1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adap: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 PCI_DMA_FROMDEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 PCI_DMA_FROMDEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 PCI_DMA_FROMDEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * @chip_ver: chip version 726 * 727 * Returns whether an Ethernet packet is small enough to fit as 728 * immediate data. Return value corresponds to headroom required. 729 */ 730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 731 { 732 int hdrlen = 0; 733 734 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 735 chip_ver > CHELSIO_T5) { 736 hdrlen = sizeof(struct cpl_tx_tnl_lso); 737 hdrlen += sizeof(struct cpl_tx_pkt_core); 738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 739 return 0; 740 } else { 741 hdrlen = skb_shinfo(skb)->gso_size ? 742 sizeof(struct cpl_tx_pkt_lso_core) : 0; 743 hdrlen += sizeof(struct cpl_tx_pkt); 744 } 745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 746 return hdrlen; 747 return 0; 748 } 749 750 /** 751 * calc_tx_flits - calculate the number of flits for a packet Tx WR 752 * @skb: the packet 753 * @chip_ver: chip version 754 * 755 * Returns the number of flits needed for a Tx WR for the given Ethernet 756 * packet, including the needed WR and CPL headers. 757 */ 758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 759 unsigned int chip_ver) 760 { 761 unsigned int flits; 762 int hdrlen = is_eth_imm(skb, chip_ver); 763 764 /* If the skb is small enough, we can pump it out as a work request 765 * with only immediate data. In that case we just have to have the 766 * TX Packet header plus the skb data in the Work Request. 767 */ 768 769 if (hdrlen) 770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 771 772 /* Otherwise, we're going to have to construct a Scatter gather list 773 * of the skb body and fragments. We also include the flits necessary 774 * for the TX Packet Work Request and CPL. We always have a firmware 775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 777 * message or, if we're doing a Large Send Offload, an LSO CPL message 778 * with an embedded TX Packet Write CPL message. 779 */ 780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 781 if (skb_shinfo(skb)->gso_size) { 782 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 784 sizeof(struct cpl_tx_tnl_lso); 785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 786 u32 pkt_hdrlen; 787 788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 789 skb_headlen(skb)); 790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 791 round_up(pkt_hdrlen, 16); 792 } else { 793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 794 sizeof(struct cpl_tx_pkt_lso_core); 795 } 796 797 hdrlen += sizeof(struct cpl_tx_pkt_core); 798 flits += (hdrlen / sizeof(__be64)); 799 } else { 800 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 802 } 803 return flits; 804 } 805 806 /** 807 * calc_tx_descs - calculate the number of Tx descriptors for a packet 808 * @skb: the packet 809 * @chip_ver: chip version 810 * 811 * Returns the number of Tx descriptors needed for the given Ethernet 812 * packet, including the needed WR and CPL headers. 813 */ 814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 815 unsigned int chip_ver) 816 { 817 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 818 } 819 820 /** 821 * cxgb4_write_sgl - populate a scatter/gather list for a packet 822 * @skb: the packet 823 * @q: the Tx queue we are writing into 824 * @sgl: starting location for writing the SGL 825 * @end: points right after the end of the SGL 826 * @start: start offset into skb main-body data to include in the SGL 827 * @addr: the list of bus addresses for the SGL elements 828 * 829 * Generates a gather list for the buffers that make up a packet. 830 * The caller must provide adequate space for the SGL that will be written. 831 * The SGL includes all of the packet's page fragments and the data in its 832 * main body except for the first @start bytes. @sgl must be 16-byte 833 * aligned and within a Tx descriptor with available space. @end points 834 * right after the end of the SGL but does not account for any potential 835 * wrap around, i.e., @end > @sgl. 836 */ 837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 838 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 839 const dma_addr_t *addr) 840 { 841 unsigned int i, len; 842 struct ulptx_sge_pair *to; 843 const struct skb_shared_info *si = skb_shinfo(skb); 844 unsigned int nfrags = si->nr_frags; 845 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 846 847 len = skb_headlen(skb) - start; 848 if (likely(len)) { 849 sgl->len0 = htonl(len); 850 sgl->addr0 = cpu_to_be64(addr[0] + start); 851 nfrags++; 852 } else { 853 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 854 sgl->addr0 = cpu_to_be64(addr[1]); 855 } 856 857 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 858 ULPTX_NSGE_V(nfrags)); 859 if (likely(--nfrags == 0)) 860 return; 861 /* 862 * Most of the complexity below deals with the possibility we hit the 863 * end of the queue in the middle of writing the SGL. For this case 864 * only we create the SGL in a temporary buffer and then copy it. 865 */ 866 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 867 868 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 869 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 870 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 871 to->addr[0] = cpu_to_be64(addr[i]); 872 to->addr[1] = cpu_to_be64(addr[++i]); 873 } 874 if (nfrags) { 875 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 876 to->len[1] = cpu_to_be32(0); 877 to->addr[0] = cpu_to_be64(addr[i + 1]); 878 } 879 if (unlikely((u8 *)end > (u8 *)q->stat)) { 880 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 881 882 if (likely(part0)) 883 memcpy(sgl->sge, buf, part0); 884 part1 = (u8 *)end - (u8 *)q->stat; 885 memcpy(q->desc, (u8 *)buf + part0, part1); 886 end = (void *)q->desc + part1; 887 } 888 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 889 *end = 0; 890 } 891 EXPORT_SYMBOL(cxgb4_write_sgl); 892 893 /* This function copies 64 byte coalesced work request to 894 * memory mapped BAR2 space. For coalesced WR SGE fetches 895 * data from the FIFO instead of from Host. 896 */ 897 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 898 { 899 int count = 8; 900 901 while (count) { 902 writeq(*src, dst); 903 src++; 904 dst++; 905 count--; 906 } 907 } 908 909 /** 910 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 911 * @adap: the adapter 912 * @q: the Tx queue 913 * @n: number of new descriptors to give to HW 914 * 915 * Ring the doorbel for a Tx queue. 916 */ 917 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 918 { 919 /* Make sure that all writes to the TX Descriptors are committed 920 * before we tell the hardware about them. 921 */ 922 wmb(); 923 924 /* If we don't have access to the new User Doorbell (T5+), use the old 925 * doorbell mechanism; otherwise use the new BAR2 mechanism. 926 */ 927 if (unlikely(q->bar2_addr == NULL)) { 928 u32 val = PIDX_V(n); 929 unsigned long flags; 930 931 /* For T4 we need to participate in the Doorbell Recovery 932 * mechanism. 933 */ 934 spin_lock_irqsave(&q->db_lock, flags); 935 if (!q->db_disabled) 936 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 937 QID_V(q->cntxt_id) | val); 938 else 939 q->db_pidx_inc += n; 940 q->db_pidx = q->pidx; 941 spin_unlock_irqrestore(&q->db_lock, flags); 942 } else { 943 u32 val = PIDX_T5_V(n); 944 945 /* T4 and later chips share the same PIDX field offset within 946 * the doorbell, but T5 and later shrank the field in order to 947 * gain a bit for Doorbell Priority. The field was absurdly 948 * large in the first place (14 bits) so we just use the T5 949 * and later limits and warn if a Queue ID is too large. 950 */ 951 WARN_ON(val & DBPRIO_F); 952 953 /* If we're only writing a single TX Descriptor and we can use 954 * Inferred QID registers, we can use the Write Combining 955 * Gather Buffer; otherwise we use the simple doorbell. 956 */ 957 if (n == 1 && q->bar2_qid == 0) { 958 int index = (q->pidx 959 ? (q->pidx - 1) 960 : (q->size - 1)); 961 u64 *wr = (u64 *)&q->desc[index]; 962 963 cxgb_pio_copy((u64 __iomem *) 964 (q->bar2_addr + SGE_UDB_WCDOORBELL), 965 wr); 966 } else { 967 writel(val | QID_V(q->bar2_qid), 968 q->bar2_addr + SGE_UDB_KDOORBELL); 969 } 970 971 /* This Write Memory Barrier will force the write to the User 972 * Doorbell area to be flushed. This is needed to prevent 973 * writes on different CPUs for the same queue from hitting 974 * the adapter out of order. This is required when some Work 975 * Requests take the Write Combine Gather Buffer path (user 976 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 977 * take the traditional path where we simply increment the 978 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 979 * hardware DMA read the actual Work Request. 980 */ 981 wmb(); 982 } 983 } 984 EXPORT_SYMBOL(cxgb4_ring_tx_db); 985 986 /** 987 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 988 * @skb: the packet 989 * @q: the Tx queue where the packet will be inlined 990 * @pos: starting position in the Tx queue where to inline the packet 991 * 992 * Inline a packet's contents directly into Tx descriptors, starting at 993 * the given position within the Tx DMA ring. 994 * Most of the complexity of this operation is dealing with wrap arounds 995 * in the middle of the packet we want to inline. 996 */ 997 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 998 const struct sge_txq *q, void *pos) 999 { 1000 int left = (void *)q->stat - pos; 1001 u64 *p; 1002 1003 if (likely(skb->len <= left)) { 1004 if (likely(!skb->data_len)) 1005 skb_copy_from_linear_data(skb, pos, skb->len); 1006 else 1007 skb_copy_bits(skb, 0, pos, skb->len); 1008 pos += skb->len; 1009 } else { 1010 skb_copy_bits(skb, 0, pos, left); 1011 skb_copy_bits(skb, left, q->desc, skb->len - left); 1012 pos = (void *)q->desc + (skb->len - left); 1013 } 1014 1015 /* 0-pad to multiple of 16 */ 1016 p = PTR_ALIGN(pos, 8); 1017 if ((uintptr_t)p & 8) 1018 *p = 0; 1019 } 1020 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1021 1022 static void *inline_tx_skb_header(const struct sk_buff *skb, 1023 const struct sge_txq *q, void *pos, 1024 int length) 1025 { 1026 u64 *p; 1027 int left = (void *)q->stat - pos; 1028 1029 if (likely(length <= left)) { 1030 memcpy(pos, skb->data, length); 1031 pos += length; 1032 } else { 1033 memcpy(pos, skb->data, left); 1034 memcpy(q->desc, skb->data + left, length - left); 1035 pos = (void *)q->desc + (length - left); 1036 } 1037 /* 0-pad to multiple of 16 */ 1038 p = PTR_ALIGN(pos, 8); 1039 if ((uintptr_t)p & 8) { 1040 *p = 0; 1041 return p + 1; 1042 } 1043 return p; 1044 } 1045 1046 /* 1047 * Figure out what HW csum a packet wants and return the appropriate control 1048 * bits. 1049 */ 1050 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1051 { 1052 int csum_type; 1053 bool inner_hdr_csum = false; 1054 u16 proto, ver; 1055 1056 if (skb->encapsulation && 1057 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1058 inner_hdr_csum = true; 1059 1060 if (inner_hdr_csum) { 1061 ver = inner_ip_hdr(skb)->version; 1062 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1063 inner_ipv6_hdr(skb)->nexthdr; 1064 } else { 1065 ver = ip_hdr(skb)->version; 1066 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1067 ipv6_hdr(skb)->nexthdr; 1068 } 1069 1070 if (ver == 4) { 1071 if (proto == IPPROTO_TCP) 1072 csum_type = TX_CSUM_TCPIP; 1073 else if (proto == IPPROTO_UDP) 1074 csum_type = TX_CSUM_UDPIP; 1075 else { 1076 nocsum: /* 1077 * unknown protocol, disable HW csum 1078 * and hope a bad packet is detected 1079 */ 1080 return TXPKT_L4CSUM_DIS_F; 1081 } 1082 } else { 1083 /* 1084 * this doesn't work with extension headers 1085 */ 1086 if (proto == IPPROTO_TCP) 1087 csum_type = TX_CSUM_TCPIP6; 1088 else if (proto == IPPROTO_UDP) 1089 csum_type = TX_CSUM_UDPIP6; 1090 else 1091 goto nocsum; 1092 } 1093 1094 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1095 int eth_hdr_len, l4_len; 1096 u64 hdr_len; 1097 1098 if (inner_hdr_csum) { 1099 /* This allows checksum offload for all encapsulated 1100 * packets like GRE etc.. 1101 */ 1102 l4_len = skb_inner_network_header_len(skb); 1103 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1104 } else { 1105 l4_len = skb_network_header_len(skb); 1106 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1107 } 1108 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1109 1110 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1111 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1112 else 1113 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1114 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1115 } else { 1116 int start = skb_transport_offset(skb); 1117 1118 return TXPKT_CSUM_TYPE_V(csum_type) | 1119 TXPKT_CSUM_START_V(start) | 1120 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1121 } 1122 } 1123 1124 static void eth_txq_stop(struct sge_eth_txq *q) 1125 { 1126 netif_tx_stop_queue(q->txq); 1127 q->q.stops++; 1128 } 1129 1130 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1131 { 1132 q->in_use += n; 1133 q->pidx += n; 1134 if (q->pidx >= q->size) 1135 q->pidx -= q->size; 1136 } 1137 1138 #ifdef CONFIG_CHELSIO_T4_FCOE 1139 static inline int 1140 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1141 const struct port_info *pi, u64 *cntrl) 1142 { 1143 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1144 1145 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1146 return 0; 1147 1148 if (skb->protocol != htons(ETH_P_FCOE)) 1149 return 0; 1150 1151 skb_reset_mac_header(skb); 1152 skb->mac_len = sizeof(struct ethhdr); 1153 1154 skb_set_network_header(skb, skb->mac_len); 1155 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1156 1157 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1158 return -ENOTSUPP; 1159 1160 /* FC CRC offload */ 1161 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1162 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1163 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1164 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1165 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1166 return 0; 1167 } 1168 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1169 1170 /* Returns tunnel type if hardware supports offloading of the same. 1171 * It is called only for T5 and onwards. 1172 */ 1173 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1174 { 1175 u8 l4_hdr = 0; 1176 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1177 struct port_info *pi = netdev_priv(skb->dev); 1178 struct adapter *adapter = pi->adapter; 1179 1180 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1181 skb->inner_protocol != htons(ETH_P_TEB)) 1182 return tnl_type; 1183 1184 switch (vlan_get_protocol(skb)) { 1185 case htons(ETH_P_IP): 1186 l4_hdr = ip_hdr(skb)->protocol; 1187 break; 1188 case htons(ETH_P_IPV6): 1189 l4_hdr = ipv6_hdr(skb)->nexthdr; 1190 break; 1191 default: 1192 return tnl_type; 1193 } 1194 1195 switch (l4_hdr) { 1196 case IPPROTO_UDP: 1197 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1198 tnl_type = TX_TNL_TYPE_VXLAN; 1199 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1200 tnl_type = TX_TNL_TYPE_GENEVE; 1201 break; 1202 default: 1203 return tnl_type; 1204 } 1205 1206 return tnl_type; 1207 } 1208 1209 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1210 struct cpl_tx_tnl_lso *tnl_lso, 1211 enum cpl_tx_tnl_lso_type tnl_type) 1212 { 1213 u32 val; 1214 int in_eth_xtra_len; 1215 int l3hdr_len = skb_network_header_len(skb); 1216 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1217 const struct skb_shared_info *ssi = skb_shinfo(skb); 1218 bool v6 = (ip_hdr(skb)->version == 6); 1219 1220 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1221 CPL_TX_TNL_LSO_FIRST_F | 1222 CPL_TX_TNL_LSO_LAST_F | 1223 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1224 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1225 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1226 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1227 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1228 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1229 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1230 1231 tnl_lso->IpIdOffsetOut = 0; 1232 1233 /* Get the tunnel header length */ 1234 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1235 in_eth_xtra_len = skb_inner_network_header(skb) - 1236 skb_inner_mac_header(skb) - ETH_HLEN; 1237 1238 switch (tnl_type) { 1239 case TX_TNL_TYPE_VXLAN: 1240 case TX_TNL_TYPE_GENEVE: 1241 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1242 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1243 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1244 break; 1245 default: 1246 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1247 break; 1248 } 1249 1250 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1251 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1252 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1253 1254 tnl_lso->r1 = 0; 1255 1256 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1257 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1258 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1259 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1260 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1261 1262 tnl_lso->IpIdOffset = htons(0); 1263 1264 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1265 tnl_lso->TCPSeqOffset = htonl(0); 1266 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1267 } 1268 1269 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1270 struct cpl_tx_pkt_lso_core *lso) 1271 { 1272 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1273 int l3hdr_len = skb_network_header_len(skb); 1274 const struct skb_shared_info *ssi; 1275 bool ipv6 = false; 1276 1277 ssi = skb_shinfo(skb); 1278 if (ssi->gso_type & SKB_GSO_TCPV6) 1279 ipv6 = true; 1280 1281 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1282 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1283 LSO_IPV6_V(ipv6) | 1284 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1285 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1286 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1287 lso->ipid_ofst = htons(0); 1288 lso->mss = htons(ssi->gso_size); 1289 lso->seqno_offset = htonl(0); 1290 if (is_t4(adap->params.chip)) 1291 lso->len = htonl(skb->len); 1292 else 1293 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1294 1295 return (void *)(lso + 1); 1296 } 1297 1298 /** 1299 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1300 * @adap: the adapter 1301 * @eq: the Ethernet TX Queue 1302 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1303 * 1304 * We're typically called here to update the state of an Ethernet TX 1305 * Queue with respect to the hardware's progress in consuming the TX 1306 * Work Requests that we've put on that Egress Queue. This happens 1307 * when we get Egress Queue Update messages and also prophylactically 1308 * in regular timer-based Ethernet TX Queue maintenance. 1309 */ 1310 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1311 int maxreclaim) 1312 { 1313 unsigned int reclaimed, hw_cidx; 1314 struct sge_txq *q = &eq->q; 1315 int hw_in_use; 1316 1317 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1318 return 0; 1319 1320 /* Reclaim pending completed TX Descriptors. */ 1321 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1322 1323 hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1324 hw_in_use = q->pidx - hw_cidx; 1325 if (hw_in_use < 0) 1326 hw_in_use += q->size; 1327 1328 /* If the TX Queue is currently stopped and there's now more than half 1329 * the queue available, restart it. Otherwise bail out since the rest 1330 * of what we want do here is with the possibility of shipping any 1331 * currently buffered Coalesced TX Work Request. 1332 */ 1333 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { 1334 netif_tx_wake_queue(eq->txq); 1335 eq->q.restarts++; 1336 } 1337 1338 __netif_tx_unlock(eq->txq); 1339 return reclaimed; 1340 } 1341 1342 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1343 struct net_device *dev, 1344 u32 min_pkt_len) 1345 { 1346 u32 max_pkt_len; 1347 1348 /* The chip min packet length is 10 octets but some firmware 1349 * commands have a minimum packet length requirement. So, play 1350 * safe and reject anything shorter than @min_pkt_len. 1351 */ 1352 if (unlikely(skb->len < min_pkt_len)) 1353 return -EINVAL; 1354 1355 /* Discard the packet if the length is greater than mtu */ 1356 max_pkt_len = ETH_HLEN + dev->mtu; 1357 1358 if (skb_vlan_tagged(skb)) 1359 max_pkt_len += VLAN_HLEN; 1360 1361 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1362 return -EINVAL; 1363 1364 return 0; 1365 } 1366 1367 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1368 u32 hdr_len) 1369 { 1370 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1371 wr->u.udpseg.ethlen = skb_network_offset(skb); 1372 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1373 wr->u.udpseg.udplen = sizeof(struct udphdr); 1374 wr->u.udpseg.rtplen = 0; 1375 wr->u.udpseg.r4 = 0; 1376 if (skb_shinfo(skb)->gso_size) 1377 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1378 else 1379 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1380 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1381 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1382 1383 return (void *)(wr + 1); 1384 } 1385 1386 /** 1387 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1388 * @skb: the packet 1389 * @dev: the egress net device 1390 * 1391 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1392 */ 1393 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1394 { 1395 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1396 bool ptp_enabled = is_ptp_enabled(skb, dev); 1397 unsigned int last_desc, flits, ndesc; 1398 u32 wr_mid, ctrl0, op, sgl_off = 0; 1399 const struct skb_shared_info *ssi; 1400 int len, qidx, credits, ret, left; 1401 struct tx_sw_desc *sgl_sdesc; 1402 struct fw_eth_tx_eo_wr *eowr; 1403 struct fw_eth_tx_pkt_wr *wr; 1404 struct cpl_tx_pkt_core *cpl; 1405 const struct port_info *pi; 1406 bool immediate = false; 1407 u64 cntrl, *end, *sgl; 1408 struct sge_eth_txq *q; 1409 unsigned int chip_ver; 1410 struct adapter *adap; 1411 1412 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1413 if (ret) 1414 goto out_free; 1415 1416 pi = netdev_priv(dev); 1417 adap = pi->adapter; 1418 ssi = skb_shinfo(skb); 1419 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1420 if (xfrm_offload(skb) && !ssi->gso_size) 1421 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1422 #endif /* CHELSIO_IPSEC_INLINE */ 1423 1424 #ifdef CONFIG_CHELSIO_TLS_DEVICE 1425 if (skb->decrypted) 1426 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1427 #endif /* CHELSIO_TLS_DEVICE */ 1428 1429 qidx = skb_get_queue_mapping(skb); 1430 if (ptp_enabled) { 1431 if (!(adap->ptp_tx_skb)) { 1432 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1433 adap->ptp_tx_skb = skb_get(skb); 1434 } else { 1435 goto out_free; 1436 } 1437 q = &adap->sge.ptptxq; 1438 } else { 1439 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1440 } 1441 skb_tx_timestamp(skb); 1442 1443 reclaim_completed_tx(adap, &q->q, -1, true); 1444 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1445 1446 #ifdef CONFIG_CHELSIO_T4_FCOE 1447 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1448 if (unlikely(ret == -EOPNOTSUPP)) 1449 goto out_free; 1450 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1451 1452 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1453 flits = calc_tx_flits(skb, chip_ver); 1454 ndesc = flits_to_desc(flits); 1455 credits = txq_avail(&q->q) - ndesc; 1456 1457 if (unlikely(credits < 0)) { 1458 eth_txq_stop(q); 1459 dev_err(adap->pdev_dev, 1460 "%s: Tx ring %u full while queue awake!\n", 1461 dev->name, qidx); 1462 return NETDEV_TX_BUSY; 1463 } 1464 1465 if (is_eth_imm(skb, chip_ver)) 1466 immediate = true; 1467 1468 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1469 tnl_type = cxgb_encap_offload_supported(skb); 1470 1471 last_desc = q->q.pidx + ndesc - 1; 1472 if (last_desc >= q->q.size) 1473 last_desc -= q->q.size; 1474 sgl_sdesc = &q->q.sdesc[last_desc]; 1475 1476 if (!immediate && 1477 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1478 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1479 q->mapping_err++; 1480 goto out_free; 1481 } 1482 1483 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1484 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1485 /* After we're done injecting the Work Request for this 1486 * packet, we'll be below our "stop threshold" so stop the TX 1487 * Queue now and schedule a request for an SGE Egress Queue 1488 * Update message. The queue will get started later on when 1489 * the firmware processes this Work Request and sends us an 1490 * Egress Queue Status Update message indicating that space 1491 * has opened up. 1492 */ 1493 eth_txq_stop(q); 1494 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1495 } 1496 1497 wr = (void *)&q->q.desc[q->q.pidx]; 1498 eowr = (void *)&q->q.desc[q->q.pidx]; 1499 wr->equiq_to_len16 = htonl(wr_mid); 1500 wr->r3 = cpu_to_be64(0); 1501 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1502 end = (u64 *)eowr + flits; 1503 else 1504 end = (u64 *)wr + flits; 1505 1506 len = immediate ? skb->len : 0; 1507 len += sizeof(*cpl); 1508 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1509 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1510 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1511 1512 if (tnl_type) 1513 len += sizeof(*tnl_lso); 1514 else 1515 len += sizeof(*lso); 1516 1517 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1518 FW_WR_IMMDLEN_V(len)); 1519 if (tnl_type) { 1520 struct iphdr *iph = ip_hdr(skb); 1521 1522 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1523 cpl = (void *)(tnl_lso + 1); 1524 /* Driver is expected to compute partial checksum that 1525 * does not include the IP Total Length. 1526 */ 1527 if (iph->version == 4) { 1528 iph->check = 0; 1529 iph->tot_len = 0; 1530 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl); 1531 } 1532 if (skb->ip_summed == CHECKSUM_PARTIAL) 1533 cntrl = hwcsum(adap->params.chip, skb); 1534 } else { 1535 cpl = write_tso_wr(adap, skb, lso); 1536 cntrl = hwcsum(adap->params.chip, skb); 1537 } 1538 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1539 q->tso++; 1540 q->tx_cso += ssi->gso_segs; 1541 } else if (ssi->gso_size) { 1542 u64 *start; 1543 u32 hdrlen; 1544 1545 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1546 len += hdrlen; 1547 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1548 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1549 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1550 cntrl = hwcsum(adap->params.chip, skb); 1551 1552 start = (u64 *)(cpl + 1); 1553 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1554 hdrlen); 1555 if (unlikely(start > sgl)) { 1556 left = (u8 *)end - (u8 *)q->q.stat; 1557 end = (void *)q->q.desc + left; 1558 } 1559 sgl_off = hdrlen; 1560 q->uso++; 1561 q->tx_cso += ssi->gso_segs; 1562 } else { 1563 if (ptp_enabled) 1564 op = FW_PTP_TX_PKT_WR; 1565 else 1566 op = FW_ETH_TX_PKT_WR; 1567 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1568 FW_WR_IMMDLEN_V(len)); 1569 cpl = (void *)(wr + 1); 1570 sgl = (u64 *)(cpl + 1); 1571 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1572 cntrl = hwcsum(adap->params.chip, skb) | 1573 TXPKT_IPCSUM_DIS_F; 1574 q->tx_cso++; 1575 } 1576 } 1577 1578 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1579 /* If current position is already at the end of the 1580 * txq, reset the current to point to start of the queue 1581 * and update the end ptr as well. 1582 */ 1583 left = (u8 *)end - (u8 *)q->q.stat; 1584 end = (void *)q->q.desc + left; 1585 sgl = (void *)q->q.desc; 1586 } 1587 1588 if (skb_vlan_tag_present(skb)) { 1589 q->vlan_ins++; 1590 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1591 #ifdef CONFIG_CHELSIO_T4_FCOE 1592 if (skb->protocol == htons(ETH_P_FCOE)) 1593 cntrl |= TXPKT_VLAN_V( 1594 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1595 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1596 } 1597 1598 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1599 TXPKT_PF_V(adap->pf); 1600 if (ptp_enabled) 1601 ctrl0 |= TXPKT_TSTAMP_F; 1602 #ifdef CONFIG_CHELSIO_T4_DCB 1603 if (is_t4(adap->params.chip)) 1604 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1605 else 1606 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1607 #endif 1608 cpl->ctrl0 = htonl(ctrl0); 1609 cpl->pack = htons(0); 1610 cpl->len = htons(skb->len); 1611 cpl->ctrl1 = cpu_to_be64(cntrl); 1612 1613 if (immediate) { 1614 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1615 dev_consume_skb_any(skb); 1616 } else { 1617 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1618 sgl_sdesc->addr); 1619 skb_orphan(skb); 1620 sgl_sdesc->skb = skb; 1621 } 1622 1623 txq_advance(&q->q, ndesc); 1624 1625 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1626 return NETDEV_TX_OK; 1627 1628 out_free: 1629 dev_kfree_skb_any(skb); 1630 return NETDEV_TX_OK; 1631 } 1632 1633 /* Constants ... */ 1634 enum { 1635 /* Egress Queue sizes, producer and consumer indices are all in units 1636 * of Egress Context Units bytes. Note that as far as the hardware is 1637 * concerned, the free list is an Egress Queue (the host produces free 1638 * buffers which the hardware consumes) and free list entries are 1639 * 64-bit PCI DMA addresses. 1640 */ 1641 EQ_UNIT = SGE_EQ_IDXSIZE, 1642 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1643 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1644 1645 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1646 sizeof(struct cpl_tx_pkt_lso_core) + 1647 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1648 }; 1649 1650 /** 1651 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1652 * @skb: the packet 1653 * 1654 * Returns whether an Ethernet packet is small enough to fit completely as 1655 * immediate data. 1656 */ 1657 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1658 { 1659 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1660 * which does not accommodate immediate data. We could dike out all 1661 * of the support code for immediate data but that would tie our hands 1662 * too much if we ever want to enhace the firmware. It would also 1663 * create more differences between the PF and VF Drivers. 1664 */ 1665 return false; 1666 } 1667 1668 /** 1669 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1670 * @skb: the packet 1671 * 1672 * Returns the number of flits needed for a TX Work Request for the 1673 * given Ethernet packet, including the needed WR and CPL headers. 1674 */ 1675 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1676 { 1677 unsigned int flits; 1678 1679 /* If the skb is small enough, we can pump it out as a work request 1680 * with only immediate data. In that case we just have to have the 1681 * TX Packet header plus the skb data in the Work Request. 1682 */ 1683 if (t4vf_is_eth_imm(skb)) 1684 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1685 sizeof(__be64)); 1686 1687 /* Otherwise, we're going to have to construct a Scatter gather list 1688 * of the skb body and fragments. We also include the flits necessary 1689 * for the TX Packet Work Request and CPL. We always have a firmware 1690 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1691 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1692 * message or, if we're doing a Large Send Offload, an LSO CPL message 1693 * with an embedded TX Packet Write CPL message. 1694 */ 1695 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1696 if (skb_shinfo(skb)->gso_size) 1697 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1698 sizeof(struct cpl_tx_pkt_lso_core) + 1699 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1700 else 1701 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1702 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1703 return flits; 1704 } 1705 1706 /** 1707 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1708 * @skb: the packet 1709 * @dev: the egress net device 1710 * 1711 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1712 */ 1713 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1714 struct net_device *dev) 1715 { 1716 unsigned int last_desc, flits, ndesc; 1717 const struct skb_shared_info *ssi; 1718 struct fw_eth_tx_pkt_vm_wr *wr; 1719 struct tx_sw_desc *sgl_sdesc; 1720 struct cpl_tx_pkt_core *cpl; 1721 const struct port_info *pi; 1722 struct sge_eth_txq *txq; 1723 struct adapter *adapter; 1724 int qidx, credits, ret; 1725 size_t fw_hdr_copy_len; 1726 u64 cntrl, *end; 1727 u32 wr_mid; 1728 1729 /* The chip minimum packet length is 10 octets but the firmware 1730 * command that we are using requires that we copy the Ethernet header 1731 * (including the VLAN tag) into the header so we reject anything 1732 * smaller than that ... 1733 */ 1734 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1735 sizeof(wr->ethtype) + sizeof(wr->vlantci); 1736 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1737 if (ret) 1738 goto out_free; 1739 1740 /* Figure out which TX Queue we're going to use. */ 1741 pi = netdev_priv(dev); 1742 adapter = pi->adapter; 1743 qidx = skb_get_queue_mapping(skb); 1744 WARN_ON(qidx >= pi->nqsets); 1745 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1746 1747 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1748 * transfers have completed. 1749 */ 1750 reclaim_completed_tx(adapter, &txq->q, -1, true); 1751 1752 /* Calculate the number of flits and TX Descriptors we're going to 1753 * need along with how many TX Descriptors will be left over after 1754 * we inject our Work Request. 1755 */ 1756 flits = t4vf_calc_tx_flits(skb); 1757 ndesc = flits_to_desc(flits); 1758 credits = txq_avail(&txq->q) - ndesc; 1759 1760 if (unlikely(credits < 0)) { 1761 /* Not enough room for this packet's Work Request. Stop the 1762 * TX Queue and return a "busy" condition. The queue will get 1763 * started later on when the firmware informs us that space 1764 * has opened up. 1765 */ 1766 eth_txq_stop(txq); 1767 dev_err(adapter->pdev_dev, 1768 "%s: TX ring %u full while queue awake!\n", 1769 dev->name, qidx); 1770 return NETDEV_TX_BUSY; 1771 } 1772 1773 last_desc = txq->q.pidx + ndesc - 1; 1774 if (last_desc >= txq->q.size) 1775 last_desc -= txq->q.size; 1776 sgl_sdesc = &txq->q.sdesc[last_desc]; 1777 1778 if (!t4vf_is_eth_imm(skb) && 1779 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1780 sgl_sdesc->addr) < 0)) { 1781 /* We need to map the skb into PCI DMA space (because it can't 1782 * be in-lined directly into the Work Request) and the mapping 1783 * operation failed. Record the error and drop the packet. 1784 */ 1785 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1786 txq->mapping_err++; 1787 goto out_free; 1788 } 1789 1790 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1791 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1792 /* After we're done injecting the Work Request for this 1793 * packet, we'll be below our "stop threshold" so stop the TX 1794 * Queue now and schedule a request for an SGE Egress Queue 1795 * Update message. The queue will get started later on when 1796 * the firmware processes this Work Request and sends us an 1797 * Egress Queue Status Update message indicating that space 1798 * has opened up. 1799 */ 1800 eth_txq_stop(txq); 1801 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1802 } 1803 1804 /* Start filling in our Work Request. Note that we do _not_ handle 1805 * the WR Header wrapping around the TX Descriptor Ring. If our 1806 * maximum header size ever exceeds one TX Descriptor, we'll need to 1807 * do something else here. 1808 */ 1809 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1810 wr = (void *)&txq->q.desc[txq->q.pidx]; 1811 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1812 wr->r3[0] = cpu_to_be32(0); 1813 wr->r3[1] = cpu_to_be32(0); 1814 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1815 end = (u64 *)wr + flits; 1816 1817 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1818 * message with an encapsulated TX Packet CPL message. Otherwise we 1819 * just use a TX Packet CPL message. 1820 */ 1821 ssi = skb_shinfo(skb); 1822 if (ssi->gso_size) { 1823 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1824 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1825 int l3hdr_len = skb_network_header_len(skb); 1826 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1827 1828 wr->op_immdlen = 1829 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1830 FW_WR_IMMDLEN_V(sizeof(*lso) + 1831 sizeof(*cpl))); 1832 /* Fill in the LSO CPL message. */ 1833 lso->lso_ctrl = 1834 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1835 LSO_FIRST_SLICE_F | 1836 LSO_LAST_SLICE_F | 1837 LSO_IPV6_V(v6) | 1838 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1839 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1840 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1841 lso->ipid_ofst = cpu_to_be16(0); 1842 lso->mss = cpu_to_be16(ssi->gso_size); 1843 lso->seqno_offset = cpu_to_be32(0); 1844 if (is_t4(adapter->params.chip)) 1845 lso->len = cpu_to_be32(skb->len); 1846 else 1847 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1848 1849 /* Set up TX Packet CPL pointer, control word and perform 1850 * accounting. 1851 */ 1852 cpl = (void *)(lso + 1); 1853 1854 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1855 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1856 else 1857 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1858 1859 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1860 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1861 TXPKT_IPHDR_LEN_V(l3hdr_len); 1862 txq->tso++; 1863 txq->tx_cso += ssi->gso_segs; 1864 } else { 1865 int len; 1866 1867 len = (t4vf_is_eth_imm(skb) 1868 ? skb->len + sizeof(*cpl) 1869 : sizeof(*cpl)); 1870 wr->op_immdlen = 1871 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1872 FW_WR_IMMDLEN_V(len)); 1873 1874 /* Set up TX Packet CPL pointer, control word and perform 1875 * accounting. 1876 */ 1877 cpl = (void *)(wr + 1); 1878 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1879 cntrl = hwcsum(adapter->params.chip, skb) | 1880 TXPKT_IPCSUM_DIS_F; 1881 txq->tx_cso++; 1882 } else { 1883 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1884 } 1885 } 1886 1887 /* If there's a VLAN tag present, add that to the list of things to 1888 * do in this Work Request. 1889 */ 1890 if (skb_vlan_tag_present(skb)) { 1891 txq->vlan_ins++; 1892 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1893 } 1894 1895 /* Fill in the TX Packet CPL message header. */ 1896 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1897 TXPKT_INTF_V(pi->port_id) | 1898 TXPKT_PF_V(0)); 1899 cpl->pack = cpu_to_be16(0); 1900 cpl->len = cpu_to_be16(skb->len); 1901 cpl->ctrl1 = cpu_to_be64(cntrl); 1902 1903 /* Fill in the body of the TX Packet CPL message with either in-lined 1904 * data or a Scatter/Gather List. 1905 */ 1906 if (t4vf_is_eth_imm(skb)) { 1907 /* In-line the packet's data and free the skb since we don't 1908 * need it any longer. 1909 */ 1910 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 1911 dev_consume_skb_any(skb); 1912 } else { 1913 /* Write the skb's Scatter/Gather list into the TX Packet CPL 1914 * message and retain a pointer to the skb so we can free it 1915 * later when its DMA completes. (We store the skb pointer 1916 * in the Software Descriptor corresponding to the last TX 1917 * Descriptor used by the Work Request.) 1918 * 1919 * The retained skb will be freed when the corresponding TX 1920 * Descriptors are reclaimed after their DMAs complete. 1921 * However, this could take quite a while since, in general, 1922 * the hardware is set up to be lazy about sending DMA 1923 * completion notifications to us and we mostly perform TX 1924 * reclaims in the transmit routine. 1925 * 1926 * This is good for performamce but means that we rely on new 1927 * TX packets arriving to run the destructors of completed 1928 * packets, which open up space in their sockets' send queues. 1929 * Sometimes we do not get such new packets causing TX to 1930 * stall. A single UDP transmitter is a good example of this 1931 * situation. We have a clean up timer that periodically 1932 * reclaims completed packets but it doesn't run often enough 1933 * (nor do we want it to) to prevent lengthy stalls. A 1934 * solution to this problem is to run the destructor early, 1935 * after the packet is queued but before it's DMAd. A con is 1936 * that we lie to socket memory accounting, but the amount of 1937 * extra memory is reasonable (limited by the number of TX 1938 * descriptors), the packets do actually get freed quickly by 1939 * new packets almost always, and for protocols like TCP that 1940 * wait for acks to really free up the data the extra memory 1941 * is even less. On the positive side we run the destructors 1942 * on the sending CPU rather than on a potentially different 1943 * completing CPU, usually a good thing. 1944 * 1945 * Run the destructor before telling the DMA engine about the 1946 * packet to make sure it doesn't complete and get freed 1947 * prematurely. 1948 */ 1949 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1950 struct sge_txq *tq = &txq->q; 1951 1952 /* If the Work Request header was an exact multiple of our TX 1953 * Descriptor length, then it's possible that the starting SGL 1954 * pointer lines up exactly with the end of our TX Descriptor 1955 * ring. If that's the case, wrap around to the beginning 1956 * here ... 1957 */ 1958 if (unlikely((void *)sgl == (void *)tq->stat)) { 1959 sgl = (void *)tq->desc; 1960 end = (void *)((void *)tq->desc + 1961 ((void *)end - (void *)tq->stat)); 1962 } 1963 1964 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 1965 skb_orphan(skb); 1966 sgl_sdesc->skb = skb; 1967 } 1968 1969 /* Advance our internal TX Queue state, tell the hardware about 1970 * the new TX descriptors and return success. 1971 */ 1972 txq_advance(&txq->q, ndesc); 1973 1974 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 1975 return NETDEV_TX_OK; 1976 1977 out_free: 1978 /* An error of some sort happened. Free the TX skb and tell the 1979 * OS that we've "dealt" with the packet ... 1980 */ 1981 dev_kfree_skb_any(skb); 1982 return NETDEV_TX_OK; 1983 } 1984 1985 /** 1986 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1987 * @q: the SGE control Tx queue 1988 * 1989 * This is a variant of cxgb4_reclaim_completed_tx() that is used 1990 * for Tx queues that send only immediate data (presently just 1991 * the control queues) and thus do not have any sk_buffs to release. 1992 */ 1993 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1994 { 1995 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1996 int reclaim = hw_cidx - q->cidx; 1997 1998 if (reclaim < 0) 1999 reclaim += q->size; 2000 2001 q->in_use -= reclaim; 2002 q->cidx = hw_cidx; 2003 } 2004 2005 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2006 { 2007 u32 val = *idx + n; 2008 2009 if (val >= max) 2010 val -= max; 2011 2012 *idx = val; 2013 } 2014 2015 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2016 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2017 { 2018 struct tx_sw_desc *d; 2019 2020 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2021 while (ndesc--) { 2022 if (d->skb) { 2023 if (d->addr[0]) { 2024 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2025 memset(d->addr, 0, sizeof(d->addr)); 2026 } 2027 dev_consume_skb_any(d->skb); 2028 d->skb = NULL; 2029 } 2030 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2031 eosw_txq->ndesc); 2032 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2033 } 2034 } 2035 2036 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2037 { 2038 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2039 eosw_txq->inuse += n; 2040 } 2041 2042 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2043 struct sk_buff *skb) 2044 { 2045 if (eosw_txq->inuse == eosw_txq->ndesc) 2046 return -ENOMEM; 2047 2048 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2049 return 0; 2050 } 2051 2052 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2053 { 2054 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2055 } 2056 2057 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2058 struct sk_buff *skb, u32 hdr_len) 2059 { 2060 u8 flits, nsgl = 0; 2061 u32 wrlen; 2062 2063 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2064 if (skb_shinfo(skb)->gso_size && 2065 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2066 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2067 2068 wrlen += roundup(hdr_len, 16); 2069 2070 /* Packet headers + WR + CPLs */ 2071 flits = DIV_ROUND_UP(wrlen, 8); 2072 2073 if (skb_shinfo(skb)->nr_frags > 0) { 2074 if (skb_headlen(skb) - hdr_len) 2075 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2076 else 2077 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2078 } else if (skb->len - hdr_len) { 2079 nsgl = sgl_len(1); 2080 } 2081 2082 return flits + nsgl; 2083 } 2084 2085 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq, 2086 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2087 u32 hdr_len, u32 wrlen) 2088 { 2089 const struct skb_shared_info *ssi = skb_shinfo(skb); 2090 struct cpl_tx_pkt_core *cpl; 2091 u32 immd_len, wrlen16; 2092 bool compl = false; 2093 u8 ver, proto; 2094 2095 ver = ip_hdr(skb)->version; 2096 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2097 2098 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2099 immd_len = sizeof(struct cpl_tx_pkt_core); 2100 if (skb_shinfo(skb)->gso_size && 2101 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2102 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2103 immd_len += hdr_len; 2104 2105 if (!eosw_txq->ncompl || 2106 (eosw_txq->last_compl + wrlen16) >= 2107 (adap->params.ofldq_wr_cred / 2)) { 2108 compl = true; 2109 eosw_txq->ncompl++; 2110 eosw_txq->last_compl = 0; 2111 } 2112 2113 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2114 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2115 FW_WR_COMPL_V(compl)); 2116 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2117 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2118 wr->r3 = 0; 2119 if (proto == IPPROTO_UDP) { 2120 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2121 } else { 2122 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2123 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2124 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2125 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2126 wr->u.tcpseg.tsclk_tsoff = 0; 2127 wr->u.tcpseg.r4 = 0; 2128 wr->u.tcpseg.r5 = 0; 2129 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2130 2131 if (ssi->gso_size) { 2132 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2133 2134 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2135 cpl = write_tso_wr(adap, skb, lso); 2136 } else { 2137 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2138 cpl = (void *)(wr + 1); 2139 } 2140 } 2141 2142 eosw_txq->cred -= wrlen16; 2143 eosw_txq->last_compl += wrlen16; 2144 return cpl; 2145 } 2146 2147 static int ethofld_hard_xmit(struct net_device *dev, 2148 struct sge_eosw_txq *eosw_txq) 2149 { 2150 struct port_info *pi = netdev2pinfo(dev); 2151 struct adapter *adap = netdev2adap(dev); 2152 u32 wrlen, wrlen16, hdr_len, data_len; 2153 enum sge_eosw_state next_state; 2154 u64 cntrl, *start, *end, *sgl; 2155 struct sge_eohw_txq *eohw_txq; 2156 struct cpl_tx_pkt_core *cpl; 2157 struct fw_eth_tx_eo_wr *wr; 2158 bool skip_eotx_wr = false; 2159 struct tx_sw_desc *d; 2160 struct sk_buff *skb; 2161 int left, ret = 0; 2162 u8 flits, ndesc; 2163 2164 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2165 spin_lock(&eohw_txq->lock); 2166 reclaim_completed_tx_imm(&eohw_txq->q); 2167 2168 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2169 skb = d->skb; 2170 skb_tx_timestamp(skb); 2171 2172 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2173 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2174 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2175 hdr_len = skb->len; 2176 data_len = 0; 2177 flits = DIV_ROUND_UP(hdr_len, 8); 2178 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2179 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2180 else 2181 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2182 skip_eotx_wr = true; 2183 } else { 2184 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2185 data_len = skb->len - hdr_len; 2186 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2187 } 2188 ndesc = flits_to_desc(flits); 2189 wrlen = flits * 8; 2190 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2191 2192 left = txq_avail(&eohw_txq->q) - ndesc; 2193 2194 /* If there are no descriptors left in hardware queues or no 2195 * CPL credits left in software queues, then wait for them 2196 * to come back and retry again. Note that we always request 2197 * for credits update via interrupt for every half credits 2198 * consumed. So, the interrupt will eventually restore the 2199 * credits and invoke the Tx path again. 2200 */ 2201 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) { 2202 ret = -ENOMEM; 2203 goto out_unlock; 2204 } 2205 2206 if (unlikely(skip_eotx_wr)) { 2207 start = (u64 *)wr; 2208 eosw_txq->state = next_state; 2209 eosw_txq->cred -= wrlen16; 2210 eosw_txq->ncompl++; 2211 eosw_txq->last_compl = 0; 2212 goto write_wr_headers; 2213 } 2214 2215 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2216 cntrl = hwcsum(adap->params.chip, skb); 2217 if (skb_vlan_tag_present(skb)) 2218 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2219 2220 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2221 TXPKT_INTF_V(pi->tx_chan) | 2222 TXPKT_PF_V(adap->pf)); 2223 cpl->pack = 0; 2224 cpl->len = cpu_to_be16(skb->len); 2225 cpl->ctrl1 = cpu_to_be64(cntrl); 2226 2227 start = (u64 *)(cpl + 1); 2228 2229 write_wr_headers: 2230 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2231 hdr_len); 2232 if (data_len) { 2233 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr); 2234 if (unlikely(ret)) { 2235 memset(d->addr, 0, sizeof(d->addr)); 2236 eohw_txq->mapping_err++; 2237 goto out_unlock; 2238 } 2239 2240 end = (u64 *)wr + flits; 2241 if (unlikely(start > sgl)) { 2242 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2243 end = (void *)eohw_txq->q.desc + left; 2244 } 2245 2246 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2247 /* If current position is already at the end of the 2248 * txq, reset the current to point to start of the queue 2249 * and update the end ptr as well. 2250 */ 2251 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2252 2253 end = (void *)eohw_txq->q.desc + left; 2254 sgl = (void *)eohw_txq->q.desc; 2255 } 2256 2257 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2258 d->addr); 2259 } 2260 2261 if (skb_shinfo(skb)->gso_size) { 2262 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2263 eohw_txq->uso++; 2264 else 2265 eohw_txq->tso++; 2266 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2267 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2268 eohw_txq->tx_cso++; 2269 } 2270 2271 if (skb_vlan_tag_present(skb)) 2272 eohw_txq->vlan_ins++; 2273 2274 txq_advance(&eohw_txq->q, ndesc); 2275 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2276 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2277 2278 out_unlock: 2279 spin_unlock(&eohw_txq->lock); 2280 return ret; 2281 } 2282 2283 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2284 { 2285 struct sk_buff *skb; 2286 int pktcount, ret; 2287 2288 switch (eosw_txq->state) { 2289 case CXGB4_EO_STATE_ACTIVE: 2290 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2291 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2292 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2293 if (pktcount < 0) 2294 pktcount += eosw_txq->ndesc; 2295 break; 2296 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2297 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2298 case CXGB4_EO_STATE_CLOSED: 2299 default: 2300 return; 2301 } 2302 2303 while (pktcount--) { 2304 skb = eosw_txq_peek(eosw_txq); 2305 if (!skb) { 2306 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2307 eosw_txq->ndesc); 2308 continue; 2309 } 2310 2311 ret = ethofld_hard_xmit(dev, eosw_txq); 2312 if (ret) 2313 break; 2314 } 2315 } 2316 2317 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2318 struct net_device *dev) 2319 { 2320 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2321 struct port_info *pi = netdev2pinfo(dev); 2322 struct adapter *adap = netdev2adap(dev); 2323 struct sge_eosw_txq *eosw_txq; 2324 u32 qid; 2325 int ret; 2326 2327 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2328 if (ret) 2329 goto out_free; 2330 2331 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2332 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2333 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2334 spin_lock_bh(&eosw_txq->lock); 2335 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2336 goto out_unlock; 2337 2338 ret = eosw_txq_enqueue(eosw_txq, skb); 2339 if (ret) 2340 goto out_unlock; 2341 2342 /* SKB is queued for processing until credits are available. 2343 * So, call the destructor now and we'll free the skb later 2344 * after it has been successfully transmitted. 2345 */ 2346 skb_orphan(skb); 2347 2348 eosw_txq_advance(eosw_txq, 1); 2349 ethofld_xmit(dev, eosw_txq); 2350 spin_unlock_bh(&eosw_txq->lock); 2351 return NETDEV_TX_OK; 2352 2353 out_unlock: 2354 spin_unlock_bh(&eosw_txq->lock); 2355 out_free: 2356 dev_kfree_skb_any(skb); 2357 return NETDEV_TX_OK; 2358 } 2359 2360 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2361 { 2362 struct port_info *pi = netdev_priv(dev); 2363 u16 qid = skb_get_queue_mapping(skb); 2364 2365 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2366 return cxgb4_vf_eth_xmit(skb, dev); 2367 2368 if (unlikely(qid >= pi->nqsets)) 2369 return cxgb4_ethofld_xmit(skb, dev); 2370 2371 if (is_ptp_enabled(skb, dev)) { 2372 struct adapter *adap = netdev2adap(dev); 2373 netdev_tx_t ret; 2374 2375 spin_lock(&adap->ptp_lock); 2376 ret = cxgb4_eth_xmit(skb, dev); 2377 spin_unlock(&adap->ptp_lock); 2378 return ret; 2379 } 2380 2381 return cxgb4_eth_xmit(skb, dev); 2382 } 2383 2384 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq) 2385 { 2386 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2387 int pidx = eosw_txq->pidx; 2388 struct sk_buff *skb; 2389 2390 if (!pktcount) 2391 return; 2392 2393 if (pktcount < 0) 2394 pktcount += eosw_txq->ndesc; 2395 2396 while (pktcount--) { 2397 pidx--; 2398 if (pidx < 0) 2399 pidx += eosw_txq->ndesc; 2400 2401 skb = eosw_txq->desc[pidx].skb; 2402 if (skb) { 2403 dev_consume_skb_any(skb); 2404 eosw_txq->desc[pidx].skb = NULL; 2405 eosw_txq->inuse--; 2406 } 2407 } 2408 2409 eosw_txq->pidx = eosw_txq->last_pidx + 1; 2410 } 2411 2412 /** 2413 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2414 * @dev: netdevice 2415 * @eotid: ETHOFLD tid to bind/unbind 2416 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2417 * 2418 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2419 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2420 * a traffic class. 2421 */ 2422 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2423 { 2424 struct port_info *pi = netdev2pinfo(dev); 2425 struct adapter *adap = netdev2adap(dev); 2426 enum sge_eosw_state next_state; 2427 struct sge_eosw_txq *eosw_txq; 2428 u32 len, len16, nparams = 6; 2429 struct fw_flowc_wr *flowc; 2430 struct eotid_entry *entry; 2431 struct sge_ofld_rxq *rxq; 2432 struct sk_buff *skb; 2433 int ret = 0; 2434 2435 len = struct_size(flowc, mnemval, nparams); 2436 len16 = DIV_ROUND_UP(len, 16); 2437 2438 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2439 if (!entry) 2440 return -ENOMEM; 2441 2442 eosw_txq = (struct sge_eosw_txq *)entry->data; 2443 if (!eosw_txq) 2444 return -ENOMEM; 2445 2446 skb = alloc_skb(len, GFP_KERNEL); 2447 if (!skb) 2448 return -ENOMEM; 2449 2450 spin_lock_bh(&eosw_txq->lock); 2451 if (tc != FW_SCHED_CLS_NONE) { 2452 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2453 goto out_unlock; 2454 2455 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2456 } else { 2457 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2458 goto out_unlock; 2459 2460 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2461 } 2462 2463 flowc = __skb_put(skb, len); 2464 memset(flowc, 0, len); 2465 2466 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2467 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2468 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2469 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2470 FW_FLOWC_WR_NPARAMS_V(nparams) | 2471 FW_WR_COMPL_V(1)); 2472 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2473 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2474 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2475 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2476 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2477 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2478 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2479 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2480 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2481 flowc->mnemval[4].val = cpu_to_be32(tc); 2482 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2483 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2484 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2485 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2486 2487 /* Free up any pending skbs to ensure there's room for 2488 * termination FLOWC. 2489 */ 2490 if (tc == FW_SCHED_CLS_NONE) 2491 eosw_txq_flush_pending_skbs(eosw_txq); 2492 2493 ret = eosw_txq_enqueue(eosw_txq, skb); 2494 if (ret) { 2495 dev_consume_skb_any(skb); 2496 goto out_unlock; 2497 } 2498 2499 eosw_txq->state = next_state; 2500 eosw_txq->flowc_idx = eosw_txq->pidx; 2501 eosw_txq_advance(eosw_txq, 1); 2502 ethofld_xmit(dev, eosw_txq); 2503 2504 out_unlock: 2505 spin_unlock_bh(&eosw_txq->lock); 2506 return ret; 2507 } 2508 2509 /** 2510 * is_imm - check whether a packet can be sent as immediate data 2511 * @skb: the packet 2512 * 2513 * Returns true if a packet can be sent as a WR with immediate data. 2514 */ 2515 static inline int is_imm(const struct sk_buff *skb) 2516 { 2517 return skb->len <= MAX_CTRL_WR_LEN; 2518 } 2519 2520 /** 2521 * ctrlq_check_stop - check if a control queue is full and should stop 2522 * @q: the queue 2523 * @wr: most recent WR written to the queue 2524 * 2525 * Check if a control queue has become full and should be stopped. 2526 * We clean up control queue descriptors very lazily, only when we are out. 2527 * If the queue is still full after reclaiming any completed descriptors 2528 * we suspend it and have the last WR wake it up. 2529 */ 2530 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2531 { 2532 reclaim_completed_tx_imm(&q->q); 2533 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2534 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2535 q->q.stops++; 2536 q->full = 1; 2537 } 2538 } 2539 2540 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST" 2541 2542 int cxgb4_selftest_lb_pkt(struct net_device *netdev) 2543 { 2544 struct port_info *pi = netdev_priv(netdev); 2545 struct adapter *adap = pi->adapter; 2546 struct cxgb4_ethtool_lb_test *lb; 2547 int ret, i = 0, pkt_len, credits; 2548 struct fw_eth_tx_pkt_wr *wr; 2549 struct cpl_tx_pkt_core *cpl; 2550 u32 ctrl0, ndesc, flits; 2551 struct sge_eth_txq *q; 2552 u8 *sgl; 2553 2554 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR); 2555 2556 flits = DIV_ROUND_UP(pkt_len + sizeof(struct cpl_tx_pkt) + 2557 sizeof(*wr), sizeof(__be64)); 2558 ndesc = flits_to_desc(flits); 2559 2560 lb = &pi->ethtool_lb; 2561 lb->loopback = 1; 2562 2563 q = &adap->sge.ethtxq[pi->first_qset]; 2564 2565 reclaim_completed_tx(adap, &q->q, -1, true); 2566 credits = txq_avail(&q->q) - ndesc; 2567 if (unlikely(credits < 0)) 2568 return -ENOMEM; 2569 2570 wr = (void *)&q->q.desc[q->q.pidx]; 2571 memset(wr, 0, sizeof(struct tx_desc)); 2572 2573 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 2574 FW_WR_IMMDLEN_V(pkt_len + 2575 sizeof(*cpl))); 2576 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2))); 2577 wr->r3 = cpu_to_be64(0); 2578 2579 cpl = (void *)(wr + 1); 2580 sgl = (u8 *)(cpl + 1); 2581 2582 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) | 2583 TXPKT_INTF_V(pi->tx_chan + 4); 2584 2585 cpl->ctrl0 = htonl(ctrl0); 2586 cpl->pack = htons(0); 2587 cpl->len = htons(pkt_len); 2588 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F); 2589 2590 eth_broadcast_addr(sgl); 2591 i += ETH_ALEN; 2592 ether_addr_copy(&sgl[i], netdev->dev_addr); 2593 i += ETH_ALEN; 2594 2595 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s", 2596 CXGB4_SELFTEST_LB_STR); 2597 2598 init_completion(&lb->completion); 2599 txq_advance(&q->q, ndesc); 2600 cxgb4_ring_tx_db(adap, &q->q, ndesc); 2601 2602 /* wait for the pkt to return */ 2603 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ); 2604 if (!ret) 2605 ret = -ETIMEDOUT; 2606 else 2607 ret = lb->result; 2608 2609 lb->loopback = 0; 2610 2611 return ret; 2612 } 2613 2614 /** 2615 * ctrl_xmit - send a packet through an SGE control Tx queue 2616 * @q: the control queue 2617 * @skb: the packet 2618 * 2619 * Send a packet through an SGE control Tx queue. Packets sent through 2620 * a control queue must fit entirely as immediate data. 2621 */ 2622 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2623 { 2624 unsigned int ndesc; 2625 struct fw_wr_hdr *wr; 2626 2627 if (unlikely(!is_imm(skb))) { 2628 WARN_ON(1); 2629 dev_kfree_skb(skb); 2630 return NET_XMIT_DROP; 2631 } 2632 2633 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2634 spin_lock(&q->sendq.lock); 2635 2636 if (unlikely(q->full)) { 2637 skb->priority = ndesc; /* save for restart */ 2638 __skb_queue_tail(&q->sendq, skb); 2639 spin_unlock(&q->sendq.lock); 2640 return NET_XMIT_CN; 2641 } 2642 2643 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2644 cxgb4_inline_tx_skb(skb, &q->q, wr); 2645 2646 txq_advance(&q->q, ndesc); 2647 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2648 ctrlq_check_stop(q, wr); 2649 2650 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2651 spin_unlock(&q->sendq.lock); 2652 2653 kfree_skb(skb); 2654 return NET_XMIT_SUCCESS; 2655 } 2656 2657 /** 2658 * restart_ctrlq - restart a suspended control queue 2659 * @data: the control queue to restart 2660 * 2661 * Resumes transmission on a suspended Tx control queue. 2662 */ 2663 static void restart_ctrlq(unsigned long data) 2664 { 2665 struct sk_buff *skb; 2666 unsigned int written = 0; 2667 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 2668 2669 spin_lock(&q->sendq.lock); 2670 reclaim_completed_tx_imm(&q->q); 2671 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2672 2673 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2674 struct fw_wr_hdr *wr; 2675 unsigned int ndesc = skb->priority; /* previously saved */ 2676 2677 written += ndesc; 2678 /* Write descriptors and free skbs outside the lock to limit 2679 * wait times. q->full is still set so new skbs will be queued. 2680 */ 2681 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2682 txq_advance(&q->q, ndesc); 2683 spin_unlock(&q->sendq.lock); 2684 2685 cxgb4_inline_tx_skb(skb, &q->q, wr); 2686 kfree_skb(skb); 2687 2688 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2689 unsigned long old = q->q.stops; 2690 2691 ctrlq_check_stop(q, wr); 2692 if (q->q.stops != old) { /* suspended anew */ 2693 spin_lock(&q->sendq.lock); 2694 goto ringdb; 2695 } 2696 } 2697 if (written > 16) { 2698 cxgb4_ring_tx_db(q->adap, &q->q, written); 2699 written = 0; 2700 } 2701 spin_lock(&q->sendq.lock); 2702 } 2703 q->full = 0; 2704 ringdb: 2705 if (written) 2706 cxgb4_ring_tx_db(q->adap, &q->q, written); 2707 spin_unlock(&q->sendq.lock); 2708 } 2709 2710 /** 2711 * t4_mgmt_tx - send a management message 2712 * @adap: the adapter 2713 * @skb: the packet containing the management message 2714 * 2715 * Send a management message through control queue 0. 2716 */ 2717 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2718 { 2719 int ret; 2720 2721 local_bh_disable(); 2722 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2723 local_bh_enable(); 2724 return ret; 2725 } 2726 2727 /** 2728 * is_ofld_imm - check whether a packet can be sent as immediate data 2729 * @skb: the packet 2730 * 2731 * Returns true if a packet can be sent as an offload WR with immediate 2732 * data. We currently use the same limit as for Ethernet packets. 2733 */ 2734 static inline int is_ofld_imm(const struct sk_buff *skb) 2735 { 2736 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2737 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2738 2739 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2740 return skb->len <= SGE_MAX_WR_LEN; 2741 else 2742 return skb->len <= MAX_IMM_TX_PKT_LEN; 2743 } 2744 2745 /** 2746 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2747 * @skb: the packet 2748 * 2749 * Returns the number of flits needed for the given offload packet. 2750 * These packets are already fully constructed and no additional headers 2751 * will be added. 2752 */ 2753 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2754 { 2755 unsigned int flits, cnt; 2756 2757 if (is_ofld_imm(skb)) 2758 return DIV_ROUND_UP(skb->len, 8); 2759 2760 flits = skb_transport_offset(skb) / 8U; /* headers */ 2761 cnt = skb_shinfo(skb)->nr_frags; 2762 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2763 cnt++; 2764 return flits + sgl_len(cnt); 2765 } 2766 2767 /** 2768 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2769 * @q: the queue to stop 2770 * 2771 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2772 * inability to map packets. A periodic timer attempts to restart 2773 * queues so marked. 2774 */ 2775 static void txq_stop_maperr(struct sge_uld_txq *q) 2776 { 2777 q->mapping_err++; 2778 q->q.stops++; 2779 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2780 q->adap->sge.txq_maperr); 2781 } 2782 2783 /** 2784 * ofldtxq_stop - stop an offload Tx queue that has become full 2785 * @q: the queue to stop 2786 * @wr: the Work Request causing the queue to become full 2787 * 2788 * Stops an offload Tx queue that has become full and modifies the packet 2789 * being written to request a wakeup. 2790 */ 2791 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2792 { 2793 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2794 q->q.stops++; 2795 q->full = 1; 2796 } 2797 2798 /** 2799 * service_ofldq - service/restart a suspended offload queue 2800 * @q: the offload queue 2801 * 2802 * Services an offload Tx queue by moving packets from its Pending Send 2803 * Queue to the Hardware TX ring. The function starts and ends with the 2804 * Send Queue locked, but drops the lock while putting the skb at the 2805 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2806 * allows more skbs to be added to the Send Queue by other threads. 2807 * The packet being processed at the head of the Pending Send Queue is 2808 * left on the queue in case we experience DMA Mapping errors, etc. 2809 * and need to give up and restart later. 2810 * 2811 * service_ofldq() can be thought of as a task which opportunistically 2812 * uses other threads execution contexts. We use the Offload Queue 2813 * boolean "service_ofldq_running" to make sure that only one instance 2814 * is ever running at a time ... 2815 */ 2816 static void service_ofldq(struct sge_uld_txq *q) 2817 __must_hold(&q->sendq.lock) 2818 { 2819 u64 *pos, *before, *end; 2820 int credits; 2821 struct sk_buff *skb; 2822 struct sge_txq *txq; 2823 unsigned int left; 2824 unsigned int written = 0; 2825 unsigned int flits, ndesc; 2826 2827 /* If another thread is currently in service_ofldq() processing the 2828 * Pending Send Queue then there's nothing to do. Otherwise, flag 2829 * that we're doing the work and continue. Examining/modifying 2830 * the Offload Queue boolean "service_ofldq_running" must be done 2831 * while holding the Pending Send Queue Lock. 2832 */ 2833 if (q->service_ofldq_running) 2834 return; 2835 q->service_ofldq_running = true; 2836 2837 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2838 /* We drop the lock while we're working with the skb at the 2839 * head of the Pending Send Queue. This allows more skbs to 2840 * be added to the Pending Send Queue while we're working on 2841 * this one. We don't need to lock to guard the TX Ring 2842 * updates because only one thread of execution is ever 2843 * allowed into service_ofldq() at a time. 2844 */ 2845 spin_unlock(&q->sendq.lock); 2846 2847 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2848 2849 flits = skb->priority; /* previously saved */ 2850 ndesc = flits_to_desc(flits); 2851 credits = txq_avail(&q->q) - ndesc; 2852 BUG_ON(credits < 0); 2853 if (unlikely(credits < TXQ_STOP_THRES)) 2854 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2855 2856 pos = (u64 *)&q->q.desc[q->q.pidx]; 2857 if (is_ofld_imm(skb)) 2858 cxgb4_inline_tx_skb(skb, &q->q, pos); 2859 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2860 (dma_addr_t *)skb->head)) { 2861 txq_stop_maperr(q); 2862 spin_lock(&q->sendq.lock); 2863 break; 2864 } else { 2865 int last_desc, hdr_len = skb_transport_offset(skb); 2866 2867 /* The WR headers may not fit within one descriptor. 2868 * So we need to deal with wrap-around here. 2869 */ 2870 before = (u64 *)pos; 2871 end = (u64 *)pos + flits; 2872 txq = &q->q; 2873 pos = (void *)inline_tx_skb_header(skb, &q->q, 2874 (void *)pos, 2875 hdr_len); 2876 if (before > (u64 *)pos) { 2877 left = (u8 *)end - (u8 *)txq->stat; 2878 end = (void *)txq->desc + left; 2879 } 2880 2881 /* If current position is already at the end of the 2882 * ofld queue, reset the current to point to 2883 * start of the queue and update the end ptr as well. 2884 */ 2885 if (pos == (u64 *)txq->stat) { 2886 left = (u8 *)end - (u8 *)txq->stat; 2887 end = (void *)txq->desc + left; 2888 pos = (void *)txq->desc; 2889 } 2890 2891 cxgb4_write_sgl(skb, &q->q, (void *)pos, 2892 end, hdr_len, 2893 (dma_addr_t *)skb->head); 2894 #ifdef CONFIG_NEED_DMA_MAP_STATE 2895 skb->dev = q->adap->port[0]; 2896 skb->destructor = deferred_unmap_destructor; 2897 #endif 2898 last_desc = q->q.pidx + ndesc - 1; 2899 if (last_desc >= q->q.size) 2900 last_desc -= q->q.size; 2901 q->q.sdesc[last_desc].skb = skb; 2902 } 2903 2904 txq_advance(&q->q, ndesc); 2905 written += ndesc; 2906 if (unlikely(written > 32)) { 2907 cxgb4_ring_tx_db(q->adap, &q->q, written); 2908 written = 0; 2909 } 2910 2911 /* Reacquire the Pending Send Queue Lock so we can unlink the 2912 * skb we've just successfully transferred to the TX Ring and 2913 * loop for the next skb which may be at the head of the 2914 * Pending Send Queue. 2915 */ 2916 spin_lock(&q->sendq.lock); 2917 __skb_unlink(skb, &q->sendq); 2918 if (is_ofld_imm(skb)) 2919 kfree_skb(skb); 2920 } 2921 if (likely(written)) 2922 cxgb4_ring_tx_db(q->adap, &q->q, written); 2923 2924 /*Indicate that no thread is processing the Pending Send Queue 2925 * currently. 2926 */ 2927 q->service_ofldq_running = false; 2928 } 2929 2930 /** 2931 * ofld_xmit - send a packet through an offload queue 2932 * @q: the Tx offload queue 2933 * @skb: the packet 2934 * 2935 * Send an offload packet through an SGE offload queue. 2936 */ 2937 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 2938 { 2939 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 2940 spin_lock(&q->sendq.lock); 2941 2942 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 2943 * that results in this new skb being the only one on the queue, start 2944 * servicing it. If there are other skbs already on the list, then 2945 * either the queue is currently being processed or it's been stopped 2946 * for some reason and it'll be restarted at a later time. Restart 2947 * paths are triggered by events like experiencing a DMA Mapping Error 2948 * or filling the Hardware TX Ring. 2949 */ 2950 __skb_queue_tail(&q->sendq, skb); 2951 if (q->sendq.qlen == 1) 2952 service_ofldq(q); 2953 2954 spin_unlock(&q->sendq.lock); 2955 return NET_XMIT_SUCCESS; 2956 } 2957 2958 /** 2959 * restart_ofldq - restart a suspended offload queue 2960 * @data: the offload queue to restart 2961 * 2962 * Resumes transmission on a suspended Tx offload queue. 2963 */ 2964 static void restart_ofldq(unsigned long data) 2965 { 2966 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 2967 2968 spin_lock(&q->sendq.lock); 2969 q->full = 0; /* the queue actually is completely empty now */ 2970 service_ofldq(q); 2971 spin_unlock(&q->sendq.lock); 2972 } 2973 2974 /** 2975 * skb_txq - return the Tx queue an offload packet should use 2976 * @skb: the packet 2977 * 2978 * Returns the Tx queue an offload packet should use as indicated by bits 2979 * 1-15 in the packet's queue_mapping. 2980 */ 2981 static inline unsigned int skb_txq(const struct sk_buff *skb) 2982 { 2983 return skb->queue_mapping >> 1; 2984 } 2985 2986 /** 2987 * is_ctrl_pkt - return whether an offload packet is a control packet 2988 * @skb: the packet 2989 * 2990 * Returns whether an offload packet should use an OFLD or a CTRL 2991 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 2992 */ 2993 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 2994 { 2995 return skb->queue_mapping & 1; 2996 } 2997 2998 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 2999 unsigned int tx_uld_type) 3000 { 3001 struct sge_uld_txq_info *txq_info; 3002 struct sge_uld_txq *txq; 3003 unsigned int idx = skb_txq(skb); 3004 3005 if (unlikely(is_ctrl_pkt(skb))) { 3006 /* Single ctrl queue is a requirement for LE workaround path */ 3007 if (adap->tids.nsftids) 3008 idx = 0; 3009 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 3010 } 3011 3012 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 3013 if (unlikely(!txq_info)) { 3014 WARN_ON(true); 3015 kfree_skb(skb); 3016 return NET_XMIT_DROP; 3017 } 3018 3019 txq = &txq_info->uldtxq[idx]; 3020 return ofld_xmit(txq, skb); 3021 } 3022 3023 /** 3024 * t4_ofld_send - send an offload packet 3025 * @adap: the adapter 3026 * @skb: the packet 3027 * 3028 * Sends an offload packet. We use the packet queue_mapping to select the 3029 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3030 * should be sent as regular or control, bits 1-15 select the queue. 3031 */ 3032 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 3033 { 3034 int ret; 3035 3036 local_bh_disable(); 3037 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 3038 local_bh_enable(); 3039 return ret; 3040 } 3041 3042 /** 3043 * cxgb4_ofld_send - send an offload packet 3044 * @dev: the net device 3045 * @skb: the packet 3046 * 3047 * Sends an offload packet. This is an exported version of @t4_ofld_send, 3048 * intended for ULDs. 3049 */ 3050 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 3051 { 3052 return t4_ofld_send(netdev2adap(dev), skb); 3053 } 3054 EXPORT_SYMBOL(cxgb4_ofld_send); 3055 3056 static void *inline_tx_header(const void *src, 3057 const struct sge_txq *q, 3058 void *pos, int length) 3059 { 3060 int left = (void *)q->stat - pos; 3061 u64 *p; 3062 3063 if (likely(length <= left)) { 3064 memcpy(pos, src, length); 3065 pos += length; 3066 } else { 3067 memcpy(pos, src, left); 3068 memcpy(q->desc, src + left, length - left); 3069 pos = (void *)q->desc + (length - left); 3070 } 3071 /* 0-pad to multiple of 16 */ 3072 p = PTR_ALIGN(pos, 8); 3073 if ((uintptr_t)p & 8) { 3074 *p = 0; 3075 return p + 1; 3076 } 3077 return p; 3078 } 3079 3080 /** 3081 * ofld_xmit_direct - copy a WR into offload queue 3082 * @q: the Tx offload queue 3083 * @src: location of WR 3084 * @len: WR length 3085 * 3086 * Copy an immediate WR into an uncontended SGE offload queue. 3087 */ 3088 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 3089 unsigned int len) 3090 { 3091 unsigned int ndesc; 3092 int credits; 3093 u64 *pos; 3094 3095 /* Use the lower limit as the cut-off */ 3096 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 3097 WARN_ON(1); 3098 return NET_XMIT_DROP; 3099 } 3100 3101 /* Don't return NET_XMIT_CN here as the current 3102 * implementation doesn't queue the request 3103 * using an skb when the following conditions not met 3104 */ 3105 if (!spin_trylock(&q->sendq.lock)) 3106 return NET_XMIT_DROP; 3107 3108 if (q->full || !skb_queue_empty(&q->sendq) || 3109 q->service_ofldq_running) { 3110 spin_unlock(&q->sendq.lock); 3111 return NET_XMIT_DROP; 3112 } 3113 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3114 credits = txq_avail(&q->q) - ndesc; 3115 pos = (u64 *)&q->q.desc[q->q.pidx]; 3116 3117 /* ofldtxq_stop modifies WR header in-situ */ 3118 inline_tx_header(src, &q->q, pos, len); 3119 if (unlikely(credits < TXQ_STOP_THRES)) 3120 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3121 txq_advance(&q->q, ndesc); 3122 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3123 3124 spin_unlock(&q->sendq.lock); 3125 return NET_XMIT_SUCCESS; 3126 } 3127 3128 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3129 const void *src, unsigned int len) 3130 { 3131 struct sge_uld_txq_info *txq_info; 3132 struct sge_uld_txq *txq; 3133 struct adapter *adap; 3134 int ret; 3135 3136 adap = netdev2adap(dev); 3137 3138 local_bh_disable(); 3139 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3140 if (unlikely(!txq_info)) { 3141 WARN_ON(true); 3142 local_bh_enable(); 3143 return NET_XMIT_DROP; 3144 } 3145 txq = &txq_info->uldtxq[idx]; 3146 3147 ret = ofld_xmit_direct(txq, src, len); 3148 local_bh_enable(); 3149 return net_xmit_eval(ret); 3150 } 3151 EXPORT_SYMBOL(cxgb4_immdata_send); 3152 3153 /** 3154 * t4_crypto_send - send crypto packet 3155 * @adap: the adapter 3156 * @skb: the packet 3157 * 3158 * Sends crypto packet. We use the packet queue_mapping to select the 3159 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3160 * should be sent as regular or control, bits 1-15 select the queue. 3161 */ 3162 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3163 { 3164 int ret; 3165 3166 local_bh_disable(); 3167 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3168 local_bh_enable(); 3169 return ret; 3170 } 3171 3172 /** 3173 * cxgb4_crypto_send - send crypto packet 3174 * @dev: the net device 3175 * @skb: the packet 3176 * 3177 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3178 * intended for ULDs. 3179 */ 3180 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3181 { 3182 return t4_crypto_send(netdev2adap(dev), skb); 3183 } 3184 EXPORT_SYMBOL(cxgb4_crypto_send); 3185 3186 static inline void copy_frags(struct sk_buff *skb, 3187 const struct pkt_gl *gl, unsigned int offset) 3188 { 3189 int i; 3190 3191 /* usually there's just one frag */ 3192 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3193 gl->frags[0].offset + offset, 3194 gl->frags[0].size - offset); 3195 skb_shinfo(skb)->nr_frags = gl->nfrags; 3196 for (i = 1; i < gl->nfrags; i++) 3197 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3198 gl->frags[i].offset, 3199 gl->frags[i].size); 3200 3201 /* get a reference to the last page, we don't own it */ 3202 get_page(gl->frags[gl->nfrags - 1].page); 3203 } 3204 3205 /** 3206 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3207 * @gl: the gather list 3208 * @skb_len: size of sk_buff main body if it carries fragments 3209 * @pull_len: amount of data to move to the sk_buff's main body 3210 * 3211 * Builds an sk_buff from the given packet gather list. Returns the 3212 * sk_buff or %NULL if sk_buff allocation failed. 3213 */ 3214 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3215 unsigned int skb_len, unsigned int pull_len) 3216 { 3217 struct sk_buff *skb; 3218 3219 /* 3220 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3221 * size, which is expected since buffers are at least PAGE_SIZEd. 3222 * In this case packets up to RX_COPY_THRES have only one fragment. 3223 */ 3224 if (gl->tot_len <= RX_COPY_THRES) { 3225 skb = dev_alloc_skb(gl->tot_len); 3226 if (unlikely(!skb)) 3227 goto out; 3228 __skb_put(skb, gl->tot_len); 3229 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3230 } else { 3231 skb = dev_alloc_skb(skb_len); 3232 if (unlikely(!skb)) 3233 goto out; 3234 __skb_put(skb, pull_len); 3235 skb_copy_to_linear_data(skb, gl->va, pull_len); 3236 3237 copy_frags(skb, gl, pull_len); 3238 skb->len = gl->tot_len; 3239 skb->data_len = skb->len - pull_len; 3240 skb->truesize += skb->data_len; 3241 } 3242 out: return skb; 3243 } 3244 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3245 3246 /** 3247 * t4_pktgl_free - free a packet gather list 3248 * @gl: the gather list 3249 * 3250 * Releases the pages of a packet gather list. We do not own the last 3251 * page on the list and do not free it. 3252 */ 3253 static void t4_pktgl_free(const struct pkt_gl *gl) 3254 { 3255 int n; 3256 const struct page_frag *p; 3257 3258 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3259 put_page(p->page); 3260 } 3261 3262 /* 3263 * Process an MPS trace packet. Give it an unused protocol number so it won't 3264 * be delivered to anyone and send it to the stack for capture. 3265 */ 3266 static noinline int handle_trace_pkt(struct adapter *adap, 3267 const struct pkt_gl *gl) 3268 { 3269 struct sk_buff *skb; 3270 3271 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3272 if (unlikely(!skb)) { 3273 t4_pktgl_free(gl); 3274 return 0; 3275 } 3276 3277 if (is_t4(adap->params.chip)) 3278 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3279 else 3280 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3281 3282 skb_reset_mac_header(skb); 3283 skb->protocol = htons(0xffff); 3284 skb->dev = adap->port[0]; 3285 netif_receive_skb(skb); 3286 return 0; 3287 } 3288 3289 /** 3290 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3291 * @adap: the adapter 3292 * @hwtstamps: time stamp structure to update 3293 * @sgetstamp: 60bit iqe timestamp 3294 * 3295 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3296 * which is in Core Clock ticks into ktime_t and assign it 3297 **/ 3298 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3299 struct skb_shared_hwtstamps *hwtstamps, 3300 u64 sgetstamp) 3301 { 3302 u64 ns; 3303 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3304 3305 ns = div_u64(tmp, adap->params.vpd.cclk); 3306 3307 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3308 hwtstamps->hwtstamp = ns_to_ktime(ns); 3309 } 3310 3311 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3312 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3313 { 3314 struct adapter *adapter = rxq->rspq.adap; 3315 struct sge *s = &adapter->sge; 3316 struct port_info *pi; 3317 int ret; 3318 struct sk_buff *skb; 3319 3320 skb = napi_get_frags(&rxq->rspq.napi); 3321 if (unlikely(!skb)) { 3322 t4_pktgl_free(gl); 3323 rxq->stats.rx_drops++; 3324 return; 3325 } 3326 3327 copy_frags(skb, gl, s->pktshift); 3328 if (tnl_hdr_len) 3329 skb->csum_level = 1; 3330 skb->len = gl->tot_len - s->pktshift; 3331 skb->data_len = skb->len; 3332 skb->truesize += skb->data_len; 3333 skb->ip_summed = CHECKSUM_UNNECESSARY; 3334 skb_record_rx_queue(skb, rxq->rspq.idx); 3335 pi = netdev_priv(skb->dev); 3336 if (pi->rxtstamp) 3337 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3338 gl->sgetstamp); 3339 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3340 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3341 PKT_HASH_TYPE_L3); 3342 3343 if (unlikely(pkt->vlan_ex)) { 3344 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3345 rxq->stats.vlan_ex++; 3346 } 3347 ret = napi_gro_frags(&rxq->rspq.napi); 3348 if (ret == GRO_HELD) 3349 rxq->stats.lro_pkts++; 3350 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3351 rxq->stats.lro_merged++; 3352 rxq->stats.pkts++; 3353 rxq->stats.rx_cso++; 3354 } 3355 3356 enum { 3357 RX_NON_PTP_PKT = 0, 3358 RX_PTP_PKT_SUC = 1, 3359 RX_PTP_PKT_ERR = 2 3360 }; 3361 3362 /** 3363 * t4_systim_to_hwstamp - read hardware time stamp 3364 * @adapter: the adapter 3365 * @skb: the packet 3366 * 3367 * Read Time Stamp from MPS packet and insert in skb which 3368 * is forwarded to PTP application 3369 */ 3370 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3371 struct sk_buff *skb) 3372 { 3373 struct skb_shared_hwtstamps *hwtstamps; 3374 struct cpl_rx_mps_pkt *cpl = NULL; 3375 unsigned char *data; 3376 int offset; 3377 3378 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3379 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3380 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3381 return RX_PTP_PKT_ERR; 3382 3383 data = skb->data + sizeof(*cpl); 3384 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3385 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3386 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3387 return RX_PTP_PKT_ERR; 3388 3389 hwtstamps = skb_hwtstamps(skb); 3390 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3391 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data)); 3392 3393 return RX_PTP_PKT_SUC; 3394 } 3395 3396 /** 3397 * t4_rx_hststamp - Recv PTP Event Message 3398 * @adapter: the adapter 3399 * @rsp: the response queue descriptor holding the RX_PKT message 3400 * @rxq: the response queue holding the RX_PKT message 3401 * @skb: the packet 3402 * 3403 * PTP enabled and MPS packet, read HW timestamp 3404 */ 3405 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3406 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3407 { 3408 int ret; 3409 3410 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3411 !is_t4(adapter->params.chip))) { 3412 ret = t4_systim_to_hwstamp(adapter, skb); 3413 if (ret == RX_PTP_PKT_ERR) { 3414 kfree_skb(skb); 3415 rxq->stats.rx_drops++; 3416 } 3417 return ret; 3418 } 3419 return RX_NON_PTP_PKT; 3420 } 3421 3422 /** 3423 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3424 * @adapter: the adapter 3425 * @skb: the packet 3426 * @dev: the ingress net device 3427 * 3428 * Read hardware timestamp for the loopback PTP Tx event message 3429 */ 3430 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3431 struct net_device *dev) 3432 { 3433 struct port_info *pi = netdev_priv(dev); 3434 3435 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3436 cxgb4_ptp_read_hwstamp(adapter, pi); 3437 kfree_skb(skb); 3438 return 0; 3439 } 3440 return 1; 3441 } 3442 3443 /** 3444 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3445 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3446 * @rsp: Response Entry pointer into Response Queue 3447 * @gl: Gather List pointer 3448 * 3449 * For adapters which support the SGE Doorbell Queue Timer facility, 3450 * we configure the Ethernet TX Queues to send CIDX Updates to the 3451 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3452 * messages. This adds a small load to PCIe Link RX bandwidth and, 3453 * potentially, higher CPU Interrupt load, but allows us to respond 3454 * much more quickly to the CIDX Updates. This is important for 3455 * Upper Layer Software which isn't willing to have a large amount 3456 * of TX Data outstanding before receiving DMA Completions. 3457 */ 3458 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3459 const __be64 *rsp, 3460 const struct pkt_gl *gl) 3461 { 3462 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3463 struct port_info *pi = netdev_priv(rspq->netdev); 3464 struct adapter *adapter = rspq->adap; 3465 struct sge *s = &adapter->sge; 3466 struct sge_eth_txq *txq; 3467 3468 /* skip RSS header */ 3469 rsp++; 3470 3471 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3472 */ 3473 if (unlikely(opcode == CPL_FW4_MSG && 3474 ((const struct cpl_fw4_msg *)rsp)->type == 3475 FW_TYPE_RSSCPL)) { 3476 rsp++; 3477 opcode = ((const struct rss_header *)rsp)->opcode; 3478 rsp++; 3479 } 3480 3481 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3482 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3483 __func__, opcode); 3484 return; 3485 } 3486 3487 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3488 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3489 } 3490 3491 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si) 3492 { 3493 struct adapter *adap = pi->adapter; 3494 struct cxgb4_ethtool_lb_test *lb; 3495 struct sge *s = &adap->sge; 3496 struct net_device *netdev; 3497 u8 *data; 3498 int i; 3499 3500 netdev = adap->port[pi->port_id]; 3501 lb = &pi->ethtool_lb; 3502 data = si->va + s->pktshift; 3503 3504 i = ETH_ALEN; 3505 if (!ether_addr_equal(data + i, netdev->dev_addr)) 3506 return -1; 3507 3508 i += ETH_ALEN; 3509 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR)) 3510 lb->result = -EIO; 3511 3512 complete(&lb->completion); 3513 return 0; 3514 } 3515 3516 /** 3517 * t4_ethrx_handler - process an ingress ethernet packet 3518 * @q: the response queue that received the packet 3519 * @rsp: the response queue descriptor holding the RX_PKT message 3520 * @si: the gather list of packet fragments 3521 * 3522 * Process an ingress ethernet packet and deliver it to the stack. 3523 */ 3524 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3525 const struct pkt_gl *si) 3526 { 3527 bool csum_ok; 3528 struct sk_buff *skb; 3529 const struct cpl_rx_pkt *pkt; 3530 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3531 struct adapter *adapter = q->adap; 3532 struct sge *s = &q->adap->sge; 3533 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3534 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3535 u16 err_vec, tnl_hdr_len = 0; 3536 struct port_info *pi; 3537 int ret = 0; 3538 3539 pi = netdev_priv(q->netdev); 3540 /* If we're looking at TX Queue CIDX Update, handle that separately 3541 * and return. 3542 */ 3543 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3544 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3545 t4_tx_completion_handler(q, rsp, si); 3546 return 0; 3547 } 3548 3549 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3550 return handle_trace_pkt(q->adap, si); 3551 3552 pkt = (const struct cpl_rx_pkt *)rsp; 3553 /* Compressed error vector is enabled for T6 only */ 3554 if (q->adap->params.tp.rx_pkt_encap) { 3555 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3556 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3557 } else { 3558 err_vec = be16_to_cpu(pkt->err_vec); 3559 } 3560 3561 csum_ok = pkt->csum_calc && !err_vec && 3562 (q->netdev->features & NETIF_F_RXCSUM); 3563 3564 if (err_vec) 3565 rxq->stats.bad_rx_pkts++; 3566 3567 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) { 3568 ret = cxgb4_validate_lb_pkt(pi, si); 3569 if (!ret) 3570 return 0; 3571 } 3572 3573 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3574 tnl_hdr_len) && 3575 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3576 do_gro(rxq, si, pkt, tnl_hdr_len); 3577 return 0; 3578 } 3579 3580 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3581 if (unlikely(!skb)) { 3582 t4_pktgl_free(si); 3583 rxq->stats.rx_drops++; 3584 return 0; 3585 } 3586 3587 /* Handle PTP Event Rx packet */ 3588 if (unlikely(pi->ptp_enable)) { 3589 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3590 if (ret == RX_PTP_PKT_ERR) 3591 return 0; 3592 } 3593 if (likely(!ret)) 3594 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3595 3596 /* Handle the PTP Event Tx Loopback packet */ 3597 if (unlikely(pi->ptp_enable && !ret && 3598 (pkt->l2info & htonl(RXF_UDP_F)) && 3599 cxgb4_ptp_is_ptp_rx(skb))) { 3600 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3601 return 0; 3602 } 3603 3604 skb->protocol = eth_type_trans(skb, q->netdev); 3605 skb_record_rx_queue(skb, q->idx); 3606 if (skb->dev->features & NETIF_F_RXHASH) 3607 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3608 PKT_HASH_TYPE_L3); 3609 3610 rxq->stats.pkts++; 3611 3612 if (pi->rxtstamp) 3613 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3614 si->sgetstamp); 3615 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3616 if (!pkt->ip_frag) { 3617 skb->ip_summed = CHECKSUM_UNNECESSARY; 3618 rxq->stats.rx_cso++; 3619 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3620 __sum16 c = (__force __sum16)pkt->csum; 3621 skb->csum = csum_unfold(c); 3622 3623 if (tnl_hdr_len) { 3624 skb->ip_summed = CHECKSUM_UNNECESSARY; 3625 skb->csum_level = 1; 3626 } else { 3627 skb->ip_summed = CHECKSUM_COMPLETE; 3628 } 3629 rxq->stats.rx_cso++; 3630 } 3631 } else { 3632 skb_checksum_none_assert(skb); 3633 #ifdef CONFIG_CHELSIO_T4_FCOE 3634 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3635 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3636 3637 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3638 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3639 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3640 if (q->adap->params.tp.rx_pkt_encap) 3641 csum_ok = err_vec & 3642 T6_COMPR_RXERR_SUM_F; 3643 else 3644 csum_ok = err_vec & RXERR_CSUM_F; 3645 if (!csum_ok) 3646 skb->ip_summed = CHECKSUM_UNNECESSARY; 3647 } 3648 } 3649 3650 #undef CPL_RX_PKT_FLAGS 3651 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3652 } 3653 3654 if (unlikely(pkt->vlan_ex)) { 3655 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3656 rxq->stats.vlan_ex++; 3657 } 3658 skb_mark_napi_id(skb, &q->napi); 3659 netif_receive_skb(skb); 3660 return 0; 3661 } 3662 3663 /** 3664 * restore_rx_bufs - put back a packet's Rx buffers 3665 * @si: the packet gather list 3666 * @q: the SGE free list 3667 * @frags: number of FL buffers to restore 3668 * 3669 * Puts back on an FL the Rx buffers associated with @si. The buffers 3670 * have already been unmapped and are left unmapped, we mark them so to 3671 * prevent further unmapping attempts. 3672 * 3673 * This function undoes a series of @unmap_rx_buf calls when we find out 3674 * that the current packet can't be processed right away afterall and we 3675 * need to come back to it later. This is a very rare event and there's 3676 * no effort to make this particularly efficient. 3677 */ 3678 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3679 int frags) 3680 { 3681 struct rx_sw_desc *d; 3682 3683 while (frags--) { 3684 if (q->cidx == 0) 3685 q->cidx = q->size - 1; 3686 else 3687 q->cidx--; 3688 d = &q->sdesc[q->cidx]; 3689 d->page = si->frags[frags].page; 3690 d->dma_addr |= RX_UNMAPPED_BUF; 3691 q->avail++; 3692 } 3693 } 3694 3695 /** 3696 * is_new_response - check if a response is newly written 3697 * @r: the response descriptor 3698 * @q: the response queue 3699 * 3700 * Returns true if a response descriptor contains a yet unprocessed 3701 * response. 3702 */ 3703 static inline bool is_new_response(const struct rsp_ctrl *r, 3704 const struct sge_rspq *q) 3705 { 3706 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3707 } 3708 3709 /** 3710 * rspq_next - advance to the next entry in a response queue 3711 * @q: the queue 3712 * 3713 * Updates the state of a response queue to advance it to the next entry. 3714 */ 3715 static inline void rspq_next(struct sge_rspq *q) 3716 { 3717 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3718 if (unlikely(++q->cidx == q->size)) { 3719 q->cidx = 0; 3720 q->gen ^= 1; 3721 q->cur_desc = q->desc; 3722 } 3723 } 3724 3725 /** 3726 * process_responses - process responses from an SGE response queue 3727 * @q: the ingress queue to process 3728 * @budget: how many responses can be processed in this round 3729 * 3730 * Process responses from an SGE response queue up to the supplied budget. 3731 * Responses include received packets as well as control messages from FW 3732 * or HW. 3733 * 3734 * Additionally choose the interrupt holdoff time for the next interrupt 3735 * on this queue. If the system is under memory shortage use a fairly 3736 * long delay to help recovery. 3737 */ 3738 static int process_responses(struct sge_rspq *q, int budget) 3739 { 3740 int ret, rsp_type; 3741 int budget_left = budget; 3742 const struct rsp_ctrl *rc; 3743 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3744 struct adapter *adapter = q->adap; 3745 struct sge *s = &adapter->sge; 3746 3747 while (likely(budget_left)) { 3748 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3749 if (!is_new_response(rc, q)) { 3750 if (q->flush_handler) 3751 q->flush_handler(q); 3752 break; 3753 } 3754 3755 dma_rmb(); 3756 rsp_type = RSPD_TYPE_G(rc->type_gen); 3757 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3758 struct page_frag *fp; 3759 struct pkt_gl si; 3760 const struct rx_sw_desc *rsd; 3761 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3762 3763 if (len & RSPD_NEWBUF_F) { 3764 if (likely(q->offset > 0)) { 3765 free_rx_bufs(q->adap, &rxq->fl, 1); 3766 q->offset = 0; 3767 } 3768 len = RSPD_LEN_G(len); 3769 } 3770 si.tot_len = len; 3771 3772 /* gather packet fragments */ 3773 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3774 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3775 bufsz = get_buf_size(adapter, rsd); 3776 fp->page = rsd->page; 3777 fp->offset = q->offset; 3778 fp->size = min(bufsz, len); 3779 len -= fp->size; 3780 if (!len) 3781 break; 3782 unmap_rx_buf(q->adap, &rxq->fl); 3783 } 3784 3785 si.sgetstamp = SGE_TIMESTAMP_G( 3786 be64_to_cpu(rc->last_flit)); 3787 /* 3788 * Last buffer remains mapped so explicitly make it 3789 * coherent for CPU access. 3790 */ 3791 dma_sync_single_for_cpu(q->adap->pdev_dev, 3792 get_buf_addr(rsd), 3793 fp->size, DMA_FROM_DEVICE); 3794 3795 si.va = page_address(si.frags[0].page) + 3796 si.frags[0].offset; 3797 prefetch(si.va); 3798 3799 si.nfrags = frags + 1; 3800 ret = q->handler(q, q->cur_desc, &si); 3801 if (likely(ret == 0)) 3802 q->offset += ALIGN(fp->size, s->fl_align); 3803 else 3804 restore_rx_bufs(&si, &rxq->fl, frags); 3805 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3806 ret = q->handler(q, q->cur_desc, NULL); 3807 } else { 3808 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3809 } 3810 3811 if (unlikely(ret)) { 3812 /* couldn't process descriptor, back off for recovery */ 3813 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3814 break; 3815 } 3816 3817 rspq_next(q); 3818 budget_left--; 3819 } 3820 3821 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3822 __refill_fl(q->adap, &rxq->fl); 3823 return budget - budget_left; 3824 } 3825 3826 /** 3827 * napi_rx_handler - the NAPI handler for Rx processing 3828 * @napi: the napi instance 3829 * @budget: how many packets we can process in this round 3830 * 3831 * Handler for new data events when using NAPI. This does not need any 3832 * locking or protection from interrupts as data interrupts are off at 3833 * this point and other adapter interrupts do not interfere (the latter 3834 * in not a concern at all with MSI-X as non-data interrupts then have 3835 * a separate handler). 3836 */ 3837 static int napi_rx_handler(struct napi_struct *napi, int budget) 3838 { 3839 unsigned int params; 3840 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3841 int work_done; 3842 u32 val; 3843 3844 work_done = process_responses(q, budget); 3845 if (likely(work_done < budget)) { 3846 int timer_index; 3847 3848 napi_complete_done(napi, work_done); 3849 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3850 3851 if (q->adaptive_rx) { 3852 if (work_done > max(timer_pkt_quota[timer_index], 3853 MIN_NAPI_WORK)) 3854 timer_index = (timer_index + 1); 3855 else 3856 timer_index = timer_index - 1; 3857 3858 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3859 q->next_intr_params = 3860 QINTR_TIMER_IDX_V(timer_index) | 3861 QINTR_CNT_EN_V(0); 3862 params = q->next_intr_params; 3863 } else { 3864 params = q->next_intr_params; 3865 q->next_intr_params = q->intr_params; 3866 } 3867 } else 3868 params = QINTR_TIMER_IDX_V(7); 3869 3870 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3871 3872 /* If we don't have access to the new User GTS (T5+), use the old 3873 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3874 */ 3875 if (unlikely(q->bar2_addr == NULL)) { 3876 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 3877 val | INGRESSQID_V((u32)q->cntxt_id)); 3878 } else { 3879 writel(val | INGRESSQID_V(q->bar2_qid), 3880 q->bar2_addr + SGE_UDB_GTS); 3881 wmb(); 3882 } 3883 return work_done; 3884 } 3885 3886 void cxgb4_ethofld_restart(unsigned long data) 3887 { 3888 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data; 3889 int pktcount; 3890 3891 spin_lock(&eosw_txq->lock); 3892 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 3893 if (pktcount < 0) 3894 pktcount += eosw_txq->ndesc; 3895 3896 if (pktcount) { 3897 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 3898 eosw_txq, pktcount); 3899 eosw_txq->inuse -= pktcount; 3900 } 3901 3902 /* There may be some packets waiting for completions. So, 3903 * attempt to send these packets now. 3904 */ 3905 ethofld_xmit(eosw_txq->netdev, eosw_txq); 3906 spin_unlock(&eosw_txq->lock); 3907 } 3908 3909 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 3910 * @q: the response queue that received the packet 3911 * @rsp: the response queue descriptor holding the CPL message 3912 * @si: the gather list of packet fragments 3913 * 3914 * Process a ETHOFLD Tx completion. Increment the cidx here, but 3915 * free up the descriptors in a tasklet later. 3916 */ 3917 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 3918 const struct pkt_gl *si) 3919 { 3920 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3921 3922 /* skip RSS header */ 3923 rsp++; 3924 3925 if (opcode == CPL_FW4_ACK) { 3926 const struct cpl_fw4_ack *cpl; 3927 struct sge_eosw_txq *eosw_txq; 3928 struct eotid_entry *entry; 3929 struct sk_buff *skb; 3930 u32 hdr_len, eotid; 3931 u8 flits, wrlen16; 3932 int credits; 3933 3934 cpl = (const struct cpl_fw4_ack *)rsp; 3935 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 3936 q->adap->tids.eotid_base; 3937 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 3938 if (!entry) 3939 goto out_done; 3940 3941 eosw_txq = (struct sge_eosw_txq *)entry->data; 3942 if (!eosw_txq) 3943 goto out_done; 3944 3945 spin_lock(&eosw_txq->lock); 3946 credits = cpl->credits; 3947 while (credits > 0) { 3948 skb = eosw_txq->desc[eosw_txq->cidx].skb; 3949 if (!skb) 3950 break; 3951 3952 if (unlikely((eosw_txq->state == 3953 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 3954 eosw_txq->state == 3955 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 3956 eosw_txq->cidx == eosw_txq->flowc_idx)) { 3957 flits = DIV_ROUND_UP(skb->len, 8); 3958 if (eosw_txq->state == 3959 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 3960 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 3961 else 3962 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 3963 complete(&eosw_txq->completion); 3964 } else { 3965 hdr_len = eth_get_headlen(eosw_txq->netdev, 3966 skb->data, 3967 skb_headlen(skb)); 3968 flits = ethofld_calc_tx_flits(q->adap, skb, 3969 hdr_len); 3970 } 3971 eosw_txq_advance_index(&eosw_txq->cidx, 1, 3972 eosw_txq->ndesc); 3973 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 3974 credits -= wrlen16; 3975 } 3976 3977 eosw_txq->cred += cpl->credits; 3978 eosw_txq->ncompl--; 3979 3980 spin_unlock(&eosw_txq->lock); 3981 3982 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 3983 * if there were packets waiting for completion. 3984 */ 3985 tasklet_schedule(&eosw_txq->qresume_tsk); 3986 } 3987 3988 out_done: 3989 return 0; 3990 } 3991 3992 /* 3993 * The MSI-X interrupt handler for an SGE response queue. 3994 */ 3995 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 3996 { 3997 struct sge_rspq *q = cookie; 3998 3999 napi_schedule(&q->napi); 4000 return IRQ_HANDLED; 4001 } 4002 4003 /* 4004 * Process the indirect interrupt entries in the interrupt queue and kick off 4005 * NAPI for each queue that has generated an entry. 4006 */ 4007 static unsigned int process_intrq(struct adapter *adap) 4008 { 4009 unsigned int credits; 4010 const struct rsp_ctrl *rc; 4011 struct sge_rspq *q = &adap->sge.intrq; 4012 u32 val; 4013 4014 spin_lock(&adap->sge.intrq_lock); 4015 for (credits = 0; ; credits++) { 4016 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 4017 if (!is_new_response(rc, q)) 4018 break; 4019 4020 dma_rmb(); 4021 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 4022 unsigned int qid = ntohl(rc->pldbuflen_qid); 4023 4024 qid -= adap->sge.ingr_start; 4025 napi_schedule(&adap->sge.ingr_map[qid]->napi); 4026 } 4027 4028 rspq_next(q); 4029 } 4030 4031 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 4032 4033 /* If we don't have access to the new User GTS (T5+), use the old 4034 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4035 */ 4036 if (unlikely(q->bar2_addr == NULL)) { 4037 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 4038 val | INGRESSQID_V(q->cntxt_id)); 4039 } else { 4040 writel(val | INGRESSQID_V(q->bar2_qid), 4041 q->bar2_addr + SGE_UDB_GTS); 4042 wmb(); 4043 } 4044 spin_unlock(&adap->sge.intrq_lock); 4045 return credits; 4046 } 4047 4048 /* 4049 * The MSI interrupt handler, which handles data events from SGE response queues 4050 * as well as error and other async events as they all use the same MSI vector. 4051 */ 4052 static irqreturn_t t4_intr_msi(int irq, void *cookie) 4053 { 4054 struct adapter *adap = cookie; 4055 4056 if (adap->flags & CXGB4_MASTER_PF) 4057 t4_slow_intr_handler(adap); 4058 process_intrq(adap); 4059 return IRQ_HANDLED; 4060 } 4061 4062 /* 4063 * Interrupt handler for legacy INTx interrupts. 4064 * Handles data events from SGE response queues as well as error and other 4065 * async events as they all use the same interrupt line. 4066 */ 4067 static irqreturn_t t4_intr_intx(int irq, void *cookie) 4068 { 4069 struct adapter *adap = cookie; 4070 4071 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 4072 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 4073 process_intrq(adap)) 4074 return IRQ_HANDLED; 4075 return IRQ_NONE; /* probably shared interrupt */ 4076 } 4077 4078 /** 4079 * t4_intr_handler - select the top-level interrupt handler 4080 * @adap: the adapter 4081 * 4082 * Selects the top-level interrupt handler based on the type of interrupts 4083 * (MSI-X, MSI, or INTx). 4084 */ 4085 irq_handler_t t4_intr_handler(struct adapter *adap) 4086 { 4087 if (adap->flags & CXGB4_USING_MSIX) 4088 return t4_sge_intr_msix; 4089 if (adap->flags & CXGB4_USING_MSI) 4090 return t4_intr_msi; 4091 return t4_intr_intx; 4092 } 4093 4094 static void sge_rx_timer_cb(struct timer_list *t) 4095 { 4096 unsigned long m; 4097 unsigned int i; 4098 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 4099 struct sge *s = &adap->sge; 4100 4101 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4102 for (m = s->starving_fl[i]; m; m &= m - 1) { 4103 struct sge_eth_rxq *rxq; 4104 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 4105 struct sge_fl *fl = s->egr_map[id]; 4106 4107 clear_bit(id, s->starving_fl); 4108 smp_mb__after_atomic(); 4109 4110 if (fl_starving(adap, fl)) { 4111 rxq = container_of(fl, struct sge_eth_rxq, fl); 4112 if (napi_reschedule(&rxq->rspq.napi)) 4113 fl->starving++; 4114 else 4115 set_bit(id, s->starving_fl); 4116 } 4117 } 4118 /* The remainder of the SGE RX Timer Callback routine is dedicated to 4119 * global Master PF activities like checking for chip ingress stalls, 4120 * etc. 4121 */ 4122 if (!(adap->flags & CXGB4_MASTER_PF)) 4123 goto done; 4124 4125 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4126 4127 done: 4128 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4129 } 4130 4131 static void sge_tx_timer_cb(struct timer_list *t) 4132 { 4133 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 4134 struct sge *s = &adap->sge; 4135 unsigned long m, period; 4136 unsigned int i, budget; 4137 4138 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4139 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4140 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4141 struct sge_uld_txq *txq = s->egr_map[id]; 4142 4143 clear_bit(id, s->txq_maperr); 4144 tasklet_schedule(&txq->qresume_tsk); 4145 } 4146 4147 if (!is_t4(adap->params.chip)) { 4148 struct sge_eth_txq *q = &s->ptptxq; 4149 int avail; 4150 4151 spin_lock(&adap->ptp_lock); 4152 avail = reclaimable(&q->q); 4153 4154 if (avail) { 4155 free_tx_desc(adap, &q->q, avail, false); 4156 q->q.in_use -= avail; 4157 } 4158 spin_unlock(&adap->ptp_lock); 4159 } 4160 4161 budget = MAX_TIMER_TX_RECLAIM; 4162 i = s->ethtxq_rover; 4163 do { 4164 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4165 budget); 4166 if (!budget) 4167 break; 4168 4169 if (++i >= s->ethqsets) 4170 i = 0; 4171 } while (i != s->ethtxq_rover); 4172 s->ethtxq_rover = i; 4173 4174 if (budget == 0) { 4175 /* If we found too many reclaimable packets schedule a timer 4176 * in the near future to continue where we left off. 4177 */ 4178 period = 2; 4179 } else { 4180 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4181 * at the normal period. 4182 */ 4183 period = TX_QCHECK_PERIOD; 4184 } 4185 4186 mod_timer(&s->tx_timer, jiffies + period); 4187 } 4188 4189 /** 4190 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4191 * @adapter: the adapter 4192 * @qid: the SGE Queue ID 4193 * @qtype: the SGE Queue Type (Egress or Ingress) 4194 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4195 * 4196 * Returns the BAR2 address for the SGE Queue Registers associated with 4197 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4198 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4199 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4200 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4201 */ 4202 static void __iomem *bar2_address(struct adapter *adapter, 4203 unsigned int qid, 4204 enum t4_bar2_qtype qtype, 4205 unsigned int *pbar2_qid) 4206 { 4207 u64 bar2_qoffset; 4208 int ret; 4209 4210 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4211 &bar2_qoffset, pbar2_qid); 4212 if (ret) 4213 return NULL; 4214 4215 return adapter->bar2 + bar2_qoffset; 4216 } 4217 4218 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4219 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4220 */ 4221 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4222 struct net_device *dev, int intr_idx, 4223 struct sge_fl *fl, rspq_handler_t hnd, 4224 rspq_flush_handler_t flush_hnd, int cong) 4225 { 4226 int ret, flsz = 0; 4227 struct fw_iq_cmd c; 4228 struct sge *s = &adap->sge; 4229 struct port_info *pi = netdev_priv(dev); 4230 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4231 4232 /* Size needs to be multiple of 16, including status entry. */ 4233 iq->size = roundup(iq->size, 16); 4234 4235 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4236 &iq->phys_addr, NULL, 0, 4237 dev_to_node(adap->pdev_dev)); 4238 if (!iq->desc) 4239 return -ENOMEM; 4240 4241 memset(&c, 0, sizeof(c)); 4242 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4243 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4244 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4245 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4246 FW_LEN16(c)); 4247 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4248 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4249 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4250 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4251 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4252 -intr_idx - 1)); 4253 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4254 FW_IQ_CMD_IQGTSMODE_F | 4255 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4256 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4257 c.iqsize = htons(iq->size); 4258 c.iqaddr = cpu_to_be64(iq->phys_addr); 4259 if (cong >= 0) 4260 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4261 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4262 : FW_IQ_IQTYPE_OFLD)); 4263 4264 if (fl) { 4265 unsigned int chip_ver = 4266 CHELSIO_CHIP_VERSION(adap->params.chip); 4267 4268 /* Allocate the ring for the hardware free list (with space 4269 * for its status page) along with the associated software 4270 * descriptor ring. The free list size needs to be a multiple 4271 * of the Egress Queue Unit and at least 2 Egress Units larger 4272 * than the SGE's Egress Congrestion Threshold 4273 * (fl_starve_thres - 1). 4274 */ 4275 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4276 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4277 fl->size = roundup(fl->size, 8); 4278 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4279 sizeof(struct rx_sw_desc), &fl->addr, 4280 &fl->sdesc, s->stat_len, 4281 dev_to_node(adap->pdev_dev)); 4282 if (!fl->desc) 4283 goto fl_nomem; 4284 4285 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4286 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4287 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4288 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4289 FW_IQ_CMD_FL0PADEN_F); 4290 if (cong >= 0) 4291 c.iqns_to_fl0congen |= 4292 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4293 FW_IQ_CMD_FL0CONGCIF_F | 4294 FW_IQ_CMD_FL0CONGEN_F); 4295 /* In T6, for egress queue type FL there is internal overhead 4296 * of 16B for header going into FLM module. Hence the maximum 4297 * allowed burst size is 448 bytes. For T4/T5, the hardware 4298 * doesn't coalesce fetch requests if more than 64 bytes of 4299 * Free List pointers are provided, so we use a 128-byte Fetch 4300 * Burst Minimum there (T6 implements coalescing so we can use 4301 * the smaller 64-byte value there). 4302 */ 4303 c.fl0dcaen_to_fl0cidxfthresh = 4304 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4305 FETCHBURSTMIN_128B_X : 4306 FETCHBURSTMIN_64B_T6_X) | 4307 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4308 FETCHBURSTMAX_512B_X : 4309 FETCHBURSTMAX_256B_X)); 4310 c.fl0size = htons(flsz); 4311 c.fl0addr = cpu_to_be64(fl->addr); 4312 } 4313 4314 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4315 if (ret) 4316 goto err; 4317 4318 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 4319 iq->cur_desc = iq->desc; 4320 iq->cidx = 0; 4321 iq->gen = 1; 4322 iq->next_intr_params = iq->intr_params; 4323 iq->cntxt_id = ntohs(c.iqid); 4324 iq->abs_id = ntohs(c.physiqid); 4325 iq->bar2_addr = bar2_address(adap, 4326 iq->cntxt_id, 4327 T4_BAR2_QTYPE_INGRESS, 4328 &iq->bar2_qid); 4329 iq->size--; /* subtract status entry */ 4330 iq->netdev = dev; 4331 iq->handler = hnd; 4332 iq->flush_handler = flush_hnd; 4333 4334 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4335 skb_queue_head_init(&iq->lro_mgr.lroq); 4336 4337 /* set offset to -1 to distinguish ingress queues without FL */ 4338 iq->offset = fl ? 0 : -1; 4339 4340 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4341 4342 if (fl) { 4343 fl->cntxt_id = ntohs(c.fl0id); 4344 fl->avail = fl->pend_cred = 0; 4345 fl->pidx = fl->cidx = 0; 4346 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4347 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4348 4349 /* Note, we must initialize the BAR2 Free List User Doorbell 4350 * information before refilling the Free List! 4351 */ 4352 fl->bar2_addr = bar2_address(adap, 4353 fl->cntxt_id, 4354 T4_BAR2_QTYPE_EGRESS, 4355 &fl->bar2_qid); 4356 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4357 } 4358 4359 /* For T5 and later we attempt to set up the Congestion Manager values 4360 * of the new RX Ethernet Queue. This should really be handled by 4361 * firmware because it's more complex than any host driver wants to 4362 * get involved with and it's different per chip and this is almost 4363 * certainly wrong. Firmware would be wrong as well, but it would be 4364 * a lot easier to fix in one place ... For now we do something very 4365 * simple (and hopefully less wrong). 4366 */ 4367 if (!is_t4(adap->params.chip) && cong >= 0) { 4368 u32 param, val, ch_map = 0; 4369 int i; 4370 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4371 4372 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4373 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4374 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4375 if (cong == 0) { 4376 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4377 } else { 4378 val = 4379 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4380 for (i = 0; i < 4; i++) { 4381 if (cong & (1 << i)) 4382 ch_map |= 1 << (i << cng_ch_bits_log); 4383 } 4384 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4385 } 4386 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4387 ¶m, &val); 4388 if (ret) 4389 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4390 " Manager Context for Ingress Queue %d: %d\n", 4391 iq->cntxt_id, -ret); 4392 } 4393 4394 return 0; 4395 4396 fl_nomem: 4397 ret = -ENOMEM; 4398 err: 4399 if (iq->desc) { 4400 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4401 iq->desc, iq->phys_addr); 4402 iq->desc = NULL; 4403 } 4404 if (fl && fl->desc) { 4405 kfree(fl->sdesc); 4406 fl->sdesc = NULL; 4407 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4408 fl->desc, fl->addr); 4409 fl->desc = NULL; 4410 } 4411 return ret; 4412 } 4413 4414 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4415 { 4416 q->cntxt_id = id; 4417 q->bar2_addr = bar2_address(adap, 4418 q->cntxt_id, 4419 T4_BAR2_QTYPE_EGRESS, 4420 &q->bar2_qid); 4421 q->in_use = 0; 4422 q->cidx = q->pidx = 0; 4423 q->stops = q->restarts = 0; 4424 q->stat = (void *)&q->desc[q->size]; 4425 spin_lock_init(&q->db_lock); 4426 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4427 } 4428 4429 /** 4430 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4431 * @adap: the adapter 4432 * @txq: the SGE Ethernet TX Queue to initialize 4433 * @dev: the Linux Network Device 4434 * @netdevq: the corresponding Linux TX Queue 4435 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4436 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4437 */ 4438 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4439 struct net_device *dev, struct netdev_queue *netdevq, 4440 unsigned int iqid, u8 dbqt) 4441 { 4442 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4443 struct port_info *pi = netdev_priv(dev); 4444 struct sge *s = &adap->sge; 4445 struct fw_eq_eth_cmd c; 4446 int ret, nentries; 4447 4448 /* Add status entries */ 4449 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4450 4451 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4452 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4453 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4454 netdev_queue_numa_node_read(netdevq)); 4455 if (!txq->q.desc) 4456 return -ENOMEM; 4457 4458 memset(&c, 0, sizeof(c)); 4459 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4460 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4461 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4462 FW_EQ_ETH_CMD_VFN_V(0)); 4463 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4464 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4465 4466 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4467 * mechanism, we use Ingress Queue messages for Hardware Consumer 4468 * Index Updates on the TX Queue. Otherwise we have the Hardware 4469 * write the CIDX Updates into the Status Page at the end of the 4470 * TX Queue. 4471 */ 4472 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 4473 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4474 4475 c.fetchszm_to_iqid = 4476 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4477 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4478 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4479 4480 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4481 c.dcaen_to_eqsize = 4482 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4483 ? FETCHBURSTMIN_64B_X 4484 : FETCHBURSTMIN_64B_T6_X) | 4485 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4486 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4487 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4488 4489 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4490 4491 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4492 * currently configured Timer Index. THis can be changed later via an 4493 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4494 * Doorbell Queue mode is currently automatically enabled in the 4495 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4496 */ 4497 if (dbqt) 4498 c.timeren_timerix = 4499 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4500 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4501 4502 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4503 if (ret) { 4504 kfree(txq->q.sdesc); 4505 txq->q.sdesc = NULL; 4506 dma_free_coherent(adap->pdev_dev, 4507 nentries * sizeof(struct tx_desc), 4508 txq->q.desc, txq->q.phys_addr); 4509 txq->q.desc = NULL; 4510 return ret; 4511 } 4512 4513 txq->q.q_type = CXGB4_TXQ_ETH; 4514 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4515 txq->txq = netdevq; 4516 txq->tso = 0; 4517 txq->uso = 0; 4518 txq->tx_cso = 0; 4519 txq->vlan_ins = 0; 4520 txq->mapping_err = 0; 4521 txq->dbqt = dbqt; 4522 4523 return 0; 4524 } 4525 4526 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4527 struct net_device *dev, unsigned int iqid, 4528 unsigned int cmplqid) 4529 { 4530 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4531 struct port_info *pi = netdev_priv(dev); 4532 struct sge *s = &adap->sge; 4533 struct fw_eq_ctrl_cmd c; 4534 int ret, nentries; 4535 4536 /* Add status entries */ 4537 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4538 4539 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4540 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4541 NULL, 0, dev_to_node(adap->pdev_dev)); 4542 if (!txq->q.desc) 4543 return -ENOMEM; 4544 4545 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4546 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4547 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4548 FW_EQ_CTRL_CMD_VFN_V(0)); 4549 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4550 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4551 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4552 c.physeqid_pkd = htonl(0); 4553 c.fetchszm_to_iqid = 4554 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4555 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4556 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4557 c.dcaen_to_eqsize = 4558 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4559 ? FETCHBURSTMIN_64B_X 4560 : FETCHBURSTMIN_64B_T6_X) | 4561 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4562 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4563 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4564 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4565 4566 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4567 if (ret) { 4568 dma_free_coherent(adap->pdev_dev, 4569 nentries * sizeof(struct tx_desc), 4570 txq->q.desc, txq->q.phys_addr); 4571 txq->q.desc = NULL; 4572 return ret; 4573 } 4574 4575 txq->q.q_type = CXGB4_TXQ_CTRL; 4576 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4577 txq->adap = adap; 4578 skb_queue_head_init(&txq->sendq); 4579 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 4580 txq->full = 0; 4581 return 0; 4582 } 4583 4584 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4585 unsigned int cmplqid) 4586 { 4587 u32 param, val; 4588 4589 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4590 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4591 FW_PARAMS_PARAM_YZ_V(eqid)); 4592 val = cmplqid; 4593 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4594 } 4595 4596 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4597 struct net_device *dev, u32 cmd, u32 iqid) 4598 { 4599 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4600 struct port_info *pi = netdev_priv(dev); 4601 struct sge *s = &adap->sge; 4602 struct fw_eq_ofld_cmd c; 4603 u32 fb_min, nentries; 4604 int ret; 4605 4606 /* Add status entries */ 4607 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4608 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4609 sizeof(struct tx_sw_desc), &q->phys_addr, 4610 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4611 if (!q->desc) 4612 return -ENOMEM; 4613 4614 if (chip_ver <= CHELSIO_T5) 4615 fb_min = FETCHBURSTMIN_64B_X; 4616 else 4617 fb_min = FETCHBURSTMIN_64B_T6_X; 4618 4619 memset(&c, 0, sizeof(c)); 4620 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4621 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4622 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4623 FW_EQ_OFLD_CMD_VFN_V(0)); 4624 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4625 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4626 c.fetchszm_to_iqid = 4627 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4628 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4629 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4630 c.dcaen_to_eqsize = 4631 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4632 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4633 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4634 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4635 c.eqaddr = cpu_to_be64(q->phys_addr); 4636 4637 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4638 if (ret) { 4639 kfree(q->sdesc); 4640 q->sdesc = NULL; 4641 dma_free_coherent(adap->pdev_dev, 4642 nentries * sizeof(struct tx_desc), 4643 q->desc, q->phys_addr); 4644 q->desc = NULL; 4645 return ret; 4646 } 4647 4648 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4649 return 0; 4650 } 4651 4652 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4653 struct net_device *dev, unsigned int iqid, 4654 unsigned int uld_type) 4655 { 4656 u32 cmd = FW_EQ_OFLD_CMD; 4657 int ret; 4658 4659 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4660 cmd = FW_EQ_CTRL_CMD; 4661 4662 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4663 if (ret) 4664 return ret; 4665 4666 txq->q.q_type = CXGB4_TXQ_ULD; 4667 txq->adap = adap; 4668 skb_queue_head_init(&txq->sendq); 4669 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 4670 txq->full = 0; 4671 txq->mapping_err = 0; 4672 return 0; 4673 } 4674 4675 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4676 struct net_device *dev, u32 iqid) 4677 { 4678 int ret; 4679 4680 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4681 if (ret) 4682 return ret; 4683 4684 txq->q.q_type = CXGB4_TXQ_ULD; 4685 spin_lock_init(&txq->lock); 4686 txq->adap = adap; 4687 txq->tso = 0; 4688 txq->uso = 0; 4689 txq->tx_cso = 0; 4690 txq->vlan_ins = 0; 4691 txq->mapping_err = 0; 4692 return 0; 4693 } 4694 4695 void free_txq(struct adapter *adap, struct sge_txq *q) 4696 { 4697 struct sge *s = &adap->sge; 4698 4699 dma_free_coherent(adap->pdev_dev, 4700 q->size * sizeof(struct tx_desc) + s->stat_len, 4701 q->desc, q->phys_addr); 4702 q->cntxt_id = 0; 4703 q->sdesc = NULL; 4704 q->desc = NULL; 4705 } 4706 4707 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4708 struct sge_fl *fl) 4709 { 4710 struct sge *s = &adap->sge; 4711 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4712 4713 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4714 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4715 rq->cntxt_id, fl_id, 0xffff); 4716 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4717 rq->desc, rq->phys_addr); 4718 netif_napi_del(&rq->napi); 4719 rq->netdev = NULL; 4720 rq->cntxt_id = rq->abs_id = 0; 4721 rq->desc = NULL; 4722 4723 if (fl) { 4724 free_rx_bufs(adap, fl, fl->avail); 4725 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4726 fl->desc, fl->addr); 4727 kfree(fl->sdesc); 4728 fl->sdesc = NULL; 4729 fl->cntxt_id = 0; 4730 fl->desc = NULL; 4731 } 4732 } 4733 4734 /** 4735 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4736 * @adap: the adapter 4737 * @n: number of queues 4738 * @q: pointer to first queue 4739 * 4740 * Release the resources of a consecutive block of offload Rx queues. 4741 */ 4742 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4743 { 4744 for ( ; n; n--, q++) 4745 if (q->rspq.desc) 4746 free_rspq_fl(adap, &q->rspq, 4747 q->fl.size ? &q->fl : NULL); 4748 } 4749 4750 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4751 { 4752 if (txq->q.desc) { 4753 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4754 txq->q.cntxt_id); 4755 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4756 kfree(txq->q.sdesc); 4757 free_txq(adap, &txq->q); 4758 } 4759 } 4760 4761 /** 4762 * t4_free_sge_resources - free SGE resources 4763 * @adap: the adapter 4764 * 4765 * Frees resources used by the SGE queue sets. 4766 */ 4767 void t4_free_sge_resources(struct adapter *adap) 4768 { 4769 int i; 4770 struct sge_eth_rxq *eq; 4771 struct sge_eth_txq *etq; 4772 4773 /* stop all Rx queues in order to start them draining */ 4774 for (i = 0; i < adap->sge.ethqsets; i++) { 4775 eq = &adap->sge.ethrxq[i]; 4776 if (eq->rspq.desc) 4777 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4778 FW_IQ_TYPE_FL_INT_CAP, 4779 eq->rspq.cntxt_id, 4780 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4781 0xffff); 4782 } 4783 4784 /* clean up Ethernet Tx/Rx queues */ 4785 for (i = 0; i < adap->sge.ethqsets; i++) { 4786 eq = &adap->sge.ethrxq[i]; 4787 if (eq->rspq.desc) 4788 free_rspq_fl(adap, &eq->rspq, 4789 eq->fl.size ? &eq->fl : NULL); 4790 if (eq->msix) { 4791 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4792 eq->msix = NULL; 4793 } 4794 4795 etq = &adap->sge.ethtxq[i]; 4796 if (etq->q.desc) { 4797 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4798 etq->q.cntxt_id); 4799 __netif_tx_lock_bh(etq->txq); 4800 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4801 __netif_tx_unlock_bh(etq->txq); 4802 kfree(etq->q.sdesc); 4803 free_txq(adap, &etq->q); 4804 } 4805 } 4806 4807 /* clean up control Tx queues */ 4808 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4809 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4810 4811 if (cq->q.desc) { 4812 tasklet_kill(&cq->qresume_tsk); 4813 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4814 cq->q.cntxt_id); 4815 __skb_queue_purge(&cq->sendq); 4816 free_txq(adap, &cq->q); 4817 } 4818 } 4819 4820 if (adap->sge.fw_evtq.desc) { 4821 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4822 if (adap->sge.fwevtq_msix_idx >= 0) 4823 cxgb4_free_msix_idx_in_bmap(adap, 4824 adap->sge.fwevtq_msix_idx); 4825 } 4826 4827 if (adap->sge.nd_msix_idx >= 0) 4828 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4829 4830 if (adap->sge.intrq.desc) 4831 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4832 4833 if (!is_t4(adap->params.chip)) { 4834 etq = &adap->sge.ptptxq; 4835 if (etq->q.desc) { 4836 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4837 etq->q.cntxt_id); 4838 spin_lock_bh(&adap->ptp_lock); 4839 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4840 spin_unlock_bh(&adap->ptp_lock); 4841 kfree(etq->q.sdesc); 4842 free_txq(adap, &etq->q); 4843 } 4844 } 4845 4846 /* clear the reverse egress queue map */ 4847 memset(adap->sge.egr_map, 0, 4848 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4849 } 4850 4851 void t4_sge_start(struct adapter *adap) 4852 { 4853 adap->sge.ethtxq_rover = 0; 4854 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4855 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4856 } 4857 4858 /** 4859 * t4_sge_stop - disable SGE operation 4860 * @adap: the adapter 4861 * 4862 * Stop tasklets and timers associated with the DMA engine. Note that 4863 * this is effective only if measures have been taken to disable any HW 4864 * events that may restart them. 4865 */ 4866 void t4_sge_stop(struct adapter *adap) 4867 { 4868 int i; 4869 struct sge *s = &adap->sge; 4870 4871 if (in_interrupt()) /* actions below require waiting */ 4872 return; 4873 4874 if (s->rx_timer.function) 4875 del_timer_sync(&s->rx_timer); 4876 if (s->tx_timer.function) 4877 del_timer_sync(&s->tx_timer); 4878 4879 if (is_offload(adap)) { 4880 struct sge_uld_txq_info *txq_info; 4881 4882 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 4883 if (txq_info) { 4884 struct sge_uld_txq *txq = txq_info->uldtxq; 4885 4886 for_each_ofldtxq(&adap->sge, i) { 4887 if (txq->q.desc) 4888 tasklet_kill(&txq->qresume_tsk); 4889 } 4890 } 4891 } 4892 4893 if (is_pci_uld(adap)) { 4894 struct sge_uld_txq_info *txq_info; 4895 4896 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 4897 if (txq_info) { 4898 struct sge_uld_txq *txq = txq_info->uldtxq; 4899 4900 for_each_ofldtxq(&adap->sge, i) { 4901 if (txq->q.desc) 4902 tasklet_kill(&txq->qresume_tsk); 4903 } 4904 } 4905 } 4906 4907 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 4908 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 4909 4910 if (cq->q.desc) 4911 tasklet_kill(&cq->qresume_tsk); 4912 } 4913 } 4914 4915 /** 4916 * t4_sge_init_soft - grab core SGE values needed by SGE code 4917 * @adap: the adapter 4918 * 4919 * We need to grab the SGE operating parameters that we need to have 4920 * in order to do our job and make sure we can live with them. 4921 */ 4922 4923 static int t4_sge_init_soft(struct adapter *adap) 4924 { 4925 struct sge *s = &adap->sge; 4926 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 4927 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 4928 u32 ingress_rx_threshold; 4929 4930 /* 4931 * Verify that CPL messages are going to the Ingress Queue for 4932 * process_responses() and that only packet data is going to the 4933 * Free Lists. 4934 */ 4935 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 4936 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 4937 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 4938 return -EINVAL; 4939 } 4940 4941 /* 4942 * Validate the Host Buffer Register Array indices that we want to 4943 * use ... 4944 * 4945 * XXX Note that we should really read through the Host Buffer Size 4946 * XXX register array and find the indices of the Buffer Sizes which 4947 * XXX meet our needs! 4948 */ 4949 #define READ_FL_BUF(x) \ 4950 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 4951 4952 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 4953 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 4954 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 4955 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 4956 4957 /* We only bother using the Large Page logic if the Large Page Buffer 4958 * is larger than our Page Size Buffer. 4959 */ 4960 if (fl_large_pg <= fl_small_pg) 4961 fl_large_pg = 0; 4962 4963 #undef READ_FL_BUF 4964 4965 /* The Page Size Buffer must be exactly equal to our Page Size and the 4966 * Large Page Size Buffer should be 0 (per above) or a power of 2. 4967 */ 4968 if (fl_small_pg != PAGE_SIZE || 4969 (fl_large_pg & (fl_large_pg-1)) != 0) { 4970 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 4971 fl_small_pg, fl_large_pg); 4972 return -EINVAL; 4973 } 4974 if (fl_large_pg) 4975 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 4976 4977 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 4978 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 4979 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 4980 fl_small_mtu, fl_large_mtu); 4981 return -EINVAL; 4982 } 4983 4984 /* 4985 * Retrieve our RX interrupt holdoff timer values and counter 4986 * threshold values from the SGE parameters. 4987 */ 4988 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 4989 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 4990 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 4991 s->timer_val[0] = core_ticks_to_us(adap, 4992 TIMERVALUE0_G(timer_value_0_and_1)); 4993 s->timer_val[1] = core_ticks_to_us(adap, 4994 TIMERVALUE1_G(timer_value_0_and_1)); 4995 s->timer_val[2] = core_ticks_to_us(adap, 4996 TIMERVALUE2_G(timer_value_2_and_3)); 4997 s->timer_val[3] = core_ticks_to_us(adap, 4998 TIMERVALUE3_G(timer_value_2_and_3)); 4999 s->timer_val[4] = core_ticks_to_us(adap, 5000 TIMERVALUE4_G(timer_value_4_and_5)); 5001 s->timer_val[5] = core_ticks_to_us(adap, 5002 TIMERVALUE5_G(timer_value_4_and_5)); 5003 5004 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 5005 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 5006 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 5007 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 5008 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 5009 5010 return 0; 5011 } 5012 5013 /** 5014 * t4_sge_init - initialize SGE 5015 * @adap: the adapter 5016 * 5017 * Perform low-level SGE code initialization needed every time after a 5018 * chip reset. 5019 */ 5020 int t4_sge_init(struct adapter *adap) 5021 { 5022 struct sge *s = &adap->sge; 5023 u32 sge_control, sge_conm_ctrl; 5024 int ret, egress_threshold; 5025 5026 /* 5027 * Ingress Padding Boundary and Egress Status Page Size are set up by 5028 * t4_fixup_host_params(). 5029 */ 5030 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 5031 s->pktshift = PKTSHIFT_G(sge_control); 5032 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 5033 5034 s->fl_align = t4_fl_pkt_align(adap); 5035 ret = t4_sge_init_soft(adap); 5036 if (ret < 0) 5037 return ret; 5038 5039 /* 5040 * A FL with <= fl_starve_thres buffers is starving and a periodic 5041 * timer will attempt to refill it. This needs to be larger than the 5042 * SGE's Egress Congestion Threshold. If it isn't, then we can get 5043 * stuck waiting for new packets while the SGE is waiting for us to 5044 * give it more Free List entries. (Note that the SGE's Egress 5045 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 5046 * there was only a single field to control this. For T5 there's the 5047 * original field which now only applies to Unpacked Mode Free List 5048 * buffers and a new field which only applies to Packed Mode Free List 5049 * buffers. 5050 */ 5051 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 5052 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 5053 case CHELSIO_T4: 5054 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 5055 break; 5056 case CHELSIO_T5: 5057 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5058 break; 5059 case CHELSIO_T6: 5060 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5061 break; 5062 default: 5063 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 5064 CHELSIO_CHIP_VERSION(adap->params.chip)); 5065 return -EINVAL; 5066 } 5067 s->fl_starve_thres = 2*egress_threshold + 1; 5068 5069 t4_idma_monitor_init(adap, &s->idma_monitor); 5070 5071 /* Set up timers used for recuring callbacks to process RX and TX 5072 * administrative tasks. 5073 */ 5074 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 5075 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 5076 5077 spin_lock_init(&s->intrq_lock); 5078 5079 return 0; 5080 } 5081