1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include "cxgb4.h"
47 #include "t4_regs.h"
48 #include "t4_msg.h"
49 #include "t4fw_api.h"
50 
51 /*
52  * Rx buffer size.  We use largish buffers if possible but settle for single
53  * pages under memory shortage.
54  */
55 #if PAGE_SHIFT >= 16
56 # define FL_PG_ORDER 0
57 #else
58 # define FL_PG_ORDER (16 - PAGE_SHIFT)
59 #endif
60 
61 /* RX_PULL_LEN should be <= RX_COPY_THRES */
62 #define RX_COPY_THRES    256
63 #define RX_PULL_LEN      128
64 
65 /*
66  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68  */
69 #define RX_PKT_SKB_LEN   512
70 
71 /*
72  * Max number of Tx descriptors we clean up at a time.  Should be modest as
73  * freeing skbs isn't cheap and it happens while holding locks.  We just need
74  * to free packets faster than they arrive, we eventually catch up and keep
75  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
76  */
77 #define MAX_TX_RECLAIM 16
78 
79 /*
80  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
81  * allocating buffers isn't cheap either.
82  */
83 #define MAX_RX_REFILL 16U
84 
85 /*
86  * Period of the Rx queue check timer.  This timer is infrequent as it has
87  * something to do only when the system experiences severe memory shortage.
88  */
89 #define RX_QCHECK_PERIOD (HZ / 2)
90 
91 /*
92  * Period of the Tx queue check timer.
93  */
94 #define TX_QCHECK_PERIOD (HZ / 2)
95 
96 /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
97  * (in RX_QCHECK_PERIOD multiples).  If we find one of the SGE Ingress DMA
98  * State Machines in the same state for this amount of time (in HZ) then we'll
99  * issue a warning about a potential hang.  We'll repeat the warning as the
100  * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
101  * the situation clears.  If the situation clears, we'll note that as well.
102  */
103 #define SGE_IDMA_WARN_THRESH (1 * HZ)
104 #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
105 
106 /*
107  * Max number of Tx descriptors to be reclaimed by the Tx timer.
108  */
109 #define MAX_TIMER_TX_RECLAIM 100
110 
111 /*
112  * Timer index used when backing off due to memory shortage.
113  */
114 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
115 
116 /*
117  * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
118  * attempt to refill it.
119  */
120 #define FL_STARVE_THRES 4
121 
122 /*
123  * Suspend an Ethernet Tx queue with fewer available descriptors than this.
124  * This is the same as calc_tx_descs() for a TSO packet with
125  * nr_frags == MAX_SKB_FRAGS.
126  */
127 #define ETHTXQ_STOP_THRES \
128 	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
129 
130 /*
131  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
132  * for a full sized WR.
133  */
134 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
135 
136 /*
137  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
138  * into a WR.
139  */
140 #define MAX_IMM_TX_PKT_LEN 128
141 
142 /*
143  * Max size of a WR sent through a control Tx queue.
144  */
145 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
146 
147 struct tx_sw_desc {                /* SW state per Tx descriptor */
148 	struct sk_buff *skb;
149 	struct ulptx_sgl *sgl;
150 };
151 
152 struct rx_sw_desc {                /* SW state per Rx descriptor */
153 	struct page *page;
154 	dma_addr_t dma_addr;
155 };
156 
157 /*
158  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
159  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
160  * We could easily support more but there doesn't seem to be much need for
161  * that ...
162  */
163 #define FL_MTU_SMALL 1500
164 #define FL_MTU_LARGE 9000
165 
166 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
167 					  unsigned int mtu)
168 {
169 	struct sge *s = &adapter->sge;
170 
171 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
172 }
173 
174 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
175 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
176 
177 /*
178  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
179  * these to specify the buffer size as an index into the SGE Free List Buffer
180  * Size register array.  We also use bit 4, when the buffer has been unmapped
181  * for DMA, but this is of course never sent to the hardware and is only used
182  * to prevent double unmappings.  All of the above requires that the Free List
183  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
184  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
185  * Free List Buffer alignment is 32 bytes, this works out for us ...
186  */
187 enum {
188 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
189 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
190 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
191 
192 	/*
193 	 * XXX We shouldn't depend on being able to use these indices.
194 	 * XXX Especially when some other Master PF has initialized the
195 	 * XXX adapter or we use the Firmware Configuration File.  We
196 	 * XXX should really search through the Host Buffer Size register
197 	 * XXX array for the appropriately sized buffer indices.
198 	 */
199 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
200 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
201 
202 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
203 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
204 };
205 
206 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
207 #define MIN_NAPI_WORK  1
208 
209 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
210 {
211 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
212 }
213 
214 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
215 {
216 	return !(d->dma_addr & RX_UNMAPPED_BUF);
217 }
218 
219 /**
220  *	txq_avail - return the number of available slots in a Tx queue
221  *	@q: the Tx queue
222  *
223  *	Returns the number of descriptors in a Tx queue available to write new
224  *	packets.
225  */
226 static inline unsigned int txq_avail(const struct sge_txq *q)
227 {
228 	return q->size - 1 - q->in_use;
229 }
230 
231 /**
232  *	fl_cap - return the capacity of a free-buffer list
233  *	@fl: the FL
234  *
235  *	Returns the capacity of a free-buffer list.  The capacity is less than
236  *	the size because one descriptor needs to be left unpopulated, otherwise
237  *	HW will think the FL is empty.
238  */
239 static inline unsigned int fl_cap(const struct sge_fl *fl)
240 {
241 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
242 }
243 
244 static inline bool fl_starving(const struct sge_fl *fl)
245 {
246 	return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
247 }
248 
249 static int map_skb(struct device *dev, const struct sk_buff *skb,
250 		   dma_addr_t *addr)
251 {
252 	const skb_frag_t *fp, *end;
253 	const struct skb_shared_info *si;
254 
255 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
256 	if (dma_mapping_error(dev, *addr))
257 		goto out_err;
258 
259 	si = skb_shinfo(skb);
260 	end = &si->frags[si->nr_frags];
261 
262 	for (fp = si->frags; fp < end; fp++) {
263 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
264 					   DMA_TO_DEVICE);
265 		if (dma_mapping_error(dev, *addr))
266 			goto unwind;
267 	}
268 	return 0;
269 
270 unwind:
271 	while (fp-- > si->frags)
272 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
273 
274 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
275 out_err:
276 	return -ENOMEM;
277 }
278 
279 #ifdef CONFIG_NEED_DMA_MAP_STATE
280 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
281 		      const dma_addr_t *addr)
282 {
283 	const skb_frag_t *fp, *end;
284 	const struct skb_shared_info *si;
285 
286 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
287 
288 	si = skb_shinfo(skb);
289 	end = &si->frags[si->nr_frags];
290 	for (fp = si->frags; fp < end; fp++)
291 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
292 }
293 
294 /**
295  *	deferred_unmap_destructor - unmap a packet when it is freed
296  *	@skb: the packet
297  *
298  *	This is the packet destructor used for Tx packets that need to remain
299  *	mapped until they are freed rather than until their Tx descriptors are
300  *	freed.
301  */
302 static void deferred_unmap_destructor(struct sk_buff *skb)
303 {
304 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
305 }
306 #endif
307 
308 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
309 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
310 {
311 	const struct ulptx_sge_pair *p;
312 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
313 
314 	if (likely(skb_headlen(skb)))
315 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
316 				 DMA_TO_DEVICE);
317 	else {
318 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
319 			       DMA_TO_DEVICE);
320 		nfrags--;
321 	}
322 
323 	/*
324 	 * the complexity below is because of the possibility of a wrap-around
325 	 * in the middle of an SGL
326 	 */
327 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
328 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
329 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
330 				       ntohl(p->len[0]), DMA_TO_DEVICE);
331 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
332 				       ntohl(p->len[1]), DMA_TO_DEVICE);
333 			p++;
334 		} else if ((u8 *)p == (u8 *)q->stat) {
335 			p = (const struct ulptx_sge_pair *)q->desc;
336 			goto unmap;
337 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
338 			const __be64 *addr = (const __be64 *)q->desc;
339 
340 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
341 				       ntohl(p->len[0]), DMA_TO_DEVICE);
342 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
343 				       ntohl(p->len[1]), DMA_TO_DEVICE);
344 			p = (const struct ulptx_sge_pair *)&addr[2];
345 		} else {
346 			const __be64 *addr = (const __be64 *)q->desc;
347 
348 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
349 				       ntohl(p->len[0]), DMA_TO_DEVICE);
350 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
351 				       ntohl(p->len[1]), DMA_TO_DEVICE);
352 			p = (const struct ulptx_sge_pair *)&addr[1];
353 		}
354 	}
355 	if (nfrags) {
356 		__be64 addr;
357 
358 		if ((u8 *)p == (u8 *)q->stat)
359 			p = (const struct ulptx_sge_pair *)q->desc;
360 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
361 						       *(const __be64 *)q->desc;
362 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
363 			       DMA_TO_DEVICE);
364 	}
365 }
366 
367 /**
368  *	free_tx_desc - reclaims Tx descriptors and their buffers
369  *	@adapter: the adapter
370  *	@q: the Tx queue to reclaim descriptors from
371  *	@n: the number of descriptors to reclaim
372  *	@unmap: whether the buffers should be unmapped for DMA
373  *
374  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
375  *	Tx buffers.  Called with the Tx queue lock held.
376  */
377 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
378 			 unsigned int n, bool unmap)
379 {
380 	struct tx_sw_desc *d;
381 	unsigned int cidx = q->cidx;
382 	struct device *dev = adap->pdev_dev;
383 
384 	d = &q->sdesc[cidx];
385 	while (n--) {
386 		if (d->skb) {                       /* an SGL is present */
387 			if (unmap)
388 				unmap_sgl(dev, d->skb, d->sgl, q);
389 			dev_consume_skb_any(d->skb);
390 			d->skb = NULL;
391 		}
392 		++d;
393 		if (++cidx == q->size) {
394 			cidx = 0;
395 			d = q->sdesc;
396 		}
397 	}
398 	q->cidx = cidx;
399 }
400 
401 /*
402  * Return the number of reclaimable descriptors in a Tx queue.
403  */
404 static inline int reclaimable(const struct sge_txq *q)
405 {
406 	int hw_cidx = ntohs(q->stat->cidx);
407 	hw_cidx -= q->cidx;
408 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
409 }
410 
411 /**
412  *	reclaim_completed_tx - reclaims completed Tx descriptors
413  *	@adap: the adapter
414  *	@q: the Tx queue to reclaim completed descriptors from
415  *	@unmap: whether the buffers should be unmapped for DMA
416  *
417  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
418  *	and frees the associated buffers if possible.  Called with the Tx
419  *	queue locked.
420  */
421 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
422 					bool unmap)
423 {
424 	int avail = reclaimable(q);
425 
426 	if (avail) {
427 		/*
428 		 * Limit the amount of clean up work we do at a time to keep
429 		 * the Tx lock hold time O(1).
430 		 */
431 		if (avail > MAX_TX_RECLAIM)
432 			avail = MAX_TX_RECLAIM;
433 
434 		free_tx_desc(adap, q, avail, unmap);
435 		q->in_use -= avail;
436 	}
437 }
438 
439 static inline int get_buf_size(struct adapter *adapter,
440 			       const struct rx_sw_desc *d)
441 {
442 	struct sge *s = &adapter->sge;
443 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
444 	int buf_size;
445 
446 	switch (rx_buf_size_idx) {
447 	case RX_SMALL_PG_BUF:
448 		buf_size = PAGE_SIZE;
449 		break;
450 
451 	case RX_LARGE_PG_BUF:
452 		buf_size = PAGE_SIZE << s->fl_pg_order;
453 		break;
454 
455 	case RX_SMALL_MTU_BUF:
456 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
457 		break;
458 
459 	case RX_LARGE_MTU_BUF:
460 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
461 		break;
462 
463 	default:
464 		BUG_ON(1);
465 	}
466 
467 	return buf_size;
468 }
469 
470 /**
471  *	free_rx_bufs - free the Rx buffers on an SGE free list
472  *	@adap: the adapter
473  *	@q: the SGE free list to free buffers from
474  *	@n: how many buffers to free
475  *
476  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
477  *	buffers must be made inaccessible to HW before calling this function.
478  */
479 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
480 {
481 	while (n--) {
482 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
483 
484 		if (is_buf_mapped(d))
485 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
486 				       get_buf_size(adap, d),
487 				       PCI_DMA_FROMDEVICE);
488 		put_page(d->page);
489 		d->page = NULL;
490 		if (++q->cidx == q->size)
491 			q->cidx = 0;
492 		q->avail--;
493 	}
494 }
495 
496 /**
497  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
498  *	@adap: the adapter
499  *	@q: the SGE free list
500  *
501  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
502  *	buffer must be made inaccessible to HW before calling this function.
503  *
504  *	This is similar to @free_rx_bufs above but does not free the buffer.
505  *	Do note that the FL still loses any further access to the buffer.
506  */
507 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
508 {
509 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
510 
511 	if (is_buf_mapped(d))
512 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
513 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
514 	d->page = NULL;
515 	if (++q->cidx == q->size)
516 		q->cidx = 0;
517 	q->avail--;
518 }
519 
520 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
521 {
522 	u32 val;
523 	if (q->pend_cred >= 8) {
524 		val = PIDX(q->pend_cred / 8);
525 		if (!is_t4(adap->params.chip))
526 			val |= DBTYPE(1);
527 		val |= DBPRIO(1);
528 		wmb();
529 
530 		/* If we don't have access to the new User Doorbell (T5+), use
531 		 * the old doorbell mechanism; otherwise use the new BAR2
532 		 * mechanism.
533 		 */
534 		if (unlikely(q->bar2_addr == NULL)) {
535 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
536 				     val | QID(q->cntxt_id));
537 		} else {
538 			writel(val | QID(q->bar2_qid),
539 			       q->bar2_addr + SGE_UDB_KDOORBELL);
540 
541 			/* This Write memory Barrier will force the write to
542 			 * the User Doorbell area to be flushed.
543 			 */
544 			wmb();
545 		}
546 		q->pend_cred &= 7;
547 	}
548 }
549 
550 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
551 				  dma_addr_t mapping)
552 {
553 	sd->page = pg;
554 	sd->dma_addr = mapping;      /* includes size low bits */
555 }
556 
557 /**
558  *	refill_fl - refill an SGE Rx buffer ring
559  *	@adap: the adapter
560  *	@q: the ring to refill
561  *	@n: the number of new buffers to allocate
562  *	@gfp: the gfp flags for the allocations
563  *
564  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
565  *	allocated with the supplied gfp flags.  The caller must assure that
566  *	@n does not exceed the queue's capacity.  If afterwards the queue is
567  *	found critically low mark it as starving in the bitmap of starving FLs.
568  *
569  *	Returns the number of buffers allocated.
570  */
571 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
572 			      gfp_t gfp)
573 {
574 	struct sge *s = &adap->sge;
575 	struct page *pg;
576 	dma_addr_t mapping;
577 	unsigned int cred = q->avail;
578 	__be64 *d = &q->desc[q->pidx];
579 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
580 
581 	gfp |= __GFP_NOWARN;
582 
583 	if (s->fl_pg_order == 0)
584 		goto alloc_small_pages;
585 
586 	/*
587 	 * Prefer large buffers
588 	 */
589 	while (n) {
590 		pg = __dev_alloc_pages(gfp, s->fl_pg_order);
591 		if (unlikely(!pg)) {
592 			q->large_alloc_failed++;
593 			break;       /* fall back to single pages */
594 		}
595 
596 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
597 				       PAGE_SIZE << s->fl_pg_order,
598 				       PCI_DMA_FROMDEVICE);
599 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
600 			__free_pages(pg, s->fl_pg_order);
601 			goto out;   /* do not try small pages for this error */
602 		}
603 		mapping |= RX_LARGE_PG_BUF;
604 		*d++ = cpu_to_be64(mapping);
605 
606 		set_rx_sw_desc(sd, pg, mapping);
607 		sd++;
608 
609 		q->avail++;
610 		if (++q->pidx == q->size) {
611 			q->pidx = 0;
612 			sd = q->sdesc;
613 			d = q->desc;
614 		}
615 		n--;
616 	}
617 
618 alloc_small_pages:
619 	while (n--) {
620 		pg = __dev_alloc_page(gfp);
621 		if (unlikely(!pg)) {
622 			q->alloc_failed++;
623 			break;
624 		}
625 
626 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
627 				       PCI_DMA_FROMDEVICE);
628 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
629 			put_page(pg);
630 			goto out;
631 		}
632 		*d++ = cpu_to_be64(mapping);
633 
634 		set_rx_sw_desc(sd, pg, mapping);
635 		sd++;
636 
637 		q->avail++;
638 		if (++q->pidx == q->size) {
639 			q->pidx = 0;
640 			sd = q->sdesc;
641 			d = q->desc;
642 		}
643 	}
644 
645 out:	cred = q->avail - cred;
646 	q->pend_cred += cred;
647 	ring_fl_db(adap, q);
648 
649 	if (unlikely(fl_starving(q))) {
650 		smp_wmb();
651 		set_bit(q->cntxt_id - adap->sge.egr_start,
652 			adap->sge.starving_fl);
653 	}
654 
655 	return cred;
656 }
657 
658 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
659 {
660 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
661 		  GFP_ATOMIC);
662 }
663 
664 /**
665  *	alloc_ring - allocate resources for an SGE descriptor ring
666  *	@dev: the PCI device's core device
667  *	@nelem: the number of descriptors
668  *	@elem_size: the size of each descriptor
669  *	@sw_size: the size of the SW state associated with each ring element
670  *	@phys: the physical address of the allocated ring
671  *	@metadata: address of the array holding the SW state for the ring
672  *	@stat_size: extra space in HW ring for status information
673  *	@node: preferred node for memory allocations
674  *
675  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
676  *	free buffer lists, or response queues.  Each SGE ring requires
677  *	space for its HW descriptors plus, optionally, space for the SW state
678  *	associated with each HW entry (the metadata).  The function returns
679  *	three values: the virtual address for the HW ring (the return value
680  *	of the function), the bus address of the HW ring, and the address
681  *	of the SW ring.
682  */
683 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
684 			size_t sw_size, dma_addr_t *phys, void *metadata,
685 			size_t stat_size, int node)
686 {
687 	size_t len = nelem * elem_size + stat_size;
688 	void *s = NULL;
689 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
690 
691 	if (!p)
692 		return NULL;
693 	if (sw_size) {
694 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
695 
696 		if (!s) {
697 			dma_free_coherent(dev, len, p, *phys);
698 			return NULL;
699 		}
700 	}
701 	if (metadata)
702 		*(void **)metadata = s;
703 	memset(p, 0, len);
704 	return p;
705 }
706 
707 /**
708  *	sgl_len - calculates the size of an SGL of the given capacity
709  *	@n: the number of SGL entries
710  *
711  *	Calculates the number of flits needed for a scatter/gather list that
712  *	can hold the given number of entries.
713  */
714 static inline unsigned int sgl_len(unsigned int n)
715 {
716 	n--;
717 	return (3 * n) / 2 + (n & 1) + 2;
718 }
719 
720 /**
721  *	flits_to_desc - returns the num of Tx descriptors for the given flits
722  *	@n: the number of flits
723  *
724  *	Returns the number of Tx descriptors needed for the supplied number
725  *	of flits.
726  */
727 static inline unsigned int flits_to_desc(unsigned int n)
728 {
729 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
730 	return DIV_ROUND_UP(n, 8);
731 }
732 
733 /**
734  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
735  *	@skb: the packet
736  *
737  *	Returns whether an Ethernet packet is small enough to fit as
738  *	immediate data. Return value corresponds to headroom required.
739  */
740 static inline int is_eth_imm(const struct sk_buff *skb)
741 {
742 	int hdrlen = skb_shinfo(skb)->gso_size ?
743 			sizeof(struct cpl_tx_pkt_lso_core) : 0;
744 
745 	hdrlen += sizeof(struct cpl_tx_pkt);
746 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
747 		return hdrlen;
748 	return 0;
749 }
750 
751 /**
752  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
753  *	@skb: the packet
754  *
755  *	Returns the number of flits needed for a Tx WR for the given Ethernet
756  *	packet, including the needed WR and CPL headers.
757  */
758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
759 {
760 	unsigned int flits;
761 	int hdrlen = is_eth_imm(skb);
762 
763 	if (hdrlen)
764 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
765 
766 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
767 	if (skb_shinfo(skb)->gso_size)
768 		flits += 2;
769 	return flits;
770 }
771 
772 /**
773  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
774  *	@skb: the packet
775  *
776  *	Returns the number of Tx descriptors needed for the given Ethernet
777  *	packet, including the needed WR and CPL headers.
778  */
779 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
780 {
781 	return flits_to_desc(calc_tx_flits(skb));
782 }
783 
784 /**
785  *	write_sgl - populate a scatter/gather list for a packet
786  *	@skb: the packet
787  *	@q: the Tx queue we are writing into
788  *	@sgl: starting location for writing the SGL
789  *	@end: points right after the end of the SGL
790  *	@start: start offset into skb main-body data to include in the SGL
791  *	@addr: the list of bus addresses for the SGL elements
792  *
793  *	Generates a gather list for the buffers that make up a packet.
794  *	The caller must provide adequate space for the SGL that will be written.
795  *	The SGL includes all of the packet's page fragments and the data in its
796  *	main body except for the first @start bytes.  @sgl must be 16-byte
797  *	aligned and within a Tx descriptor with available space.  @end points
798  *	right after the end of the SGL but does not account for any potential
799  *	wrap around, i.e., @end > @sgl.
800  */
801 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
802 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
803 		      const dma_addr_t *addr)
804 {
805 	unsigned int i, len;
806 	struct ulptx_sge_pair *to;
807 	const struct skb_shared_info *si = skb_shinfo(skb);
808 	unsigned int nfrags = si->nr_frags;
809 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
810 
811 	len = skb_headlen(skb) - start;
812 	if (likely(len)) {
813 		sgl->len0 = htonl(len);
814 		sgl->addr0 = cpu_to_be64(addr[0] + start);
815 		nfrags++;
816 	} else {
817 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
818 		sgl->addr0 = cpu_to_be64(addr[1]);
819 	}
820 
821 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
822 	if (likely(--nfrags == 0))
823 		return;
824 	/*
825 	 * Most of the complexity below deals with the possibility we hit the
826 	 * end of the queue in the middle of writing the SGL.  For this case
827 	 * only we create the SGL in a temporary buffer and then copy it.
828 	 */
829 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
830 
831 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
832 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
833 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
834 		to->addr[0] = cpu_to_be64(addr[i]);
835 		to->addr[1] = cpu_to_be64(addr[++i]);
836 	}
837 	if (nfrags) {
838 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
839 		to->len[1] = cpu_to_be32(0);
840 		to->addr[0] = cpu_to_be64(addr[i + 1]);
841 	}
842 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
843 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
844 
845 		if (likely(part0))
846 			memcpy(sgl->sge, buf, part0);
847 		part1 = (u8 *)end - (u8 *)q->stat;
848 		memcpy(q->desc, (u8 *)buf + part0, part1);
849 		end = (void *)q->desc + part1;
850 	}
851 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
852 		*end = 0;
853 }
854 
855 /* This function copies 64 byte coalesced work request to
856  * memory mapped BAR2 space. For coalesced WR SGE fetches
857  * data from the FIFO instead of from Host.
858  */
859 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
860 {
861 	int count = 8;
862 
863 	while (count) {
864 		writeq(*src, dst);
865 		src++;
866 		dst++;
867 		count--;
868 	}
869 }
870 
871 /**
872  *	ring_tx_db - check and potentially ring a Tx queue's doorbell
873  *	@adap: the adapter
874  *	@q: the Tx queue
875  *	@n: number of new descriptors to give to HW
876  *
877  *	Ring the doorbel for a Tx queue.
878  */
879 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
880 {
881 	wmb();            /* write descriptors before telling HW */
882 
883 	/* If we don't have access to the new User Doorbell (T5+), use the old
884 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
885 	 */
886 	if (unlikely(q->bar2_addr == NULL)) {
887 		u32 val = PIDX(n);
888 		unsigned long flags;
889 
890 		/* For T4 we need to participate in the Doorbell Recovery
891 		 * mechanism.
892 		 */
893 		spin_lock_irqsave(&q->db_lock, flags);
894 		if (!q->db_disabled)
895 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
896 				     QID(q->cntxt_id) | val);
897 		else
898 			q->db_pidx_inc += n;
899 		q->db_pidx = q->pidx;
900 		spin_unlock_irqrestore(&q->db_lock, flags);
901 	} else {
902 		u32 val = PIDX_T5(n);
903 
904 		/* T4 and later chips share the same PIDX field offset within
905 		 * the doorbell, but T5 and later shrank the field in order to
906 		 * gain a bit for Doorbell Priority.  The field was absurdly
907 		 * large in the first place (14 bits) so we just use the T5
908 		 * and later limits and warn if a Queue ID is too large.
909 		 */
910 		WARN_ON(val & DBPRIO(1));
911 
912 		/* If we're only writing a single TX Descriptor and we can use
913 		 * Inferred QID registers, we can use the Write Combining
914 		 * Gather Buffer; otherwise we use the simple doorbell.
915 		 */
916 		if (n == 1 && q->bar2_qid == 0) {
917 			int index = (q->pidx
918 				     ? (q->pidx - 1)
919 				     : (q->size - 1));
920 			u64 *wr = (u64 *)&q->desc[index];
921 
922 			cxgb_pio_copy((u64 __iomem *)
923 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
924 				      wr);
925 		} else {
926 			writel(val | QID(q->bar2_qid),
927 			       q->bar2_addr + SGE_UDB_KDOORBELL);
928 		}
929 
930 		/* This Write Memory Barrier will force the write to the User
931 		 * Doorbell area to be flushed.  This is needed to prevent
932 		 * writes on different CPUs for the same queue from hitting
933 		 * the adapter out of order.  This is required when some Work
934 		 * Requests take the Write Combine Gather Buffer path (user
935 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
936 		 * take the traditional path where we simply increment the
937 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
938 		 * hardware DMA read the actual Work Request.
939 		 */
940 		wmb();
941 	}
942 }
943 
944 /**
945  *	inline_tx_skb - inline a packet's data into Tx descriptors
946  *	@skb: the packet
947  *	@q: the Tx queue where the packet will be inlined
948  *	@pos: starting position in the Tx queue where to inline the packet
949  *
950  *	Inline a packet's contents directly into Tx descriptors, starting at
951  *	the given position within the Tx DMA ring.
952  *	Most of the complexity of this operation is dealing with wrap arounds
953  *	in the middle of the packet we want to inline.
954  */
955 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
956 			  void *pos)
957 {
958 	u64 *p;
959 	int left = (void *)q->stat - pos;
960 
961 	if (likely(skb->len <= left)) {
962 		if (likely(!skb->data_len))
963 			skb_copy_from_linear_data(skb, pos, skb->len);
964 		else
965 			skb_copy_bits(skb, 0, pos, skb->len);
966 		pos += skb->len;
967 	} else {
968 		skb_copy_bits(skb, 0, pos, left);
969 		skb_copy_bits(skb, left, q->desc, skb->len - left);
970 		pos = (void *)q->desc + (skb->len - left);
971 	}
972 
973 	/* 0-pad to multiple of 16 */
974 	p = PTR_ALIGN(pos, 8);
975 	if ((uintptr_t)p & 8)
976 		*p = 0;
977 }
978 
979 /*
980  * Figure out what HW csum a packet wants and return the appropriate control
981  * bits.
982  */
983 static u64 hwcsum(const struct sk_buff *skb)
984 {
985 	int csum_type;
986 	const struct iphdr *iph = ip_hdr(skb);
987 
988 	if (iph->version == 4) {
989 		if (iph->protocol == IPPROTO_TCP)
990 			csum_type = TX_CSUM_TCPIP;
991 		else if (iph->protocol == IPPROTO_UDP)
992 			csum_type = TX_CSUM_UDPIP;
993 		else {
994 nocsum:			/*
995 			 * unknown protocol, disable HW csum
996 			 * and hope a bad packet is detected
997 			 */
998 			return TXPKT_L4CSUM_DIS;
999 		}
1000 	} else {
1001 		/*
1002 		 * this doesn't work with extension headers
1003 		 */
1004 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1005 
1006 		if (ip6h->nexthdr == IPPROTO_TCP)
1007 			csum_type = TX_CSUM_TCPIP6;
1008 		else if (ip6h->nexthdr == IPPROTO_UDP)
1009 			csum_type = TX_CSUM_UDPIP6;
1010 		else
1011 			goto nocsum;
1012 	}
1013 
1014 	if (likely(csum_type >= TX_CSUM_TCPIP))
1015 		return TXPKT_CSUM_TYPE(csum_type) |
1016 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1017 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1018 	else {
1019 		int start = skb_transport_offset(skb);
1020 
1021 		return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
1022 			TXPKT_CSUM_LOC(start + skb->csum_offset);
1023 	}
1024 }
1025 
1026 static void eth_txq_stop(struct sge_eth_txq *q)
1027 {
1028 	netif_tx_stop_queue(q->txq);
1029 	q->q.stops++;
1030 }
1031 
1032 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1033 {
1034 	q->in_use += n;
1035 	q->pidx += n;
1036 	if (q->pidx >= q->size)
1037 		q->pidx -= q->size;
1038 }
1039 
1040 /**
1041  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
1042  *	@skb: the packet
1043  *	@dev: the egress net device
1044  *
1045  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1046  */
1047 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1048 {
1049 	int len;
1050 	u32 wr_mid;
1051 	u64 cntrl, *end;
1052 	int qidx, credits;
1053 	unsigned int flits, ndesc;
1054 	struct adapter *adap;
1055 	struct sge_eth_txq *q;
1056 	const struct port_info *pi;
1057 	struct fw_eth_tx_pkt_wr *wr;
1058 	struct cpl_tx_pkt_core *cpl;
1059 	const struct skb_shared_info *ssi;
1060 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1061 	bool immediate = false;
1062 
1063 	/*
1064 	 * The chip min packet length is 10 octets but play safe and reject
1065 	 * anything shorter than an Ethernet header.
1066 	 */
1067 	if (unlikely(skb->len < ETH_HLEN)) {
1068 out_free:	dev_kfree_skb_any(skb);
1069 		return NETDEV_TX_OK;
1070 	}
1071 
1072 	pi = netdev_priv(dev);
1073 	adap = pi->adapter;
1074 	qidx = skb_get_queue_mapping(skb);
1075 	q = &adap->sge.ethtxq[qidx + pi->first_qset];
1076 
1077 	reclaim_completed_tx(adap, &q->q, true);
1078 
1079 	flits = calc_tx_flits(skb);
1080 	ndesc = flits_to_desc(flits);
1081 	credits = txq_avail(&q->q) - ndesc;
1082 
1083 	if (unlikely(credits < 0)) {
1084 		eth_txq_stop(q);
1085 		dev_err(adap->pdev_dev,
1086 			"%s: Tx ring %u full while queue awake!\n",
1087 			dev->name, qidx);
1088 		return NETDEV_TX_BUSY;
1089 	}
1090 
1091 	if (is_eth_imm(skb))
1092 		immediate = true;
1093 
1094 	if (!immediate &&
1095 	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1096 		q->mapping_err++;
1097 		goto out_free;
1098 	}
1099 
1100 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1101 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1102 		eth_txq_stop(q);
1103 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1104 	}
1105 
1106 	wr = (void *)&q->q.desc[q->q.pidx];
1107 	wr->equiq_to_len16 = htonl(wr_mid);
1108 	wr->r3 = cpu_to_be64(0);
1109 	end = (u64 *)wr + flits;
1110 
1111 	len = immediate ? skb->len : 0;
1112 	ssi = skb_shinfo(skb);
1113 	if (ssi->gso_size) {
1114 		struct cpl_tx_pkt_lso *lso = (void *)wr;
1115 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1116 		int l3hdr_len = skb_network_header_len(skb);
1117 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1118 
1119 		len += sizeof(*lso);
1120 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1121 				       FW_WR_IMMDLEN_V(len));
1122 		lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1123 					LSO_FIRST_SLICE | LSO_LAST_SLICE |
1124 					LSO_IPV6(v6) |
1125 					LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1126 					LSO_IPHDR_LEN(l3hdr_len / 4) |
1127 					LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1128 		lso->c.ipid_ofst = htons(0);
1129 		lso->c.mss = htons(ssi->gso_size);
1130 		lso->c.seqno_offset = htonl(0);
1131 		if (is_t4(adap->params.chip))
1132 			lso->c.len = htonl(skb->len);
1133 		else
1134 			lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
1135 		cpl = (void *)(lso + 1);
1136 		cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1137 			TXPKT_IPHDR_LEN(l3hdr_len) |
1138 			TXPKT_ETHHDR_LEN(eth_xtra_len);
1139 		q->tso++;
1140 		q->tx_cso += ssi->gso_segs;
1141 	} else {
1142 		len += sizeof(*cpl);
1143 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1144 				       FW_WR_IMMDLEN_V(len));
1145 		cpl = (void *)(wr + 1);
1146 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1147 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1148 			q->tx_cso++;
1149 		} else
1150 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1151 	}
1152 
1153 	if (vlan_tx_tag_present(skb)) {
1154 		q->vlan_ins++;
1155 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1156 	}
1157 
1158 	cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1159 			   TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1160 	cpl->pack = htons(0);
1161 	cpl->len = htons(skb->len);
1162 	cpl->ctrl1 = cpu_to_be64(cntrl);
1163 
1164 	if (immediate) {
1165 		inline_tx_skb(skb, &q->q, cpl + 1);
1166 		dev_consume_skb_any(skb);
1167 	} else {
1168 		int last_desc;
1169 
1170 		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1171 			  addr);
1172 		skb_orphan(skb);
1173 
1174 		last_desc = q->q.pidx + ndesc - 1;
1175 		if (last_desc >= q->q.size)
1176 			last_desc -= q->q.size;
1177 		q->q.sdesc[last_desc].skb = skb;
1178 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1179 	}
1180 
1181 	txq_advance(&q->q, ndesc);
1182 
1183 	ring_tx_db(adap, &q->q, ndesc);
1184 	return NETDEV_TX_OK;
1185 }
1186 
1187 /**
1188  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1189  *	@q: the SGE control Tx queue
1190  *
1191  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1192  *	that send only immediate data (presently just the control queues) and
1193  *	thus do not have any sk_buffs to release.
1194  */
1195 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1196 {
1197 	int hw_cidx = ntohs(q->stat->cidx);
1198 	int reclaim = hw_cidx - q->cidx;
1199 
1200 	if (reclaim < 0)
1201 		reclaim += q->size;
1202 
1203 	q->in_use -= reclaim;
1204 	q->cidx = hw_cidx;
1205 }
1206 
1207 /**
1208  *	is_imm - check whether a packet can be sent as immediate data
1209  *	@skb: the packet
1210  *
1211  *	Returns true if a packet can be sent as a WR with immediate data.
1212  */
1213 static inline int is_imm(const struct sk_buff *skb)
1214 {
1215 	return skb->len <= MAX_CTRL_WR_LEN;
1216 }
1217 
1218 /**
1219  *	ctrlq_check_stop - check if a control queue is full and should stop
1220  *	@q: the queue
1221  *	@wr: most recent WR written to the queue
1222  *
1223  *	Check if a control queue has become full and should be stopped.
1224  *	We clean up control queue descriptors very lazily, only when we are out.
1225  *	If the queue is still full after reclaiming any completed descriptors
1226  *	we suspend it and have the last WR wake it up.
1227  */
1228 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1229 {
1230 	reclaim_completed_tx_imm(&q->q);
1231 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1232 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1233 		q->q.stops++;
1234 		q->full = 1;
1235 	}
1236 }
1237 
1238 /**
1239  *	ctrl_xmit - send a packet through an SGE control Tx queue
1240  *	@q: the control queue
1241  *	@skb: the packet
1242  *
1243  *	Send a packet through an SGE control Tx queue.  Packets sent through
1244  *	a control queue must fit entirely as immediate data.
1245  */
1246 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1247 {
1248 	unsigned int ndesc;
1249 	struct fw_wr_hdr *wr;
1250 
1251 	if (unlikely(!is_imm(skb))) {
1252 		WARN_ON(1);
1253 		dev_kfree_skb(skb);
1254 		return NET_XMIT_DROP;
1255 	}
1256 
1257 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1258 	spin_lock(&q->sendq.lock);
1259 
1260 	if (unlikely(q->full)) {
1261 		skb->priority = ndesc;                  /* save for restart */
1262 		__skb_queue_tail(&q->sendq, skb);
1263 		spin_unlock(&q->sendq.lock);
1264 		return NET_XMIT_CN;
1265 	}
1266 
1267 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1268 	inline_tx_skb(skb, &q->q, wr);
1269 
1270 	txq_advance(&q->q, ndesc);
1271 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1272 		ctrlq_check_stop(q, wr);
1273 
1274 	ring_tx_db(q->adap, &q->q, ndesc);
1275 	spin_unlock(&q->sendq.lock);
1276 
1277 	kfree_skb(skb);
1278 	return NET_XMIT_SUCCESS;
1279 }
1280 
1281 /**
1282  *	restart_ctrlq - restart a suspended control queue
1283  *	@data: the control queue to restart
1284  *
1285  *	Resumes transmission on a suspended Tx control queue.
1286  */
1287 static void restart_ctrlq(unsigned long data)
1288 {
1289 	struct sk_buff *skb;
1290 	unsigned int written = 0;
1291 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1292 
1293 	spin_lock(&q->sendq.lock);
1294 	reclaim_completed_tx_imm(&q->q);
1295 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1296 
1297 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1298 		struct fw_wr_hdr *wr;
1299 		unsigned int ndesc = skb->priority;     /* previously saved */
1300 
1301 		/*
1302 		 * Write descriptors and free skbs outside the lock to limit
1303 		 * wait times.  q->full is still set so new skbs will be queued.
1304 		 */
1305 		spin_unlock(&q->sendq.lock);
1306 
1307 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1308 		inline_tx_skb(skb, &q->q, wr);
1309 		kfree_skb(skb);
1310 
1311 		written += ndesc;
1312 		txq_advance(&q->q, ndesc);
1313 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1314 			unsigned long old = q->q.stops;
1315 
1316 			ctrlq_check_stop(q, wr);
1317 			if (q->q.stops != old) {          /* suspended anew */
1318 				spin_lock(&q->sendq.lock);
1319 				goto ringdb;
1320 			}
1321 		}
1322 		if (written > 16) {
1323 			ring_tx_db(q->adap, &q->q, written);
1324 			written = 0;
1325 		}
1326 		spin_lock(&q->sendq.lock);
1327 	}
1328 	q->full = 0;
1329 ringdb: if (written)
1330 		ring_tx_db(q->adap, &q->q, written);
1331 	spin_unlock(&q->sendq.lock);
1332 }
1333 
1334 /**
1335  *	t4_mgmt_tx - send a management message
1336  *	@adap: the adapter
1337  *	@skb: the packet containing the management message
1338  *
1339  *	Send a management message through control queue 0.
1340  */
1341 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1342 {
1343 	int ret;
1344 
1345 	local_bh_disable();
1346 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1347 	local_bh_enable();
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	is_ofld_imm - check whether a packet can be sent as immediate data
1353  *	@skb: the packet
1354  *
1355  *	Returns true if a packet can be sent as an offload WR with immediate
1356  *	data.  We currently use the same limit as for Ethernet packets.
1357  */
1358 static inline int is_ofld_imm(const struct sk_buff *skb)
1359 {
1360 	return skb->len <= MAX_IMM_TX_PKT_LEN;
1361 }
1362 
1363 /**
1364  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1365  *	@skb: the packet
1366  *
1367  *	Returns the number of flits needed for the given offload packet.
1368  *	These packets are already fully constructed and no additional headers
1369  *	will be added.
1370  */
1371 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1372 {
1373 	unsigned int flits, cnt;
1374 
1375 	if (is_ofld_imm(skb))
1376 		return DIV_ROUND_UP(skb->len, 8);
1377 
1378 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1379 	cnt = skb_shinfo(skb)->nr_frags;
1380 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1381 		cnt++;
1382 	return flits + sgl_len(cnt);
1383 }
1384 
1385 /**
1386  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1387  *	@adap: the adapter
1388  *	@q: the queue to stop
1389  *
1390  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1391  *	inability to map packets.  A periodic timer attempts to restart
1392  *	queues so marked.
1393  */
1394 static void txq_stop_maperr(struct sge_ofld_txq *q)
1395 {
1396 	q->mapping_err++;
1397 	q->q.stops++;
1398 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1399 		q->adap->sge.txq_maperr);
1400 }
1401 
1402 /**
1403  *	ofldtxq_stop - stop an offload Tx queue that has become full
1404  *	@q: the queue to stop
1405  *	@skb: the packet causing the queue to become full
1406  *
1407  *	Stops an offload Tx queue that has become full and modifies the packet
1408  *	being written to request a wakeup.
1409  */
1410 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1411 {
1412 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1413 
1414 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1415 	q->q.stops++;
1416 	q->full = 1;
1417 }
1418 
1419 /**
1420  *	service_ofldq - restart a suspended offload queue
1421  *	@q: the offload queue
1422  *
1423  *	Services an offload Tx queue by moving packets from its packet queue
1424  *	to the HW Tx ring.  The function starts and ends with the queue locked.
1425  */
1426 static void service_ofldq(struct sge_ofld_txq *q)
1427 {
1428 	u64 *pos;
1429 	int credits;
1430 	struct sk_buff *skb;
1431 	unsigned int written = 0;
1432 	unsigned int flits, ndesc;
1433 
1434 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1435 		/*
1436 		 * We drop the lock but leave skb on sendq, thus retaining
1437 		 * exclusive access to the state of the queue.
1438 		 */
1439 		spin_unlock(&q->sendq.lock);
1440 
1441 		reclaim_completed_tx(q->adap, &q->q, false);
1442 
1443 		flits = skb->priority;                /* previously saved */
1444 		ndesc = flits_to_desc(flits);
1445 		credits = txq_avail(&q->q) - ndesc;
1446 		BUG_ON(credits < 0);
1447 		if (unlikely(credits < TXQ_STOP_THRES))
1448 			ofldtxq_stop(q, skb);
1449 
1450 		pos = (u64 *)&q->q.desc[q->q.pidx];
1451 		if (is_ofld_imm(skb))
1452 			inline_tx_skb(skb, &q->q, pos);
1453 		else if (map_skb(q->adap->pdev_dev, skb,
1454 				 (dma_addr_t *)skb->head)) {
1455 			txq_stop_maperr(q);
1456 			spin_lock(&q->sendq.lock);
1457 			break;
1458 		} else {
1459 			int last_desc, hdr_len = skb_transport_offset(skb);
1460 
1461 			memcpy(pos, skb->data, hdr_len);
1462 			write_sgl(skb, &q->q, (void *)pos + hdr_len,
1463 				  pos + flits, hdr_len,
1464 				  (dma_addr_t *)skb->head);
1465 #ifdef CONFIG_NEED_DMA_MAP_STATE
1466 			skb->dev = q->adap->port[0];
1467 			skb->destructor = deferred_unmap_destructor;
1468 #endif
1469 			last_desc = q->q.pidx + ndesc - 1;
1470 			if (last_desc >= q->q.size)
1471 				last_desc -= q->q.size;
1472 			q->q.sdesc[last_desc].skb = skb;
1473 		}
1474 
1475 		txq_advance(&q->q, ndesc);
1476 		written += ndesc;
1477 		if (unlikely(written > 32)) {
1478 			ring_tx_db(q->adap, &q->q, written);
1479 			written = 0;
1480 		}
1481 
1482 		spin_lock(&q->sendq.lock);
1483 		__skb_unlink(skb, &q->sendq);
1484 		if (is_ofld_imm(skb))
1485 			kfree_skb(skb);
1486 	}
1487 	if (likely(written))
1488 		ring_tx_db(q->adap, &q->q, written);
1489 }
1490 
1491 /**
1492  *	ofld_xmit - send a packet through an offload queue
1493  *	@q: the Tx offload queue
1494  *	@skb: the packet
1495  *
1496  *	Send an offload packet through an SGE offload queue.
1497  */
1498 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1499 {
1500 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1501 	spin_lock(&q->sendq.lock);
1502 	__skb_queue_tail(&q->sendq, skb);
1503 	if (q->sendq.qlen == 1)
1504 		service_ofldq(q);
1505 	spin_unlock(&q->sendq.lock);
1506 	return NET_XMIT_SUCCESS;
1507 }
1508 
1509 /**
1510  *	restart_ofldq - restart a suspended offload queue
1511  *	@data: the offload queue to restart
1512  *
1513  *	Resumes transmission on a suspended Tx offload queue.
1514  */
1515 static void restart_ofldq(unsigned long data)
1516 {
1517 	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1518 
1519 	spin_lock(&q->sendq.lock);
1520 	q->full = 0;            /* the queue actually is completely empty now */
1521 	service_ofldq(q);
1522 	spin_unlock(&q->sendq.lock);
1523 }
1524 
1525 /**
1526  *	skb_txq - return the Tx queue an offload packet should use
1527  *	@skb: the packet
1528  *
1529  *	Returns the Tx queue an offload packet should use as indicated by bits
1530  *	1-15 in the packet's queue_mapping.
1531  */
1532 static inline unsigned int skb_txq(const struct sk_buff *skb)
1533 {
1534 	return skb->queue_mapping >> 1;
1535 }
1536 
1537 /**
1538  *	is_ctrl_pkt - return whether an offload packet is a control packet
1539  *	@skb: the packet
1540  *
1541  *	Returns whether an offload packet should use an OFLD or a CTRL
1542  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1543  */
1544 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1545 {
1546 	return skb->queue_mapping & 1;
1547 }
1548 
1549 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1550 {
1551 	unsigned int idx = skb_txq(skb);
1552 
1553 	if (unlikely(is_ctrl_pkt(skb))) {
1554 		/* Single ctrl queue is a requirement for LE workaround path */
1555 		if (adap->tids.nsftids)
1556 			idx = 0;
1557 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1558 	}
1559 	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1560 }
1561 
1562 /**
1563  *	t4_ofld_send - send an offload packet
1564  *	@adap: the adapter
1565  *	@skb: the packet
1566  *
1567  *	Sends an offload packet.  We use the packet queue_mapping to select the
1568  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1569  *	should be sent as regular or control, bits 1-15 select the queue.
1570  */
1571 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1572 {
1573 	int ret;
1574 
1575 	local_bh_disable();
1576 	ret = ofld_send(adap, skb);
1577 	local_bh_enable();
1578 	return ret;
1579 }
1580 
1581 /**
1582  *	cxgb4_ofld_send - send an offload packet
1583  *	@dev: the net device
1584  *	@skb: the packet
1585  *
1586  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
1587  *	intended for ULDs.
1588  */
1589 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1590 {
1591 	return t4_ofld_send(netdev2adap(dev), skb);
1592 }
1593 EXPORT_SYMBOL(cxgb4_ofld_send);
1594 
1595 static inline void copy_frags(struct sk_buff *skb,
1596 			      const struct pkt_gl *gl, unsigned int offset)
1597 {
1598 	int i;
1599 
1600 	/* usually there's just one frag */
1601 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1602 			     gl->frags[0].offset + offset,
1603 			     gl->frags[0].size - offset);
1604 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1605 	for (i = 1; i < gl->nfrags; i++)
1606 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1607 				     gl->frags[i].offset,
1608 				     gl->frags[i].size);
1609 
1610 	/* get a reference to the last page, we don't own it */
1611 	get_page(gl->frags[gl->nfrags - 1].page);
1612 }
1613 
1614 /**
1615  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1616  *	@gl: the gather list
1617  *	@skb_len: size of sk_buff main body if it carries fragments
1618  *	@pull_len: amount of data to move to the sk_buff's main body
1619  *
1620  *	Builds an sk_buff from the given packet gather list.  Returns the
1621  *	sk_buff or %NULL if sk_buff allocation failed.
1622  */
1623 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1624 				   unsigned int skb_len, unsigned int pull_len)
1625 {
1626 	struct sk_buff *skb;
1627 
1628 	/*
1629 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1630 	 * size, which is expected since buffers are at least PAGE_SIZEd.
1631 	 * In this case packets up to RX_COPY_THRES have only one fragment.
1632 	 */
1633 	if (gl->tot_len <= RX_COPY_THRES) {
1634 		skb = dev_alloc_skb(gl->tot_len);
1635 		if (unlikely(!skb))
1636 			goto out;
1637 		__skb_put(skb, gl->tot_len);
1638 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1639 	} else {
1640 		skb = dev_alloc_skb(skb_len);
1641 		if (unlikely(!skb))
1642 			goto out;
1643 		__skb_put(skb, pull_len);
1644 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1645 
1646 		copy_frags(skb, gl, pull_len);
1647 		skb->len = gl->tot_len;
1648 		skb->data_len = skb->len - pull_len;
1649 		skb->truesize += skb->data_len;
1650 	}
1651 out:	return skb;
1652 }
1653 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1654 
1655 /**
1656  *	t4_pktgl_free - free a packet gather list
1657  *	@gl: the gather list
1658  *
1659  *	Releases the pages of a packet gather list.  We do not own the last
1660  *	page on the list and do not free it.
1661  */
1662 static void t4_pktgl_free(const struct pkt_gl *gl)
1663 {
1664 	int n;
1665 	const struct page_frag *p;
1666 
1667 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1668 		put_page(p->page);
1669 }
1670 
1671 /*
1672  * Process an MPS trace packet.  Give it an unused protocol number so it won't
1673  * be delivered to anyone and send it to the stack for capture.
1674  */
1675 static noinline int handle_trace_pkt(struct adapter *adap,
1676 				     const struct pkt_gl *gl)
1677 {
1678 	struct sk_buff *skb;
1679 
1680 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1681 	if (unlikely(!skb)) {
1682 		t4_pktgl_free(gl);
1683 		return 0;
1684 	}
1685 
1686 	if (is_t4(adap->params.chip))
1687 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
1688 	else
1689 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1690 
1691 	skb_reset_mac_header(skb);
1692 	skb->protocol = htons(0xffff);
1693 	skb->dev = adap->port[0];
1694 	netif_receive_skb(skb);
1695 	return 0;
1696 }
1697 
1698 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1699 		   const struct cpl_rx_pkt *pkt)
1700 {
1701 	struct adapter *adapter = rxq->rspq.adap;
1702 	struct sge *s = &adapter->sge;
1703 	int ret;
1704 	struct sk_buff *skb;
1705 
1706 	skb = napi_get_frags(&rxq->rspq.napi);
1707 	if (unlikely(!skb)) {
1708 		t4_pktgl_free(gl);
1709 		rxq->stats.rx_drops++;
1710 		return;
1711 	}
1712 
1713 	copy_frags(skb, gl, s->pktshift);
1714 	skb->len = gl->tot_len - s->pktshift;
1715 	skb->data_len = skb->len;
1716 	skb->truesize += skb->data_len;
1717 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 	skb_record_rx_queue(skb, rxq->rspq.idx);
1719 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1720 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1721 			     PKT_HASH_TYPE_L3);
1722 
1723 	if (unlikely(pkt->vlan_ex)) {
1724 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1725 		rxq->stats.vlan_ex++;
1726 	}
1727 	ret = napi_gro_frags(&rxq->rspq.napi);
1728 	if (ret == GRO_HELD)
1729 		rxq->stats.lro_pkts++;
1730 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1731 		rxq->stats.lro_merged++;
1732 	rxq->stats.pkts++;
1733 	rxq->stats.rx_cso++;
1734 }
1735 
1736 /**
1737  *	t4_ethrx_handler - process an ingress ethernet packet
1738  *	@q: the response queue that received the packet
1739  *	@rsp: the response queue descriptor holding the RX_PKT message
1740  *	@si: the gather list of packet fragments
1741  *
1742  *	Process an ingress ethernet packet and deliver it to the stack.
1743  */
1744 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1745 		     const struct pkt_gl *si)
1746 {
1747 	bool csum_ok;
1748 	struct sk_buff *skb;
1749 	const struct cpl_rx_pkt *pkt;
1750 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1751 	struct sge *s = &q->adap->sge;
1752 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
1753 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1754 
1755 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1756 		return handle_trace_pkt(q->adap, si);
1757 
1758 	pkt = (const struct cpl_rx_pkt *)rsp;
1759 	csum_ok = pkt->csum_calc && !pkt->err_vec &&
1760 		  (q->netdev->features & NETIF_F_RXCSUM);
1761 	if ((pkt->l2info & htonl(RXF_TCP)) &&
1762 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1763 		do_gro(rxq, si, pkt);
1764 		return 0;
1765 	}
1766 
1767 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1768 	if (unlikely(!skb)) {
1769 		t4_pktgl_free(si);
1770 		rxq->stats.rx_drops++;
1771 		return 0;
1772 	}
1773 
1774 	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1775 	skb->protocol = eth_type_trans(skb, q->netdev);
1776 	skb_record_rx_queue(skb, q->idx);
1777 	if (skb->dev->features & NETIF_F_RXHASH)
1778 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1779 			     PKT_HASH_TYPE_L3);
1780 
1781 	rxq->stats.pkts++;
1782 
1783 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1784 		if (!pkt->ip_frag) {
1785 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1786 			rxq->stats.rx_cso++;
1787 		} else if (pkt->l2info & htonl(RXF_IP)) {
1788 			__sum16 c = (__force __sum16)pkt->csum;
1789 			skb->csum = csum_unfold(c);
1790 			skb->ip_summed = CHECKSUM_COMPLETE;
1791 			rxq->stats.rx_cso++;
1792 		}
1793 	} else
1794 		skb_checksum_none_assert(skb);
1795 
1796 	if (unlikely(pkt->vlan_ex)) {
1797 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1798 		rxq->stats.vlan_ex++;
1799 	}
1800 	netif_receive_skb(skb);
1801 	return 0;
1802 }
1803 
1804 /**
1805  *	restore_rx_bufs - put back a packet's Rx buffers
1806  *	@si: the packet gather list
1807  *	@q: the SGE free list
1808  *	@frags: number of FL buffers to restore
1809  *
1810  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
1811  *	have already been unmapped and are left unmapped, we mark them so to
1812  *	prevent further unmapping attempts.
1813  *
1814  *	This function undoes a series of @unmap_rx_buf calls when we find out
1815  *	that the current packet can't be processed right away afterall and we
1816  *	need to come back to it later.  This is a very rare event and there's
1817  *	no effort to make this particularly efficient.
1818  */
1819 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1820 			    int frags)
1821 {
1822 	struct rx_sw_desc *d;
1823 
1824 	while (frags--) {
1825 		if (q->cidx == 0)
1826 			q->cidx = q->size - 1;
1827 		else
1828 			q->cidx--;
1829 		d = &q->sdesc[q->cidx];
1830 		d->page = si->frags[frags].page;
1831 		d->dma_addr |= RX_UNMAPPED_BUF;
1832 		q->avail++;
1833 	}
1834 }
1835 
1836 /**
1837  *	is_new_response - check if a response is newly written
1838  *	@r: the response descriptor
1839  *	@q: the response queue
1840  *
1841  *	Returns true if a response descriptor contains a yet unprocessed
1842  *	response.
1843  */
1844 static inline bool is_new_response(const struct rsp_ctrl *r,
1845 				   const struct sge_rspq *q)
1846 {
1847 	return RSPD_GEN(r->type_gen) == q->gen;
1848 }
1849 
1850 /**
1851  *	rspq_next - advance to the next entry in a response queue
1852  *	@q: the queue
1853  *
1854  *	Updates the state of a response queue to advance it to the next entry.
1855  */
1856 static inline void rspq_next(struct sge_rspq *q)
1857 {
1858 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1859 	if (unlikely(++q->cidx == q->size)) {
1860 		q->cidx = 0;
1861 		q->gen ^= 1;
1862 		q->cur_desc = q->desc;
1863 	}
1864 }
1865 
1866 /**
1867  *	process_responses - process responses from an SGE response queue
1868  *	@q: the ingress queue to process
1869  *	@budget: how many responses can be processed in this round
1870  *
1871  *	Process responses from an SGE response queue up to the supplied budget.
1872  *	Responses include received packets as well as control messages from FW
1873  *	or HW.
1874  *
1875  *	Additionally choose the interrupt holdoff time for the next interrupt
1876  *	on this queue.  If the system is under memory shortage use a fairly
1877  *	long delay to help recovery.
1878  */
1879 static int process_responses(struct sge_rspq *q, int budget)
1880 {
1881 	int ret, rsp_type;
1882 	int budget_left = budget;
1883 	const struct rsp_ctrl *rc;
1884 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1885 	struct adapter *adapter = q->adap;
1886 	struct sge *s = &adapter->sge;
1887 
1888 	while (likely(budget_left)) {
1889 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1890 		if (!is_new_response(rc, q))
1891 			break;
1892 
1893 		rmb();
1894 		rsp_type = RSPD_TYPE(rc->type_gen);
1895 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1896 			struct page_frag *fp;
1897 			struct pkt_gl si;
1898 			const struct rx_sw_desc *rsd;
1899 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1900 
1901 			if (len & RSPD_NEWBUF) {
1902 				if (likely(q->offset > 0)) {
1903 					free_rx_bufs(q->adap, &rxq->fl, 1);
1904 					q->offset = 0;
1905 				}
1906 				len = RSPD_LEN(len);
1907 			}
1908 			si.tot_len = len;
1909 
1910 			/* gather packet fragments */
1911 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
1912 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1913 				bufsz = get_buf_size(adapter, rsd);
1914 				fp->page = rsd->page;
1915 				fp->offset = q->offset;
1916 				fp->size = min(bufsz, len);
1917 				len -= fp->size;
1918 				if (!len)
1919 					break;
1920 				unmap_rx_buf(q->adap, &rxq->fl);
1921 			}
1922 
1923 			/*
1924 			 * Last buffer remains mapped so explicitly make it
1925 			 * coherent for CPU access.
1926 			 */
1927 			dma_sync_single_for_cpu(q->adap->pdev_dev,
1928 						get_buf_addr(rsd),
1929 						fp->size, DMA_FROM_DEVICE);
1930 
1931 			si.va = page_address(si.frags[0].page) +
1932 				si.frags[0].offset;
1933 			prefetch(si.va);
1934 
1935 			si.nfrags = frags + 1;
1936 			ret = q->handler(q, q->cur_desc, &si);
1937 			if (likely(ret == 0))
1938 				q->offset += ALIGN(fp->size, s->fl_align);
1939 			else
1940 				restore_rx_bufs(&si, &rxq->fl, frags);
1941 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
1942 			ret = q->handler(q, q->cur_desc, NULL);
1943 		} else {
1944 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1945 		}
1946 
1947 		if (unlikely(ret)) {
1948 			/* couldn't process descriptor, back off for recovery */
1949 			q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1950 			break;
1951 		}
1952 
1953 		rspq_next(q);
1954 		budget_left--;
1955 	}
1956 
1957 	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1958 		__refill_fl(q->adap, &rxq->fl);
1959 	return budget - budget_left;
1960 }
1961 
1962 /**
1963  *	napi_rx_handler - the NAPI handler for Rx processing
1964  *	@napi: the napi instance
1965  *	@budget: how many packets we can process in this round
1966  *
1967  *	Handler for new data events when using NAPI.  This does not need any
1968  *	locking or protection from interrupts as data interrupts are off at
1969  *	this point and other adapter interrupts do not interfere (the latter
1970  *	in not a concern at all with MSI-X as non-data interrupts then have
1971  *	a separate handler).
1972  */
1973 static int napi_rx_handler(struct napi_struct *napi, int budget)
1974 {
1975 	unsigned int params;
1976 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1977 	int work_done = process_responses(q, budget);
1978 	u32 val;
1979 
1980 	if (likely(work_done < budget)) {
1981 		int timer_index;
1982 
1983 		napi_complete(napi);
1984 		timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
1985 
1986 		if (q->adaptive_rx) {
1987 			if (work_done > max(timer_pkt_quota[timer_index],
1988 					    MIN_NAPI_WORK))
1989 				timer_index = (timer_index + 1);
1990 			else
1991 				timer_index = timer_index - 1;
1992 
1993 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
1994 			q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
1995 							      V_QINTR_CNT_EN;
1996 			params = q->next_intr_params;
1997 		} else {
1998 			params = q->next_intr_params;
1999 			q->next_intr_params = q->intr_params;
2000 		}
2001 	} else
2002 		params = QINTR_TIMER_IDX(7);
2003 
2004 	val = CIDXINC(work_done) | SEINTARM(params);
2005 
2006 	/* If we don't have access to the new User GTS (T5+), use the old
2007 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2008 	 */
2009 	if (unlikely(q->bar2_addr == NULL)) {
2010 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS),
2011 			     val | INGRESSQID((u32)q->cntxt_id));
2012 	} else {
2013 		writel(val | INGRESSQID(q->bar2_qid),
2014 		       q->bar2_addr + SGE_UDB_GTS);
2015 		wmb();
2016 	}
2017 	return work_done;
2018 }
2019 
2020 /*
2021  * The MSI-X interrupt handler for an SGE response queue.
2022  */
2023 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2024 {
2025 	struct sge_rspq *q = cookie;
2026 
2027 	napi_schedule(&q->napi);
2028 	return IRQ_HANDLED;
2029 }
2030 
2031 /*
2032  * Process the indirect interrupt entries in the interrupt queue and kick off
2033  * NAPI for each queue that has generated an entry.
2034  */
2035 static unsigned int process_intrq(struct adapter *adap)
2036 {
2037 	unsigned int credits;
2038 	const struct rsp_ctrl *rc;
2039 	struct sge_rspq *q = &adap->sge.intrq;
2040 	u32 val;
2041 
2042 	spin_lock(&adap->sge.intrq_lock);
2043 	for (credits = 0; ; credits++) {
2044 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2045 		if (!is_new_response(rc, q))
2046 			break;
2047 
2048 		rmb();
2049 		if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
2050 			unsigned int qid = ntohl(rc->pldbuflen_qid);
2051 
2052 			qid -= adap->sge.ingr_start;
2053 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
2054 		}
2055 
2056 		rspq_next(q);
2057 	}
2058 
2059 	val =  CIDXINC(credits) | SEINTARM(q->intr_params);
2060 
2061 	/* If we don't have access to the new User GTS (T5+), use the old
2062 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2063 	 */
2064 	if (unlikely(q->bar2_addr == NULL)) {
2065 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
2066 			     val | INGRESSQID(q->cntxt_id));
2067 	} else {
2068 		writel(val | INGRESSQID(q->bar2_qid),
2069 		       q->bar2_addr + SGE_UDB_GTS);
2070 		wmb();
2071 	}
2072 	spin_unlock(&adap->sge.intrq_lock);
2073 	return credits;
2074 }
2075 
2076 /*
2077  * The MSI interrupt handler, which handles data events from SGE response queues
2078  * as well as error and other async events as they all use the same MSI vector.
2079  */
2080 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2081 {
2082 	struct adapter *adap = cookie;
2083 
2084 	t4_slow_intr_handler(adap);
2085 	process_intrq(adap);
2086 	return IRQ_HANDLED;
2087 }
2088 
2089 /*
2090  * Interrupt handler for legacy INTx interrupts.
2091  * Handles data events from SGE response queues as well as error and other
2092  * async events as they all use the same interrupt line.
2093  */
2094 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2095 {
2096 	struct adapter *adap = cookie;
2097 
2098 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
2099 	if (t4_slow_intr_handler(adap) | process_intrq(adap))
2100 		return IRQ_HANDLED;
2101 	return IRQ_NONE;             /* probably shared interrupt */
2102 }
2103 
2104 /**
2105  *	t4_intr_handler - select the top-level interrupt handler
2106  *	@adap: the adapter
2107  *
2108  *	Selects the top-level interrupt handler based on the type of interrupts
2109  *	(MSI-X, MSI, or INTx).
2110  */
2111 irq_handler_t t4_intr_handler(struct adapter *adap)
2112 {
2113 	if (adap->flags & USING_MSIX)
2114 		return t4_sge_intr_msix;
2115 	if (adap->flags & USING_MSI)
2116 		return t4_intr_msi;
2117 	return t4_intr_intx;
2118 }
2119 
2120 static void sge_rx_timer_cb(unsigned long data)
2121 {
2122 	unsigned long m;
2123 	unsigned int i, idma_same_state_cnt[2];
2124 	struct adapter *adap = (struct adapter *)data;
2125 	struct sge *s = &adap->sge;
2126 
2127 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
2128 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2129 			struct sge_eth_rxq *rxq;
2130 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2131 			struct sge_fl *fl = s->egr_map[id];
2132 
2133 			clear_bit(id, s->starving_fl);
2134 			smp_mb__after_atomic();
2135 
2136 			if (fl_starving(fl)) {
2137 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2138 				if (napi_reschedule(&rxq->rspq.napi))
2139 					fl->starving++;
2140 				else
2141 					set_bit(id, s->starving_fl);
2142 			}
2143 		}
2144 
2145 	t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
2146 	idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
2147 	idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2148 
2149 	for (i = 0; i < 2; i++) {
2150 		u32 debug0, debug11;
2151 
2152 		/* If the Ingress DMA Same State Counter ("timer") is less
2153 		 * than 1s, then we can reset our synthesized Stall Timer and
2154 		 * continue.  If we have previously emitted warnings about a
2155 		 * potential stalled Ingress Queue, issue a note indicating
2156 		 * that the Ingress Queue has resumed forward progress.
2157 		 */
2158 		if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2159 			if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2160 				CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2161 					i, s->idma_qid[i],
2162 					s->idma_stalled[i]/HZ);
2163 			s->idma_stalled[i] = 0;
2164 			continue;
2165 		}
2166 
2167 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2168 		 * domain.  The first time we get here it'll be because we
2169 		 * passed the 1s Threshold; each additional time it'll be
2170 		 * because the RX Timer Callback is being fired on its regular
2171 		 * schedule.
2172 		 *
2173 		 * If the stall is below our Potential Hung Ingress Queue
2174 		 * Warning Threshold, continue.
2175 		 */
2176 		if (s->idma_stalled[i] == 0)
2177 			s->idma_stalled[i] = HZ;
2178 		else
2179 			s->idma_stalled[i] += RX_QCHECK_PERIOD;
2180 
2181 		if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2182 			continue;
2183 
2184 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2185 		if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2186 			continue;
2187 
2188 		/* Read and save the SGE IDMA State and Queue ID information.
2189 		 * We do this every time in case it changes across time ...
2190 		 */
2191 		t4_write_reg(adap, SGE_DEBUG_INDEX, 0);
2192 		debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2193 		s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2194 
2195 		t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
2196 		debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2197 		s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2198 
2199 		CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2200 			i, s->idma_qid[i], s->idma_state[i],
2201 			s->idma_stalled[i]/HZ, debug0, debug11);
2202 		t4_sge_decode_idma_state(adap, s->idma_state[i]);
2203 	}
2204 
2205 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2206 }
2207 
2208 static void sge_tx_timer_cb(unsigned long data)
2209 {
2210 	unsigned long m;
2211 	unsigned int i, budget;
2212 	struct adapter *adap = (struct adapter *)data;
2213 	struct sge *s = &adap->sge;
2214 
2215 	for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2216 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2217 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2218 			struct sge_ofld_txq *txq = s->egr_map[id];
2219 
2220 			clear_bit(id, s->txq_maperr);
2221 			tasklet_schedule(&txq->qresume_tsk);
2222 		}
2223 
2224 	budget = MAX_TIMER_TX_RECLAIM;
2225 	i = s->ethtxq_rover;
2226 	do {
2227 		struct sge_eth_txq *q = &s->ethtxq[i];
2228 
2229 		if (q->q.in_use &&
2230 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2231 		    __netif_tx_trylock(q->txq)) {
2232 			int avail = reclaimable(&q->q);
2233 
2234 			if (avail) {
2235 				if (avail > budget)
2236 					avail = budget;
2237 
2238 				free_tx_desc(adap, &q->q, avail, true);
2239 				q->q.in_use -= avail;
2240 				budget -= avail;
2241 			}
2242 			__netif_tx_unlock(q->txq);
2243 		}
2244 
2245 		if (++i >= s->ethqsets)
2246 			i = 0;
2247 	} while (budget && i != s->ethtxq_rover);
2248 	s->ethtxq_rover = i;
2249 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2250 }
2251 
2252 /**
2253  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2254  *	@adapter: the adapter
2255  *	@qid: the SGE Queue ID
2256  *	@qtype: the SGE Queue Type (Egress or Ingress)
2257  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2258  *
2259  *	Returns the BAR2 address for the SGE Queue Registers associated with
2260  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2261  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2262  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2263  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2264  */
2265 static void __iomem *bar2_address(struct adapter *adapter,
2266 				  unsigned int qid,
2267 				  enum t4_bar2_qtype qtype,
2268 				  unsigned int *pbar2_qid)
2269 {
2270 	u64 bar2_qoffset;
2271 	int ret;
2272 
2273 	ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype,
2274 				&bar2_qoffset, pbar2_qid);
2275 	if (ret)
2276 		return NULL;
2277 
2278 	return adapter->bar2 + bar2_qoffset;
2279 }
2280 
2281 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2282 		     struct net_device *dev, int intr_idx,
2283 		     struct sge_fl *fl, rspq_handler_t hnd)
2284 {
2285 	int ret, flsz = 0;
2286 	struct fw_iq_cmd c;
2287 	struct sge *s = &adap->sge;
2288 	struct port_info *pi = netdev_priv(dev);
2289 
2290 	/* Size needs to be multiple of 16, including status entry. */
2291 	iq->size = roundup(iq->size, 16);
2292 
2293 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2294 			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2295 	if (!iq->desc)
2296 		return -ENOMEM;
2297 
2298 	memset(&c, 0, sizeof(c));
2299 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2300 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2301 			    FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0));
2302 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2303 				 FW_LEN16(c));
2304 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2305 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2306 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) |
2307 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2308 							-intr_idx - 1));
2309 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2310 		FW_IQ_CMD_IQGTSMODE_F |
2311 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2312 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2313 	c.iqsize = htons(iq->size);
2314 	c.iqaddr = cpu_to_be64(iq->phys_addr);
2315 
2316 	if (fl) {
2317 		fl->size = roundup(fl->size, 8);
2318 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2319 				      sizeof(struct rx_sw_desc), &fl->addr,
2320 				      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2321 		if (!fl->desc)
2322 			goto fl_nomem;
2323 
2324 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2325 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F |
2326 					    FW_IQ_CMD_FL0FETCHRO_F |
2327 					    FW_IQ_CMD_FL0DATARO_F |
2328 					    FW_IQ_CMD_FL0PADEN_F);
2329 		c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) |
2330 				FW_IQ_CMD_FL0FBMAX_V(3));
2331 		c.fl0size = htons(flsz);
2332 		c.fl0addr = cpu_to_be64(fl->addr);
2333 	}
2334 
2335 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2336 	if (ret)
2337 		goto err;
2338 
2339 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2340 	iq->cur_desc = iq->desc;
2341 	iq->cidx = 0;
2342 	iq->gen = 1;
2343 	iq->next_intr_params = iq->intr_params;
2344 	iq->cntxt_id = ntohs(c.iqid);
2345 	iq->abs_id = ntohs(c.physiqid);
2346 	iq->bar2_addr = bar2_address(adap,
2347 				     iq->cntxt_id,
2348 				     T4_BAR2_QTYPE_INGRESS,
2349 				     &iq->bar2_qid);
2350 	iq->size--;                           /* subtract status entry */
2351 	iq->netdev = dev;
2352 	iq->handler = hnd;
2353 
2354 	/* set offset to -1 to distinguish ingress queues without FL */
2355 	iq->offset = fl ? 0 : -1;
2356 
2357 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2358 
2359 	if (fl) {
2360 		fl->cntxt_id = ntohs(c.fl0id);
2361 		fl->avail = fl->pend_cred = 0;
2362 		fl->pidx = fl->cidx = 0;
2363 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2364 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2365 
2366 		/* Note, we must initialize the BAR2 Free List User Doorbell
2367 		 * information before refilling the Free List!
2368 		 */
2369 		fl->bar2_addr = bar2_address(adap,
2370 					     fl->cntxt_id,
2371 					     T4_BAR2_QTYPE_EGRESS,
2372 					     &fl->bar2_qid);
2373 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2374 	}
2375 	return 0;
2376 
2377 fl_nomem:
2378 	ret = -ENOMEM;
2379 err:
2380 	if (iq->desc) {
2381 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2382 				  iq->desc, iq->phys_addr);
2383 		iq->desc = NULL;
2384 	}
2385 	if (fl && fl->desc) {
2386 		kfree(fl->sdesc);
2387 		fl->sdesc = NULL;
2388 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2389 				  fl->desc, fl->addr);
2390 		fl->desc = NULL;
2391 	}
2392 	return ret;
2393 }
2394 
2395 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2396 {
2397 	q->cntxt_id = id;
2398 	q->bar2_addr = bar2_address(adap,
2399 				    q->cntxt_id,
2400 				    T4_BAR2_QTYPE_EGRESS,
2401 				    &q->bar2_qid);
2402 	q->in_use = 0;
2403 	q->cidx = q->pidx = 0;
2404 	q->stops = q->restarts = 0;
2405 	q->stat = (void *)&q->desc[q->size];
2406 	spin_lock_init(&q->db_lock);
2407 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2408 }
2409 
2410 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2411 			 struct net_device *dev, struct netdev_queue *netdevq,
2412 			 unsigned int iqid)
2413 {
2414 	int ret, nentries;
2415 	struct fw_eq_eth_cmd c;
2416 	struct sge *s = &adap->sge;
2417 	struct port_info *pi = netdev_priv(dev);
2418 
2419 	/* Add status entries */
2420 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2421 
2422 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2423 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2424 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2425 			netdev_queue_numa_node_read(netdevq));
2426 	if (!txq->q.desc)
2427 		return -ENOMEM;
2428 
2429 	memset(&c, 0, sizeof(c));
2430 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2431 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2432 			    FW_EQ_ETH_CMD_PFN_V(adap->fn) |
2433 			    FW_EQ_ETH_CMD_VFN_V(0));
2434 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2435 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2436 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2437 			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2438 	c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) |
2439 				   FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2440 				   FW_EQ_ETH_CMD_FETCHRO_V(1) |
2441 				   FW_EQ_ETH_CMD_IQID_V(iqid));
2442 	c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) |
2443 				  FW_EQ_ETH_CMD_FBMAX_V(3) |
2444 				  FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) |
2445 				  FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2446 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2447 
2448 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2449 	if (ret) {
2450 		kfree(txq->q.sdesc);
2451 		txq->q.sdesc = NULL;
2452 		dma_free_coherent(adap->pdev_dev,
2453 				  nentries * sizeof(struct tx_desc),
2454 				  txq->q.desc, txq->q.phys_addr);
2455 		txq->q.desc = NULL;
2456 		return ret;
2457 	}
2458 
2459 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2460 	txq->txq = netdevq;
2461 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2462 	txq->mapping_err = 0;
2463 	return 0;
2464 }
2465 
2466 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2467 			  struct net_device *dev, unsigned int iqid,
2468 			  unsigned int cmplqid)
2469 {
2470 	int ret, nentries;
2471 	struct fw_eq_ctrl_cmd c;
2472 	struct sge *s = &adap->sge;
2473 	struct port_info *pi = netdev_priv(dev);
2474 
2475 	/* Add status entries */
2476 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2477 
2478 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2479 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2480 				 NULL, 0, NUMA_NO_NODE);
2481 	if (!txq->q.desc)
2482 		return -ENOMEM;
2483 
2484 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2485 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2486 			    FW_EQ_CTRL_CMD_PFN_V(adap->fn) |
2487 			    FW_EQ_CTRL_CMD_VFN_V(0));
2488 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2489 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2490 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2491 	c.physeqid_pkd = htonl(0);
2492 	c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) |
2493 				   FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2494 				   FW_EQ_CTRL_CMD_FETCHRO_F |
2495 				   FW_EQ_CTRL_CMD_IQID_V(iqid));
2496 	c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) |
2497 				  FW_EQ_CTRL_CMD_FBMAX_V(3) |
2498 				  FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) |
2499 				  FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2500 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2501 
2502 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2503 	if (ret) {
2504 		dma_free_coherent(adap->pdev_dev,
2505 				  nentries * sizeof(struct tx_desc),
2506 				  txq->q.desc, txq->q.phys_addr);
2507 		txq->q.desc = NULL;
2508 		return ret;
2509 	}
2510 
2511 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2512 	txq->adap = adap;
2513 	skb_queue_head_init(&txq->sendq);
2514 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2515 	txq->full = 0;
2516 	return 0;
2517 }
2518 
2519 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2520 			  struct net_device *dev, unsigned int iqid)
2521 {
2522 	int ret, nentries;
2523 	struct fw_eq_ofld_cmd c;
2524 	struct sge *s = &adap->sge;
2525 	struct port_info *pi = netdev_priv(dev);
2526 
2527 	/* Add status entries */
2528 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2529 
2530 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2531 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2532 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2533 			NUMA_NO_NODE);
2534 	if (!txq->q.desc)
2535 		return -ENOMEM;
2536 
2537 	memset(&c, 0, sizeof(c));
2538 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2539 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2540 			    FW_EQ_OFLD_CMD_PFN_V(adap->fn) |
2541 			    FW_EQ_OFLD_CMD_VFN_V(0));
2542 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2543 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2544 	c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) |
2545 				   FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2546 				   FW_EQ_OFLD_CMD_FETCHRO_F |
2547 				   FW_EQ_OFLD_CMD_IQID_V(iqid));
2548 	c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) |
2549 				  FW_EQ_OFLD_CMD_FBMAX_V(3) |
2550 				  FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) |
2551 				  FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2552 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2553 
2554 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2555 	if (ret) {
2556 		kfree(txq->q.sdesc);
2557 		txq->q.sdesc = NULL;
2558 		dma_free_coherent(adap->pdev_dev,
2559 				  nentries * sizeof(struct tx_desc),
2560 				  txq->q.desc, txq->q.phys_addr);
2561 		txq->q.desc = NULL;
2562 		return ret;
2563 	}
2564 
2565 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2566 	txq->adap = adap;
2567 	skb_queue_head_init(&txq->sendq);
2568 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2569 	txq->full = 0;
2570 	txq->mapping_err = 0;
2571 	return 0;
2572 }
2573 
2574 static void free_txq(struct adapter *adap, struct sge_txq *q)
2575 {
2576 	struct sge *s = &adap->sge;
2577 
2578 	dma_free_coherent(adap->pdev_dev,
2579 			  q->size * sizeof(struct tx_desc) + s->stat_len,
2580 			  q->desc, q->phys_addr);
2581 	q->cntxt_id = 0;
2582 	q->sdesc = NULL;
2583 	q->desc = NULL;
2584 }
2585 
2586 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2587 			 struct sge_fl *fl)
2588 {
2589 	struct sge *s = &adap->sge;
2590 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2591 
2592 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2593 	t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2594 		   rq->cntxt_id, fl_id, 0xffff);
2595 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2596 			  rq->desc, rq->phys_addr);
2597 	netif_napi_del(&rq->napi);
2598 	rq->netdev = NULL;
2599 	rq->cntxt_id = rq->abs_id = 0;
2600 	rq->desc = NULL;
2601 
2602 	if (fl) {
2603 		free_rx_bufs(adap, fl, fl->avail);
2604 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2605 				  fl->desc, fl->addr);
2606 		kfree(fl->sdesc);
2607 		fl->sdesc = NULL;
2608 		fl->cntxt_id = 0;
2609 		fl->desc = NULL;
2610 	}
2611 }
2612 
2613 /**
2614  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
2615  *      @adap: the adapter
2616  *      @n: number of queues
2617  *      @q: pointer to first queue
2618  *
2619  *      Release the resources of a consecutive block of offload Rx queues.
2620  */
2621 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2622 {
2623 	for ( ; n; n--, q++)
2624 		if (q->rspq.desc)
2625 			free_rspq_fl(adap, &q->rspq,
2626 				     q->fl.size ? &q->fl : NULL);
2627 }
2628 
2629 /**
2630  *	t4_free_sge_resources - free SGE resources
2631  *	@adap: the adapter
2632  *
2633  *	Frees resources used by the SGE queue sets.
2634  */
2635 void t4_free_sge_resources(struct adapter *adap)
2636 {
2637 	int i;
2638 	struct sge_eth_rxq *eq = adap->sge.ethrxq;
2639 	struct sge_eth_txq *etq = adap->sge.ethtxq;
2640 
2641 	/* clean up Ethernet Tx/Rx queues */
2642 	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2643 		if (eq->rspq.desc)
2644 			free_rspq_fl(adap, &eq->rspq,
2645 				     eq->fl.size ? &eq->fl : NULL);
2646 		if (etq->q.desc) {
2647 			t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2648 				       etq->q.cntxt_id);
2649 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2650 			kfree(etq->q.sdesc);
2651 			free_txq(adap, &etq->q);
2652 		}
2653 	}
2654 
2655 	/* clean up RDMA and iSCSI Rx queues */
2656 	t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2657 	t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2658 	t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
2659 
2660 	/* clean up offload Tx queues */
2661 	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2662 		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2663 
2664 		if (q->q.desc) {
2665 			tasklet_kill(&q->qresume_tsk);
2666 			t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2667 					q->q.cntxt_id);
2668 			free_tx_desc(adap, &q->q, q->q.in_use, false);
2669 			kfree(q->q.sdesc);
2670 			__skb_queue_purge(&q->sendq);
2671 			free_txq(adap, &q->q);
2672 		}
2673 	}
2674 
2675 	/* clean up control Tx queues */
2676 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2677 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2678 
2679 		if (cq->q.desc) {
2680 			tasklet_kill(&cq->qresume_tsk);
2681 			t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2682 					cq->q.cntxt_id);
2683 			__skb_queue_purge(&cq->sendq);
2684 			free_txq(adap, &cq->q);
2685 		}
2686 	}
2687 
2688 	if (adap->sge.fw_evtq.desc)
2689 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2690 
2691 	if (adap->sge.intrq.desc)
2692 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
2693 
2694 	/* clear the reverse egress queue map */
2695 	memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2696 }
2697 
2698 void t4_sge_start(struct adapter *adap)
2699 {
2700 	adap->sge.ethtxq_rover = 0;
2701 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2702 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2703 }
2704 
2705 /**
2706  *	t4_sge_stop - disable SGE operation
2707  *	@adap: the adapter
2708  *
2709  *	Stop tasklets and timers associated with the DMA engine.  Note that
2710  *	this is effective only if measures have been taken to disable any HW
2711  *	events that may restart them.
2712  */
2713 void t4_sge_stop(struct adapter *adap)
2714 {
2715 	int i;
2716 	struct sge *s = &adap->sge;
2717 
2718 	if (in_interrupt())  /* actions below require waiting */
2719 		return;
2720 
2721 	if (s->rx_timer.function)
2722 		del_timer_sync(&s->rx_timer);
2723 	if (s->tx_timer.function)
2724 		del_timer_sync(&s->tx_timer);
2725 
2726 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2727 		struct sge_ofld_txq *q = &s->ofldtxq[i];
2728 
2729 		if (q->q.desc)
2730 			tasklet_kill(&q->qresume_tsk);
2731 	}
2732 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2733 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
2734 
2735 		if (cq->q.desc)
2736 			tasklet_kill(&cq->qresume_tsk);
2737 	}
2738 }
2739 
2740 /**
2741  *	t4_sge_init - initialize SGE
2742  *	@adap: the adapter
2743  *
2744  *	Performs SGE initialization needed every time after a chip reset.
2745  *	We do not initialize any of the queues here, instead the driver
2746  *	top-level must request them individually.
2747  *
2748  *	Called in two different modes:
2749  *
2750  *	 1. Perform actual hardware initialization and record hard-coded
2751  *	    parameters which were used.  This gets used when we're the
2752  *	    Master PF and the Firmware Configuration File support didn't
2753  *	    work for some reason.
2754  *
2755  *	 2. We're not the Master PF or initialization was performed with
2756  *	    a Firmware Configuration File.  In this case we need to grab
2757  *	    any of the SGE operating parameters that we need to have in
2758  *	    order to do our job and make sure we can live with them ...
2759  */
2760 
2761 static int t4_sge_init_soft(struct adapter *adap)
2762 {
2763 	struct sge *s = &adap->sge;
2764 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2765 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2766 	u32 ingress_rx_threshold;
2767 
2768 	/*
2769 	 * Verify that CPL messages are going to the Ingress Queue for
2770 	 * process_responses() and that only packet data is going to the
2771 	 * Free Lists.
2772 	 */
2773 	if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2774 	    RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2775 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2776 		return -EINVAL;
2777 	}
2778 
2779 	/*
2780 	 * Validate the Host Buffer Register Array indices that we want to
2781 	 * use ...
2782 	 *
2783 	 * XXX Note that we should really read through the Host Buffer Size
2784 	 * XXX register array and find the indices of the Buffer Sizes which
2785 	 * XXX meet our needs!
2786 	 */
2787 	#define READ_FL_BUF(x) \
2788 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2789 
2790 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2791 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2792 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2793 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2794 
2795 	/* We only bother using the Large Page logic if the Large Page Buffer
2796 	 * is larger than our Page Size Buffer.
2797 	 */
2798 	if (fl_large_pg <= fl_small_pg)
2799 		fl_large_pg = 0;
2800 
2801 	#undef READ_FL_BUF
2802 
2803 	/* The Page Size Buffer must be exactly equal to our Page Size and the
2804 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2805 	 */
2806 	if (fl_small_pg != PAGE_SIZE ||
2807 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
2808 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2809 			fl_small_pg, fl_large_pg);
2810 		return -EINVAL;
2811 	}
2812 	if (fl_large_pg)
2813 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2814 
2815 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2816 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2817 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2818 			fl_small_mtu, fl_large_mtu);
2819 		return -EINVAL;
2820 	}
2821 
2822 	/*
2823 	 * Retrieve our RX interrupt holdoff timer values and counter
2824 	 * threshold values from the SGE parameters.
2825 	 */
2826 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2827 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2828 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2829 	s->timer_val[0] = core_ticks_to_us(adap,
2830 		TIMERVALUE0_GET(timer_value_0_and_1));
2831 	s->timer_val[1] = core_ticks_to_us(adap,
2832 		TIMERVALUE1_GET(timer_value_0_and_1));
2833 	s->timer_val[2] = core_ticks_to_us(adap,
2834 		TIMERVALUE2_GET(timer_value_2_and_3));
2835 	s->timer_val[3] = core_ticks_to_us(adap,
2836 		TIMERVALUE3_GET(timer_value_2_and_3));
2837 	s->timer_val[4] = core_ticks_to_us(adap,
2838 		TIMERVALUE4_GET(timer_value_4_and_5));
2839 	s->timer_val[5] = core_ticks_to_us(adap,
2840 		TIMERVALUE5_GET(timer_value_4_and_5));
2841 
2842 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2843 	s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2844 	s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2845 	s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2846 	s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2847 
2848 	return 0;
2849 }
2850 
2851 static int t4_sge_init_hard(struct adapter *adap)
2852 {
2853 	struct sge *s = &adap->sge;
2854 
2855 	/*
2856 	 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2857 	 * Queue and Packet Date to the Free List.
2858 	 */
2859 	t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2860 			 RXPKTCPLMODE_MASK);
2861 
2862 	/*
2863 	 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2864 	 * and generate an interrupt when this occurs so we can recover.
2865 	 */
2866 	if (is_t4(adap->params.chip)) {
2867 		t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2868 				 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2869 				 V_LP_INT_THRESH(M_LP_INT_THRESH),
2870 				 V_HP_INT_THRESH(dbfifo_int_thresh) |
2871 				 V_LP_INT_THRESH(dbfifo_int_thresh));
2872 	} else {
2873 		t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2874 				 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
2875 				 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
2876 		t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
2877 				 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
2878 				 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
2879 	}
2880 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2881 			F_ENABLE_DROP);
2882 
2883 	/*
2884 	 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2885 	 * t4_fixup_host_params().
2886 	 */
2887 	s->fl_pg_order = FL_PG_ORDER;
2888 	if (s->fl_pg_order)
2889 		t4_write_reg(adap,
2890 			     SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2891 			     PAGE_SIZE << FL_PG_ORDER);
2892 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2893 		     FL_MTU_SMALL_BUFSIZE(adap));
2894 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2895 		     FL_MTU_LARGE_BUFSIZE(adap));
2896 
2897 	/*
2898 	 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2899 	 * Timer Holdoff values must be supplied by our caller.
2900 	 */
2901 	t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2902 		     THRESHOLD_0(s->counter_val[0]) |
2903 		     THRESHOLD_1(s->counter_val[1]) |
2904 		     THRESHOLD_2(s->counter_val[2]) |
2905 		     THRESHOLD_3(s->counter_val[3]));
2906 	t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2907 		     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2908 		     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2909 	t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2910 		     TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2911 		     TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
2912 	t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2913 		     TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2914 		     TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2915 
2916 	return 0;
2917 }
2918 
2919 int t4_sge_init(struct adapter *adap)
2920 {
2921 	struct sge *s = &adap->sge;
2922 	u32 sge_control, sge_control2, sge_conm_ctrl;
2923 	unsigned int ingpadboundary, ingpackboundary;
2924 	int ret, egress_threshold;
2925 
2926 	/*
2927 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
2928 	 * t4_fixup_host_params().
2929 	 */
2930 	sge_control = t4_read_reg(adap, SGE_CONTROL);
2931 	s->pktshift = PKTSHIFT_GET(sge_control);
2932 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2933 
2934 	/* T4 uses a single control field to specify both the PCIe Padding and
2935 	 * Packing Boundary.  T5 introduced the ability to specify these
2936 	 * separately.  The actual Ingress Packet Data alignment boundary
2937 	 * within Packed Buffer Mode is the maximum of these two
2938 	 * specifications.
2939 	 */
2940 	ingpadboundary = 1 << (INGPADBOUNDARY_GET(sge_control) +
2941 			       X_INGPADBOUNDARY_SHIFT);
2942 	if (is_t4(adap->params.chip)) {
2943 		s->fl_align = ingpadboundary;
2944 	} else {
2945 		/* T5 has a different interpretation of one of the PCIe Packing
2946 		 * Boundary values.
2947 		 */
2948 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
2949 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
2950 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2951 			ingpackboundary = 16;
2952 		else
2953 			ingpackboundary = 1 << (ingpackboundary +
2954 						INGPACKBOUNDARY_SHIFT_X);
2955 
2956 		s->fl_align = max(ingpadboundary, ingpackboundary);
2957 	}
2958 
2959 	if (adap->flags & USING_SOFT_PARAMS)
2960 		ret = t4_sge_init_soft(adap);
2961 	else
2962 		ret = t4_sge_init_hard(adap);
2963 	if (ret < 0)
2964 		return ret;
2965 
2966 	/*
2967 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
2968 	 * timer will attempt to refill it.  This needs to be larger than the
2969 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2970 	 * stuck waiting for new packets while the SGE is waiting for us to
2971 	 * give it more Free List entries.  (Note that the SGE's Egress
2972 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2973 	 * there was only a single field to control this.  For T5 there's the
2974 	 * original field which now only applies to Unpacked Mode Free List
2975 	 * buffers and a new field which only applies to Packed Mode Free List
2976 	 * buffers.
2977 	 */
2978 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL);
2979 	if (is_t4(adap->params.chip))
2980 		egress_threshold = EGRTHRESHOLD_GET(sge_conm_ctrl);
2981 	else
2982 		egress_threshold = EGRTHRESHOLDPACKING_GET(sge_conm_ctrl);
2983 	s->fl_starve_thres = 2*egress_threshold + 1;
2984 
2985 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2986 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2987 	s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
2988 	s->idma_stalled[0] = 0;
2989 	s->idma_stalled[1] = 0;
2990 	spin_lock_init(&s->intrq_lock);
2991 
2992 	return 0;
2993 }
2994