1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #include "cxgb4.h" 47 #include "t4_regs.h" 48 #include "t4_msg.h" 49 #include "t4fw_api.h" 50 51 /* 52 * Rx buffer size. We use largish buffers if possible but settle for single 53 * pages under memory shortage. 54 */ 55 #if PAGE_SHIFT >= 16 56 # define FL_PG_ORDER 0 57 #else 58 # define FL_PG_ORDER (16 - PAGE_SHIFT) 59 #endif 60 61 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 62 #define RX_COPY_THRES 256 63 #define RX_PULL_LEN 128 64 65 /* 66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 68 */ 69 #define RX_PKT_SKB_LEN 512 70 71 /* 72 * Max number of Tx descriptors we clean up at a time. Should be modest as 73 * freeing skbs isn't cheap and it happens while holding locks. We just need 74 * to free packets faster than they arrive, we eventually catch up and keep 75 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 76 */ 77 #define MAX_TX_RECLAIM 16 78 79 /* 80 * Max number of Rx buffers we replenish at a time. Again keep this modest, 81 * allocating buffers isn't cheap either. 82 */ 83 #define MAX_RX_REFILL 16U 84 85 /* 86 * Period of the Rx queue check timer. This timer is infrequent as it has 87 * something to do only when the system experiences severe memory shortage. 88 */ 89 #define RX_QCHECK_PERIOD (HZ / 2) 90 91 /* 92 * Period of the Tx queue check timer. 93 */ 94 #define TX_QCHECK_PERIOD (HZ / 2) 95 96 /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate 97 * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA 98 * State Machines in the same state for this amount of time (in HZ) then we'll 99 * issue a warning about a potential hang. We'll repeat the warning as the 100 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till 101 * the situation clears. If the situation clears, we'll note that as well. 102 */ 103 #define SGE_IDMA_WARN_THRESH (1 * HZ) 104 #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD) 105 106 /* 107 * Max number of Tx descriptors to be reclaimed by the Tx timer. 108 */ 109 #define MAX_TIMER_TX_RECLAIM 100 110 111 /* 112 * Timer index used when backing off due to memory shortage. 113 */ 114 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 115 116 /* 117 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will 118 * attempt to refill it. 119 */ 120 #define FL_STARVE_THRES 4 121 122 /* 123 * Suspend an Ethernet Tx queue with fewer available descriptors than this. 124 * This is the same as calc_tx_descs() for a TSO packet with 125 * nr_frags == MAX_SKB_FRAGS. 126 */ 127 #define ETHTXQ_STOP_THRES \ 128 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) 129 130 /* 131 * Suspension threshold for non-Ethernet Tx queues. We require enough room 132 * for a full sized WR. 133 */ 134 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 135 136 /* 137 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 138 * into a WR. 139 */ 140 #define MAX_IMM_TX_PKT_LEN 128 141 142 /* 143 * Max size of a WR sent through a control Tx queue. 144 */ 145 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 146 147 struct tx_sw_desc { /* SW state per Tx descriptor */ 148 struct sk_buff *skb; 149 struct ulptx_sgl *sgl; 150 }; 151 152 struct rx_sw_desc { /* SW state per Rx descriptor */ 153 struct page *page; 154 dma_addr_t dma_addr; 155 }; 156 157 /* 158 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 159 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 160 * We could easily support more but there doesn't seem to be much need for 161 * that ... 162 */ 163 #define FL_MTU_SMALL 1500 164 #define FL_MTU_LARGE 9000 165 166 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 167 unsigned int mtu) 168 { 169 struct sge *s = &adapter->sge; 170 171 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 172 } 173 174 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 175 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 176 177 /* 178 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 179 * these to specify the buffer size as an index into the SGE Free List Buffer 180 * Size register array. We also use bit 4, when the buffer has been unmapped 181 * for DMA, but this is of course never sent to the hardware and is only used 182 * to prevent double unmappings. All of the above requires that the Free List 183 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 184 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 185 * Free List Buffer alignment is 32 bytes, this works out for us ... 186 */ 187 enum { 188 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 189 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 190 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 191 192 /* 193 * XXX We shouldn't depend on being able to use these indices. 194 * XXX Especially when some other Master PF has initialized the 195 * XXX adapter or we use the Firmware Configuration File. We 196 * XXX should really search through the Host Buffer Size register 197 * XXX array for the appropriately sized buffer indices. 198 */ 199 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 200 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 201 202 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 203 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 204 }; 205 206 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 207 #define MIN_NAPI_WORK 1 208 209 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 210 { 211 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 212 } 213 214 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 215 { 216 return !(d->dma_addr & RX_UNMAPPED_BUF); 217 } 218 219 /** 220 * txq_avail - return the number of available slots in a Tx queue 221 * @q: the Tx queue 222 * 223 * Returns the number of descriptors in a Tx queue available to write new 224 * packets. 225 */ 226 static inline unsigned int txq_avail(const struct sge_txq *q) 227 { 228 return q->size - 1 - q->in_use; 229 } 230 231 /** 232 * fl_cap - return the capacity of a free-buffer list 233 * @fl: the FL 234 * 235 * Returns the capacity of a free-buffer list. The capacity is less than 236 * the size because one descriptor needs to be left unpopulated, otherwise 237 * HW will think the FL is empty. 238 */ 239 static inline unsigned int fl_cap(const struct sge_fl *fl) 240 { 241 return fl->size - 8; /* 1 descriptor = 8 buffers */ 242 } 243 244 static inline bool fl_starving(const struct sge_fl *fl) 245 { 246 return fl->avail - fl->pend_cred <= FL_STARVE_THRES; 247 } 248 249 static int map_skb(struct device *dev, const struct sk_buff *skb, 250 dma_addr_t *addr) 251 { 252 const skb_frag_t *fp, *end; 253 const struct skb_shared_info *si; 254 255 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 256 if (dma_mapping_error(dev, *addr)) 257 goto out_err; 258 259 si = skb_shinfo(skb); 260 end = &si->frags[si->nr_frags]; 261 262 for (fp = si->frags; fp < end; fp++) { 263 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 264 DMA_TO_DEVICE); 265 if (dma_mapping_error(dev, *addr)) 266 goto unwind; 267 } 268 return 0; 269 270 unwind: 271 while (fp-- > si->frags) 272 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 273 274 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 275 out_err: 276 return -ENOMEM; 277 } 278 279 #ifdef CONFIG_NEED_DMA_MAP_STATE 280 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 281 const dma_addr_t *addr) 282 { 283 const skb_frag_t *fp, *end; 284 const struct skb_shared_info *si; 285 286 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 287 288 si = skb_shinfo(skb); 289 end = &si->frags[si->nr_frags]; 290 for (fp = si->frags; fp < end; fp++) 291 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 292 } 293 294 /** 295 * deferred_unmap_destructor - unmap a packet when it is freed 296 * @skb: the packet 297 * 298 * This is the packet destructor used for Tx packets that need to remain 299 * mapped until they are freed rather than until their Tx descriptors are 300 * freed. 301 */ 302 static void deferred_unmap_destructor(struct sk_buff *skb) 303 { 304 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 305 } 306 #endif 307 308 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 309 const struct ulptx_sgl *sgl, const struct sge_txq *q) 310 { 311 const struct ulptx_sge_pair *p; 312 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 313 314 if (likely(skb_headlen(skb))) 315 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 316 DMA_TO_DEVICE); 317 else { 318 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 319 DMA_TO_DEVICE); 320 nfrags--; 321 } 322 323 /* 324 * the complexity below is because of the possibility of a wrap-around 325 * in the middle of an SGL 326 */ 327 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 328 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 329 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 330 ntohl(p->len[0]), DMA_TO_DEVICE); 331 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 332 ntohl(p->len[1]), DMA_TO_DEVICE); 333 p++; 334 } else if ((u8 *)p == (u8 *)q->stat) { 335 p = (const struct ulptx_sge_pair *)q->desc; 336 goto unmap; 337 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 338 const __be64 *addr = (const __be64 *)q->desc; 339 340 dma_unmap_page(dev, be64_to_cpu(addr[0]), 341 ntohl(p->len[0]), DMA_TO_DEVICE); 342 dma_unmap_page(dev, be64_to_cpu(addr[1]), 343 ntohl(p->len[1]), DMA_TO_DEVICE); 344 p = (const struct ulptx_sge_pair *)&addr[2]; 345 } else { 346 const __be64 *addr = (const __be64 *)q->desc; 347 348 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 349 ntohl(p->len[0]), DMA_TO_DEVICE); 350 dma_unmap_page(dev, be64_to_cpu(addr[0]), 351 ntohl(p->len[1]), DMA_TO_DEVICE); 352 p = (const struct ulptx_sge_pair *)&addr[1]; 353 } 354 } 355 if (nfrags) { 356 __be64 addr; 357 358 if ((u8 *)p == (u8 *)q->stat) 359 p = (const struct ulptx_sge_pair *)q->desc; 360 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 361 *(const __be64 *)q->desc; 362 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 363 DMA_TO_DEVICE); 364 } 365 } 366 367 /** 368 * free_tx_desc - reclaims Tx descriptors and their buffers 369 * @adapter: the adapter 370 * @q: the Tx queue to reclaim descriptors from 371 * @n: the number of descriptors to reclaim 372 * @unmap: whether the buffers should be unmapped for DMA 373 * 374 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 375 * Tx buffers. Called with the Tx queue lock held. 376 */ 377 static void free_tx_desc(struct adapter *adap, struct sge_txq *q, 378 unsigned int n, bool unmap) 379 { 380 struct tx_sw_desc *d; 381 unsigned int cidx = q->cidx; 382 struct device *dev = adap->pdev_dev; 383 384 d = &q->sdesc[cidx]; 385 while (n--) { 386 if (d->skb) { /* an SGL is present */ 387 if (unmap) 388 unmap_sgl(dev, d->skb, d->sgl, q); 389 dev_consume_skb_any(d->skb); 390 d->skb = NULL; 391 } 392 ++d; 393 if (++cidx == q->size) { 394 cidx = 0; 395 d = q->sdesc; 396 } 397 } 398 q->cidx = cidx; 399 } 400 401 /* 402 * Return the number of reclaimable descriptors in a Tx queue. 403 */ 404 static inline int reclaimable(const struct sge_txq *q) 405 { 406 int hw_cidx = ntohs(q->stat->cidx); 407 hw_cidx -= q->cidx; 408 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 409 } 410 411 /** 412 * reclaim_completed_tx - reclaims completed Tx descriptors 413 * @adap: the adapter 414 * @q: the Tx queue to reclaim completed descriptors from 415 * @unmap: whether the buffers should be unmapped for DMA 416 * 417 * Reclaims Tx descriptors that the SGE has indicated it has processed, 418 * and frees the associated buffers if possible. Called with the Tx 419 * queue locked. 420 */ 421 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 422 bool unmap) 423 { 424 int avail = reclaimable(q); 425 426 if (avail) { 427 /* 428 * Limit the amount of clean up work we do at a time to keep 429 * the Tx lock hold time O(1). 430 */ 431 if (avail > MAX_TX_RECLAIM) 432 avail = MAX_TX_RECLAIM; 433 434 free_tx_desc(adap, q, avail, unmap); 435 q->in_use -= avail; 436 } 437 } 438 439 static inline int get_buf_size(struct adapter *adapter, 440 const struct rx_sw_desc *d) 441 { 442 struct sge *s = &adapter->sge; 443 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 444 int buf_size; 445 446 switch (rx_buf_size_idx) { 447 case RX_SMALL_PG_BUF: 448 buf_size = PAGE_SIZE; 449 break; 450 451 case RX_LARGE_PG_BUF: 452 buf_size = PAGE_SIZE << s->fl_pg_order; 453 break; 454 455 case RX_SMALL_MTU_BUF: 456 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 457 break; 458 459 case RX_LARGE_MTU_BUF: 460 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 461 break; 462 463 default: 464 BUG_ON(1); 465 } 466 467 return buf_size; 468 } 469 470 /** 471 * free_rx_bufs - free the Rx buffers on an SGE free list 472 * @adap: the adapter 473 * @q: the SGE free list to free buffers from 474 * @n: how many buffers to free 475 * 476 * Release the next @n buffers on an SGE free-buffer Rx queue. The 477 * buffers must be made inaccessible to HW before calling this function. 478 */ 479 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 480 { 481 while (n--) { 482 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 483 484 if (is_buf_mapped(d)) 485 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 486 get_buf_size(adap, d), 487 PCI_DMA_FROMDEVICE); 488 put_page(d->page); 489 d->page = NULL; 490 if (++q->cidx == q->size) 491 q->cidx = 0; 492 q->avail--; 493 } 494 } 495 496 /** 497 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 498 * @adap: the adapter 499 * @q: the SGE free list 500 * 501 * Unmap the current buffer on an SGE free-buffer Rx queue. The 502 * buffer must be made inaccessible to HW before calling this function. 503 * 504 * This is similar to @free_rx_bufs above but does not free the buffer. 505 * Do note that the FL still loses any further access to the buffer. 506 */ 507 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 508 { 509 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 510 511 if (is_buf_mapped(d)) 512 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 513 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 514 d->page = NULL; 515 if (++q->cidx == q->size) 516 q->cidx = 0; 517 q->avail--; 518 } 519 520 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 521 { 522 u32 val; 523 if (q->pend_cred >= 8) { 524 val = PIDX(q->pend_cred / 8); 525 if (!is_t4(adap->params.chip)) 526 val |= DBTYPE(1); 527 val |= DBPRIO(1); 528 wmb(); 529 530 /* If we're on T4, use the old doorbell mechanism; otherwise 531 * use the new BAR2 mechanism. 532 */ 533 if (is_t4(adap->params.chip)) { 534 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 535 val | QID(q->cntxt_id)); 536 } else { 537 writel(val, adap->bar2 + q->udb + SGE_UDB_KDOORBELL); 538 539 /* This Write memory Barrier will force the write to 540 * the User Doorbell area to be flushed. 541 */ 542 wmb(); 543 } 544 q->pend_cred &= 7; 545 } 546 } 547 548 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 549 dma_addr_t mapping) 550 { 551 sd->page = pg; 552 sd->dma_addr = mapping; /* includes size low bits */ 553 } 554 555 /** 556 * refill_fl - refill an SGE Rx buffer ring 557 * @adap: the adapter 558 * @q: the ring to refill 559 * @n: the number of new buffers to allocate 560 * @gfp: the gfp flags for the allocations 561 * 562 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 563 * allocated with the supplied gfp flags. The caller must assure that 564 * @n does not exceed the queue's capacity. If afterwards the queue is 565 * found critically low mark it as starving in the bitmap of starving FLs. 566 * 567 * Returns the number of buffers allocated. 568 */ 569 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 570 gfp_t gfp) 571 { 572 struct sge *s = &adap->sge; 573 struct page *pg; 574 dma_addr_t mapping; 575 unsigned int cred = q->avail; 576 __be64 *d = &q->desc[q->pidx]; 577 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 578 579 gfp |= __GFP_NOWARN | __GFP_COLD; 580 581 if (s->fl_pg_order == 0) 582 goto alloc_small_pages; 583 584 /* 585 * Prefer large buffers 586 */ 587 while (n) { 588 pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order); 589 if (unlikely(!pg)) { 590 q->large_alloc_failed++; 591 break; /* fall back to single pages */ 592 } 593 594 mapping = dma_map_page(adap->pdev_dev, pg, 0, 595 PAGE_SIZE << s->fl_pg_order, 596 PCI_DMA_FROMDEVICE); 597 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 598 __free_pages(pg, s->fl_pg_order); 599 goto out; /* do not try small pages for this error */ 600 } 601 mapping |= RX_LARGE_PG_BUF; 602 *d++ = cpu_to_be64(mapping); 603 604 set_rx_sw_desc(sd, pg, mapping); 605 sd++; 606 607 q->avail++; 608 if (++q->pidx == q->size) { 609 q->pidx = 0; 610 sd = q->sdesc; 611 d = q->desc; 612 } 613 n--; 614 } 615 616 alloc_small_pages: 617 while (n--) { 618 pg = __skb_alloc_page(gfp, NULL); 619 if (unlikely(!pg)) { 620 q->alloc_failed++; 621 break; 622 } 623 624 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 625 PCI_DMA_FROMDEVICE); 626 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 627 put_page(pg); 628 goto out; 629 } 630 *d++ = cpu_to_be64(mapping); 631 632 set_rx_sw_desc(sd, pg, mapping); 633 sd++; 634 635 q->avail++; 636 if (++q->pidx == q->size) { 637 q->pidx = 0; 638 sd = q->sdesc; 639 d = q->desc; 640 } 641 } 642 643 out: cred = q->avail - cred; 644 q->pend_cred += cred; 645 ring_fl_db(adap, q); 646 647 if (unlikely(fl_starving(q))) { 648 smp_wmb(); 649 set_bit(q->cntxt_id - adap->sge.egr_start, 650 adap->sge.starving_fl); 651 } 652 653 return cred; 654 } 655 656 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 657 { 658 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 659 GFP_ATOMIC); 660 } 661 662 /** 663 * alloc_ring - allocate resources for an SGE descriptor ring 664 * @dev: the PCI device's core device 665 * @nelem: the number of descriptors 666 * @elem_size: the size of each descriptor 667 * @sw_size: the size of the SW state associated with each ring element 668 * @phys: the physical address of the allocated ring 669 * @metadata: address of the array holding the SW state for the ring 670 * @stat_size: extra space in HW ring for status information 671 * @node: preferred node for memory allocations 672 * 673 * Allocates resources for an SGE descriptor ring, such as Tx queues, 674 * free buffer lists, or response queues. Each SGE ring requires 675 * space for its HW descriptors plus, optionally, space for the SW state 676 * associated with each HW entry (the metadata). The function returns 677 * three values: the virtual address for the HW ring (the return value 678 * of the function), the bus address of the HW ring, and the address 679 * of the SW ring. 680 */ 681 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 682 size_t sw_size, dma_addr_t *phys, void *metadata, 683 size_t stat_size, int node) 684 { 685 size_t len = nelem * elem_size + stat_size; 686 void *s = NULL; 687 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 688 689 if (!p) 690 return NULL; 691 if (sw_size) { 692 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 693 694 if (!s) { 695 dma_free_coherent(dev, len, p, *phys); 696 return NULL; 697 } 698 } 699 if (metadata) 700 *(void **)metadata = s; 701 memset(p, 0, len); 702 return p; 703 } 704 705 /** 706 * sgl_len - calculates the size of an SGL of the given capacity 707 * @n: the number of SGL entries 708 * 709 * Calculates the number of flits needed for a scatter/gather list that 710 * can hold the given number of entries. 711 */ 712 static inline unsigned int sgl_len(unsigned int n) 713 { 714 n--; 715 return (3 * n) / 2 + (n & 1) + 2; 716 } 717 718 /** 719 * flits_to_desc - returns the num of Tx descriptors for the given flits 720 * @n: the number of flits 721 * 722 * Returns the number of Tx descriptors needed for the supplied number 723 * of flits. 724 */ 725 static inline unsigned int flits_to_desc(unsigned int n) 726 { 727 BUG_ON(n > SGE_MAX_WR_LEN / 8); 728 return DIV_ROUND_UP(n, 8); 729 } 730 731 /** 732 * is_eth_imm - can an Ethernet packet be sent as immediate data? 733 * @skb: the packet 734 * 735 * Returns whether an Ethernet packet is small enough to fit as 736 * immediate data. Return value corresponds to headroom required. 737 */ 738 static inline int is_eth_imm(const struct sk_buff *skb) 739 { 740 int hdrlen = skb_shinfo(skb)->gso_size ? 741 sizeof(struct cpl_tx_pkt_lso_core) : 0; 742 743 hdrlen += sizeof(struct cpl_tx_pkt); 744 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 745 return hdrlen; 746 return 0; 747 } 748 749 /** 750 * calc_tx_flits - calculate the number of flits for a packet Tx WR 751 * @skb: the packet 752 * 753 * Returns the number of flits needed for a Tx WR for the given Ethernet 754 * packet, including the needed WR and CPL headers. 755 */ 756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 757 { 758 unsigned int flits; 759 int hdrlen = is_eth_imm(skb); 760 761 if (hdrlen) 762 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 763 764 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; 765 if (skb_shinfo(skb)->gso_size) 766 flits += 2; 767 return flits; 768 } 769 770 /** 771 * calc_tx_descs - calculate the number of Tx descriptors for a packet 772 * @skb: the packet 773 * 774 * Returns the number of Tx descriptors needed for the given Ethernet 775 * packet, including the needed WR and CPL headers. 776 */ 777 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 778 { 779 return flits_to_desc(calc_tx_flits(skb)); 780 } 781 782 /** 783 * write_sgl - populate a scatter/gather list for a packet 784 * @skb: the packet 785 * @q: the Tx queue we are writing into 786 * @sgl: starting location for writing the SGL 787 * @end: points right after the end of the SGL 788 * @start: start offset into skb main-body data to include in the SGL 789 * @addr: the list of bus addresses for the SGL elements 790 * 791 * Generates a gather list for the buffers that make up a packet. 792 * The caller must provide adequate space for the SGL that will be written. 793 * The SGL includes all of the packet's page fragments and the data in its 794 * main body except for the first @start bytes. @sgl must be 16-byte 795 * aligned and within a Tx descriptor with available space. @end points 796 * right after the end of the SGL but does not account for any potential 797 * wrap around, i.e., @end > @sgl. 798 */ 799 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, 800 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 801 const dma_addr_t *addr) 802 { 803 unsigned int i, len; 804 struct ulptx_sge_pair *to; 805 const struct skb_shared_info *si = skb_shinfo(skb); 806 unsigned int nfrags = si->nr_frags; 807 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 808 809 len = skb_headlen(skb) - start; 810 if (likely(len)) { 811 sgl->len0 = htonl(len); 812 sgl->addr0 = cpu_to_be64(addr[0] + start); 813 nfrags++; 814 } else { 815 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 816 sgl->addr0 = cpu_to_be64(addr[1]); 817 } 818 819 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags)); 820 if (likely(--nfrags == 0)) 821 return; 822 /* 823 * Most of the complexity below deals with the possibility we hit the 824 * end of the queue in the middle of writing the SGL. For this case 825 * only we create the SGL in a temporary buffer and then copy it. 826 */ 827 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 828 829 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 830 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 831 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 832 to->addr[0] = cpu_to_be64(addr[i]); 833 to->addr[1] = cpu_to_be64(addr[++i]); 834 } 835 if (nfrags) { 836 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 837 to->len[1] = cpu_to_be32(0); 838 to->addr[0] = cpu_to_be64(addr[i + 1]); 839 } 840 if (unlikely((u8 *)end > (u8 *)q->stat)) { 841 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 842 843 if (likely(part0)) 844 memcpy(sgl->sge, buf, part0); 845 part1 = (u8 *)end - (u8 *)q->stat; 846 memcpy(q->desc, (u8 *)buf + part0, part1); 847 end = (void *)q->desc + part1; 848 } 849 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 850 *end = 0; 851 } 852 853 /* This function copies a tx_desc struct to memory mapped BAR2 space(user space 854 * writes). For coalesced WR SGE, fetches data from the FIFO instead of from 855 * Host. 856 */ 857 static void cxgb_pio_copy(u64 __iomem *dst, struct tx_desc *desc) 858 { 859 int count = sizeof(*desc) / sizeof(u64); 860 u64 *src = (u64 *)desc; 861 862 while (count) { 863 writeq(*src, dst); 864 src++; 865 dst++; 866 count--; 867 } 868 } 869 870 /** 871 * ring_tx_db - check and potentially ring a Tx queue's doorbell 872 * @adap: the adapter 873 * @q: the Tx queue 874 * @n: number of new descriptors to give to HW 875 * 876 * Ring the doorbel for a Tx queue. 877 */ 878 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 879 { 880 wmb(); /* write descriptors before telling HW */ 881 882 if (is_t4(adap->params.chip)) { 883 u32 val = PIDX(n); 884 unsigned long flags; 885 886 /* For T4 we need to participate in the Doorbell Recovery 887 * mechanism. 888 */ 889 spin_lock_irqsave(&q->db_lock, flags); 890 if (!q->db_disabled) 891 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 892 QID(q->cntxt_id) | val); 893 else 894 q->db_pidx_inc += n; 895 q->db_pidx = q->pidx; 896 spin_unlock_irqrestore(&q->db_lock, flags); 897 } else { 898 u32 val = PIDX_T5(n); 899 900 /* T4 and later chips share the same PIDX field offset within 901 * the doorbell, but T5 and later shrank the field in order to 902 * gain a bit for Doorbell Priority. The field was absurdly 903 * large in the first place (14 bits) so we just use the T5 904 * and later limits and warn if a Queue ID is too large. 905 */ 906 WARN_ON(val & DBPRIO(1)); 907 908 /* For T5 and later we use the Write-Combine mapped BAR2 User 909 * Doorbell mechanism. If we're only writing a single TX 910 * Descriptor and TX Write Combining hasn't been disabled, we 911 * can use the Write Combining Gather Buffer; otherwise we use 912 * the simple doorbell. 913 */ 914 if (n == 1) { 915 int index = (q->pidx 916 ? (q->pidx - 1) 917 : (q->size - 1)); 918 919 cxgb_pio_copy(adap->bar2 + q->udb + SGE_UDB_WCDOORBELL, 920 q->desc + index); 921 } else { 922 writel(val, adap->bar2 + q->udb + SGE_UDB_KDOORBELL); 923 } 924 925 /* This Write Memory Barrier will force the write to the User 926 * Doorbell area to be flushed. This is needed to prevent 927 * writes on different CPUs for the same queue from hitting 928 * the adapter out of order. This is required when some Work 929 * Requests take the Write Combine Gather Buffer path (user 930 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 931 * take the traditional path where we simply increment the 932 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 933 * hardware DMA read the actual Work Request. 934 */ 935 wmb(); 936 } 937 } 938 939 /** 940 * inline_tx_skb - inline a packet's data into Tx descriptors 941 * @skb: the packet 942 * @q: the Tx queue where the packet will be inlined 943 * @pos: starting position in the Tx queue where to inline the packet 944 * 945 * Inline a packet's contents directly into Tx descriptors, starting at 946 * the given position within the Tx DMA ring. 947 * Most of the complexity of this operation is dealing with wrap arounds 948 * in the middle of the packet we want to inline. 949 */ 950 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, 951 void *pos) 952 { 953 u64 *p; 954 int left = (void *)q->stat - pos; 955 956 if (likely(skb->len <= left)) { 957 if (likely(!skb->data_len)) 958 skb_copy_from_linear_data(skb, pos, skb->len); 959 else 960 skb_copy_bits(skb, 0, pos, skb->len); 961 pos += skb->len; 962 } else { 963 skb_copy_bits(skb, 0, pos, left); 964 skb_copy_bits(skb, left, q->desc, skb->len - left); 965 pos = (void *)q->desc + (skb->len - left); 966 } 967 968 /* 0-pad to multiple of 16 */ 969 p = PTR_ALIGN(pos, 8); 970 if ((uintptr_t)p & 8) 971 *p = 0; 972 } 973 974 /* 975 * Figure out what HW csum a packet wants and return the appropriate control 976 * bits. 977 */ 978 static u64 hwcsum(const struct sk_buff *skb) 979 { 980 int csum_type; 981 const struct iphdr *iph = ip_hdr(skb); 982 983 if (iph->version == 4) { 984 if (iph->protocol == IPPROTO_TCP) 985 csum_type = TX_CSUM_TCPIP; 986 else if (iph->protocol == IPPROTO_UDP) 987 csum_type = TX_CSUM_UDPIP; 988 else { 989 nocsum: /* 990 * unknown protocol, disable HW csum 991 * and hope a bad packet is detected 992 */ 993 return TXPKT_L4CSUM_DIS; 994 } 995 } else { 996 /* 997 * this doesn't work with extension headers 998 */ 999 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1000 1001 if (ip6h->nexthdr == IPPROTO_TCP) 1002 csum_type = TX_CSUM_TCPIP6; 1003 else if (ip6h->nexthdr == IPPROTO_UDP) 1004 csum_type = TX_CSUM_UDPIP6; 1005 else 1006 goto nocsum; 1007 } 1008 1009 if (likely(csum_type >= TX_CSUM_TCPIP)) 1010 return TXPKT_CSUM_TYPE(csum_type) | 1011 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | 1012 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); 1013 else { 1014 int start = skb_transport_offset(skb); 1015 1016 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | 1017 TXPKT_CSUM_LOC(start + skb->csum_offset); 1018 } 1019 } 1020 1021 static void eth_txq_stop(struct sge_eth_txq *q) 1022 { 1023 netif_tx_stop_queue(q->txq); 1024 q->q.stops++; 1025 } 1026 1027 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1028 { 1029 q->in_use += n; 1030 q->pidx += n; 1031 if (q->pidx >= q->size) 1032 q->pidx -= q->size; 1033 } 1034 1035 /** 1036 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1037 * @skb: the packet 1038 * @dev: the egress net device 1039 * 1040 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1041 */ 1042 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1043 { 1044 int len; 1045 u32 wr_mid; 1046 u64 cntrl, *end; 1047 int qidx, credits; 1048 unsigned int flits, ndesc; 1049 struct adapter *adap; 1050 struct sge_eth_txq *q; 1051 const struct port_info *pi; 1052 struct fw_eth_tx_pkt_wr *wr; 1053 struct cpl_tx_pkt_core *cpl; 1054 const struct skb_shared_info *ssi; 1055 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1056 bool immediate = false; 1057 1058 /* 1059 * The chip min packet length is 10 octets but play safe and reject 1060 * anything shorter than an Ethernet header. 1061 */ 1062 if (unlikely(skb->len < ETH_HLEN)) { 1063 out_free: dev_kfree_skb_any(skb); 1064 return NETDEV_TX_OK; 1065 } 1066 1067 pi = netdev_priv(dev); 1068 adap = pi->adapter; 1069 qidx = skb_get_queue_mapping(skb); 1070 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1071 1072 reclaim_completed_tx(adap, &q->q, true); 1073 1074 flits = calc_tx_flits(skb); 1075 ndesc = flits_to_desc(flits); 1076 credits = txq_avail(&q->q) - ndesc; 1077 1078 if (unlikely(credits < 0)) { 1079 eth_txq_stop(q); 1080 dev_err(adap->pdev_dev, 1081 "%s: Tx ring %u full while queue awake!\n", 1082 dev->name, qidx); 1083 return NETDEV_TX_BUSY; 1084 } 1085 1086 if (is_eth_imm(skb)) 1087 immediate = true; 1088 1089 if (!immediate && 1090 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { 1091 q->mapping_err++; 1092 goto out_free; 1093 } 1094 1095 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); 1096 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1097 eth_txq_stop(q); 1098 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; 1099 } 1100 1101 wr = (void *)&q->q.desc[q->q.pidx]; 1102 wr->equiq_to_len16 = htonl(wr_mid); 1103 wr->r3 = cpu_to_be64(0); 1104 end = (u64 *)wr + flits; 1105 1106 len = immediate ? skb->len : 0; 1107 ssi = skb_shinfo(skb); 1108 if (ssi->gso_size) { 1109 struct cpl_tx_pkt_lso *lso = (void *)wr; 1110 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1111 int l3hdr_len = skb_network_header_len(skb); 1112 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1113 1114 len += sizeof(*lso); 1115 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | 1116 FW_WR_IMMDLEN(len)); 1117 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | 1118 LSO_FIRST_SLICE | LSO_LAST_SLICE | 1119 LSO_IPV6(v6) | 1120 LSO_ETHHDR_LEN(eth_xtra_len / 4) | 1121 LSO_IPHDR_LEN(l3hdr_len / 4) | 1122 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); 1123 lso->c.ipid_ofst = htons(0); 1124 lso->c.mss = htons(ssi->gso_size); 1125 lso->c.seqno_offset = htonl(0); 1126 if (is_t4(adap->params.chip)) 1127 lso->c.len = htonl(skb->len); 1128 else 1129 lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len)); 1130 cpl = (void *)(lso + 1); 1131 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1132 TXPKT_IPHDR_LEN(l3hdr_len) | 1133 TXPKT_ETHHDR_LEN(eth_xtra_len); 1134 q->tso++; 1135 q->tx_cso += ssi->gso_segs; 1136 } else { 1137 len += sizeof(*cpl); 1138 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | 1139 FW_WR_IMMDLEN(len)); 1140 cpl = (void *)(wr + 1); 1141 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1142 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; 1143 q->tx_cso++; 1144 } else 1145 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; 1146 } 1147 1148 if (vlan_tx_tag_present(skb)) { 1149 q->vlan_ins++; 1150 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); 1151 } 1152 1153 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | 1154 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); 1155 cpl->pack = htons(0); 1156 cpl->len = htons(skb->len); 1157 cpl->ctrl1 = cpu_to_be64(cntrl); 1158 1159 if (immediate) { 1160 inline_tx_skb(skb, &q->q, cpl + 1); 1161 dev_consume_skb_any(skb); 1162 } else { 1163 int last_desc; 1164 1165 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 1166 addr); 1167 skb_orphan(skb); 1168 1169 last_desc = q->q.pidx + ndesc - 1; 1170 if (last_desc >= q->q.size) 1171 last_desc -= q->q.size; 1172 q->q.sdesc[last_desc].skb = skb; 1173 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1174 } 1175 1176 txq_advance(&q->q, ndesc); 1177 1178 ring_tx_db(adap, &q->q, ndesc); 1179 return NETDEV_TX_OK; 1180 } 1181 1182 /** 1183 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1184 * @q: the SGE control Tx queue 1185 * 1186 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1187 * that send only immediate data (presently just the control queues) and 1188 * thus do not have any sk_buffs to release. 1189 */ 1190 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1191 { 1192 int hw_cidx = ntohs(q->stat->cidx); 1193 int reclaim = hw_cidx - q->cidx; 1194 1195 if (reclaim < 0) 1196 reclaim += q->size; 1197 1198 q->in_use -= reclaim; 1199 q->cidx = hw_cidx; 1200 } 1201 1202 /** 1203 * is_imm - check whether a packet can be sent as immediate data 1204 * @skb: the packet 1205 * 1206 * Returns true if a packet can be sent as a WR with immediate data. 1207 */ 1208 static inline int is_imm(const struct sk_buff *skb) 1209 { 1210 return skb->len <= MAX_CTRL_WR_LEN; 1211 } 1212 1213 /** 1214 * ctrlq_check_stop - check if a control queue is full and should stop 1215 * @q: the queue 1216 * @wr: most recent WR written to the queue 1217 * 1218 * Check if a control queue has become full and should be stopped. 1219 * We clean up control queue descriptors very lazily, only when we are out. 1220 * If the queue is still full after reclaiming any completed descriptors 1221 * we suspend it and have the last WR wake it up. 1222 */ 1223 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1224 { 1225 reclaim_completed_tx_imm(&q->q); 1226 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1227 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); 1228 q->q.stops++; 1229 q->full = 1; 1230 } 1231 } 1232 1233 /** 1234 * ctrl_xmit - send a packet through an SGE control Tx queue 1235 * @q: the control queue 1236 * @skb: the packet 1237 * 1238 * Send a packet through an SGE control Tx queue. Packets sent through 1239 * a control queue must fit entirely as immediate data. 1240 */ 1241 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1242 { 1243 unsigned int ndesc; 1244 struct fw_wr_hdr *wr; 1245 1246 if (unlikely(!is_imm(skb))) { 1247 WARN_ON(1); 1248 dev_kfree_skb(skb); 1249 return NET_XMIT_DROP; 1250 } 1251 1252 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1253 spin_lock(&q->sendq.lock); 1254 1255 if (unlikely(q->full)) { 1256 skb->priority = ndesc; /* save for restart */ 1257 __skb_queue_tail(&q->sendq, skb); 1258 spin_unlock(&q->sendq.lock); 1259 return NET_XMIT_CN; 1260 } 1261 1262 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1263 inline_tx_skb(skb, &q->q, wr); 1264 1265 txq_advance(&q->q, ndesc); 1266 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1267 ctrlq_check_stop(q, wr); 1268 1269 ring_tx_db(q->adap, &q->q, ndesc); 1270 spin_unlock(&q->sendq.lock); 1271 1272 kfree_skb(skb); 1273 return NET_XMIT_SUCCESS; 1274 } 1275 1276 /** 1277 * restart_ctrlq - restart a suspended control queue 1278 * @data: the control queue to restart 1279 * 1280 * Resumes transmission on a suspended Tx control queue. 1281 */ 1282 static void restart_ctrlq(unsigned long data) 1283 { 1284 struct sk_buff *skb; 1285 unsigned int written = 0; 1286 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1287 1288 spin_lock(&q->sendq.lock); 1289 reclaim_completed_tx_imm(&q->q); 1290 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1291 1292 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1293 struct fw_wr_hdr *wr; 1294 unsigned int ndesc = skb->priority; /* previously saved */ 1295 1296 /* 1297 * Write descriptors and free skbs outside the lock to limit 1298 * wait times. q->full is still set so new skbs will be queued. 1299 */ 1300 spin_unlock(&q->sendq.lock); 1301 1302 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1303 inline_tx_skb(skb, &q->q, wr); 1304 kfree_skb(skb); 1305 1306 written += ndesc; 1307 txq_advance(&q->q, ndesc); 1308 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1309 unsigned long old = q->q.stops; 1310 1311 ctrlq_check_stop(q, wr); 1312 if (q->q.stops != old) { /* suspended anew */ 1313 spin_lock(&q->sendq.lock); 1314 goto ringdb; 1315 } 1316 } 1317 if (written > 16) { 1318 ring_tx_db(q->adap, &q->q, written); 1319 written = 0; 1320 } 1321 spin_lock(&q->sendq.lock); 1322 } 1323 q->full = 0; 1324 ringdb: if (written) 1325 ring_tx_db(q->adap, &q->q, written); 1326 spin_unlock(&q->sendq.lock); 1327 } 1328 1329 /** 1330 * t4_mgmt_tx - send a management message 1331 * @adap: the adapter 1332 * @skb: the packet containing the management message 1333 * 1334 * Send a management message through control queue 0. 1335 */ 1336 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1337 { 1338 int ret; 1339 1340 local_bh_disable(); 1341 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1342 local_bh_enable(); 1343 return ret; 1344 } 1345 1346 /** 1347 * is_ofld_imm - check whether a packet can be sent as immediate data 1348 * @skb: the packet 1349 * 1350 * Returns true if a packet can be sent as an offload WR with immediate 1351 * data. We currently use the same limit as for Ethernet packets. 1352 */ 1353 static inline int is_ofld_imm(const struct sk_buff *skb) 1354 { 1355 return skb->len <= MAX_IMM_TX_PKT_LEN; 1356 } 1357 1358 /** 1359 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1360 * @skb: the packet 1361 * 1362 * Returns the number of flits needed for the given offload packet. 1363 * These packets are already fully constructed and no additional headers 1364 * will be added. 1365 */ 1366 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1367 { 1368 unsigned int flits, cnt; 1369 1370 if (is_ofld_imm(skb)) 1371 return DIV_ROUND_UP(skb->len, 8); 1372 1373 flits = skb_transport_offset(skb) / 8U; /* headers */ 1374 cnt = skb_shinfo(skb)->nr_frags; 1375 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1376 cnt++; 1377 return flits + sgl_len(cnt); 1378 } 1379 1380 /** 1381 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1382 * @adap: the adapter 1383 * @q: the queue to stop 1384 * 1385 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1386 * inability to map packets. A periodic timer attempts to restart 1387 * queues so marked. 1388 */ 1389 static void txq_stop_maperr(struct sge_ofld_txq *q) 1390 { 1391 q->mapping_err++; 1392 q->q.stops++; 1393 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1394 q->adap->sge.txq_maperr); 1395 } 1396 1397 /** 1398 * ofldtxq_stop - stop an offload Tx queue that has become full 1399 * @q: the queue to stop 1400 * @skb: the packet causing the queue to become full 1401 * 1402 * Stops an offload Tx queue that has become full and modifies the packet 1403 * being written to request a wakeup. 1404 */ 1405 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) 1406 { 1407 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; 1408 1409 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); 1410 q->q.stops++; 1411 q->full = 1; 1412 } 1413 1414 /** 1415 * service_ofldq - restart a suspended offload queue 1416 * @q: the offload queue 1417 * 1418 * Services an offload Tx queue by moving packets from its packet queue 1419 * to the HW Tx ring. The function starts and ends with the queue locked. 1420 */ 1421 static void service_ofldq(struct sge_ofld_txq *q) 1422 { 1423 u64 *pos; 1424 int credits; 1425 struct sk_buff *skb; 1426 unsigned int written = 0; 1427 unsigned int flits, ndesc; 1428 1429 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1430 /* 1431 * We drop the lock but leave skb on sendq, thus retaining 1432 * exclusive access to the state of the queue. 1433 */ 1434 spin_unlock(&q->sendq.lock); 1435 1436 reclaim_completed_tx(q->adap, &q->q, false); 1437 1438 flits = skb->priority; /* previously saved */ 1439 ndesc = flits_to_desc(flits); 1440 credits = txq_avail(&q->q) - ndesc; 1441 BUG_ON(credits < 0); 1442 if (unlikely(credits < TXQ_STOP_THRES)) 1443 ofldtxq_stop(q, skb); 1444 1445 pos = (u64 *)&q->q.desc[q->q.pidx]; 1446 if (is_ofld_imm(skb)) 1447 inline_tx_skb(skb, &q->q, pos); 1448 else if (map_skb(q->adap->pdev_dev, skb, 1449 (dma_addr_t *)skb->head)) { 1450 txq_stop_maperr(q); 1451 spin_lock(&q->sendq.lock); 1452 break; 1453 } else { 1454 int last_desc, hdr_len = skb_transport_offset(skb); 1455 1456 memcpy(pos, skb->data, hdr_len); 1457 write_sgl(skb, &q->q, (void *)pos + hdr_len, 1458 pos + flits, hdr_len, 1459 (dma_addr_t *)skb->head); 1460 #ifdef CONFIG_NEED_DMA_MAP_STATE 1461 skb->dev = q->adap->port[0]; 1462 skb->destructor = deferred_unmap_destructor; 1463 #endif 1464 last_desc = q->q.pidx + ndesc - 1; 1465 if (last_desc >= q->q.size) 1466 last_desc -= q->q.size; 1467 q->q.sdesc[last_desc].skb = skb; 1468 } 1469 1470 txq_advance(&q->q, ndesc); 1471 written += ndesc; 1472 if (unlikely(written > 32)) { 1473 ring_tx_db(q->adap, &q->q, written); 1474 written = 0; 1475 } 1476 1477 spin_lock(&q->sendq.lock); 1478 __skb_unlink(skb, &q->sendq); 1479 if (is_ofld_imm(skb)) 1480 kfree_skb(skb); 1481 } 1482 if (likely(written)) 1483 ring_tx_db(q->adap, &q->q, written); 1484 } 1485 1486 /** 1487 * ofld_xmit - send a packet through an offload queue 1488 * @q: the Tx offload queue 1489 * @skb: the packet 1490 * 1491 * Send an offload packet through an SGE offload queue. 1492 */ 1493 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) 1494 { 1495 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1496 spin_lock(&q->sendq.lock); 1497 __skb_queue_tail(&q->sendq, skb); 1498 if (q->sendq.qlen == 1) 1499 service_ofldq(q); 1500 spin_unlock(&q->sendq.lock); 1501 return NET_XMIT_SUCCESS; 1502 } 1503 1504 /** 1505 * restart_ofldq - restart a suspended offload queue 1506 * @data: the offload queue to restart 1507 * 1508 * Resumes transmission on a suspended Tx offload queue. 1509 */ 1510 static void restart_ofldq(unsigned long data) 1511 { 1512 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; 1513 1514 spin_lock(&q->sendq.lock); 1515 q->full = 0; /* the queue actually is completely empty now */ 1516 service_ofldq(q); 1517 spin_unlock(&q->sendq.lock); 1518 } 1519 1520 /** 1521 * skb_txq - return the Tx queue an offload packet should use 1522 * @skb: the packet 1523 * 1524 * Returns the Tx queue an offload packet should use as indicated by bits 1525 * 1-15 in the packet's queue_mapping. 1526 */ 1527 static inline unsigned int skb_txq(const struct sk_buff *skb) 1528 { 1529 return skb->queue_mapping >> 1; 1530 } 1531 1532 /** 1533 * is_ctrl_pkt - return whether an offload packet is a control packet 1534 * @skb: the packet 1535 * 1536 * Returns whether an offload packet should use an OFLD or a CTRL 1537 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1538 */ 1539 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1540 { 1541 return skb->queue_mapping & 1; 1542 } 1543 1544 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) 1545 { 1546 unsigned int idx = skb_txq(skb); 1547 1548 if (unlikely(is_ctrl_pkt(skb))) { 1549 /* Single ctrl queue is a requirement for LE workaround path */ 1550 if (adap->tids.nsftids) 1551 idx = 0; 1552 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1553 } 1554 return ofld_xmit(&adap->sge.ofldtxq[idx], skb); 1555 } 1556 1557 /** 1558 * t4_ofld_send - send an offload packet 1559 * @adap: the adapter 1560 * @skb: the packet 1561 * 1562 * Sends an offload packet. We use the packet queue_mapping to select the 1563 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1564 * should be sent as regular or control, bits 1-15 select the queue. 1565 */ 1566 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1567 { 1568 int ret; 1569 1570 local_bh_disable(); 1571 ret = ofld_send(adap, skb); 1572 local_bh_enable(); 1573 return ret; 1574 } 1575 1576 /** 1577 * cxgb4_ofld_send - send an offload packet 1578 * @dev: the net device 1579 * @skb: the packet 1580 * 1581 * Sends an offload packet. This is an exported version of @t4_ofld_send, 1582 * intended for ULDs. 1583 */ 1584 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 1585 { 1586 return t4_ofld_send(netdev2adap(dev), skb); 1587 } 1588 EXPORT_SYMBOL(cxgb4_ofld_send); 1589 1590 static inline void copy_frags(struct sk_buff *skb, 1591 const struct pkt_gl *gl, unsigned int offset) 1592 { 1593 int i; 1594 1595 /* usually there's just one frag */ 1596 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1597 gl->frags[0].offset + offset, 1598 gl->frags[0].size - offset); 1599 skb_shinfo(skb)->nr_frags = gl->nfrags; 1600 for (i = 1; i < gl->nfrags; i++) 1601 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1602 gl->frags[i].offset, 1603 gl->frags[i].size); 1604 1605 /* get a reference to the last page, we don't own it */ 1606 get_page(gl->frags[gl->nfrags - 1].page); 1607 } 1608 1609 /** 1610 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 1611 * @gl: the gather list 1612 * @skb_len: size of sk_buff main body if it carries fragments 1613 * @pull_len: amount of data to move to the sk_buff's main body 1614 * 1615 * Builds an sk_buff from the given packet gather list. Returns the 1616 * sk_buff or %NULL if sk_buff allocation failed. 1617 */ 1618 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 1619 unsigned int skb_len, unsigned int pull_len) 1620 { 1621 struct sk_buff *skb; 1622 1623 /* 1624 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 1625 * size, which is expected since buffers are at least PAGE_SIZEd. 1626 * In this case packets up to RX_COPY_THRES have only one fragment. 1627 */ 1628 if (gl->tot_len <= RX_COPY_THRES) { 1629 skb = dev_alloc_skb(gl->tot_len); 1630 if (unlikely(!skb)) 1631 goto out; 1632 __skb_put(skb, gl->tot_len); 1633 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1634 } else { 1635 skb = dev_alloc_skb(skb_len); 1636 if (unlikely(!skb)) 1637 goto out; 1638 __skb_put(skb, pull_len); 1639 skb_copy_to_linear_data(skb, gl->va, pull_len); 1640 1641 copy_frags(skb, gl, pull_len); 1642 skb->len = gl->tot_len; 1643 skb->data_len = skb->len - pull_len; 1644 skb->truesize += skb->data_len; 1645 } 1646 out: return skb; 1647 } 1648 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 1649 1650 /** 1651 * t4_pktgl_free - free a packet gather list 1652 * @gl: the gather list 1653 * 1654 * Releases the pages of a packet gather list. We do not own the last 1655 * page on the list and do not free it. 1656 */ 1657 static void t4_pktgl_free(const struct pkt_gl *gl) 1658 { 1659 int n; 1660 const struct page_frag *p; 1661 1662 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 1663 put_page(p->page); 1664 } 1665 1666 /* 1667 * Process an MPS trace packet. Give it an unused protocol number so it won't 1668 * be delivered to anyone and send it to the stack for capture. 1669 */ 1670 static noinline int handle_trace_pkt(struct adapter *adap, 1671 const struct pkt_gl *gl) 1672 { 1673 struct sk_buff *skb; 1674 1675 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 1676 if (unlikely(!skb)) { 1677 t4_pktgl_free(gl); 1678 return 0; 1679 } 1680 1681 if (is_t4(adap->params.chip)) 1682 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 1683 else 1684 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 1685 1686 skb_reset_mac_header(skb); 1687 skb->protocol = htons(0xffff); 1688 skb->dev = adap->port[0]; 1689 netif_receive_skb(skb); 1690 return 0; 1691 } 1692 1693 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1694 const struct cpl_rx_pkt *pkt) 1695 { 1696 struct adapter *adapter = rxq->rspq.adap; 1697 struct sge *s = &adapter->sge; 1698 int ret; 1699 struct sk_buff *skb; 1700 1701 skb = napi_get_frags(&rxq->rspq.napi); 1702 if (unlikely(!skb)) { 1703 t4_pktgl_free(gl); 1704 rxq->stats.rx_drops++; 1705 return; 1706 } 1707 1708 copy_frags(skb, gl, s->pktshift); 1709 skb->len = gl->tot_len - s->pktshift; 1710 skb->data_len = skb->len; 1711 skb->truesize += skb->data_len; 1712 skb->ip_summed = CHECKSUM_UNNECESSARY; 1713 skb_record_rx_queue(skb, rxq->rspq.idx); 1714 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 1715 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 1716 PKT_HASH_TYPE_L3); 1717 1718 if (unlikely(pkt->vlan_ex)) { 1719 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 1720 rxq->stats.vlan_ex++; 1721 } 1722 ret = napi_gro_frags(&rxq->rspq.napi); 1723 if (ret == GRO_HELD) 1724 rxq->stats.lro_pkts++; 1725 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1726 rxq->stats.lro_merged++; 1727 rxq->stats.pkts++; 1728 rxq->stats.rx_cso++; 1729 } 1730 1731 /** 1732 * t4_ethrx_handler - process an ingress ethernet packet 1733 * @q: the response queue that received the packet 1734 * @rsp: the response queue descriptor holding the RX_PKT message 1735 * @si: the gather list of packet fragments 1736 * 1737 * Process an ingress ethernet packet and deliver it to the stack. 1738 */ 1739 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 1740 const struct pkt_gl *si) 1741 { 1742 bool csum_ok; 1743 struct sk_buff *skb; 1744 const struct cpl_rx_pkt *pkt; 1745 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1746 struct sge *s = &q->adap->sge; 1747 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 1748 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 1749 1750 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 1751 return handle_trace_pkt(q->adap, si); 1752 1753 pkt = (const struct cpl_rx_pkt *)rsp; 1754 csum_ok = pkt->csum_calc && !pkt->err_vec && 1755 (q->netdev->features & NETIF_F_RXCSUM); 1756 if ((pkt->l2info & htonl(RXF_TCP)) && 1757 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 1758 do_gro(rxq, si, pkt); 1759 return 0; 1760 } 1761 1762 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 1763 if (unlikely(!skb)) { 1764 t4_pktgl_free(si); 1765 rxq->stats.rx_drops++; 1766 return 0; 1767 } 1768 1769 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */ 1770 skb->protocol = eth_type_trans(skb, q->netdev); 1771 skb_record_rx_queue(skb, q->idx); 1772 if (skb->dev->features & NETIF_F_RXHASH) 1773 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 1774 PKT_HASH_TYPE_L3); 1775 1776 rxq->stats.pkts++; 1777 1778 if (csum_ok && (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) { 1779 if (!pkt->ip_frag) { 1780 skb->ip_summed = CHECKSUM_UNNECESSARY; 1781 rxq->stats.rx_cso++; 1782 } else if (pkt->l2info & htonl(RXF_IP)) { 1783 __sum16 c = (__force __sum16)pkt->csum; 1784 skb->csum = csum_unfold(c); 1785 skb->ip_summed = CHECKSUM_COMPLETE; 1786 rxq->stats.rx_cso++; 1787 } 1788 } else 1789 skb_checksum_none_assert(skb); 1790 1791 if (unlikely(pkt->vlan_ex)) { 1792 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 1793 rxq->stats.vlan_ex++; 1794 } 1795 netif_receive_skb(skb); 1796 return 0; 1797 } 1798 1799 /** 1800 * restore_rx_bufs - put back a packet's Rx buffers 1801 * @si: the packet gather list 1802 * @q: the SGE free list 1803 * @frags: number of FL buffers to restore 1804 * 1805 * Puts back on an FL the Rx buffers associated with @si. The buffers 1806 * have already been unmapped and are left unmapped, we mark them so to 1807 * prevent further unmapping attempts. 1808 * 1809 * This function undoes a series of @unmap_rx_buf calls when we find out 1810 * that the current packet can't be processed right away afterall and we 1811 * need to come back to it later. This is a very rare event and there's 1812 * no effort to make this particularly efficient. 1813 */ 1814 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 1815 int frags) 1816 { 1817 struct rx_sw_desc *d; 1818 1819 while (frags--) { 1820 if (q->cidx == 0) 1821 q->cidx = q->size - 1; 1822 else 1823 q->cidx--; 1824 d = &q->sdesc[q->cidx]; 1825 d->page = si->frags[frags].page; 1826 d->dma_addr |= RX_UNMAPPED_BUF; 1827 q->avail++; 1828 } 1829 } 1830 1831 /** 1832 * is_new_response - check if a response is newly written 1833 * @r: the response descriptor 1834 * @q: the response queue 1835 * 1836 * Returns true if a response descriptor contains a yet unprocessed 1837 * response. 1838 */ 1839 static inline bool is_new_response(const struct rsp_ctrl *r, 1840 const struct sge_rspq *q) 1841 { 1842 return RSPD_GEN(r->type_gen) == q->gen; 1843 } 1844 1845 /** 1846 * rspq_next - advance to the next entry in a response queue 1847 * @q: the queue 1848 * 1849 * Updates the state of a response queue to advance it to the next entry. 1850 */ 1851 static inline void rspq_next(struct sge_rspq *q) 1852 { 1853 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 1854 if (unlikely(++q->cidx == q->size)) { 1855 q->cidx = 0; 1856 q->gen ^= 1; 1857 q->cur_desc = q->desc; 1858 } 1859 } 1860 1861 /** 1862 * process_responses - process responses from an SGE response queue 1863 * @q: the ingress queue to process 1864 * @budget: how many responses can be processed in this round 1865 * 1866 * Process responses from an SGE response queue up to the supplied budget. 1867 * Responses include received packets as well as control messages from FW 1868 * or HW. 1869 * 1870 * Additionally choose the interrupt holdoff time for the next interrupt 1871 * on this queue. If the system is under memory shortage use a fairly 1872 * long delay to help recovery. 1873 */ 1874 static int process_responses(struct sge_rspq *q, int budget) 1875 { 1876 int ret, rsp_type; 1877 int budget_left = budget; 1878 const struct rsp_ctrl *rc; 1879 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1880 struct adapter *adapter = q->adap; 1881 struct sge *s = &adapter->sge; 1882 1883 while (likely(budget_left)) { 1884 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 1885 if (!is_new_response(rc, q)) 1886 break; 1887 1888 rmb(); 1889 rsp_type = RSPD_TYPE(rc->type_gen); 1890 if (likely(rsp_type == RSP_TYPE_FLBUF)) { 1891 struct page_frag *fp; 1892 struct pkt_gl si; 1893 const struct rx_sw_desc *rsd; 1894 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 1895 1896 if (len & RSPD_NEWBUF) { 1897 if (likely(q->offset > 0)) { 1898 free_rx_bufs(q->adap, &rxq->fl, 1); 1899 q->offset = 0; 1900 } 1901 len = RSPD_LEN(len); 1902 } 1903 si.tot_len = len; 1904 1905 /* gather packet fragments */ 1906 for (frags = 0, fp = si.frags; ; frags++, fp++) { 1907 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 1908 bufsz = get_buf_size(adapter, rsd); 1909 fp->page = rsd->page; 1910 fp->offset = q->offset; 1911 fp->size = min(bufsz, len); 1912 len -= fp->size; 1913 if (!len) 1914 break; 1915 unmap_rx_buf(q->adap, &rxq->fl); 1916 } 1917 1918 /* 1919 * Last buffer remains mapped so explicitly make it 1920 * coherent for CPU access. 1921 */ 1922 dma_sync_single_for_cpu(q->adap->pdev_dev, 1923 get_buf_addr(rsd), 1924 fp->size, DMA_FROM_DEVICE); 1925 1926 si.va = page_address(si.frags[0].page) + 1927 si.frags[0].offset; 1928 prefetch(si.va); 1929 1930 si.nfrags = frags + 1; 1931 ret = q->handler(q, q->cur_desc, &si); 1932 if (likely(ret == 0)) 1933 q->offset += ALIGN(fp->size, s->fl_align); 1934 else 1935 restore_rx_bufs(&si, &rxq->fl, frags); 1936 } else if (likely(rsp_type == RSP_TYPE_CPL)) { 1937 ret = q->handler(q, q->cur_desc, NULL); 1938 } else { 1939 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 1940 } 1941 1942 if (unlikely(ret)) { 1943 /* couldn't process descriptor, back off for recovery */ 1944 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); 1945 break; 1946 } 1947 1948 rspq_next(q); 1949 budget_left--; 1950 } 1951 1952 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) 1953 __refill_fl(q->adap, &rxq->fl); 1954 return budget - budget_left; 1955 } 1956 1957 /** 1958 * napi_rx_handler - the NAPI handler for Rx processing 1959 * @napi: the napi instance 1960 * @budget: how many packets we can process in this round 1961 * 1962 * Handler for new data events when using NAPI. This does not need any 1963 * locking or protection from interrupts as data interrupts are off at 1964 * this point and other adapter interrupts do not interfere (the latter 1965 * in not a concern at all with MSI-X as non-data interrupts then have 1966 * a separate handler). 1967 */ 1968 static int napi_rx_handler(struct napi_struct *napi, int budget) 1969 { 1970 unsigned int params; 1971 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 1972 int work_done = process_responses(q, budget); 1973 u32 val; 1974 1975 if (likely(work_done < budget)) { 1976 int timer_index; 1977 1978 napi_complete(napi); 1979 timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params); 1980 1981 if (q->adaptive_rx) { 1982 if (work_done > max(timer_pkt_quota[timer_index], 1983 MIN_NAPI_WORK)) 1984 timer_index = (timer_index + 1); 1985 else 1986 timer_index = timer_index - 1; 1987 1988 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 1989 q->next_intr_params = QINTR_TIMER_IDX(timer_index) | 1990 V_QINTR_CNT_EN; 1991 params = q->next_intr_params; 1992 } else { 1993 params = q->next_intr_params; 1994 q->next_intr_params = q->intr_params; 1995 } 1996 } else 1997 params = QINTR_TIMER_IDX(7); 1998 1999 val = CIDXINC(work_done) | SEINTARM(params); 2000 if (is_t4(q->adap->params.chip)) { 2001 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), 2002 val | INGRESSQID((u32)q->cntxt_id)); 2003 } else { 2004 writel(val, q->adap->bar2 + q->udb + SGE_UDB_GTS); 2005 wmb(); 2006 } 2007 return work_done; 2008 } 2009 2010 /* 2011 * The MSI-X interrupt handler for an SGE response queue. 2012 */ 2013 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 2014 { 2015 struct sge_rspq *q = cookie; 2016 2017 napi_schedule(&q->napi); 2018 return IRQ_HANDLED; 2019 } 2020 2021 /* 2022 * Process the indirect interrupt entries in the interrupt queue and kick off 2023 * NAPI for each queue that has generated an entry. 2024 */ 2025 static unsigned int process_intrq(struct adapter *adap) 2026 { 2027 unsigned int credits; 2028 const struct rsp_ctrl *rc; 2029 struct sge_rspq *q = &adap->sge.intrq; 2030 u32 val; 2031 2032 spin_lock(&adap->sge.intrq_lock); 2033 for (credits = 0; ; credits++) { 2034 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2035 if (!is_new_response(rc, q)) 2036 break; 2037 2038 rmb(); 2039 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { 2040 unsigned int qid = ntohl(rc->pldbuflen_qid); 2041 2042 qid -= adap->sge.ingr_start; 2043 napi_schedule(&adap->sge.ingr_map[qid]->napi); 2044 } 2045 2046 rspq_next(q); 2047 } 2048 2049 val = CIDXINC(credits) | SEINTARM(q->intr_params); 2050 if (is_t4(adap->params.chip)) { 2051 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), 2052 val | INGRESSQID(q->cntxt_id)); 2053 } else { 2054 writel(val, adap->bar2 + q->udb + SGE_UDB_GTS); 2055 wmb(); 2056 } 2057 spin_unlock(&adap->sge.intrq_lock); 2058 return credits; 2059 } 2060 2061 /* 2062 * The MSI interrupt handler, which handles data events from SGE response queues 2063 * as well as error and other async events as they all use the same MSI vector. 2064 */ 2065 static irqreturn_t t4_intr_msi(int irq, void *cookie) 2066 { 2067 struct adapter *adap = cookie; 2068 2069 t4_slow_intr_handler(adap); 2070 process_intrq(adap); 2071 return IRQ_HANDLED; 2072 } 2073 2074 /* 2075 * Interrupt handler for legacy INTx interrupts. 2076 * Handles data events from SGE response queues as well as error and other 2077 * async events as they all use the same interrupt line. 2078 */ 2079 static irqreturn_t t4_intr_intx(int irq, void *cookie) 2080 { 2081 struct adapter *adap = cookie; 2082 2083 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0); 2084 if (t4_slow_intr_handler(adap) | process_intrq(adap)) 2085 return IRQ_HANDLED; 2086 return IRQ_NONE; /* probably shared interrupt */ 2087 } 2088 2089 /** 2090 * t4_intr_handler - select the top-level interrupt handler 2091 * @adap: the adapter 2092 * 2093 * Selects the top-level interrupt handler based on the type of interrupts 2094 * (MSI-X, MSI, or INTx). 2095 */ 2096 irq_handler_t t4_intr_handler(struct adapter *adap) 2097 { 2098 if (adap->flags & USING_MSIX) 2099 return t4_sge_intr_msix; 2100 if (adap->flags & USING_MSI) 2101 return t4_intr_msi; 2102 return t4_intr_intx; 2103 } 2104 2105 static void sge_rx_timer_cb(unsigned long data) 2106 { 2107 unsigned long m; 2108 unsigned int i, idma_same_state_cnt[2]; 2109 struct adapter *adap = (struct adapter *)data; 2110 struct sge *s = &adap->sge; 2111 2112 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) 2113 for (m = s->starving_fl[i]; m; m &= m - 1) { 2114 struct sge_eth_rxq *rxq; 2115 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2116 struct sge_fl *fl = s->egr_map[id]; 2117 2118 clear_bit(id, s->starving_fl); 2119 smp_mb__after_atomic(); 2120 2121 if (fl_starving(fl)) { 2122 rxq = container_of(fl, struct sge_eth_rxq, fl); 2123 if (napi_reschedule(&rxq->rspq.napi)) 2124 fl->starving++; 2125 else 2126 set_bit(id, s->starving_fl); 2127 } 2128 } 2129 2130 t4_write_reg(adap, SGE_DEBUG_INDEX, 13); 2131 idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH); 2132 idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW); 2133 2134 for (i = 0; i < 2; i++) { 2135 u32 debug0, debug11; 2136 2137 /* If the Ingress DMA Same State Counter ("timer") is less 2138 * than 1s, then we can reset our synthesized Stall Timer and 2139 * continue. If we have previously emitted warnings about a 2140 * potential stalled Ingress Queue, issue a note indicating 2141 * that the Ingress Queue has resumed forward progress. 2142 */ 2143 if (idma_same_state_cnt[i] < s->idma_1s_thresh) { 2144 if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH) 2145 CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n", 2146 i, s->idma_qid[i], 2147 s->idma_stalled[i]/HZ); 2148 s->idma_stalled[i] = 0; 2149 continue; 2150 } 2151 2152 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 2153 * domain. The first time we get here it'll be because we 2154 * passed the 1s Threshold; each additional time it'll be 2155 * because the RX Timer Callback is being fired on its regular 2156 * schedule. 2157 * 2158 * If the stall is below our Potential Hung Ingress Queue 2159 * Warning Threshold, continue. 2160 */ 2161 if (s->idma_stalled[i] == 0) 2162 s->idma_stalled[i] = HZ; 2163 else 2164 s->idma_stalled[i] += RX_QCHECK_PERIOD; 2165 2166 if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH) 2167 continue; 2168 2169 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */ 2170 if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0) 2171 continue; 2172 2173 /* Read and save the SGE IDMA State and Queue ID information. 2174 * We do this every time in case it changes across time ... 2175 */ 2176 t4_write_reg(adap, SGE_DEBUG_INDEX, 0); 2177 debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW); 2178 s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 2179 2180 t4_write_reg(adap, SGE_DEBUG_INDEX, 11); 2181 debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW); 2182 s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 2183 2184 CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n", 2185 i, s->idma_qid[i], s->idma_state[i], 2186 s->idma_stalled[i]/HZ, debug0, debug11); 2187 t4_sge_decode_idma_state(adap, s->idma_state[i]); 2188 } 2189 2190 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2191 } 2192 2193 static void sge_tx_timer_cb(unsigned long data) 2194 { 2195 unsigned long m; 2196 unsigned int i, budget; 2197 struct adapter *adap = (struct adapter *)data; 2198 struct sge *s = &adap->sge; 2199 2200 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) 2201 for (m = s->txq_maperr[i]; m; m &= m - 1) { 2202 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 2203 struct sge_ofld_txq *txq = s->egr_map[id]; 2204 2205 clear_bit(id, s->txq_maperr); 2206 tasklet_schedule(&txq->qresume_tsk); 2207 } 2208 2209 budget = MAX_TIMER_TX_RECLAIM; 2210 i = s->ethtxq_rover; 2211 do { 2212 struct sge_eth_txq *q = &s->ethtxq[i]; 2213 2214 if (q->q.in_use && 2215 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 2216 __netif_tx_trylock(q->txq)) { 2217 int avail = reclaimable(&q->q); 2218 2219 if (avail) { 2220 if (avail > budget) 2221 avail = budget; 2222 2223 free_tx_desc(adap, &q->q, avail, true); 2224 q->q.in_use -= avail; 2225 budget -= avail; 2226 } 2227 __netif_tx_unlock(q->txq); 2228 } 2229 2230 if (++i >= s->ethqsets) 2231 i = 0; 2232 } while (budget && i != s->ethtxq_rover); 2233 s->ethtxq_rover = i; 2234 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2235 } 2236 2237 /** 2238 * udb_address - return the BAR2 User Doorbell address for a Queue 2239 * @adap: the adapter 2240 * @cntxt_id: the Queue Context ID 2241 * @qpp: Queues Per Page (for all PFs) 2242 * 2243 * Returns the BAR2 address of the user Doorbell associated with the 2244 * indicated Queue Context ID. Note that this is only applicable 2245 * for T5 and later. 2246 */ 2247 static u64 udb_address(struct adapter *adap, unsigned int cntxt_id, 2248 unsigned int qpp) 2249 { 2250 u64 udb; 2251 unsigned int s_qpp; 2252 unsigned short udb_density; 2253 unsigned long qpshift; 2254 int page; 2255 2256 BUG_ON(is_t4(adap->params.chip)); 2257 2258 s_qpp = (QUEUESPERPAGEPF0 + 2259 (QUEUESPERPAGEPF1 - QUEUESPERPAGEPF0) * adap->fn); 2260 udb_density = 1 << ((qpp >> s_qpp) & QUEUESPERPAGEPF0_MASK); 2261 qpshift = PAGE_SHIFT - ilog2(udb_density); 2262 udb = (u64)cntxt_id << qpshift; 2263 udb &= PAGE_MASK; 2264 page = udb / PAGE_SIZE; 2265 udb += (cntxt_id - (page * udb_density)) * SGE_UDB_SIZE; 2266 2267 return udb; 2268 } 2269 2270 static u64 udb_address_eq(struct adapter *adap, unsigned int cntxt_id) 2271 { 2272 return udb_address(adap, cntxt_id, 2273 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF)); 2274 } 2275 2276 static u64 udb_address_iq(struct adapter *adap, unsigned int cntxt_id) 2277 { 2278 return udb_address(adap, cntxt_id, 2279 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF)); 2280 } 2281 2282 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 2283 struct net_device *dev, int intr_idx, 2284 struct sge_fl *fl, rspq_handler_t hnd) 2285 { 2286 int ret, flsz = 0; 2287 struct fw_iq_cmd c; 2288 struct sge *s = &adap->sge; 2289 struct port_info *pi = netdev_priv(dev); 2290 2291 /* Size needs to be multiple of 16, including status entry. */ 2292 iq->size = roundup(iq->size, 16); 2293 2294 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 2295 &iq->phys_addr, NULL, 0, NUMA_NO_NODE); 2296 if (!iq->desc) 2297 return -ENOMEM; 2298 2299 memset(&c, 0, sizeof(c)); 2300 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | 2301 FW_CMD_WRITE | FW_CMD_EXEC | 2302 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0)); 2303 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) | 2304 FW_LEN16(c)); 2305 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2306 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) | 2307 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) | 2308 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : 2309 -intr_idx - 1)); 2310 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2311 FW_IQ_CMD_IQGTSMODE | 2312 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | 2313 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); 2314 c.iqsize = htons(iq->size); 2315 c.iqaddr = cpu_to_be64(iq->phys_addr); 2316 2317 if (fl) { 2318 fl->size = roundup(fl->size, 8); 2319 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 2320 sizeof(struct rx_sw_desc), &fl->addr, 2321 &fl->sdesc, s->stat_len, NUMA_NO_NODE); 2322 if (!fl->desc) 2323 goto fl_nomem; 2324 2325 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 2326 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) | 2327 FW_IQ_CMD_FL0FETCHRO(1) | 2328 FW_IQ_CMD_FL0DATARO(1) | 2329 FW_IQ_CMD_FL0PADEN(1)); 2330 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) | 2331 FW_IQ_CMD_FL0FBMAX(3)); 2332 c.fl0size = htons(flsz); 2333 c.fl0addr = cpu_to_be64(fl->addr); 2334 } 2335 2336 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2337 if (ret) 2338 goto err; 2339 2340 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 2341 iq->cur_desc = iq->desc; 2342 iq->cidx = 0; 2343 iq->gen = 1; 2344 iq->next_intr_params = iq->intr_params; 2345 iq->cntxt_id = ntohs(c.iqid); 2346 iq->abs_id = ntohs(c.physiqid); 2347 if (!is_t4(adap->params.chip)) 2348 iq->udb = udb_address_iq(adap, iq->cntxt_id); 2349 iq->size--; /* subtract status entry */ 2350 iq->netdev = dev; 2351 iq->handler = hnd; 2352 2353 /* set offset to -1 to distinguish ingress queues without FL */ 2354 iq->offset = fl ? 0 : -1; 2355 2356 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 2357 2358 if (fl) { 2359 fl->cntxt_id = ntohs(c.fl0id); 2360 fl->avail = fl->pend_cred = 0; 2361 fl->pidx = fl->cidx = 0; 2362 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 2363 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 2364 2365 /* Note, we must initialize the Free List User Doorbell 2366 * address before refilling the Free List! 2367 */ 2368 if (!is_t4(adap->params.chip)) 2369 fl->udb = udb_address_eq(adap, fl->cntxt_id); 2370 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 2371 } 2372 return 0; 2373 2374 fl_nomem: 2375 ret = -ENOMEM; 2376 err: 2377 if (iq->desc) { 2378 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 2379 iq->desc, iq->phys_addr); 2380 iq->desc = NULL; 2381 } 2382 if (fl && fl->desc) { 2383 kfree(fl->sdesc); 2384 fl->sdesc = NULL; 2385 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 2386 fl->desc, fl->addr); 2387 fl->desc = NULL; 2388 } 2389 return ret; 2390 } 2391 2392 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 2393 { 2394 q->cntxt_id = id; 2395 if (!is_t4(adap->params.chip)) 2396 q->udb = udb_address_eq(adap, q->cntxt_id); 2397 2398 q->in_use = 0; 2399 q->cidx = q->pidx = 0; 2400 q->stops = q->restarts = 0; 2401 q->stat = (void *)&q->desc[q->size]; 2402 spin_lock_init(&q->db_lock); 2403 adap->sge.egr_map[id - adap->sge.egr_start] = q; 2404 } 2405 2406 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 2407 struct net_device *dev, struct netdev_queue *netdevq, 2408 unsigned int iqid) 2409 { 2410 int ret, nentries; 2411 struct fw_eq_eth_cmd c; 2412 struct sge *s = &adap->sge; 2413 struct port_info *pi = netdev_priv(dev); 2414 2415 /* Add status entries */ 2416 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2417 2418 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2419 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2420 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 2421 netdev_queue_numa_node_read(netdevq)); 2422 if (!txq->q.desc) 2423 return -ENOMEM; 2424 2425 memset(&c, 0, sizeof(c)); 2426 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | 2427 FW_CMD_WRITE | FW_CMD_EXEC | 2428 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0)); 2429 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC | 2430 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 2431 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE | 2432 FW_EQ_ETH_CMD_VIID(pi->viid)); 2433 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) | 2434 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | 2435 FW_EQ_ETH_CMD_FETCHRO(1) | 2436 FW_EQ_ETH_CMD_IQID(iqid)); 2437 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) | 2438 FW_EQ_ETH_CMD_FBMAX(3) | 2439 FW_EQ_ETH_CMD_CIDXFTHRESH(5) | 2440 FW_EQ_ETH_CMD_EQSIZE(nentries)); 2441 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2442 2443 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2444 if (ret) { 2445 kfree(txq->q.sdesc); 2446 txq->q.sdesc = NULL; 2447 dma_free_coherent(adap->pdev_dev, 2448 nentries * sizeof(struct tx_desc), 2449 txq->q.desc, txq->q.phys_addr); 2450 txq->q.desc = NULL; 2451 return ret; 2452 } 2453 2454 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd))); 2455 txq->txq = netdevq; 2456 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 2457 txq->mapping_err = 0; 2458 return 0; 2459 } 2460 2461 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 2462 struct net_device *dev, unsigned int iqid, 2463 unsigned int cmplqid) 2464 { 2465 int ret, nentries; 2466 struct fw_eq_ctrl_cmd c; 2467 struct sge *s = &adap->sge; 2468 struct port_info *pi = netdev_priv(dev); 2469 2470 /* Add status entries */ 2471 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2472 2473 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 2474 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 2475 NULL, 0, NUMA_NO_NODE); 2476 if (!txq->q.desc) 2477 return -ENOMEM; 2478 2479 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | 2480 FW_CMD_WRITE | FW_CMD_EXEC | 2481 FW_EQ_CTRL_CMD_PFN(adap->fn) | 2482 FW_EQ_CTRL_CMD_VFN(0)); 2483 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC | 2484 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 2485 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid)); 2486 c.physeqid_pkd = htonl(0); 2487 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) | 2488 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) | 2489 FW_EQ_CTRL_CMD_FETCHRO | 2490 FW_EQ_CTRL_CMD_IQID(iqid)); 2491 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) | 2492 FW_EQ_CTRL_CMD_FBMAX(3) | 2493 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) | 2494 FW_EQ_CTRL_CMD_EQSIZE(nentries)); 2495 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2496 2497 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2498 if (ret) { 2499 dma_free_coherent(adap->pdev_dev, 2500 nentries * sizeof(struct tx_desc), 2501 txq->q.desc, txq->q.phys_addr); 2502 txq->q.desc = NULL; 2503 return ret; 2504 } 2505 2506 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid))); 2507 txq->adap = adap; 2508 skb_queue_head_init(&txq->sendq); 2509 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 2510 txq->full = 0; 2511 return 0; 2512 } 2513 2514 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, 2515 struct net_device *dev, unsigned int iqid) 2516 { 2517 int ret, nentries; 2518 struct fw_eq_ofld_cmd c; 2519 struct sge *s = &adap->sge; 2520 struct port_info *pi = netdev_priv(dev); 2521 2522 /* Add status entries */ 2523 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2524 2525 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2526 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2527 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 2528 NUMA_NO_NODE); 2529 if (!txq->q.desc) 2530 return -ENOMEM; 2531 2532 memset(&c, 0, sizeof(c)); 2533 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | 2534 FW_CMD_WRITE | FW_CMD_EXEC | 2535 FW_EQ_OFLD_CMD_PFN(adap->fn) | 2536 FW_EQ_OFLD_CMD_VFN(0)); 2537 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC | 2538 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 2539 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) | 2540 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) | 2541 FW_EQ_OFLD_CMD_FETCHRO(1) | 2542 FW_EQ_OFLD_CMD_IQID(iqid)); 2543 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) | 2544 FW_EQ_OFLD_CMD_FBMAX(3) | 2545 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) | 2546 FW_EQ_OFLD_CMD_EQSIZE(nentries)); 2547 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2548 2549 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2550 if (ret) { 2551 kfree(txq->q.sdesc); 2552 txq->q.sdesc = NULL; 2553 dma_free_coherent(adap->pdev_dev, 2554 nentries * sizeof(struct tx_desc), 2555 txq->q.desc, txq->q.phys_addr); 2556 txq->q.desc = NULL; 2557 return ret; 2558 } 2559 2560 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd))); 2561 txq->adap = adap; 2562 skb_queue_head_init(&txq->sendq); 2563 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 2564 txq->full = 0; 2565 txq->mapping_err = 0; 2566 return 0; 2567 } 2568 2569 static void free_txq(struct adapter *adap, struct sge_txq *q) 2570 { 2571 struct sge *s = &adap->sge; 2572 2573 dma_free_coherent(adap->pdev_dev, 2574 q->size * sizeof(struct tx_desc) + s->stat_len, 2575 q->desc, q->phys_addr); 2576 q->cntxt_id = 0; 2577 q->sdesc = NULL; 2578 q->desc = NULL; 2579 } 2580 2581 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 2582 struct sge_fl *fl) 2583 { 2584 struct sge *s = &adap->sge; 2585 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 2586 2587 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 2588 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, 2589 rq->cntxt_id, fl_id, 0xffff); 2590 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 2591 rq->desc, rq->phys_addr); 2592 netif_napi_del(&rq->napi); 2593 rq->netdev = NULL; 2594 rq->cntxt_id = rq->abs_id = 0; 2595 rq->desc = NULL; 2596 2597 if (fl) { 2598 free_rx_bufs(adap, fl, fl->avail); 2599 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 2600 fl->desc, fl->addr); 2601 kfree(fl->sdesc); 2602 fl->sdesc = NULL; 2603 fl->cntxt_id = 0; 2604 fl->desc = NULL; 2605 } 2606 } 2607 2608 /** 2609 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 2610 * @adap: the adapter 2611 * @n: number of queues 2612 * @q: pointer to first queue 2613 * 2614 * Release the resources of a consecutive block of offload Rx queues. 2615 */ 2616 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 2617 { 2618 for ( ; n; n--, q++) 2619 if (q->rspq.desc) 2620 free_rspq_fl(adap, &q->rspq, 2621 q->fl.size ? &q->fl : NULL); 2622 } 2623 2624 /** 2625 * t4_free_sge_resources - free SGE resources 2626 * @adap: the adapter 2627 * 2628 * Frees resources used by the SGE queue sets. 2629 */ 2630 void t4_free_sge_resources(struct adapter *adap) 2631 { 2632 int i; 2633 struct sge_eth_rxq *eq = adap->sge.ethrxq; 2634 struct sge_eth_txq *etq = adap->sge.ethtxq; 2635 2636 /* clean up Ethernet Tx/Rx queues */ 2637 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { 2638 if (eq->rspq.desc) 2639 free_rspq_fl(adap, &eq->rspq, 2640 eq->fl.size ? &eq->fl : NULL); 2641 if (etq->q.desc) { 2642 t4_eth_eq_free(adap, adap->fn, adap->fn, 0, 2643 etq->q.cntxt_id); 2644 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 2645 kfree(etq->q.sdesc); 2646 free_txq(adap, &etq->q); 2647 } 2648 } 2649 2650 /* clean up RDMA and iSCSI Rx queues */ 2651 t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq); 2652 t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq); 2653 t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq); 2654 2655 /* clean up offload Tx queues */ 2656 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { 2657 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; 2658 2659 if (q->q.desc) { 2660 tasklet_kill(&q->qresume_tsk); 2661 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, 2662 q->q.cntxt_id); 2663 free_tx_desc(adap, &q->q, q->q.in_use, false); 2664 kfree(q->q.sdesc); 2665 __skb_queue_purge(&q->sendq); 2666 free_txq(adap, &q->q); 2667 } 2668 } 2669 2670 /* clean up control Tx queues */ 2671 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 2672 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 2673 2674 if (cq->q.desc) { 2675 tasklet_kill(&cq->qresume_tsk); 2676 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, 2677 cq->q.cntxt_id); 2678 __skb_queue_purge(&cq->sendq); 2679 free_txq(adap, &cq->q); 2680 } 2681 } 2682 2683 if (adap->sge.fw_evtq.desc) 2684 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 2685 2686 if (adap->sge.intrq.desc) 2687 free_rspq_fl(adap, &adap->sge.intrq, NULL); 2688 2689 /* clear the reverse egress queue map */ 2690 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); 2691 } 2692 2693 void t4_sge_start(struct adapter *adap) 2694 { 2695 adap->sge.ethtxq_rover = 0; 2696 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2697 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2698 } 2699 2700 /** 2701 * t4_sge_stop - disable SGE operation 2702 * @adap: the adapter 2703 * 2704 * Stop tasklets and timers associated with the DMA engine. Note that 2705 * this is effective only if measures have been taken to disable any HW 2706 * events that may restart them. 2707 */ 2708 void t4_sge_stop(struct adapter *adap) 2709 { 2710 int i; 2711 struct sge *s = &adap->sge; 2712 2713 if (in_interrupt()) /* actions below require waiting */ 2714 return; 2715 2716 if (s->rx_timer.function) 2717 del_timer_sync(&s->rx_timer); 2718 if (s->tx_timer.function) 2719 del_timer_sync(&s->tx_timer); 2720 2721 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { 2722 struct sge_ofld_txq *q = &s->ofldtxq[i]; 2723 2724 if (q->q.desc) 2725 tasklet_kill(&q->qresume_tsk); 2726 } 2727 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 2728 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 2729 2730 if (cq->q.desc) 2731 tasklet_kill(&cq->qresume_tsk); 2732 } 2733 } 2734 2735 /** 2736 * t4_sge_init - initialize SGE 2737 * @adap: the adapter 2738 * 2739 * Performs SGE initialization needed every time after a chip reset. 2740 * We do not initialize any of the queues here, instead the driver 2741 * top-level must request them individually. 2742 * 2743 * Called in two different modes: 2744 * 2745 * 1. Perform actual hardware initialization and record hard-coded 2746 * parameters which were used. This gets used when we're the 2747 * Master PF and the Firmware Configuration File support didn't 2748 * work for some reason. 2749 * 2750 * 2. We're not the Master PF or initialization was performed with 2751 * a Firmware Configuration File. In this case we need to grab 2752 * any of the SGE operating parameters that we need to have in 2753 * order to do our job and make sure we can live with them ... 2754 */ 2755 2756 static int t4_sge_init_soft(struct adapter *adap) 2757 { 2758 struct sge *s = &adap->sge; 2759 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 2760 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 2761 u32 ingress_rx_threshold; 2762 2763 /* 2764 * Verify that CPL messages are going to the Ingress Queue for 2765 * process_responses() and that only packet data is going to the 2766 * Free Lists. 2767 */ 2768 if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) != 2769 RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) { 2770 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 2771 return -EINVAL; 2772 } 2773 2774 /* 2775 * Validate the Host Buffer Register Array indices that we want to 2776 * use ... 2777 * 2778 * XXX Note that we should really read through the Host Buffer Size 2779 * XXX register array and find the indices of the Buffer Sizes which 2780 * XXX meet our needs! 2781 */ 2782 #define READ_FL_BUF(x) \ 2783 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32)) 2784 2785 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 2786 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 2787 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 2788 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 2789 2790 /* We only bother using the Large Page logic if the Large Page Buffer 2791 * is larger than our Page Size Buffer. 2792 */ 2793 if (fl_large_pg <= fl_small_pg) 2794 fl_large_pg = 0; 2795 2796 #undef READ_FL_BUF 2797 2798 /* The Page Size Buffer must be exactly equal to our Page Size and the 2799 * Large Page Size Buffer should be 0 (per above) or a power of 2. 2800 */ 2801 if (fl_small_pg != PAGE_SIZE || 2802 (fl_large_pg & (fl_large_pg-1)) != 0) { 2803 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 2804 fl_small_pg, fl_large_pg); 2805 return -EINVAL; 2806 } 2807 if (fl_large_pg) 2808 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 2809 2810 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 2811 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 2812 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 2813 fl_small_mtu, fl_large_mtu); 2814 return -EINVAL; 2815 } 2816 2817 /* 2818 * Retrieve our RX interrupt holdoff timer values and counter 2819 * threshold values from the SGE parameters. 2820 */ 2821 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1); 2822 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3); 2823 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5); 2824 s->timer_val[0] = core_ticks_to_us(adap, 2825 TIMERVALUE0_GET(timer_value_0_and_1)); 2826 s->timer_val[1] = core_ticks_to_us(adap, 2827 TIMERVALUE1_GET(timer_value_0_and_1)); 2828 s->timer_val[2] = core_ticks_to_us(adap, 2829 TIMERVALUE2_GET(timer_value_2_and_3)); 2830 s->timer_val[3] = core_ticks_to_us(adap, 2831 TIMERVALUE3_GET(timer_value_2_and_3)); 2832 s->timer_val[4] = core_ticks_to_us(adap, 2833 TIMERVALUE4_GET(timer_value_4_and_5)); 2834 s->timer_val[5] = core_ticks_to_us(adap, 2835 TIMERVALUE5_GET(timer_value_4_and_5)); 2836 2837 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD); 2838 s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold); 2839 s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold); 2840 s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold); 2841 s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold); 2842 2843 return 0; 2844 } 2845 2846 static int t4_sge_init_hard(struct adapter *adap) 2847 { 2848 struct sge *s = &adap->sge; 2849 2850 /* 2851 * Set up our basic SGE mode to deliver CPL messages to our Ingress 2852 * Queue and Packet Date to the Free List. 2853 */ 2854 t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK, 2855 RXPKTCPLMODE_MASK); 2856 2857 /* 2858 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows 2859 * and generate an interrupt when this occurs so we can recover. 2860 */ 2861 if (is_t4(adap->params.chip)) { 2862 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS, 2863 V_HP_INT_THRESH(M_HP_INT_THRESH) | 2864 V_LP_INT_THRESH(M_LP_INT_THRESH), 2865 V_HP_INT_THRESH(dbfifo_int_thresh) | 2866 V_LP_INT_THRESH(dbfifo_int_thresh)); 2867 } else { 2868 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS, 2869 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5), 2870 V_LP_INT_THRESH_T5(dbfifo_int_thresh)); 2871 t4_set_reg_field(adap, SGE_DBFIFO_STATUS2, 2872 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5), 2873 V_HP_INT_THRESH_T5(dbfifo_int_thresh)); 2874 } 2875 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP, 2876 F_ENABLE_DROP); 2877 2878 /* 2879 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by 2880 * t4_fixup_host_params(). 2881 */ 2882 s->fl_pg_order = FL_PG_ORDER; 2883 if (s->fl_pg_order) 2884 t4_write_reg(adap, 2885 SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32), 2886 PAGE_SIZE << FL_PG_ORDER); 2887 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32), 2888 FL_MTU_SMALL_BUFSIZE(adap)); 2889 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32), 2890 FL_MTU_LARGE_BUFSIZE(adap)); 2891 2892 /* 2893 * Note that the SGE Ingress Packet Count Interrupt Threshold and 2894 * Timer Holdoff values must be supplied by our caller. 2895 */ 2896 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD, 2897 THRESHOLD_0(s->counter_val[0]) | 2898 THRESHOLD_1(s->counter_val[1]) | 2899 THRESHOLD_2(s->counter_val[2]) | 2900 THRESHOLD_3(s->counter_val[3])); 2901 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1, 2902 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) | 2903 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1]))); 2904 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3, 2905 TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) | 2906 TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3]))); 2907 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5, 2908 TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) | 2909 TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5]))); 2910 2911 return 0; 2912 } 2913 2914 int t4_sge_init(struct adapter *adap) 2915 { 2916 struct sge *s = &adap->sge; 2917 u32 sge_control, sge_conm_ctrl; 2918 int ret, egress_threshold; 2919 2920 /* 2921 * Ingress Padding Boundary and Egress Status Page Size are set up by 2922 * t4_fixup_host_params(). 2923 */ 2924 sge_control = t4_read_reg(adap, SGE_CONTROL); 2925 s->pktshift = PKTSHIFT_GET(sge_control); 2926 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64; 2927 s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) + 2928 X_INGPADBOUNDARY_SHIFT); 2929 2930 if (adap->flags & USING_SOFT_PARAMS) 2931 ret = t4_sge_init_soft(adap); 2932 else 2933 ret = t4_sge_init_hard(adap); 2934 if (ret < 0) 2935 return ret; 2936 2937 /* 2938 * A FL with <= fl_starve_thres buffers is starving and a periodic 2939 * timer will attempt to refill it. This needs to be larger than the 2940 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2941 * stuck waiting for new packets while the SGE is waiting for us to 2942 * give it more Free List entries. (Note that the SGE's Egress 2943 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 2944 * there was only a single field to control this. For T5 there's the 2945 * original field which now only applies to Unpacked Mode Free List 2946 * buffers and a new field which only applies to Packed Mode Free List 2947 * buffers. 2948 */ 2949 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL); 2950 if (is_t4(adap->params.chip)) 2951 egress_threshold = EGRTHRESHOLD_GET(sge_conm_ctrl); 2952 else 2953 egress_threshold = EGRTHRESHOLDPACKING_GET(sge_conm_ctrl); 2954 s->fl_starve_thres = 2*egress_threshold + 1; 2955 2956 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); 2957 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); 2958 s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */ 2959 s->idma_stalled[0] = 0; 2960 s->idma_stalled[1] = 0; 2961 spin_lock_init(&s->intrq_lock); 2962 2963 return 0; 2964 } 2965