1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 
59 /*
60  * Rx buffer size.  We use largish buffers if possible but settle for single
61  * pages under memory shortage.
62  */
63 #if PAGE_SHIFT >= 16
64 # define FL_PG_ORDER 0
65 #else
66 # define FL_PG_ORDER (16 - PAGE_SHIFT)
67 #endif
68 
69 /* RX_PULL_LEN should be <= RX_COPY_THRES */
70 #define RX_COPY_THRES    256
71 #define RX_PULL_LEN      128
72 
73 /*
74  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
75  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
76  */
77 #define RX_PKT_SKB_LEN   512
78 
79 /*
80  * Max number of Tx descriptors we clean up at a time.  Should be modest as
81  * freeing skbs isn't cheap and it happens while holding locks.  We just need
82  * to free packets faster than they arrive, we eventually catch up and keep
83  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
84  */
85 #define MAX_TX_RECLAIM 16
86 
87 /*
88  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
89  * allocating buffers isn't cheap either.
90  */
91 #define MAX_RX_REFILL 16U
92 
93 /*
94  * Period of the Rx queue check timer.  This timer is infrequent as it has
95  * something to do only when the system experiences severe memory shortage.
96  */
97 #define RX_QCHECK_PERIOD (HZ / 2)
98 
99 /*
100  * Period of the Tx queue check timer.
101  */
102 #define TX_QCHECK_PERIOD (HZ / 2)
103 
104 /*
105  * Max number of Tx descriptors to be reclaimed by the Tx timer.
106  */
107 #define MAX_TIMER_TX_RECLAIM 100
108 
109 /*
110  * Timer index used when backing off due to memory shortage.
111  */
112 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
113 
114 /*
115  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
116  * for a full sized WR.
117  */
118 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
119 
120 /*
121  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
122  * into a WR.
123  */
124 #define MAX_IMM_TX_PKT_LEN 256
125 
126 /*
127  * Max size of a WR sent through a control Tx queue.
128  */
129 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
130 
131 struct rx_sw_desc {                /* SW state per Rx descriptor */
132 	struct page *page;
133 	dma_addr_t dma_addr;
134 };
135 
136 /*
137  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
138  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
139  * We could easily support more but there doesn't seem to be much need for
140  * that ...
141  */
142 #define FL_MTU_SMALL 1500
143 #define FL_MTU_LARGE 9000
144 
145 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
146 					  unsigned int mtu)
147 {
148 	struct sge *s = &adapter->sge;
149 
150 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
151 }
152 
153 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
154 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
155 
156 /*
157  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
158  * these to specify the buffer size as an index into the SGE Free List Buffer
159  * Size register array.  We also use bit 4, when the buffer has been unmapped
160  * for DMA, but this is of course never sent to the hardware and is only used
161  * to prevent double unmappings.  All of the above requires that the Free List
162  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
163  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
164  * Free List Buffer alignment is 32 bytes, this works out for us ...
165  */
166 enum {
167 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
168 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
169 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
170 
171 	/*
172 	 * XXX We shouldn't depend on being able to use these indices.
173 	 * XXX Especially when some other Master PF has initialized the
174 	 * XXX adapter or we use the Firmware Configuration File.  We
175 	 * XXX should really search through the Host Buffer Size register
176 	 * XXX array for the appropriately sized buffer indices.
177 	 */
178 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
179 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
180 
181 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
182 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
183 };
184 
185 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
186 #define MIN_NAPI_WORK  1
187 
188 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
189 {
190 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
191 }
192 
193 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
194 {
195 	return !(d->dma_addr & RX_UNMAPPED_BUF);
196 }
197 
198 /**
199  *	txq_avail - return the number of available slots in a Tx queue
200  *	@q: the Tx queue
201  *
202  *	Returns the number of descriptors in a Tx queue available to write new
203  *	packets.
204  */
205 static inline unsigned int txq_avail(const struct sge_txq *q)
206 {
207 	return q->size - 1 - q->in_use;
208 }
209 
210 /**
211  *	fl_cap - return the capacity of a free-buffer list
212  *	@fl: the FL
213  *
214  *	Returns the capacity of a free-buffer list.  The capacity is less than
215  *	the size because one descriptor needs to be left unpopulated, otherwise
216  *	HW will think the FL is empty.
217  */
218 static inline unsigned int fl_cap(const struct sge_fl *fl)
219 {
220 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
221 }
222 
223 /**
224  *	fl_starving - return whether a Free List is starving.
225  *	@adapter: pointer to the adapter
226  *	@fl: the Free List
227  *
228  *	Tests specified Free List to see whether the number of buffers
229  *	available to the hardware has falled below our "starvation"
230  *	threshold.
231  */
232 static inline bool fl_starving(const struct adapter *adapter,
233 			       const struct sge_fl *fl)
234 {
235 	const struct sge *s = &adapter->sge;
236 
237 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
238 }
239 
240 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
241 		  dma_addr_t *addr)
242 {
243 	const skb_frag_t *fp, *end;
244 	const struct skb_shared_info *si;
245 
246 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
247 	if (dma_mapping_error(dev, *addr))
248 		goto out_err;
249 
250 	si = skb_shinfo(skb);
251 	end = &si->frags[si->nr_frags];
252 
253 	for (fp = si->frags; fp < end; fp++) {
254 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
255 					   DMA_TO_DEVICE);
256 		if (dma_mapping_error(dev, *addr))
257 			goto unwind;
258 	}
259 	return 0;
260 
261 unwind:
262 	while (fp-- > si->frags)
263 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
264 
265 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
266 out_err:
267 	return -ENOMEM;
268 }
269 EXPORT_SYMBOL(cxgb4_map_skb);
270 
271 #ifdef CONFIG_NEED_DMA_MAP_STATE
272 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
273 		      const dma_addr_t *addr)
274 {
275 	const skb_frag_t *fp, *end;
276 	const struct skb_shared_info *si;
277 
278 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
279 
280 	si = skb_shinfo(skb);
281 	end = &si->frags[si->nr_frags];
282 	for (fp = si->frags; fp < end; fp++)
283 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
284 }
285 
286 /**
287  *	deferred_unmap_destructor - unmap a packet when it is freed
288  *	@skb: the packet
289  *
290  *	This is the packet destructor used for Tx packets that need to remain
291  *	mapped until they are freed rather than until their Tx descriptors are
292  *	freed.
293  */
294 static void deferred_unmap_destructor(struct sk_buff *skb)
295 {
296 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
297 }
298 #endif
299 
300 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
301 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
302 {
303 	const struct ulptx_sge_pair *p;
304 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
305 
306 	if (likely(skb_headlen(skb)))
307 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
308 				 DMA_TO_DEVICE);
309 	else {
310 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
311 			       DMA_TO_DEVICE);
312 		nfrags--;
313 	}
314 
315 	/*
316 	 * the complexity below is because of the possibility of a wrap-around
317 	 * in the middle of an SGL
318 	 */
319 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
320 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
321 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
322 				       ntohl(p->len[0]), DMA_TO_DEVICE);
323 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
324 				       ntohl(p->len[1]), DMA_TO_DEVICE);
325 			p++;
326 		} else if ((u8 *)p == (u8 *)q->stat) {
327 			p = (const struct ulptx_sge_pair *)q->desc;
328 			goto unmap;
329 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
330 			const __be64 *addr = (const __be64 *)q->desc;
331 
332 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
333 				       ntohl(p->len[0]), DMA_TO_DEVICE);
334 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
335 				       ntohl(p->len[1]), DMA_TO_DEVICE);
336 			p = (const struct ulptx_sge_pair *)&addr[2];
337 		} else {
338 			const __be64 *addr = (const __be64 *)q->desc;
339 
340 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
341 				       ntohl(p->len[0]), DMA_TO_DEVICE);
342 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
343 				       ntohl(p->len[1]), DMA_TO_DEVICE);
344 			p = (const struct ulptx_sge_pair *)&addr[1];
345 		}
346 	}
347 	if (nfrags) {
348 		__be64 addr;
349 
350 		if ((u8 *)p == (u8 *)q->stat)
351 			p = (const struct ulptx_sge_pair *)q->desc;
352 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
353 						       *(const __be64 *)q->desc;
354 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
355 			       DMA_TO_DEVICE);
356 	}
357 }
358 
359 /**
360  *	free_tx_desc - reclaims Tx descriptors and their buffers
361  *	@adapter: the adapter
362  *	@q: the Tx queue to reclaim descriptors from
363  *	@n: the number of descriptors to reclaim
364  *	@unmap: whether the buffers should be unmapped for DMA
365  *
366  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
367  *	Tx buffers.  Called with the Tx queue lock held.
368  */
369 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
370 		  unsigned int n, bool unmap)
371 {
372 	struct tx_sw_desc *d;
373 	unsigned int cidx = q->cidx;
374 	struct device *dev = adap->pdev_dev;
375 
376 	d = &q->sdesc[cidx];
377 	while (n--) {
378 		if (d->skb) {                       /* an SGL is present */
379 			if (unmap)
380 				unmap_sgl(dev, d->skb, d->sgl, q);
381 			dev_consume_skb_any(d->skb);
382 			d->skb = NULL;
383 		}
384 		++d;
385 		if (++cidx == q->size) {
386 			cidx = 0;
387 			d = q->sdesc;
388 		}
389 	}
390 	q->cidx = cidx;
391 }
392 
393 /*
394  * Return the number of reclaimable descriptors in a Tx queue.
395  */
396 static inline int reclaimable(const struct sge_txq *q)
397 {
398 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
399 	hw_cidx -= q->cidx;
400 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
401 }
402 
403 /**
404  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
405  *	@adap: the adapter
406  *	@q: the Tx queue to reclaim completed descriptors from
407  *	@unmap: whether the buffers should be unmapped for DMA
408  *
409  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
410  *	and frees the associated buffers if possible.  Called with the Tx
411  *	queue locked.
412  */
413 inline void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
414 					bool unmap)
415 {
416 	int avail = reclaimable(q);
417 
418 	if (avail) {
419 		/*
420 		 * Limit the amount of clean up work we do at a time to keep
421 		 * the Tx lock hold time O(1).
422 		 */
423 		if (avail > MAX_TX_RECLAIM)
424 			avail = MAX_TX_RECLAIM;
425 
426 		free_tx_desc(adap, q, avail, unmap);
427 		q->in_use -= avail;
428 	}
429 }
430 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
431 
432 static inline int get_buf_size(struct adapter *adapter,
433 			       const struct rx_sw_desc *d)
434 {
435 	struct sge *s = &adapter->sge;
436 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
437 	int buf_size;
438 
439 	switch (rx_buf_size_idx) {
440 	case RX_SMALL_PG_BUF:
441 		buf_size = PAGE_SIZE;
442 		break;
443 
444 	case RX_LARGE_PG_BUF:
445 		buf_size = PAGE_SIZE << s->fl_pg_order;
446 		break;
447 
448 	case RX_SMALL_MTU_BUF:
449 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
450 		break;
451 
452 	case RX_LARGE_MTU_BUF:
453 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
454 		break;
455 
456 	default:
457 		BUG_ON(1);
458 	}
459 
460 	return buf_size;
461 }
462 
463 /**
464  *	free_rx_bufs - free the Rx buffers on an SGE free list
465  *	@adap: the adapter
466  *	@q: the SGE free list to free buffers from
467  *	@n: how many buffers to free
468  *
469  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
470  *	buffers must be made inaccessible to HW before calling this function.
471  */
472 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
473 {
474 	while (n--) {
475 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
476 
477 		if (is_buf_mapped(d))
478 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
479 				       get_buf_size(adap, d),
480 				       PCI_DMA_FROMDEVICE);
481 		put_page(d->page);
482 		d->page = NULL;
483 		if (++q->cidx == q->size)
484 			q->cidx = 0;
485 		q->avail--;
486 	}
487 }
488 
489 /**
490  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
491  *	@adap: the adapter
492  *	@q: the SGE free list
493  *
494  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
495  *	buffer must be made inaccessible to HW before calling this function.
496  *
497  *	This is similar to @free_rx_bufs above but does not free the buffer.
498  *	Do note that the FL still loses any further access to the buffer.
499  */
500 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
501 {
502 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
503 
504 	if (is_buf_mapped(d))
505 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
506 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
507 	d->page = NULL;
508 	if (++q->cidx == q->size)
509 		q->cidx = 0;
510 	q->avail--;
511 }
512 
513 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
514 {
515 	if (q->pend_cred >= 8) {
516 		u32 val = adap->params.arch.sge_fl_db;
517 
518 		if (is_t4(adap->params.chip))
519 			val |= PIDX_V(q->pend_cred / 8);
520 		else
521 			val |= PIDX_T5_V(q->pend_cred / 8);
522 
523 		/* Make sure all memory writes to the Free List queue are
524 		 * committed before we tell the hardware about them.
525 		 */
526 		wmb();
527 
528 		/* If we don't have access to the new User Doorbell (T5+), use
529 		 * the old doorbell mechanism; otherwise use the new BAR2
530 		 * mechanism.
531 		 */
532 		if (unlikely(q->bar2_addr == NULL)) {
533 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
534 				     val | QID_V(q->cntxt_id));
535 		} else {
536 			writel(val | QID_V(q->bar2_qid),
537 			       q->bar2_addr + SGE_UDB_KDOORBELL);
538 
539 			/* This Write memory Barrier will force the write to
540 			 * the User Doorbell area to be flushed.
541 			 */
542 			wmb();
543 		}
544 		q->pend_cred &= 7;
545 	}
546 }
547 
548 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
549 				  dma_addr_t mapping)
550 {
551 	sd->page = pg;
552 	sd->dma_addr = mapping;      /* includes size low bits */
553 }
554 
555 /**
556  *	refill_fl - refill an SGE Rx buffer ring
557  *	@adap: the adapter
558  *	@q: the ring to refill
559  *	@n: the number of new buffers to allocate
560  *	@gfp: the gfp flags for the allocations
561  *
562  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
563  *	allocated with the supplied gfp flags.  The caller must assure that
564  *	@n does not exceed the queue's capacity.  If afterwards the queue is
565  *	found critically low mark it as starving in the bitmap of starving FLs.
566  *
567  *	Returns the number of buffers allocated.
568  */
569 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
570 			      gfp_t gfp)
571 {
572 	struct sge *s = &adap->sge;
573 	struct page *pg;
574 	dma_addr_t mapping;
575 	unsigned int cred = q->avail;
576 	__be64 *d = &q->desc[q->pidx];
577 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
578 	int node;
579 
580 #ifdef CONFIG_DEBUG_FS
581 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
582 		goto out;
583 #endif
584 
585 	gfp |= __GFP_NOWARN;
586 	node = dev_to_node(adap->pdev_dev);
587 
588 	if (s->fl_pg_order == 0)
589 		goto alloc_small_pages;
590 
591 	/*
592 	 * Prefer large buffers
593 	 */
594 	while (n) {
595 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
596 		if (unlikely(!pg)) {
597 			q->large_alloc_failed++;
598 			break;       /* fall back to single pages */
599 		}
600 
601 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
602 				       PAGE_SIZE << s->fl_pg_order,
603 				       PCI_DMA_FROMDEVICE);
604 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
605 			__free_pages(pg, s->fl_pg_order);
606 			q->mapping_err++;
607 			goto out;   /* do not try small pages for this error */
608 		}
609 		mapping |= RX_LARGE_PG_BUF;
610 		*d++ = cpu_to_be64(mapping);
611 
612 		set_rx_sw_desc(sd, pg, mapping);
613 		sd++;
614 
615 		q->avail++;
616 		if (++q->pidx == q->size) {
617 			q->pidx = 0;
618 			sd = q->sdesc;
619 			d = q->desc;
620 		}
621 		n--;
622 	}
623 
624 alloc_small_pages:
625 	while (n--) {
626 		pg = alloc_pages_node(node, gfp, 0);
627 		if (unlikely(!pg)) {
628 			q->alloc_failed++;
629 			break;
630 		}
631 
632 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
633 				       PCI_DMA_FROMDEVICE);
634 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
635 			put_page(pg);
636 			q->mapping_err++;
637 			goto out;
638 		}
639 		*d++ = cpu_to_be64(mapping);
640 
641 		set_rx_sw_desc(sd, pg, mapping);
642 		sd++;
643 
644 		q->avail++;
645 		if (++q->pidx == q->size) {
646 			q->pidx = 0;
647 			sd = q->sdesc;
648 			d = q->desc;
649 		}
650 	}
651 
652 out:	cred = q->avail - cred;
653 	q->pend_cred += cred;
654 	ring_fl_db(adap, q);
655 
656 	if (unlikely(fl_starving(adap, q))) {
657 		smp_wmb();
658 		q->low++;
659 		set_bit(q->cntxt_id - adap->sge.egr_start,
660 			adap->sge.starving_fl);
661 	}
662 
663 	return cred;
664 }
665 
666 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
667 {
668 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
669 		  GFP_ATOMIC);
670 }
671 
672 /**
673  *	alloc_ring - allocate resources for an SGE descriptor ring
674  *	@dev: the PCI device's core device
675  *	@nelem: the number of descriptors
676  *	@elem_size: the size of each descriptor
677  *	@sw_size: the size of the SW state associated with each ring element
678  *	@phys: the physical address of the allocated ring
679  *	@metadata: address of the array holding the SW state for the ring
680  *	@stat_size: extra space in HW ring for status information
681  *	@node: preferred node for memory allocations
682  *
683  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
684  *	free buffer lists, or response queues.  Each SGE ring requires
685  *	space for its HW descriptors plus, optionally, space for the SW state
686  *	associated with each HW entry (the metadata).  The function returns
687  *	three values: the virtual address for the HW ring (the return value
688  *	of the function), the bus address of the HW ring, and the address
689  *	of the SW ring.
690  */
691 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
692 			size_t sw_size, dma_addr_t *phys, void *metadata,
693 			size_t stat_size, int node)
694 {
695 	size_t len = nelem * elem_size + stat_size;
696 	void *s = NULL;
697 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
698 
699 	if (!p)
700 		return NULL;
701 	if (sw_size) {
702 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
703 
704 		if (!s) {
705 			dma_free_coherent(dev, len, p, *phys);
706 			return NULL;
707 		}
708 	}
709 	if (metadata)
710 		*(void **)metadata = s;
711 	memset(p, 0, len);
712 	return p;
713 }
714 
715 /**
716  *	sgl_len - calculates the size of an SGL of the given capacity
717  *	@n: the number of SGL entries
718  *
719  *	Calculates the number of flits needed for a scatter/gather list that
720  *	can hold the given number of entries.
721  */
722 static inline unsigned int sgl_len(unsigned int n)
723 {
724 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
725 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
726 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
727 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
728 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
729 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
730 	 * Address[N+1] is omitted.
731 	 *
732 	 * The following calculation incorporates all of the above.  It's
733 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
734 	 * first two flits which include the DSGL header, Length0 and
735 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
736 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
737 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
738 	 * (n-1) is odd ...
739 	 */
740 	n--;
741 	return (3 * n) / 2 + (n & 1) + 2;
742 }
743 
744 /**
745  *	flits_to_desc - returns the num of Tx descriptors for the given flits
746  *	@n: the number of flits
747  *
748  *	Returns the number of Tx descriptors needed for the supplied number
749  *	of flits.
750  */
751 static inline unsigned int flits_to_desc(unsigned int n)
752 {
753 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
754 	return DIV_ROUND_UP(n, 8);
755 }
756 
757 /**
758  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
759  *	@skb: the packet
760  *
761  *	Returns whether an Ethernet packet is small enough to fit as
762  *	immediate data. Return value corresponds to headroom required.
763  */
764 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
765 {
766 	int hdrlen = 0;
767 
768 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
769 	    chip_ver > CHELSIO_T5) {
770 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
771 		hdrlen += sizeof(struct cpl_tx_pkt_core);
772 	} else {
773 		hdrlen = skb_shinfo(skb)->gso_size ?
774 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
775 		hdrlen += sizeof(struct cpl_tx_pkt);
776 	}
777 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
778 		return hdrlen;
779 	return 0;
780 }
781 
782 /**
783  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
784  *	@skb: the packet
785  *
786  *	Returns the number of flits needed for a Tx WR for the given Ethernet
787  *	packet, including the needed WR and CPL headers.
788  */
789 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
790 					 unsigned int chip_ver)
791 {
792 	unsigned int flits;
793 	int hdrlen = is_eth_imm(skb, chip_ver);
794 
795 	/* If the skb is small enough, we can pump it out as a work request
796 	 * with only immediate data.  In that case we just have to have the
797 	 * TX Packet header plus the skb data in the Work Request.
798 	 */
799 
800 	if (hdrlen)
801 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
802 
803 	/* Otherwise, we're going to have to construct a Scatter gather list
804 	 * of the skb body and fragments.  We also include the flits necessary
805 	 * for the TX Packet Work Request and CPL.  We always have a firmware
806 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
807 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
808 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
809 	 * with an embedded TX Packet Write CPL message.
810 	 */
811 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
812 	if (skb_shinfo(skb)->gso_size) {
813 		if (skb->encapsulation && chip_ver > CHELSIO_T5)
814 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
815 				 sizeof(struct cpl_tx_tnl_lso);
816 		else
817 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
818 				 sizeof(struct cpl_tx_pkt_lso_core);
819 
820 		hdrlen += sizeof(struct cpl_tx_pkt_core);
821 		flits += (hdrlen / sizeof(__be64));
822 	} else {
823 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
824 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
825 	}
826 	return flits;
827 }
828 
829 /**
830  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
831  *	@skb: the packet
832  *
833  *	Returns the number of Tx descriptors needed for the given Ethernet
834  *	packet, including the needed WR and CPL headers.
835  */
836 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
837 					 unsigned int chip_ver)
838 {
839 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
840 }
841 
842 /**
843  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
844  *	@skb: the packet
845  *	@q: the Tx queue we are writing into
846  *	@sgl: starting location for writing the SGL
847  *	@end: points right after the end of the SGL
848  *	@start: start offset into skb main-body data to include in the SGL
849  *	@addr: the list of bus addresses for the SGL elements
850  *
851  *	Generates a gather list for the buffers that make up a packet.
852  *	The caller must provide adequate space for the SGL that will be written.
853  *	The SGL includes all of the packet's page fragments and the data in its
854  *	main body except for the first @start bytes.  @sgl must be 16-byte
855  *	aligned and within a Tx descriptor with available space.  @end points
856  *	right after the end of the SGL but does not account for any potential
857  *	wrap around, i.e., @end > @sgl.
858  */
859 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
860 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
861 		     const dma_addr_t *addr)
862 {
863 	unsigned int i, len;
864 	struct ulptx_sge_pair *to;
865 	const struct skb_shared_info *si = skb_shinfo(skb);
866 	unsigned int nfrags = si->nr_frags;
867 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
868 
869 	len = skb_headlen(skb) - start;
870 	if (likely(len)) {
871 		sgl->len0 = htonl(len);
872 		sgl->addr0 = cpu_to_be64(addr[0] + start);
873 		nfrags++;
874 	} else {
875 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
876 		sgl->addr0 = cpu_to_be64(addr[1]);
877 	}
878 
879 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
880 			      ULPTX_NSGE_V(nfrags));
881 	if (likely(--nfrags == 0))
882 		return;
883 	/*
884 	 * Most of the complexity below deals with the possibility we hit the
885 	 * end of the queue in the middle of writing the SGL.  For this case
886 	 * only we create the SGL in a temporary buffer and then copy it.
887 	 */
888 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
889 
890 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
891 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
892 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
893 		to->addr[0] = cpu_to_be64(addr[i]);
894 		to->addr[1] = cpu_to_be64(addr[++i]);
895 	}
896 	if (nfrags) {
897 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
898 		to->len[1] = cpu_to_be32(0);
899 		to->addr[0] = cpu_to_be64(addr[i + 1]);
900 	}
901 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
902 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
903 
904 		if (likely(part0))
905 			memcpy(sgl->sge, buf, part0);
906 		part1 = (u8 *)end - (u8 *)q->stat;
907 		memcpy(q->desc, (u8 *)buf + part0, part1);
908 		end = (void *)q->desc + part1;
909 	}
910 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
911 		*end = 0;
912 }
913 EXPORT_SYMBOL(cxgb4_write_sgl);
914 
915 /* This function copies 64 byte coalesced work request to
916  * memory mapped BAR2 space. For coalesced WR SGE fetches
917  * data from the FIFO instead of from Host.
918  */
919 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
920 {
921 	int count = 8;
922 
923 	while (count) {
924 		writeq(*src, dst);
925 		src++;
926 		dst++;
927 		count--;
928 	}
929 }
930 
931 /**
932  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
933  *	@adap: the adapter
934  *	@q: the Tx queue
935  *	@n: number of new descriptors to give to HW
936  *
937  *	Ring the doorbel for a Tx queue.
938  */
939 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
940 {
941 	/* Make sure that all writes to the TX Descriptors are committed
942 	 * before we tell the hardware about them.
943 	 */
944 	wmb();
945 
946 	/* If we don't have access to the new User Doorbell (T5+), use the old
947 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
948 	 */
949 	if (unlikely(q->bar2_addr == NULL)) {
950 		u32 val = PIDX_V(n);
951 		unsigned long flags;
952 
953 		/* For T4 we need to participate in the Doorbell Recovery
954 		 * mechanism.
955 		 */
956 		spin_lock_irqsave(&q->db_lock, flags);
957 		if (!q->db_disabled)
958 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
959 				     QID_V(q->cntxt_id) | val);
960 		else
961 			q->db_pidx_inc += n;
962 		q->db_pidx = q->pidx;
963 		spin_unlock_irqrestore(&q->db_lock, flags);
964 	} else {
965 		u32 val = PIDX_T5_V(n);
966 
967 		/* T4 and later chips share the same PIDX field offset within
968 		 * the doorbell, but T5 and later shrank the field in order to
969 		 * gain a bit for Doorbell Priority.  The field was absurdly
970 		 * large in the first place (14 bits) so we just use the T5
971 		 * and later limits and warn if a Queue ID is too large.
972 		 */
973 		WARN_ON(val & DBPRIO_F);
974 
975 		/* If we're only writing a single TX Descriptor and we can use
976 		 * Inferred QID registers, we can use the Write Combining
977 		 * Gather Buffer; otherwise we use the simple doorbell.
978 		 */
979 		if (n == 1 && q->bar2_qid == 0) {
980 			int index = (q->pidx
981 				     ? (q->pidx - 1)
982 				     : (q->size - 1));
983 			u64 *wr = (u64 *)&q->desc[index];
984 
985 			cxgb_pio_copy((u64 __iomem *)
986 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
987 				      wr);
988 		} else {
989 			writel(val | QID_V(q->bar2_qid),
990 			       q->bar2_addr + SGE_UDB_KDOORBELL);
991 		}
992 
993 		/* This Write Memory Barrier will force the write to the User
994 		 * Doorbell area to be flushed.  This is needed to prevent
995 		 * writes on different CPUs for the same queue from hitting
996 		 * the adapter out of order.  This is required when some Work
997 		 * Requests take the Write Combine Gather Buffer path (user
998 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
999 		 * take the traditional path where we simply increment the
1000 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1001 		 * hardware DMA read the actual Work Request.
1002 		 */
1003 		wmb();
1004 	}
1005 }
1006 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1007 
1008 /**
1009  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1010  *	@skb: the packet
1011  *	@q: the Tx queue where the packet will be inlined
1012  *	@pos: starting position in the Tx queue where to inline the packet
1013  *
1014  *	Inline a packet's contents directly into Tx descriptors, starting at
1015  *	the given position within the Tx DMA ring.
1016  *	Most of the complexity of this operation is dealing with wrap arounds
1017  *	in the middle of the packet we want to inline.
1018  */
1019 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1020 			 const struct sge_txq *q, void *pos)
1021 {
1022 	u64 *p;
1023 	int left = (void *)q->stat - pos;
1024 
1025 	if (likely(skb->len <= left)) {
1026 		if (likely(!skb->data_len))
1027 			skb_copy_from_linear_data(skb, pos, skb->len);
1028 		else
1029 			skb_copy_bits(skb, 0, pos, skb->len);
1030 		pos += skb->len;
1031 	} else {
1032 		skb_copy_bits(skb, 0, pos, left);
1033 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1034 		pos = (void *)q->desc + (skb->len - left);
1035 	}
1036 
1037 	/* 0-pad to multiple of 16 */
1038 	p = PTR_ALIGN(pos, 8);
1039 	if ((uintptr_t)p & 8)
1040 		*p = 0;
1041 }
1042 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1043 
1044 static void *inline_tx_skb_header(const struct sk_buff *skb,
1045 				  const struct sge_txq *q,  void *pos,
1046 				  int length)
1047 {
1048 	u64 *p;
1049 	int left = (void *)q->stat - pos;
1050 
1051 	if (likely(length <= left)) {
1052 		memcpy(pos, skb->data, length);
1053 		pos += length;
1054 	} else {
1055 		memcpy(pos, skb->data, left);
1056 		memcpy(q->desc, skb->data + left, length - left);
1057 		pos = (void *)q->desc + (length - left);
1058 	}
1059 	/* 0-pad to multiple of 16 */
1060 	p = PTR_ALIGN(pos, 8);
1061 	if ((uintptr_t)p & 8) {
1062 		*p = 0;
1063 		return p + 1;
1064 	}
1065 	return p;
1066 }
1067 
1068 /*
1069  * Figure out what HW csum a packet wants and return the appropriate control
1070  * bits.
1071  */
1072 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1073 {
1074 	int csum_type;
1075 	const struct iphdr *iph = ip_hdr(skb);
1076 
1077 	if (iph->version == 4) {
1078 		if (iph->protocol == IPPROTO_TCP)
1079 			csum_type = TX_CSUM_TCPIP;
1080 		else if (iph->protocol == IPPROTO_UDP)
1081 			csum_type = TX_CSUM_UDPIP;
1082 		else {
1083 nocsum:			/*
1084 			 * unknown protocol, disable HW csum
1085 			 * and hope a bad packet is detected
1086 			 */
1087 			return TXPKT_L4CSUM_DIS_F;
1088 		}
1089 	} else {
1090 		/*
1091 		 * this doesn't work with extension headers
1092 		 */
1093 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1094 
1095 		if (ip6h->nexthdr == IPPROTO_TCP)
1096 			csum_type = TX_CSUM_TCPIP6;
1097 		else if (ip6h->nexthdr == IPPROTO_UDP)
1098 			csum_type = TX_CSUM_UDPIP6;
1099 		else
1100 			goto nocsum;
1101 	}
1102 
1103 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1104 		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1105 		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1106 
1107 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1108 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1109 		else
1110 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1111 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1112 	} else {
1113 		int start = skb_transport_offset(skb);
1114 
1115 		return TXPKT_CSUM_TYPE_V(csum_type) |
1116 			TXPKT_CSUM_START_V(start) |
1117 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1118 	}
1119 }
1120 
1121 static void eth_txq_stop(struct sge_eth_txq *q)
1122 {
1123 	netif_tx_stop_queue(q->txq);
1124 	q->q.stops++;
1125 }
1126 
1127 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1128 {
1129 	q->in_use += n;
1130 	q->pidx += n;
1131 	if (q->pidx >= q->size)
1132 		q->pidx -= q->size;
1133 }
1134 
1135 #ifdef CONFIG_CHELSIO_T4_FCOE
1136 static inline int
1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1138 		  const struct port_info *pi, u64 *cntrl)
1139 {
1140 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1141 
1142 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1143 		return 0;
1144 
1145 	if (skb->protocol != htons(ETH_P_FCOE))
1146 		return 0;
1147 
1148 	skb_reset_mac_header(skb);
1149 	skb->mac_len = sizeof(struct ethhdr);
1150 
1151 	skb_set_network_header(skb, skb->mac_len);
1152 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1153 
1154 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1155 		return -ENOTSUPP;
1156 
1157 	/* FC CRC offload */
1158 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1159 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1160 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1161 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1162 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1163 	return 0;
1164 }
1165 #endif /* CONFIG_CHELSIO_T4_FCOE */
1166 
1167 /* Returns tunnel type if hardware supports offloading of the same.
1168  * It is called only for T5 and onwards.
1169  */
1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1171 {
1172 	u8 l4_hdr = 0;
1173 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1174 	struct port_info *pi = netdev_priv(skb->dev);
1175 	struct adapter *adapter = pi->adapter;
1176 
1177 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1178 	    skb->inner_protocol != htons(ETH_P_TEB))
1179 		return tnl_type;
1180 
1181 	switch (vlan_get_protocol(skb)) {
1182 	case htons(ETH_P_IP):
1183 		l4_hdr = ip_hdr(skb)->protocol;
1184 		break;
1185 	case htons(ETH_P_IPV6):
1186 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1187 		break;
1188 	default:
1189 		return tnl_type;
1190 	}
1191 
1192 	switch (l4_hdr) {
1193 	case IPPROTO_UDP:
1194 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1195 			tnl_type = TX_TNL_TYPE_VXLAN;
1196 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1197 			tnl_type = TX_TNL_TYPE_GENEVE;
1198 		break;
1199 	default:
1200 		return tnl_type;
1201 	}
1202 
1203 	return tnl_type;
1204 }
1205 
1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1207 				   struct cpl_tx_tnl_lso *tnl_lso,
1208 				   enum cpl_tx_tnl_lso_type tnl_type)
1209 {
1210 	u32 val;
1211 	int in_eth_xtra_len;
1212 	int l3hdr_len = skb_network_header_len(skb);
1213 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1214 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1215 	bool v6 = (ip_hdr(skb)->version == 6);
1216 
1217 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1218 	      CPL_TX_TNL_LSO_FIRST_F |
1219 	      CPL_TX_TNL_LSO_LAST_F |
1220 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1221 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1222 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1223 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1224 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1225 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1226 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1227 
1228 	tnl_lso->IpIdOffsetOut = 0;
1229 
1230 	/* Get the tunnel header length */
1231 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1232 	in_eth_xtra_len = skb_inner_network_header(skb) -
1233 			  skb_inner_mac_header(skb) - ETH_HLEN;
1234 
1235 	switch (tnl_type) {
1236 	case TX_TNL_TYPE_VXLAN:
1237 	case TX_TNL_TYPE_GENEVE:
1238 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1239 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1240 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1241 		break;
1242 	default:
1243 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1244 		break;
1245 	}
1246 
1247 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1248 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1249 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1250 
1251 	tnl_lso->r1 = 0;
1252 
1253 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1254 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1255 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1256 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1257 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1258 
1259 	tnl_lso->IpIdOffset = htons(0);
1260 
1261 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1262 	tnl_lso->TCPSeqOffset = htonl(0);
1263 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1264 }
1265 
1266 /**
1267  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
1268  *	@skb: the packet
1269  *	@dev: the egress net device
1270  *
1271  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1272  */
1273 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1274 {
1275 	u32 wr_mid, ctrl0, op;
1276 	u64 cntrl, *end;
1277 	int qidx, credits;
1278 	unsigned int flits, ndesc;
1279 	struct adapter *adap;
1280 	struct sge_eth_txq *q;
1281 	const struct port_info *pi;
1282 	struct fw_eth_tx_pkt_wr *wr;
1283 	struct cpl_tx_pkt_core *cpl;
1284 	const struct skb_shared_info *ssi;
1285 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1286 	bool immediate = false;
1287 	int len, max_pkt_len;
1288 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1289 	unsigned int chip_ver;
1290 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1291 
1292 #ifdef CONFIG_CHELSIO_T4_FCOE
1293 	int err;
1294 #endif /* CONFIG_CHELSIO_T4_FCOE */
1295 
1296 	/*
1297 	 * The chip min packet length is 10 octets but play safe and reject
1298 	 * anything shorter than an Ethernet header.
1299 	 */
1300 	if (unlikely(skb->len < ETH_HLEN)) {
1301 out_free:	dev_kfree_skb_any(skb);
1302 		return NETDEV_TX_OK;
1303 	}
1304 
1305 	/* Discard the packet if the length is greater than mtu */
1306 	max_pkt_len = ETH_HLEN + dev->mtu;
1307 	if (skb_vlan_tagged(skb))
1308 		max_pkt_len += VLAN_HLEN;
1309 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1310 		goto out_free;
1311 
1312 	pi = netdev_priv(dev);
1313 	adap = pi->adapter;
1314 	ssi = skb_shinfo(skb);
1315 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1316 	if (xfrm_offload(skb) && !ssi->gso_size)
1317 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1318 #endif /* CHELSIO_IPSEC_INLINE */
1319 
1320 	qidx = skb_get_queue_mapping(skb);
1321 	if (ptp_enabled) {
1322 		spin_lock(&adap->ptp_lock);
1323 		if (!(adap->ptp_tx_skb)) {
1324 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1325 			adap->ptp_tx_skb = skb_get(skb);
1326 		} else {
1327 			spin_unlock(&adap->ptp_lock);
1328 			goto out_free;
1329 		}
1330 		q = &adap->sge.ptptxq;
1331 	} else {
1332 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1333 	}
1334 	skb_tx_timestamp(skb);
1335 
1336 	cxgb4_reclaim_completed_tx(adap, &q->q, true);
1337 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1338 
1339 #ifdef CONFIG_CHELSIO_T4_FCOE
1340 	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1341 	if (unlikely(err == -ENOTSUPP)) {
1342 		if (ptp_enabled)
1343 			spin_unlock(&adap->ptp_lock);
1344 		goto out_free;
1345 	}
1346 #endif /* CONFIG_CHELSIO_T4_FCOE */
1347 
1348 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1349 	flits = calc_tx_flits(skb, chip_ver);
1350 	ndesc = flits_to_desc(flits);
1351 	credits = txq_avail(&q->q) - ndesc;
1352 
1353 	if (unlikely(credits < 0)) {
1354 		eth_txq_stop(q);
1355 		dev_err(adap->pdev_dev,
1356 			"%s: Tx ring %u full while queue awake!\n",
1357 			dev->name, qidx);
1358 		if (ptp_enabled)
1359 			spin_unlock(&adap->ptp_lock);
1360 		return NETDEV_TX_BUSY;
1361 	}
1362 
1363 	if (is_eth_imm(skb, chip_ver))
1364 		immediate = true;
1365 
1366 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1367 		tnl_type = cxgb_encap_offload_supported(skb);
1368 
1369 	if (!immediate &&
1370 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) {
1371 		q->mapping_err++;
1372 		if (ptp_enabled)
1373 			spin_unlock(&adap->ptp_lock);
1374 		goto out_free;
1375 	}
1376 
1377 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1378 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1379 		eth_txq_stop(q);
1380 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1381 	}
1382 
1383 	wr = (void *)&q->q.desc[q->q.pidx];
1384 	wr->equiq_to_len16 = htonl(wr_mid);
1385 	wr->r3 = cpu_to_be64(0);
1386 	end = (u64 *)wr + flits;
1387 
1388 	len = immediate ? skb->len : 0;
1389 	if (ssi->gso_size) {
1390 		struct cpl_tx_pkt_lso *lso = (void *)wr;
1391 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1392 		int l3hdr_len = skb_network_header_len(skb);
1393 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1394 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1395 
1396 		if (tnl_type)
1397 			len += sizeof(*tnl_lso);
1398 		else
1399 			len += sizeof(*lso);
1400 
1401 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1402 				       FW_WR_IMMDLEN_V(len));
1403 		if (tnl_type) {
1404 			struct iphdr *iph = ip_hdr(skb);
1405 
1406 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1407 			cpl = (void *)(tnl_lso + 1);
1408 			/* Driver is expected to compute partial checksum that
1409 			 * does not include the IP Total Length.
1410 			 */
1411 			if (iph->version == 4) {
1412 				iph->check = 0;
1413 				iph->tot_len = 0;
1414 				iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1415 								 iph->ihl));
1416 			}
1417 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1418 				cntrl = hwcsum(adap->params.chip, skb);
1419 		} else {
1420 			lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1421 					  LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1422 					  LSO_IPV6_V(v6) |
1423 					  LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1424 					  LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1425 					  LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1426 			lso->c.ipid_ofst = htons(0);
1427 			lso->c.mss = htons(ssi->gso_size);
1428 			lso->c.seqno_offset = htonl(0);
1429 			if (is_t4(adap->params.chip))
1430 				lso->c.len = htonl(skb->len);
1431 			else
1432 				lso->c.len =
1433 					htonl(LSO_T5_XFER_SIZE_V(skb->len));
1434 			cpl = (void *)(lso + 1);
1435 
1436 			if (CHELSIO_CHIP_VERSION(adap->params.chip)
1437 			    <= CHELSIO_T5)
1438 				cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1439 			else
1440 				cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1441 
1442 			cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1443 				 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1444 				 TXPKT_IPHDR_LEN_V(l3hdr_len);
1445 		}
1446 		q->tso++;
1447 		q->tx_cso += ssi->gso_segs;
1448 	} else {
1449 		len += sizeof(*cpl);
1450 		if (ptp_enabled)
1451 			op = FW_PTP_TX_PKT_WR;
1452 		else
1453 			op = FW_ETH_TX_PKT_WR;
1454 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1455 				       FW_WR_IMMDLEN_V(len));
1456 		cpl = (void *)(wr + 1);
1457 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1458 			cntrl = hwcsum(adap->params.chip, skb) |
1459 				TXPKT_IPCSUM_DIS_F;
1460 			q->tx_cso++;
1461 		}
1462 	}
1463 
1464 	if (skb_vlan_tag_present(skb)) {
1465 		q->vlan_ins++;
1466 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1467 #ifdef CONFIG_CHELSIO_T4_FCOE
1468 		if (skb->protocol == htons(ETH_P_FCOE))
1469 			cntrl |= TXPKT_VLAN_V(
1470 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1471 #endif /* CONFIG_CHELSIO_T4_FCOE */
1472 	}
1473 
1474 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1475 		TXPKT_PF_V(adap->pf);
1476 	if (ptp_enabled)
1477 		ctrl0 |= TXPKT_TSTAMP_F;
1478 #ifdef CONFIG_CHELSIO_T4_DCB
1479 	if (is_t4(adap->params.chip))
1480 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1481 	else
1482 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1483 #endif
1484 	cpl->ctrl0 = htonl(ctrl0);
1485 	cpl->pack = htons(0);
1486 	cpl->len = htons(skb->len);
1487 	cpl->ctrl1 = cpu_to_be64(cntrl);
1488 
1489 	if (immediate) {
1490 		cxgb4_inline_tx_skb(skb, &q->q, cpl + 1);
1491 		dev_consume_skb_any(skb);
1492 	} else {
1493 		int last_desc;
1494 
1495 		cxgb4_write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1),
1496 				end, 0, addr);
1497 		skb_orphan(skb);
1498 
1499 		last_desc = q->q.pidx + ndesc - 1;
1500 		if (last_desc >= q->q.size)
1501 			last_desc -= q->q.size;
1502 		q->q.sdesc[last_desc].skb = skb;
1503 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1504 	}
1505 
1506 	txq_advance(&q->q, ndesc);
1507 
1508 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1509 	if (ptp_enabled)
1510 		spin_unlock(&adap->ptp_lock);
1511 	return NETDEV_TX_OK;
1512 }
1513 
1514 /**
1515  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1516  *	@q: the SGE control Tx queue
1517  *
1518  *	This is a variant of cxgb4_reclaim_completed_tx() that is used
1519  *	for Tx queues that send only immediate data (presently just
1520  *	the control queues) and	thus do not have any sk_buffs to release.
1521  */
1522 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1523 {
1524 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1525 	int reclaim = hw_cidx - q->cidx;
1526 
1527 	if (reclaim < 0)
1528 		reclaim += q->size;
1529 
1530 	q->in_use -= reclaim;
1531 	q->cidx = hw_cidx;
1532 }
1533 
1534 /**
1535  *	is_imm - check whether a packet can be sent as immediate data
1536  *	@skb: the packet
1537  *
1538  *	Returns true if a packet can be sent as a WR with immediate data.
1539  */
1540 static inline int is_imm(const struct sk_buff *skb)
1541 {
1542 	return skb->len <= MAX_CTRL_WR_LEN;
1543 }
1544 
1545 /**
1546  *	ctrlq_check_stop - check if a control queue is full and should stop
1547  *	@q: the queue
1548  *	@wr: most recent WR written to the queue
1549  *
1550  *	Check if a control queue has become full and should be stopped.
1551  *	We clean up control queue descriptors very lazily, only when we are out.
1552  *	If the queue is still full after reclaiming any completed descriptors
1553  *	we suspend it and have the last WR wake it up.
1554  */
1555 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1556 {
1557 	reclaim_completed_tx_imm(&q->q);
1558 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1559 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1560 		q->q.stops++;
1561 		q->full = 1;
1562 	}
1563 }
1564 
1565 /**
1566  *	ctrl_xmit - send a packet through an SGE control Tx queue
1567  *	@q: the control queue
1568  *	@skb: the packet
1569  *
1570  *	Send a packet through an SGE control Tx queue.  Packets sent through
1571  *	a control queue must fit entirely as immediate data.
1572  */
1573 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1574 {
1575 	unsigned int ndesc;
1576 	struct fw_wr_hdr *wr;
1577 
1578 	if (unlikely(!is_imm(skb))) {
1579 		WARN_ON(1);
1580 		dev_kfree_skb(skb);
1581 		return NET_XMIT_DROP;
1582 	}
1583 
1584 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1585 	spin_lock(&q->sendq.lock);
1586 
1587 	if (unlikely(q->full)) {
1588 		skb->priority = ndesc;                  /* save for restart */
1589 		__skb_queue_tail(&q->sendq, skb);
1590 		spin_unlock(&q->sendq.lock);
1591 		return NET_XMIT_CN;
1592 	}
1593 
1594 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1595 	cxgb4_inline_tx_skb(skb, &q->q, wr);
1596 
1597 	txq_advance(&q->q, ndesc);
1598 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1599 		ctrlq_check_stop(q, wr);
1600 
1601 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
1602 	spin_unlock(&q->sendq.lock);
1603 
1604 	kfree_skb(skb);
1605 	return NET_XMIT_SUCCESS;
1606 }
1607 
1608 /**
1609  *	restart_ctrlq - restart a suspended control queue
1610  *	@data: the control queue to restart
1611  *
1612  *	Resumes transmission on a suspended Tx control queue.
1613  */
1614 static void restart_ctrlq(unsigned long data)
1615 {
1616 	struct sk_buff *skb;
1617 	unsigned int written = 0;
1618 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1619 
1620 	spin_lock(&q->sendq.lock);
1621 	reclaim_completed_tx_imm(&q->q);
1622 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1623 
1624 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1625 		struct fw_wr_hdr *wr;
1626 		unsigned int ndesc = skb->priority;     /* previously saved */
1627 
1628 		written += ndesc;
1629 		/* Write descriptors and free skbs outside the lock to limit
1630 		 * wait times.  q->full is still set so new skbs will be queued.
1631 		 */
1632 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1633 		txq_advance(&q->q, ndesc);
1634 		spin_unlock(&q->sendq.lock);
1635 
1636 		cxgb4_inline_tx_skb(skb, &q->q, wr);
1637 		kfree_skb(skb);
1638 
1639 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1640 			unsigned long old = q->q.stops;
1641 
1642 			ctrlq_check_stop(q, wr);
1643 			if (q->q.stops != old) {          /* suspended anew */
1644 				spin_lock(&q->sendq.lock);
1645 				goto ringdb;
1646 			}
1647 		}
1648 		if (written > 16) {
1649 			cxgb4_ring_tx_db(q->adap, &q->q, written);
1650 			written = 0;
1651 		}
1652 		spin_lock(&q->sendq.lock);
1653 	}
1654 	q->full = 0;
1655 ringdb:
1656 	if (written)
1657 		cxgb4_ring_tx_db(q->adap, &q->q, written);
1658 	spin_unlock(&q->sendq.lock);
1659 }
1660 
1661 /**
1662  *	t4_mgmt_tx - send a management message
1663  *	@adap: the adapter
1664  *	@skb: the packet containing the management message
1665  *
1666  *	Send a management message through control queue 0.
1667  */
1668 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1669 {
1670 	int ret;
1671 
1672 	local_bh_disable();
1673 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1674 	local_bh_enable();
1675 	return ret;
1676 }
1677 
1678 /**
1679  *	is_ofld_imm - check whether a packet can be sent as immediate data
1680  *	@skb: the packet
1681  *
1682  *	Returns true if a packet can be sent as an offload WR with immediate
1683  *	data.  We currently use the same limit as for Ethernet packets.
1684  */
1685 static inline int is_ofld_imm(const struct sk_buff *skb)
1686 {
1687 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
1688 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
1689 
1690 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
1691 		return skb->len <= SGE_MAX_WR_LEN;
1692 	else
1693 		return skb->len <= MAX_IMM_TX_PKT_LEN;
1694 }
1695 
1696 /**
1697  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1698  *	@skb: the packet
1699  *
1700  *	Returns the number of flits needed for the given offload packet.
1701  *	These packets are already fully constructed and no additional headers
1702  *	will be added.
1703  */
1704 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1705 {
1706 	unsigned int flits, cnt;
1707 
1708 	if (is_ofld_imm(skb))
1709 		return DIV_ROUND_UP(skb->len, 8);
1710 
1711 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1712 	cnt = skb_shinfo(skb)->nr_frags;
1713 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1714 		cnt++;
1715 	return flits + sgl_len(cnt);
1716 }
1717 
1718 /**
1719  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1720  *	@adap: the adapter
1721  *	@q: the queue to stop
1722  *
1723  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1724  *	inability to map packets.  A periodic timer attempts to restart
1725  *	queues so marked.
1726  */
1727 static void txq_stop_maperr(struct sge_uld_txq *q)
1728 {
1729 	q->mapping_err++;
1730 	q->q.stops++;
1731 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1732 		q->adap->sge.txq_maperr);
1733 }
1734 
1735 /**
1736  *	ofldtxq_stop - stop an offload Tx queue that has become full
1737  *	@q: the queue to stop
1738  *	@skb: the packet causing the queue to become full
1739  *
1740  *	Stops an offload Tx queue that has become full and modifies the packet
1741  *	being written to request a wakeup.
1742  */
1743 static void ofldtxq_stop(struct sge_uld_txq *q, struct sk_buff *skb)
1744 {
1745 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1746 
1747 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1748 	q->q.stops++;
1749 	q->full = 1;
1750 }
1751 
1752 /**
1753  *	service_ofldq - service/restart a suspended offload queue
1754  *	@q: the offload queue
1755  *
1756  *	Services an offload Tx queue by moving packets from its Pending Send
1757  *	Queue to the Hardware TX ring.  The function starts and ends with the
1758  *	Send Queue locked, but drops the lock while putting the skb at the
1759  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
1760  *	allows more skbs to be added to the Send Queue by other threads.
1761  *	The packet being processed at the head of the Pending Send Queue is
1762  *	left on the queue in case we experience DMA Mapping errors, etc.
1763  *	and need to give up and restart later.
1764  *
1765  *	service_ofldq() can be thought of as a task which opportunistically
1766  *	uses other threads execution contexts.  We use the Offload Queue
1767  *	boolean "service_ofldq_running" to make sure that only one instance
1768  *	is ever running at a time ...
1769  */
1770 static void service_ofldq(struct sge_uld_txq *q)
1771 {
1772 	u64 *pos, *before, *end;
1773 	int credits;
1774 	struct sk_buff *skb;
1775 	struct sge_txq *txq;
1776 	unsigned int left;
1777 	unsigned int written = 0;
1778 	unsigned int flits, ndesc;
1779 
1780 	/* If another thread is currently in service_ofldq() processing the
1781 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
1782 	 * that we're doing the work and continue.  Examining/modifying
1783 	 * the Offload Queue boolean "service_ofldq_running" must be done
1784 	 * while holding the Pending Send Queue Lock.
1785 	 */
1786 	if (q->service_ofldq_running)
1787 		return;
1788 	q->service_ofldq_running = true;
1789 
1790 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1791 		/* We drop the lock while we're working with the skb at the
1792 		 * head of the Pending Send Queue.  This allows more skbs to
1793 		 * be added to the Pending Send Queue while we're working on
1794 		 * this one.  We don't need to lock to guard the TX Ring
1795 		 * updates because only one thread of execution is ever
1796 		 * allowed into service_ofldq() at a time.
1797 		 */
1798 		spin_unlock(&q->sendq.lock);
1799 
1800 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
1801 
1802 		flits = skb->priority;                /* previously saved */
1803 		ndesc = flits_to_desc(flits);
1804 		credits = txq_avail(&q->q) - ndesc;
1805 		BUG_ON(credits < 0);
1806 		if (unlikely(credits < TXQ_STOP_THRES))
1807 			ofldtxq_stop(q, skb);
1808 
1809 		pos = (u64 *)&q->q.desc[q->q.pidx];
1810 		if (is_ofld_imm(skb))
1811 			cxgb4_inline_tx_skb(skb, &q->q, pos);
1812 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
1813 				       (dma_addr_t *)skb->head)) {
1814 			txq_stop_maperr(q);
1815 			spin_lock(&q->sendq.lock);
1816 			break;
1817 		} else {
1818 			int last_desc, hdr_len = skb_transport_offset(skb);
1819 
1820 			/* The WR headers  may not fit within one descriptor.
1821 			 * So we need to deal with wrap-around here.
1822 			 */
1823 			before = (u64 *)pos;
1824 			end = (u64 *)pos + flits;
1825 			txq = &q->q;
1826 			pos = (void *)inline_tx_skb_header(skb, &q->q,
1827 							   (void *)pos,
1828 							   hdr_len);
1829 			if (before > (u64 *)pos) {
1830 				left = (u8 *)end - (u8 *)txq->stat;
1831 				end = (void *)txq->desc + left;
1832 			}
1833 
1834 			/* If current position is already at the end of the
1835 			 * ofld queue, reset the current to point to
1836 			 * start of the queue and update the end ptr as well.
1837 			 */
1838 			if (pos == (u64 *)txq->stat) {
1839 				left = (u8 *)end - (u8 *)txq->stat;
1840 				end = (void *)txq->desc + left;
1841 				pos = (void *)txq->desc;
1842 			}
1843 
1844 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
1845 					end, hdr_len,
1846 					(dma_addr_t *)skb->head);
1847 #ifdef CONFIG_NEED_DMA_MAP_STATE
1848 			skb->dev = q->adap->port[0];
1849 			skb->destructor = deferred_unmap_destructor;
1850 #endif
1851 			last_desc = q->q.pidx + ndesc - 1;
1852 			if (last_desc >= q->q.size)
1853 				last_desc -= q->q.size;
1854 			q->q.sdesc[last_desc].skb = skb;
1855 		}
1856 
1857 		txq_advance(&q->q, ndesc);
1858 		written += ndesc;
1859 		if (unlikely(written > 32)) {
1860 			cxgb4_ring_tx_db(q->adap, &q->q, written);
1861 			written = 0;
1862 		}
1863 
1864 		/* Reacquire the Pending Send Queue Lock so we can unlink the
1865 		 * skb we've just successfully transferred to the TX Ring and
1866 		 * loop for the next skb which may be at the head of the
1867 		 * Pending Send Queue.
1868 		 */
1869 		spin_lock(&q->sendq.lock);
1870 		__skb_unlink(skb, &q->sendq);
1871 		if (is_ofld_imm(skb))
1872 			kfree_skb(skb);
1873 	}
1874 	if (likely(written))
1875 		cxgb4_ring_tx_db(q->adap, &q->q, written);
1876 
1877 	/*Indicate that no thread is processing the Pending Send Queue
1878 	 * currently.
1879 	 */
1880 	q->service_ofldq_running = false;
1881 }
1882 
1883 /**
1884  *	ofld_xmit - send a packet through an offload queue
1885  *	@q: the Tx offload queue
1886  *	@skb: the packet
1887  *
1888  *	Send an offload packet through an SGE offload queue.
1889  */
1890 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
1891 {
1892 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1893 	spin_lock(&q->sendq.lock);
1894 
1895 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
1896 	 * that results in this new skb being the only one on the queue, start
1897 	 * servicing it.  If there are other skbs already on the list, then
1898 	 * either the queue is currently being processed or it's been stopped
1899 	 * for some reason and it'll be restarted at a later time.  Restart
1900 	 * paths are triggered by events like experiencing a DMA Mapping Error
1901 	 * or filling the Hardware TX Ring.
1902 	 */
1903 	__skb_queue_tail(&q->sendq, skb);
1904 	if (q->sendq.qlen == 1)
1905 		service_ofldq(q);
1906 
1907 	spin_unlock(&q->sendq.lock);
1908 	return NET_XMIT_SUCCESS;
1909 }
1910 
1911 /**
1912  *	restart_ofldq - restart a suspended offload queue
1913  *	@data: the offload queue to restart
1914  *
1915  *	Resumes transmission on a suspended Tx offload queue.
1916  */
1917 static void restart_ofldq(unsigned long data)
1918 {
1919 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
1920 
1921 	spin_lock(&q->sendq.lock);
1922 	q->full = 0;            /* the queue actually is completely empty now */
1923 	service_ofldq(q);
1924 	spin_unlock(&q->sendq.lock);
1925 }
1926 
1927 /**
1928  *	skb_txq - return the Tx queue an offload packet should use
1929  *	@skb: the packet
1930  *
1931  *	Returns the Tx queue an offload packet should use as indicated by bits
1932  *	1-15 in the packet's queue_mapping.
1933  */
1934 static inline unsigned int skb_txq(const struct sk_buff *skb)
1935 {
1936 	return skb->queue_mapping >> 1;
1937 }
1938 
1939 /**
1940  *	is_ctrl_pkt - return whether an offload packet is a control packet
1941  *	@skb: the packet
1942  *
1943  *	Returns whether an offload packet should use an OFLD or a CTRL
1944  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1945  */
1946 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1947 {
1948 	return skb->queue_mapping & 1;
1949 }
1950 
1951 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
1952 			   unsigned int tx_uld_type)
1953 {
1954 	struct sge_uld_txq_info *txq_info;
1955 	struct sge_uld_txq *txq;
1956 	unsigned int idx = skb_txq(skb);
1957 
1958 	if (unlikely(is_ctrl_pkt(skb))) {
1959 		/* Single ctrl queue is a requirement for LE workaround path */
1960 		if (adap->tids.nsftids)
1961 			idx = 0;
1962 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1963 	}
1964 
1965 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
1966 	if (unlikely(!txq_info)) {
1967 		WARN_ON(true);
1968 		return NET_XMIT_DROP;
1969 	}
1970 
1971 	txq = &txq_info->uldtxq[idx];
1972 	return ofld_xmit(txq, skb);
1973 }
1974 
1975 /**
1976  *	t4_ofld_send - send an offload packet
1977  *	@adap: the adapter
1978  *	@skb: the packet
1979  *
1980  *	Sends an offload packet.  We use the packet queue_mapping to select the
1981  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1982  *	should be sent as regular or control, bits 1-15 select the queue.
1983  */
1984 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1985 {
1986 	int ret;
1987 
1988 	local_bh_disable();
1989 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
1990 	local_bh_enable();
1991 	return ret;
1992 }
1993 
1994 /**
1995  *	cxgb4_ofld_send - send an offload packet
1996  *	@dev: the net device
1997  *	@skb: the packet
1998  *
1999  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2000  *	intended for ULDs.
2001  */
2002 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2003 {
2004 	return t4_ofld_send(netdev2adap(dev), skb);
2005 }
2006 EXPORT_SYMBOL(cxgb4_ofld_send);
2007 
2008 /**
2009  *	t4_crypto_send - send crypto packet
2010  *	@adap: the adapter
2011  *	@skb: the packet
2012  *
2013  *	Sends crypto packet.  We use the packet queue_mapping to select the
2014  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2015  *	should be sent as regular or control, bits 1-15 select the queue.
2016  */
2017 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
2018 {
2019 	int ret;
2020 
2021 	local_bh_disable();
2022 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
2023 	local_bh_enable();
2024 	return ret;
2025 }
2026 
2027 /**
2028  *	cxgb4_crypto_send - send crypto packet
2029  *	@dev: the net device
2030  *	@skb: the packet
2031  *
2032  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
2033  *	intended for ULDs.
2034  */
2035 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
2036 {
2037 	return t4_crypto_send(netdev2adap(dev), skb);
2038 }
2039 EXPORT_SYMBOL(cxgb4_crypto_send);
2040 
2041 static inline void copy_frags(struct sk_buff *skb,
2042 			      const struct pkt_gl *gl, unsigned int offset)
2043 {
2044 	int i;
2045 
2046 	/* usually there's just one frag */
2047 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
2048 			     gl->frags[0].offset + offset,
2049 			     gl->frags[0].size - offset);
2050 	skb_shinfo(skb)->nr_frags = gl->nfrags;
2051 	for (i = 1; i < gl->nfrags; i++)
2052 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
2053 				     gl->frags[i].offset,
2054 				     gl->frags[i].size);
2055 
2056 	/* get a reference to the last page, we don't own it */
2057 	get_page(gl->frags[gl->nfrags - 1].page);
2058 }
2059 
2060 /**
2061  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
2062  *	@gl: the gather list
2063  *	@skb_len: size of sk_buff main body if it carries fragments
2064  *	@pull_len: amount of data to move to the sk_buff's main body
2065  *
2066  *	Builds an sk_buff from the given packet gather list.  Returns the
2067  *	sk_buff or %NULL if sk_buff allocation failed.
2068  */
2069 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
2070 				   unsigned int skb_len, unsigned int pull_len)
2071 {
2072 	struct sk_buff *skb;
2073 
2074 	/*
2075 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
2076 	 * size, which is expected since buffers are at least PAGE_SIZEd.
2077 	 * In this case packets up to RX_COPY_THRES have only one fragment.
2078 	 */
2079 	if (gl->tot_len <= RX_COPY_THRES) {
2080 		skb = dev_alloc_skb(gl->tot_len);
2081 		if (unlikely(!skb))
2082 			goto out;
2083 		__skb_put(skb, gl->tot_len);
2084 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
2085 	} else {
2086 		skb = dev_alloc_skb(skb_len);
2087 		if (unlikely(!skb))
2088 			goto out;
2089 		__skb_put(skb, pull_len);
2090 		skb_copy_to_linear_data(skb, gl->va, pull_len);
2091 
2092 		copy_frags(skb, gl, pull_len);
2093 		skb->len = gl->tot_len;
2094 		skb->data_len = skb->len - pull_len;
2095 		skb->truesize += skb->data_len;
2096 	}
2097 out:	return skb;
2098 }
2099 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
2100 
2101 /**
2102  *	t4_pktgl_free - free a packet gather list
2103  *	@gl: the gather list
2104  *
2105  *	Releases the pages of a packet gather list.  We do not own the last
2106  *	page on the list and do not free it.
2107  */
2108 static void t4_pktgl_free(const struct pkt_gl *gl)
2109 {
2110 	int n;
2111 	const struct page_frag *p;
2112 
2113 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
2114 		put_page(p->page);
2115 }
2116 
2117 /*
2118  * Process an MPS trace packet.  Give it an unused protocol number so it won't
2119  * be delivered to anyone and send it to the stack for capture.
2120  */
2121 static noinline int handle_trace_pkt(struct adapter *adap,
2122 				     const struct pkt_gl *gl)
2123 {
2124 	struct sk_buff *skb;
2125 
2126 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
2127 	if (unlikely(!skb)) {
2128 		t4_pktgl_free(gl);
2129 		return 0;
2130 	}
2131 
2132 	if (is_t4(adap->params.chip))
2133 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
2134 	else
2135 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
2136 
2137 	skb_reset_mac_header(skb);
2138 	skb->protocol = htons(0xffff);
2139 	skb->dev = adap->port[0];
2140 	netif_receive_skb(skb);
2141 	return 0;
2142 }
2143 
2144 /**
2145  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
2146  * @adap: the adapter
2147  * @hwtstamps: time stamp structure to update
2148  * @sgetstamp: 60bit iqe timestamp
2149  *
2150  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
2151  * which is in Core Clock ticks into ktime_t and assign it
2152  **/
2153 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
2154 				     struct skb_shared_hwtstamps *hwtstamps,
2155 				     u64 sgetstamp)
2156 {
2157 	u64 ns;
2158 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
2159 
2160 	ns = div_u64(tmp, adap->params.vpd.cclk);
2161 
2162 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2163 	hwtstamps->hwtstamp = ns_to_ktime(ns);
2164 }
2165 
2166 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
2167 		   const struct cpl_rx_pkt *pkt)
2168 {
2169 	struct adapter *adapter = rxq->rspq.adap;
2170 	struct sge *s = &adapter->sge;
2171 	struct port_info *pi;
2172 	int ret;
2173 	struct sk_buff *skb;
2174 
2175 	skb = napi_get_frags(&rxq->rspq.napi);
2176 	if (unlikely(!skb)) {
2177 		t4_pktgl_free(gl);
2178 		rxq->stats.rx_drops++;
2179 		return;
2180 	}
2181 
2182 	copy_frags(skb, gl, s->pktshift);
2183 	skb->len = gl->tot_len - s->pktshift;
2184 	skb->data_len = skb->len;
2185 	skb->truesize += skb->data_len;
2186 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2187 	skb_record_rx_queue(skb, rxq->rspq.idx);
2188 	pi = netdev_priv(skb->dev);
2189 	if (pi->rxtstamp)
2190 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
2191 					 gl->sgetstamp);
2192 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
2193 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2194 			     PKT_HASH_TYPE_L3);
2195 
2196 	if (unlikely(pkt->vlan_ex)) {
2197 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2198 		rxq->stats.vlan_ex++;
2199 	}
2200 	ret = napi_gro_frags(&rxq->rspq.napi);
2201 	if (ret == GRO_HELD)
2202 		rxq->stats.lro_pkts++;
2203 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
2204 		rxq->stats.lro_merged++;
2205 	rxq->stats.pkts++;
2206 	rxq->stats.rx_cso++;
2207 }
2208 
2209 enum {
2210 	RX_NON_PTP_PKT = 0,
2211 	RX_PTP_PKT_SUC = 1,
2212 	RX_PTP_PKT_ERR = 2
2213 };
2214 
2215 /**
2216  *     t4_systim_to_hwstamp - read hardware time stamp
2217  *     @adap: the adapter
2218  *     @skb: the packet
2219  *
2220  *     Read Time Stamp from MPS packet and insert in skb which
2221  *     is forwarded to PTP application
2222  */
2223 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
2224 					 struct sk_buff *skb)
2225 {
2226 	struct skb_shared_hwtstamps *hwtstamps;
2227 	struct cpl_rx_mps_pkt *cpl = NULL;
2228 	unsigned char *data;
2229 	int offset;
2230 
2231 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
2232 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
2233 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
2234 		return RX_PTP_PKT_ERR;
2235 
2236 	data = skb->data + sizeof(*cpl);
2237 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
2238 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
2239 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
2240 		return RX_PTP_PKT_ERR;
2241 
2242 	hwtstamps = skb_hwtstamps(skb);
2243 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2244 	hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
2245 
2246 	return RX_PTP_PKT_SUC;
2247 }
2248 
2249 /**
2250  *     t4_rx_hststamp - Recv PTP Event Message
2251  *     @adap: the adapter
2252  *     @rsp: the response queue descriptor holding the RX_PKT message
2253  *     @skb: the packet
2254  *
2255  *     PTP enabled and MPS packet, read HW timestamp
2256  */
2257 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
2258 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
2259 {
2260 	int ret;
2261 
2262 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
2263 		     !is_t4(adapter->params.chip))) {
2264 		ret = t4_systim_to_hwstamp(adapter, skb);
2265 		if (ret == RX_PTP_PKT_ERR) {
2266 			kfree_skb(skb);
2267 			rxq->stats.rx_drops++;
2268 		}
2269 		return ret;
2270 	}
2271 	return RX_NON_PTP_PKT;
2272 }
2273 
2274 /**
2275  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
2276  *      @adap: the adapter
2277  *      @skb: the packet
2278  *      @dev: the ingress net device
2279  *
2280  *      Read hardware timestamp for the loopback PTP Tx event message
2281  */
2282 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
2283 			  struct net_device *dev)
2284 {
2285 	struct port_info *pi = netdev_priv(dev);
2286 
2287 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
2288 		cxgb4_ptp_read_hwstamp(adapter, pi);
2289 		kfree_skb(skb);
2290 		return 0;
2291 	}
2292 	return 1;
2293 }
2294 
2295 /**
2296  *	t4_ethrx_handler - process an ingress ethernet packet
2297  *	@q: the response queue that received the packet
2298  *	@rsp: the response queue descriptor holding the RX_PKT message
2299  *	@si: the gather list of packet fragments
2300  *
2301  *	Process an ingress ethernet packet and deliver it to the stack.
2302  */
2303 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
2304 		     const struct pkt_gl *si)
2305 {
2306 	bool csum_ok;
2307 	struct sk_buff *skb;
2308 	const struct cpl_rx_pkt *pkt;
2309 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2310 	struct adapter *adapter = q->adap;
2311 	struct sge *s = &q->adap->sge;
2312 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2313 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2314 	u16 err_vec;
2315 	struct port_info *pi;
2316 	int ret = 0;
2317 
2318 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2319 		return handle_trace_pkt(q->adap, si);
2320 
2321 	pkt = (const struct cpl_rx_pkt *)rsp;
2322 	/* Compressed error vector is enabled for T6 only */
2323 	if (q->adap->params.tp.rx_pkt_encap)
2324 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
2325 	else
2326 		err_vec = be16_to_cpu(pkt->err_vec);
2327 
2328 	csum_ok = pkt->csum_calc && !err_vec &&
2329 		  (q->netdev->features & NETIF_F_RXCSUM);
2330 	if ((pkt->l2info & htonl(RXF_TCP_F)) &&
2331 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
2332 		do_gro(rxq, si, pkt);
2333 		return 0;
2334 	}
2335 
2336 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
2337 	if (unlikely(!skb)) {
2338 		t4_pktgl_free(si);
2339 		rxq->stats.rx_drops++;
2340 		return 0;
2341 	}
2342 	pi = netdev_priv(q->netdev);
2343 
2344 	/* Handle PTP Event Rx packet */
2345 	if (unlikely(pi->ptp_enable)) {
2346 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
2347 		if (ret == RX_PTP_PKT_ERR)
2348 			return 0;
2349 	}
2350 	if (likely(!ret))
2351 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
2352 
2353 	/* Handle the PTP Event Tx Loopback packet */
2354 	if (unlikely(pi->ptp_enable && !ret &&
2355 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
2356 		     cxgb4_ptp_is_ptp_rx(skb))) {
2357 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
2358 			return 0;
2359 	}
2360 
2361 	skb->protocol = eth_type_trans(skb, q->netdev);
2362 	skb_record_rx_queue(skb, q->idx);
2363 	if (skb->dev->features & NETIF_F_RXHASH)
2364 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2365 			     PKT_HASH_TYPE_L3);
2366 
2367 	rxq->stats.pkts++;
2368 
2369 	if (pi->rxtstamp)
2370 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
2371 					 si->sgetstamp);
2372 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
2373 		if (!pkt->ip_frag) {
2374 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2375 			rxq->stats.rx_cso++;
2376 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
2377 			__sum16 c = (__force __sum16)pkt->csum;
2378 			skb->csum = csum_unfold(c);
2379 			skb->ip_summed = CHECKSUM_COMPLETE;
2380 			rxq->stats.rx_cso++;
2381 		}
2382 	} else {
2383 		skb_checksum_none_assert(skb);
2384 #ifdef CONFIG_CHELSIO_T4_FCOE
2385 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
2386 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
2387 
2388 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
2389 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
2390 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
2391 				if (q->adap->params.tp.rx_pkt_encap)
2392 					csum_ok = err_vec &
2393 						  T6_COMPR_RXERR_SUM_F;
2394 				else
2395 					csum_ok = err_vec & RXERR_CSUM_F;
2396 				if (!csum_ok)
2397 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2398 			}
2399 		}
2400 
2401 #undef CPL_RX_PKT_FLAGS
2402 #endif /* CONFIG_CHELSIO_T4_FCOE */
2403 	}
2404 
2405 	if (unlikely(pkt->vlan_ex)) {
2406 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2407 		rxq->stats.vlan_ex++;
2408 	}
2409 	skb_mark_napi_id(skb, &q->napi);
2410 	netif_receive_skb(skb);
2411 	return 0;
2412 }
2413 
2414 /**
2415  *	restore_rx_bufs - put back a packet's Rx buffers
2416  *	@si: the packet gather list
2417  *	@q: the SGE free list
2418  *	@frags: number of FL buffers to restore
2419  *
2420  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
2421  *	have already been unmapped and are left unmapped, we mark them so to
2422  *	prevent further unmapping attempts.
2423  *
2424  *	This function undoes a series of @unmap_rx_buf calls when we find out
2425  *	that the current packet can't be processed right away afterall and we
2426  *	need to come back to it later.  This is a very rare event and there's
2427  *	no effort to make this particularly efficient.
2428  */
2429 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
2430 			    int frags)
2431 {
2432 	struct rx_sw_desc *d;
2433 
2434 	while (frags--) {
2435 		if (q->cidx == 0)
2436 			q->cidx = q->size - 1;
2437 		else
2438 			q->cidx--;
2439 		d = &q->sdesc[q->cidx];
2440 		d->page = si->frags[frags].page;
2441 		d->dma_addr |= RX_UNMAPPED_BUF;
2442 		q->avail++;
2443 	}
2444 }
2445 
2446 /**
2447  *	is_new_response - check if a response is newly written
2448  *	@r: the response descriptor
2449  *	@q: the response queue
2450  *
2451  *	Returns true if a response descriptor contains a yet unprocessed
2452  *	response.
2453  */
2454 static inline bool is_new_response(const struct rsp_ctrl *r,
2455 				   const struct sge_rspq *q)
2456 {
2457 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
2458 }
2459 
2460 /**
2461  *	rspq_next - advance to the next entry in a response queue
2462  *	@q: the queue
2463  *
2464  *	Updates the state of a response queue to advance it to the next entry.
2465  */
2466 static inline void rspq_next(struct sge_rspq *q)
2467 {
2468 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2469 	if (unlikely(++q->cidx == q->size)) {
2470 		q->cidx = 0;
2471 		q->gen ^= 1;
2472 		q->cur_desc = q->desc;
2473 	}
2474 }
2475 
2476 /**
2477  *	process_responses - process responses from an SGE response queue
2478  *	@q: the ingress queue to process
2479  *	@budget: how many responses can be processed in this round
2480  *
2481  *	Process responses from an SGE response queue up to the supplied budget.
2482  *	Responses include received packets as well as control messages from FW
2483  *	or HW.
2484  *
2485  *	Additionally choose the interrupt holdoff time for the next interrupt
2486  *	on this queue.  If the system is under memory shortage use a fairly
2487  *	long delay to help recovery.
2488  */
2489 static int process_responses(struct sge_rspq *q, int budget)
2490 {
2491 	int ret, rsp_type;
2492 	int budget_left = budget;
2493 	const struct rsp_ctrl *rc;
2494 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2495 	struct adapter *adapter = q->adap;
2496 	struct sge *s = &adapter->sge;
2497 
2498 	while (likely(budget_left)) {
2499 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2500 		if (!is_new_response(rc, q)) {
2501 			if (q->flush_handler)
2502 				q->flush_handler(q);
2503 			break;
2504 		}
2505 
2506 		dma_rmb();
2507 		rsp_type = RSPD_TYPE_G(rc->type_gen);
2508 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2509 			struct page_frag *fp;
2510 			struct pkt_gl si;
2511 			const struct rx_sw_desc *rsd;
2512 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2513 
2514 			if (len & RSPD_NEWBUF_F) {
2515 				if (likely(q->offset > 0)) {
2516 					free_rx_bufs(q->adap, &rxq->fl, 1);
2517 					q->offset = 0;
2518 				}
2519 				len = RSPD_LEN_G(len);
2520 			}
2521 			si.tot_len = len;
2522 
2523 			/* gather packet fragments */
2524 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
2525 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2526 				bufsz = get_buf_size(adapter, rsd);
2527 				fp->page = rsd->page;
2528 				fp->offset = q->offset;
2529 				fp->size = min(bufsz, len);
2530 				len -= fp->size;
2531 				if (!len)
2532 					break;
2533 				unmap_rx_buf(q->adap, &rxq->fl);
2534 			}
2535 
2536 			si.sgetstamp = SGE_TIMESTAMP_G(
2537 					be64_to_cpu(rc->last_flit));
2538 			/*
2539 			 * Last buffer remains mapped so explicitly make it
2540 			 * coherent for CPU access.
2541 			 */
2542 			dma_sync_single_for_cpu(q->adap->pdev_dev,
2543 						get_buf_addr(rsd),
2544 						fp->size, DMA_FROM_DEVICE);
2545 
2546 			si.va = page_address(si.frags[0].page) +
2547 				si.frags[0].offset;
2548 			prefetch(si.va);
2549 
2550 			si.nfrags = frags + 1;
2551 			ret = q->handler(q, q->cur_desc, &si);
2552 			if (likely(ret == 0))
2553 				q->offset += ALIGN(fp->size, s->fl_align);
2554 			else
2555 				restore_rx_bufs(&si, &rxq->fl, frags);
2556 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2557 			ret = q->handler(q, q->cur_desc, NULL);
2558 		} else {
2559 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2560 		}
2561 
2562 		if (unlikely(ret)) {
2563 			/* couldn't process descriptor, back off for recovery */
2564 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2565 			break;
2566 		}
2567 
2568 		rspq_next(q);
2569 		budget_left--;
2570 	}
2571 
2572 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
2573 		__refill_fl(q->adap, &rxq->fl);
2574 	return budget - budget_left;
2575 }
2576 
2577 /**
2578  *	napi_rx_handler - the NAPI handler for Rx processing
2579  *	@napi: the napi instance
2580  *	@budget: how many packets we can process in this round
2581  *
2582  *	Handler for new data events when using NAPI.  This does not need any
2583  *	locking or protection from interrupts as data interrupts are off at
2584  *	this point and other adapter interrupts do not interfere (the latter
2585  *	in not a concern at all with MSI-X as non-data interrupts then have
2586  *	a separate handler).
2587  */
2588 static int napi_rx_handler(struct napi_struct *napi, int budget)
2589 {
2590 	unsigned int params;
2591 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2592 	int work_done;
2593 	u32 val;
2594 
2595 	work_done = process_responses(q, budget);
2596 	if (likely(work_done < budget)) {
2597 		int timer_index;
2598 
2599 		napi_complete_done(napi, work_done);
2600 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2601 
2602 		if (q->adaptive_rx) {
2603 			if (work_done > max(timer_pkt_quota[timer_index],
2604 					    MIN_NAPI_WORK))
2605 				timer_index = (timer_index + 1);
2606 			else
2607 				timer_index = timer_index - 1;
2608 
2609 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2610 			q->next_intr_params =
2611 					QINTR_TIMER_IDX_V(timer_index) |
2612 					QINTR_CNT_EN_V(0);
2613 			params = q->next_intr_params;
2614 		} else {
2615 			params = q->next_intr_params;
2616 			q->next_intr_params = q->intr_params;
2617 		}
2618 	} else
2619 		params = QINTR_TIMER_IDX_V(7);
2620 
2621 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2622 
2623 	/* If we don't have access to the new User GTS (T5+), use the old
2624 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2625 	 */
2626 	if (unlikely(q->bar2_addr == NULL)) {
2627 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2628 			     val | INGRESSQID_V((u32)q->cntxt_id));
2629 	} else {
2630 		writel(val | INGRESSQID_V(q->bar2_qid),
2631 		       q->bar2_addr + SGE_UDB_GTS);
2632 		wmb();
2633 	}
2634 	return work_done;
2635 }
2636 
2637 /*
2638  * The MSI-X interrupt handler for an SGE response queue.
2639  */
2640 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2641 {
2642 	struct sge_rspq *q = cookie;
2643 
2644 	napi_schedule(&q->napi);
2645 	return IRQ_HANDLED;
2646 }
2647 
2648 /*
2649  * Process the indirect interrupt entries in the interrupt queue and kick off
2650  * NAPI for each queue that has generated an entry.
2651  */
2652 static unsigned int process_intrq(struct adapter *adap)
2653 {
2654 	unsigned int credits;
2655 	const struct rsp_ctrl *rc;
2656 	struct sge_rspq *q = &adap->sge.intrq;
2657 	u32 val;
2658 
2659 	spin_lock(&adap->sge.intrq_lock);
2660 	for (credits = 0; ; credits++) {
2661 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2662 		if (!is_new_response(rc, q))
2663 			break;
2664 
2665 		dma_rmb();
2666 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2667 			unsigned int qid = ntohl(rc->pldbuflen_qid);
2668 
2669 			qid -= adap->sge.ingr_start;
2670 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
2671 		}
2672 
2673 		rspq_next(q);
2674 	}
2675 
2676 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2677 
2678 	/* If we don't have access to the new User GTS (T5+), use the old
2679 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2680 	 */
2681 	if (unlikely(q->bar2_addr == NULL)) {
2682 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2683 			     val | INGRESSQID_V(q->cntxt_id));
2684 	} else {
2685 		writel(val | INGRESSQID_V(q->bar2_qid),
2686 		       q->bar2_addr + SGE_UDB_GTS);
2687 		wmb();
2688 	}
2689 	spin_unlock(&adap->sge.intrq_lock);
2690 	return credits;
2691 }
2692 
2693 /*
2694  * The MSI interrupt handler, which handles data events from SGE response queues
2695  * as well as error and other async events as they all use the same MSI vector.
2696  */
2697 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2698 {
2699 	struct adapter *adap = cookie;
2700 
2701 	if (adap->flags & MASTER_PF)
2702 		t4_slow_intr_handler(adap);
2703 	process_intrq(adap);
2704 	return IRQ_HANDLED;
2705 }
2706 
2707 /*
2708  * Interrupt handler for legacy INTx interrupts.
2709  * Handles data events from SGE response queues as well as error and other
2710  * async events as they all use the same interrupt line.
2711  */
2712 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2713 {
2714 	struct adapter *adap = cookie;
2715 
2716 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2717 	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2718 	    process_intrq(adap))
2719 		return IRQ_HANDLED;
2720 	return IRQ_NONE;             /* probably shared interrupt */
2721 }
2722 
2723 /**
2724  *	t4_intr_handler - select the top-level interrupt handler
2725  *	@adap: the adapter
2726  *
2727  *	Selects the top-level interrupt handler based on the type of interrupts
2728  *	(MSI-X, MSI, or INTx).
2729  */
2730 irq_handler_t t4_intr_handler(struct adapter *adap)
2731 {
2732 	if (adap->flags & USING_MSIX)
2733 		return t4_sge_intr_msix;
2734 	if (adap->flags & USING_MSI)
2735 		return t4_intr_msi;
2736 	return t4_intr_intx;
2737 }
2738 
2739 static void sge_rx_timer_cb(struct timer_list *t)
2740 {
2741 	unsigned long m;
2742 	unsigned int i;
2743 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
2744 	struct sge *s = &adap->sge;
2745 
2746 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2747 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2748 			struct sge_eth_rxq *rxq;
2749 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2750 			struct sge_fl *fl = s->egr_map[id];
2751 
2752 			clear_bit(id, s->starving_fl);
2753 			smp_mb__after_atomic();
2754 
2755 			if (fl_starving(adap, fl)) {
2756 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2757 				if (napi_reschedule(&rxq->rspq.napi))
2758 					fl->starving++;
2759 				else
2760 					set_bit(id, s->starving_fl);
2761 			}
2762 		}
2763 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
2764 	 * global Master PF activities like checking for chip ingress stalls,
2765 	 * etc.
2766 	 */
2767 	if (!(adap->flags & MASTER_PF))
2768 		goto done;
2769 
2770 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2771 
2772 done:
2773 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2774 }
2775 
2776 static void sge_tx_timer_cb(struct timer_list *t)
2777 {
2778 	unsigned long m;
2779 	unsigned int i, budget;
2780 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
2781 	struct sge *s = &adap->sge;
2782 
2783 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2784 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2785 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2786 			struct sge_uld_txq *txq = s->egr_map[id];
2787 
2788 			clear_bit(id, s->txq_maperr);
2789 			tasklet_schedule(&txq->qresume_tsk);
2790 		}
2791 
2792 	if (!is_t4(adap->params.chip)) {
2793 		struct sge_eth_txq *q = &s->ptptxq;
2794 		int avail;
2795 
2796 		spin_lock(&adap->ptp_lock);
2797 		avail = reclaimable(&q->q);
2798 
2799 		if (avail) {
2800 			free_tx_desc(adap, &q->q, avail, false);
2801 			q->q.in_use -= avail;
2802 		}
2803 		spin_unlock(&adap->ptp_lock);
2804 	}
2805 
2806 	budget = MAX_TIMER_TX_RECLAIM;
2807 	i = s->ethtxq_rover;
2808 	do {
2809 		struct sge_eth_txq *q = &s->ethtxq[i];
2810 
2811 		if (q->q.in_use &&
2812 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2813 		    __netif_tx_trylock(q->txq)) {
2814 			int avail = reclaimable(&q->q);
2815 
2816 			if (avail) {
2817 				if (avail > budget)
2818 					avail = budget;
2819 
2820 				free_tx_desc(adap, &q->q, avail, true);
2821 				q->q.in_use -= avail;
2822 				budget -= avail;
2823 			}
2824 			__netif_tx_unlock(q->txq);
2825 		}
2826 
2827 		if (++i >= s->ethqsets)
2828 			i = 0;
2829 	} while (budget && i != s->ethtxq_rover);
2830 	s->ethtxq_rover = i;
2831 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2832 }
2833 
2834 /**
2835  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2836  *	@adapter: the adapter
2837  *	@qid: the SGE Queue ID
2838  *	@qtype: the SGE Queue Type (Egress or Ingress)
2839  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2840  *
2841  *	Returns the BAR2 address for the SGE Queue Registers associated with
2842  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2843  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2844  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2845  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2846  */
2847 static void __iomem *bar2_address(struct adapter *adapter,
2848 				  unsigned int qid,
2849 				  enum t4_bar2_qtype qtype,
2850 				  unsigned int *pbar2_qid)
2851 {
2852 	u64 bar2_qoffset;
2853 	int ret;
2854 
2855 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2856 				&bar2_qoffset, pbar2_qid);
2857 	if (ret)
2858 		return NULL;
2859 
2860 	return adapter->bar2 + bar2_qoffset;
2861 }
2862 
2863 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
2864  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
2865  */
2866 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2867 		     struct net_device *dev, int intr_idx,
2868 		     struct sge_fl *fl, rspq_handler_t hnd,
2869 		     rspq_flush_handler_t flush_hnd, int cong)
2870 {
2871 	int ret, flsz = 0;
2872 	struct fw_iq_cmd c;
2873 	struct sge *s = &adap->sge;
2874 	struct port_info *pi = netdev_priv(dev);
2875 	int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING);
2876 
2877 	/* Size needs to be multiple of 16, including status entry. */
2878 	iq->size = roundup(iq->size, 16);
2879 
2880 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2881 			      &iq->phys_addr, NULL, 0,
2882 			      dev_to_node(adap->pdev_dev));
2883 	if (!iq->desc)
2884 		return -ENOMEM;
2885 
2886 	memset(&c, 0, sizeof(c));
2887 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2888 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2889 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2890 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2891 				 FW_LEN16(c));
2892 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2893 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2894 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
2895 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2896 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2897 							-intr_idx - 1));
2898 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2899 		FW_IQ_CMD_IQGTSMODE_F |
2900 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2901 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2902 	c.iqsize = htons(iq->size);
2903 	c.iqaddr = cpu_to_be64(iq->phys_addr);
2904 	if (cong >= 0)
2905 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
2906 
2907 	if (fl) {
2908 		enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2909 
2910 		/* Allocate the ring for the hardware free list (with space
2911 		 * for its status page) along with the associated software
2912 		 * descriptor ring.  The free list size needs to be a multiple
2913 		 * of the Egress Queue Unit and at least 2 Egress Units larger
2914 		 * than the SGE's Egress Congrestion Threshold
2915 		 * (fl_starve_thres - 1).
2916 		 */
2917 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
2918 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
2919 		fl->size = roundup(fl->size, 8);
2920 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2921 				      sizeof(struct rx_sw_desc), &fl->addr,
2922 				      &fl->sdesc, s->stat_len,
2923 				      dev_to_node(adap->pdev_dev));
2924 		if (!fl->desc)
2925 			goto fl_nomem;
2926 
2927 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2928 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
2929 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2930 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
2931 					     FW_IQ_CMD_FL0PADEN_F);
2932 		if (cong >= 0)
2933 			c.iqns_to_fl0congen |=
2934 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
2935 				      FW_IQ_CMD_FL0CONGCIF_F |
2936 				      FW_IQ_CMD_FL0CONGEN_F);
2937 		/* In T6, for egress queue type FL there is internal overhead
2938 		 * of 16B for header going into FLM module.  Hence the maximum
2939 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2940 		 * doesn't coalesce fetch requests if more than 64 bytes of
2941 		 * Free List pointers are provided, so we use a 128-byte Fetch
2942 		 * Burst Minimum there (T6 implements coalescing so we can use
2943 		 * the smaller 64-byte value there).
2944 		 */
2945 		c.fl0dcaen_to_fl0cidxfthresh =
2946 			htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
2947 						   FETCHBURSTMIN_128B_X :
2948 						   FETCHBURSTMIN_64B_X) |
2949 			      FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2950 						   FETCHBURSTMAX_512B_X :
2951 						   FETCHBURSTMAX_256B_X));
2952 		c.fl0size = htons(flsz);
2953 		c.fl0addr = cpu_to_be64(fl->addr);
2954 	}
2955 
2956 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2957 	if (ret)
2958 		goto err;
2959 
2960 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2961 	iq->cur_desc = iq->desc;
2962 	iq->cidx = 0;
2963 	iq->gen = 1;
2964 	iq->next_intr_params = iq->intr_params;
2965 	iq->cntxt_id = ntohs(c.iqid);
2966 	iq->abs_id = ntohs(c.physiqid);
2967 	iq->bar2_addr = bar2_address(adap,
2968 				     iq->cntxt_id,
2969 				     T4_BAR2_QTYPE_INGRESS,
2970 				     &iq->bar2_qid);
2971 	iq->size--;                           /* subtract status entry */
2972 	iq->netdev = dev;
2973 	iq->handler = hnd;
2974 	iq->flush_handler = flush_hnd;
2975 
2976 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
2977 	skb_queue_head_init(&iq->lro_mgr.lroq);
2978 
2979 	/* set offset to -1 to distinguish ingress queues without FL */
2980 	iq->offset = fl ? 0 : -1;
2981 
2982 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2983 
2984 	if (fl) {
2985 		fl->cntxt_id = ntohs(c.fl0id);
2986 		fl->avail = fl->pend_cred = 0;
2987 		fl->pidx = fl->cidx = 0;
2988 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2989 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2990 
2991 		/* Note, we must initialize the BAR2 Free List User Doorbell
2992 		 * information before refilling the Free List!
2993 		 */
2994 		fl->bar2_addr = bar2_address(adap,
2995 					     fl->cntxt_id,
2996 					     T4_BAR2_QTYPE_EGRESS,
2997 					     &fl->bar2_qid);
2998 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2999 	}
3000 
3001 	/* For T5 and later we attempt to set up the Congestion Manager values
3002 	 * of the new RX Ethernet Queue.  This should really be handled by
3003 	 * firmware because it's more complex than any host driver wants to
3004 	 * get involved with and it's different per chip and this is almost
3005 	 * certainly wrong.  Firmware would be wrong as well, but it would be
3006 	 * a lot easier to fix in one place ...  For now we do something very
3007 	 * simple (and hopefully less wrong).
3008 	 */
3009 	if (!is_t4(adap->params.chip) && cong >= 0) {
3010 		u32 param, val, ch_map = 0;
3011 		int i;
3012 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
3013 
3014 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3015 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3016 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
3017 		if (cong == 0) {
3018 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
3019 		} else {
3020 			val =
3021 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
3022 			for (i = 0; i < 4; i++) {
3023 				if (cong & (1 << i))
3024 					ch_map |= 1 << (i << cng_ch_bits_log);
3025 			}
3026 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
3027 		}
3028 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
3029 				    &param, &val);
3030 		if (ret)
3031 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
3032 				 " Manager Context for Ingress Queue %d: %d\n",
3033 				 iq->cntxt_id, -ret);
3034 	}
3035 
3036 	return 0;
3037 
3038 fl_nomem:
3039 	ret = -ENOMEM;
3040 err:
3041 	if (iq->desc) {
3042 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
3043 				  iq->desc, iq->phys_addr);
3044 		iq->desc = NULL;
3045 	}
3046 	if (fl && fl->desc) {
3047 		kfree(fl->sdesc);
3048 		fl->sdesc = NULL;
3049 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
3050 				  fl->desc, fl->addr);
3051 		fl->desc = NULL;
3052 	}
3053 	return ret;
3054 }
3055 
3056 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
3057 {
3058 	q->cntxt_id = id;
3059 	q->bar2_addr = bar2_address(adap,
3060 				    q->cntxt_id,
3061 				    T4_BAR2_QTYPE_EGRESS,
3062 				    &q->bar2_qid);
3063 	q->in_use = 0;
3064 	q->cidx = q->pidx = 0;
3065 	q->stops = q->restarts = 0;
3066 	q->stat = (void *)&q->desc[q->size];
3067 	spin_lock_init(&q->db_lock);
3068 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
3069 }
3070 
3071 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
3072 			 struct net_device *dev, struct netdev_queue *netdevq,
3073 			 unsigned int iqid)
3074 {
3075 	int ret, nentries;
3076 	struct fw_eq_eth_cmd c;
3077 	struct sge *s = &adap->sge;
3078 	struct port_info *pi = netdev_priv(dev);
3079 
3080 	/* Add status entries */
3081 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3082 
3083 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3084 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3085 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3086 			netdev_queue_numa_node_read(netdevq));
3087 	if (!txq->q.desc)
3088 		return -ENOMEM;
3089 
3090 	memset(&c, 0, sizeof(c));
3091 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
3092 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3093 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
3094 			    FW_EQ_ETH_CMD_VFN_V(0));
3095 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
3096 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
3097 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
3098 			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
3099 	c.fetchszm_to_iqid =
3100 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3101 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
3102 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
3103 	c.dcaen_to_eqsize =
3104 		htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3105 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3106 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3107 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
3108 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3109 
3110 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3111 	if (ret) {
3112 		kfree(txq->q.sdesc);
3113 		txq->q.sdesc = NULL;
3114 		dma_free_coherent(adap->pdev_dev,
3115 				  nentries * sizeof(struct tx_desc),
3116 				  txq->q.desc, txq->q.phys_addr);
3117 		txq->q.desc = NULL;
3118 		return ret;
3119 	}
3120 
3121 	txq->q.q_type = CXGB4_TXQ_ETH;
3122 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
3123 	txq->txq = netdevq;
3124 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
3125 	txq->mapping_err = 0;
3126 	return 0;
3127 }
3128 
3129 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
3130 			  struct net_device *dev, unsigned int iqid,
3131 			  unsigned int cmplqid)
3132 {
3133 	int ret, nentries;
3134 	struct fw_eq_ctrl_cmd c;
3135 	struct sge *s = &adap->sge;
3136 	struct port_info *pi = netdev_priv(dev);
3137 
3138 	/* Add status entries */
3139 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3140 
3141 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
3142 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
3143 				 NULL, 0, dev_to_node(adap->pdev_dev));
3144 	if (!txq->q.desc)
3145 		return -ENOMEM;
3146 
3147 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
3148 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3149 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
3150 			    FW_EQ_CTRL_CMD_VFN_V(0));
3151 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
3152 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
3153 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3154 	c.physeqid_pkd = htonl(0);
3155 	c.fetchszm_to_iqid =
3156 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3157 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
3158 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
3159 	c.dcaen_to_eqsize =
3160 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3161 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3162 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3163 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3164 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3165 
3166 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3167 	if (ret) {
3168 		dma_free_coherent(adap->pdev_dev,
3169 				  nentries * sizeof(struct tx_desc),
3170 				  txq->q.desc, txq->q.phys_addr);
3171 		txq->q.desc = NULL;
3172 		return ret;
3173 	}
3174 
3175 	txq->q.q_type = CXGB4_TXQ_CTRL;
3176 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3177 	txq->adap = adap;
3178 	skb_queue_head_init(&txq->sendq);
3179 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
3180 	txq->full = 0;
3181 	return 0;
3182 }
3183 
3184 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
3185 			unsigned int cmplqid)
3186 {
3187 	u32 param, val;
3188 
3189 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3190 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
3191 		 FW_PARAMS_PARAM_YZ_V(eqid));
3192 	val = cmplqid;
3193 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
3194 }
3195 
3196 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
3197 			 struct net_device *dev, unsigned int iqid,
3198 			 unsigned int uld_type)
3199 {
3200 	int ret, nentries;
3201 	struct fw_eq_ofld_cmd c;
3202 	struct sge *s = &adap->sge;
3203 	struct port_info *pi = netdev_priv(dev);
3204 	int cmd = FW_EQ_OFLD_CMD;
3205 
3206 	/* Add status entries */
3207 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3208 
3209 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3210 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3211 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3212 			NUMA_NO_NODE);
3213 	if (!txq->q.desc)
3214 		return -ENOMEM;
3215 
3216 	memset(&c, 0, sizeof(c));
3217 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
3218 		cmd = FW_EQ_CTRL_CMD;
3219 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3220 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3221 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3222 			    FW_EQ_OFLD_CMD_VFN_V(0));
3223 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
3224 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3225 	c.fetchszm_to_iqid =
3226 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3227 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
3228 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
3229 	c.dcaen_to_eqsize =
3230 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3231 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3232 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3233 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3234 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3235 
3236 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3237 	if (ret) {
3238 		kfree(txq->q.sdesc);
3239 		txq->q.sdesc = NULL;
3240 		dma_free_coherent(adap->pdev_dev,
3241 				  nentries * sizeof(struct tx_desc),
3242 				  txq->q.desc, txq->q.phys_addr);
3243 		txq->q.desc = NULL;
3244 		return ret;
3245 	}
3246 
3247 	txq->q.q_type = CXGB4_TXQ_ULD;
3248 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3249 	txq->adap = adap;
3250 	skb_queue_head_init(&txq->sendq);
3251 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
3252 	txq->full = 0;
3253 	txq->mapping_err = 0;
3254 	return 0;
3255 }
3256 
3257 void free_txq(struct adapter *adap, struct sge_txq *q)
3258 {
3259 	struct sge *s = &adap->sge;
3260 
3261 	dma_free_coherent(adap->pdev_dev,
3262 			  q->size * sizeof(struct tx_desc) + s->stat_len,
3263 			  q->desc, q->phys_addr);
3264 	q->cntxt_id = 0;
3265 	q->sdesc = NULL;
3266 	q->desc = NULL;
3267 }
3268 
3269 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
3270 		  struct sge_fl *fl)
3271 {
3272 	struct sge *s = &adap->sge;
3273 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
3274 
3275 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
3276 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3277 		   rq->cntxt_id, fl_id, 0xffff);
3278 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
3279 			  rq->desc, rq->phys_addr);
3280 	netif_napi_del(&rq->napi);
3281 	rq->netdev = NULL;
3282 	rq->cntxt_id = rq->abs_id = 0;
3283 	rq->desc = NULL;
3284 
3285 	if (fl) {
3286 		free_rx_bufs(adap, fl, fl->avail);
3287 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
3288 				  fl->desc, fl->addr);
3289 		kfree(fl->sdesc);
3290 		fl->sdesc = NULL;
3291 		fl->cntxt_id = 0;
3292 		fl->desc = NULL;
3293 	}
3294 }
3295 
3296 /**
3297  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
3298  *      @adap: the adapter
3299  *      @n: number of queues
3300  *      @q: pointer to first queue
3301  *
3302  *      Release the resources of a consecutive block of offload Rx queues.
3303  */
3304 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
3305 {
3306 	for ( ; n; n--, q++)
3307 		if (q->rspq.desc)
3308 			free_rspq_fl(adap, &q->rspq,
3309 				     q->fl.size ? &q->fl : NULL);
3310 }
3311 
3312 /**
3313  *	t4_free_sge_resources - free SGE resources
3314  *	@adap: the adapter
3315  *
3316  *	Frees resources used by the SGE queue sets.
3317  */
3318 void t4_free_sge_resources(struct adapter *adap)
3319 {
3320 	int i;
3321 	struct sge_eth_rxq *eq;
3322 	struct sge_eth_txq *etq;
3323 
3324 	/* stop all Rx queues in order to start them draining */
3325 	for (i = 0; i < adap->sge.ethqsets; i++) {
3326 		eq = &adap->sge.ethrxq[i];
3327 		if (eq->rspq.desc)
3328 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
3329 				   FW_IQ_TYPE_FL_INT_CAP,
3330 				   eq->rspq.cntxt_id,
3331 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
3332 				   0xffff);
3333 	}
3334 
3335 	/* clean up Ethernet Tx/Rx queues */
3336 	for (i = 0; i < adap->sge.ethqsets; i++) {
3337 		eq = &adap->sge.ethrxq[i];
3338 		if (eq->rspq.desc)
3339 			free_rspq_fl(adap, &eq->rspq,
3340 				     eq->fl.size ? &eq->fl : NULL);
3341 
3342 		etq = &adap->sge.ethtxq[i];
3343 		if (etq->q.desc) {
3344 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3345 				       etq->q.cntxt_id);
3346 			__netif_tx_lock_bh(etq->txq);
3347 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3348 			__netif_tx_unlock_bh(etq->txq);
3349 			kfree(etq->q.sdesc);
3350 			free_txq(adap, &etq->q);
3351 		}
3352 	}
3353 
3354 	/* clean up control Tx queues */
3355 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
3356 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
3357 
3358 		if (cq->q.desc) {
3359 			tasklet_kill(&cq->qresume_tsk);
3360 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
3361 					cq->q.cntxt_id);
3362 			__skb_queue_purge(&cq->sendq);
3363 			free_txq(adap, &cq->q);
3364 		}
3365 	}
3366 
3367 	if (adap->sge.fw_evtq.desc)
3368 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
3369 
3370 	if (adap->sge.intrq.desc)
3371 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
3372 
3373 	if (!is_t4(adap->params.chip)) {
3374 		etq = &adap->sge.ptptxq;
3375 		if (etq->q.desc) {
3376 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3377 				       etq->q.cntxt_id);
3378 			spin_lock_bh(&adap->ptp_lock);
3379 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3380 			spin_unlock_bh(&adap->ptp_lock);
3381 			kfree(etq->q.sdesc);
3382 			free_txq(adap, &etq->q);
3383 		}
3384 	}
3385 
3386 	/* clear the reverse egress queue map */
3387 	memset(adap->sge.egr_map, 0,
3388 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
3389 }
3390 
3391 void t4_sge_start(struct adapter *adap)
3392 {
3393 	adap->sge.ethtxq_rover = 0;
3394 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
3395 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
3396 }
3397 
3398 /**
3399  *	t4_sge_stop - disable SGE operation
3400  *	@adap: the adapter
3401  *
3402  *	Stop tasklets and timers associated with the DMA engine.  Note that
3403  *	this is effective only if measures have been taken to disable any HW
3404  *	events that may restart them.
3405  */
3406 void t4_sge_stop(struct adapter *adap)
3407 {
3408 	int i;
3409 	struct sge *s = &adap->sge;
3410 
3411 	if (in_interrupt())  /* actions below require waiting */
3412 		return;
3413 
3414 	if (s->rx_timer.function)
3415 		del_timer_sync(&s->rx_timer);
3416 	if (s->tx_timer.function)
3417 		del_timer_sync(&s->tx_timer);
3418 
3419 	if (is_offload(adap)) {
3420 		struct sge_uld_txq_info *txq_info;
3421 
3422 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3423 		if (txq_info) {
3424 			struct sge_uld_txq *txq = txq_info->uldtxq;
3425 
3426 			for_each_ofldtxq(&adap->sge, i) {
3427 				if (txq->q.desc)
3428 					tasklet_kill(&txq->qresume_tsk);
3429 			}
3430 		}
3431 	}
3432 
3433 	if (is_pci_uld(adap)) {
3434 		struct sge_uld_txq_info *txq_info;
3435 
3436 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
3437 		if (txq_info) {
3438 			struct sge_uld_txq *txq = txq_info->uldtxq;
3439 
3440 			for_each_ofldtxq(&adap->sge, i) {
3441 				if (txq->q.desc)
3442 					tasklet_kill(&txq->qresume_tsk);
3443 			}
3444 		}
3445 	}
3446 
3447 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
3448 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
3449 
3450 		if (cq->q.desc)
3451 			tasklet_kill(&cq->qresume_tsk);
3452 	}
3453 }
3454 
3455 /**
3456  *	t4_sge_init_soft - grab core SGE values needed by SGE code
3457  *	@adap: the adapter
3458  *
3459  *	We need to grab the SGE operating parameters that we need to have
3460  *	in order to do our job and make sure we can live with them.
3461  */
3462 
3463 static int t4_sge_init_soft(struct adapter *adap)
3464 {
3465 	struct sge *s = &adap->sge;
3466 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
3467 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
3468 	u32 ingress_rx_threshold;
3469 
3470 	/*
3471 	 * Verify that CPL messages are going to the Ingress Queue for
3472 	 * process_responses() and that only packet data is going to the
3473 	 * Free Lists.
3474 	 */
3475 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
3476 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
3477 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
3478 		return -EINVAL;
3479 	}
3480 
3481 	/*
3482 	 * Validate the Host Buffer Register Array indices that we want to
3483 	 * use ...
3484 	 *
3485 	 * XXX Note that we should really read through the Host Buffer Size
3486 	 * XXX register array and find the indices of the Buffer Sizes which
3487 	 * XXX meet our needs!
3488 	 */
3489 	#define READ_FL_BUF(x) \
3490 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
3491 
3492 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
3493 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
3494 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
3495 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
3496 
3497 	/* We only bother using the Large Page logic if the Large Page Buffer
3498 	 * is larger than our Page Size Buffer.
3499 	 */
3500 	if (fl_large_pg <= fl_small_pg)
3501 		fl_large_pg = 0;
3502 
3503 	#undef READ_FL_BUF
3504 
3505 	/* The Page Size Buffer must be exactly equal to our Page Size and the
3506 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
3507 	 */
3508 	if (fl_small_pg != PAGE_SIZE ||
3509 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
3510 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
3511 			fl_small_pg, fl_large_pg);
3512 		return -EINVAL;
3513 	}
3514 	if (fl_large_pg)
3515 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
3516 
3517 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
3518 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
3519 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
3520 			fl_small_mtu, fl_large_mtu);
3521 		return -EINVAL;
3522 	}
3523 
3524 	/*
3525 	 * Retrieve our RX interrupt holdoff timer values and counter
3526 	 * threshold values from the SGE parameters.
3527 	 */
3528 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
3529 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
3530 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3531 	s->timer_val[0] = core_ticks_to_us(adap,
3532 		TIMERVALUE0_G(timer_value_0_and_1));
3533 	s->timer_val[1] = core_ticks_to_us(adap,
3534 		TIMERVALUE1_G(timer_value_0_and_1));
3535 	s->timer_val[2] = core_ticks_to_us(adap,
3536 		TIMERVALUE2_G(timer_value_2_and_3));
3537 	s->timer_val[3] = core_ticks_to_us(adap,
3538 		TIMERVALUE3_G(timer_value_2_and_3));
3539 	s->timer_val[4] = core_ticks_to_us(adap,
3540 		TIMERVALUE4_G(timer_value_4_and_5));
3541 	s->timer_val[5] = core_ticks_to_us(adap,
3542 		TIMERVALUE5_G(timer_value_4_and_5));
3543 
3544 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
3545 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
3546 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
3547 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
3548 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3549 
3550 	return 0;
3551 }
3552 
3553 /**
3554  *     t4_sge_init - initialize SGE
3555  *     @adap: the adapter
3556  *
3557  *     Perform low-level SGE code initialization needed every time after a
3558  *     chip reset.
3559  */
3560 int t4_sge_init(struct adapter *adap)
3561 {
3562 	struct sge *s = &adap->sge;
3563 	u32 sge_control, sge_conm_ctrl;
3564 	int ret, egress_threshold;
3565 
3566 	/*
3567 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
3568 	 * t4_fixup_host_params().
3569 	 */
3570 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3571 	s->pktshift = PKTSHIFT_G(sge_control);
3572 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3573 
3574 	s->fl_align = t4_fl_pkt_align(adap);
3575 	ret = t4_sge_init_soft(adap);
3576 	if (ret < 0)
3577 		return ret;
3578 
3579 	/*
3580 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
3581 	 * timer will attempt to refill it.  This needs to be larger than the
3582 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3583 	 * stuck waiting for new packets while the SGE is waiting for us to
3584 	 * give it more Free List entries.  (Note that the SGE's Egress
3585 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3586 	 * there was only a single field to control this.  For T5 there's the
3587 	 * original field which now only applies to Unpacked Mode Free List
3588 	 * buffers and a new field which only applies to Packed Mode Free List
3589 	 * buffers.
3590 	 */
3591 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3592 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
3593 	case CHELSIO_T4:
3594 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3595 		break;
3596 	case CHELSIO_T5:
3597 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3598 		break;
3599 	case CHELSIO_T6:
3600 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3601 		break;
3602 	default:
3603 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
3604 			CHELSIO_CHIP_VERSION(adap->params.chip));
3605 		return -EINVAL;
3606 	}
3607 	s->fl_starve_thres = 2*egress_threshold + 1;
3608 
3609 	t4_idma_monitor_init(adap, &s->idma_monitor);
3610 
3611 	/* Set up timers used for recuring callbacks to process RX and TX
3612 	 * administrative tasks.
3613 	 */
3614 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
3615 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
3616 
3617 	spin_lock_init(&s->intrq_lock);
3618 
3619 	return 0;
3620 }
3621