INLINE */
1420 
1421 #ifdef CONFIG_CHELSIO_TLS_DEVICE
1422 	if (skb->decrypted)
1423 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1424 #endif /* CHELSIO_TLS_DEVICE */
1425 
1426 	qidx = skb_get_queue_mapping(skb);
1427 	if (ptp_enabled) {
1428 		spin_lock(&adap->ptp_lock);
1429 		if (!(adap->ptp_tx_skb)) {
1430 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1431 			adap->ptp_tx_skb = skb_get(skb);
1432 		} else {
1433 			spin_unlock(&adap->ptp_lock);
1434 			goto out_free;
1435 		}
1436 		q = &adap->sge.ptptxq;
1437 	} else {
1438 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1439 	}
1440 	skb_tx_timestamp(skb);
1441 
1442 	reclaim_completed_tx(adap, &q->q, -1, true);
1443 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1444 
1445 #ifdef CONFIG_CHELSIO_T4_FCOE
1446 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1447 	if (unlikely(ret == -ENOTSUPP)) {
1448 		if (ptp_enabled)
1449 			spin_unlock(&adap->ptp_lock);
1450 		goto out_free;
1451 	}
1452 #endif /* CONFIG_CHELSIO_T4_FCOE */
1453 
1454 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1455 	flits = calc_tx_flits(skb, chip_ver);
1456 	ndesc = flits_to_desc(flits);
1457 	credits = txq_avail(&q->q) - ndesc;
1458 
1459 	if (unlikely(credits < 0)) {
1460 		eth_txq_stop(q);
1461 		dev_err(adap->pdev_dev,
1462 			"%s: Tx ring %u full while queue awake!\n",
1463 			dev->name, qidx);
1464 		if (ptp_enabled)
1465 			spin_unlock(&adap->ptp_lock);
1466 		return NETDEV_TX_BUSY;
1467 	}
1468 
1469 	if (is_eth_imm(skb, chip_ver))
1470 		immediate = true;
1471 
1472 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1473 		tnl_type = cxgb_encap_offload_supported(skb);
1474 
1475 	last_desc = q->q.pidx + ndesc - 1;
1476 	if (last_desc >= q->q.size)
1477 		last_desc -= q->q.size;
1478 	sgl_sdesc = &q->q.sdesc[last_desc];
1479 
1480 	if (!immediate &&
1481 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1482 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1483 		q->mapping_err++;
1484 		if (ptp_enabled)
1485 			spin_unlock(&adap->ptp_lock);
1486 		goto out_free;
1487 	}
1488 
1489 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1490 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1491 		/* After we're done injecting the Work Request for this
1492 		 * packet, we'll be below our "stop threshold" so stop the TX
1493 		 * Queue now and schedule a request for an SGE Egress Queue
1494 		 * Update message. The queue will get started later on when
1495 		 * the firmware processes this Work Request and sends us an
1496 		 * Egress Queue Status Update message indicating that space
1497 		 * has opened up.
1498 		 */
1499 		eth_txq_stop(q);
1500 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1501 	}
1502 
1503 	wr = (void *)&q->q.desc[q->q.pidx];
1504 	eowr = (void *)&q->q.desc[q->q.pidx];
1505 	wr->equiq_to_len16 = htonl(wr_mid);
1506 	wr->r3 = cpu_to_be64(0);
1507 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1508 		end = (u64 *)eowr + flits;
1509 	else
1510 		end = (u64 *)wr + flits;
1511 
1512 	len = immediate ? skb->len : 0;
1513 	len += sizeof(*cpl);
1514 	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1515 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1516 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1517 
1518 		if (tnl_type)
1519 			len += sizeof(*tnl_lso);
1520 		else
1521 			len += sizeof(*lso);
1522 
1523 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1524 				       FW_WR_IMMDLEN_V(len));
1525 		if (tnl_type) {
1526 			struct iphdr *iph = ip_hdr(skb);
1527 
1528 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1529 			cpl = (void *)(tnl_lso + 1);
1530 			/* Driver is expected to compute partial checksum that
1531 			 * does not include the IP Total Length.
1532 			 */
1533 			if (iph->version == 4) {
1534 				iph->check = 0;
1535 				iph->tot_len = 0;
1536 				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1537 								 iph->ihl));
1538 			}
1539 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1540 				cntrl = hwcsum(adap->params.chip, skb);
1541 		} else {
1542 			cpl = write_tso_wr(adap, skb, lso);
1543 			cntrl = hwcsum(adap->params.chip, skb);
1544 		}
1545 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1546 		q->tso++;
1547 		q->tx_cso += ssi->gso_segs;
1548 	} else if (ssi->gso_size) {
1549 		u64 *start;
1550 		u32 hdrlen;
1551 
1552 		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1553 		len += hdrlen;
1554 		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1555 					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1556 		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1557 		cntrl = hwcsum(adap->params.chip, skb);
1558 
1559 		start = (u64 *)(cpl + 1);
1560 		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1561 						  hdrlen);
1562 		if (unlikely(start > sgl)) {
1563 			left = (u8 *)end - (u8 *)q->q.stat;
1564 			end = (void *)q->q.desc + left;
1565 		}
1566 		sgl_off = hdrlen;
1567 		q->uso++;
1568 		q->tx_cso += ssi->gso_segs;
1569 	} else {
1570 		if (ptp_enabled)
1571 			op = FW_PTP_TX_PKT_WR;
1572 		else
1573 			op = FW_ETH_TX_PKT_WR;
1574 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1575 				       FW_WR_IMMDLEN_V(len));
1576 		cpl = (void *)(wr + 1);
1577 		sgl = (u64 *)(cpl + 1);
1578 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1579 			cntrl = hwcsum(adap->params.chip, skb) |
1580 				TXPKT_IPCSUM_DIS_F;
1581 			q->tx_cso++;
1582 		}
1583 	}
1584 
1585 	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1586 		/* If current position is already at the end of the
1587 		 * txq, reset the current to point to start of the queue
1588 		 * and update the end ptr as well.
1589 		 */
1590 		left = (u8 *)end - (u8 *)q->q.stat;
1591 		end = (void *)q->q.desc + left;
1592 		sgl = (void *)q->q.desc;
1593 	}
1594 
1595 	if (skb_vlan_tag_present(skb)) {
1596 		q->vlan_ins++;
1597 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1598 #ifdef CONFIG_CHELSIO_T4_FCOE
1599 		if (skb->protocol == htons(ETH_P_FCOE))
1600 			cntrl |= TXPKT_VLAN_V(
1601 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1602 #endif /* CONFIG_CHELSIO_T4_FCOE */
1603 	}
1604 
1605 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1606 		TXPKT_PF_V(adap->pf);
1607 	if (ptp_enabled)
1608 		ctrl0 |= TXPKT_TSTAMP_F;
1609 #ifdef CONFIG_CHELSIO_T4_DCB
1610 	if (is_t4(adap->params.chip))
1611 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1612 	else
1613 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1614 #endif
1615 	cpl->ctrl0 = htonl(ctrl0);
1616 	cpl->pack = htons(0);
1617 	cpl->len = htons(skb->len);
1618 	cpl->ctrl1 = cpu_to_be64(cntrl);
1619 
1620 	if (immediate) {
1621 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1622 		dev_consume_skb_any(skb);
1623 	} else {
1624 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1625 				sgl_sdesc->addr);
1626 		skb_orphan(skb);
1627 		sgl_sdesc->skb = skb;
1628 	}
1629 
1630 	txq_advance(&q->q, ndesc);
1631 
1632 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1633 	if (ptp_enabled)
1634 		spin_unlock(&adap->ptp_lock);
1635 	return NETDEV_TX_OK;
1636 
1637 out_free:
1638 	dev_kfree_skb_any(skb);
1639 	return NETDEV_TX_OK;
1640 }
1641 
1642 /* Constants ... */
1643 enum {
1644 	/* Egress Queue sizes, producer and consumer indices are all in units
1645 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1646 	 * concerned, the free list is an Egress Queue (the host produces free
1647 	 * buffers which the hardware consumes) and free list entries are
1648 	 * 64-bit PCI DMA addresses.
1649 	 */
1650 	EQ_UNIT = SGE_EQ_IDXSIZE,
1651 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1652 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1653 
1654 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1655 			       sizeof(struct cpl_tx_pkt_lso_core) +
1656 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1657 };
1658 
1659 /**
1660  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1661  *	@skb: the packet
1662  *
1663  *	Returns whether an Ethernet packet is small enough to fit completely as
1664  *	immediate data.
1665  */
1666 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1667 {
1668 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1669 	 * which does not accommodate immediate data.  We could dike out all
1670 	 * of the support code for immediate data but that would tie our hands
1671 	 * too much if we ever want to enhace the firmware.  It would also
1672 	 * create more differences between the PF and VF Drivers.
1673 	 */
1674 	return false;
1675 }
1676 
1677 /**
1678  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1679  *	@skb: the packet
1680  *
1681  *	Returns the number of flits needed for a TX Work Request for the
1682  *	given Ethernet packet, including the needed WR and CPL headers.
1683  */
1684 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1685 {
1686 	unsigned int flits;
1687 
1688 	/* If the skb is small enough, we can pump it out as a work request
1689 	 * with only immediate data.  In that case we just have to have the
1690 	 * TX Packet header plus the skb data in the Work Request.
1691 	 */
1692 	if (t4vf_is_eth_imm(skb))
1693 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1694 				    sizeof(__be64));
1695 
1696 	/* Otherwise, we're going to have to construct a Scatter gather list
1697 	 * of the skb body and fragments.  We also include the flits necessary
1698 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1699 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1700 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1701 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1702 	 * with an embedded TX Packet Write CPL message.
1703 	 */
1704 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1705 	if (skb_shinfo(skb)->gso_size)
1706 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1707 			  sizeof(struct cpl_tx_pkt_lso_core) +
1708 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1709 	else
1710 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1711 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1712 	return flits;
1713 }
1714 
1715 /**
1716  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1717  *	@skb: the packet
1718  *	@dev: the egress net device
1719  *
1720  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1721  */
1722 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1723 				     struct net_device *dev)
1724 {
1725 	unsigned int last_desc, flits, ndesc;
1726 	const struct skb_shared_info *ssi;
1727 	struct fw_eth_tx_pkt_vm_wr *wr;
1728 	struct tx_sw_desc *sgl_sdesc;
1729 	struct cpl_tx_pkt_core *cpl;
1730 	const struct port_info *pi;
1731 	struct sge_eth_txq *txq;
1732 	struct adapter *adapter;
1733 	int qidx, credits, ret;
1734 	size_t fw_hdr_copy_len;
1735 	u64 cntrl, *end;
1736 	u32 wr_mid;
1737 
1738 	/* The chip minimum packet length is 10 octets but the firmware
1739 	 * command that we are using requires that we copy the Ethernet header
1740 	 * (including the VLAN tag) into the header so we reject anything
1741 	 * smaller than that ...
1742 	 */
1743 	fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1744 			  sizeof(wr->ethtype) + sizeof(wr->vlantci);
1745 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1746 	if (ret)
1747 		goto out_free;
1748 
1749 	/* Figure out which TX Queue we're going to use. */
1750 	pi = netdev_priv(dev);
1751 	adapter = pi->adapter;
1752 	qidx = skb_get_queue_mapping(skb);
1753 	WARN_ON(qidx >= pi->nqsets);
1754 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1755 
1756 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1757 	 * transfers have completed.
1758 	 */
1759 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1760 
1761 	/* Calculate the number of flits and TX Descriptors we're going to
1762 	 * need along with how many TX Descriptors will be left over after
1763 	 * we inject our Work Request.
1764 	 */
1765 	flits = t4vf_calc_tx_flits(skb);
1766 	ndesc = flits_to_desc(flits);
1767 	credits = txq_avail(&txq->q) - ndesc;
1768 
1769 	if (unlikely(credits < 0)) {
1770 		/* Not enough room for this packet's Work Request.  Stop the
1771 		 * TX Queue and return a "busy" condition.  The queue will get
1772 		 * started later on when the firmware informs us that space
1773 		 * has opened up.
1774 		 */
1775 		eth_txq_stop(txq);
1776 		dev_err(adapter->pdev_dev,
1777 			"%s: TX ring %u full while queue awake!\n",
1778 			dev->name, qidx);
1779 		return NETDEV_TX_BUSY;
1780 	}
1781 
1782 	last_desc = txq->q.pidx + ndesc - 1;
1783 	if (last_desc >= txq->q.size)
1784 		last_desc -= txq->q.size;
1785 	sgl_sdesc = &txq->q.sdesc[last_desc];
1786 
1787 	if (!t4vf_is_eth_imm(skb) &&
1788 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1789 				   sgl_sdesc->addr) < 0)) {
1790 		/* We need to map the skb into PCI DMA space (because it can't
1791 		 * be in-lined directly into the Work Request) and the mapping
1792 		 * operation failed.  Record the error and drop the packet.
1793 		 */
1794 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1795 		txq->mapping_err++;
1796 		goto out_free;
1797 	}
1798 
1799 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1800 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1801 		/* After we're done injecting the Work Request for this
1802 		 * packet, we'll be below our "stop threshold" so stop the TX
1803 		 * Queue now and schedule a request for an SGE Egress Queue
1804 		 * Update message.  The queue will get started later on when
1805 		 * the firmware processes this Work Request and sends us an
1806 		 * Egress Queue Status Update message indicating that space
1807 		 * has opened up.
1808 		 */
1809 		eth_txq_stop(txq);
1810 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1811 	}
1812 
1813 	/* Start filling in our Work Request.  Note that we do _not_ handle
1814 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1815 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1816 	 * do something else here.
1817 	 */
1818 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1819 	wr = (void *)&txq->q.desc[txq->q.pidx];
1820 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1821 	wr->r3[0] = cpu_to_be32(0);
1822 	wr->r3[1] = cpu_to_be32(0);
1823 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1824 	end = (u64 *)wr + flits;
1825 
1826 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1827 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1828 	 * just use a TX Packet CPL message.
1829 	 */
1830 	ssi = skb_shinfo(skb);
1831 	if (ssi->gso_size) {
1832 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1833 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1834 		int l3hdr_len = skb_network_header_len(skb);
1835 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1836 
1837 		wr->op_immdlen =
1838 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1839 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1840 						    sizeof(*cpl)));
1841 		 /* Fill in the LSO CPL message. */
1842 		lso->lso_ctrl =
1843 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1844 				    LSO_FIRST_SLICE_F |
1845 				    LSO_LAST_SLICE_F |
1846 				    LSO_IPV6_V(v6) |
1847 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1848 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1849 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1850 		lso->ipid_ofst = cpu_to_be16(0);
1851 		lso->mss = cpu_to_be16(ssi->gso_size);
1852 		lso->seqno_offset = cpu_to_be32(0);
1853 		if (is_t4(adapter->params.chip))
1854 			lso->len = cpu_to_be32(skb->len);
1855 		else
1856 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1857 
1858 		/* Set up TX Packet CPL pointer, control word and perform
1859 		 * accounting.
1860 		 */
1861 		cpl = (void *)(lso + 1);
1862 
1863 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1864 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1865 		else
1866 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1867 
1868 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1869 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1870 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1871 		txq->tso++;
1872 		txq->tx_cso += ssi->gso_segs;
1873 	} else {
1874 		int len;
1875 
1876 		len = (t4vf_is_eth_imm(skb)
1877 		       ? skb->len + sizeof(*cpl)
1878 		       : sizeof(*cpl));
1879 		wr->op_immdlen =
1880 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1881 				    FW_WR_IMMDLEN_V(len));
1882 
1883 		/* Set up TX Packet CPL pointer, control word and perform
1884 		 * accounting.
1885 		 */
1886 		cpl = (void *)(wr + 1);
1887 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1888 			cntrl = hwcsum(adapter->params.chip, skb) |
1889 				TXPKT_IPCSUM_DIS_F;
1890 			txq->tx_cso++;
1891 		} else {
1892 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1893 		}
1894 	}
1895 
1896 	/* If there's a VLAN tag present, add that to the list of things to
1897 	 * do in this Work Request.
1898 	 */
1899 	if (skb_vlan_tag_present(skb)) {
1900 		txq->vlan_ins++;
1901 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1902 	}
1903 
1904 	 /* Fill in the TX Packet CPL message header. */
1905 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1906 				 TXPKT_INTF_V(pi->port_id) |
1907 				 TXPKT_PF_V(0));
1908 	cpl->pack = cpu_to_be16(0);
1909 	cpl->len = cpu_to_be16(skb->len);
1910 	cpl->ctrl1 = cpu_to_be64(cntrl);
1911 
1912 	/* Fill in the body of the TX Packet CPL message with either in-lined
1913 	 * data or a Scatter/Gather List.
1914 	 */
1915 	if (t4vf_is_eth_imm(skb)) {
1916 		/* In-line the packet's data and free the skb since we don't
1917 		 * need it any longer.
1918 		 */
1919 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1920 		dev_consume_skb_any(skb);
1921 	} else {
1922 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
1923 		 * message and retain a pointer to the skb so we can free it
1924 		 * later when its DMA completes.  (We store the skb pointer
1925 		 * in the Software Descriptor corresponding to the last TX
1926 		 * Descriptor used by the Work Request.)
1927 		 *
1928 		 * The retained skb will be freed when the corresponding TX
1929 		 * Descriptors are reclaimed after their DMAs complete.
1930 		 * However, this could take quite a while since, in general,
1931 		 * the hardware is set up to be lazy about sending DMA
1932 		 * completion notifications to us and we mostly perform TX
1933 		 * reclaims in the transmit routine.
1934 		 *
1935 		 * This is good for performamce but means that we rely on new
1936 		 * TX packets arriving to run the destructors of completed
1937 		 * packets, which open up space in their sockets' send queues.
1938 		 * Sometimes we do not get such new packets causing TX to
1939 		 * stall.  A single UDP transmitter is a good example of this
1940 		 * situation.  We have a clean up timer that periodically
1941 		 * reclaims completed packets but it doesn't run often enough
1942 		 * (nor do we want it to) to prevent lengthy stalls.  A
1943 		 * solution to this problem is to run the destructor early,
1944 		 * after the packet is queued but before it's DMAd.  A con is
1945 		 * that we lie to socket memory accounting, but the amount of
1946 		 * extra memory is reasonable (limited by the number of TX
1947 		 * descriptors), the packets do actually get freed quickly by
1948 		 * new packets almost always, and for protocols like TCP that
1949 		 * wait for acks to really free up the data the extra memory
1950 		 * is even less.  On the positive side we run the destructors
1951 		 * on the sending CPU rather than on a potentially different
1952 		 * completing CPU, usually a good thing.
1953 		 *
1954 		 * Run the destructor before telling the DMA engine about the
1955 		 * packet to make sure it doesn't complete and get freed
1956 		 * prematurely.
1957 		 */
1958 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1959 		struct sge_txq *tq = &txq->q;
1960 
1961 		/* If the Work Request header was an exact multiple of our TX
1962 		 * Descriptor length, then it's possible that the starting SGL
1963 		 * pointer lines up exactly with the end of our TX Descriptor
1964 		 * ring.  If that's the case, wrap around to the beginning
1965 		 * here ...
1966 		 */
1967 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1968 			sgl = (void *)tq->desc;
1969 			end = (void *)((void *)tq->desc +
1970 				       ((void *)end - (void *)tq->stat));
1971 		}
1972 
1973 		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
1974 		skb_orphan(skb);
1975 		sgl_sdesc->skb = skb;
1976 	}
1977 
1978 	/* Advance our internal TX Queue state, tell the hardware about
1979 	 * the new TX descriptors and return success.
1980 	 */
1981 	txq_advance(&txq->q, ndesc);
1982 
1983 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1984 	return NETDEV_TX_OK;
1985 
1986 out_free:
1987 	/* An error of some sort happened.  Free the TX skb and tell the
1988 	 * OS that we've "dealt" with the packet ...
1989 	 */
1990 	dev_kfree_skb_any(skb);
1991 	return NETDEV_TX_OK;
1992 }
1993 
1994 /**
1995  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1996  * @q: the SGE control Tx queue
1997  *
1998  * This is a variant of cxgb4_reclaim_completed_tx() that is used
1999  * for Tx queues that send only immediate data (presently just
2000  * the control queues) and	thus do not have any sk_buffs to release.
2001  */
2002 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2003 {
2004 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2005 	int reclaim = hw_cidx - q->cidx;
2006 
2007 	if (reclaim < 0)
2008 		reclaim += q->size;
2009 
2010 	q->in_use -= reclaim;
2011 	q->cidx = hw_cidx;
2012 }
2013 
2014 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2015 {
2016 	u32 val = *idx + n;
2017 
2018 	if (val >= max)
2019 		val -= max;
2020 
2021 	*idx = val;
2022 }
2023 
2024 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2025 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2026 {
2027 	struct tx_sw_desc *d;
2028 
2029 	d = &eosw_txq->desc[eosw_txq->last_cidx];
2030 	while (ndesc--) {
2031 		if (d->skb) {
2032 			if (d->addr[0]) {
2033 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2034 				memset(d->addr, 0, sizeof(d->addr));
2035 			}
2036 			dev_consume_skb_any(d->skb);
2037 			d->skb = NULL;
2038 		}
2039 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2040 				       eosw_txq->ndesc);
2041 		d = &eosw_txq->desc[eosw_txq->last_cidx];
2042 	}
2043 }
2044 
2045 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2046 {
2047 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2048 	eosw_txq->inuse += n;
2049 }
2050 
2051 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2052 				   struct sk_buff *skb)
2053 {
2054 	if (eosw_txq->inuse == eosw_txq->ndesc)
2055 		return -ENOMEM;
2056 
2057 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2058 	return 0;
2059 }
2060 
2061 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2062 {
2063 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2064 }
2065 
2066 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2067 				       struct sk_buff *skb, u32 hdr_len)
2068 {
2069 	u8 flits, nsgl = 0;
2070 	u32 wrlen;
2071 
2072 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2073 	if (skb_shinfo(skb)->gso_size &&
2074 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2075 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2076 
2077 	wrlen += roundup(hdr_len, 16);
2078 
2079 	/* Packet headers + WR + CPLs */
2080 	flits = DIV_ROUND_UP(wrlen, 8);
2081 
2082 	if (skb_shinfo(skb)->nr_frags > 0) {
2083 		if (skb_headlen(skb) - hdr_len)
2084 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2085 		else
2086 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2087 	} else if (skb->len - hdr_len) {
2088 		nsgl = sgl_len(1);
2089 	}
2090 
2091 	return flits + nsgl;
2092 }
2093 
2094 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2095 			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2096 			 u32 hdr_len, u32 wrlen)
2097 {
2098 	const struct skb_shared_info *ssi = skb_shinfo(skb);
2099 	struct cpl_tx_pkt_core *cpl;
2100 	u32 immd_len, wrlen16;
2101 	bool compl = false;
2102 	u8 ver, proto;
2103 
2104 	ver = ip_hdr(skb)->version;
2105 	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2106 
2107 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2108 	immd_len = sizeof(struct cpl_tx_pkt_core);
2109 	if (skb_shinfo(skb)->gso_size &&
2110 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2111 		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2112 	immd_len += hdr_len;
2113 
2114 	if (!eosw_txq->ncompl ||
2115 	    (eosw_txq->last_compl + wrlen16) >=
2116 	    (adap->params.ofldq_wr_cred / 2)) {
2117 		compl = true;
2118 		eosw_txq->ncompl++;
2119 		eosw_txq->last_compl = 0;
2120 	}
2121 
2122 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2123 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2124 				     FW_WR_COMPL_V(compl));
2125 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2126 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2127 	wr->r3 = 0;
2128 	if (proto == IPPROTO_UDP) {
2129 		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2130 	} else {
2131 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2132 		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2133 		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2134 		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2135 		wr->u.tcpseg.tsclk_tsoff = 0;
2136 		wr->u.tcpseg.r4 = 0;
2137 		wr->u.tcpseg.r5 = 0;
2138 		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2139 
2140 		if (ssi->gso_size) {
2141 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2142 
2143 			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2144 			cpl = write_tso_wr(adap, skb, lso);
2145 		} else {
2146 			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2147 			cpl = (void *)(wr + 1);
2148 		}
2149 	}
2150 
2151 	eosw_txq->cred -= wrlen16;
2152 	eosw_txq->last_compl += wrlen16;
2153 	return cpl;
2154 }
2155 
2156 static int ethofld_hard_xmit(struct net_device *dev,
2157 			     struct sge_eosw_txq *eosw_txq)
2158 {
2159 	struct port_info *pi = netdev2pinfo(dev);
2160 	struct adapter *adap = netdev2adap(dev);
2161 	u32 wrlen, wrlen16, hdr_len, data_len;
2162 	enum sge_eosw_state next_state;
2163 	u64 cntrl, *start, *end, *sgl;
2164 	struct sge_eohw_txq *eohw_txq;
2165 	struct cpl_tx_pkt_core *cpl;
2166 	struct fw_eth_tx_eo_wr *wr;
2167 	bool skip_eotx_wr = false;
2168 	struct tx_sw_desc *d;
2169 	struct sk_buff *skb;
2170 	int left, ret = 0;
2171 	u8 flits, ndesc;
2172 
2173 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2174 	spin_lock(&eohw_txq->lock);
2175 	reclaim_completed_tx_imm(&eohw_txq->q);
2176 
2177 	d = &eosw_txq->desc[eosw_txq->last_pidx];
2178 	skb = d->skb;
2179 	skb_tx_timestamp(skb);
2180 
2181 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2182 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2183 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2184 		hdr_len = skb->len;
2185 		data_len = 0;
2186 		flits = DIV_ROUND_UP(hdr_len, 8);
2187 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2188 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2189 		else
2190 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2191 		skip_eotx_wr = true;
2192 	} else {
2193 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2194 		data_len = skb->len - hdr_len;
2195 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2196 	}
2197 	ndesc = flits_to_desc(flits);
2198 	wrlen = flits * 8;
2199 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2200 
2201 	left = txq_avail(&eohw_txq->q) - ndesc;
2202 
2203 	/* If there are no descriptors left in hardware queues or no
2204 	 * CPL credits left in software queues, then wait for them
2205 	 * to come back and retry again. Note that we always request
2206 	 * for credits update via interrupt for every half credits
2207 	 * consumed. So, the interrupt will eventually restore the
2208 	 * credits and invoke the Tx path again.
2209 	 */
2210 	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2211 		ret = -ENOMEM;
2212 		goto out_unlock;
2213 	}
2214 
2215 	if (unlikely(skip_eotx_wr)) {
2216 		start = (u64 *)wr;
2217 		eosw_txq->state = next_state;
2218 		eosw_txq->cred -= wrlen16;
2219 		eosw_txq->ncompl++;
2220 		eosw_txq->last_compl = 0;
2221 		goto write_wr_headers;
2222 	}
2223 
2224 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2225 	cntrl = hwcsum(adap->params.chip, skb);
2226 	if (skb_vlan_tag_present(skb))
2227 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2228 
2229 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2230 				 TXPKT_INTF_V(pi->tx_chan) |
2231 				 TXPKT_PF_V(adap->pf));
2232 	cpl->pack = 0;
2233 	cpl->len = cpu_to_be16(skb->len);
2234 	cpl->ctrl1 = cpu_to_be64(cntrl);
2235 
2236 	start = (u64 *)(cpl + 1);
2237 
2238 write_wr_headers:
2239 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2240 					  hdr_len);
2241 	if (data_len) {
2242 		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2243 		if (unlikely(ret)) {
2244 			memset(d->addr, 0, sizeof(d->addr));
2245 			eohw_txq->mapping_err++;
2246 			goto out_unlock;
2247 		}
2248 
2249 		end = (u64 *)wr + flits;
2250 		if (unlikely(start > sgl)) {
2251 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2252 			end = (void *)eohw_txq->q.desc + left;
2253 		}
2254 
2255 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2256 			/* If current position is already at the end of the
2257 			 * txq, reset the current to point to start of the queue
2258 			 * and update the end ptr as well.
2259 			 */
2260 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2261 
2262 			end = (void *)eohw_txq->q.desc + left;
2263 			sgl = (void *)eohw_txq->q.desc;
2264 		}
2265 
2266 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2267 				d->addr);
2268 	}
2269 
2270 	if (skb_shinfo(skb)->gso_size) {
2271 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2272 			eohw_txq->uso++;
2273 		else
2274 			eohw_txq->tso++;
2275 		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2276 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2277 		eohw_txq->tx_cso++;
2278 	}
2279 
2280 	if (skb_vlan_tag_present(skb))
2281 		eohw_txq->vlan_ins++;
2282 
2283 	txq_advance(&eohw_txq->q, ndesc);
2284 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2285 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2286 
2287 out_unlock:
2288 	spin_unlock(&eohw_txq->lock);
2289 	return ret;
2290 }
2291 
2292 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2293 {
2294 	struct sk_buff *skb;
2295 	int pktcount, ret;
2296 
2297 	switch (eosw_txq->state) {
2298 	case CXGB4_EO_STATE_ACTIVE:
2299 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2300 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2301 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2302 		if (pktcount < 0)
2303 			pktcount += eosw_txq->ndesc;
2304 		break;
2305 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2306 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2307 	case CXGB4_EO_STATE_CLOSED:
2308 	default:
2309 		return;
2310 	}
2311 
2312 	while (pktcount--) {
2313 		skb = eosw_txq_peek(eosw_txq);
2314 		if (!skb) {
2315 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2316 					       eosw_txq->ndesc);
2317 			continue;
2318 		}
2319 
2320 		ret = ethofld_hard_xmit(dev, eosw_txq);
2321 		if (ret)
2322 			break;
2323 	}
2324 }
2325 
2326 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2327 				      struct net_device *dev)
2328 {
2329 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2330 	struct port_info *pi = netdev2pinfo(dev);
2331 	struct adapter *adap = netdev2adap(dev);
2332 	struct sge_eosw_txq *eosw_txq;
2333 	u32 qid;
2334 	int ret;
2335 
2336 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2337 	if (ret)
2338 		goto out_free;
2339 
2340 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2341 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2342 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2343 	spin_lock_bh(&eosw_txq->lock);
2344 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2345 		goto out_unlock;
2346 
2347 	ret = eosw_txq_enqueue(eosw_txq, skb);
2348 	if (ret)
2349 		goto out_unlock;
2350 
2351 	/* SKB is queued for processing until credits are available.
2352 	 * So, call the destructor now and we'll free the skb later
2353 	 * after it has been successfully transmitted.
2354 	 */
2355 	skb_orphan(skb);
2356 
2357 	eosw_txq_advance(eosw_txq, 1);
2358 	ethofld_xmit(dev, eosw_txq);
2359 	spin_unlock_bh(&eosw_txq->lock);
2360 	return NETDEV_TX_OK;
2361 
2362 out_unlock:
2363 	spin_unlock_bh(&eosw_txq->lock);
2364 out_free:
2365 	dev_kfree_skb_any(skb);
2366 	return NETDEV_TX_OK;
2367 }
2368 
2369 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2370 {
2371 	struct port_info *pi = netdev_priv(dev);
2372 	u16 qid = skb_get_queue_mapping(skb);
2373 
2374 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2375 		return cxgb4_vf_eth_xmit(skb, dev);
2376 
2377 	if (unlikely(qid >= pi->nqsets))
2378 		return cxgb4_ethofld_xmit(skb, dev);
2379 
2380 	return cxgb4_eth_xmit(skb, dev);
2381 }
2382 
2383 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2384 {
2385 	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2386 	int pidx = eosw_txq->pidx;
2387 	struct sk_buff *skb;
2388 
2389 	if (!pktcount)
2390 		return;
2391 
2392 	if (pktcount < 0)
2393 		pktcount += eosw_txq->ndesc;
2394 
2395 	while (pktcount--) {
2396 		pidx--;
2397 		if (pidx < 0)
2398 			pidx += eosw_txq->ndesc;
2399 
2400 		skb = eosw_txq->desc[pidx].skb;
2401 		if (skb) {
2402 			dev_consume_skb_any(skb);
2403 			eosw_txq->desc[pidx].skb = NULL;
2404 			eosw_txq->inuse--;
2405 		}
2406 	}
2407 
2408 	eosw_txq->pidx = eosw_txq->last_pidx + 1;
2409 }
2410 
2411 /**
2412  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2413  * @dev - netdevice
2414  * @eotid - ETHOFLD tid to bind/unbind
2415  * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2416  *
2417  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2418  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2419  * a traffic class.
2420  */
2421 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2422 {
2423 	struct port_info *pi = netdev2pinfo(dev);
2424 	struct adapter *adap = netdev2adap(dev);
2425 	enum sge_eosw_state next_state;
2426 	struct sge_eosw_txq *eosw_txq;
2427 	u32 len, len16, nparams = 6;
2428 	struct fw_flowc_wr *flowc;
2429 	struct eotid_entry *entry;
2430 	struct sge_ofld_rxq *rxq;
2431 	struct sk_buff *skb;
2432 	int ret = 0;
2433 
2434 	len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2435 	len16 = DIV_ROUND_UP(len, 16);
2436 
2437 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2438 	if (!entry)
2439 		return -ENOMEM;
2440 
2441 	eosw_txq = (struct sge_eosw_txq *)entry->data;
2442 	if (!eosw_txq)
2443 		return -ENOMEM;
2444 
2445 	skb = alloc_skb(len, GFP_KERNEL);
2446 	if (!skb)
2447 		return -ENOMEM;
2448 
2449 	spin_lock_bh(&eosw_txq->lock);
2450 	if (tc != FW_SCHED_CLS_NONE) {
2451 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2452 			goto out_unlock;
2453 
2454 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2455 	} else {
2456 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2457 			goto out_unlock;
2458 
2459 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2460 	}
2461 
2462 	flowc = __skb_put(skb, len);
2463 	memset(flowc, 0, len);
2464 
2465 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2466 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2467 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2468 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2469 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2470 					   FW_WR_COMPL_V(1));
2471 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2472 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2473 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2474 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2475 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2476 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2477 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2478 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2479 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2480 	flowc->mnemval[4].val = cpu_to_be32(tc);
2481 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2482 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2483 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2484 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2485 
2486 	/* Free up any pending skbs to ensure there's room for
2487 	 * termination FLOWC.
2488 	 */
2489 	if (tc == FW_SCHED_CLS_NONE)
2490 		eosw_txq_flush_pending_skbs(eosw_txq);
2491 
2492 	ret = eosw_txq_enqueue(eosw_txq, skb);
2493 	if (ret) {
2494 		dev_consume_skb_any(skb);
2495 		goto out_unlock;
2496 	}
2497 
2498 	eosw_txq->state = next_state;
2499 	eosw_txq->flowc_idx = eosw_txq->pidx;
2500 	eosw_txq_advance(eosw_txq, 1);
2501 	ethofld_xmit(dev, eosw_txq);
2502 
2503 out_unlock:
2504 	spin_unlock_bh(&eosw_txq->lock);
2505 	return ret;
2506 }
2507 
2508 /**
2509  *	is_imm - check whether a packet can be sent as immediate data
2510  *	@skb: the packet
2511  *
2512  *	Returns true if a packet can be sent as a WR with immediate data.
2513  */
2514 static inline int is_imm(const struct sk_buff *skb)
2515 {
2516 	return skb->len <= MAX_CTRL_WR_LEN;
2517 }
2518 
2519 /**
2520  *	ctrlq_check_stop - check if a control queue is full and should stop
2521  *	@q: the queue
2522  *	@wr: most recent WR written to the queue
2523  *
2524  *	Check if a control queue has become full and should be stopped.
2525  *	We clean up control queue descriptors very lazily, only when we are out.
2526  *	If the queue is still full after reclaiming any completed descriptors
2527  *	we suspend it and have the last WR wake it up.
2528  */
2529 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2530 {
2531 	reclaim_completed_tx_imm(&q->q);
2532 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2533 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2534 		q->q.stops++;
2535 		q->full = 1;
2536 	}
2537 }
2538 
2539 /**
2540  *	ctrl_xmit - send a packet through an SGE control Tx queue
2541  *	@q: the control queue
2542  *	@skb: the packet
2543  *
2544  *	Send a packet through an SGE control Tx queue.  Packets sent through
2545  *	a control queue must fit entirely as immediate data.
2546  */
2547 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2548 {
2549 	unsigned int ndesc;
2550 	struct fw_wr_hdr *wr;
2551 
2552 	if (unlikely(!is_imm(skb))) {
2553 		WARN_ON(1);
2554 		dev_kfree_skb(skb);
2555 		return NET_XMIT_DROP;
2556 	}
2557 
2558 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2559 	spin_lock(&q->sendq.lock);
2560 
2561 	if (unlikely(q->full)) {
2562 		skb->priority = ndesc;                  /* save for restart */
2563 		__skb_queue_tail(&q->sendq, skb);
2564 		spin_unlock(&q->sendq.lock);
2565 		return NET_XMIT_CN;
2566 	}
2567 
2568 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2569 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2570 
2571 	txq_advance(&q->q, ndesc);
2572 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2573 		ctrlq_check_stop(q, wr);
2574 
2575 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2576 	spin_unlock(&q->sendq.lock);
2577 
2578 	kfree_skb(skb);
2579 	return NET_XMIT_SUCCESS;
2580 }
2581 
2582 /**
2583  *	restart_ctrlq - restart a suspended control queue
2584  *	@data: the control queue to restart
2585  *
2586  *	Resumes transmission on a suspended Tx control queue.
2587  */
2588 static void restart_ctrlq(unsigned long data)
2589 {
2590 	struct sk_buff *skb;
2591 	unsigned int written = 0;
2592 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2593 
2594 	spin_lock(&q->sendq.lock);
2595 	reclaim_completed_tx_imm(&q->q);
2596 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2597 
2598 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2599 		struct fw_wr_hdr *wr;
2600 		unsigned int ndesc = skb->priority;     /* previously saved */
2601 
2602 		written += ndesc;
2603 		/* Write descriptors and free skbs outside the lock to limit
2604 		 * wait times.  q->full is still set so new skbs will be queued.
2605 		 */
2606 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2607 		txq_advance(&q->q, ndesc);
2608 		spin_unlock(&q->sendq.lock);
2609 
2610 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2611 		kfree_skb(skb);
2612 
2613 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2614 			unsigned long old = q->q.stops;
2615 
2616 			ctrlq_check_stop(q, wr);
2617 			if (q->q.stops != old) {          /* suspended anew */
2618 				spin_lock(&q->sendq.lock);
2619 				goto ringdb;
2620 			}
2621 		}
2622 		if (written > 16) {
2623 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2624 			written = 0;
2625 		}
2626 		spin_lock(&q->sendq.lock);
2627 	}
2628 	q->full = 0;
2629 ringdb:
2630 	if (written)
2631 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2632 	spin_unlock(&q->sendq.lock);
2633 }
2634 
2635 /**
2636  *	t4_mgmt_tx - send a management message
2637  *	@adap: the adapter
2638  *	@skb: the packet containing the management message
2639  *
2640  *	Send a management message through control queue 0.
2641  */
2642 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2643 {
2644 	int ret;
2645 
2646 	local_bh_disable();
2647 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2648 	local_bh_enable();
2649 	return ret;
2650 }
2651 
2652 /**
2653  *	is_ofld_imm - check whether a packet can be sent as immediate data
2654  *	@skb: the packet
2655  *
2656  *	Returns true if a packet can be sent as an offload WR with immediate
2657  *	data.  We currently use the same limit as for Ethernet packets.
2658  */
2659 static inline int is_ofld_imm(const struct sk_buff *skb)
2660 {
2661 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2662 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2663 
2664 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2665 		return skb->len <= SGE_MAX_WR_LEN;
2666 	else
2667 		return skb->len <= MAX_IMM_TX_PKT_LEN;
2668 }
2669 
2670 /**
2671  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2672  *	@skb: the packet
2673  *
2674  *	Returns the number of flits needed for the given offload packet.
2675  *	These packets are already fully constructed and no additional headers
2676  *	will be added.
2677  */
2678 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2679 {
2680 	unsigned int flits, cnt;
2681 
2682 	if (is_ofld_imm(skb))
2683 		return DIV_ROUND_UP(skb->len, 8);
2684 
2685 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2686 	cnt = skb_shinfo(skb)->nr_frags;
2687 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2688 		cnt++;
2689 	return flits + sgl_len(cnt);
2690 }
2691 
2692 /**
2693  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2694  *	@adap: the adapter
2695  *	@q: the queue to stop
2696  *
2697  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2698  *	inability to map packets.  A periodic timer attempts to restart
2699  *	queues so marked.
2700  */
2701 static void txq_stop_maperr(struct sge_uld_txq *q)
2702 {
2703 	q->mapping_err++;
2704 	q->q.stops++;
2705 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2706 		q->adap->sge.txq_maperr);
2707 }
2708 
2709 /**
2710  *	ofldtxq_stop - stop an offload Tx queue that has become full
2711  *	@q: the queue to stop
2712  *	@wr: the Work Request causing the queue to become full
2713  *
2714  *	Stops an offload Tx queue that has become full and modifies the packet
2715  *	being written to request a wakeup.
2716  */
2717 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2718 {
2719 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2720 	q->q.stops++;
2721 	q->full = 1;
2722 }
2723 
2724 /**
2725  *	service_ofldq - service/restart a suspended offload queue
2726  *	@q: the offload queue
2727  *
2728  *	Services an offload Tx queue by moving packets from its Pending Send
2729  *	Queue to the Hardware TX ring.  The function starts and ends with the
2730  *	Send Queue locked, but drops the lock while putting the skb at the
2731  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2732  *	allows more skbs to be added to the Send Queue by other threads.
2733  *	The packet being processed at the head of the Pending Send Queue is
2734  *	left on the queue in case we experience DMA Mapping errors, etc.
2735  *	and need to give up and restart later.
2736  *
2737  *	service_ofldq() can be thought of as a task which opportunistically
2738  *	uses other threads execution contexts.  We use the Offload Queue
2739  *	boolean "service_ofldq_running" to make sure that only one instance
2740  *	is ever running at a time ...
2741  */
2742 static void service_ofldq(struct sge_uld_txq *q)
2743 	__must_hold(&q->sendq.lock)
2744 {
2745 	u64 *pos, *before, *end;
2746 	int credits;
2747 	struct sk_buff *skb;
2748 	struct sge_txq *txq;
2749 	unsigned int left;
2750 	unsigned int written = 0;
2751 	unsigned int flits, ndesc;
2752 
2753 	/* If another thread is currently in service_ofldq() processing the
2754 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2755 	 * that we're doing the work and continue.  Examining/modifying
2756 	 * the Offload Queue boolean "service_ofldq_running" must be done
2757 	 * while holding the Pending Send Queue Lock.
2758 	 */
2759 	if (q->service_ofldq_running)
2760 		return;
2761 	q->service_ofldq_running = true;
2762 
2763 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2764 		/* We drop the lock while we're working with the skb at the
2765 		 * head of the Pending Send Queue.  This allows more skbs to
2766 		 * be added to the Pending Send Queue while we're working on
2767 		 * this one.  We don't need to lock to guard the TX Ring
2768 		 * updates because only one thread of execution is ever
2769 		 * allowed into service_ofldq() at a time.
2770 		 */
2771 		spin_unlock(&q->sendq.lock);
2772 
2773 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2774 
2775 		flits = skb->priority;                /* previously saved */
2776 		ndesc = flits_to_desc(flits);
2777 		credits = txq_avail(&q->q) - ndesc;
2778 		BUG_ON(credits < 0);
2779 		if (unlikely(credits < TXQ_STOP_THRES))
2780 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2781 
2782 		pos = (u64 *)&q->q.desc[q->q.pidx];
2783 		if (is_ofld_imm(skb))
2784 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2785 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2786 				       (dma_addr_t *)skb->head)) {
2787 			txq_stop_maperr(q);
2788 			spin_lock(&q->sendq.lock);
2789 			break;
2790 		} else {
2791 			int last_desc, hdr_len = skb_transport_offset(skb);
2792 
2793 			/* The WR headers  may not fit within one descriptor.
2794 			 * So we need to deal with wrap-around here.
2795 			 */
2796 			before = (u64 *)pos;
2797 			end = (u64 *)pos + flits;
2798 			txq = &q->q;
2799 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2800 							   (void *)pos,
2801 							   hdr_len);
2802 			if (before > (u64 *)pos) {
2803 				left = (u8 *)end - (u8 *)txq->stat;
2804 				end = (void *)txq->desc + left;
2805 			}
2806 
2807 			/* If current position is already at the end of the
2808 			 * ofld queue, reset the current to point to
2809 			 * start of the queue and update the end ptr as well.
2810 			 */
2811 			if (pos == (u64 *)txq->stat) {
2812 				left = (u8 *)end - (u8 *)txq->stat;
2813 				end = (void *)txq->desc + left;
2814 				pos = (void *)txq->desc;
2815 			}
2816 
2817 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
2818 					end, hdr_len,
2819 					(dma_addr_t *)skb->head);
2820 #ifdef CONFIG_NEED_DMA_MAP_STATE
2821 			skb->dev = q->adap->port[0];
2822 			skb->destructor = deferred_unmap_destructor;
2823 #endif
2824 			last_desc = q->q.pidx + ndesc - 1;
2825 			if (last_desc >= q->q.size)
2826 				last_desc -= q->q.size;
2827 			q->q.sdesc[last_desc].skb = skb;
2828 		}
2829 
2830 		txq_advance(&q->q, ndesc);
2831 		written += ndesc;
2832 		if (unlikely(written > 32)) {
2833 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2834 			written = 0;
2835 		}
2836 
2837 		/* Reacquire the Pending Send Queue Lock so we can unlink the
2838 		 * skb we've just successfully transferred to the TX Ring and
2839 		 * loop for the next skb which may be at the head of the
2840 		 * Pending Send Queue.
2841 		 */
2842 		spin_lock(&q->sendq.lock);
2843 		__skb_unlink(skb, &q->sendq);
2844 		if (is_ofld_imm(skb))
2845 			kfree_skb(skb);
2846 	}
2847 	if (likely(written))
2848 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2849 
2850 	/*Indicate that no thread is processing the Pending Send Queue
2851 	 * currently.
2852 	 */
2853 	q->service_ofldq_running = false;
2854 }
2855 
2856 /**
2857  *	ofld_xmit - send a packet through an offload queue
2858  *	@q: the Tx offload queue
2859  *	@skb: the packet
2860  *
2861  *	Send an offload packet through an SGE offload queue.
2862  */
2863 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2864 {
2865 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
2866 	spin_lock(&q->sendq.lock);
2867 
2868 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
2869 	 * that results in this new skb being the only one on the queue, start
2870 	 * servicing it.  If there are other skbs already on the list, then
2871 	 * either the queue is currently being processed or it's been stopped
2872 	 * for some reason and it'll be restarted at a later time.  Restart
2873 	 * paths are triggered by events like experiencing a DMA Mapping Error
2874 	 * or filling the Hardware TX Ring.
2875 	 */
2876 	__skb_queue_tail(&q->sendq, skb);
2877 	if (q->sendq.qlen == 1)
2878 		service_ofldq(q);
2879 
2880 	spin_unlock(&q->sendq.lock);
2881 	return NET_XMIT_SUCCESS;
2882 }
2883 
2884 /**
2885  *	restart_ofldq - restart a suspended offload queue
2886  *	@data: the offload queue to restart
2887  *
2888  *	Resumes transmission on a suspended Tx offload queue.
2889  */
2890 static void restart_ofldq(unsigned long data)
2891 {
2892 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2893 
2894 	spin_lock(&q->sendq.lock);
2895 	q->full = 0;            /* the queue actually is completely empty now */
2896 	service_ofldq(q);
2897 	spin_unlock(&q->sendq.lock);
2898 }
2899 
2900 /**
2901  *	skb_txq - return the Tx queue an offload packet should use
2902  *	@skb: the packet
2903  *
2904  *	Returns the Tx queue an offload packet should use as indicated by bits
2905  *	1-15 in the packet's queue_mapping.
2906  */
2907 static inline unsigned int skb_txq(const struct sk_buff *skb)
2908 {
2909 	return skb->queue_mapping >> 1;
2910 }
2911 
2912 /**
2913  *	is_ctrl_pkt - return whether an offload packet is a control packet
2914  *	@skb: the packet
2915  *
2916  *	Returns whether an offload packet should use an OFLD or a CTRL
2917  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
2918  */
2919 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2920 {
2921 	return skb->queue_mapping & 1;
2922 }
2923 
2924 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2925 			   unsigned int tx_uld_type)
2926 {
2927 	struct sge_uld_txq_info *txq_info;
2928 	struct sge_uld_txq *txq;
2929 	unsigned int idx = skb_txq(skb);
2930 
2931 	if (unlikely(is_ctrl_pkt(skb))) {
2932 		/* Single ctrl queue is a requirement for LE workaround path */
2933 		if (adap->tids.nsftids)
2934 			idx = 0;
2935 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2936 	}
2937 
2938 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
2939 	if (unlikely(!txq_info)) {
2940 		WARN_ON(true);
2941 		return NET_XMIT_DROP;
2942 	}
2943 
2944 	txq = &txq_info->uldtxq[idx];
2945 	return ofld_xmit(txq, skb);
2946 }
2947 
2948 /**
2949  *	t4_ofld_send - send an offload packet
2950  *	@adap: the adapter
2951  *	@skb: the packet
2952  *
2953  *	Sends an offload packet.  We use the packet queue_mapping to select the
2954  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2955  *	should be sent as regular or control, bits 1-15 select the queue.
2956  */
2957 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2958 {
2959 	int ret;
2960 
2961 	local_bh_disable();
2962 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2963 	local_bh_enable();
2964 	return ret;
2965 }
2966 
2967 /**
2968  *	cxgb4_ofld_send - send an offload packet
2969  *	@dev: the net device
2970  *	@skb: the packet
2971  *
2972  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2973  *	intended for ULDs.
2974  */
2975 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2976 {
2977 	return t4_ofld_send(netdev2adap(dev), skb);
2978 }
2979 EXPORT_SYMBOL(cxgb4_ofld_send);
2980 
2981 static void *inline_tx_header(const void *src,
2982 			      const struct sge_txq *q,
2983 			      void *pos, int length)
2984 {
2985 	int left = (void *)q->stat - pos;
2986 	u64 *p;
2987 
2988 	if (likely(length <= left)) {
2989 		memcpy(pos, src, length);
2990 		pos += length;
2991 	} else {
2992 		memcpy(pos, src, left);
2993 		memcpy(q->desc, src + left, length - left);
2994 		pos = (void *)q->desc + (length - left);
2995 	}
2996 	/* 0-pad to multiple of 16 */
2997 	p = PTR_ALIGN(pos, 8);
2998 	if ((uintptr_t)p & 8) {
2999 		*p = 0;
3000 		return p + 1;
3001 	}
3002 	return p;
3003 }
3004 
3005 /**
3006  *      ofld_xmit_direct - copy a WR into offload queue
3007  *      @q: the Tx offload queue
3008  *      @src: location of WR
3009  *      @len: WR length
3010  *
3011  *      Copy an immediate WR into an uncontended SGE offload queue.
3012  */
3013 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3014 			    unsigned int len)
3015 {
3016 	unsigned int ndesc;
3017 	int credits;
3018 	u64 *pos;
3019 
3020 	/* Use the lower limit as the cut-off */
3021 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3022 		WARN_ON(1);
3023 		return NET_XMIT_DROP;
3024 	}
3025 
3026 	/* Don't return NET_XMIT_CN here as the current
3027 	 * implementation doesn't queue the request
3028 	 * using an skb when the following conditions not met
3029 	 */
3030 	if (!spin_trylock(&q->sendq.lock))
3031 		return NET_XMIT_DROP;
3032 
3033 	if (q->full || !skb_queue_empty(&q->sendq) ||
3034 	    q->service_ofldq_running) {
3035 		spin_unlock(&q->sendq.lock);
3036 		return NET_XMIT_DROP;
3037 	}
3038 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3039 	credits = txq_avail(&q->q) - ndesc;
3040 	pos = (u64 *)&q->q.desc[q->q.pidx];
3041 
3042 	/* ofldtxq_stop modifies WR header in-situ */
3043 	inline_tx_header(src, &q->q, pos, len);
3044 	if (unlikely(credits < TXQ_STOP_THRES))
3045 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3046 	txq_advance(&q->q, ndesc);
3047 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3048 
3049 	spin_unlock(&q->sendq.lock);
3050 	return NET_XMIT_SUCCESS;
3051 }
3052 
3053 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3054 		       const void *src, unsigned int len)
3055 {
3056 	struct sge_uld_txq_info *txq_info;
3057 	struct sge_uld_txq *txq;
3058 	struct adapter *adap;
3059 	int ret;
3060 
3061 	adap = netdev2adap(dev);
3062 
3063 	local_bh_disable();
3064 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3065 	if (unlikely(!txq_info)) {
3066 		WARN_ON(true);
3067 		local_bh_enable();
3068 		return NET_XMIT_DROP;
3069 	}
3070 	txq = &txq_info->uldtxq[idx];
3071 
3072 	ret = ofld_xmit_direct(txq, src, len);
3073 	local_bh_enable();
3074 	return net_xmit_eval(ret);
3075 }
3076 EXPORT_SYMBOL(cxgb4_immdata_send);
3077 
3078 /**
3079  *	t4_crypto_send - send crypto packet
3080  *	@adap: the adapter
3081  *	@skb: the packet
3082  *
3083  *	Sends crypto packet.  We use the packet queue_mapping to select the
3084  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3085  *	should be sent as regular or control, bits 1-15 select the queue.
3086  */
3087 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3088 {
3089 	int ret;
3090 
3091 	local_bh_disable();
3092 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3093 	local_bh_enable();
3094 	return ret;
3095 }
3096 
3097 /**
3098  *	cxgb4_crypto_send - send crypto packet
3099  *	@dev: the net device
3100  *	@skb: the packet
3101  *
3102  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3103  *	intended for ULDs.
3104  */
3105 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3106 {
3107 	return t4_crypto_send(netdev2adap(dev), skb);
3108 }
3109 EXPORT_SYMBOL(cxgb4_crypto_send);
3110 
3111 static inline void copy_frags(struct sk_buff *skb,
3112 			      const struct pkt_gl *gl, unsigned int offset)
3113 {
3114 	int i;
3115 
3116 	/* usually there's just one frag */
3117 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3118 			     gl->frags[0].offset + offset,
3119 			     gl->frags[0].size - offset);
3120 	skb_shinfo(skb)->nr_frags = gl->nfrags;
3121 	for (i = 1; i < gl->nfrags; i++)
3122 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3123 				     gl->frags[i].offset,
3124 				     gl->frags[i].size);
3125 
3126 	/* get a reference to the last page, we don't own it */
3127 	get_page(gl->frags[gl->nfrags - 1].page);
3128 }
3129 
3130 /**
3131  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3132  *	@gl: the gather list
3133  *	@skb_len: size of sk_buff main body if it carries fragments
3134  *	@pull_len: amount of data to move to the sk_buff's main body
3135  *
3136  *	Builds an sk_buff from the given packet gather list.  Returns the
3137  *	sk_buff or %NULL if sk_buff allocation failed.
3138  */
3139 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3140 				   unsigned int skb_len, unsigned int pull_len)
3141 {
3142 	struct sk_buff *skb;
3143 
3144 	/*
3145 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3146 	 * size, which is expected since buffers are at least PAGE_SIZEd.
3147 	 * In this case packets up to RX_COPY_THRES have only one fragment.
3148 	 */
3149 	if (gl->tot_len <= RX_COPY_THRES) {
3150 		skb = dev_alloc_skb(gl->tot_len);
3151 		if (unlikely(!skb))
3152 			goto out;
3153 		__skb_put(skb, gl->tot_len);
3154 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3155 	} else {
3156 		skb = dev_alloc_skb(skb_len);
3157 		if (unlikely(!skb))
3158 			goto out;
3159 		__skb_put(skb, pull_len);
3160 		skb_copy_to_linear_data(skb, gl->va, pull_len);
3161 
3162 		copy_frags(skb, gl, pull_len);
3163 		skb->len = gl->tot_len;
3164 		skb->data_len = skb->len - pull_len;
3165 		skb->truesize += skb->data_len;
3166 	}
3167 out:	return skb;
3168 }
3169 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3170 
3171 /**
3172  *	t4_pktgl_free - free a packet gather list
3173  *	@gl: the gather list
3174  *
3175  *	Releases the pages of a packet gather list.  We do not own the last
3176  *	page on the list and do not free it.
3177  */
3178 static void t4_pktgl_free(const struct pkt_gl *gl)
3179 {
3180 	int n;
3181 	const struct page_frag *p;
3182 
3183 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3184 		put_page(p->page);
3185 }
3186 
3187 /*
3188  * Process an MPS trace packet.  Give it an unused protocol number so it won't
3189  * be delivered to anyone and send it to the stack for capture.
3190  */
3191 static noinline int handle_trace_pkt(struct adapter *adap,
3192 				     const struct pkt_gl *gl)
3193 {
3194 	struct sk_buff *skb;
3195 
3196 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3197 	if (unlikely(!skb)) {
3198 		t4_pktgl_free(gl);
3199 		return 0;
3200 	}
3201 
3202 	if (is_t4(adap->params.chip))
3203 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3204 	else
3205 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3206 
3207 	skb_reset_mac_header(skb);
3208 	skb->protocol = htons(0xffff);
3209 	skb->dev = adap->port[0];
3210 	netif_receive_skb(skb);
3211 	return 0;
3212 }
3213 
3214 /**
3215  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3216  * @adap: the adapter
3217  * @hwtstamps: time stamp structure to update
3218  * @sgetstamp: 60bit iqe timestamp
3219  *
3220  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3221  * which is in Core Clock ticks into ktime_t and assign it
3222  **/
3223 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3224 				     struct skb_shared_hwtstamps *hwtstamps,
3225 				     u64 sgetstamp)
3226 {
3227 	u64 ns;
3228 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3229 
3230 	ns = div_u64(tmp, adap->params.vpd.cclk);
3231 
3232 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3233 	hwtstamps->hwtstamp = ns_to_ktime(ns);
3234 }
3235 
3236 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3237 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3238 {
3239 	struct adapter *adapter = rxq->rspq.adap;
3240 	struct sge *s = &adapter->sge;
3241 	struct port_info *pi;
3242 	int ret;
3243 	struct sk_buff *skb;
3244 
3245 	skb = napi_get_frags(&rxq->rspq.napi);
3246 	if (unlikely(!skb)) {
3247 		t4_pktgl_free(gl);
3248 		rxq->stats.rx_drops++;
3249 		return;
3250 	}
3251 
3252 	copy_frags(skb, gl, s->pktshift);
3253 	if (tnl_hdr_len)
3254 		skb->csum_level = 1;
3255 	skb->len = gl->tot_len - s->pktshift;
3256 	skb->data_len = skb->len;
3257 	skb->truesize += skb->data_len;
3258 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3259 	skb_record_rx_queue(skb, rxq->rspq.idx);
3260 	pi = netdev_priv(skb->dev);
3261 	if (pi->rxtstamp)
3262 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3263 					 gl->sgetstamp);
3264 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3265 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3266 			     PKT_HASH_TYPE_L3);
3267 
3268 	if (unlikely(pkt->vlan_ex)) {
3269 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3270 		rxq->stats.vlan_ex++;
3271 	}
3272 	ret = napi_gro_frags(&rxq->rspq.napi);
3273 	if (ret == GRO_HELD)
3274 		rxq->stats.lro_pkts++;
3275 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3276 		rxq->stats.lro_merged++;
3277 	rxq->stats.pkts++;
3278 	rxq->stats.rx_cso++;
3279 }
3280 
3281 enum {
3282 	RX_NON_PTP_PKT = 0,
3283 	RX_PTP_PKT_SUC = 1,
3284 	RX_PTP_PKT_ERR = 2
3285 };
3286 
3287 /**
3288  *     t4_systim_to_hwstamp - read hardware time stamp
3289  *     @adap: the adapter
3290  *     @skb: the packet
3291  *
3292  *     Read Time Stamp from MPS packet and insert in skb which
3293  *     is forwarded to PTP application
3294  */
3295 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3296 					 struct sk_buff *skb)
3297 {
3298 	struct skb_shared_hwtstamps *hwtstamps;
3299 	struct cpl_rx_mps_pkt *cpl = NULL;
3300 	unsigned char *data;
3301 	int offset;
3302 
3303 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3304 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3305 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3306 		return RX_PTP_PKT_ERR;
3307 
3308 	data = skb->data + sizeof(*cpl);
3309 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3310 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3311 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3312 		return RX_PTP_PKT_ERR;
3313 
3314 	hwtstamps = skb_hwtstamps(skb);
3315 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3316 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
3317 
3318 	return RX_PTP_PKT_SUC;
3319 }
3320 
3321 /**
3322  *     t4_rx_hststamp - Recv PTP Event Message
3323  *     @adap: the adapter
3324  *     @rsp: the response queue descriptor holding the RX_PKT message
3325  *     @skb: the packet
3326  *
3327  *     PTP enabled and MPS packet, read HW timestamp
3328  */
3329 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3330 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3331 {
3332 	int ret;
3333 
3334 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3335 		     !is_t4(adapter->params.chip))) {
3336 		ret = t4_systim_to_hwstamp(adapter, skb);
3337 		if (ret == RX_PTP_PKT_ERR) {
3338 			kfree_skb(skb);
3339 			rxq->stats.rx_drops++;
3340 		}
3341 		return ret;
3342 	}
3343 	return RX_NON_PTP_PKT;
3344 }
3345 
3346 /**
3347  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3348  *      @adap: the adapter
3349  *      @skb: the packet
3350  *      @dev: the ingress net device
3351  *
3352  *      Read hardware timestamp for the loopback PTP Tx event message
3353  */
3354 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3355 			  struct net_device *dev)
3356 {
3357 	struct port_info *pi = netdev_priv(dev);
3358 
3359 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3360 		cxgb4_ptp_read_hwstamp(adapter, pi);
3361 		kfree_skb(skb);
3362 		return 0;
3363 	}
3364 	return 1;
3365 }
3366 
3367 /**
3368  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3369  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3370  *	@rsp: Response Entry pointer into Response Queue
3371  *	@gl: Gather List pointer
3372  *
3373  *	For adapters which support the SGE Doorbell Queue Timer facility,
3374  *	we configure the Ethernet TX Queues to send CIDX Updates to the
3375  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3376  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3377  *	potentially, higher CPU Interrupt load, but allows us to respond
3378  *	much more quickly to the CIDX Updates.  This is important for
3379  *	Upper Layer Software which isn't willing to have a large amount
3380  *	of TX Data outstanding before receiving DMA Completions.
3381  */
3382 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3383 				     const __be64 *rsp,
3384 				     const struct pkt_gl *gl)
3385 {
3386 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3387 	struct port_info *pi = netdev_priv(rspq->netdev);
3388 	struct adapter *adapter = rspq->adap;
3389 	struct sge *s = &adapter->sge;
3390 	struct sge_eth_txq *txq;
3391 
3392 	/* skip RSS header */
3393 	rsp++;
3394 
3395 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3396 	 */
3397 	if (unlikely(opcode == CPL_FW4_MSG &&
3398 		     ((const struct cpl_fw4_msg *)rsp)->type ==
3399 							FW_TYPE_RSSCPL)) {
3400 		rsp++;
3401 		opcode = ((const struct rss_header *)rsp)->opcode;
3402 		rsp++;
3403 	}
3404 
3405 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3406 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3407 			__func__, opcode);
3408 		return;
3409 	}
3410 
3411 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3412 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3413 }
3414 
3415 /**
3416  *	t4_ethrx_handler - process an ingress ethernet packet
3417  *	@q: the response queue that received the packet
3418  *	@rsp: the response queue descriptor holding the RX_PKT message
3419  *	@si: the gather list of packet fragments
3420  *
3421  *	Process an ingress ethernet packet and deliver it to the stack.
3422  */
3423 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3424 		     const struct pkt_gl *si)
3425 {
3426 	bool csum_ok;
3427 	struct sk_buff *skb;
3428 	const struct cpl_rx_pkt *pkt;
3429 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3430 	struct adapter *adapter = q->adap;
3431 	struct sge *s = &q->adap->sge;
3432 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3433 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3434 	u16 err_vec, tnl_hdr_len = 0;
3435 	struct port_info *pi;
3436 	int ret = 0;
3437 
3438 	/* If we're looking at TX Queue CIDX Update, handle that separately
3439 	 * and return.
3440 	 */
3441 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3442 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3443 		t4_tx_completion_handler(q, rsp, si);
3444 		return 0;
3445 	}
3446 
3447 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3448 		return handle_trace_pkt(q->adap, si);
3449 
3450 	pkt = (const struct cpl_rx_pkt *)rsp;
3451 	/* Compressed error vector is enabled for T6 only */
3452 	if (q->adap->params.tp.rx_pkt_encap) {
3453 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3454 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3455 	} else {
3456 		err_vec = be16_to_cpu(pkt->err_vec);
3457 	}
3458 
3459 	csum_ok = pkt->csum_calc && !err_vec &&
3460 		  (q->netdev->features & NETIF_F_RXCSUM);
3461 
3462 	if (err_vec)
3463 		rxq->stats.bad_rx_pkts++;
3464 
3465 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3466 	     tnl_hdr_len) &&
3467 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3468 		do_gro(rxq, si, pkt, tnl_hdr_len);
3469 		return 0;
3470 	}
3471 
3472 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3473 	if (unlikely(!skb)) {
3474 		t4_pktgl_free(si);
3475 		rxq->stats.rx_drops++;
3476 		return 0;
3477 	}
3478 	pi = netdev_priv(q->netdev);
3479 
3480 	/* Handle PTP Event Rx packet */
3481 	if (unlikely(pi->ptp_enable)) {
3482 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3483 		if (ret == RX_PTP_PKT_ERR)
3484 			return 0;
3485 	}
3486 	if (likely(!ret))
3487 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3488 
3489 	/* Handle the PTP Event Tx Loopback packet */
3490 	if (unlikely(pi->ptp_enable && !ret &&
3491 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3492 		     cxgb4_ptp_is_ptp_rx(skb))) {
3493 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3494 			return 0;
3495 	}
3496 
3497 	skb->protocol = eth_type_trans(skb, q->netdev);
3498 	skb_record_rx_queue(skb, q->idx);
3499 	if (skb->dev->features & NETIF_F_RXHASH)
3500 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3501 			     PKT_HASH_TYPE_L3);
3502 
3503 	rxq->stats.pkts++;
3504 
3505 	if (pi->rxtstamp)
3506 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3507 					 si->sgetstamp);
3508 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3509 		if (!pkt->ip_frag) {
3510 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3511 			rxq->stats.rx_cso++;
3512 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3513 			__sum16 c = (__force __sum16)pkt->csum;
3514 			skb->csum = csum_unfold(c);
3515 
3516 			if (tnl_hdr_len) {
3517 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3518 				skb->csum_level = 1;
3519 			} else {
3520 				skb->ip_summed = CHECKSUM_COMPLETE;
3521 			}
3522 			rxq->stats.rx_cso++;
3523 		}
3524 	} else {
3525 		skb_checksum_none_assert(skb);
3526 #ifdef CONFIG_CHELSIO_T4_FCOE
3527 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3528 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3529 
3530 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3531 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3532 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3533 				if (q->adap->params.tp.rx_pkt_encap)
3534 					csum_ok = err_vec &
3535 						  T6_COMPR_RXERR_SUM_F;
3536 				else
3537 					csum_ok = err_vec & RXERR_CSUM_F;
3538 				if (!csum_ok)
3539 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3540 			}
3541 		}
3542 
3543 #undef CPL_RX_PKT_FLAGS
3544 #endif /* CONFIG_CHELSIO_T4_FCOE */
3545 	}
3546 
3547 	if (unlikely(pkt->vlan_ex)) {
3548 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3549 		rxq->stats.vlan_ex++;
3550 	}
3551 	skb_mark_napi_id(skb, &q->napi);
3552 	netif_receive_skb(skb);
3553 	return 0;
3554 }
3555 
3556 /**
3557  *	restore_rx_bufs - put back a packet's Rx buffers
3558  *	@si: the packet gather list
3559  *	@q: the SGE free list
3560  *	@frags: number of FL buffers to restore
3561  *
3562  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3563  *	have already been unmapped and are left unmapped, we mark them so to
3564  *	prevent further unmapping attempts.
3565  *
3566  *	This function undoes a series of @unmap_rx_buf calls when we find out
3567  *	that the current packet can't be processed right away afterall and we
3568  *	need to come back to it later.  This is a very rare event and there's
3569  *	no effort to make this particularly efficient.
3570  */
3571 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3572 			    int frags)
3573 {
3574 	struct rx_sw_desc *d;
3575 
3576 	while (frags--) {
3577 		if (q->cidx == 0)
3578 			q->cidx = q->size - 1;
3579 		else
3580 			q->cidx--;
3581 		d = &q->sdesc[q->cidx];
3582 		d->page = si->frags[frags].page;
3583 		d->dma_addr |= RX_UNMAPPED_BUF;
3584 		q->avail++;
3585 	}
3586 }
3587 
3588 /**
3589  *	is_new_response - check if a response is newly written
3590  *	@r: the response descriptor
3591  *	@q: the response queue
3592  *
3593  *	Returns true if a response descriptor contains a yet unprocessed
3594  *	response.
3595  */
3596 static inline bool is_new_response(const struct rsp_ctrl *r,
3597 				   const struct sge_rspq *q)
3598 {
3599 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3600 }
3601 
3602 /**
3603  *	rspq_next - advance to the next entry in a response queue
3604  *	@q: the queue
3605  *
3606  *	Updates the state of a response queue to advance it to the next entry.
3607  */
3608 static inline void rspq_next(struct sge_rspq *q)
3609 {
3610 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3611 	if (unlikely(++q->cidx == q->size)) {
3612 		q->cidx = 0;
3613 		q->gen ^= 1;
3614 		q->cur_desc = q->desc;
3615 	}
3616 }
3617 
3618 /**
3619  *	process_responses - process responses from an SGE response queue
3620  *	@q: the ingress queue to process
3621  *	@budget: how many responses can be processed in this round
3622  *
3623  *	Process responses from an SGE response queue up to the supplied budget.
3624  *	Responses include received packets as well as control messages from FW
3625  *	or HW.
3626  *
3627  *	Additionally choose the interrupt holdoff time for the next interrupt
3628  *	on this queue.  If the system is under memory shortage use a fairly
3629  *	long delay to help recovery.
3630  */
3631 static int process_responses(struct sge_rspq *q, int budget)
3632 {
3633 	int ret, rsp_type;
3634 	int budget_left = budget;
3635 	const struct rsp_ctrl *rc;
3636 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3637 	struct adapter *adapter = q->adap;
3638 	struct sge *s = &adapter->sge;
3639 
3640 	while (likely(budget_left)) {
3641 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3642 		if (!is_new_response(rc, q)) {
3643 			if (q->flush_handler)
3644 				q->flush_handler(q);
3645 			break;
3646 		}
3647 
3648 		dma_rmb();
3649 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3650 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3651 			struct page_frag *fp;
3652 			struct pkt_gl si;
3653 			const struct rx_sw_desc *rsd;
3654 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3655 
3656 			if (len & RSPD_NEWBUF_F) {
3657 				if (likely(q->offset > 0)) {
3658 					free_rx_bufs(q->adap, &rxq->fl, 1);
3659 					q->offset = 0;
3660 				}
3661 				len = RSPD_LEN_G(len);
3662 			}
3663 			si.tot_len = len;
3664 
3665 			/* gather packet fragments */
3666 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3667 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3668 				bufsz = get_buf_size(adapter, rsd);
3669 				fp->page = rsd->page;
3670 				fp->offset = q->offset;
3671 				fp->size = min(bufsz, len);
3672 				len -= fp->size;
3673 				if (!len)
3674 					break;
3675 				unmap_rx_buf(q->adap, &rxq->fl);
3676 			}
3677 
3678 			si.sgetstamp = SGE_TIMESTAMP_G(
3679 					be64_to_cpu(rc->last_flit));
3680 			/*
3681 			 * Last buffer remains mapped so explicitly make it
3682 			 * coherent for CPU access.
3683 			 */
3684 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3685 						get_buf_addr(rsd),
3686 						fp->size, DMA_FROM_DEVICE);
3687 
3688 			si.va = page_address(si.frags[0].page) +
3689 				si.frags[0].offset;
3690 			prefetch(si.va);
3691 
3692 			si.nfrags = frags + 1;
3693 			ret = q->handler(q, q->cur_desc, &si);
3694 			if (likely(ret == 0))
3695 				q->offset += ALIGN(fp->size, s->fl_align);
3696 			else
3697 				restore_rx_bufs(&si, &rxq->fl, frags);
3698 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3699 			ret = q->handler(q, q->cur_desc, NULL);
3700 		} else {
3701 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3702 		}
3703 
3704 		if (unlikely(ret)) {
3705 			/* couldn't process descriptor, back off for recovery */
3706 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3707 			break;
3708 		}
3709 
3710 		rspq_next(q);
3711 		budget_left--;
3712 	}
3713 
3714 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3715 		__refill_fl(q->adap, &rxq->fl);
3716 	return budget - budget_left;
3717 }
3718 
3719 /**
3720  *	napi_rx_handler - the NAPI handler for Rx processing
3721  *	@napi: the napi instance
3722  *	@budget: how many packets we can process in this round
3723  *
3724  *	Handler for new data events when using NAPI.  This does not need any
3725  *	locking or protection from interrupts as data interrupts are off at
3726  *	this point and other adapter interrupts do not interfere (the latter
3727  *	in not a concern at all with MSI-X as non-data interrupts then have
3728  *	a separate handler).
3729  */
3730 static int napi_rx_handler(struct napi_struct *napi, int budget)
3731 {
3732 	unsigned int params;
3733 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3734 	int work_done;
3735 	u32 val;
3736 
3737 	work_done = process_responses(q, budget);
3738 	if (likely(work_done < budget)) {
3739 		int timer_index;
3740 
3741 		napi_complete_done(napi, work_done);
3742 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3743 
3744 		if (q->adaptive_rx) {
3745 			if (work_done > max(timer_pkt_quota[timer_index],
3746 					    MIN_NAPI_WORK))
3747 				timer_index = (timer_index + 1);
3748 			else
3749 				timer_index = timer_index - 1;
3750 
3751 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3752 			q->next_intr_params =
3753 					QINTR_TIMER_IDX_V(timer_index) |
3754 					QINTR_CNT_EN_V(0);
3755 			params = q->next_intr_params;
3756 		} else {
3757 			params = q->next_intr_params;
3758 			q->next_intr_params = q->intr_params;
3759 		}
3760 	} else
3761 		params = QINTR_TIMER_IDX_V(7);
3762 
3763 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
3764 
3765 	/* If we don't have access to the new User GTS (T5+), use the old
3766 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3767 	 */
3768 	if (unlikely(q->bar2_addr == NULL)) {
3769 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3770 			     val | INGRESSQID_V((u32)q->cntxt_id));
3771 	} else {
3772 		writel(val | INGRESSQID_V(q->bar2_qid),
3773 		       q->bar2_addr + SGE_UDB_GTS);
3774 		wmb();
3775 	}
3776 	return work_done;
3777 }
3778 
3779 void cxgb4_ethofld_restart(unsigned long data)
3780 {
3781 	struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3782 	int pktcount;
3783 
3784 	spin_lock(&eosw_txq->lock);
3785 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3786 	if (pktcount < 0)
3787 		pktcount += eosw_txq->ndesc;
3788 
3789 	if (pktcount) {
3790 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3791 					 eosw_txq, pktcount);
3792 		eosw_txq->inuse -= pktcount;
3793 	}
3794 
3795 	/* There may be some packets waiting for completions. So,
3796 	 * attempt to send these packets now.
3797 	 */
3798 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
3799 	spin_unlock(&eosw_txq->lock);
3800 }
3801 
3802 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3803  * @q: the response queue that received the packet
3804  * @rsp: the response queue descriptor holding the CPL message
3805  * @si: the gather list of packet fragments
3806  *
3807  * Process a ETHOFLD Tx completion. Increment the cidx here, but
3808  * free up the descriptors in a tasklet later.
3809  */
3810 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3811 			     const struct pkt_gl *si)
3812 {
3813 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3814 
3815 	/* skip RSS header */
3816 	rsp++;
3817 
3818 	if (opcode == CPL_FW4_ACK) {
3819 		const struct cpl_fw4_ack *cpl;
3820 		struct sge_eosw_txq *eosw_txq;
3821 		struct eotid_entry *entry;
3822 		struct sk_buff *skb;
3823 		u32 hdr_len, eotid;
3824 		u8 flits, wrlen16;
3825 		int credits;
3826 
3827 		cpl = (const struct cpl_fw4_ack *)rsp;
3828 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3829 			q->adap->tids.eotid_base;
3830 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3831 		if (!entry)
3832 			goto out_done;
3833 
3834 		eosw_txq = (struct sge_eosw_txq *)entry->data;
3835 		if (!eosw_txq)
3836 			goto out_done;
3837 
3838 		spin_lock(&eosw_txq->lock);
3839 		credits = cpl->credits;
3840 		while (credits > 0) {
3841 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
3842 			if (!skb)
3843 				break;
3844 
3845 			if (unlikely((eosw_txq->state ==
3846 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3847 				      eosw_txq->state ==
3848 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3849 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
3850 				flits = DIV_ROUND_UP(skb->len, 8);
3851 				if (eosw_txq->state ==
3852 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3853 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3854 				else
3855 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3856 				complete(&eosw_txq->completion);
3857 			} else {
3858 				hdr_len = eth_get_headlen(eosw_txq->netdev,
3859 							  skb->data,
3860 							  skb_headlen(skb));
3861 				flits = ethofld_calc_tx_flits(q->adap, skb,
3862 							      hdr_len);
3863 			}
3864 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
3865 					       eosw_txq->ndesc);
3866 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3867 			credits -= wrlen16;
3868 		}
3869 
3870 		eosw_txq->cred += cpl->credits;
3871 		eosw_txq->ncompl--;
3872 
3873 		spin_unlock(&eosw_txq->lock);
3874 
3875 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3876 		 * if there were packets waiting for completion.
3877 		 */
3878 		tasklet_schedule(&eosw_txq->qresume_tsk);
3879 	}
3880 
3881 out_done:
3882 	return 0;
3883 }
3884 
3885 /*
3886  * The MSI-X interrupt handler for an SGE response queue.
3887  */
3888 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3889 {
3890 	struct sge_rspq *q = cookie;
3891 
3892 	napi_schedule(&q->napi);
3893 	return IRQ_HANDLED;
3894 }
3895 
3896 /*
3897  * Process the indirect interrupt entries in the interrupt queue and kick off
3898  * NAPI for each queue that has generated an entry.
3899  */
3900 static unsigned int process_intrq(struct adapter *adap)
3901 {
3902 	unsigned int credits;
3903 	const struct rsp_ctrl *rc;
3904 	struct sge_rspq *q = &adap->sge.intrq;
3905 	u32 val;
3906 
3907 	spin_lock(&adap->sge.intrq_lock);
3908 	for (credits = 0; ; credits++) {
3909 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3910 		if (!is_new_response(rc, q))
3911 			break;
3912 
3913 		dma_rmb();
3914 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3915 			unsigned int qid = ntohl(rc->pldbuflen_qid);
3916 
3917 			qid -= adap->sge.ingr_start;
3918 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
3919 		}
3920 
3921 		rspq_next(q);
3922 	}
3923 
3924 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3925 
3926 	/* If we don't have access to the new User GTS (T5+), use the old
3927 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3928 	 */
3929 	if (unlikely(q->bar2_addr == NULL)) {
3930 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3931 			     val | INGRESSQID_V(q->cntxt_id));
3932 	} else {
3933 		writel(val | INGRESSQID_V(q->bar2_qid),
3934 		       q->bar2_addr + SGE_UDB_GTS);
3935 		wmb();
3936 	}
3937 	spin_unlock(&adap->sge.intrq_lock);
3938 	return credits;
3939 }
3940 
3941 /*
3942  * The MSI interrupt handler, which handles data events from SGE response queues
3943  * as well as error and other async events as they all use the same MSI vector.
3944  */
3945 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3946 {
3947 	struct adapter *adap = cookie;
3948 
3949 	if (adap->flags & CXGB4_MASTER_PF)
3950 		t4_slow_intr_handler(adap);
3951 	process_intrq(adap);
3952 	return IRQ_HANDLED;
3953 }
3954 
3955 /*
3956  * Interrupt handler for legacy INTx interrupts.
3957  * Handles data events from SGE response queues as well as error and other
3958  * async events as they all use the same interrupt line.
3959  */
3960 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3961 {
3962 	struct adapter *adap = cookie;
3963 
3964 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3965 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3966 	    process_intrq(adap))
3967 		return IRQ_HANDLED;
3968 	return IRQ_NONE;             /* probably shared interrupt */
3969 }
3970 
3971 /**
3972  *	t4_intr_handler - select the top-level interrupt handler
3973  *	@adap: the adapter
3974  *
3975  *	Selects the top-level interrupt handler based on the type of interrupts
3976  *	(MSI-X, MSI, or INTx).
3977  */
3978 irq_handler_t t4_intr_handler(struct adapter *adap)
3979 {
3980 	if (adap->flags & CXGB4_USING_MSIX)
3981 		return t4_sge_intr_msix;
3982 	if (adap->flags & CXGB4_USING_MSI)
3983 		return t4_intr_msi;
3984 	return t4_intr_intx;
3985 }
3986 
3987 static void sge_rx_timer_cb(struct timer_list *t)
3988 {
3989 	unsigned long m;
3990 	unsigned int i;
3991 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3992 	struct sge *s = &adap->sge;
3993 
3994 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3995 		for (m = s->starving_fl[i]; m; m &= m - 1) {
3996 			struct sge_eth_rxq *rxq;
3997 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3998 			struct sge_fl *fl = s->egr_map[id];
3999 
4000 			clear_bit(id, s->starving_fl);
4001 			smp_mb__after_atomic();
4002 
4003 			if (fl_starving(adap, fl)) {
4004 				rxq = container_of(fl, struct sge_eth_rxq, fl);
4005 				if (napi_reschedule(&rxq->rspq.napi))
4006 					fl->starving++;
4007 				else
4008 					set_bit(id, s->starving_fl);
4009 			}
4010 		}
4011 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
4012 	 * global Master PF activities like checking for chip ingress stalls,
4013 	 * etc.
4014 	 */
4015 	if (!(adap->flags & CXGB4_MASTER_PF))
4016 		goto done;
4017 
4018 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4019 
4020 done:
4021 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4022 }
4023 
4024 static void sge_tx_timer_cb(struct timer_list *t)
4025 {
4026 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4027 	struct sge *s = &adap->sge;
4028 	unsigned long m, period;
4029 	unsigned int i, budget;
4030 
4031 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4032 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4033 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4034 			struct sge_uld_txq *txq = s->egr_map[id];
4035 
4036 			clear_bit(id, s->txq_maperr);
4037 			tasklet_schedule(&txq->qresume_tsk);
4038 		}
4039 
4040 	if (!is_t4(adap->params.chip)) {
4041 		struct sge_eth_txq *q = &s->ptptxq;
4042 		int avail;
4043 
4044 		spin_lock(&adap->ptp_lock);
4045 		avail = reclaimable(&q->q);
4046 
4047 		if (avail) {
4048 			free_tx_desc(adap, &q->q, avail, false);
4049 			q->q.in_use -= avail;
4050 		}
4051 		spin_unlock(&adap->ptp_lock);
4052 	}
4053 
4054 	budget = MAX_TIMER_TX_RECLAIM;
4055 	i = s->ethtxq_rover;
4056 	do {
4057 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4058 						       budget);
4059 		if (!budget)
4060 			break;
4061 
4062 		if (++i >= s->ethqsets)
4063 			i = 0;
4064 	} while (i != s->ethtxq_rover);
4065 	s->ethtxq_rover = i;
4066 
4067 	if (budget == 0) {
4068 		/* If we found too many reclaimable packets schedule a timer
4069 		 * in the near future to continue where we left off.
4070 		 */
4071 		period = 2;
4072 	} else {
4073 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4074 		 * at the normal period.
4075 		 */
4076 		period = TX_QCHECK_PERIOD;
4077 	}
4078 
4079 	mod_timer(&s->tx_timer, jiffies + period);
4080 }
4081 
4082 /**
4083  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4084  *	@adapter: the adapter
4085  *	@qid: the SGE Queue ID
4086  *	@qtype: the SGE Queue Type (Egress or Ingress)
4087  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4088  *
4089  *	Returns the BAR2 address for the SGE Queue Registers associated with
4090  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4091  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4092  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4093  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4094  */
4095 static void __iomem *bar2_address(struct adapter *adapter,
4096 				  unsigned int qid,
4097 				  enum t4_bar2_qtype qtype,
4098 				  unsigned int *pbar2_qid)
4099 {
4100 	u64 bar2_qoffset;
4101 	int ret;
4102 
4103 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4104 				&bar2_qoffset, pbar2_qid);
4105 	if (ret)
4106 		return NULL;
4107 
4108 	return adapter->bar2 + bar2_qoffset;
4109 }
4110 
4111 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4112  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4113  */
4114 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4115 		     struct net_device *dev, int intr_idx,
4116 		     struct sge_fl *fl, rspq_handler_t hnd,
4117 		     rspq_flush_handler_t flush_hnd, int cong)
4118 {
4119 	int ret, flsz = 0;
4120 	struct fw_iq_cmd c;
4121 	struct sge *s = &adap->sge;
4122 	struct port_info *pi = netdev_priv(dev);
4123 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4124 
4125 	/* Size needs to be multiple of 16, including status entry. */
4126 	iq->size = roundup(iq->size, 16);
4127 
4128 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4129 			      &iq->phys_addr, NULL, 0,
4130 			      dev_to_node(adap->pdev_dev));
4131 	if (!iq->desc)
4132 		return -ENOMEM;
4133 
4134 	memset(&c, 0, sizeof(c));
4135 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4136 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4137 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4138 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4139 				 FW_LEN16(c));
4140 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4141 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4142 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4143 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4144 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4145 							-intr_idx - 1));
4146 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4147 		FW_IQ_CMD_IQGTSMODE_F |
4148 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4149 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4150 	c.iqsize = htons(iq->size);
4151 	c.iqaddr = cpu_to_be64(iq->phys_addr);
4152 	if (cong >= 0)
4153 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4154 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4155 							:  FW_IQ_IQTYPE_OFLD));
4156 
4157 	if (fl) {
4158 		unsigned int chip_ver =
4159 			CHELSIO_CHIP_VERSION(adap->params.chip);
4160 
4161 		/* Allocate the ring for the hardware free list (with space
4162 		 * for its status page) along with the associated software
4163 		 * descriptor ring.  The free list size needs to be a multiple
4164 		 * of the Egress Queue Unit and at least 2 Egress Units larger
4165 		 * than the SGE's Egress Congrestion Threshold
4166 		 * (fl_starve_thres - 1).
4167 		 */
4168 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4169 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4170 		fl->size = roundup(fl->size, 8);
4171 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4172 				      sizeof(struct rx_sw_desc), &fl->addr,
4173 				      &fl->sdesc, s->stat_len,
4174 				      dev_to_node(adap->pdev_dev));
4175 		if (!fl->desc)
4176 			goto fl_nomem;
4177 
4178 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4179 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4180 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4181 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4182 					     FW_IQ_CMD_FL0PADEN_F);
4183 		if (cong >= 0)
4184 			c.iqns_to_fl0congen |=
4185 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4186 				      FW_IQ_CMD_FL0CONGCIF_F |
4187 				      FW_IQ_CMD_FL0CONGEN_F);
4188 		/* In T6, for egress queue type FL there is internal overhead
4189 		 * of 16B for header going into FLM module.  Hence the maximum
4190 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4191 		 * doesn't coalesce fetch requests if more than 64 bytes of
4192 		 * Free List pointers are provided, so we use a 128-byte Fetch
4193 		 * Burst Minimum there (T6 implements coalescing so we can use
4194 		 * the smaller 64-byte value there).
4195 		 */
4196 		c.fl0dcaen_to_fl0cidxfthresh =
4197 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4198 						   FETCHBURSTMIN_128B_X :
4199 						   FETCHBURSTMIN_64B_T6_X) |
4200 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4201 						   FETCHBURSTMAX_512B_X :
4202 						   FETCHBURSTMAX_256B_X));
4203 		c.fl0size = htons(flsz);
4204 		c.fl0addr = cpu_to_be64(fl->addr);
4205 	}
4206 
4207 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4208 	if (ret)
4209 		goto err;
4210 
4211 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4212 	iq->cur_desc = iq->desc;
4213 	iq->cidx = 0;
4214 	iq->gen = 1;
4215 	iq->next_intr_params = iq->intr_params;
4216 	iq->cntxt_id = ntohs(c.iqid);
4217 	iq->abs_id = ntohs(c.physiqid);
4218 	iq->bar2_addr = bar2_address(adap,
4219 				     iq->cntxt_id,
4220 				     T4_BAR2_QTYPE_INGRESS,
4221 				     &iq->bar2_qid);
4222 	iq->size--;                           /* subtract status entry */
4223 	iq->netdev = dev;
4224 	iq->handler = hnd;
4225 	iq->flush_handler = flush_hnd;
4226 
4227 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4228 	skb_queue_head_init(&iq->lro_mgr.lroq);
4229 
4230 	/* set offset to -1 to distinguish ingress queues without FL */
4231 	iq->offset = fl ? 0 : -1;
4232 
4233 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4234 
4235 	if (fl) {
4236 		fl->cntxt_id = ntohs(c.fl0id);
4237 		fl->avail = fl->pend_cred = 0;
4238 		fl->pidx = fl->cidx = 0;
4239 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4240 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4241 
4242 		/* Note, we must initialize the BAR2 Free List User Doorbell
4243 		 * information before refilling the Free List!
4244 		 */
4245 		fl->bar2_addr = bar2_address(adap,
4246 					     fl->cntxt_id,
4247 					     T4_BAR2_QTYPE_EGRESS,
4248 					     &fl->bar2_qid);
4249 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4250 	}
4251 
4252 	/* For T5 and later we attempt to set up the Congestion Manager values
4253 	 * of the new RX Ethernet Queue.  This should really be handled by
4254 	 * firmware because it's more complex than any host driver wants to
4255 	 * get involved with and it's different per chip and this is almost
4256 	 * certainly wrong.  Firmware would be wrong as well, but it would be
4257 	 * a lot easier to fix in one place ...  For now we do something very
4258 	 * simple (and hopefully less wrong).
4259 	 */
4260 	if (!is_t4(adap->params.chip) && cong >= 0) {
4261 		u32 param, val, ch_map = 0;
4262 		int i;
4263 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4264 
4265 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4266 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4267 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4268 		if (cong == 0) {
4269 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4270 		} else {
4271 			val =
4272 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4273 			for (i = 0; i < 4; i++) {
4274 				if (cong & (1 << i))
4275 					ch_map |= 1 << (i << cng_ch_bits_log);
4276 			}
4277 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4278 		}
4279 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4280 				    &param, &val);
4281 		if (ret)
4282 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4283 				 " Manager Context for Ingress Queue %d: %d\n",
4284 				 iq->cntxt_id, -ret);
4285 	}
4286 
4287 	return 0;
4288 
4289 fl_nomem:
4290 	ret = -ENOMEM;
4291 err:
4292 	if (iq->desc) {
4293 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4294 				  iq->desc, iq->phys_addr);
4295 		iq->desc = NULL;
4296 	}
4297 	if (fl && fl->desc) {
4298 		kfree(fl->sdesc);
4299 		fl->sdesc = NULL;
4300 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4301 				  fl->desc, fl->addr);
4302 		fl->desc = NULL;
4303 	}
4304 	return ret;
4305 }
4306 
4307 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4308 {
4309 	q->cntxt_id = id;
4310 	q->bar2_addr = bar2_address(adap,
4311 				    q->cntxt_id,
4312 				    T4_BAR2_QTYPE_EGRESS,
4313 				    &q->bar2_qid);
4314 	q->in_use = 0;
4315 	q->cidx = q->pidx = 0;
4316 	q->stops = q->restarts = 0;
4317 	q->stat = (void *)&q->desc[q->size];
4318 	spin_lock_init(&q->db_lock);
4319 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4320 }
4321 
4322 /**
4323  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4324  *	@adap: the adapter
4325  *	@txq: the SGE Ethernet TX Queue to initialize
4326  *	@dev: the Linux Network Device
4327  *	@netdevq: the corresponding Linux TX Queue
4328  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4329  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4330  */
4331 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4332 			 struct net_device *dev, struct netdev_queue *netdevq,
4333 			 unsigned int iqid, u8 dbqt)
4334 {
4335 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4336 	struct port_info *pi = netdev_priv(dev);
4337 	struct sge *s = &adap->sge;
4338 	struct fw_eq_eth_cmd c;
4339 	int ret, nentries;
4340 
4341 	/* Add status entries */
4342 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4343 
4344 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4345 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4346 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4347 			netdev_queue_numa_node_read(netdevq));
4348 	if (!txq->q.desc)
4349 		return -ENOMEM;
4350 
4351 	memset(&c, 0, sizeof(c));
4352 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4353 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4354 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4355 			    FW_EQ_ETH_CMD_VFN_V(0));
4356 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4357 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4358 
4359 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4360 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4361 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4362 	 * write the CIDX Updates into the Status Page at the end of the
4363 	 * TX Queue.
4364 	 */
4365 	c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4366 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4367 
4368 	c.fetchszm_to_iqid =
4369 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4370 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4371 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4372 
4373 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4374 	c.dcaen_to_eqsize =
4375 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4376 					    ? FETCHBURSTMIN_64B_X
4377 					    : FETCHBURSTMIN_64B_T6_X) |
4378 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4379 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4380 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4381 
4382 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4383 
4384 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4385 	 * currently configured Timer Index.  THis can be changed later via an
4386 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4387 	 * Doorbell Queue mode is currently automatically enabled in the
4388 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4389 	 */
4390 	if (dbqt)
4391 		c.timeren_timerix =
4392 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4393 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4394 
4395 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4396 	if (ret) {
4397 		kfree(txq->q.sdesc);
4398 		txq->q.sdesc = NULL;
4399 		dma_free_coherent(adap->pdev_dev,
4400 				  nentries * sizeof(struct tx_desc),
4401 				  txq->q.desc, txq->q.phys_addr);
4402 		txq->q.desc = NULL;
4403 		return ret;
4404 	}
4405 
4406 	txq->q.q_type = CXGB4_TXQ_ETH;
4407 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4408 	txq->txq = netdevq;
4409 	txq->tso = 0;
4410 	txq->uso = 0;
4411 	txq->tx_cso = 0;
4412 	txq->vlan_ins = 0;
4413 	txq->mapping_err = 0;
4414 	txq->dbqt = dbqt;
4415 
4416 	return 0;
4417 }
4418 
4419 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4420 			  struct net_device *dev, unsigned int iqid,
4421 			  unsigned int cmplqid)
4422 {
4423 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4424 	struct port_info *pi = netdev_priv(dev);
4425 	struct sge *s = &adap->sge;
4426 	struct fw_eq_ctrl_cmd c;
4427 	int ret, nentries;
4428 
4429 	/* Add status entries */
4430 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4431 
4432 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4433 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4434 				 NULL, 0, dev_to_node(adap->pdev_dev));
4435 	if (!txq->q.desc)
4436 		return -ENOMEM;
4437 
4438 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4439 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4440 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4441 			    FW_EQ_CTRL_CMD_VFN_V(0));
4442 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4443 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4444 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4445 	c.physeqid_pkd = htonl(0);
4446 	c.fetchszm_to_iqid =
4447 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4448 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4449 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4450 	c.dcaen_to_eqsize =
4451 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4452 					     ? FETCHBURSTMIN_64B_X
4453 					     : FETCHBURSTMIN_64B_T6_X) |
4454 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4455 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4456 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4457 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4458 
4459 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4460 	if (ret) {
4461 		dma_free_coherent(adap->pdev_dev,
4462 				  nentries * sizeof(struct tx_desc),
4463 				  txq->q.desc, txq->q.phys_addr);
4464 		txq->q.desc = NULL;
4465 		return ret;
4466 	}
4467 
4468 	txq->q.q_type = CXGB4_TXQ_CTRL;
4469 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4470 	txq->adap = adap;
4471 	skb_queue_head_init(&txq->sendq);
4472 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4473 	txq->full = 0;
4474 	return 0;
4475 }
4476 
4477 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4478 			unsigned int cmplqid)
4479 {
4480 	u32 param, val;
4481 
4482 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4483 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4484 		 FW_PARAMS_PARAM_YZ_V(eqid));
4485 	val = cmplqid;
4486 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4487 }
4488 
4489 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4490 				 struct net_device *dev, u32 cmd, u32 iqid)
4491 {
4492 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4493 	struct port_info *pi = netdev_priv(dev);
4494 	struct sge *s = &adap->sge;
4495 	struct fw_eq_ofld_cmd c;
4496 	u32 fb_min, nentries;
4497 	int ret;
4498 
4499 	/* Add status entries */
4500 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4501 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4502 			     sizeof(struct tx_sw_desc), &q->phys_addr,
4503 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4504 	if (!q->desc)
4505 		return -ENOMEM;
4506 
4507 	if (chip_ver <= CHELSIO_T5)
4508 		fb_min = FETCHBURSTMIN_64B_X;
4509 	else
4510 		fb_min = FETCHBURSTMIN_64B_T6_X;
4511 
4512 	memset(&c, 0, sizeof(c));
4513 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4514 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4515 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4516 			    FW_EQ_OFLD_CMD_VFN_V(0));
4517 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4518 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4519 	c.fetchszm_to_iqid =
4520 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4521 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4522 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4523 	c.dcaen_to_eqsize =
4524 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4525 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4526 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4527 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4528 	c.eqaddr = cpu_to_be64(q->phys_addr);
4529 
4530 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4531 	if (ret) {
4532 		kfree(q->sdesc);
4533 		q->sdesc = NULL;
4534 		dma_free_coherent(adap->pdev_dev,
4535 				  nentries * sizeof(struct tx_desc),
4536 				  q->desc, q->phys_addr);
4537 		q->desc = NULL;
4538 		return ret;
4539 	}
4540 
4541 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4542 	return 0;
4543 }
4544 
4545 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4546 			 struct net_device *dev, unsigned int iqid,
4547 			 unsigned int uld_type)
4548 {
4549 	u32 cmd = FW_EQ_OFLD_CMD;
4550 	int ret;
4551 
4552 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4553 		cmd = FW_EQ_CTRL_CMD;
4554 
4555 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4556 	if (ret)
4557 		return ret;
4558 
4559 	txq->q.q_type = CXGB4_TXQ_ULD;
4560 	txq->adap = adap;
4561 	skb_queue_head_init(&txq->sendq);
4562 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4563 	txq->full = 0;
4564 	txq->mapping_err = 0;
4565 	return 0;
4566 }
4567 
4568 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4569 			     struct net_device *dev, u32 iqid)
4570 {
4571 	int ret;
4572 
4573 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4574 	if (ret)
4575 		return ret;
4576 
4577 	txq->q.q_type = CXGB4_TXQ_ULD;
4578 	spin_lock_init(&txq->lock);
4579 	txq->adap = adap;
4580 	txq->tso = 0;
4581 	txq->uso = 0;
4582 	txq->tx_cso = 0;
4583 	txq->vlan_ins = 0;
4584 	txq->mapping_err = 0;
4585 	return 0;
4586 }
4587 
4588 void free_txq(struct adapter *adap, struct sge_txq *q)
4589 {
4590 	struct sge *s = &adap->sge;
4591 
4592 	dma_free_coherent(adap->pdev_dev,
4593 			  q->size * sizeof(struct tx_desc) + s->stat_len,
4594 			  q->desc, q->phys_addr);
4595 	q->cntxt_id = 0;
4596 	q->sdesc = NULL;
4597 	q->desc = NULL;
4598 }
4599 
4600 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4601 		  struct sge_fl *fl)
4602 {
4603 	struct sge *s = &adap->sge;
4604 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4605 
4606 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4607 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4608 		   rq->cntxt_id, fl_id, 0xffff);
4609 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4610 			  rq->desc, rq->phys_addr);
4611 	netif_napi_del(&rq->napi);
4612 	rq->netdev = NULL;
4613 	rq->cntxt_id = rq->abs_id = 0;
4614 	rq->desc = NULL;
4615 
4616 	if (fl) {
4617 		free_rx_bufs(adap, fl, fl->avail);
4618 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4619 				  fl->desc, fl->addr);
4620 		kfree(fl->sdesc);
4621 		fl->sdesc = NULL;
4622 		fl->cntxt_id = 0;
4623 		fl->desc = NULL;
4624 	}
4625 }
4626 
4627 /**
4628  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4629  *      @adap: the adapter
4630  *      @n: number of queues
4631  *      @q: pointer to first queue
4632  *
4633  *      Release the resources of a consecutive block of offload Rx queues.
4634  */
4635 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4636 {
4637 	for ( ; n; n--, q++)
4638 		if (q->rspq.desc)
4639 			free_rspq_fl(adap, &q->rspq,
4640 				     q->fl.size ? &q->fl : NULL);
4641 }
4642 
4643 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4644 {
4645 	if (txq->q.desc) {
4646 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4647 				txq->q.cntxt_id);
4648 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4649 		kfree(txq->q.sdesc);
4650 		free_txq(adap, &txq->q);
4651 	}
4652 }
4653 
4654 /**
4655  *	t4_free_sge_resources - free SGE resources
4656  *	@adap: the adapter
4657  *
4658  *	Frees resources used by the SGE queue sets.
4659  */
4660 void t4_free_sge_resources(struct adapter *adap)
4661 {
4662 	int i;
4663 	struct sge_eth_rxq *eq;
4664 	struct sge_eth_txq *etq;
4665 
4666 	/* stop all Rx queues in order to start them draining */
4667 	for (i = 0; i < adap->sge.ethqsets; i++) {
4668 		eq = &adap->sge.ethrxq[i];
4669 		if (eq->rspq.desc)
4670 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4671 				   FW_IQ_TYPE_FL_INT_CAP,
4672 				   eq->rspq.cntxt_id,
4673 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4674 				   0xffff);
4675 	}
4676 
4677 	/* clean up Ethernet Tx/Rx queues */
4678 	for (i = 0; i < adap->sge.ethqsets; i++) {
4679 		eq = &adap->sge.ethrxq[i];
4680 		if (eq->rspq.desc)
4681 			free_rspq_fl(adap, &eq->rspq,
4682 				     eq->fl.size ? &eq->fl : NULL);
4683 		if (eq->msix) {
4684 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4685 			eq->msix = NULL;
4686 		}
4687 
4688 		etq = &adap->sge.ethtxq[i];
4689 		if (etq->q.desc) {
4690 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4691 				       etq->q.cntxt_id);
4692 			__netif_tx_lock_bh(etq->txq);
4693 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4694 			__netif_tx_unlock_bh(etq->txq);
4695 			kfree(etq->q.sdesc);
4696 			free_txq(adap, &etq->q);
4697 		}
4698 	}
4699 
4700 	/* clean up control Tx queues */
4701 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4702 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4703 
4704 		if (cq->q.desc) {
4705 			tasklet_kill(&cq->qresume_tsk);
4706 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4707 					cq->q.cntxt_id);
4708 			__skb_queue_purge(&cq->sendq);
4709 			free_txq(adap, &cq->q);
4710 		}
4711 	}
4712 
4713 	if (adap->sge.fw_evtq.desc) {
4714 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4715 		if (adap->sge.fwevtq_msix_idx >= 0)
4716 			cxgb4_free_msix_idx_in_bmap(adap,
4717 						    adap->sge.fwevtq_msix_idx);
4718 	}
4719 
4720 	if (adap->sge.nd_msix_idx >= 0)
4721 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4722 
4723 	if (adap->sge.intrq.desc)
4724 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4725 
4726 	if (!is_t4(adap->params.chip)) {
4727 		etq = &adap->sge.ptptxq;
4728 		if (etq->q.desc) {
4729 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4730 				       etq->q.cntxt_id);
4731 			spin_lock_bh(&adap->ptp_lock);
4732 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4733 			spin_unlock_bh(&adap->ptp_lock);
4734 			kfree(etq->q.sdesc);
4735 			free_txq(adap, &etq->q);
4736 		}
4737 	}
4738 
4739 	/* clear the reverse egress queue map */
4740 	memset(adap->sge.egr_map, 0,
4741 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4742 }
4743 
4744 void t4_sge_start(struct adapter *adap)
4745 {
4746 	adap->sge.ethtxq_rover = 0;
4747 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4748 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4749 }
4750 
4751 /**
4752  *	t4_sge_stop - disable SGE operation
4753  *	@adap: the adapter
4754  *
4755  *	Stop tasklets and timers associated with the DMA engine.  Note that
4756  *	this is effective only if measures have been taken to disable any HW
4757  *	events that may restart them.
4758  */
4759 void t4_sge_stop(struct adapter *adap)
4760 {
4761 	int i;
4762 	struct sge *s = &adap->sge;
4763 
4764 	if (in_interrupt())  /* actions below require waiting */
4765 		return;
4766 
4767 	if (s->rx_timer.function)
4768 		del_timer_sync(&s->rx_timer);
4769 	if (s->tx_timer.function)
4770 		del_timer_sync(&s->tx_timer);
4771 
4772 	if (is_offload(adap)) {
4773 		struct sge_uld_txq_info *txq_info;
4774 
4775 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4776 		if (txq_info) {
4777 			struct sge_uld_txq *txq = txq_info->uldtxq;
4778 
4779 			for_each_ofldtxq(&adap->sge, i) {
4780 				if (txq->q.desc)
4781 					tasklet_kill(&txq->qresume_tsk);
4782 			}
4783 		}
4784 	}
4785 
4786 	if (is_pci_uld(adap)) {
4787 		struct sge_uld_txq_info *txq_info;
4788 
4789 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4790 		if (txq_info) {
4791 			struct sge_uld_txq *txq = txq_info->uldtxq;
4792 
4793 			for_each_ofldtxq(&adap->sge, i) {
4794 				if (txq->q.desc)
4795 					tasklet_kill(&txq->qresume_tsk);
4796 			}
4797 		}
4798 	}
4799 
4800 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4801 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
4802 
4803 		if (cq->q.desc)
4804 			tasklet_kill(&cq->qresume_tsk);
4805 	}
4806 }
4807 
4808 /**
4809  *	t4_sge_init_soft - grab core SGE values needed by SGE code
4810  *	@adap: the adapter
4811  *
4812  *	We need to grab the SGE operating parameters that we need to have
4813  *	in order to do our job and make sure we can live with them.
4814  */
4815 
4816 static int t4_sge_init_soft(struct adapter *adap)
4817 {
4818 	struct sge *s = &adap->sge;
4819 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4820 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4821 	u32 ingress_rx_threshold;
4822 
4823 	/*
4824 	 * Verify that CPL messages are going to the Ingress Queue for
4825 	 * process_responses() and that only packet data is going to the
4826 	 * Free Lists.
4827 	 */
4828 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4829 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4830 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4831 		return -EINVAL;
4832 	}
4833 
4834 	/*
4835 	 * Validate the Host Buffer Register Array indices that we want to
4836 	 * use ...
4837 	 *
4838 	 * XXX Note that we should really read through the Host Buffer Size
4839 	 * XXX register array and find the indices of the Buffer Sizes which
4840 	 * XXX meet our needs!
4841 	 */
4842 	#define READ_FL_BUF(x) \
4843 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4844 
4845 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4846 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4847 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4848 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4849 
4850 	/* We only bother using the Large Page logic if the Large Page Buffer
4851 	 * is larger than our Page Size Buffer.
4852 	 */
4853 	if (fl_large_pg <= fl_small_pg)
4854 		fl_large_pg = 0;
4855 
4856 	#undef READ_FL_BUF
4857 
4858 	/* The Page Size Buffer must be exactly equal to our Page Size and the
4859 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4860 	 */
4861 	if (fl_small_pg != PAGE_SIZE ||
4862 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
4863 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4864 			fl_small_pg, fl_large_pg);
4865 		return -EINVAL;
4866 	}
4867 	if (fl_large_pg)
4868 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4869 
4870 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4871 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4872 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4873 			fl_small_mtu, fl_large_mtu);
4874 		return -EINVAL;
4875 	}
4876 
4877 	/*
4878 	 * Retrieve our RX interrupt holdoff timer values and counter
4879 	 * threshold values from the SGE parameters.
4880 	 */
4881 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4882 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4883 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4884 	s->timer_val[0] = core_ticks_to_us(adap,
4885 		TIMERVALUE0_G(timer_value_0_and_1));
4886 	s->timer_val[1] = core_ticks_to_us(adap,
4887 		TIMERVALUE1_G(timer_value_0_and_1));
4888 	s->timer_val[2] = core_ticks_to_us(adap,
4889 		TIMERVALUE2_G(timer_value_2_and_3));
4890 	s->timer_val[3] = core_ticks_to_us(adap,
4891 		TIMERVALUE3_G(timer_value_2_and_3));
4892 	s->timer_val[4] = core_ticks_to_us(adap,
4893 		TIMERVALUE4_G(timer_value_4_and_5));
4894 	s->timer_val[5] = core_ticks_to_us(adap,
4895 		TIMERVALUE5_G(timer_value_4_and_5));
4896 
4897 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4898 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4899 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4900 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4901 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4902 
4903 	return 0;
4904 }
4905 
4906 /**
4907  *     t4_sge_init - initialize SGE
4908  *     @adap: the adapter
4909  *
4910  *     Perform low-level SGE code initialization needed every time after a
4911  *     chip reset.
4912  */
4913 int t4_sge_init(struct adapter *adap)
4914 {
4915 	struct sge *s = &adap->sge;
4916 	u32 sge_control, sge_conm_ctrl;
4917 	int ret, egress_threshold;
4918 
4919 	/*
4920 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
4921 	 * t4_fixup_host_params().
4922 	 */
4923 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4924 	s->pktshift = PKTSHIFT_G(sge_control);
4925 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4926 
4927 	s->fl_align = t4_fl_pkt_align(adap);
4928 	ret = t4_sge_init_soft(adap);
4929 	if (ret < 0)
4930 		return ret;
4931 
4932 	/*
4933 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
4934 	 * timer will attempt to refill it.  This needs to be larger than the
4935 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
4936 	 * stuck waiting for new packets while the SGE is waiting for us to
4937 	 * give it more Free List entries.  (Note that the SGE's Egress
4938 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4939 	 * there was only a single field to control this.  For T5 there's the
4940 	 * original field which now only applies to Unpacked Mode Free List
4941 	 * buffers and a new field which only applies to Packed Mode Free List
4942 	 * buffers.
4943 	 */
4944 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4945 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4946 	case CHELSIO_T4:
4947 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4948 		break;
4949 	case CHELSIO_T5:
4950 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4951 		break;
4952 	case CHELSIO_T6:
4953 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4954 		break;
4955 	default:
4956 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4957 			CHELSIO_CHIP_VERSION(adap->params.chip));
4958 		return -EINVAL;
4959 	}
4960 	s->fl_starve_thres = 2*egress_threshold + 1;
4961 
4962 	t4_idma_monitor_init(adap, &s->idma_monitor);
4963 
4964 	/* Set up timers used for recuring callbacks to process RX and TX
4965 	 * administrative tasks.
4966 	 */
4967 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4968 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4969 
4970 	spin_lock_init(&s->intrq_lock);
4971 
4972 	return 0;
4973 }
4974