1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adap: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 DMA_FROM_DEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), DMA_FROM_DEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 DMA_FROM_DEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 DMA_FROM_DEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * @chip_ver: chip version 726 * 727 * Returns whether an Ethernet packet is small enough to fit as 728 * immediate data. Return value corresponds to headroom required. 729 */ 730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 731 { 732 int hdrlen = 0; 733 734 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 735 chip_ver > CHELSIO_T5) { 736 hdrlen = sizeof(struct cpl_tx_tnl_lso); 737 hdrlen += sizeof(struct cpl_tx_pkt_core); 738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 739 return 0; 740 } else { 741 hdrlen = skb_shinfo(skb)->gso_size ? 742 sizeof(struct cpl_tx_pkt_lso_core) : 0; 743 hdrlen += sizeof(struct cpl_tx_pkt); 744 } 745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 746 return hdrlen; 747 return 0; 748 } 749 750 /** 751 * calc_tx_flits - calculate the number of flits for a packet Tx WR 752 * @skb: the packet 753 * @chip_ver: chip version 754 * 755 * Returns the number of flits needed for a Tx WR for the given Ethernet 756 * packet, including the needed WR and CPL headers. 757 */ 758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 759 unsigned int chip_ver) 760 { 761 unsigned int flits; 762 int hdrlen = is_eth_imm(skb, chip_ver); 763 764 /* If the skb is small enough, we can pump it out as a work request 765 * with only immediate data. In that case we just have to have the 766 * TX Packet header plus the skb data in the Work Request. 767 */ 768 769 if (hdrlen) 770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 771 772 /* Otherwise, we're going to have to construct a Scatter gather list 773 * of the skb body and fragments. We also include the flits necessary 774 * for the TX Packet Work Request and CPL. We always have a firmware 775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 777 * message or, if we're doing a Large Send Offload, an LSO CPL message 778 * with an embedded TX Packet Write CPL message. 779 */ 780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 781 if (skb_shinfo(skb)->gso_size) { 782 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 784 sizeof(struct cpl_tx_tnl_lso); 785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 786 u32 pkt_hdrlen; 787 788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 789 skb_headlen(skb)); 790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 791 round_up(pkt_hdrlen, 16); 792 } else { 793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 794 sizeof(struct cpl_tx_pkt_lso_core); 795 } 796 797 hdrlen += sizeof(struct cpl_tx_pkt_core); 798 flits += (hdrlen / sizeof(__be64)); 799 } else { 800 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 802 } 803 return flits; 804 } 805 806 /** 807 * calc_tx_descs - calculate the number of Tx descriptors for a packet 808 * @skb: the packet 809 * @chip_ver: chip version 810 * 811 * Returns the number of Tx descriptors needed for the given Ethernet 812 * packet, including the needed WR and CPL headers. 813 */ 814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 815 unsigned int chip_ver) 816 { 817 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 818 } 819 820 /** 821 * cxgb4_write_sgl - populate a scatter/gather list for a packet 822 * @skb: the packet 823 * @q: the Tx queue we are writing into 824 * @sgl: starting location for writing the SGL 825 * @end: points right after the end of the SGL 826 * @start: start offset into skb main-body data to include in the SGL 827 * @addr: the list of bus addresses for the SGL elements 828 * 829 * Generates a gather list for the buffers that make up a packet. 830 * The caller must provide adequate space for the SGL that will be written. 831 * The SGL includes all of the packet's page fragments and the data in its 832 * main body except for the first @start bytes. @sgl must be 16-byte 833 * aligned and within a Tx descriptor with available space. @end points 834 * right after the end of the SGL but does not account for any potential 835 * wrap around, i.e., @end > @sgl. 836 */ 837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 838 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 839 const dma_addr_t *addr) 840 { 841 unsigned int i, len; 842 struct ulptx_sge_pair *to; 843 const struct skb_shared_info *si = skb_shinfo(skb); 844 unsigned int nfrags = si->nr_frags; 845 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 846 847 len = skb_headlen(skb) - start; 848 if (likely(len)) { 849 sgl->len0 = htonl(len); 850 sgl->addr0 = cpu_to_be64(addr[0] + start); 851 nfrags++; 852 } else { 853 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 854 sgl->addr0 = cpu_to_be64(addr[1]); 855 } 856 857 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 858 ULPTX_NSGE_V(nfrags)); 859 if (likely(--nfrags == 0)) 860 return; 861 /* 862 * Most of the complexity below deals with the possibility we hit the 863 * end of the queue in the middle of writing the SGL. For this case 864 * only we create the SGL in a temporary buffer and then copy it. 865 */ 866 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 867 868 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 869 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 870 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 871 to->addr[0] = cpu_to_be64(addr[i]); 872 to->addr[1] = cpu_to_be64(addr[++i]); 873 } 874 if (nfrags) { 875 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 876 to->len[1] = cpu_to_be32(0); 877 to->addr[0] = cpu_to_be64(addr[i + 1]); 878 } 879 if (unlikely((u8 *)end > (u8 *)q->stat)) { 880 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 881 882 if (likely(part0)) 883 memcpy(sgl->sge, buf, part0); 884 part1 = (u8 *)end - (u8 *)q->stat; 885 memcpy(q->desc, (u8 *)buf + part0, part1); 886 end = (void *)q->desc + part1; 887 } 888 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 889 *end = 0; 890 } 891 EXPORT_SYMBOL(cxgb4_write_sgl); 892 893 /* cxgb4_write_partial_sgl - populate SGL for partial packet 894 * @skb: the packet 895 * @q: the Tx queue we are writing into 896 * @sgl: starting location for writing the SGL 897 * @end: points right after the end of the SGL 898 * @addr: the list of bus addresses for the SGL elements 899 * @start: start offset in the SKB where partial data starts 900 * @len: length of data from @start to send out 901 * 902 * This API will handle sending out partial data of a skb if required. 903 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data, 904 * and @len will decide how much data after @start offset to send out. 905 */ 906 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q, 907 struct ulptx_sgl *sgl, u64 *end, 908 const dma_addr_t *addr, u32 start, u32 len) 909 { 910 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to; 911 u32 frag_size, skb_linear_data_len = skb_headlen(skb); 912 struct skb_shared_info *si = skb_shinfo(skb); 913 u8 i = 0, frag_idx = 0, nfrags = 0; 914 skb_frag_t *frag; 915 916 /* Fill the first SGL either from linear data or from partial 917 * frag based on @start. 918 */ 919 if (unlikely(start < skb_linear_data_len)) { 920 frag_size = min(len, skb_linear_data_len - start); 921 sgl->len0 = htonl(frag_size); 922 sgl->addr0 = cpu_to_be64(addr[0] + start); 923 len -= frag_size; 924 nfrags++; 925 } else { 926 start -= skb_linear_data_len; 927 frag = &si->frags[frag_idx]; 928 frag_size = skb_frag_size(frag); 929 /* find the first frag */ 930 while (start >= frag_size) { 931 start -= frag_size; 932 frag_idx++; 933 frag = &si->frags[frag_idx]; 934 frag_size = skb_frag_size(frag); 935 } 936 937 frag_size = min(len, skb_frag_size(frag) - start); 938 sgl->len0 = cpu_to_be32(frag_size); 939 sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start); 940 len -= frag_size; 941 nfrags++; 942 frag_idx++; 943 } 944 945 /* If the entire partial data fit in one SGL, then send it out 946 * now. 947 */ 948 if (!len) 949 goto done; 950 951 /* Most of the complexity below deals with the possibility we hit the 952 * end of the queue in the middle of writing the SGL. For this case 953 * only we create the SGL in a temporary buffer and then copy it. 954 */ 955 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 956 957 /* If the skb couldn't fit in first SGL completely, fill the 958 * rest of the frags in subsequent SGLs. Note that each SGL 959 * pair can store 2 frags. 960 */ 961 while (len) { 962 frag_size = min(len, skb_frag_size(&si->frags[frag_idx])); 963 to->len[i & 1] = cpu_to_be32(frag_size); 964 to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]); 965 if (i && (i & 1)) 966 to++; 967 nfrags++; 968 frag_idx++; 969 i++; 970 len -= frag_size; 971 } 972 973 /* If we ended in an odd boundary, then set the second SGL's 974 * length in the pair to 0. 975 */ 976 if (i & 1) 977 to->len[1] = cpu_to_be32(0); 978 979 /* Copy from temporary buffer to Tx ring, in case we hit the 980 * end of the queue in the middle of writing the SGL. 981 */ 982 if (unlikely((u8 *)end > (u8 *)q->stat)) { 983 u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 984 985 if (likely(part0)) 986 memcpy(sgl->sge, buf, part0); 987 part1 = (u8 *)end - (u8 *)q->stat; 988 memcpy(q->desc, (u8 *)buf + part0, part1); 989 end = (void *)q->desc + part1; 990 } 991 992 /* 0-pad to multiple of 16 */ 993 if ((uintptr_t)end & 8) 994 *end = 0; 995 done: 996 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 997 ULPTX_NSGE_V(nfrags)); 998 } 999 EXPORT_SYMBOL(cxgb4_write_partial_sgl); 1000 1001 /* This function copies 64 byte coalesced work request to 1002 * memory mapped BAR2 space. For coalesced WR SGE fetches 1003 * data from the FIFO instead of from Host. 1004 */ 1005 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 1006 { 1007 int count = 8; 1008 1009 while (count) { 1010 writeq(*src, dst); 1011 src++; 1012 dst++; 1013 count--; 1014 } 1015 } 1016 1017 /** 1018 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 1019 * @adap: the adapter 1020 * @q: the Tx queue 1021 * @n: number of new descriptors to give to HW 1022 * 1023 * Ring the doorbel for a Tx queue. 1024 */ 1025 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 1026 { 1027 /* Make sure that all writes to the TX Descriptors are committed 1028 * before we tell the hardware about them. 1029 */ 1030 wmb(); 1031 1032 /* If we don't have access to the new User Doorbell (T5+), use the old 1033 * doorbell mechanism; otherwise use the new BAR2 mechanism. 1034 */ 1035 if (unlikely(q->bar2_addr == NULL)) { 1036 u32 val = PIDX_V(n); 1037 unsigned long flags; 1038 1039 /* For T4 we need to participate in the Doorbell Recovery 1040 * mechanism. 1041 */ 1042 spin_lock_irqsave(&q->db_lock, flags); 1043 if (!q->db_disabled) 1044 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1045 QID_V(q->cntxt_id) | val); 1046 else 1047 q->db_pidx_inc += n; 1048 q->db_pidx = q->pidx; 1049 spin_unlock_irqrestore(&q->db_lock, flags); 1050 } else { 1051 u32 val = PIDX_T5_V(n); 1052 1053 /* T4 and later chips share the same PIDX field offset within 1054 * the doorbell, but T5 and later shrank the field in order to 1055 * gain a bit for Doorbell Priority. The field was absurdly 1056 * large in the first place (14 bits) so we just use the T5 1057 * and later limits and warn if a Queue ID is too large. 1058 */ 1059 WARN_ON(val & DBPRIO_F); 1060 1061 /* If we're only writing a single TX Descriptor and we can use 1062 * Inferred QID registers, we can use the Write Combining 1063 * Gather Buffer; otherwise we use the simple doorbell. 1064 */ 1065 if (n == 1 && q->bar2_qid == 0) { 1066 int index = (q->pidx 1067 ? (q->pidx - 1) 1068 : (q->size - 1)); 1069 u64 *wr = (u64 *)&q->desc[index]; 1070 1071 cxgb_pio_copy((u64 __iomem *) 1072 (q->bar2_addr + SGE_UDB_WCDOORBELL), 1073 wr); 1074 } else { 1075 writel(val | QID_V(q->bar2_qid), 1076 q->bar2_addr + SGE_UDB_KDOORBELL); 1077 } 1078 1079 /* This Write Memory Barrier will force the write to the User 1080 * Doorbell area to be flushed. This is needed to prevent 1081 * writes on different CPUs for the same queue from hitting 1082 * the adapter out of order. This is required when some Work 1083 * Requests take the Write Combine Gather Buffer path (user 1084 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1085 * take the traditional path where we simply increment the 1086 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1087 * hardware DMA read the actual Work Request. 1088 */ 1089 wmb(); 1090 } 1091 } 1092 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1093 1094 /** 1095 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1096 * @skb: the packet 1097 * @q: the Tx queue where the packet will be inlined 1098 * @pos: starting position in the Tx queue where to inline the packet 1099 * 1100 * Inline a packet's contents directly into Tx descriptors, starting at 1101 * the given position within the Tx DMA ring. 1102 * Most of the complexity of this operation is dealing with wrap arounds 1103 * in the middle of the packet we want to inline. 1104 */ 1105 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1106 const struct sge_txq *q, void *pos) 1107 { 1108 int left = (void *)q->stat - pos; 1109 u64 *p; 1110 1111 if (likely(skb->len <= left)) { 1112 if (likely(!skb->data_len)) 1113 skb_copy_from_linear_data(skb, pos, skb->len); 1114 else 1115 skb_copy_bits(skb, 0, pos, skb->len); 1116 pos += skb->len; 1117 } else { 1118 skb_copy_bits(skb, 0, pos, left); 1119 skb_copy_bits(skb, left, q->desc, skb->len - left); 1120 pos = (void *)q->desc + (skb->len - left); 1121 } 1122 1123 /* 0-pad to multiple of 16 */ 1124 p = PTR_ALIGN(pos, 8); 1125 if ((uintptr_t)p & 8) 1126 *p = 0; 1127 } 1128 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1129 1130 static void *inline_tx_skb_header(const struct sk_buff *skb, 1131 const struct sge_txq *q, void *pos, 1132 int length) 1133 { 1134 u64 *p; 1135 int left = (void *)q->stat - pos; 1136 1137 if (likely(length <= left)) { 1138 memcpy(pos, skb->data, length); 1139 pos += length; 1140 } else { 1141 memcpy(pos, skb->data, left); 1142 memcpy(q->desc, skb->data + left, length - left); 1143 pos = (void *)q->desc + (length - left); 1144 } 1145 /* 0-pad to multiple of 16 */ 1146 p = PTR_ALIGN(pos, 8); 1147 if ((uintptr_t)p & 8) { 1148 *p = 0; 1149 return p + 1; 1150 } 1151 return p; 1152 } 1153 1154 /* 1155 * Figure out what HW csum a packet wants and return the appropriate control 1156 * bits. 1157 */ 1158 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1159 { 1160 int csum_type; 1161 bool inner_hdr_csum = false; 1162 u16 proto, ver; 1163 1164 if (skb->encapsulation && 1165 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1166 inner_hdr_csum = true; 1167 1168 if (inner_hdr_csum) { 1169 ver = inner_ip_hdr(skb)->version; 1170 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1171 inner_ipv6_hdr(skb)->nexthdr; 1172 } else { 1173 ver = ip_hdr(skb)->version; 1174 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1175 ipv6_hdr(skb)->nexthdr; 1176 } 1177 1178 if (ver == 4) { 1179 if (proto == IPPROTO_TCP) 1180 csum_type = TX_CSUM_TCPIP; 1181 else if (proto == IPPROTO_UDP) 1182 csum_type = TX_CSUM_UDPIP; 1183 else { 1184 nocsum: /* 1185 * unknown protocol, disable HW csum 1186 * and hope a bad packet is detected 1187 */ 1188 return TXPKT_L4CSUM_DIS_F; 1189 } 1190 } else { 1191 /* 1192 * this doesn't work with extension headers 1193 */ 1194 if (proto == IPPROTO_TCP) 1195 csum_type = TX_CSUM_TCPIP6; 1196 else if (proto == IPPROTO_UDP) 1197 csum_type = TX_CSUM_UDPIP6; 1198 else 1199 goto nocsum; 1200 } 1201 1202 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1203 int eth_hdr_len, l4_len; 1204 u64 hdr_len; 1205 1206 if (inner_hdr_csum) { 1207 /* This allows checksum offload for all encapsulated 1208 * packets like GRE etc.. 1209 */ 1210 l4_len = skb_inner_network_header_len(skb); 1211 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1212 } else { 1213 l4_len = skb_network_header_len(skb); 1214 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1215 } 1216 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1217 1218 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1219 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1220 else 1221 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1222 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1223 } else { 1224 int start = skb_transport_offset(skb); 1225 1226 return TXPKT_CSUM_TYPE_V(csum_type) | 1227 TXPKT_CSUM_START_V(start) | 1228 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1229 } 1230 } 1231 1232 static void eth_txq_stop(struct sge_eth_txq *q) 1233 { 1234 netif_tx_stop_queue(q->txq); 1235 q->q.stops++; 1236 } 1237 1238 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1239 { 1240 q->in_use += n; 1241 q->pidx += n; 1242 if (q->pidx >= q->size) 1243 q->pidx -= q->size; 1244 } 1245 1246 #ifdef CONFIG_CHELSIO_T4_FCOE 1247 static inline int 1248 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1249 const struct port_info *pi, u64 *cntrl) 1250 { 1251 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1252 1253 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1254 return 0; 1255 1256 if (skb->protocol != htons(ETH_P_FCOE)) 1257 return 0; 1258 1259 skb_reset_mac_header(skb); 1260 skb->mac_len = sizeof(struct ethhdr); 1261 1262 skb_set_network_header(skb, skb->mac_len); 1263 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1264 1265 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1266 return -ENOTSUPP; 1267 1268 /* FC CRC offload */ 1269 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1270 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1271 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1272 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1273 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1274 return 0; 1275 } 1276 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1277 1278 /* Returns tunnel type if hardware supports offloading of the same. 1279 * It is called only for T5 and onwards. 1280 */ 1281 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1282 { 1283 u8 l4_hdr = 0; 1284 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1285 struct port_info *pi = netdev_priv(skb->dev); 1286 struct adapter *adapter = pi->adapter; 1287 1288 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1289 skb->inner_protocol != htons(ETH_P_TEB)) 1290 return tnl_type; 1291 1292 switch (vlan_get_protocol(skb)) { 1293 case htons(ETH_P_IP): 1294 l4_hdr = ip_hdr(skb)->protocol; 1295 break; 1296 case htons(ETH_P_IPV6): 1297 l4_hdr = ipv6_hdr(skb)->nexthdr; 1298 break; 1299 default: 1300 return tnl_type; 1301 } 1302 1303 switch (l4_hdr) { 1304 case IPPROTO_UDP: 1305 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1306 tnl_type = TX_TNL_TYPE_VXLAN; 1307 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1308 tnl_type = TX_TNL_TYPE_GENEVE; 1309 break; 1310 default: 1311 return tnl_type; 1312 } 1313 1314 return tnl_type; 1315 } 1316 1317 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1318 struct cpl_tx_tnl_lso *tnl_lso, 1319 enum cpl_tx_tnl_lso_type tnl_type) 1320 { 1321 u32 val; 1322 int in_eth_xtra_len; 1323 int l3hdr_len = skb_network_header_len(skb); 1324 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1325 const struct skb_shared_info *ssi = skb_shinfo(skb); 1326 bool v6 = (ip_hdr(skb)->version == 6); 1327 1328 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1329 CPL_TX_TNL_LSO_FIRST_F | 1330 CPL_TX_TNL_LSO_LAST_F | 1331 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1332 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1333 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1334 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1335 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1336 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1337 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1338 1339 tnl_lso->IpIdOffsetOut = 0; 1340 1341 /* Get the tunnel header length */ 1342 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1343 in_eth_xtra_len = skb_inner_network_header(skb) - 1344 skb_inner_mac_header(skb) - ETH_HLEN; 1345 1346 switch (tnl_type) { 1347 case TX_TNL_TYPE_VXLAN: 1348 case TX_TNL_TYPE_GENEVE: 1349 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1350 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1351 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1352 break; 1353 default: 1354 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1355 break; 1356 } 1357 1358 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1359 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1360 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1361 1362 tnl_lso->r1 = 0; 1363 1364 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1365 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1366 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1367 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1368 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1369 1370 tnl_lso->IpIdOffset = htons(0); 1371 1372 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1373 tnl_lso->TCPSeqOffset = htonl(0); 1374 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1375 } 1376 1377 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1378 struct cpl_tx_pkt_lso_core *lso) 1379 { 1380 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1381 int l3hdr_len = skb_network_header_len(skb); 1382 const struct skb_shared_info *ssi; 1383 bool ipv6 = false; 1384 1385 ssi = skb_shinfo(skb); 1386 if (ssi->gso_type & SKB_GSO_TCPV6) 1387 ipv6 = true; 1388 1389 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1390 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1391 LSO_IPV6_V(ipv6) | 1392 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1393 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1394 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1395 lso->ipid_ofst = htons(0); 1396 lso->mss = htons(ssi->gso_size); 1397 lso->seqno_offset = htonl(0); 1398 if (is_t4(adap->params.chip)) 1399 lso->len = htonl(skb->len); 1400 else 1401 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1402 1403 return (void *)(lso + 1); 1404 } 1405 1406 /** 1407 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1408 * @adap: the adapter 1409 * @eq: the Ethernet TX Queue 1410 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1411 * 1412 * We're typically called here to update the state of an Ethernet TX 1413 * Queue with respect to the hardware's progress in consuming the TX 1414 * Work Requests that we've put on that Egress Queue. This happens 1415 * when we get Egress Queue Update messages and also prophylactically 1416 * in regular timer-based Ethernet TX Queue maintenance. 1417 */ 1418 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1419 int maxreclaim) 1420 { 1421 unsigned int reclaimed, hw_cidx; 1422 struct sge_txq *q = &eq->q; 1423 int hw_in_use; 1424 1425 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1426 return 0; 1427 1428 /* Reclaim pending completed TX Descriptors. */ 1429 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1430 1431 hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1432 hw_in_use = q->pidx - hw_cidx; 1433 if (hw_in_use < 0) 1434 hw_in_use += q->size; 1435 1436 /* If the TX Queue is currently stopped and there's now more than half 1437 * the queue available, restart it. Otherwise bail out since the rest 1438 * of what we want do here is with the possibility of shipping any 1439 * currently buffered Coalesced TX Work Request. 1440 */ 1441 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { 1442 netif_tx_wake_queue(eq->txq); 1443 eq->q.restarts++; 1444 } 1445 1446 __netif_tx_unlock(eq->txq); 1447 return reclaimed; 1448 } 1449 1450 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1451 struct net_device *dev, 1452 u32 min_pkt_len) 1453 { 1454 u32 max_pkt_len; 1455 1456 /* The chip min packet length is 10 octets but some firmware 1457 * commands have a minimum packet length requirement. So, play 1458 * safe and reject anything shorter than @min_pkt_len. 1459 */ 1460 if (unlikely(skb->len < min_pkt_len)) 1461 return -EINVAL; 1462 1463 /* Discard the packet if the length is greater than mtu */ 1464 max_pkt_len = ETH_HLEN + dev->mtu; 1465 1466 if (skb_vlan_tagged(skb)) 1467 max_pkt_len += VLAN_HLEN; 1468 1469 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1470 return -EINVAL; 1471 1472 return 0; 1473 } 1474 1475 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1476 u32 hdr_len) 1477 { 1478 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1479 wr->u.udpseg.ethlen = skb_network_offset(skb); 1480 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1481 wr->u.udpseg.udplen = sizeof(struct udphdr); 1482 wr->u.udpseg.rtplen = 0; 1483 wr->u.udpseg.r4 = 0; 1484 if (skb_shinfo(skb)->gso_size) 1485 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1486 else 1487 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1488 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1489 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1490 1491 return (void *)(wr + 1); 1492 } 1493 1494 /** 1495 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1496 * @skb: the packet 1497 * @dev: the egress net device 1498 * 1499 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1500 */ 1501 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1502 { 1503 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1504 bool ptp_enabled = is_ptp_enabled(skb, dev); 1505 unsigned int last_desc, flits, ndesc; 1506 u32 wr_mid, ctrl0, op, sgl_off = 0; 1507 const struct skb_shared_info *ssi; 1508 int len, qidx, credits, ret, left; 1509 struct tx_sw_desc *sgl_sdesc; 1510 struct fw_eth_tx_eo_wr *eowr; 1511 struct fw_eth_tx_pkt_wr *wr; 1512 struct cpl_tx_pkt_core *cpl; 1513 const struct port_info *pi; 1514 bool immediate = false; 1515 u64 cntrl, *end, *sgl; 1516 struct sge_eth_txq *q; 1517 unsigned int chip_ver; 1518 struct adapter *adap; 1519 1520 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1521 if (ret) 1522 goto out_free; 1523 1524 pi = netdev_priv(dev); 1525 adap = pi->adapter; 1526 ssi = skb_shinfo(skb); 1527 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 1528 if (xfrm_offload(skb) && !ssi->gso_size) 1529 return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev); 1530 #endif /* CHELSIO_IPSEC_INLINE */ 1531 1532 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 1533 if (tls_is_skb_tx_device_offloaded(skb) && 1534 (skb->len - skb_tcp_all_headers(skb))) 1535 return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev); 1536 #endif /* CHELSIO_TLS_DEVICE */ 1537 1538 qidx = skb_get_queue_mapping(skb); 1539 if (ptp_enabled) { 1540 if (!(adap->ptp_tx_skb)) { 1541 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1542 adap->ptp_tx_skb = skb_get(skb); 1543 } else { 1544 goto out_free; 1545 } 1546 q = &adap->sge.ptptxq; 1547 } else { 1548 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1549 } 1550 skb_tx_timestamp(skb); 1551 1552 reclaim_completed_tx(adap, &q->q, -1, true); 1553 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1554 1555 #ifdef CONFIG_CHELSIO_T4_FCOE 1556 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1557 if (unlikely(ret == -EOPNOTSUPP)) 1558 goto out_free; 1559 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1560 1561 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1562 flits = calc_tx_flits(skb, chip_ver); 1563 ndesc = flits_to_desc(flits); 1564 credits = txq_avail(&q->q) - ndesc; 1565 1566 if (unlikely(credits < 0)) { 1567 eth_txq_stop(q); 1568 dev_err(adap->pdev_dev, 1569 "%s: Tx ring %u full while queue awake!\n", 1570 dev->name, qidx); 1571 return NETDEV_TX_BUSY; 1572 } 1573 1574 if (is_eth_imm(skb, chip_ver)) 1575 immediate = true; 1576 1577 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1578 tnl_type = cxgb_encap_offload_supported(skb); 1579 1580 last_desc = q->q.pidx + ndesc - 1; 1581 if (last_desc >= q->q.size) 1582 last_desc -= q->q.size; 1583 sgl_sdesc = &q->q.sdesc[last_desc]; 1584 1585 if (!immediate && 1586 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1587 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1588 q->mapping_err++; 1589 goto out_free; 1590 } 1591 1592 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1593 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1594 /* After we're done injecting the Work Request for this 1595 * packet, we'll be below our "stop threshold" so stop the TX 1596 * Queue now and schedule a request for an SGE Egress Queue 1597 * Update message. The queue will get started later on when 1598 * the firmware processes this Work Request and sends us an 1599 * Egress Queue Status Update message indicating that space 1600 * has opened up. 1601 */ 1602 eth_txq_stop(q); 1603 if (chip_ver > CHELSIO_T5) 1604 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1605 } 1606 1607 wr = (void *)&q->q.desc[q->q.pidx]; 1608 eowr = (void *)&q->q.desc[q->q.pidx]; 1609 wr->equiq_to_len16 = htonl(wr_mid); 1610 wr->r3 = cpu_to_be64(0); 1611 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1612 end = (u64 *)eowr + flits; 1613 else 1614 end = (u64 *)wr + flits; 1615 1616 len = immediate ? skb->len : 0; 1617 len += sizeof(*cpl); 1618 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1619 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1620 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1621 1622 if (tnl_type) 1623 len += sizeof(*tnl_lso); 1624 else 1625 len += sizeof(*lso); 1626 1627 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1628 FW_WR_IMMDLEN_V(len)); 1629 if (tnl_type) { 1630 struct iphdr *iph = ip_hdr(skb); 1631 1632 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1633 cpl = (void *)(tnl_lso + 1); 1634 /* Driver is expected to compute partial checksum that 1635 * does not include the IP Total Length. 1636 */ 1637 if (iph->version == 4) { 1638 iph->check = 0; 1639 iph->tot_len = 0; 1640 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl); 1641 } 1642 if (skb->ip_summed == CHECKSUM_PARTIAL) 1643 cntrl = hwcsum(adap->params.chip, skb); 1644 } else { 1645 cpl = write_tso_wr(adap, skb, lso); 1646 cntrl = hwcsum(adap->params.chip, skb); 1647 } 1648 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1649 q->tso++; 1650 q->tx_cso += ssi->gso_segs; 1651 } else if (ssi->gso_size) { 1652 u64 *start; 1653 u32 hdrlen; 1654 1655 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1656 len += hdrlen; 1657 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1658 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1659 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1660 cntrl = hwcsum(adap->params.chip, skb); 1661 1662 start = (u64 *)(cpl + 1); 1663 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1664 hdrlen); 1665 if (unlikely(start > sgl)) { 1666 left = (u8 *)end - (u8 *)q->q.stat; 1667 end = (void *)q->q.desc + left; 1668 } 1669 sgl_off = hdrlen; 1670 q->uso++; 1671 q->tx_cso += ssi->gso_segs; 1672 } else { 1673 if (ptp_enabled) 1674 op = FW_PTP_TX_PKT_WR; 1675 else 1676 op = FW_ETH_TX_PKT_WR; 1677 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1678 FW_WR_IMMDLEN_V(len)); 1679 cpl = (void *)(wr + 1); 1680 sgl = (u64 *)(cpl + 1); 1681 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1682 cntrl = hwcsum(adap->params.chip, skb) | 1683 TXPKT_IPCSUM_DIS_F; 1684 q->tx_cso++; 1685 } 1686 } 1687 1688 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1689 /* If current position is already at the end of the 1690 * txq, reset the current to point to start of the queue 1691 * and update the end ptr as well. 1692 */ 1693 left = (u8 *)end - (u8 *)q->q.stat; 1694 end = (void *)q->q.desc + left; 1695 sgl = (void *)q->q.desc; 1696 } 1697 1698 if (skb_vlan_tag_present(skb)) { 1699 q->vlan_ins++; 1700 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1701 #ifdef CONFIG_CHELSIO_T4_FCOE 1702 if (skb->protocol == htons(ETH_P_FCOE)) 1703 cntrl |= TXPKT_VLAN_V( 1704 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1705 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1706 } 1707 1708 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1709 TXPKT_PF_V(adap->pf); 1710 if (ptp_enabled) 1711 ctrl0 |= TXPKT_TSTAMP_F; 1712 #ifdef CONFIG_CHELSIO_T4_DCB 1713 if (is_t4(adap->params.chip)) 1714 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1715 else 1716 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1717 #endif 1718 cpl->ctrl0 = htonl(ctrl0); 1719 cpl->pack = htons(0); 1720 cpl->len = htons(skb->len); 1721 cpl->ctrl1 = cpu_to_be64(cntrl); 1722 1723 if (immediate) { 1724 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1725 dev_consume_skb_any(skb); 1726 } else { 1727 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1728 sgl_sdesc->addr); 1729 skb_orphan(skb); 1730 sgl_sdesc->skb = skb; 1731 } 1732 1733 txq_advance(&q->q, ndesc); 1734 1735 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1736 return NETDEV_TX_OK; 1737 1738 out_free: 1739 dev_kfree_skb_any(skb); 1740 return NETDEV_TX_OK; 1741 } 1742 1743 /* Constants ... */ 1744 enum { 1745 /* Egress Queue sizes, producer and consumer indices are all in units 1746 * of Egress Context Units bytes. Note that as far as the hardware is 1747 * concerned, the free list is an Egress Queue (the host produces free 1748 * buffers which the hardware consumes) and free list entries are 1749 * 64-bit PCI DMA addresses. 1750 */ 1751 EQ_UNIT = SGE_EQ_IDXSIZE, 1752 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1753 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1754 1755 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1756 sizeof(struct cpl_tx_pkt_lso_core) + 1757 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1758 }; 1759 1760 /** 1761 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1762 * @skb: the packet 1763 * 1764 * Returns whether an Ethernet packet is small enough to fit completely as 1765 * immediate data. 1766 */ 1767 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1768 { 1769 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1770 * which does not accommodate immediate data. We could dike out all 1771 * of the support code for immediate data but that would tie our hands 1772 * too much if we ever want to enhace the firmware. It would also 1773 * create more differences between the PF and VF Drivers. 1774 */ 1775 return false; 1776 } 1777 1778 /** 1779 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1780 * @skb: the packet 1781 * 1782 * Returns the number of flits needed for a TX Work Request for the 1783 * given Ethernet packet, including the needed WR and CPL headers. 1784 */ 1785 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1786 { 1787 unsigned int flits; 1788 1789 /* If the skb is small enough, we can pump it out as a work request 1790 * with only immediate data. In that case we just have to have the 1791 * TX Packet header plus the skb data in the Work Request. 1792 */ 1793 if (t4vf_is_eth_imm(skb)) 1794 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1795 sizeof(__be64)); 1796 1797 /* Otherwise, we're going to have to construct a Scatter gather list 1798 * of the skb body and fragments. We also include the flits necessary 1799 * for the TX Packet Work Request and CPL. We always have a firmware 1800 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1801 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1802 * message or, if we're doing a Large Send Offload, an LSO CPL message 1803 * with an embedded TX Packet Write CPL message. 1804 */ 1805 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1806 if (skb_shinfo(skb)->gso_size) 1807 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1808 sizeof(struct cpl_tx_pkt_lso_core) + 1809 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1810 else 1811 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1812 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1813 return flits; 1814 } 1815 1816 /** 1817 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1818 * @skb: the packet 1819 * @dev: the egress net device 1820 * 1821 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1822 */ 1823 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1824 struct net_device *dev) 1825 { 1826 unsigned int last_desc, flits, ndesc; 1827 const struct skb_shared_info *ssi; 1828 struct fw_eth_tx_pkt_vm_wr *wr; 1829 struct tx_sw_desc *sgl_sdesc; 1830 struct cpl_tx_pkt_core *cpl; 1831 const struct port_info *pi; 1832 struct sge_eth_txq *txq; 1833 struct adapter *adapter; 1834 int qidx, credits, ret; 1835 size_t fw_hdr_copy_len; 1836 unsigned int chip_ver; 1837 u64 cntrl, *end; 1838 u32 wr_mid; 1839 1840 /* The chip minimum packet length is 10 octets but the firmware 1841 * command that we are using requires that we copy the Ethernet header 1842 * (including the VLAN tag) into the header so we reject anything 1843 * smaller than that ... 1844 */ 1845 BUILD_BUG_ON(sizeof(wr->firmware) != 1846 (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1847 sizeof(wr->ethtype) + sizeof(wr->vlantci))); 1848 fw_hdr_copy_len = sizeof(wr->firmware); 1849 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1850 if (ret) 1851 goto out_free; 1852 1853 /* Figure out which TX Queue we're going to use. */ 1854 pi = netdev_priv(dev); 1855 adapter = pi->adapter; 1856 qidx = skb_get_queue_mapping(skb); 1857 WARN_ON(qidx >= pi->nqsets); 1858 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1859 1860 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1861 * transfers have completed. 1862 */ 1863 reclaim_completed_tx(adapter, &txq->q, -1, true); 1864 1865 /* Calculate the number of flits and TX Descriptors we're going to 1866 * need along with how many TX Descriptors will be left over after 1867 * we inject our Work Request. 1868 */ 1869 flits = t4vf_calc_tx_flits(skb); 1870 ndesc = flits_to_desc(flits); 1871 credits = txq_avail(&txq->q) - ndesc; 1872 1873 if (unlikely(credits < 0)) { 1874 /* Not enough room for this packet's Work Request. Stop the 1875 * TX Queue and return a "busy" condition. The queue will get 1876 * started later on when the firmware informs us that space 1877 * has opened up. 1878 */ 1879 eth_txq_stop(txq); 1880 dev_err(adapter->pdev_dev, 1881 "%s: TX ring %u full while queue awake!\n", 1882 dev->name, qidx); 1883 return NETDEV_TX_BUSY; 1884 } 1885 1886 last_desc = txq->q.pidx + ndesc - 1; 1887 if (last_desc >= txq->q.size) 1888 last_desc -= txq->q.size; 1889 sgl_sdesc = &txq->q.sdesc[last_desc]; 1890 1891 if (!t4vf_is_eth_imm(skb) && 1892 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1893 sgl_sdesc->addr) < 0)) { 1894 /* We need to map the skb into PCI DMA space (because it can't 1895 * be in-lined directly into the Work Request) and the mapping 1896 * operation failed. Record the error and drop the packet. 1897 */ 1898 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1899 txq->mapping_err++; 1900 goto out_free; 1901 } 1902 1903 chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 1904 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1905 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1906 /* After we're done injecting the Work Request for this 1907 * packet, we'll be below our "stop threshold" so stop the TX 1908 * Queue now and schedule a request for an SGE Egress Queue 1909 * Update message. The queue will get started later on when 1910 * the firmware processes this Work Request and sends us an 1911 * Egress Queue Status Update message indicating that space 1912 * has opened up. 1913 */ 1914 eth_txq_stop(txq); 1915 if (chip_ver > CHELSIO_T5) 1916 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1917 } 1918 1919 /* Start filling in our Work Request. Note that we do _not_ handle 1920 * the WR Header wrapping around the TX Descriptor Ring. If our 1921 * maximum header size ever exceeds one TX Descriptor, we'll need to 1922 * do something else here. 1923 */ 1924 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1925 wr = (void *)&txq->q.desc[txq->q.pidx]; 1926 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1927 wr->r3[0] = cpu_to_be32(0); 1928 wr->r3[1] = cpu_to_be32(0); 1929 skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len); 1930 end = (u64 *)wr + flits; 1931 1932 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1933 * message with an encapsulated TX Packet CPL message. Otherwise we 1934 * just use a TX Packet CPL message. 1935 */ 1936 ssi = skb_shinfo(skb); 1937 if (ssi->gso_size) { 1938 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1939 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1940 int l3hdr_len = skb_network_header_len(skb); 1941 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1942 1943 wr->op_immdlen = 1944 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1945 FW_WR_IMMDLEN_V(sizeof(*lso) + 1946 sizeof(*cpl))); 1947 /* Fill in the LSO CPL message. */ 1948 lso->lso_ctrl = 1949 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1950 LSO_FIRST_SLICE_F | 1951 LSO_LAST_SLICE_F | 1952 LSO_IPV6_V(v6) | 1953 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1954 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1955 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1956 lso->ipid_ofst = cpu_to_be16(0); 1957 lso->mss = cpu_to_be16(ssi->gso_size); 1958 lso->seqno_offset = cpu_to_be32(0); 1959 if (is_t4(adapter->params.chip)) 1960 lso->len = cpu_to_be32(skb->len); 1961 else 1962 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1963 1964 /* Set up TX Packet CPL pointer, control word and perform 1965 * accounting. 1966 */ 1967 cpl = (void *)(lso + 1); 1968 1969 if (chip_ver <= CHELSIO_T5) 1970 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1971 else 1972 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1973 1974 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1975 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1976 TXPKT_IPHDR_LEN_V(l3hdr_len); 1977 txq->tso++; 1978 txq->tx_cso += ssi->gso_segs; 1979 } else { 1980 int len; 1981 1982 len = (t4vf_is_eth_imm(skb) 1983 ? skb->len + sizeof(*cpl) 1984 : sizeof(*cpl)); 1985 wr->op_immdlen = 1986 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1987 FW_WR_IMMDLEN_V(len)); 1988 1989 /* Set up TX Packet CPL pointer, control word and perform 1990 * accounting. 1991 */ 1992 cpl = (void *)(wr + 1); 1993 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1994 cntrl = hwcsum(adapter->params.chip, skb) | 1995 TXPKT_IPCSUM_DIS_F; 1996 txq->tx_cso++; 1997 } else { 1998 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1999 } 2000 } 2001 2002 /* If there's a VLAN tag present, add that to the list of things to 2003 * do in this Work Request. 2004 */ 2005 if (skb_vlan_tag_present(skb)) { 2006 txq->vlan_ins++; 2007 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2008 } 2009 2010 /* Fill in the TX Packet CPL message header. */ 2011 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2012 TXPKT_INTF_V(pi->port_id) | 2013 TXPKT_PF_V(0)); 2014 cpl->pack = cpu_to_be16(0); 2015 cpl->len = cpu_to_be16(skb->len); 2016 cpl->ctrl1 = cpu_to_be64(cntrl); 2017 2018 /* Fill in the body of the TX Packet CPL message with either in-lined 2019 * data or a Scatter/Gather List. 2020 */ 2021 if (t4vf_is_eth_imm(skb)) { 2022 /* In-line the packet's data and free the skb since we don't 2023 * need it any longer. 2024 */ 2025 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 2026 dev_consume_skb_any(skb); 2027 } else { 2028 /* Write the skb's Scatter/Gather list into the TX Packet CPL 2029 * message and retain a pointer to the skb so we can free it 2030 * later when its DMA completes. (We store the skb pointer 2031 * in the Software Descriptor corresponding to the last TX 2032 * Descriptor used by the Work Request.) 2033 * 2034 * The retained skb will be freed when the corresponding TX 2035 * Descriptors are reclaimed after their DMAs complete. 2036 * However, this could take quite a while since, in general, 2037 * the hardware is set up to be lazy about sending DMA 2038 * completion notifications to us and we mostly perform TX 2039 * reclaims in the transmit routine. 2040 * 2041 * This is good for performamce but means that we rely on new 2042 * TX packets arriving to run the destructors of completed 2043 * packets, which open up space in their sockets' send queues. 2044 * Sometimes we do not get such new packets causing TX to 2045 * stall. A single UDP transmitter is a good example of this 2046 * situation. We have a clean up timer that periodically 2047 * reclaims completed packets but it doesn't run often enough 2048 * (nor do we want it to) to prevent lengthy stalls. A 2049 * solution to this problem is to run the destructor early, 2050 * after the packet is queued but before it's DMAd. A con is 2051 * that we lie to socket memory accounting, but the amount of 2052 * extra memory is reasonable (limited by the number of TX 2053 * descriptors), the packets do actually get freed quickly by 2054 * new packets almost always, and for protocols like TCP that 2055 * wait for acks to really free up the data the extra memory 2056 * is even less. On the positive side we run the destructors 2057 * on the sending CPU rather than on a potentially different 2058 * completing CPU, usually a good thing. 2059 * 2060 * Run the destructor before telling the DMA engine about the 2061 * packet to make sure it doesn't complete and get freed 2062 * prematurely. 2063 */ 2064 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 2065 struct sge_txq *tq = &txq->q; 2066 2067 /* If the Work Request header was an exact multiple of our TX 2068 * Descriptor length, then it's possible that the starting SGL 2069 * pointer lines up exactly with the end of our TX Descriptor 2070 * ring. If that's the case, wrap around to the beginning 2071 * here ... 2072 */ 2073 if (unlikely((void *)sgl == (void *)tq->stat)) { 2074 sgl = (void *)tq->desc; 2075 end = (void *)((void *)tq->desc + 2076 ((void *)end - (void *)tq->stat)); 2077 } 2078 2079 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 2080 skb_orphan(skb); 2081 sgl_sdesc->skb = skb; 2082 } 2083 2084 /* Advance our internal TX Queue state, tell the hardware about 2085 * the new TX descriptors and return success. 2086 */ 2087 txq_advance(&txq->q, ndesc); 2088 2089 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 2090 return NETDEV_TX_OK; 2091 2092 out_free: 2093 /* An error of some sort happened. Free the TX skb and tell the 2094 * OS that we've "dealt" with the packet ... 2095 */ 2096 dev_kfree_skb_any(skb); 2097 return NETDEV_TX_OK; 2098 } 2099 2100 /** 2101 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2102 * @q: the SGE control Tx queue 2103 * 2104 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2105 * for Tx queues that send only immediate data (presently just 2106 * the control queues) and thus do not have any sk_buffs to release. 2107 */ 2108 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2109 { 2110 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2111 int reclaim = hw_cidx - q->cidx; 2112 2113 if (reclaim < 0) 2114 reclaim += q->size; 2115 2116 q->in_use -= reclaim; 2117 q->cidx = hw_cidx; 2118 } 2119 2120 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2121 { 2122 u32 val = *idx + n; 2123 2124 if (val >= max) 2125 val -= max; 2126 2127 *idx = val; 2128 } 2129 2130 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2131 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2132 { 2133 struct tx_sw_desc *d; 2134 2135 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2136 while (ndesc--) { 2137 if (d->skb) { 2138 if (d->addr[0]) { 2139 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2140 memset(d->addr, 0, sizeof(d->addr)); 2141 } 2142 dev_consume_skb_any(d->skb); 2143 d->skb = NULL; 2144 } 2145 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2146 eosw_txq->ndesc); 2147 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2148 } 2149 } 2150 2151 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2152 { 2153 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2154 eosw_txq->inuse += n; 2155 } 2156 2157 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2158 struct sk_buff *skb) 2159 { 2160 if (eosw_txq->inuse == eosw_txq->ndesc) 2161 return -ENOMEM; 2162 2163 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2164 return 0; 2165 } 2166 2167 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2168 { 2169 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2170 } 2171 2172 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2173 struct sk_buff *skb, u32 hdr_len) 2174 { 2175 u8 flits, nsgl = 0; 2176 u32 wrlen; 2177 2178 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2179 if (skb_shinfo(skb)->gso_size && 2180 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2181 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2182 2183 wrlen += roundup(hdr_len, 16); 2184 2185 /* Packet headers + WR + CPLs */ 2186 flits = DIV_ROUND_UP(wrlen, 8); 2187 2188 if (skb_shinfo(skb)->nr_frags > 0) { 2189 if (skb_headlen(skb) - hdr_len) 2190 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2191 else 2192 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2193 } else if (skb->len - hdr_len) { 2194 nsgl = sgl_len(1); 2195 } 2196 2197 return flits + nsgl; 2198 } 2199 2200 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq, 2201 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2202 u32 hdr_len, u32 wrlen) 2203 { 2204 const struct skb_shared_info *ssi = skb_shinfo(skb); 2205 struct cpl_tx_pkt_core *cpl; 2206 u32 immd_len, wrlen16; 2207 bool compl = false; 2208 u8 ver, proto; 2209 2210 ver = ip_hdr(skb)->version; 2211 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2212 2213 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2214 immd_len = sizeof(struct cpl_tx_pkt_core); 2215 if (skb_shinfo(skb)->gso_size && 2216 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2217 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2218 immd_len += hdr_len; 2219 2220 if (!eosw_txq->ncompl || 2221 (eosw_txq->last_compl + wrlen16) >= 2222 (adap->params.ofldq_wr_cred / 2)) { 2223 compl = true; 2224 eosw_txq->ncompl++; 2225 eosw_txq->last_compl = 0; 2226 } 2227 2228 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2229 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2230 FW_WR_COMPL_V(compl)); 2231 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2232 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2233 wr->r3 = 0; 2234 if (proto == IPPROTO_UDP) { 2235 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2236 } else { 2237 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2238 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2239 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2240 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2241 wr->u.tcpseg.tsclk_tsoff = 0; 2242 wr->u.tcpseg.r4 = 0; 2243 wr->u.tcpseg.r5 = 0; 2244 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2245 2246 if (ssi->gso_size) { 2247 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2248 2249 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2250 cpl = write_tso_wr(adap, skb, lso); 2251 } else { 2252 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2253 cpl = (void *)(wr + 1); 2254 } 2255 } 2256 2257 eosw_txq->cred -= wrlen16; 2258 eosw_txq->last_compl += wrlen16; 2259 return cpl; 2260 } 2261 2262 static int ethofld_hard_xmit(struct net_device *dev, 2263 struct sge_eosw_txq *eosw_txq) 2264 { 2265 struct port_info *pi = netdev2pinfo(dev); 2266 struct adapter *adap = netdev2adap(dev); 2267 u32 wrlen, wrlen16, hdr_len, data_len; 2268 enum sge_eosw_state next_state; 2269 u64 cntrl, *start, *end, *sgl; 2270 struct sge_eohw_txq *eohw_txq; 2271 struct cpl_tx_pkt_core *cpl; 2272 struct fw_eth_tx_eo_wr *wr; 2273 bool skip_eotx_wr = false; 2274 struct tx_sw_desc *d; 2275 struct sk_buff *skb; 2276 int left, ret = 0; 2277 u8 flits, ndesc; 2278 2279 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2280 spin_lock(&eohw_txq->lock); 2281 reclaim_completed_tx_imm(&eohw_txq->q); 2282 2283 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2284 skb = d->skb; 2285 skb_tx_timestamp(skb); 2286 2287 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2288 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2289 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2290 hdr_len = skb->len; 2291 data_len = 0; 2292 flits = DIV_ROUND_UP(hdr_len, 8); 2293 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2294 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2295 else 2296 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2297 skip_eotx_wr = true; 2298 } else { 2299 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2300 data_len = skb->len - hdr_len; 2301 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2302 } 2303 ndesc = flits_to_desc(flits); 2304 wrlen = flits * 8; 2305 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2306 2307 left = txq_avail(&eohw_txq->q) - ndesc; 2308 2309 /* If there are no descriptors left in hardware queues or no 2310 * CPL credits left in software queues, then wait for them 2311 * to come back and retry again. Note that we always request 2312 * for credits update via interrupt for every half credits 2313 * consumed. So, the interrupt will eventually restore the 2314 * credits and invoke the Tx path again. 2315 */ 2316 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) { 2317 ret = -ENOMEM; 2318 goto out_unlock; 2319 } 2320 2321 if (unlikely(skip_eotx_wr)) { 2322 start = (u64 *)wr; 2323 eosw_txq->state = next_state; 2324 eosw_txq->cred -= wrlen16; 2325 eosw_txq->ncompl++; 2326 eosw_txq->last_compl = 0; 2327 goto write_wr_headers; 2328 } 2329 2330 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2331 cntrl = hwcsum(adap->params.chip, skb); 2332 if (skb_vlan_tag_present(skb)) 2333 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2334 2335 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2336 TXPKT_INTF_V(pi->tx_chan) | 2337 TXPKT_PF_V(adap->pf)); 2338 cpl->pack = 0; 2339 cpl->len = cpu_to_be16(skb->len); 2340 cpl->ctrl1 = cpu_to_be64(cntrl); 2341 2342 start = (u64 *)(cpl + 1); 2343 2344 write_wr_headers: 2345 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2346 hdr_len); 2347 if (data_len) { 2348 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr); 2349 if (unlikely(ret)) { 2350 memset(d->addr, 0, sizeof(d->addr)); 2351 eohw_txq->mapping_err++; 2352 goto out_unlock; 2353 } 2354 2355 end = (u64 *)wr + flits; 2356 if (unlikely(start > sgl)) { 2357 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2358 end = (void *)eohw_txq->q.desc + left; 2359 } 2360 2361 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2362 /* If current position is already at the end of the 2363 * txq, reset the current to point to start of the queue 2364 * and update the end ptr as well. 2365 */ 2366 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2367 2368 end = (void *)eohw_txq->q.desc + left; 2369 sgl = (void *)eohw_txq->q.desc; 2370 } 2371 2372 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2373 d->addr); 2374 } 2375 2376 if (skb_shinfo(skb)->gso_size) { 2377 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2378 eohw_txq->uso++; 2379 else 2380 eohw_txq->tso++; 2381 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2382 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2383 eohw_txq->tx_cso++; 2384 } 2385 2386 if (skb_vlan_tag_present(skb)) 2387 eohw_txq->vlan_ins++; 2388 2389 txq_advance(&eohw_txq->q, ndesc); 2390 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2391 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2392 2393 out_unlock: 2394 spin_unlock(&eohw_txq->lock); 2395 return ret; 2396 } 2397 2398 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2399 { 2400 struct sk_buff *skb; 2401 int pktcount, ret; 2402 2403 switch (eosw_txq->state) { 2404 case CXGB4_EO_STATE_ACTIVE: 2405 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2406 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2407 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2408 if (pktcount < 0) 2409 pktcount += eosw_txq->ndesc; 2410 break; 2411 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2412 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2413 case CXGB4_EO_STATE_CLOSED: 2414 default: 2415 return; 2416 } 2417 2418 while (pktcount--) { 2419 skb = eosw_txq_peek(eosw_txq); 2420 if (!skb) { 2421 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2422 eosw_txq->ndesc); 2423 continue; 2424 } 2425 2426 ret = ethofld_hard_xmit(dev, eosw_txq); 2427 if (ret) 2428 break; 2429 } 2430 } 2431 2432 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2433 struct net_device *dev) 2434 { 2435 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2436 struct port_info *pi = netdev2pinfo(dev); 2437 struct adapter *adap = netdev2adap(dev); 2438 struct sge_eosw_txq *eosw_txq; 2439 u32 qid; 2440 int ret; 2441 2442 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2443 if (ret) 2444 goto out_free; 2445 2446 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2447 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2448 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2449 spin_lock_bh(&eosw_txq->lock); 2450 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2451 goto out_unlock; 2452 2453 ret = eosw_txq_enqueue(eosw_txq, skb); 2454 if (ret) 2455 goto out_unlock; 2456 2457 /* SKB is queued for processing until credits are available. 2458 * So, call the destructor now and we'll free the skb later 2459 * after it has been successfully transmitted. 2460 */ 2461 skb_orphan(skb); 2462 2463 eosw_txq_advance(eosw_txq, 1); 2464 ethofld_xmit(dev, eosw_txq); 2465 spin_unlock_bh(&eosw_txq->lock); 2466 return NETDEV_TX_OK; 2467 2468 out_unlock: 2469 spin_unlock_bh(&eosw_txq->lock); 2470 out_free: 2471 dev_kfree_skb_any(skb); 2472 return NETDEV_TX_OK; 2473 } 2474 2475 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2476 { 2477 struct port_info *pi = netdev_priv(dev); 2478 u16 qid = skb_get_queue_mapping(skb); 2479 2480 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2481 return cxgb4_vf_eth_xmit(skb, dev); 2482 2483 if (unlikely(qid >= pi->nqsets)) 2484 return cxgb4_ethofld_xmit(skb, dev); 2485 2486 if (is_ptp_enabled(skb, dev)) { 2487 struct adapter *adap = netdev2adap(dev); 2488 netdev_tx_t ret; 2489 2490 spin_lock(&adap->ptp_lock); 2491 ret = cxgb4_eth_xmit(skb, dev); 2492 spin_unlock(&adap->ptp_lock); 2493 return ret; 2494 } 2495 2496 return cxgb4_eth_xmit(skb, dev); 2497 } 2498 2499 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq) 2500 { 2501 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2502 int pidx = eosw_txq->pidx; 2503 struct sk_buff *skb; 2504 2505 if (!pktcount) 2506 return; 2507 2508 if (pktcount < 0) 2509 pktcount += eosw_txq->ndesc; 2510 2511 while (pktcount--) { 2512 pidx--; 2513 if (pidx < 0) 2514 pidx += eosw_txq->ndesc; 2515 2516 skb = eosw_txq->desc[pidx].skb; 2517 if (skb) { 2518 dev_consume_skb_any(skb); 2519 eosw_txq->desc[pidx].skb = NULL; 2520 eosw_txq->inuse--; 2521 } 2522 } 2523 2524 eosw_txq->pidx = eosw_txq->last_pidx + 1; 2525 } 2526 2527 /** 2528 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2529 * @dev: netdevice 2530 * @eotid: ETHOFLD tid to bind/unbind 2531 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2532 * 2533 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2534 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2535 * a traffic class. 2536 */ 2537 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2538 { 2539 struct port_info *pi = netdev2pinfo(dev); 2540 struct adapter *adap = netdev2adap(dev); 2541 enum sge_eosw_state next_state; 2542 struct sge_eosw_txq *eosw_txq; 2543 u32 len, len16, nparams = 6; 2544 struct fw_flowc_wr *flowc; 2545 struct eotid_entry *entry; 2546 struct sge_ofld_rxq *rxq; 2547 struct sk_buff *skb; 2548 int ret = 0; 2549 2550 len = struct_size(flowc, mnemval, nparams); 2551 len16 = DIV_ROUND_UP(len, 16); 2552 2553 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2554 if (!entry) 2555 return -ENOMEM; 2556 2557 eosw_txq = (struct sge_eosw_txq *)entry->data; 2558 if (!eosw_txq) 2559 return -ENOMEM; 2560 2561 if (!(adap->flags & CXGB4_FW_OK)) { 2562 /* Don't stall caller when access to FW is lost */ 2563 complete(&eosw_txq->completion); 2564 return -EIO; 2565 } 2566 2567 skb = alloc_skb(len, GFP_KERNEL); 2568 if (!skb) 2569 return -ENOMEM; 2570 2571 spin_lock_bh(&eosw_txq->lock); 2572 if (tc != FW_SCHED_CLS_NONE) { 2573 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2574 goto out_free_skb; 2575 2576 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2577 } else { 2578 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2579 goto out_free_skb; 2580 2581 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2582 } 2583 2584 flowc = __skb_put(skb, len); 2585 memset(flowc, 0, len); 2586 2587 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2588 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2589 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2590 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2591 FW_FLOWC_WR_NPARAMS_V(nparams) | 2592 FW_WR_COMPL_V(1)); 2593 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2594 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2595 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2596 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2597 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2598 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2599 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2600 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2601 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2602 flowc->mnemval[4].val = cpu_to_be32(tc); 2603 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2604 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2605 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2606 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2607 2608 /* Free up any pending skbs to ensure there's room for 2609 * termination FLOWC. 2610 */ 2611 if (tc == FW_SCHED_CLS_NONE) 2612 eosw_txq_flush_pending_skbs(eosw_txq); 2613 2614 ret = eosw_txq_enqueue(eosw_txq, skb); 2615 if (ret) 2616 goto out_free_skb; 2617 2618 eosw_txq->state = next_state; 2619 eosw_txq->flowc_idx = eosw_txq->pidx; 2620 eosw_txq_advance(eosw_txq, 1); 2621 ethofld_xmit(dev, eosw_txq); 2622 2623 spin_unlock_bh(&eosw_txq->lock); 2624 return 0; 2625 2626 out_free_skb: 2627 dev_consume_skb_any(skb); 2628 spin_unlock_bh(&eosw_txq->lock); 2629 return ret; 2630 } 2631 2632 /** 2633 * is_imm - check whether a packet can be sent as immediate data 2634 * @skb: the packet 2635 * 2636 * Returns true if a packet can be sent as a WR with immediate data. 2637 */ 2638 static inline int is_imm(const struct sk_buff *skb) 2639 { 2640 return skb->len <= MAX_CTRL_WR_LEN; 2641 } 2642 2643 /** 2644 * ctrlq_check_stop - check if a control queue is full and should stop 2645 * @q: the queue 2646 * @wr: most recent WR written to the queue 2647 * 2648 * Check if a control queue has become full and should be stopped. 2649 * We clean up control queue descriptors very lazily, only when we are out. 2650 * If the queue is still full after reclaiming any completed descriptors 2651 * we suspend it and have the last WR wake it up. 2652 */ 2653 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2654 { 2655 reclaim_completed_tx_imm(&q->q); 2656 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2657 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2658 q->q.stops++; 2659 q->full = 1; 2660 } 2661 } 2662 2663 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST" 2664 2665 int cxgb4_selftest_lb_pkt(struct net_device *netdev) 2666 { 2667 struct port_info *pi = netdev_priv(netdev); 2668 struct adapter *adap = pi->adapter; 2669 struct cxgb4_ethtool_lb_test *lb; 2670 int ret, i = 0, pkt_len, credits; 2671 struct fw_eth_tx_pkt_wr *wr; 2672 struct cpl_tx_pkt_core *cpl; 2673 u32 ctrl0, ndesc, flits; 2674 struct sge_eth_txq *q; 2675 u8 *sgl; 2676 2677 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR); 2678 2679 flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr), 2680 sizeof(__be64)); 2681 ndesc = flits_to_desc(flits); 2682 2683 lb = &pi->ethtool_lb; 2684 lb->loopback = 1; 2685 2686 q = &adap->sge.ethtxq[pi->first_qset]; 2687 __netif_tx_lock(q->txq, smp_processor_id()); 2688 2689 reclaim_completed_tx(adap, &q->q, -1, true); 2690 credits = txq_avail(&q->q) - ndesc; 2691 if (unlikely(credits < 0)) { 2692 __netif_tx_unlock(q->txq); 2693 return -ENOMEM; 2694 } 2695 2696 wr = (void *)&q->q.desc[q->q.pidx]; 2697 memset(wr, 0, sizeof(struct tx_desc)); 2698 2699 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 2700 FW_WR_IMMDLEN_V(pkt_len + 2701 sizeof(*cpl))); 2702 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2))); 2703 wr->r3 = cpu_to_be64(0); 2704 2705 cpl = (void *)(wr + 1); 2706 sgl = (u8 *)(cpl + 1); 2707 2708 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) | 2709 TXPKT_INTF_V(pi->tx_chan + 4); 2710 2711 cpl->ctrl0 = htonl(ctrl0); 2712 cpl->pack = htons(0); 2713 cpl->len = htons(pkt_len); 2714 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F); 2715 2716 eth_broadcast_addr(sgl); 2717 i += ETH_ALEN; 2718 ether_addr_copy(&sgl[i], netdev->dev_addr); 2719 i += ETH_ALEN; 2720 2721 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s", 2722 CXGB4_SELFTEST_LB_STR); 2723 2724 init_completion(&lb->completion); 2725 txq_advance(&q->q, ndesc); 2726 cxgb4_ring_tx_db(adap, &q->q, ndesc); 2727 __netif_tx_unlock(q->txq); 2728 2729 /* wait for the pkt to return */ 2730 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ); 2731 if (!ret) 2732 ret = -ETIMEDOUT; 2733 else 2734 ret = lb->result; 2735 2736 lb->loopback = 0; 2737 2738 return ret; 2739 } 2740 2741 /** 2742 * ctrl_xmit - send a packet through an SGE control Tx queue 2743 * @q: the control queue 2744 * @skb: the packet 2745 * 2746 * Send a packet through an SGE control Tx queue. Packets sent through 2747 * a control queue must fit entirely as immediate data. 2748 */ 2749 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2750 { 2751 unsigned int ndesc; 2752 struct fw_wr_hdr *wr; 2753 2754 if (unlikely(!is_imm(skb))) { 2755 WARN_ON(1); 2756 dev_kfree_skb(skb); 2757 return NET_XMIT_DROP; 2758 } 2759 2760 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2761 spin_lock(&q->sendq.lock); 2762 2763 if (unlikely(q->full)) { 2764 skb->priority = ndesc; /* save for restart */ 2765 __skb_queue_tail(&q->sendq, skb); 2766 spin_unlock(&q->sendq.lock); 2767 return NET_XMIT_CN; 2768 } 2769 2770 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2771 cxgb4_inline_tx_skb(skb, &q->q, wr); 2772 2773 txq_advance(&q->q, ndesc); 2774 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2775 ctrlq_check_stop(q, wr); 2776 2777 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2778 spin_unlock(&q->sendq.lock); 2779 2780 kfree_skb(skb); 2781 return NET_XMIT_SUCCESS; 2782 } 2783 2784 /** 2785 * restart_ctrlq - restart a suspended control queue 2786 * @t: pointer to the tasklet associated with this handler 2787 * 2788 * Resumes transmission on a suspended Tx control queue. 2789 */ 2790 static void restart_ctrlq(struct tasklet_struct *t) 2791 { 2792 struct sk_buff *skb; 2793 unsigned int written = 0; 2794 struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk); 2795 2796 spin_lock(&q->sendq.lock); 2797 reclaim_completed_tx_imm(&q->q); 2798 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2799 2800 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2801 struct fw_wr_hdr *wr; 2802 unsigned int ndesc = skb->priority; /* previously saved */ 2803 2804 written += ndesc; 2805 /* Write descriptors and free skbs outside the lock to limit 2806 * wait times. q->full is still set so new skbs will be queued. 2807 */ 2808 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2809 txq_advance(&q->q, ndesc); 2810 spin_unlock(&q->sendq.lock); 2811 2812 cxgb4_inline_tx_skb(skb, &q->q, wr); 2813 kfree_skb(skb); 2814 2815 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2816 unsigned long old = q->q.stops; 2817 2818 ctrlq_check_stop(q, wr); 2819 if (q->q.stops != old) { /* suspended anew */ 2820 spin_lock(&q->sendq.lock); 2821 goto ringdb; 2822 } 2823 } 2824 if (written > 16) { 2825 cxgb4_ring_tx_db(q->adap, &q->q, written); 2826 written = 0; 2827 } 2828 spin_lock(&q->sendq.lock); 2829 } 2830 q->full = 0; 2831 ringdb: 2832 if (written) 2833 cxgb4_ring_tx_db(q->adap, &q->q, written); 2834 spin_unlock(&q->sendq.lock); 2835 } 2836 2837 /** 2838 * t4_mgmt_tx - send a management message 2839 * @adap: the adapter 2840 * @skb: the packet containing the management message 2841 * 2842 * Send a management message through control queue 0. 2843 */ 2844 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2845 { 2846 int ret; 2847 2848 local_bh_disable(); 2849 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2850 local_bh_enable(); 2851 return ret; 2852 } 2853 2854 /** 2855 * is_ofld_imm - check whether a packet can be sent as immediate data 2856 * @skb: the packet 2857 * 2858 * Returns true if a packet can be sent as an offload WR with immediate 2859 * data. 2860 * FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field. 2861 * However, FW_ULPTX_WR commands have a 256 byte immediate only 2862 * payload limit. 2863 */ 2864 static inline int is_ofld_imm(const struct sk_buff *skb) 2865 { 2866 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2867 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2868 2869 if (unlikely(opcode == FW_ULPTX_WR)) 2870 return skb->len <= MAX_IMM_ULPTX_WR_LEN; 2871 else if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2872 return skb->len <= SGE_MAX_WR_LEN; 2873 else 2874 return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN; 2875 } 2876 2877 /** 2878 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2879 * @skb: the packet 2880 * 2881 * Returns the number of flits needed for the given offload packet. 2882 * These packets are already fully constructed and no additional headers 2883 * will be added. 2884 */ 2885 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2886 { 2887 unsigned int flits, cnt; 2888 2889 if (is_ofld_imm(skb)) 2890 return DIV_ROUND_UP(skb->len, 8); 2891 2892 flits = skb_transport_offset(skb) / 8U; /* headers */ 2893 cnt = skb_shinfo(skb)->nr_frags; 2894 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2895 cnt++; 2896 return flits + sgl_len(cnt); 2897 } 2898 2899 /** 2900 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2901 * @q: the queue to stop 2902 * 2903 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2904 * inability to map packets. A periodic timer attempts to restart 2905 * queues so marked. 2906 */ 2907 static void txq_stop_maperr(struct sge_uld_txq *q) 2908 { 2909 q->mapping_err++; 2910 q->q.stops++; 2911 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2912 q->adap->sge.txq_maperr); 2913 } 2914 2915 /** 2916 * ofldtxq_stop - stop an offload Tx queue that has become full 2917 * @q: the queue to stop 2918 * @wr: the Work Request causing the queue to become full 2919 * 2920 * Stops an offload Tx queue that has become full and modifies the packet 2921 * being written to request a wakeup. 2922 */ 2923 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2924 { 2925 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2926 q->q.stops++; 2927 q->full = 1; 2928 } 2929 2930 /** 2931 * service_ofldq - service/restart a suspended offload queue 2932 * @q: the offload queue 2933 * 2934 * Services an offload Tx queue by moving packets from its Pending Send 2935 * Queue to the Hardware TX ring. The function starts and ends with the 2936 * Send Queue locked, but drops the lock while putting the skb at the 2937 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2938 * allows more skbs to be added to the Send Queue by other threads. 2939 * The packet being processed at the head of the Pending Send Queue is 2940 * left on the queue in case we experience DMA Mapping errors, etc. 2941 * and need to give up and restart later. 2942 * 2943 * service_ofldq() can be thought of as a task which opportunistically 2944 * uses other threads execution contexts. We use the Offload Queue 2945 * boolean "service_ofldq_running" to make sure that only one instance 2946 * is ever running at a time ... 2947 */ 2948 static void service_ofldq(struct sge_uld_txq *q) 2949 __must_hold(&q->sendq.lock) 2950 { 2951 u64 *pos, *before, *end; 2952 int credits; 2953 struct sk_buff *skb; 2954 struct sge_txq *txq; 2955 unsigned int left; 2956 unsigned int written = 0; 2957 unsigned int flits, ndesc; 2958 2959 /* If another thread is currently in service_ofldq() processing the 2960 * Pending Send Queue then there's nothing to do. Otherwise, flag 2961 * that we're doing the work and continue. Examining/modifying 2962 * the Offload Queue boolean "service_ofldq_running" must be done 2963 * while holding the Pending Send Queue Lock. 2964 */ 2965 if (q->service_ofldq_running) 2966 return; 2967 q->service_ofldq_running = true; 2968 2969 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2970 /* We drop the lock while we're working with the skb at the 2971 * head of the Pending Send Queue. This allows more skbs to 2972 * be added to the Pending Send Queue while we're working on 2973 * this one. We don't need to lock to guard the TX Ring 2974 * updates because only one thread of execution is ever 2975 * allowed into service_ofldq() at a time. 2976 */ 2977 spin_unlock(&q->sendq.lock); 2978 2979 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2980 2981 flits = skb->priority; /* previously saved */ 2982 ndesc = flits_to_desc(flits); 2983 credits = txq_avail(&q->q) - ndesc; 2984 BUG_ON(credits < 0); 2985 if (unlikely(credits < TXQ_STOP_THRES)) 2986 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2987 2988 pos = (u64 *)&q->q.desc[q->q.pidx]; 2989 if (is_ofld_imm(skb)) 2990 cxgb4_inline_tx_skb(skb, &q->q, pos); 2991 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2992 (dma_addr_t *)skb->head)) { 2993 txq_stop_maperr(q); 2994 spin_lock(&q->sendq.lock); 2995 break; 2996 } else { 2997 int last_desc, hdr_len = skb_transport_offset(skb); 2998 2999 /* The WR headers may not fit within one descriptor. 3000 * So we need to deal with wrap-around here. 3001 */ 3002 before = (u64 *)pos; 3003 end = (u64 *)pos + flits; 3004 txq = &q->q; 3005 pos = (void *)inline_tx_skb_header(skb, &q->q, 3006 (void *)pos, 3007 hdr_len); 3008 if (before > (u64 *)pos) { 3009 left = (u8 *)end - (u8 *)txq->stat; 3010 end = (void *)txq->desc + left; 3011 } 3012 3013 /* If current position is already at the end of the 3014 * ofld queue, reset the current to point to 3015 * start of the queue and update the end ptr as well. 3016 */ 3017 if (pos == (u64 *)txq->stat) { 3018 left = (u8 *)end - (u8 *)txq->stat; 3019 end = (void *)txq->desc + left; 3020 pos = (void *)txq->desc; 3021 } 3022 3023 cxgb4_write_sgl(skb, &q->q, (void *)pos, 3024 end, hdr_len, 3025 (dma_addr_t *)skb->head); 3026 #ifdef CONFIG_NEED_DMA_MAP_STATE 3027 skb->dev = q->adap->port[0]; 3028 skb->destructor = deferred_unmap_destructor; 3029 #endif 3030 last_desc = q->q.pidx + ndesc - 1; 3031 if (last_desc >= q->q.size) 3032 last_desc -= q->q.size; 3033 q->q.sdesc[last_desc].skb = skb; 3034 } 3035 3036 txq_advance(&q->q, ndesc); 3037 written += ndesc; 3038 if (unlikely(written > 32)) { 3039 cxgb4_ring_tx_db(q->adap, &q->q, written); 3040 written = 0; 3041 } 3042 3043 /* Reacquire the Pending Send Queue Lock so we can unlink the 3044 * skb we've just successfully transferred to the TX Ring and 3045 * loop for the next skb which may be at the head of the 3046 * Pending Send Queue. 3047 */ 3048 spin_lock(&q->sendq.lock); 3049 __skb_unlink(skb, &q->sendq); 3050 if (is_ofld_imm(skb)) 3051 kfree_skb(skb); 3052 } 3053 if (likely(written)) 3054 cxgb4_ring_tx_db(q->adap, &q->q, written); 3055 3056 /*Indicate that no thread is processing the Pending Send Queue 3057 * currently. 3058 */ 3059 q->service_ofldq_running = false; 3060 } 3061 3062 /** 3063 * ofld_xmit - send a packet through an offload queue 3064 * @q: the Tx offload queue 3065 * @skb: the packet 3066 * 3067 * Send an offload packet through an SGE offload queue. 3068 */ 3069 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 3070 { 3071 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 3072 spin_lock(&q->sendq.lock); 3073 3074 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 3075 * that results in this new skb being the only one on the queue, start 3076 * servicing it. If there are other skbs already on the list, then 3077 * either the queue is currently being processed or it's been stopped 3078 * for some reason and it'll be restarted at a later time. Restart 3079 * paths are triggered by events like experiencing a DMA Mapping Error 3080 * or filling the Hardware TX Ring. 3081 */ 3082 __skb_queue_tail(&q->sendq, skb); 3083 if (q->sendq.qlen == 1) 3084 service_ofldq(q); 3085 3086 spin_unlock(&q->sendq.lock); 3087 return NET_XMIT_SUCCESS; 3088 } 3089 3090 /** 3091 * restart_ofldq - restart a suspended offload queue 3092 * @t: pointer to the tasklet associated with this handler 3093 * 3094 * Resumes transmission on a suspended Tx offload queue. 3095 */ 3096 static void restart_ofldq(struct tasklet_struct *t) 3097 { 3098 struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk); 3099 3100 spin_lock(&q->sendq.lock); 3101 q->full = 0; /* the queue actually is completely empty now */ 3102 service_ofldq(q); 3103 spin_unlock(&q->sendq.lock); 3104 } 3105 3106 /** 3107 * skb_txq - return the Tx queue an offload packet should use 3108 * @skb: the packet 3109 * 3110 * Returns the Tx queue an offload packet should use as indicated by bits 3111 * 1-15 in the packet's queue_mapping. 3112 */ 3113 static inline unsigned int skb_txq(const struct sk_buff *skb) 3114 { 3115 return skb->queue_mapping >> 1; 3116 } 3117 3118 /** 3119 * is_ctrl_pkt - return whether an offload packet is a control packet 3120 * @skb: the packet 3121 * 3122 * Returns whether an offload packet should use an OFLD or a CTRL 3123 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 3124 */ 3125 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 3126 { 3127 return skb->queue_mapping & 1; 3128 } 3129 3130 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 3131 unsigned int tx_uld_type) 3132 { 3133 struct sge_uld_txq_info *txq_info; 3134 struct sge_uld_txq *txq; 3135 unsigned int idx = skb_txq(skb); 3136 3137 if (unlikely(is_ctrl_pkt(skb))) { 3138 /* Single ctrl queue is a requirement for LE workaround path */ 3139 if (adap->tids.nsftids) 3140 idx = 0; 3141 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 3142 } 3143 3144 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 3145 if (unlikely(!txq_info)) { 3146 WARN_ON(true); 3147 kfree_skb(skb); 3148 return NET_XMIT_DROP; 3149 } 3150 3151 txq = &txq_info->uldtxq[idx]; 3152 return ofld_xmit(txq, skb); 3153 } 3154 3155 /** 3156 * t4_ofld_send - send an offload packet 3157 * @adap: the adapter 3158 * @skb: the packet 3159 * 3160 * Sends an offload packet. We use the packet queue_mapping to select the 3161 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3162 * should be sent as regular or control, bits 1-15 select the queue. 3163 */ 3164 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 3165 { 3166 int ret; 3167 3168 local_bh_disable(); 3169 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 3170 local_bh_enable(); 3171 return ret; 3172 } 3173 3174 /** 3175 * cxgb4_ofld_send - send an offload packet 3176 * @dev: the net device 3177 * @skb: the packet 3178 * 3179 * Sends an offload packet. This is an exported version of @t4_ofld_send, 3180 * intended for ULDs. 3181 */ 3182 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 3183 { 3184 return t4_ofld_send(netdev2adap(dev), skb); 3185 } 3186 EXPORT_SYMBOL(cxgb4_ofld_send); 3187 3188 static void *inline_tx_header(const void *src, 3189 const struct sge_txq *q, 3190 void *pos, int length) 3191 { 3192 int left = (void *)q->stat - pos; 3193 u64 *p; 3194 3195 if (likely(length <= left)) { 3196 memcpy(pos, src, length); 3197 pos += length; 3198 } else { 3199 memcpy(pos, src, left); 3200 memcpy(q->desc, src + left, length - left); 3201 pos = (void *)q->desc + (length - left); 3202 } 3203 /* 0-pad to multiple of 16 */ 3204 p = PTR_ALIGN(pos, 8); 3205 if ((uintptr_t)p & 8) { 3206 *p = 0; 3207 return p + 1; 3208 } 3209 return p; 3210 } 3211 3212 /** 3213 * ofld_xmit_direct - copy a WR into offload queue 3214 * @q: the Tx offload queue 3215 * @src: location of WR 3216 * @len: WR length 3217 * 3218 * Copy an immediate WR into an uncontended SGE offload queue. 3219 */ 3220 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 3221 unsigned int len) 3222 { 3223 unsigned int ndesc; 3224 int credits; 3225 u64 *pos; 3226 3227 /* Use the lower limit as the cut-off */ 3228 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 3229 WARN_ON(1); 3230 return NET_XMIT_DROP; 3231 } 3232 3233 /* Don't return NET_XMIT_CN here as the current 3234 * implementation doesn't queue the request 3235 * using an skb when the following conditions not met 3236 */ 3237 if (!spin_trylock(&q->sendq.lock)) 3238 return NET_XMIT_DROP; 3239 3240 if (q->full || !skb_queue_empty(&q->sendq) || 3241 q->service_ofldq_running) { 3242 spin_unlock(&q->sendq.lock); 3243 return NET_XMIT_DROP; 3244 } 3245 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3246 credits = txq_avail(&q->q) - ndesc; 3247 pos = (u64 *)&q->q.desc[q->q.pidx]; 3248 3249 /* ofldtxq_stop modifies WR header in-situ */ 3250 inline_tx_header(src, &q->q, pos, len); 3251 if (unlikely(credits < TXQ_STOP_THRES)) 3252 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3253 txq_advance(&q->q, ndesc); 3254 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3255 3256 spin_unlock(&q->sendq.lock); 3257 return NET_XMIT_SUCCESS; 3258 } 3259 3260 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3261 const void *src, unsigned int len) 3262 { 3263 struct sge_uld_txq_info *txq_info; 3264 struct sge_uld_txq *txq; 3265 struct adapter *adap; 3266 int ret; 3267 3268 adap = netdev2adap(dev); 3269 3270 local_bh_disable(); 3271 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3272 if (unlikely(!txq_info)) { 3273 WARN_ON(true); 3274 local_bh_enable(); 3275 return NET_XMIT_DROP; 3276 } 3277 txq = &txq_info->uldtxq[idx]; 3278 3279 ret = ofld_xmit_direct(txq, src, len); 3280 local_bh_enable(); 3281 return net_xmit_eval(ret); 3282 } 3283 EXPORT_SYMBOL(cxgb4_immdata_send); 3284 3285 /** 3286 * t4_crypto_send - send crypto packet 3287 * @adap: the adapter 3288 * @skb: the packet 3289 * 3290 * Sends crypto packet. We use the packet queue_mapping to select the 3291 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3292 * should be sent as regular or control, bits 1-15 select the queue. 3293 */ 3294 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3295 { 3296 int ret; 3297 3298 local_bh_disable(); 3299 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3300 local_bh_enable(); 3301 return ret; 3302 } 3303 3304 /** 3305 * cxgb4_crypto_send - send crypto packet 3306 * @dev: the net device 3307 * @skb: the packet 3308 * 3309 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3310 * intended for ULDs. 3311 */ 3312 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3313 { 3314 return t4_crypto_send(netdev2adap(dev), skb); 3315 } 3316 EXPORT_SYMBOL(cxgb4_crypto_send); 3317 3318 static inline void copy_frags(struct sk_buff *skb, 3319 const struct pkt_gl *gl, unsigned int offset) 3320 { 3321 int i; 3322 3323 /* usually there's just one frag */ 3324 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3325 gl->frags[0].offset + offset, 3326 gl->frags[0].size - offset); 3327 skb_shinfo(skb)->nr_frags = gl->nfrags; 3328 for (i = 1; i < gl->nfrags; i++) 3329 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3330 gl->frags[i].offset, 3331 gl->frags[i].size); 3332 3333 /* get a reference to the last page, we don't own it */ 3334 get_page(gl->frags[gl->nfrags - 1].page); 3335 } 3336 3337 /** 3338 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3339 * @gl: the gather list 3340 * @skb_len: size of sk_buff main body if it carries fragments 3341 * @pull_len: amount of data to move to the sk_buff's main body 3342 * 3343 * Builds an sk_buff from the given packet gather list. Returns the 3344 * sk_buff or %NULL if sk_buff allocation failed. 3345 */ 3346 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3347 unsigned int skb_len, unsigned int pull_len) 3348 { 3349 struct sk_buff *skb; 3350 3351 /* 3352 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3353 * size, which is expected since buffers are at least PAGE_SIZEd. 3354 * In this case packets up to RX_COPY_THRES have only one fragment. 3355 */ 3356 if (gl->tot_len <= RX_COPY_THRES) { 3357 skb = dev_alloc_skb(gl->tot_len); 3358 if (unlikely(!skb)) 3359 goto out; 3360 __skb_put(skb, gl->tot_len); 3361 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3362 } else { 3363 skb = dev_alloc_skb(skb_len); 3364 if (unlikely(!skb)) 3365 goto out; 3366 __skb_put(skb, pull_len); 3367 skb_copy_to_linear_data(skb, gl->va, pull_len); 3368 3369 copy_frags(skb, gl, pull_len); 3370 skb->len = gl->tot_len; 3371 skb->data_len = skb->len - pull_len; 3372 skb->truesize += skb->data_len; 3373 } 3374 out: return skb; 3375 } 3376 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3377 3378 /** 3379 * t4_pktgl_free - free a packet gather list 3380 * @gl: the gather list 3381 * 3382 * Releases the pages of a packet gather list. We do not own the last 3383 * page on the list and do not free it. 3384 */ 3385 static void t4_pktgl_free(const struct pkt_gl *gl) 3386 { 3387 int n; 3388 const struct page_frag *p; 3389 3390 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3391 put_page(p->page); 3392 } 3393 3394 /* 3395 * Process an MPS trace packet. Give it an unused protocol number so it won't 3396 * be delivered to anyone and send it to the stack for capture. 3397 */ 3398 static noinline int handle_trace_pkt(struct adapter *adap, 3399 const struct pkt_gl *gl) 3400 { 3401 struct sk_buff *skb; 3402 3403 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3404 if (unlikely(!skb)) { 3405 t4_pktgl_free(gl); 3406 return 0; 3407 } 3408 3409 if (is_t4(adap->params.chip)) 3410 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3411 else 3412 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3413 3414 skb_reset_mac_header(skb); 3415 skb->protocol = htons(0xffff); 3416 skb->dev = adap->port[0]; 3417 netif_receive_skb(skb); 3418 return 0; 3419 } 3420 3421 /** 3422 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3423 * @adap: the adapter 3424 * @hwtstamps: time stamp structure to update 3425 * @sgetstamp: 60bit iqe timestamp 3426 * 3427 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3428 * which is in Core Clock ticks into ktime_t and assign it 3429 **/ 3430 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3431 struct skb_shared_hwtstamps *hwtstamps, 3432 u64 sgetstamp) 3433 { 3434 u64 ns; 3435 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3436 3437 ns = div_u64(tmp, adap->params.vpd.cclk); 3438 3439 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3440 hwtstamps->hwtstamp = ns_to_ktime(ns); 3441 } 3442 3443 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3444 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3445 { 3446 struct adapter *adapter = rxq->rspq.adap; 3447 struct sge *s = &adapter->sge; 3448 struct port_info *pi; 3449 int ret; 3450 struct sk_buff *skb; 3451 3452 skb = napi_get_frags(&rxq->rspq.napi); 3453 if (unlikely(!skb)) { 3454 t4_pktgl_free(gl); 3455 rxq->stats.rx_drops++; 3456 return; 3457 } 3458 3459 copy_frags(skb, gl, s->pktshift); 3460 if (tnl_hdr_len) 3461 skb->csum_level = 1; 3462 skb->len = gl->tot_len - s->pktshift; 3463 skb->data_len = skb->len; 3464 skb->truesize += skb->data_len; 3465 skb->ip_summed = CHECKSUM_UNNECESSARY; 3466 skb_record_rx_queue(skb, rxq->rspq.idx); 3467 pi = netdev_priv(skb->dev); 3468 if (pi->rxtstamp) 3469 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3470 gl->sgetstamp); 3471 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3472 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3473 PKT_HASH_TYPE_L3); 3474 3475 if (unlikely(pkt->vlan_ex)) { 3476 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3477 rxq->stats.vlan_ex++; 3478 } 3479 ret = napi_gro_frags(&rxq->rspq.napi); 3480 if (ret == GRO_HELD) 3481 rxq->stats.lro_pkts++; 3482 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3483 rxq->stats.lro_merged++; 3484 rxq->stats.pkts++; 3485 rxq->stats.rx_cso++; 3486 } 3487 3488 enum { 3489 RX_NON_PTP_PKT = 0, 3490 RX_PTP_PKT_SUC = 1, 3491 RX_PTP_PKT_ERR = 2 3492 }; 3493 3494 /** 3495 * t4_systim_to_hwstamp - read hardware time stamp 3496 * @adapter: the adapter 3497 * @skb: the packet 3498 * 3499 * Read Time Stamp from MPS packet and insert in skb which 3500 * is forwarded to PTP application 3501 */ 3502 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3503 struct sk_buff *skb) 3504 { 3505 struct skb_shared_hwtstamps *hwtstamps; 3506 struct cpl_rx_mps_pkt *cpl = NULL; 3507 unsigned char *data; 3508 int offset; 3509 3510 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3511 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3512 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3513 return RX_PTP_PKT_ERR; 3514 3515 data = skb->data + sizeof(*cpl); 3516 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3517 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3518 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3519 return RX_PTP_PKT_ERR; 3520 3521 hwtstamps = skb_hwtstamps(skb); 3522 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3523 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data)); 3524 3525 return RX_PTP_PKT_SUC; 3526 } 3527 3528 /** 3529 * t4_rx_hststamp - Recv PTP Event Message 3530 * @adapter: the adapter 3531 * @rsp: the response queue descriptor holding the RX_PKT message 3532 * @rxq: the response queue holding the RX_PKT message 3533 * @skb: the packet 3534 * 3535 * PTP enabled and MPS packet, read HW timestamp 3536 */ 3537 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3538 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3539 { 3540 int ret; 3541 3542 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3543 !is_t4(adapter->params.chip))) { 3544 ret = t4_systim_to_hwstamp(adapter, skb); 3545 if (ret == RX_PTP_PKT_ERR) { 3546 kfree_skb(skb); 3547 rxq->stats.rx_drops++; 3548 } 3549 return ret; 3550 } 3551 return RX_NON_PTP_PKT; 3552 } 3553 3554 /** 3555 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3556 * @adapter: the adapter 3557 * @skb: the packet 3558 * @dev: the ingress net device 3559 * 3560 * Read hardware timestamp for the loopback PTP Tx event message 3561 */ 3562 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3563 struct net_device *dev) 3564 { 3565 struct port_info *pi = netdev_priv(dev); 3566 3567 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3568 cxgb4_ptp_read_hwstamp(adapter, pi); 3569 kfree_skb(skb); 3570 return 0; 3571 } 3572 return 1; 3573 } 3574 3575 /** 3576 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3577 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3578 * @rsp: Response Entry pointer into Response Queue 3579 * @gl: Gather List pointer 3580 * 3581 * For adapters which support the SGE Doorbell Queue Timer facility, 3582 * we configure the Ethernet TX Queues to send CIDX Updates to the 3583 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3584 * messages. This adds a small load to PCIe Link RX bandwidth and, 3585 * potentially, higher CPU Interrupt load, but allows us to respond 3586 * much more quickly to the CIDX Updates. This is important for 3587 * Upper Layer Software which isn't willing to have a large amount 3588 * of TX Data outstanding before receiving DMA Completions. 3589 */ 3590 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3591 const __be64 *rsp, 3592 const struct pkt_gl *gl) 3593 { 3594 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3595 struct port_info *pi = netdev_priv(rspq->netdev); 3596 struct adapter *adapter = rspq->adap; 3597 struct sge *s = &adapter->sge; 3598 struct sge_eth_txq *txq; 3599 3600 /* skip RSS header */ 3601 rsp++; 3602 3603 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3604 */ 3605 if (unlikely(opcode == CPL_FW4_MSG && 3606 ((const struct cpl_fw4_msg *)rsp)->type == 3607 FW_TYPE_RSSCPL)) { 3608 rsp++; 3609 opcode = ((const struct rss_header *)rsp)->opcode; 3610 rsp++; 3611 } 3612 3613 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3614 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3615 __func__, opcode); 3616 return; 3617 } 3618 3619 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3620 3621 /* We've got the Hardware Consumer Index Update in the Egress Update 3622 * message. These Egress Update messages will be our sole CIDX Updates 3623 * we get since we don't want to chew up PCIe bandwidth for both Ingress 3624 * Messages and Status Page writes. However, The code which manages 3625 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value 3626 * stored in the Status Page at the end of the TX Queue. It's easiest 3627 * to simply copy the CIDX Update value from the Egress Update message 3628 * to the Status Page. Also note that no Endian issues need to be 3629 * considered here since both are Big Endian and we're just copying 3630 * bytes consistently ... 3631 */ 3632 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 3633 struct cpl_sge_egr_update *egr; 3634 3635 egr = (struct cpl_sge_egr_update *)rsp; 3636 WRITE_ONCE(txq->q.stat->cidx, egr->cidx); 3637 } 3638 3639 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3640 } 3641 3642 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si) 3643 { 3644 struct adapter *adap = pi->adapter; 3645 struct cxgb4_ethtool_lb_test *lb; 3646 struct sge *s = &adap->sge; 3647 struct net_device *netdev; 3648 u8 *data; 3649 int i; 3650 3651 netdev = adap->port[pi->port_id]; 3652 lb = &pi->ethtool_lb; 3653 data = si->va + s->pktshift; 3654 3655 i = ETH_ALEN; 3656 if (!ether_addr_equal(data + i, netdev->dev_addr)) 3657 return -1; 3658 3659 i += ETH_ALEN; 3660 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR)) 3661 lb->result = -EIO; 3662 3663 complete(&lb->completion); 3664 return 0; 3665 } 3666 3667 /** 3668 * t4_ethrx_handler - process an ingress ethernet packet 3669 * @q: the response queue that received the packet 3670 * @rsp: the response queue descriptor holding the RX_PKT message 3671 * @si: the gather list of packet fragments 3672 * 3673 * Process an ingress ethernet packet and deliver it to the stack. 3674 */ 3675 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3676 const struct pkt_gl *si) 3677 { 3678 bool csum_ok; 3679 struct sk_buff *skb; 3680 const struct cpl_rx_pkt *pkt; 3681 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3682 struct adapter *adapter = q->adap; 3683 struct sge *s = &q->adap->sge; 3684 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3685 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3686 u16 err_vec, tnl_hdr_len = 0; 3687 struct port_info *pi; 3688 int ret = 0; 3689 3690 pi = netdev_priv(q->netdev); 3691 /* If we're looking at TX Queue CIDX Update, handle that separately 3692 * and return. 3693 */ 3694 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3695 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3696 t4_tx_completion_handler(q, rsp, si); 3697 return 0; 3698 } 3699 3700 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3701 return handle_trace_pkt(q->adap, si); 3702 3703 pkt = (const struct cpl_rx_pkt *)rsp; 3704 /* Compressed error vector is enabled for T6 only */ 3705 if (q->adap->params.tp.rx_pkt_encap) { 3706 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3707 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3708 } else { 3709 err_vec = be16_to_cpu(pkt->err_vec); 3710 } 3711 3712 csum_ok = pkt->csum_calc && !err_vec && 3713 (q->netdev->features & NETIF_F_RXCSUM); 3714 3715 if (err_vec) 3716 rxq->stats.bad_rx_pkts++; 3717 3718 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) { 3719 ret = cxgb4_validate_lb_pkt(pi, si); 3720 if (!ret) 3721 return 0; 3722 } 3723 3724 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3725 tnl_hdr_len) && 3726 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3727 do_gro(rxq, si, pkt, tnl_hdr_len); 3728 return 0; 3729 } 3730 3731 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3732 if (unlikely(!skb)) { 3733 t4_pktgl_free(si); 3734 rxq->stats.rx_drops++; 3735 return 0; 3736 } 3737 3738 /* Handle PTP Event Rx packet */ 3739 if (unlikely(pi->ptp_enable)) { 3740 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3741 if (ret == RX_PTP_PKT_ERR) 3742 return 0; 3743 } 3744 if (likely(!ret)) 3745 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3746 3747 /* Handle the PTP Event Tx Loopback packet */ 3748 if (unlikely(pi->ptp_enable && !ret && 3749 (pkt->l2info & htonl(RXF_UDP_F)) && 3750 cxgb4_ptp_is_ptp_rx(skb))) { 3751 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3752 return 0; 3753 } 3754 3755 skb->protocol = eth_type_trans(skb, q->netdev); 3756 skb_record_rx_queue(skb, q->idx); 3757 if (skb->dev->features & NETIF_F_RXHASH) 3758 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3759 PKT_HASH_TYPE_L3); 3760 3761 rxq->stats.pkts++; 3762 3763 if (pi->rxtstamp) 3764 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3765 si->sgetstamp); 3766 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3767 if (!pkt->ip_frag) { 3768 skb->ip_summed = CHECKSUM_UNNECESSARY; 3769 rxq->stats.rx_cso++; 3770 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3771 __sum16 c = (__force __sum16)pkt->csum; 3772 skb->csum = csum_unfold(c); 3773 3774 if (tnl_hdr_len) { 3775 skb->ip_summed = CHECKSUM_UNNECESSARY; 3776 skb->csum_level = 1; 3777 } else { 3778 skb->ip_summed = CHECKSUM_COMPLETE; 3779 } 3780 rxq->stats.rx_cso++; 3781 } 3782 } else { 3783 skb_checksum_none_assert(skb); 3784 #ifdef CONFIG_CHELSIO_T4_FCOE 3785 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3786 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3787 3788 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3789 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3790 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3791 if (q->adap->params.tp.rx_pkt_encap) 3792 csum_ok = err_vec & 3793 T6_COMPR_RXERR_SUM_F; 3794 else 3795 csum_ok = err_vec & RXERR_CSUM_F; 3796 if (!csum_ok) 3797 skb->ip_summed = CHECKSUM_UNNECESSARY; 3798 } 3799 } 3800 3801 #undef CPL_RX_PKT_FLAGS 3802 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3803 } 3804 3805 if (unlikely(pkt->vlan_ex)) { 3806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3807 rxq->stats.vlan_ex++; 3808 } 3809 skb_mark_napi_id(skb, &q->napi); 3810 netif_receive_skb(skb); 3811 return 0; 3812 } 3813 3814 /** 3815 * restore_rx_bufs - put back a packet's Rx buffers 3816 * @si: the packet gather list 3817 * @q: the SGE free list 3818 * @frags: number of FL buffers to restore 3819 * 3820 * Puts back on an FL the Rx buffers associated with @si. The buffers 3821 * have already been unmapped and are left unmapped, we mark them so to 3822 * prevent further unmapping attempts. 3823 * 3824 * This function undoes a series of @unmap_rx_buf calls when we find out 3825 * that the current packet can't be processed right away afterall and we 3826 * need to come back to it later. This is a very rare event and there's 3827 * no effort to make this particularly efficient. 3828 */ 3829 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3830 int frags) 3831 { 3832 struct rx_sw_desc *d; 3833 3834 while (frags--) { 3835 if (q->cidx == 0) 3836 q->cidx = q->size - 1; 3837 else 3838 q->cidx--; 3839 d = &q->sdesc[q->cidx]; 3840 d->page = si->frags[frags].page; 3841 d->dma_addr |= RX_UNMAPPED_BUF; 3842 q->avail++; 3843 } 3844 } 3845 3846 /** 3847 * is_new_response - check if a response is newly written 3848 * @r: the response descriptor 3849 * @q: the response queue 3850 * 3851 * Returns true if a response descriptor contains a yet unprocessed 3852 * response. 3853 */ 3854 static inline bool is_new_response(const struct rsp_ctrl *r, 3855 const struct sge_rspq *q) 3856 { 3857 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3858 } 3859 3860 /** 3861 * rspq_next - advance to the next entry in a response queue 3862 * @q: the queue 3863 * 3864 * Updates the state of a response queue to advance it to the next entry. 3865 */ 3866 static inline void rspq_next(struct sge_rspq *q) 3867 { 3868 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3869 if (unlikely(++q->cidx == q->size)) { 3870 q->cidx = 0; 3871 q->gen ^= 1; 3872 q->cur_desc = q->desc; 3873 } 3874 } 3875 3876 /** 3877 * process_responses - process responses from an SGE response queue 3878 * @q: the ingress queue to process 3879 * @budget: how many responses can be processed in this round 3880 * 3881 * Process responses from an SGE response queue up to the supplied budget. 3882 * Responses include received packets as well as control messages from FW 3883 * or HW. 3884 * 3885 * Additionally choose the interrupt holdoff time for the next interrupt 3886 * on this queue. If the system is under memory shortage use a fairly 3887 * long delay to help recovery. 3888 */ 3889 static int process_responses(struct sge_rspq *q, int budget) 3890 { 3891 int ret, rsp_type; 3892 int budget_left = budget; 3893 const struct rsp_ctrl *rc; 3894 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3895 struct adapter *adapter = q->adap; 3896 struct sge *s = &adapter->sge; 3897 3898 while (likely(budget_left)) { 3899 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3900 if (!is_new_response(rc, q)) { 3901 if (q->flush_handler) 3902 q->flush_handler(q); 3903 break; 3904 } 3905 3906 dma_rmb(); 3907 rsp_type = RSPD_TYPE_G(rc->type_gen); 3908 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3909 struct page_frag *fp; 3910 struct pkt_gl si; 3911 const struct rx_sw_desc *rsd; 3912 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3913 3914 if (len & RSPD_NEWBUF_F) { 3915 if (likely(q->offset > 0)) { 3916 free_rx_bufs(q->adap, &rxq->fl, 1); 3917 q->offset = 0; 3918 } 3919 len = RSPD_LEN_G(len); 3920 } 3921 si.tot_len = len; 3922 3923 /* gather packet fragments */ 3924 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3925 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3926 bufsz = get_buf_size(adapter, rsd); 3927 fp->page = rsd->page; 3928 fp->offset = q->offset; 3929 fp->size = min(bufsz, len); 3930 len -= fp->size; 3931 if (!len) 3932 break; 3933 unmap_rx_buf(q->adap, &rxq->fl); 3934 } 3935 3936 si.sgetstamp = SGE_TIMESTAMP_G( 3937 be64_to_cpu(rc->last_flit)); 3938 /* 3939 * Last buffer remains mapped so explicitly make it 3940 * coherent for CPU access. 3941 */ 3942 dma_sync_single_for_cpu(q->adap->pdev_dev, 3943 get_buf_addr(rsd), 3944 fp->size, DMA_FROM_DEVICE); 3945 3946 si.va = page_address(si.frags[0].page) + 3947 si.frags[0].offset; 3948 prefetch(si.va); 3949 3950 si.nfrags = frags + 1; 3951 ret = q->handler(q, q->cur_desc, &si); 3952 if (likely(ret == 0)) 3953 q->offset += ALIGN(fp->size, s->fl_align); 3954 else 3955 restore_rx_bufs(&si, &rxq->fl, frags); 3956 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3957 ret = q->handler(q, q->cur_desc, NULL); 3958 } else { 3959 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3960 } 3961 3962 if (unlikely(ret)) { 3963 /* couldn't process descriptor, back off for recovery */ 3964 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3965 break; 3966 } 3967 3968 rspq_next(q); 3969 budget_left--; 3970 } 3971 3972 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3973 __refill_fl(q->adap, &rxq->fl); 3974 return budget - budget_left; 3975 } 3976 3977 /** 3978 * napi_rx_handler - the NAPI handler for Rx processing 3979 * @napi: the napi instance 3980 * @budget: how many packets we can process in this round 3981 * 3982 * Handler for new data events when using NAPI. This does not need any 3983 * locking or protection from interrupts as data interrupts are off at 3984 * this point and other adapter interrupts do not interfere (the latter 3985 * in not a concern at all with MSI-X as non-data interrupts then have 3986 * a separate handler). 3987 */ 3988 static int napi_rx_handler(struct napi_struct *napi, int budget) 3989 { 3990 unsigned int params; 3991 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3992 int work_done; 3993 u32 val; 3994 3995 work_done = process_responses(q, budget); 3996 if (likely(work_done < budget)) { 3997 int timer_index; 3998 3999 napi_complete_done(napi, work_done); 4000 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 4001 4002 if (q->adaptive_rx) { 4003 if (work_done > max(timer_pkt_quota[timer_index], 4004 MIN_NAPI_WORK)) 4005 timer_index = (timer_index + 1); 4006 else 4007 timer_index = timer_index - 1; 4008 4009 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 4010 q->next_intr_params = 4011 QINTR_TIMER_IDX_V(timer_index) | 4012 QINTR_CNT_EN_V(0); 4013 params = q->next_intr_params; 4014 } else { 4015 params = q->next_intr_params; 4016 q->next_intr_params = q->intr_params; 4017 } 4018 } else 4019 params = QINTR_TIMER_IDX_V(7); 4020 4021 val = CIDXINC_V(work_done) | SEINTARM_V(params); 4022 4023 /* If we don't have access to the new User GTS (T5+), use the old 4024 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4025 */ 4026 if (unlikely(q->bar2_addr == NULL)) { 4027 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 4028 val | INGRESSQID_V((u32)q->cntxt_id)); 4029 } else { 4030 writel(val | INGRESSQID_V(q->bar2_qid), 4031 q->bar2_addr + SGE_UDB_GTS); 4032 wmb(); 4033 } 4034 return work_done; 4035 } 4036 4037 void cxgb4_ethofld_restart(struct tasklet_struct *t) 4038 { 4039 struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t, 4040 qresume_tsk); 4041 int pktcount; 4042 4043 spin_lock(&eosw_txq->lock); 4044 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 4045 if (pktcount < 0) 4046 pktcount += eosw_txq->ndesc; 4047 4048 if (pktcount) { 4049 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 4050 eosw_txq, pktcount); 4051 eosw_txq->inuse -= pktcount; 4052 } 4053 4054 /* There may be some packets waiting for completions. So, 4055 * attempt to send these packets now. 4056 */ 4057 ethofld_xmit(eosw_txq->netdev, eosw_txq); 4058 spin_unlock(&eosw_txq->lock); 4059 } 4060 4061 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 4062 * @q: the response queue that received the packet 4063 * @rsp: the response queue descriptor holding the CPL message 4064 * @si: the gather list of packet fragments 4065 * 4066 * Process a ETHOFLD Tx completion. Increment the cidx here, but 4067 * free up the descriptors in a tasklet later. 4068 */ 4069 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 4070 const struct pkt_gl *si) 4071 { 4072 u8 opcode = ((const struct rss_header *)rsp)->opcode; 4073 4074 /* skip RSS header */ 4075 rsp++; 4076 4077 if (opcode == CPL_FW4_ACK) { 4078 const struct cpl_fw4_ack *cpl; 4079 struct sge_eosw_txq *eosw_txq; 4080 struct eotid_entry *entry; 4081 struct sk_buff *skb; 4082 u32 hdr_len, eotid; 4083 u8 flits, wrlen16; 4084 int credits; 4085 4086 cpl = (const struct cpl_fw4_ack *)rsp; 4087 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 4088 q->adap->tids.eotid_base; 4089 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 4090 if (!entry) 4091 goto out_done; 4092 4093 eosw_txq = (struct sge_eosw_txq *)entry->data; 4094 if (!eosw_txq) 4095 goto out_done; 4096 4097 spin_lock(&eosw_txq->lock); 4098 credits = cpl->credits; 4099 while (credits > 0) { 4100 skb = eosw_txq->desc[eosw_txq->cidx].skb; 4101 if (!skb) 4102 break; 4103 4104 if (unlikely((eosw_txq->state == 4105 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 4106 eosw_txq->state == 4107 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 4108 eosw_txq->cidx == eosw_txq->flowc_idx)) { 4109 flits = DIV_ROUND_UP(skb->len, 8); 4110 if (eosw_txq->state == 4111 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 4112 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 4113 else 4114 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 4115 complete(&eosw_txq->completion); 4116 } else { 4117 hdr_len = eth_get_headlen(eosw_txq->netdev, 4118 skb->data, 4119 skb_headlen(skb)); 4120 flits = ethofld_calc_tx_flits(q->adap, skb, 4121 hdr_len); 4122 } 4123 eosw_txq_advance_index(&eosw_txq->cidx, 1, 4124 eosw_txq->ndesc); 4125 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 4126 credits -= wrlen16; 4127 } 4128 4129 eosw_txq->cred += cpl->credits; 4130 eosw_txq->ncompl--; 4131 4132 spin_unlock(&eosw_txq->lock); 4133 4134 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 4135 * if there were packets waiting for completion. 4136 */ 4137 tasklet_schedule(&eosw_txq->qresume_tsk); 4138 } 4139 4140 out_done: 4141 return 0; 4142 } 4143 4144 /* 4145 * The MSI-X interrupt handler for an SGE response queue. 4146 */ 4147 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 4148 { 4149 struct sge_rspq *q = cookie; 4150 4151 napi_schedule(&q->napi); 4152 return IRQ_HANDLED; 4153 } 4154 4155 /* 4156 * Process the indirect interrupt entries in the interrupt queue and kick off 4157 * NAPI for each queue that has generated an entry. 4158 */ 4159 static unsigned int process_intrq(struct adapter *adap) 4160 { 4161 unsigned int credits; 4162 const struct rsp_ctrl *rc; 4163 struct sge_rspq *q = &adap->sge.intrq; 4164 u32 val; 4165 4166 spin_lock(&adap->sge.intrq_lock); 4167 for (credits = 0; ; credits++) { 4168 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 4169 if (!is_new_response(rc, q)) 4170 break; 4171 4172 dma_rmb(); 4173 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 4174 unsigned int qid = ntohl(rc->pldbuflen_qid); 4175 4176 qid -= adap->sge.ingr_start; 4177 napi_schedule(&adap->sge.ingr_map[qid]->napi); 4178 } 4179 4180 rspq_next(q); 4181 } 4182 4183 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 4184 4185 /* If we don't have access to the new User GTS (T5+), use the old 4186 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4187 */ 4188 if (unlikely(q->bar2_addr == NULL)) { 4189 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 4190 val | INGRESSQID_V(q->cntxt_id)); 4191 } else { 4192 writel(val | INGRESSQID_V(q->bar2_qid), 4193 q->bar2_addr + SGE_UDB_GTS); 4194 wmb(); 4195 } 4196 spin_unlock(&adap->sge.intrq_lock); 4197 return credits; 4198 } 4199 4200 /* 4201 * The MSI interrupt handler, which handles data events from SGE response queues 4202 * as well as error and other async events as they all use the same MSI vector. 4203 */ 4204 static irqreturn_t t4_intr_msi(int irq, void *cookie) 4205 { 4206 struct adapter *adap = cookie; 4207 4208 if (adap->flags & CXGB4_MASTER_PF) 4209 t4_slow_intr_handler(adap); 4210 process_intrq(adap); 4211 return IRQ_HANDLED; 4212 } 4213 4214 /* 4215 * Interrupt handler for legacy INTx interrupts. 4216 * Handles data events from SGE response queues as well as error and other 4217 * async events as they all use the same interrupt line. 4218 */ 4219 static irqreturn_t t4_intr_intx(int irq, void *cookie) 4220 { 4221 struct adapter *adap = cookie; 4222 4223 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 4224 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 4225 process_intrq(adap)) 4226 return IRQ_HANDLED; 4227 return IRQ_NONE; /* probably shared interrupt */ 4228 } 4229 4230 /** 4231 * t4_intr_handler - select the top-level interrupt handler 4232 * @adap: the adapter 4233 * 4234 * Selects the top-level interrupt handler based on the type of interrupts 4235 * (MSI-X, MSI, or INTx). 4236 */ 4237 irq_handler_t t4_intr_handler(struct adapter *adap) 4238 { 4239 if (adap->flags & CXGB4_USING_MSIX) 4240 return t4_sge_intr_msix; 4241 if (adap->flags & CXGB4_USING_MSI) 4242 return t4_intr_msi; 4243 return t4_intr_intx; 4244 } 4245 4246 static void sge_rx_timer_cb(struct timer_list *t) 4247 { 4248 unsigned long m; 4249 unsigned int i; 4250 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 4251 struct sge *s = &adap->sge; 4252 4253 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4254 for (m = s->starving_fl[i]; m; m &= m - 1) { 4255 struct sge_eth_rxq *rxq; 4256 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 4257 struct sge_fl *fl = s->egr_map[id]; 4258 4259 clear_bit(id, s->starving_fl); 4260 smp_mb__after_atomic(); 4261 4262 if (fl_starving(adap, fl)) { 4263 rxq = container_of(fl, struct sge_eth_rxq, fl); 4264 if (napi_reschedule(&rxq->rspq.napi)) 4265 fl->starving++; 4266 else 4267 set_bit(id, s->starving_fl); 4268 } 4269 } 4270 /* The remainder of the SGE RX Timer Callback routine is dedicated to 4271 * global Master PF activities like checking for chip ingress stalls, 4272 * etc. 4273 */ 4274 if (!(adap->flags & CXGB4_MASTER_PF)) 4275 goto done; 4276 4277 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4278 4279 done: 4280 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4281 } 4282 4283 static void sge_tx_timer_cb(struct timer_list *t) 4284 { 4285 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 4286 struct sge *s = &adap->sge; 4287 unsigned long m, period; 4288 unsigned int i, budget; 4289 4290 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4291 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4292 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4293 struct sge_uld_txq *txq = s->egr_map[id]; 4294 4295 clear_bit(id, s->txq_maperr); 4296 tasklet_schedule(&txq->qresume_tsk); 4297 } 4298 4299 if (!is_t4(adap->params.chip)) { 4300 struct sge_eth_txq *q = &s->ptptxq; 4301 int avail; 4302 4303 spin_lock(&adap->ptp_lock); 4304 avail = reclaimable(&q->q); 4305 4306 if (avail) { 4307 free_tx_desc(adap, &q->q, avail, false); 4308 q->q.in_use -= avail; 4309 } 4310 spin_unlock(&adap->ptp_lock); 4311 } 4312 4313 budget = MAX_TIMER_TX_RECLAIM; 4314 i = s->ethtxq_rover; 4315 do { 4316 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4317 budget); 4318 if (!budget) 4319 break; 4320 4321 if (++i >= s->ethqsets) 4322 i = 0; 4323 } while (i != s->ethtxq_rover); 4324 s->ethtxq_rover = i; 4325 4326 if (budget == 0) { 4327 /* If we found too many reclaimable packets schedule a timer 4328 * in the near future to continue where we left off. 4329 */ 4330 period = 2; 4331 } else { 4332 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4333 * at the normal period. 4334 */ 4335 period = TX_QCHECK_PERIOD; 4336 } 4337 4338 mod_timer(&s->tx_timer, jiffies + period); 4339 } 4340 4341 /** 4342 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4343 * @adapter: the adapter 4344 * @qid: the SGE Queue ID 4345 * @qtype: the SGE Queue Type (Egress or Ingress) 4346 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4347 * 4348 * Returns the BAR2 address for the SGE Queue Registers associated with 4349 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4350 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4351 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4352 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4353 */ 4354 static void __iomem *bar2_address(struct adapter *adapter, 4355 unsigned int qid, 4356 enum t4_bar2_qtype qtype, 4357 unsigned int *pbar2_qid) 4358 { 4359 u64 bar2_qoffset; 4360 int ret; 4361 4362 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4363 &bar2_qoffset, pbar2_qid); 4364 if (ret) 4365 return NULL; 4366 4367 return adapter->bar2 + bar2_qoffset; 4368 } 4369 4370 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4371 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4372 */ 4373 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4374 struct net_device *dev, int intr_idx, 4375 struct sge_fl *fl, rspq_handler_t hnd, 4376 rspq_flush_handler_t flush_hnd, int cong) 4377 { 4378 int ret, flsz = 0; 4379 struct fw_iq_cmd c; 4380 struct sge *s = &adap->sge; 4381 struct port_info *pi = netdev_priv(dev); 4382 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4383 4384 /* Size needs to be multiple of 16, including status entry. */ 4385 iq->size = roundup(iq->size, 16); 4386 4387 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4388 &iq->phys_addr, NULL, 0, 4389 dev_to_node(adap->pdev_dev)); 4390 if (!iq->desc) 4391 return -ENOMEM; 4392 4393 memset(&c, 0, sizeof(c)); 4394 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4395 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4396 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4397 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4398 FW_LEN16(c)); 4399 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4400 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4401 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4402 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4403 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4404 -intr_idx - 1)); 4405 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4406 FW_IQ_CMD_IQGTSMODE_F | 4407 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4408 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4409 c.iqsize = htons(iq->size); 4410 c.iqaddr = cpu_to_be64(iq->phys_addr); 4411 if (cong >= 0) 4412 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4413 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4414 : FW_IQ_IQTYPE_OFLD)); 4415 4416 if (fl) { 4417 unsigned int chip_ver = 4418 CHELSIO_CHIP_VERSION(adap->params.chip); 4419 4420 /* Allocate the ring for the hardware free list (with space 4421 * for its status page) along with the associated software 4422 * descriptor ring. The free list size needs to be a multiple 4423 * of the Egress Queue Unit and at least 2 Egress Units larger 4424 * than the SGE's Egress Congrestion Threshold 4425 * (fl_starve_thres - 1). 4426 */ 4427 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4428 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4429 fl->size = roundup(fl->size, 8); 4430 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4431 sizeof(struct rx_sw_desc), &fl->addr, 4432 &fl->sdesc, s->stat_len, 4433 dev_to_node(adap->pdev_dev)); 4434 if (!fl->desc) 4435 goto fl_nomem; 4436 4437 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4438 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4439 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4440 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4441 FW_IQ_CMD_FL0PADEN_F); 4442 if (cong >= 0) 4443 c.iqns_to_fl0congen |= 4444 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4445 FW_IQ_CMD_FL0CONGCIF_F | 4446 FW_IQ_CMD_FL0CONGEN_F); 4447 /* In T6, for egress queue type FL there is internal overhead 4448 * of 16B for header going into FLM module. Hence the maximum 4449 * allowed burst size is 448 bytes. For T4/T5, the hardware 4450 * doesn't coalesce fetch requests if more than 64 bytes of 4451 * Free List pointers are provided, so we use a 128-byte Fetch 4452 * Burst Minimum there (T6 implements coalescing so we can use 4453 * the smaller 64-byte value there). 4454 */ 4455 c.fl0dcaen_to_fl0cidxfthresh = 4456 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4457 FETCHBURSTMIN_128B_X : 4458 FETCHBURSTMIN_64B_T6_X) | 4459 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4460 FETCHBURSTMAX_512B_X : 4461 FETCHBURSTMAX_256B_X)); 4462 c.fl0size = htons(flsz); 4463 c.fl0addr = cpu_to_be64(fl->addr); 4464 } 4465 4466 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4467 if (ret) 4468 goto err; 4469 4470 netif_napi_add(dev, &iq->napi, napi_rx_handler); 4471 iq->cur_desc = iq->desc; 4472 iq->cidx = 0; 4473 iq->gen = 1; 4474 iq->next_intr_params = iq->intr_params; 4475 iq->cntxt_id = ntohs(c.iqid); 4476 iq->abs_id = ntohs(c.physiqid); 4477 iq->bar2_addr = bar2_address(adap, 4478 iq->cntxt_id, 4479 T4_BAR2_QTYPE_INGRESS, 4480 &iq->bar2_qid); 4481 iq->size--; /* subtract status entry */ 4482 iq->netdev = dev; 4483 iq->handler = hnd; 4484 iq->flush_handler = flush_hnd; 4485 4486 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4487 skb_queue_head_init(&iq->lro_mgr.lroq); 4488 4489 /* set offset to -1 to distinguish ingress queues without FL */ 4490 iq->offset = fl ? 0 : -1; 4491 4492 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4493 4494 if (fl) { 4495 fl->cntxt_id = ntohs(c.fl0id); 4496 fl->avail = fl->pend_cred = 0; 4497 fl->pidx = fl->cidx = 0; 4498 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4499 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4500 4501 /* Note, we must initialize the BAR2 Free List User Doorbell 4502 * information before refilling the Free List! 4503 */ 4504 fl->bar2_addr = bar2_address(adap, 4505 fl->cntxt_id, 4506 T4_BAR2_QTYPE_EGRESS, 4507 &fl->bar2_qid); 4508 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4509 } 4510 4511 /* For T5 and later we attempt to set up the Congestion Manager values 4512 * of the new RX Ethernet Queue. This should really be handled by 4513 * firmware because it's more complex than any host driver wants to 4514 * get involved with and it's different per chip and this is almost 4515 * certainly wrong. Firmware would be wrong as well, but it would be 4516 * a lot easier to fix in one place ... For now we do something very 4517 * simple (and hopefully less wrong). 4518 */ 4519 if (!is_t4(adap->params.chip) && cong >= 0) { 4520 u32 param, val, ch_map = 0; 4521 int i; 4522 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4523 4524 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4525 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4526 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4527 if (cong == 0) { 4528 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4529 } else { 4530 val = 4531 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4532 for (i = 0; i < 4; i++) { 4533 if (cong & (1 << i)) 4534 ch_map |= 1 << (i << cng_ch_bits_log); 4535 } 4536 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4537 } 4538 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4539 ¶m, &val); 4540 if (ret) 4541 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4542 " Manager Context for Ingress Queue %d: %d\n", 4543 iq->cntxt_id, -ret); 4544 } 4545 4546 return 0; 4547 4548 fl_nomem: 4549 ret = -ENOMEM; 4550 err: 4551 if (iq->desc) { 4552 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4553 iq->desc, iq->phys_addr); 4554 iq->desc = NULL; 4555 } 4556 if (fl && fl->desc) { 4557 kfree(fl->sdesc); 4558 fl->sdesc = NULL; 4559 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4560 fl->desc, fl->addr); 4561 fl->desc = NULL; 4562 } 4563 return ret; 4564 } 4565 4566 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4567 { 4568 q->cntxt_id = id; 4569 q->bar2_addr = bar2_address(adap, 4570 q->cntxt_id, 4571 T4_BAR2_QTYPE_EGRESS, 4572 &q->bar2_qid); 4573 q->in_use = 0; 4574 q->cidx = q->pidx = 0; 4575 q->stops = q->restarts = 0; 4576 q->stat = (void *)&q->desc[q->size]; 4577 spin_lock_init(&q->db_lock); 4578 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4579 } 4580 4581 /** 4582 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4583 * @adap: the adapter 4584 * @txq: the SGE Ethernet TX Queue to initialize 4585 * @dev: the Linux Network Device 4586 * @netdevq: the corresponding Linux TX Queue 4587 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4588 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4589 */ 4590 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4591 struct net_device *dev, struct netdev_queue *netdevq, 4592 unsigned int iqid, u8 dbqt) 4593 { 4594 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4595 struct port_info *pi = netdev_priv(dev); 4596 struct sge *s = &adap->sge; 4597 struct fw_eq_eth_cmd c; 4598 int ret, nentries; 4599 4600 /* Add status entries */ 4601 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4602 4603 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4604 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4605 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4606 netdev_queue_numa_node_read(netdevq)); 4607 if (!txq->q.desc) 4608 return -ENOMEM; 4609 4610 memset(&c, 0, sizeof(c)); 4611 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4612 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4613 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4614 FW_EQ_ETH_CMD_VFN_V(0)); 4615 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4616 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4617 4618 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4619 * mechanism, we use Ingress Queue messages for Hardware Consumer 4620 * Index Updates on the TX Queue. Otherwise we have the Hardware 4621 * write the CIDX Updates into the Status Page at the end of the 4622 * TX Queue. 4623 */ 4624 c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ? 4625 FW_EQ_ETH_CMD_AUTOEQUIQE_F : 4626 FW_EQ_ETH_CMD_AUTOEQUEQE_F) | 4627 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4628 4629 c.fetchszm_to_iqid = 4630 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ? 4631 HOSTFCMODE_INGRESS_QUEUE_X : 4632 HOSTFCMODE_STATUS_PAGE_X) | 4633 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4634 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4635 4636 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4637 c.dcaen_to_eqsize = 4638 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4639 ? FETCHBURSTMIN_64B_X 4640 : FETCHBURSTMIN_64B_T6_X) | 4641 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4642 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4643 FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) | 4644 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4645 4646 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4647 4648 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4649 * currently configured Timer Index. THis can be changed later via an 4650 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4651 * Doorbell Queue mode is currently automatically enabled in the 4652 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4653 */ 4654 if (dbqt) 4655 c.timeren_timerix = 4656 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4657 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4658 4659 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4660 if (ret) { 4661 kfree(txq->q.sdesc); 4662 txq->q.sdesc = NULL; 4663 dma_free_coherent(adap->pdev_dev, 4664 nentries * sizeof(struct tx_desc), 4665 txq->q.desc, txq->q.phys_addr); 4666 txq->q.desc = NULL; 4667 return ret; 4668 } 4669 4670 txq->q.q_type = CXGB4_TXQ_ETH; 4671 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4672 txq->txq = netdevq; 4673 txq->tso = 0; 4674 txq->uso = 0; 4675 txq->tx_cso = 0; 4676 txq->vlan_ins = 0; 4677 txq->mapping_err = 0; 4678 txq->dbqt = dbqt; 4679 4680 return 0; 4681 } 4682 4683 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4684 struct net_device *dev, unsigned int iqid, 4685 unsigned int cmplqid) 4686 { 4687 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4688 struct port_info *pi = netdev_priv(dev); 4689 struct sge *s = &adap->sge; 4690 struct fw_eq_ctrl_cmd c; 4691 int ret, nentries; 4692 4693 /* Add status entries */ 4694 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4695 4696 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4697 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4698 NULL, 0, dev_to_node(adap->pdev_dev)); 4699 if (!txq->q.desc) 4700 return -ENOMEM; 4701 4702 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4703 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4704 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4705 FW_EQ_CTRL_CMD_VFN_V(0)); 4706 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4707 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4708 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4709 c.physeqid_pkd = htonl(0); 4710 c.fetchszm_to_iqid = 4711 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4712 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4713 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4714 c.dcaen_to_eqsize = 4715 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4716 ? FETCHBURSTMIN_64B_X 4717 : FETCHBURSTMIN_64B_T6_X) | 4718 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4719 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4720 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4721 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4722 4723 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4724 if (ret) { 4725 dma_free_coherent(adap->pdev_dev, 4726 nentries * sizeof(struct tx_desc), 4727 txq->q.desc, txq->q.phys_addr); 4728 txq->q.desc = NULL; 4729 return ret; 4730 } 4731 4732 txq->q.q_type = CXGB4_TXQ_CTRL; 4733 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4734 txq->adap = adap; 4735 skb_queue_head_init(&txq->sendq); 4736 tasklet_setup(&txq->qresume_tsk, restart_ctrlq); 4737 txq->full = 0; 4738 return 0; 4739 } 4740 4741 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4742 unsigned int cmplqid) 4743 { 4744 u32 param, val; 4745 4746 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4747 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4748 FW_PARAMS_PARAM_YZ_V(eqid)); 4749 val = cmplqid; 4750 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4751 } 4752 4753 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4754 struct net_device *dev, u32 cmd, u32 iqid) 4755 { 4756 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4757 struct port_info *pi = netdev_priv(dev); 4758 struct sge *s = &adap->sge; 4759 struct fw_eq_ofld_cmd c; 4760 u32 fb_min, nentries; 4761 int ret; 4762 4763 /* Add status entries */ 4764 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4765 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4766 sizeof(struct tx_sw_desc), &q->phys_addr, 4767 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4768 if (!q->desc) 4769 return -ENOMEM; 4770 4771 if (chip_ver <= CHELSIO_T5) 4772 fb_min = FETCHBURSTMIN_64B_X; 4773 else 4774 fb_min = FETCHBURSTMIN_64B_T6_X; 4775 4776 memset(&c, 0, sizeof(c)); 4777 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4778 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4779 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4780 FW_EQ_OFLD_CMD_VFN_V(0)); 4781 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4782 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4783 c.fetchszm_to_iqid = 4784 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4785 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4786 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4787 c.dcaen_to_eqsize = 4788 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4789 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4790 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4791 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4792 c.eqaddr = cpu_to_be64(q->phys_addr); 4793 4794 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4795 if (ret) { 4796 kfree(q->sdesc); 4797 q->sdesc = NULL; 4798 dma_free_coherent(adap->pdev_dev, 4799 nentries * sizeof(struct tx_desc), 4800 q->desc, q->phys_addr); 4801 q->desc = NULL; 4802 return ret; 4803 } 4804 4805 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4806 return 0; 4807 } 4808 4809 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4810 struct net_device *dev, unsigned int iqid, 4811 unsigned int uld_type) 4812 { 4813 u32 cmd = FW_EQ_OFLD_CMD; 4814 int ret; 4815 4816 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4817 cmd = FW_EQ_CTRL_CMD; 4818 4819 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4820 if (ret) 4821 return ret; 4822 4823 txq->q.q_type = CXGB4_TXQ_ULD; 4824 txq->adap = adap; 4825 skb_queue_head_init(&txq->sendq); 4826 tasklet_setup(&txq->qresume_tsk, restart_ofldq); 4827 txq->full = 0; 4828 txq->mapping_err = 0; 4829 return 0; 4830 } 4831 4832 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4833 struct net_device *dev, u32 iqid) 4834 { 4835 int ret; 4836 4837 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4838 if (ret) 4839 return ret; 4840 4841 txq->q.q_type = CXGB4_TXQ_ULD; 4842 spin_lock_init(&txq->lock); 4843 txq->adap = adap; 4844 txq->tso = 0; 4845 txq->uso = 0; 4846 txq->tx_cso = 0; 4847 txq->vlan_ins = 0; 4848 txq->mapping_err = 0; 4849 return 0; 4850 } 4851 4852 void free_txq(struct adapter *adap, struct sge_txq *q) 4853 { 4854 struct sge *s = &adap->sge; 4855 4856 dma_free_coherent(adap->pdev_dev, 4857 q->size * sizeof(struct tx_desc) + s->stat_len, 4858 q->desc, q->phys_addr); 4859 q->cntxt_id = 0; 4860 q->sdesc = NULL; 4861 q->desc = NULL; 4862 } 4863 4864 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4865 struct sge_fl *fl) 4866 { 4867 struct sge *s = &adap->sge; 4868 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4869 4870 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4871 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4872 rq->cntxt_id, fl_id, 0xffff); 4873 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4874 rq->desc, rq->phys_addr); 4875 netif_napi_del(&rq->napi); 4876 rq->netdev = NULL; 4877 rq->cntxt_id = rq->abs_id = 0; 4878 rq->desc = NULL; 4879 4880 if (fl) { 4881 free_rx_bufs(adap, fl, fl->avail); 4882 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4883 fl->desc, fl->addr); 4884 kfree(fl->sdesc); 4885 fl->sdesc = NULL; 4886 fl->cntxt_id = 0; 4887 fl->desc = NULL; 4888 } 4889 } 4890 4891 /** 4892 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4893 * @adap: the adapter 4894 * @n: number of queues 4895 * @q: pointer to first queue 4896 * 4897 * Release the resources of a consecutive block of offload Rx queues. 4898 */ 4899 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4900 { 4901 for ( ; n; n--, q++) 4902 if (q->rspq.desc) 4903 free_rspq_fl(adap, &q->rspq, 4904 q->fl.size ? &q->fl : NULL); 4905 } 4906 4907 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4908 { 4909 if (txq->q.desc) { 4910 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4911 txq->q.cntxt_id); 4912 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4913 kfree(txq->q.sdesc); 4914 free_txq(adap, &txq->q); 4915 } 4916 } 4917 4918 /** 4919 * t4_free_sge_resources - free SGE resources 4920 * @adap: the adapter 4921 * 4922 * Frees resources used by the SGE queue sets. 4923 */ 4924 void t4_free_sge_resources(struct adapter *adap) 4925 { 4926 int i; 4927 struct sge_eth_rxq *eq; 4928 struct sge_eth_txq *etq; 4929 4930 /* stop all Rx queues in order to start them draining */ 4931 for (i = 0; i < adap->sge.ethqsets; i++) { 4932 eq = &adap->sge.ethrxq[i]; 4933 if (eq->rspq.desc) 4934 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4935 FW_IQ_TYPE_FL_INT_CAP, 4936 eq->rspq.cntxt_id, 4937 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4938 0xffff); 4939 } 4940 4941 /* clean up Ethernet Tx/Rx queues */ 4942 for (i = 0; i < adap->sge.ethqsets; i++) { 4943 eq = &adap->sge.ethrxq[i]; 4944 if (eq->rspq.desc) 4945 free_rspq_fl(adap, &eq->rspq, 4946 eq->fl.size ? &eq->fl : NULL); 4947 if (eq->msix) { 4948 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4949 eq->msix = NULL; 4950 } 4951 4952 etq = &adap->sge.ethtxq[i]; 4953 if (etq->q.desc) { 4954 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4955 etq->q.cntxt_id); 4956 __netif_tx_lock_bh(etq->txq); 4957 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4958 __netif_tx_unlock_bh(etq->txq); 4959 kfree(etq->q.sdesc); 4960 free_txq(adap, &etq->q); 4961 } 4962 } 4963 4964 /* clean up control Tx queues */ 4965 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4966 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4967 4968 if (cq->q.desc) { 4969 tasklet_kill(&cq->qresume_tsk); 4970 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4971 cq->q.cntxt_id); 4972 __skb_queue_purge(&cq->sendq); 4973 free_txq(adap, &cq->q); 4974 } 4975 } 4976 4977 if (adap->sge.fw_evtq.desc) { 4978 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4979 if (adap->sge.fwevtq_msix_idx >= 0) 4980 cxgb4_free_msix_idx_in_bmap(adap, 4981 adap->sge.fwevtq_msix_idx); 4982 } 4983 4984 if (adap->sge.nd_msix_idx >= 0) 4985 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4986 4987 if (adap->sge.intrq.desc) 4988 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4989 4990 if (!is_t4(adap->params.chip)) { 4991 etq = &adap->sge.ptptxq; 4992 if (etq->q.desc) { 4993 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4994 etq->q.cntxt_id); 4995 spin_lock_bh(&adap->ptp_lock); 4996 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4997 spin_unlock_bh(&adap->ptp_lock); 4998 kfree(etq->q.sdesc); 4999 free_txq(adap, &etq->q); 5000 } 5001 } 5002 5003 /* clear the reverse egress queue map */ 5004 memset(adap->sge.egr_map, 0, 5005 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 5006 } 5007 5008 void t4_sge_start(struct adapter *adap) 5009 { 5010 adap->sge.ethtxq_rover = 0; 5011 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 5012 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 5013 } 5014 5015 /** 5016 * t4_sge_stop - disable SGE operation 5017 * @adap: the adapter 5018 * 5019 * Stop tasklets and timers associated with the DMA engine. Note that 5020 * this is effective only if measures have been taken to disable any HW 5021 * events that may restart them. 5022 */ 5023 void t4_sge_stop(struct adapter *adap) 5024 { 5025 int i; 5026 struct sge *s = &adap->sge; 5027 5028 if (s->rx_timer.function) 5029 del_timer_sync(&s->rx_timer); 5030 if (s->tx_timer.function) 5031 del_timer_sync(&s->tx_timer); 5032 5033 if (is_offload(adap)) { 5034 struct sge_uld_txq_info *txq_info; 5035 5036 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 5037 if (txq_info) { 5038 struct sge_uld_txq *txq = txq_info->uldtxq; 5039 5040 for_each_ofldtxq(&adap->sge, i) { 5041 if (txq->q.desc) 5042 tasklet_kill(&txq->qresume_tsk); 5043 } 5044 } 5045 } 5046 5047 if (is_pci_uld(adap)) { 5048 struct sge_uld_txq_info *txq_info; 5049 5050 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 5051 if (txq_info) { 5052 struct sge_uld_txq *txq = txq_info->uldtxq; 5053 5054 for_each_ofldtxq(&adap->sge, i) { 5055 if (txq->q.desc) 5056 tasklet_kill(&txq->qresume_tsk); 5057 } 5058 } 5059 } 5060 5061 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 5062 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 5063 5064 if (cq->q.desc) 5065 tasklet_kill(&cq->qresume_tsk); 5066 } 5067 } 5068 5069 /** 5070 * t4_sge_init_soft - grab core SGE values needed by SGE code 5071 * @adap: the adapter 5072 * 5073 * We need to grab the SGE operating parameters that we need to have 5074 * in order to do our job and make sure we can live with them. 5075 */ 5076 5077 static int t4_sge_init_soft(struct adapter *adap) 5078 { 5079 struct sge *s = &adap->sge; 5080 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 5081 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 5082 u32 ingress_rx_threshold; 5083 5084 /* 5085 * Verify that CPL messages are going to the Ingress Queue for 5086 * process_responses() and that only packet data is going to the 5087 * Free Lists. 5088 */ 5089 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 5090 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 5091 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 5092 return -EINVAL; 5093 } 5094 5095 /* 5096 * Validate the Host Buffer Register Array indices that we want to 5097 * use ... 5098 * 5099 * XXX Note that we should really read through the Host Buffer Size 5100 * XXX register array and find the indices of the Buffer Sizes which 5101 * XXX meet our needs! 5102 */ 5103 #define READ_FL_BUF(x) \ 5104 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 5105 5106 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 5107 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 5108 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 5109 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 5110 5111 /* We only bother using the Large Page logic if the Large Page Buffer 5112 * is larger than our Page Size Buffer. 5113 */ 5114 if (fl_large_pg <= fl_small_pg) 5115 fl_large_pg = 0; 5116 5117 #undef READ_FL_BUF 5118 5119 /* The Page Size Buffer must be exactly equal to our Page Size and the 5120 * Large Page Size Buffer should be 0 (per above) or a power of 2. 5121 */ 5122 if (fl_small_pg != PAGE_SIZE || 5123 (fl_large_pg & (fl_large_pg-1)) != 0) { 5124 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 5125 fl_small_pg, fl_large_pg); 5126 return -EINVAL; 5127 } 5128 if (fl_large_pg) 5129 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 5130 5131 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 5132 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 5133 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 5134 fl_small_mtu, fl_large_mtu); 5135 return -EINVAL; 5136 } 5137 5138 /* 5139 * Retrieve our RX interrupt holdoff timer values and counter 5140 * threshold values from the SGE parameters. 5141 */ 5142 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 5143 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 5144 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 5145 s->timer_val[0] = core_ticks_to_us(adap, 5146 TIMERVALUE0_G(timer_value_0_and_1)); 5147 s->timer_val[1] = core_ticks_to_us(adap, 5148 TIMERVALUE1_G(timer_value_0_and_1)); 5149 s->timer_val[2] = core_ticks_to_us(adap, 5150 TIMERVALUE2_G(timer_value_2_and_3)); 5151 s->timer_val[3] = core_ticks_to_us(adap, 5152 TIMERVALUE3_G(timer_value_2_and_3)); 5153 s->timer_val[4] = core_ticks_to_us(adap, 5154 TIMERVALUE4_G(timer_value_4_and_5)); 5155 s->timer_val[5] = core_ticks_to_us(adap, 5156 TIMERVALUE5_G(timer_value_4_and_5)); 5157 5158 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 5159 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 5160 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 5161 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 5162 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 5163 5164 return 0; 5165 } 5166 5167 /** 5168 * t4_sge_init - initialize SGE 5169 * @adap: the adapter 5170 * 5171 * Perform low-level SGE code initialization needed every time after a 5172 * chip reset. 5173 */ 5174 int t4_sge_init(struct adapter *adap) 5175 { 5176 struct sge *s = &adap->sge; 5177 u32 sge_control, sge_conm_ctrl; 5178 int ret, egress_threshold; 5179 5180 /* 5181 * Ingress Padding Boundary and Egress Status Page Size are set up by 5182 * t4_fixup_host_params(). 5183 */ 5184 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 5185 s->pktshift = PKTSHIFT_G(sge_control); 5186 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 5187 5188 s->fl_align = t4_fl_pkt_align(adap); 5189 ret = t4_sge_init_soft(adap); 5190 if (ret < 0) 5191 return ret; 5192 5193 /* 5194 * A FL with <= fl_starve_thres buffers is starving and a periodic 5195 * timer will attempt to refill it. This needs to be larger than the 5196 * SGE's Egress Congestion Threshold. If it isn't, then we can get 5197 * stuck waiting for new packets while the SGE is waiting for us to 5198 * give it more Free List entries. (Note that the SGE's Egress 5199 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 5200 * there was only a single field to control this. For T5 there's the 5201 * original field which now only applies to Unpacked Mode Free List 5202 * buffers and a new field which only applies to Packed Mode Free List 5203 * buffers. 5204 */ 5205 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 5206 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 5207 case CHELSIO_T4: 5208 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 5209 break; 5210 case CHELSIO_T5: 5211 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5212 break; 5213 case CHELSIO_T6: 5214 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5215 break; 5216 default: 5217 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 5218 CHELSIO_CHIP_VERSION(adap->params.chip)); 5219 return -EINVAL; 5220 } 5221 s->fl_starve_thres = 2*egress_threshold + 1; 5222 5223 t4_idma_monitor_init(adap, &s->idma_monitor); 5224 5225 /* Set up timers used for recuring callbacks to process RX and TX 5226 * administrative tasks. 5227 */ 5228 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 5229 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 5230 5231 spin_lock_init(&s->intrq_lock); 5232 5233 return 0; 5234 } 5235