xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #ifdef CONFIG_NET_RX_BUSY_POLL
47 #include <net/busy_poll.h>
48 #endif /* CONFIG_NET_RX_BUSY_POLL */
49 #ifdef CONFIG_CHELSIO_T4_FCOE
50 #include <scsi/fc/fc_fcoe.h>
51 #endif /* CONFIG_CHELSIO_T4_FCOE */
52 #include "cxgb4.h"
53 #include "t4_regs.h"
54 #include "t4_values.h"
55 #include "t4_msg.h"
56 #include "t4fw_api.h"
57 
58 /*
59  * Rx buffer size.  We use largish buffers if possible but settle for single
60  * pages under memory shortage.
61  */
62 #if PAGE_SHIFT >= 16
63 # define FL_PG_ORDER 0
64 #else
65 # define FL_PG_ORDER (16 - PAGE_SHIFT)
66 #endif
67 
68 /* RX_PULL_LEN should be <= RX_COPY_THRES */
69 #define RX_COPY_THRES    256
70 #define RX_PULL_LEN      128
71 
72 /*
73  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
74  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
75  */
76 #define RX_PKT_SKB_LEN   512
77 
78 /*
79  * Max number of Tx descriptors we clean up at a time.  Should be modest as
80  * freeing skbs isn't cheap and it happens while holding locks.  We just need
81  * to free packets faster than they arrive, we eventually catch up and keep
82  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
83  */
84 #define MAX_TX_RECLAIM 16
85 
86 /*
87  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
88  * allocating buffers isn't cheap either.
89  */
90 #define MAX_RX_REFILL 16U
91 
92 /*
93  * Period of the Rx queue check timer.  This timer is infrequent as it has
94  * something to do only when the system experiences severe memory shortage.
95  */
96 #define RX_QCHECK_PERIOD (HZ / 2)
97 
98 /*
99  * Period of the Tx queue check timer.
100  */
101 #define TX_QCHECK_PERIOD (HZ / 2)
102 
103 /*
104  * Max number of Tx descriptors to be reclaimed by the Tx timer.
105  */
106 #define MAX_TIMER_TX_RECLAIM 100
107 
108 /*
109  * Timer index used when backing off due to memory shortage.
110  */
111 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
112 
113 /*
114  * Suspend an Ethernet Tx queue with fewer available descriptors than this.
115  * This is the same as calc_tx_descs() for a TSO packet with
116  * nr_frags == MAX_SKB_FRAGS.
117  */
118 #define ETHTXQ_STOP_THRES \
119 	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
120 
121 /*
122  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
123  * for a full sized WR.
124  */
125 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
126 
127 /*
128  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
129  * into a WR.
130  */
131 #define MAX_IMM_TX_PKT_LEN 256
132 
133 /*
134  * Max size of a WR sent through a control Tx queue.
135  */
136 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
137 
138 struct tx_sw_desc {                /* SW state per Tx descriptor */
139 	struct sk_buff *skb;
140 	struct ulptx_sgl *sgl;
141 };
142 
143 struct rx_sw_desc {                /* SW state per Rx descriptor */
144 	struct page *page;
145 	dma_addr_t dma_addr;
146 };
147 
148 /*
149  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
150  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
151  * We could easily support more but there doesn't seem to be much need for
152  * that ...
153  */
154 #define FL_MTU_SMALL 1500
155 #define FL_MTU_LARGE 9000
156 
157 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
158 					  unsigned int mtu)
159 {
160 	struct sge *s = &adapter->sge;
161 
162 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
163 }
164 
165 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
166 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
167 
168 /*
169  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
170  * these to specify the buffer size as an index into the SGE Free List Buffer
171  * Size register array.  We also use bit 4, when the buffer has been unmapped
172  * for DMA, but this is of course never sent to the hardware and is only used
173  * to prevent double unmappings.  All of the above requires that the Free List
174  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
175  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
176  * Free List Buffer alignment is 32 bytes, this works out for us ...
177  */
178 enum {
179 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
180 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
181 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
182 
183 	/*
184 	 * XXX We shouldn't depend on being able to use these indices.
185 	 * XXX Especially when some other Master PF has initialized the
186 	 * XXX adapter or we use the Firmware Configuration File.  We
187 	 * XXX should really search through the Host Buffer Size register
188 	 * XXX array for the appropriately sized buffer indices.
189 	 */
190 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
191 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
192 
193 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
194 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
195 };
196 
197 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
198 #define MIN_NAPI_WORK  1
199 
200 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
201 {
202 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
203 }
204 
205 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
206 {
207 	return !(d->dma_addr & RX_UNMAPPED_BUF);
208 }
209 
210 /**
211  *	txq_avail - return the number of available slots in a Tx queue
212  *	@q: the Tx queue
213  *
214  *	Returns the number of descriptors in a Tx queue available to write new
215  *	packets.
216  */
217 static inline unsigned int txq_avail(const struct sge_txq *q)
218 {
219 	return q->size - 1 - q->in_use;
220 }
221 
222 /**
223  *	fl_cap - return the capacity of a free-buffer list
224  *	@fl: the FL
225  *
226  *	Returns the capacity of a free-buffer list.  The capacity is less than
227  *	the size because one descriptor needs to be left unpopulated, otherwise
228  *	HW will think the FL is empty.
229  */
230 static inline unsigned int fl_cap(const struct sge_fl *fl)
231 {
232 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
233 }
234 
235 /**
236  *	fl_starving - return whether a Free List is starving.
237  *	@adapter: pointer to the adapter
238  *	@fl: the Free List
239  *
240  *	Tests specified Free List to see whether the number of buffers
241  *	available to the hardware has falled below our "starvation"
242  *	threshold.
243  */
244 static inline bool fl_starving(const struct adapter *adapter,
245 			       const struct sge_fl *fl)
246 {
247 	const struct sge *s = &adapter->sge;
248 
249 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
250 }
251 
252 static int map_skb(struct device *dev, const struct sk_buff *skb,
253 		   dma_addr_t *addr)
254 {
255 	const skb_frag_t *fp, *end;
256 	const struct skb_shared_info *si;
257 
258 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
259 	if (dma_mapping_error(dev, *addr))
260 		goto out_err;
261 
262 	si = skb_shinfo(skb);
263 	end = &si->frags[si->nr_frags];
264 
265 	for (fp = si->frags; fp < end; fp++) {
266 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
267 					   DMA_TO_DEVICE);
268 		if (dma_mapping_error(dev, *addr))
269 			goto unwind;
270 	}
271 	return 0;
272 
273 unwind:
274 	while (fp-- > si->frags)
275 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
276 
277 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
278 out_err:
279 	return -ENOMEM;
280 }
281 
282 #ifdef CONFIG_NEED_DMA_MAP_STATE
283 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
284 		      const dma_addr_t *addr)
285 {
286 	const skb_frag_t *fp, *end;
287 	const struct skb_shared_info *si;
288 
289 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
290 
291 	si = skb_shinfo(skb);
292 	end = &si->frags[si->nr_frags];
293 	for (fp = si->frags; fp < end; fp++)
294 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
295 }
296 
297 /**
298  *	deferred_unmap_destructor - unmap a packet when it is freed
299  *	@skb: the packet
300  *
301  *	This is the packet destructor used for Tx packets that need to remain
302  *	mapped until they are freed rather than until their Tx descriptors are
303  *	freed.
304  */
305 static void deferred_unmap_destructor(struct sk_buff *skb)
306 {
307 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
308 }
309 #endif
310 
311 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
312 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
313 {
314 	const struct ulptx_sge_pair *p;
315 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
316 
317 	if (likely(skb_headlen(skb)))
318 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
319 				 DMA_TO_DEVICE);
320 	else {
321 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
322 			       DMA_TO_DEVICE);
323 		nfrags--;
324 	}
325 
326 	/*
327 	 * the complexity below is because of the possibility of a wrap-around
328 	 * in the middle of an SGL
329 	 */
330 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
331 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
332 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
333 				       ntohl(p->len[0]), DMA_TO_DEVICE);
334 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
335 				       ntohl(p->len[1]), DMA_TO_DEVICE);
336 			p++;
337 		} else if ((u8 *)p == (u8 *)q->stat) {
338 			p = (const struct ulptx_sge_pair *)q->desc;
339 			goto unmap;
340 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
341 			const __be64 *addr = (const __be64 *)q->desc;
342 
343 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
344 				       ntohl(p->len[0]), DMA_TO_DEVICE);
345 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
346 				       ntohl(p->len[1]), DMA_TO_DEVICE);
347 			p = (const struct ulptx_sge_pair *)&addr[2];
348 		} else {
349 			const __be64 *addr = (const __be64 *)q->desc;
350 
351 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
352 				       ntohl(p->len[0]), DMA_TO_DEVICE);
353 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
354 				       ntohl(p->len[1]), DMA_TO_DEVICE);
355 			p = (const struct ulptx_sge_pair *)&addr[1];
356 		}
357 	}
358 	if (nfrags) {
359 		__be64 addr;
360 
361 		if ((u8 *)p == (u8 *)q->stat)
362 			p = (const struct ulptx_sge_pair *)q->desc;
363 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
364 						       *(const __be64 *)q->desc;
365 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
366 			       DMA_TO_DEVICE);
367 	}
368 }
369 
370 /**
371  *	free_tx_desc - reclaims Tx descriptors and their buffers
372  *	@adapter: the adapter
373  *	@q: the Tx queue to reclaim descriptors from
374  *	@n: the number of descriptors to reclaim
375  *	@unmap: whether the buffers should be unmapped for DMA
376  *
377  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
378  *	Tx buffers.  Called with the Tx queue lock held.
379  */
380 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
381 			 unsigned int n, bool unmap)
382 {
383 	struct tx_sw_desc *d;
384 	unsigned int cidx = q->cidx;
385 	struct device *dev = adap->pdev_dev;
386 
387 	d = &q->sdesc[cidx];
388 	while (n--) {
389 		if (d->skb) {                       /* an SGL is present */
390 			if (unmap)
391 				unmap_sgl(dev, d->skb, d->sgl, q);
392 			dev_consume_skb_any(d->skb);
393 			d->skb = NULL;
394 		}
395 		++d;
396 		if (++cidx == q->size) {
397 			cidx = 0;
398 			d = q->sdesc;
399 		}
400 	}
401 	q->cidx = cidx;
402 }
403 
404 /*
405  * Return the number of reclaimable descriptors in a Tx queue.
406  */
407 static inline int reclaimable(const struct sge_txq *q)
408 {
409 	int hw_cidx = ntohs(q->stat->cidx);
410 	hw_cidx -= q->cidx;
411 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
412 }
413 
414 /**
415  *	reclaim_completed_tx - reclaims completed Tx descriptors
416  *	@adap: the adapter
417  *	@q: the Tx queue to reclaim completed descriptors from
418  *	@unmap: whether the buffers should be unmapped for DMA
419  *
420  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
421  *	and frees the associated buffers if possible.  Called with the Tx
422  *	queue locked.
423  */
424 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
425 					bool unmap)
426 {
427 	int avail = reclaimable(q);
428 
429 	if (avail) {
430 		/*
431 		 * Limit the amount of clean up work we do at a time to keep
432 		 * the Tx lock hold time O(1).
433 		 */
434 		if (avail > MAX_TX_RECLAIM)
435 			avail = MAX_TX_RECLAIM;
436 
437 		free_tx_desc(adap, q, avail, unmap);
438 		q->in_use -= avail;
439 	}
440 }
441 
442 static inline int get_buf_size(struct adapter *adapter,
443 			       const struct rx_sw_desc *d)
444 {
445 	struct sge *s = &adapter->sge;
446 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
447 	int buf_size;
448 
449 	switch (rx_buf_size_idx) {
450 	case RX_SMALL_PG_BUF:
451 		buf_size = PAGE_SIZE;
452 		break;
453 
454 	case RX_LARGE_PG_BUF:
455 		buf_size = PAGE_SIZE << s->fl_pg_order;
456 		break;
457 
458 	case RX_SMALL_MTU_BUF:
459 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
460 		break;
461 
462 	case RX_LARGE_MTU_BUF:
463 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
464 		break;
465 
466 	default:
467 		BUG_ON(1);
468 	}
469 
470 	return buf_size;
471 }
472 
473 /**
474  *	free_rx_bufs - free the Rx buffers on an SGE free list
475  *	@adap: the adapter
476  *	@q: the SGE free list to free buffers from
477  *	@n: how many buffers to free
478  *
479  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
480  *	buffers must be made inaccessible to HW before calling this function.
481  */
482 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
483 {
484 	while (n--) {
485 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
486 
487 		if (is_buf_mapped(d))
488 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
489 				       get_buf_size(adap, d),
490 				       PCI_DMA_FROMDEVICE);
491 		put_page(d->page);
492 		d->page = NULL;
493 		if (++q->cidx == q->size)
494 			q->cidx = 0;
495 		q->avail--;
496 	}
497 }
498 
499 /**
500  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
501  *	@adap: the adapter
502  *	@q: the SGE free list
503  *
504  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
505  *	buffer must be made inaccessible to HW before calling this function.
506  *
507  *	This is similar to @free_rx_bufs above but does not free the buffer.
508  *	Do note that the FL still loses any further access to the buffer.
509  */
510 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
511 {
512 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
513 
514 	if (is_buf_mapped(d))
515 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
516 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
517 	d->page = NULL;
518 	if (++q->cidx == q->size)
519 		q->cidx = 0;
520 	q->avail--;
521 }
522 
523 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
524 {
525 	if (q->pend_cred >= 8) {
526 		u32 val = adap->params.arch.sge_fl_db;
527 
528 		if (is_t4(adap->params.chip))
529 			val |= PIDX_V(q->pend_cred / 8);
530 		else
531 			val |= PIDX_T5_V(q->pend_cred / 8);
532 
533 		/* Make sure all memory writes to the Free List queue are
534 		 * committed before we tell the hardware about them.
535 		 */
536 		wmb();
537 
538 		/* If we don't have access to the new User Doorbell (T5+), use
539 		 * the old doorbell mechanism; otherwise use the new BAR2
540 		 * mechanism.
541 		 */
542 		if (unlikely(q->bar2_addr == NULL)) {
543 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
544 				     val | QID_V(q->cntxt_id));
545 		} else {
546 			writel(val | QID_V(q->bar2_qid),
547 			       q->bar2_addr + SGE_UDB_KDOORBELL);
548 
549 			/* This Write memory Barrier will force the write to
550 			 * the User Doorbell area to be flushed.
551 			 */
552 			wmb();
553 		}
554 		q->pend_cred &= 7;
555 	}
556 }
557 
558 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
559 				  dma_addr_t mapping)
560 {
561 	sd->page = pg;
562 	sd->dma_addr = mapping;      /* includes size low bits */
563 }
564 
565 /**
566  *	refill_fl - refill an SGE Rx buffer ring
567  *	@adap: the adapter
568  *	@q: the ring to refill
569  *	@n: the number of new buffers to allocate
570  *	@gfp: the gfp flags for the allocations
571  *
572  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
573  *	allocated with the supplied gfp flags.  The caller must assure that
574  *	@n does not exceed the queue's capacity.  If afterwards the queue is
575  *	found critically low mark it as starving in the bitmap of starving FLs.
576  *
577  *	Returns the number of buffers allocated.
578  */
579 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
580 			      gfp_t gfp)
581 {
582 	struct sge *s = &adap->sge;
583 	struct page *pg;
584 	dma_addr_t mapping;
585 	unsigned int cred = q->avail;
586 	__be64 *d = &q->desc[q->pidx];
587 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
588 	int node;
589 
590 #ifdef CONFIG_DEBUG_FS
591 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
592 		goto out;
593 #endif
594 
595 	gfp |= __GFP_NOWARN;
596 	node = dev_to_node(adap->pdev_dev);
597 
598 	if (s->fl_pg_order == 0)
599 		goto alloc_small_pages;
600 
601 	/*
602 	 * Prefer large buffers
603 	 */
604 	while (n) {
605 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
606 		if (unlikely(!pg)) {
607 			q->large_alloc_failed++;
608 			break;       /* fall back to single pages */
609 		}
610 
611 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
612 				       PAGE_SIZE << s->fl_pg_order,
613 				       PCI_DMA_FROMDEVICE);
614 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
615 			__free_pages(pg, s->fl_pg_order);
616 			goto out;   /* do not try small pages for this error */
617 		}
618 		mapping |= RX_LARGE_PG_BUF;
619 		*d++ = cpu_to_be64(mapping);
620 
621 		set_rx_sw_desc(sd, pg, mapping);
622 		sd++;
623 
624 		q->avail++;
625 		if (++q->pidx == q->size) {
626 			q->pidx = 0;
627 			sd = q->sdesc;
628 			d = q->desc;
629 		}
630 		n--;
631 	}
632 
633 alloc_small_pages:
634 	while (n--) {
635 		pg = alloc_pages_node(node, gfp, 0);
636 		if (unlikely(!pg)) {
637 			q->alloc_failed++;
638 			break;
639 		}
640 
641 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
642 				       PCI_DMA_FROMDEVICE);
643 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
644 			put_page(pg);
645 			goto out;
646 		}
647 		*d++ = cpu_to_be64(mapping);
648 
649 		set_rx_sw_desc(sd, pg, mapping);
650 		sd++;
651 
652 		q->avail++;
653 		if (++q->pidx == q->size) {
654 			q->pidx = 0;
655 			sd = q->sdesc;
656 			d = q->desc;
657 		}
658 	}
659 
660 out:	cred = q->avail - cred;
661 	q->pend_cred += cred;
662 	ring_fl_db(adap, q);
663 
664 	if (unlikely(fl_starving(adap, q))) {
665 		smp_wmb();
666 		set_bit(q->cntxt_id - adap->sge.egr_start,
667 			adap->sge.starving_fl);
668 	}
669 
670 	return cred;
671 }
672 
673 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
674 {
675 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
676 		  GFP_ATOMIC);
677 }
678 
679 /**
680  *	alloc_ring - allocate resources for an SGE descriptor ring
681  *	@dev: the PCI device's core device
682  *	@nelem: the number of descriptors
683  *	@elem_size: the size of each descriptor
684  *	@sw_size: the size of the SW state associated with each ring element
685  *	@phys: the physical address of the allocated ring
686  *	@metadata: address of the array holding the SW state for the ring
687  *	@stat_size: extra space in HW ring for status information
688  *	@node: preferred node for memory allocations
689  *
690  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
691  *	free buffer lists, or response queues.  Each SGE ring requires
692  *	space for its HW descriptors plus, optionally, space for the SW state
693  *	associated with each HW entry (the metadata).  The function returns
694  *	three values: the virtual address for the HW ring (the return value
695  *	of the function), the bus address of the HW ring, and the address
696  *	of the SW ring.
697  */
698 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
699 			size_t sw_size, dma_addr_t *phys, void *metadata,
700 			size_t stat_size, int node)
701 {
702 	size_t len = nelem * elem_size + stat_size;
703 	void *s = NULL;
704 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
705 
706 	if (!p)
707 		return NULL;
708 	if (sw_size) {
709 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
710 
711 		if (!s) {
712 			dma_free_coherent(dev, len, p, *phys);
713 			return NULL;
714 		}
715 	}
716 	if (metadata)
717 		*(void **)metadata = s;
718 	memset(p, 0, len);
719 	return p;
720 }
721 
722 /**
723  *	sgl_len - calculates the size of an SGL of the given capacity
724  *	@n: the number of SGL entries
725  *
726  *	Calculates the number of flits needed for a scatter/gather list that
727  *	can hold the given number of entries.
728  */
729 static inline unsigned int sgl_len(unsigned int n)
730 {
731 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
732 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
733 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
734 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
735 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
736 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
737 	 * Address[N+1] is omitted.
738 	 *
739 	 * The following calculation incorporates all of the above.  It's
740 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
741 	 * first two flits which include the DSGL header, Length0 and
742 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
743 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
744 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
745 	 * (n-1) is odd ...
746 	 */
747 	n--;
748 	return (3 * n) / 2 + (n & 1) + 2;
749 }
750 
751 /**
752  *	flits_to_desc - returns the num of Tx descriptors for the given flits
753  *	@n: the number of flits
754  *
755  *	Returns the number of Tx descriptors needed for the supplied number
756  *	of flits.
757  */
758 static inline unsigned int flits_to_desc(unsigned int n)
759 {
760 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
761 	return DIV_ROUND_UP(n, 8);
762 }
763 
764 /**
765  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
766  *	@skb: the packet
767  *
768  *	Returns whether an Ethernet packet is small enough to fit as
769  *	immediate data. Return value corresponds to headroom required.
770  */
771 static inline int is_eth_imm(const struct sk_buff *skb)
772 {
773 	int hdrlen = skb_shinfo(skb)->gso_size ?
774 			sizeof(struct cpl_tx_pkt_lso_core) : 0;
775 
776 	hdrlen += sizeof(struct cpl_tx_pkt);
777 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
778 		return hdrlen;
779 	return 0;
780 }
781 
782 /**
783  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
784  *	@skb: the packet
785  *
786  *	Returns the number of flits needed for a Tx WR for the given Ethernet
787  *	packet, including the needed WR and CPL headers.
788  */
789 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
790 {
791 	unsigned int flits;
792 	int hdrlen = is_eth_imm(skb);
793 
794 	/* If the skb is small enough, we can pump it out as a work request
795 	 * with only immediate data.  In that case we just have to have the
796 	 * TX Packet header plus the skb data in the Work Request.
797 	 */
798 
799 	if (hdrlen)
800 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
801 
802 	/* Otherwise, we're going to have to construct a Scatter gather list
803 	 * of the skb body and fragments.  We also include the flits necessary
804 	 * for the TX Packet Work Request and CPL.  We always have a firmware
805 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
806 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
807 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
808 	 * with an embedded TX Packet Write CPL message.
809 	 */
810 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
811 	if (skb_shinfo(skb)->gso_size)
812 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
813 			  sizeof(struct cpl_tx_pkt_lso_core) +
814 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
815 	else
816 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
817 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
818 	return flits;
819 }
820 
821 /**
822  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
823  *	@skb: the packet
824  *
825  *	Returns the number of Tx descriptors needed for the given Ethernet
826  *	packet, including the needed WR and CPL headers.
827  */
828 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
829 {
830 	return flits_to_desc(calc_tx_flits(skb));
831 }
832 
833 /**
834  *	write_sgl - populate a scatter/gather list for a packet
835  *	@skb: the packet
836  *	@q: the Tx queue we are writing into
837  *	@sgl: starting location for writing the SGL
838  *	@end: points right after the end of the SGL
839  *	@start: start offset into skb main-body data to include in the SGL
840  *	@addr: the list of bus addresses for the SGL elements
841  *
842  *	Generates a gather list for the buffers that make up a packet.
843  *	The caller must provide adequate space for the SGL that will be written.
844  *	The SGL includes all of the packet's page fragments and the data in its
845  *	main body except for the first @start bytes.  @sgl must be 16-byte
846  *	aligned and within a Tx descriptor with available space.  @end points
847  *	right after the end of the SGL but does not account for any potential
848  *	wrap around, i.e., @end > @sgl.
849  */
850 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
851 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
852 		      const dma_addr_t *addr)
853 {
854 	unsigned int i, len;
855 	struct ulptx_sge_pair *to;
856 	const struct skb_shared_info *si = skb_shinfo(skb);
857 	unsigned int nfrags = si->nr_frags;
858 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
859 
860 	len = skb_headlen(skb) - start;
861 	if (likely(len)) {
862 		sgl->len0 = htonl(len);
863 		sgl->addr0 = cpu_to_be64(addr[0] + start);
864 		nfrags++;
865 	} else {
866 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
867 		sgl->addr0 = cpu_to_be64(addr[1]);
868 	}
869 
870 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
871 			      ULPTX_NSGE_V(nfrags));
872 	if (likely(--nfrags == 0))
873 		return;
874 	/*
875 	 * Most of the complexity below deals with the possibility we hit the
876 	 * end of the queue in the middle of writing the SGL.  For this case
877 	 * only we create the SGL in a temporary buffer and then copy it.
878 	 */
879 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
880 
881 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
882 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
883 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
884 		to->addr[0] = cpu_to_be64(addr[i]);
885 		to->addr[1] = cpu_to_be64(addr[++i]);
886 	}
887 	if (nfrags) {
888 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
889 		to->len[1] = cpu_to_be32(0);
890 		to->addr[0] = cpu_to_be64(addr[i + 1]);
891 	}
892 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
893 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
894 
895 		if (likely(part0))
896 			memcpy(sgl->sge, buf, part0);
897 		part1 = (u8 *)end - (u8 *)q->stat;
898 		memcpy(q->desc, (u8 *)buf + part0, part1);
899 		end = (void *)q->desc + part1;
900 	}
901 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
902 		*end = 0;
903 }
904 
905 /* This function copies 64 byte coalesced work request to
906  * memory mapped BAR2 space. For coalesced WR SGE fetches
907  * data from the FIFO instead of from Host.
908  */
909 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
910 {
911 	int count = 8;
912 
913 	while (count) {
914 		writeq(*src, dst);
915 		src++;
916 		dst++;
917 		count--;
918 	}
919 }
920 
921 /**
922  *	ring_tx_db - check and potentially ring a Tx queue's doorbell
923  *	@adap: the adapter
924  *	@q: the Tx queue
925  *	@n: number of new descriptors to give to HW
926  *
927  *	Ring the doorbel for a Tx queue.
928  */
929 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
930 {
931 	/* Make sure that all writes to the TX Descriptors are committed
932 	 * before we tell the hardware about them.
933 	 */
934 	wmb();
935 
936 	/* If we don't have access to the new User Doorbell (T5+), use the old
937 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
938 	 */
939 	if (unlikely(q->bar2_addr == NULL)) {
940 		u32 val = PIDX_V(n);
941 		unsigned long flags;
942 
943 		/* For T4 we need to participate in the Doorbell Recovery
944 		 * mechanism.
945 		 */
946 		spin_lock_irqsave(&q->db_lock, flags);
947 		if (!q->db_disabled)
948 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
949 				     QID_V(q->cntxt_id) | val);
950 		else
951 			q->db_pidx_inc += n;
952 		q->db_pidx = q->pidx;
953 		spin_unlock_irqrestore(&q->db_lock, flags);
954 	} else {
955 		u32 val = PIDX_T5_V(n);
956 
957 		/* T4 and later chips share the same PIDX field offset within
958 		 * the doorbell, but T5 and later shrank the field in order to
959 		 * gain a bit for Doorbell Priority.  The field was absurdly
960 		 * large in the first place (14 bits) so we just use the T5
961 		 * and later limits and warn if a Queue ID is too large.
962 		 */
963 		WARN_ON(val & DBPRIO_F);
964 
965 		/* If we're only writing a single TX Descriptor and we can use
966 		 * Inferred QID registers, we can use the Write Combining
967 		 * Gather Buffer; otherwise we use the simple doorbell.
968 		 */
969 		if (n == 1 && q->bar2_qid == 0) {
970 			int index = (q->pidx
971 				     ? (q->pidx - 1)
972 				     : (q->size - 1));
973 			u64 *wr = (u64 *)&q->desc[index];
974 
975 			cxgb_pio_copy((u64 __iomem *)
976 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
977 				      wr);
978 		} else {
979 			writel(val | QID_V(q->bar2_qid),
980 			       q->bar2_addr + SGE_UDB_KDOORBELL);
981 		}
982 
983 		/* This Write Memory Barrier will force the write to the User
984 		 * Doorbell area to be flushed.  This is needed to prevent
985 		 * writes on different CPUs for the same queue from hitting
986 		 * the adapter out of order.  This is required when some Work
987 		 * Requests take the Write Combine Gather Buffer path (user
988 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
989 		 * take the traditional path where we simply increment the
990 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
991 		 * hardware DMA read the actual Work Request.
992 		 */
993 		wmb();
994 	}
995 }
996 
997 /**
998  *	inline_tx_skb - inline a packet's data into Tx descriptors
999  *	@skb: the packet
1000  *	@q: the Tx queue where the packet will be inlined
1001  *	@pos: starting position in the Tx queue where to inline the packet
1002  *
1003  *	Inline a packet's contents directly into Tx descriptors, starting at
1004  *	the given position within the Tx DMA ring.
1005  *	Most of the complexity of this operation is dealing with wrap arounds
1006  *	in the middle of the packet we want to inline.
1007  */
1008 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
1009 			  void *pos)
1010 {
1011 	u64 *p;
1012 	int left = (void *)q->stat - pos;
1013 
1014 	if (likely(skb->len <= left)) {
1015 		if (likely(!skb->data_len))
1016 			skb_copy_from_linear_data(skb, pos, skb->len);
1017 		else
1018 			skb_copy_bits(skb, 0, pos, skb->len);
1019 		pos += skb->len;
1020 	} else {
1021 		skb_copy_bits(skb, 0, pos, left);
1022 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1023 		pos = (void *)q->desc + (skb->len - left);
1024 	}
1025 
1026 	/* 0-pad to multiple of 16 */
1027 	p = PTR_ALIGN(pos, 8);
1028 	if ((uintptr_t)p & 8)
1029 		*p = 0;
1030 }
1031 
1032 /*
1033  * Figure out what HW csum a packet wants and return the appropriate control
1034  * bits.
1035  */
1036 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1037 {
1038 	int csum_type;
1039 	const struct iphdr *iph = ip_hdr(skb);
1040 
1041 	if (iph->version == 4) {
1042 		if (iph->protocol == IPPROTO_TCP)
1043 			csum_type = TX_CSUM_TCPIP;
1044 		else if (iph->protocol == IPPROTO_UDP)
1045 			csum_type = TX_CSUM_UDPIP;
1046 		else {
1047 nocsum:			/*
1048 			 * unknown protocol, disable HW csum
1049 			 * and hope a bad packet is detected
1050 			 */
1051 			return TXPKT_L4CSUM_DIS_F;
1052 		}
1053 	} else {
1054 		/*
1055 		 * this doesn't work with extension headers
1056 		 */
1057 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1058 
1059 		if (ip6h->nexthdr == IPPROTO_TCP)
1060 			csum_type = TX_CSUM_TCPIP6;
1061 		else if (ip6h->nexthdr == IPPROTO_UDP)
1062 			csum_type = TX_CSUM_UDPIP6;
1063 		else
1064 			goto nocsum;
1065 	}
1066 
1067 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1068 		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1069 		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1070 
1071 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1072 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1073 		else
1074 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1075 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1076 	} else {
1077 		int start = skb_transport_offset(skb);
1078 
1079 		return TXPKT_CSUM_TYPE_V(csum_type) |
1080 			TXPKT_CSUM_START_V(start) |
1081 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1082 	}
1083 }
1084 
1085 static void eth_txq_stop(struct sge_eth_txq *q)
1086 {
1087 	netif_tx_stop_queue(q->txq);
1088 	q->q.stops++;
1089 }
1090 
1091 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1092 {
1093 	q->in_use += n;
1094 	q->pidx += n;
1095 	if (q->pidx >= q->size)
1096 		q->pidx -= q->size;
1097 }
1098 
1099 #ifdef CONFIG_CHELSIO_T4_FCOE
1100 static inline int
1101 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1102 		  const struct port_info *pi, u64 *cntrl)
1103 {
1104 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1105 
1106 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1107 		return 0;
1108 
1109 	if (skb->protocol != htons(ETH_P_FCOE))
1110 		return 0;
1111 
1112 	skb_reset_mac_header(skb);
1113 	skb->mac_len = sizeof(struct ethhdr);
1114 
1115 	skb_set_network_header(skb, skb->mac_len);
1116 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1117 
1118 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1119 		return -ENOTSUPP;
1120 
1121 	/* FC CRC offload */
1122 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1123 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1124 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1125 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1126 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1127 	return 0;
1128 }
1129 #endif /* CONFIG_CHELSIO_T4_FCOE */
1130 
1131 /**
1132  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
1133  *	@skb: the packet
1134  *	@dev: the egress net device
1135  *
1136  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1137  */
1138 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1139 {
1140 	u32 wr_mid, ctrl0;
1141 	u64 cntrl, *end;
1142 	int qidx, credits;
1143 	unsigned int flits, ndesc;
1144 	struct adapter *adap;
1145 	struct sge_eth_txq *q;
1146 	const struct port_info *pi;
1147 	struct fw_eth_tx_pkt_wr *wr;
1148 	struct cpl_tx_pkt_core *cpl;
1149 	const struct skb_shared_info *ssi;
1150 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1151 	bool immediate = false;
1152 	int len, max_pkt_len;
1153 #ifdef CONFIG_CHELSIO_T4_FCOE
1154 	int err;
1155 #endif /* CONFIG_CHELSIO_T4_FCOE */
1156 
1157 	/*
1158 	 * The chip min packet length is 10 octets but play safe and reject
1159 	 * anything shorter than an Ethernet header.
1160 	 */
1161 	if (unlikely(skb->len < ETH_HLEN)) {
1162 out_free:	dev_kfree_skb_any(skb);
1163 		return NETDEV_TX_OK;
1164 	}
1165 
1166 	/* Discard the packet if the length is greater than mtu */
1167 	max_pkt_len = ETH_HLEN + dev->mtu;
1168 	if (skb_vlan_tag_present(skb))
1169 		max_pkt_len += VLAN_HLEN;
1170 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1171 		goto out_free;
1172 
1173 	pi = netdev_priv(dev);
1174 	adap = pi->adapter;
1175 	qidx = skb_get_queue_mapping(skb);
1176 	q = &adap->sge.ethtxq[qidx + pi->first_qset];
1177 
1178 	reclaim_completed_tx(adap, &q->q, true);
1179 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1180 
1181 #ifdef CONFIG_CHELSIO_T4_FCOE
1182 	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1183 	if (unlikely(err == -ENOTSUPP))
1184 		goto out_free;
1185 #endif /* CONFIG_CHELSIO_T4_FCOE */
1186 
1187 	flits = calc_tx_flits(skb);
1188 	ndesc = flits_to_desc(flits);
1189 	credits = txq_avail(&q->q) - ndesc;
1190 
1191 	if (unlikely(credits < 0)) {
1192 		eth_txq_stop(q);
1193 		dev_err(adap->pdev_dev,
1194 			"%s: Tx ring %u full while queue awake!\n",
1195 			dev->name, qidx);
1196 		return NETDEV_TX_BUSY;
1197 	}
1198 
1199 	if (is_eth_imm(skb))
1200 		immediate = true;
1201 
1202 	if (!immediate &&
1203 	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1204 		q->mapping_err++;
1205 		goto out_free;
1206 	}
1207 
1208 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1209 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1210 		eth_txq_stop(q);
1211 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1212 	}
1213 
1214 	wr = (void *)&q->q.desc[q->q.pidx];
1215 	wr->equiq_to_len16 = htonl(wr_mid);
1216 	wr->r3 = cpu_to_be64(0);
1217 	end = (u64 *)wr + flits;
1218 
1219 	len = immediate ? skb->len : 0;
1220 	ssi = skb_shinfo(skb);
1221 	if (ssi->gso_size) {
1222 		struct cpl_tx_pkt_lso *lso = (void *)wr;
1223 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1224 		int l3hdr_len = skb_network_header_len(skb);
1225 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1226 
1227 		len += sizeof(*lso);
1228 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1229 				       FW_WR_IMMDLEN_V(len));
1230 		lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1231 					LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1232 					LSO_IPV6_V(v6) |
1233 					LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1234 					LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1235 					LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1236 		lso->c.ipid_ofst = htons(0);
1237 		lso->c.mss = htons(ssi->gso_size);
1238 		lso->c.seqno_offset = htonl(0);
1239 		if (is_t4(adap->params.chip))
1240 			lso->c.len = htonl(skb->len);
1241 		else
1242 			lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1243 		cpl = (void *)(lso + 1);
1244 
1245 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1246 			cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1247 		else
1248 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1249 
1250 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1251 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1252 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1253 		q->tso++;
1254 		q->tx_cso += ssi->gso_segs;
1255 	} else {
1256 		len += sizeof(*cpl);
1257 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1258 				       FW_WR_IMMDLEN_V(len));
1259 		cpl = (void *)(wr + 1);
1260 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1261 			cntrl = hwcsum(adap->params.chip, skb) |
1262 				TXPKT_IPCSUM_DIS_F;
1263 			q->tx_cso++;
1264 		}
1265 	}
1266 
1267 	if (skb_vlan_tag_present(skb)) {
1268 		q->vlan_ins++;
1269 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1270 #ifdef CONFIG_CHELSIO_T4_FCOE
1271 		if (skb->protocol == htons(ETH_P_FCOE))
1272 			cntrl |= TXPKT_VLAN_V(
1273 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1274 #endif /* CONFIG_CHELSIO_T4_FCOE */
1275 	}
1276 
1277 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1278 		TXPKT_PF_V(adap->pf);
1279 #ifdef CONFIG_CHELSIO_T4_DCB
1280 	if (is_t4(adap->params.chip))
1281 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1282 	else
1283 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1284 #endif
1285 	cpl->ctrl0 = htonl(ctrl0);
1286 	cpl->pack = htons(0);
1287 	cpl->len = htons(skb->len);
1288 	cpl->ctrl1 = cpu_to_be64(cntrl);
1289 
1290 	if (immediate) {
1291 		inline_tx_skb(skb, &q->q, cpl + 1);
1292 		dev_consume_skb_any(skb);
1293 	} else {
1294 		int last_desc;
1295 
1296 		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1297 			  addr);
1298 		skb_orphan(skb);
1299 
1300 		last_desc = q->q.pidx + ndesc - 1;
1301 		if (last_desc >= q->q.size)
1302 			last_desc -= q->q.size;
1303 		q->q.sdesc[last_desc].skb = skb;
1304 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1305 	}
1306 
1307 	txq_advance(&q->q, ndesc);
1308 
1309 	ring_tx_db(adap, &q->q, ndesc);
1310 	return NETDEV_TX_OK;
1311 }
1312 
1313 /**
1314  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1315  *	@q: the SGE control Tx queue
1316  *
1317  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1318  *	that send only immediate data (presently just the control queues) and
1319  *	thus do not have any sk_buffs to release.
1320  */
1321 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1322 {
1323 	int hw_cidx = ntohs(q->stat->cidx);
1324 	int reclaim = hw_cidx - q->cidx;
1325 
1326 	if (reclaim < 0)
1327 		reclaim += q->size;
1328 
1329 	q->in_use -= reclaim;
1330 	q->cidx = hw_cidx;
1331 }
1332 
1333 /**
1334  *	is_imm - check whether a packet can be sent as immediate data
1335  *	@skb: the packet
1336  *
1337  *	Returns true if a packet can be sent as a WR with immediate data.
1338  */
1339 static inline int is_imm(const struct sk_buff *skb)
1340 {
1341 	return skb->len <= MAX_CTRL_WR_LEN;
1342 }
1343 
1344 /**
1345  *	ctrlq_check_stop - check if a control queue is full and should stop
1346  *	@q: the queue
1347  *	@wr: most recent WR written to the queue
1348  *
1349  *	Check if a control queue has become full and should be stopped.
1350  *	We clean up control queue descriptors very lazily, only when we are out.
1351  *	If the queue is still full after reclaiming any completed descriptors
1352  *	we suspend it and have the last WR wake it up.
1353  */
1354 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1355 {
1356 	reclaim_completed_tx_imm(&q->q);
1357 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1358 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1359 		q->q.stops++;
1360 		q->full = 1;
1361 	}
1362 }
1363 
1364 /**
1365  *	ctrl_xmit - send a packet through an SGE control Tx queue
1366  *	@q: the control queue
1367  *	@skb: the packet
1368  *
1369  *	Send a packet through an SGE control Tx queue.  Packets sent through
1370  *	a control queue must fit entirely as immediate data.
1371  */
1372 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1373 {
1374 	unsigned int ndesc;
1375 	struct fw_wr_hdr *wr;
1376 
1377 	if (unlikely(!is_imm(skb))) {
1378 		WARN_ON(1);
1379 		dev_kfree_skb(skb);
1380 		return NET_XMIT_DROP;
1381 	}
1382 
1383 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1384 	spin_lock(&q->sendq.lock);
1385 
1386 	if (unlikely(q->full)) {
1387 		skb->priority = ndesc;                  /* save for restart */
1388 		__skb_queue_tail(&q->sendq, skb);
1389 		spin_unlock(&q->sendq.lock);
1390 		return NET_XMIT_CN;
1391 	}
1392 
1393 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1394 	inline_tx_skb(skb, &q->q, wr);
1395 
1396 	txq_advance(&q->q, ndesc);
1397 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1398 		ctrlq_check_stop(q, wr);
1399 
1400 	ring_tx_db(q->adap, &q->q, ndesc);
1401 	spin_unlock(&q->sendq.lock);
1402 
1403 	kfree_skb(skb);
1404 	return NET_XMIT_SUCCESS;
1405 }
1406 
1407 /**
1408  *	restart_ctrlq - restart a suspended control queue
1409  *	@data: the control queue to restart
1410  *
1411  *	Resumes transmission on a suspended Tx control queue.
1412  */
1413 static void restart_ctrlq(unsigned long data)
1414 {
1415 	struct sk_buff *skb;
1416 	unsigned int written = 0;
1417 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1418 
1419 	spin_lock(&q->sendq.lock);
1420 	reclaim_completed_tx_imm(&q->q);
1421 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1422 
1423 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1424 		struct fw_wr_hdr *wr;
1425 		unsigned int ndesc = skb->priority;     /* previously saved */
1426 
1427 		written += ndesc;
1428 		/* Write descriptors and free skbs outside the lock to limit
1429 		 * wait times.  q->full is still set so new skbs will be queued.
1430 		 */
1431 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1432 		txq_advance(&q->q, ndesc);
1433 		spin_unlock(&q->sendq.lock);
1434 
1435 		inline_tx_skb(skb, &q->q, wr);
1436 		kfree_skb(skb);
1437 
1438 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1439 			unsigned long old = q->q.stops;
1440 
1441 			ctrlq_check_stop(q, wr);
1442 			if (q->q.stops != old) {          /* suspended anew */
1443 				spin_lock(&q->sendq.lock);
1444 				goto ringdb;
1445 			}
1446 		}
1447 		if (written > 16) {
1448 			ring_tx_db(q->adap, &q->q, written);
1449 			written = 0;
1450 		}
1451 		spin_lock(&q->sendq.lock);
1452 	}
1453 	q->full = 0;
1454 ringdb: if (written)
1455 		ring_tx_db(q->adap, &q->q, written);
1456 	spin_unlock(&q->sendq.lock);
1457 }
1458 
1459 /**
1460  *	t4_mgmt_tx - send a management message
1461  *	@adap: the adapter
1462  *	@skb: the packet containing the management message
1463  *
1464  *	Send a management message through control queue 0.
1465  */
1466 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1467 {
1468 	int ret;
1469 
1470 	local_bh_disable();
1471 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1472 	local_bh_enable();
1473 	return ret;
1474 }
1475 
1476 /**
1477  *	is_ofld_imm - check whether a packet can be sent as immediate data
1478  *	@skb: the packet
1479  *
1480  *	Returns true if a packet can be sent as an offload WR with immediate
1481  *	data.  We currently use the same limit as for Ethernet packets.
1482  */
1483 static inline int is_ofld_imm(const struct sk_buff *skb)
1484 {
1485 	return skb->len <= MAX_IMM_TX_PKT_LEN;
1486 }
1487 
1488 /**
1489  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1490  *	@skb: the packet
1491  *
1492  *	Returns the number of flits needed for the given offload packet.
1493  *	These packets are already fully constructed and no additional headers
1494  *	will be added.
1495  */
1496 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1497 {
1498 	unsigned int flits, cnt;
1499 
1500 	if (is_ofld_imm(skb))
1501 		return DIV_ROUND_UP(skb->len, 8);
1502 
1503 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1504 	cnt = skb_shinfo(skb)->nr_frags;
1505 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1506 		cnt++;
1507 	return flits + sgl_len(cnt);
1508 }
1509 
1510 /**
1511  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1512  *	@adap: the adapter
1513  *	@q: the queue to stop
1514  *
1515  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1516  *	inability to map packets.  A periodic timer attempts to restart
1517  *	queues so marked.
1518  */
1519 static void txq_stop_maperr(struct sge_ofld_txq *q)
1520 {
1521 	q->mapping_err++;
1522 	q->q.stops++;
1523 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1524 		q->adap->sge.txq_maperr);
1525 }
1526 
1527 /**
1528  *	ofldtxq_stop - stop an offload Tx queue that has become full
1529  *	@q: the queue to stop
1530  *	@skb: the packet causing the queue to become full
1531  *
1532  *	Stops an offload Tx queue that has become full and modifies the packet
1533  *	being written to request a wakeup.
1534  */
1535 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1536 {
1537 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1538 
1539 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1540 	q->q.stops++;
1541 	q->full = 1;
1542 }
1543 
1544 /**
1545  *	service_ofldq - restart a suspended offload queue
1546  *	@q: the offload queue
1547  *
1548  *	Services an offload Tx queue by moving packets from its packet queue
1549  *	to the HW Tx ring.  The function starts and ends with the queue locked.
1550  */
1551 static void service_ofldq(struct sge_ofld_txq *q)
1552 {
1553 	u64 *pos;
1554 	int credits;
1555 	struct sk_buff *skb;
1556 	unsigned int written = 0;
1557 	unsigned int flits, ndesc;
1558 
1559 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1560 		/*
1561 		 * We drop the lock but leave skb on sendq, thus retaining
1562 		 * exclusive access to the state of the queue.
1563 		 */
1564 		spin_unlock(&q->sendq.lock);
1565 
1566 		reclaim_completed_tx(q->adap, &q->q, false);
1567 
1568 		flits = skb->priority;                /* previously saved */
1569 		ndesc = flits_to_desc(flits);
1570 		credits = txq_avail(&q->q) - ndesc;
1571 		BUG_ON(credits < 0);
1572 		if (unlikely(credits < TXQ_STOP_THRES))
1573 			ofldtxq_stop(q, skb);
1574 
1575 		pos = (u64 *)&q->q.desc[q->q.pidx];
1576 		if (is_ofld_imm(skb))
1577 			inline_tx_skb(skb, &q->q, pos);
1578 		else if (map_skb(q->adap->pdev_dev, skb,
1579 				 (dma_addr_t *)skb->head)) {
1580 			txq_stop_maperr(q);
1581 			spin_lock(&q->sendq.lock);
1582 			break;
1583 		} else {
1584 			int last_desc, hdr_len = skb_transport_offset(skb);
1585 
1586 			memcpy(pos, skb->data, hdr_len);
1587 			write_sgl(skb, &q->q, (void *)pos + hdr_len,
1588 				  pos + flits, hdr_len,
1589 				  (dma_addr_t *)skb->head);
1590 #ifdef CONFIG_NEED_DMA_MAP_STATE
1591 			skb->dev = q->adap->port[0];
1592 			skb->destructor = deferred_unmap_destructor;
1593 #endif
1594 			last_desc = q->q.pidx + ndesc - 1;
1595 			if (last_desc >= q->q.size)
1596 				last_desc -= q->q.size;
1597 			q->q.sdesc[last_desc].skb = skb;
1598 		}
1599 
1600 		txq_advance(&q->q, ndesc);
1601 		written += ndesc;
1602 		if (unlikely(written > 32)) {
1603 			ring_tx_db(q->adap, &q->q, written);
1604 			written = 0;
1605 		}
1606 
1607 		spin_lock(&q->sendq.lock);
1608 		__skb_unlink(skb, &q->sendq);
1609 		if (is_ofld_imm(skb))
1610 			kfree_skb(skb);
1611 	}
1612 	if (likely(written))
1613 		ring_tx_db(q->adap, &q->q, written);
1614 }
1615 
1616 /**
1617  *	ofld_xmit - send a packet through an offload queue
1618  *	@q: the Tx offload queue
1619  *	@skb: the packet
1620  *
1621  *	Send an offload packet through an SGE offload queue.
1622  */
1623 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1624 {
1625 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1626 	spin_lock(&q->sendq.lock);
1627 	__skb_queue_tail(&q->sendq, skb);
1628 	if (q->sendq.qlen == 1)
1629 		service_ofldq(q);
1630 	spin_unlock(&q->sendq.lock);
1631 	return NET_XMIT_SUCCESS;
1632 }
1633 
1634 /**
1635  *	restart_ofldq - restart a suspended offload queue
1636  *	@data: the offload queue to restart
1637  *
1638  *	Resumes transmission on a suspended Tx offload queue.
1639  */
1640 static void restart_ofldq(unsigned long data)
1641 {
1642 	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1643 
1644 	spin_lock(&q->sendq.lock);
1645 	q->full = 0;            /* the queue actually is completely empty now */
1646 	service_ofldq(q);
1647 	spin_unlock(&q->sendq.lock);
1648 }
1649 
1650 /**
1651  *	skb_txq - return the Tx queue an offload packet should use
1652  *	@skb: the packet
1653  *
1654  *	Returns the Tx queue an offload packet should use as indicated by bits
1655  *	1-15 in the packet's queue_mapping.
1656  */
1657 static inline unsigned int skb_txq(const struct sk_buff *skb)
1658 {
1659 	return skb->queue_mapping >> 1;
1660 }
1661 
1662 /**
1663  *	is_ctrl_pkt - return whether an offload packet is a control packet
1664  *	@skb: the packet
1665  *
1666  *	Returns whether an offload packet should use an OFLD or a CTRL
1667  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1668  */
1669 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1670 {
1671 	return skb->queue_mapping & 1;
1672 }
1673 
1674 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1675 {
1676 	unsigned int idx = skb_txq(skb);
1677 
1678 	if (unlikely(is_ctrl_pkt(skb))) {
1679 		/* Single ctrl queue is a requirement for LE workaround path */
1680 		if (adap->tids.nsftids)
1681 			idx = 0;
1682 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1683 	}
1684 	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1685 }
1686 
1687 /**
1688  *	t4_ofld_send - send an offload packet
1689  *	@adap: the adapter
1690  *	@skb: the packet
1691  *
1692  *	Sends an offload packet.  We use the packet queue_mapping to select the
1693  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1694  *	should be sent as regular or control, bits 1-15 select the queue.
1695  */
1696 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1697 {
1698 	int ret;
1699 
1700 	local_bh_disable();
1701 	ret = ofld_send(adap, skb);
1702 	local_bh_enable();
1703 	return ret;
1704 }
1705 
1706 /**
1707  *	cxgb4_ofld_send - send an offload packet
1708  *	@dev: the net device
1709  *	@skb: the packet
1710  *
1711  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
1712  *	intended for ULDs.
1713  */
1714 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1715 {
1716 	return t4_ofld_send(netdev2adap(dev), skb);
1717 }
1718 EXPORT_SYMBOL(cxgb4_ofld_send);
1719 
1720 static inline void copy_frags(struct sk_buff *skb,
1721 			      const struct pkt_gl *gl, unsigned int offset)
1722 {
1723 	int i;
1724 
1725 	/* usually there's just one frag */
1726 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1727 			     gl->frags[0].offset + offset,
1728 			     gl->frags[0].size - offset);
1729 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1730 	for (i = 1; i < gl->nfrags; i++)
1731 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1732 				     gl->frags[i].offset,
1733 				     gl->frags[i].size);
1734 
1735 	/* get a reference to the last page, we don't own it */
1736 	get_page(gl->frags[gl->nfrags - 1].page);
1737 }
1738 
1739 /**
1740  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1741  *	@gl: the gather list
1742  *	@skb_len: size of sk_buff main body if it carries fragments
1743  *	@pull_len: amount of data to move to the sk_buff's main body
1744  *
1745  *	Builds an sk_buff from the given packet gather list.  Returns the
1746  *	sk_buff or %NULL if sk_buff allocation failed.
1747  */
1748 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1749 				   unsigned int skb_len, unsigned int pull_len)
1750 {
1751 	struct sk_buff *skb;
1752 
1753 	/*
1754 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1755 	 * size, which is expected since buffers are at least PAGE_SIZEd.
1756 	 * In this case packets up to RX_COPY_THRES have only one fragment.
1757 	 */
1758 	if (gl->tot_len <= RX_COPY_THRES) {
1759 		skb = dev_alloc_skb(gl->tot_len);
1760 		if (unlikely(!skb))
1761 			goto out;
1762 		__skb_put(skb, gl->tot_len);
1763 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1764 	} else {
1765 		skb = dev_alloc_skb(skb_len);
1766 		if (unlikely(!skb))
1767 			goto out;
1768 		__skb_put(skb, pull_len);
1769 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1770 
1771 		copy_frags(skb, gl, pull_len);
1772 		skb->len = gl->tot_len;
1773 		skb->data_len = skb->len - pull_len;
1774 		skb->truesize += skb->data_len;
1775 	}
1776 out:	return skb;
1777 }
1778 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1779 
1780 /**
1781  *	t4_pktgl_free - free a packet gather list
1782  *	@gl: the gather list
1783  *
1784  *	Releases the pages of a packet gather list.  We do not own the last
1785  *	page on the list and do not free it.
1786  */
1787 static void t4_pktgl_free(const struct pkt_gl *gl)
1788 {
1789 	int n;
1790 	const struct page_frag *p;
1791 
1792 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1793 		put_page(p->page);
1794 }
1795 
1796 /*
1797  * Process an MPS trace packet.  Give it an unused protocol number so it won't
1798  * be delivered to anyone and send it to the stack for capture.
1799  */
1800 static noinline int handle_trace_pkt(struct adapter *adap,
1801 				     const struct pkt_gl *gl)
1802 {
1803 	struct sk_buff *skb;
1804 
1805 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1806 	if (unlikely(!skb)) {
1807 		t4_pktgl_free(gl);
1808 		return 0;
1809 	}
1810 
1811 	if (is_t4(adap->params.chip))
1812 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
1813 	else
1814 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1815 
1816 	skb_reset_mac_header(skb);
1817 	skb->protocol = htons(0xffff);
1818 	skb->dev = adap->port[0];
1819 	netif_receive_skb(skb);
1820 	return 0;
1821 }
1822 
1823 /**
1824  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
1825  * @adap: the adapter
1826  * @hwtstamps: time stamp structure to update
1827  * @sgetstamp: 60bit iqe timestamp
1828  *
1829  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
1830  * which is in Core Clock ticks into ktime_t and assign it
1831  **/
1832 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
1833 				     struct skb_shared_hwtstamps *hwtstamps,
1834 				     u64 sgetstamp)
1835 {
1836 	u64 ns;
1837 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
1838 
1839 	ns = div_u64(tmp, adap->params.vpd.cclk);
1840 
1841 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1842 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1843 }
1844 
1845 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1846 		   const struct cpl_rx_pkt *pkt)
1847 {
1848 	struct adapter *adapter = rxq->rspq.adap;
1849 	struct sge *s = &adapter->sge;
1850 	struct port_info *pi;
1851 	int ret;
1852 	struct sk_buff *skb;
1853 
1854 	skb = napi_get_frags(&rxq->rspq.napi);
1855 	if (unlikely(!skb)) {
1856 		t4_pktgl_free(gl);
1857 		rxq->stats.rx_drops++;
1858 		return;
1859 	}
1860 
1861 	copy_frags(skb, gl, s->pktshift);
1862 	skb->len = gl->tot_len - s->pktshift;
1863 	skb->data_len = skb->len;
1864 	skb->truesize += skb->data_len;
1865 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1866 	skb_record_rx_queue(skb, rxq->rspq.idx);
1867 	pi = netdev_priv(skb->dev);
1868 	if (pi->rxtstamp)
1869 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
1870 					 gl->sgetstamp);
1871 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1872 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1873 			     PKT_HASH_TYPE_L3);
1874 
1875 	if (unlikely(pkt->vlan_ex)) {
1876 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1877 		rxq->stats.vlan_ex++;
1878 	}
1879 	ret = napi_gro_frags(&rxq->rspq.napi);
1880 	if (ret == GRO_HELD)
1881 		rxq->stats.lro_pkts++;
1882 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1883 		rxq->stats.lro_merged++;
1884 	rxq->stats.pkts++;
1885 	rxq->stats.rx_cso++;
1886 }
1887 
1888 /**
1889  *	t4_ethrx_handler - process an ingress ethernet packet
1890  *	@q: the response queue that received the packet
1891  *	@rsp: the response queue descriptor holding the RX_PKT message
1892  *	@si: the gather list of packet fragments
1893  *
1894  *	Process an ingress ethernet packet and deliver it to the stack.
1895  */
1896 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1897 		     const struct pkt_gl *si)
1898 {
1899 	bool csum_ok;
1900 	struct sk_buff *skb;
1901 	const struct cpl_rx_pkt *pkt;
1902 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1903 	struct sge *s = &q->adap->sge;
1904 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
1905 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1906 	struct port_info *pi;
1907 
1908 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1909 		return handle_trace_pkt(q->adap, si);
1910 
1911 	pkt = (const struct cpl_rx_pkt *)rsp;
1912 	csum_ok = pkt->csum_calc && !pkt->err_vec &&
1913 		  (q->netdev->features & NETIF_F_RXCSUM);
1914 	if ((pkt->l2info & htonl(RXF_TCP_F)) &&
1915 	    !(cxgb_poll_busy_polling(q)) &&
1916 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1917 		do_gro(rxq, si, pkt);
1918 		return 0;
1919 	}
1920 
1921 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1922 	if (unlikely(!skb)) {
1923 		t4_pktgl_free(si);
1924 		rxq->stats.rx_drops++;
1925 		return 0;
1926 	}
1927 
1928 	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1929 	skb->protocol = eth_type_trans(skb, q->netdev);
1930 	skb_record_rx_queue(skb, q->idx);
1931 	if (skb->dev->features & NETIF_F_RXHASH)
1932 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1933 			     PKT_HASH_TYPE_L3);
1934 
1935 	rxq->stats.pkts++;
1936 
1937 	pi = netdev_priv(skb->dev);
1938 	if (pi->rxtstamp)
1939 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
1940 					 si->sgetstamp);
1941 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
1942 		if (!pkt->ip_frag) {
1943 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1944 			rxq->stats.rx_cso++;
1945 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
1946 			__sum16 c = (__force __sum16)pkt->csum;
1947 			skb->csum = csum_unfold(c);
1948 			skb->ip_summed = CHECKSUM_COMPLETE;
1949 			rxq->stats.rx_cso++;
1950 		}
1951 	} else {
1952 		skb_checksum_none_assert(skb);
1953 #ifdef CONFIG_CHELSIO_T4_FCOE
1954 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
1955 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
1956 
1957 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
1958 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
1959 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
1960 				if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
1961 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1962 			}
1963 		}
1964 
1965 #undef CPL_RX_PKT_FLAGS
1966 #endif /* CONFIG_CHELSIO_T4_FCOE */
1967 	}
1968 
1969 	if (unlikely(pkt->vlan_ex)) {
1970 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1971 		rxq->stats.vlan_ex++;
1972 	}
1973 	skb_mark_napi_id(skb, &q->napi);
1974 	netif_receive_skb(skb);
1975 	return 0;
1976 }
1977 
1978 /**
1979  *	restore_rx_bufs - put back a packet's Rx buffers
1980  *	@si: the packet gather list
1981  *	@q: the SGE free list
1982  *	@frags: number of FL buffers to restore
1983  *
1984  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
1985  *	have already been unmapped and are left unmapped, we mark them so to
1986  *	prevent further unmapping attempts.
1987  *
1988  *	This function undoes a series of @unmap_rx_buf calls when we find out
1989  *	that the current packet can't be processed right away afterall and we
1990  *	need to come back to it later.  This is a very rare event and there's
1991  *	no effort to make this particularly efficient.
1992  */
1993 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1994 			    int frags)
1995 {
1996 	struct rx_sw_desc *d;
1997 
1998 	while (frags--) {
1999 		if (q->cidx == 0)
2000 			q->cidx = q->size - 1;
2001 		else
2002 			q->cidx--;
2003 		d = &q->sdesc[q->cidx];
2004 		d->page = si->frags[frags].page;
2005 		d->dma_addr |= RX_UNMAPPED_BUF;
2006 		q->avail++;
2007 	}
2008 }
2009 
2010 /**
2011  *	is_new_response - check if a response is newly written
2012  *	@r: the response descriptor
2013  *	@q: the response queue
2014  *
2015  *	Returns true if a response descriptor contains a yet unprocessed
2016  *	response.
2017  */
2018 static inline bool is_new_response(const struct rsp_ctrl *r,
2019 				   const struct sge_rspq *q)
2020 {
2021 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
2022 }
2023 
2024 /**
2025  *	rspq_next - advance to the next entry in a response queue
2026  *	@q: the queue
2027  *
2028  *	Updates the state of a response queue to advance it to the next entry.
2029  */
2030 static inline void rspq_next(struct sge_rspq *q)
2031 {
2032 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2033 	if (unlikely(++q->cidx == q->size)) {
2034 		q->cidx = 0;
2035 		q->gen ^= 1;
2036 		q->cur_desc = q->desc;
2037 	}
2038 }
2039 
2040 /**
2041  *	process_responses - process responses from an SGE response queue
2042  *	@q: the ingress queue to process
2043  *	@budget: how many responses can be processed in this round
2044  *
2045  *	Process responses from an SGE response queue up to the supplied budget.
2046  *	Responses include received packets as well as control messages from FW
2047  *	or HW.
2048  *
2049  *	Additionally choose the interrupt holdoff time for the next interrupt
2050  *	on this queue.  If the system is under memory shortage use a fairly
2051  *	long delay to help recovery.
2052  */
2053 static int process_responses(struct sge_rspq *q, int budget)
2054 {
2055 	int ret, rsp_type;
2056 	int budget_left = budget;
2057 	const struct rsp_ctrl *rc;
2058 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2059 	struct adapter *adapter = q->adap;
2060 	struct sge *s = &adapter->sge;
2061 
2062 	while (likely(budget_left)) {
2063 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2064 		if (!is_new_response(rc, q))
2065 			break;
2066 
2067 		dma_rmb();
2068 		rsp_type = RSPD_TYPE_G(rc->type_gen);
2069 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2070 			struct page_frag *fp;
2071 			struct pkt_gl si;
2072 			const struct rx_sw_desc *rsd;
2073 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2074 
2075 			if (len & RSPD_NEWBUF_F) {
2076 				if (likely(q->offset > 0)) {
2077 					free_rx_bufs(q->adap, &rxq->fl, 1);
2078 					q->offset = 0;
2079 				}
2080 				len = RSPD_LEN_G(len);
2081 			}
2082 			si.tot_len = len;
2083 
2084 			/* gather packet fragments */
2085 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
2086 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2087 				bufsz = get_buf_size(adapter, rsd);
2088 				fp->page = rsd->page;
2089 				fp->offset = q->offset;
2090 				fp->size = min(bufsz, len);
2091 				len -= fp->size;
2092 				if (!len)
2093 					break;
2094 				unmap_rx_buf(q->adap, &rxq->fl);
2095 			}
2096 
2097 			si.sgetstamp = SGE_TIMESTAMP_G(
2098 					be64_to_cpu(rc->last_flit));
2099 			/*
2100 			 * Last buffer remains mapped so explicitly make it
2101 			 * coherent for CPU access.
2102 			 */
2103 			dma_sync_single_for_cpu(q->adap->pdev_dev,
2104 						get_buf_addr(rsd),
2105 						fp->size, DMA_FROM_DEVICE);
2106 
2107 			si.va = page_address(si.frags[0].page) +
2108 				si.frags[0].offset;
2109 			prefetch(si.va);
2110 
2111 			si.nfrags = frags + 1;
2112 			ret = q->handler(q, q->cur_desc, &si);
2113 			if (likely(ret == 0))
2114 				q->offset += ALIGN(fp->size, s->fl_align);
2115 			else
2116 				restore_rx_bufs(&si, &rxq->fl, frags);
2117 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2118 			ret = q->handler(q, q->cur_desc, NULL);
2119 		} else {
2120 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2121 		}
2122 
2123 		if (unlikely(ret)) {
2124 			/* couldn't process descriptor, back off for recovery */
2125 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2126 			break;
2127 		}
2128 
2129 		rspq_next(q);
2130 		budget_left--;
2131 	}
2132 
2133 	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
2134 		__refill_fl(q->adap, &rxq->fl);
2135 	return budget - budget_left;
2136 }
2137 
2138 #ifdef CONFIG_NET_RX_BUSY_POLL
2139 int cxgb_busy_poll(struct napi_struct *napi)
2140 {
2141 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2142 	unsigned int params, work_done;
2143 	u32 val;
2144 
2145 	if (!cxgb_poll_lock_poll(q))
2146 		return LL_FLUSH_BUSY;
2147 
2148 	work_done = process_responses(q, 4);
2149 	params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1);
2150 	q->next_intr_params = params;
2151 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2152 
2153 	/* If we don't have access to the new User GTS (T5+), use the old
2154 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2155 	 */
2156 	if (unlikely(!q->bar2_addr))
2157 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2158 			     val | INGRESSQID_V((u32)q->cntxt_id));
2159 	else {
2160 		writel(val | INGRESSQID_V(q->bar2_qid),
2161 		       q->bar2_addr + SGE_UDB_GTS);
2162 		wmb();
2163 	}
2164 
2165 	cxgb_poll_unlock_poll(q);
2166 	return work_done;
2167 }
2168 #endif /* CONFIG_NET_RX_BUSY_POLL */
2169 
2170 /**
2171  *	napi_rx_handler - the NAPI handler for Rx processing
2172  *	@napi: the napi instance
2173  *	@budget: how many packets we can process in this round
2174  *
2175  *	Handler for new data events when using NAPI.  This does not need any
2176  *	locking or protection from interrupts as data interrupts are off at
2177  *	this point and other adapter interrupts do not interfere (the latter
2178  *	in not a concern at all with MSI-X as non-data interrupts then have
2179  *	a separate handler).
2180  */
2181 static int napi_rx_handler(struct napi_struct *napi, int budget)
2182 {
2183 	unsigned int params;
2184 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2185 	int work_done;
2186 	u32 val;
2187 
2188 	if (!cxgb_poll_lock_napi(q))
2189 		return budget;
2190 
2191 	work_done = process_responses(q, budget);
2192 	if (likely(work_done < budget)) {
2193 		int timer_index;
2194 
2195 		napi_complete(napi);
2196 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2197 
2198 		if (q->adaptive_rx) {
2199 			if (work_done > max(timer_pkt_quota[timer_index],
2200 					    MIN_NAPI_WORK))
2201 				timer_index = (timer_index + 1);
2202 			else
2203 				timer_index = timer_index - 1;
2204 
2205 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2206 			q->next_intr_params =
2207 					QINTR_TIMER_IDX_V(timer_index) |
2208 					QINTR_CNT_EN_V(0);
2209 			params = q->next_intr_params;
2210 		} else {
2211 			params = q->next_intr_params;
2212 			q->next_intr_params = q->intr_params;
2213 		}
2214 	} else
2215 		params = QINTR_TIMER_IDX_V(7);
2216 
2217 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2218 
2219 	/* If we don't have access to the new User GTS (T5+), use the old
2220 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2221 	 */
2222 	if (unlikely(q->bar2_addr == NULL)) {
2223 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2224 			     val | INGRESSQID_V((u32)q->cntxt_id));
2225 	} else {
2226 		writel(val | INGRESSQID_V(q->bar2_qid),
2227 		       q->bar2_addr + SGE_UDB_GTS);
2228 		wmb();
2229 	}
2230 	cxgb_poll_unlock_napi(q);
2231 	return work_done;
2232 }
2233 
2234 /*
2235  * The MSI-X interrupt handler for an SGE response queue.
2236  */
2237 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2238 {
2239 	struct sge_rspq *q = cookie;
2240 
2241 	napi_schedule(&q->napi);
2242 	return IRQ_HANDLED;
2243 }
2244 
2245 /*
2246  * Process the indirect interrupt entries in the interrupt queue and kick off
2247  * NAPI for each queue that has generated an entry.
2248  */
2249 static unsigned int process_intrq(struct adapter *adap)
2250 {
2251 	unsigned int credits;
2252 	const struct rsp_ctrl *rc;
2253 	struct sge_rspq *q = &adap->sge.intrq;
2254 	u32 val;
2255 
2256 	spin_lock(&adap->sge.intrq_lock);
2257 	for (credits = 0; ; credits++) {
2258 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2259 		if (!is_new_response(rc, q))
2260 			break;
2261 
2262 		dma_rmb();
2263 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2264 			unsigned int qid = ntohl(rc->pldbuflen_qid);
2265 
2266 			qid -= adap->sge.ingr_start;
2267 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
2268 		}
2269 
2270 		rspq_next(q);
2271 	}
2272 
2273 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2274 
2275 	/* If we don't have access to the new User GTS (T5+), use the old
2276 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2277 	 */
2278 	if (unlikely(q->bar2_addr == NULL)) {
2279 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2280 			     val | INGRESSQID_V(q->cntxt_id));
2281 	} else {
2282 		writel(val | INGRESSQID_V(q->bar2_qid),
2283 		       q->bar2_addr + SGE_UDB_GTS);
2284 		wmb();
2285 	}
2286 	spin_unlock(&adap->sge.intrq_lock);
2287 	return credits;
2288 }
2289 
2290 /*
2291  * The MSI interrupt handler, which handles data events from SGE response queues
2292  * as well as error and other async events as they all use the same MSI vector.
2293  */
2294 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2295 {
2296 	struct adapter *adap = cookie;
2297 
2298 	if (adap->flags & MASTER_PF)
2299 		t4_slow_intr_handler(adap);
2300 	process_intrq(adap);
2301 	return IRQ_HANDLED;
2302 }
2303 
2304 /*
2305  * Interrupt handler for legacy INTx interrupts.
2306  * Handles data events from SGE response queues as well as error and other
2307  * async events as they all use the same interrupt line.
2308  */
2309 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2310 {
2311 	struct adapter *adap = cookie;
2312 
2313 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2314 	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2315 	    process_intrq(adap))
2316 		return IRQ_HANDLED;
2317 	return IRQ_NONE;             /* probably shared interrupt */
2318 }
2319 
2320 /**
2321  *	t4_intr_handler - select the top-level interrupt handler
2322  *	@adap: the adapter
2323  *
2324  *	Selects the top-level interrupt handler based on the type of interrupts
2325  *	(MSI-X, MSI, or INTx).
2326  */
2327 irq_handler_t t4_intr_handler(struct adapter *adap)
2328 {
2329 	if (adap->flags & USING_MSIX)
2330 		return t4_sge_intr_msix;
2331 	if (adap->flags & USING_MSI)
2332 		return t4_intr_msi;
2333 	return t4_intr_intx;
2334 }
2335 
2336 static void sge_rx_timer_cb(unsigned long data)
2337 {
2338 	unsigned long m;
2339 	unsigned int i;
2340 	struct adapter *adap = (struct adapter *)data;
2341 	struct sge *s = &adap->sge;
2342 
2343 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2344 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2345 			struct sge_eth_rxq *rxq;
2346 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2347 			struct sge_fl *fl = s->egr_map[id];
2348 
2349 			clear_bit(id, s->starving_fl);
2350 			smp_mb__after_atomic();
2351 
2352 			if (fl_starving(adap, fl)) {
2353 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2354 				if (napi_reschedule(&rxq->rspq.napi))
2355 					fl->starving++;
2356 				else
2357 					set_bit(id, s->starving_fl);
2358 			}
2359 		}
2360 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
2361 	 * global Master PF activities like checking for chip ingress stalls,
2362 	 * etc.
2363 	 */
2364 	if (!(adap->flags & MASTER_PF))
2365 		goto done;
2366 
2367 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2368 
2369 done:
2370 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2371 }
2372 
2373 static void sge_tx_timer_cb(unsigned long data)
2374 {
2375 	unsigned long m;
2376 	unsigned int i, budget;
2377 	struct adapter *adap = (struct adapter *)data;
2378 	struct sge *s = &adap->sge;
2379 
2380 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2381 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2382 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2383 			struct sge_ofld_txq *txq = s->egr_map[id];
2384 
2385 			clear_bit(id, s->txq_maperr);
2386 			tasklet_schedule(&txq->qresume_tsk);
2387 		}
2388 
2389 	budget = MAX_TIMER_TX_RECLAIM;
2390 	i = s->ethtxq_rover;
2391 	do {
2392 		struct sge_eth_txq *q = &s->ethtxq[i];
2393 
2394 		if (q->q.in_use &&
2395 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2396 		    __netif_tx_trylock(q->txq)) {
2397 			int avail = reclaimable(&q->q);
2398 
2399 			if (avail) {
2400 				if (avail > budget)
2401 					avail = budget;
2402 
2403 				free_tx_desc(adap, &q->q, avail, true);
2404 				q->q.in_use -= avail;
2405 				budget -= avail;
2406 			}
2407 			__netif_tx_unlock(q->txq);
2408 		}
2409 
2410 		if (++i >= s->ethqsets)
2411 			i = 0;
2412 	} while (budget && i != s->ethtxq_rover);
2413 	s->ethtxq_rover = i;
2414 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2415 }
2416 
2417 /**
2418  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2419  *	@adapter: the adapter
2420  *	@qid: the SGE Queue ID
2421  *	@qtype: the SGE Queue Type (Egress or Ingress)
2422  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2423  *
2424  *	Returns the BAR2 address for the SGE Queue Registers associated with
2425  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2426  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2427  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2428  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2429  */
2430 static void __iomem *bar2_address(struct adapter *adapter,
2431 				  unsigned int qid,
2432 				  enum t4_bar2_qtype qtype,
2433 				  unsigned int *pbar2_qid)
2434 {
2435 	u64 bar2_qoffset;
2436 	int ret;
2437 
2438 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2439 				&bar2_qoffset, pbar2_qid);
2440 	if (ret)
2441 		return NULL;
2442 
2443 	return adapter->bar2 + bar2_qoffset;
2444 }
2445 
2446 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
2447  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
2448  */
2449 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2450 		     struct net_device *dev, int intr_idx,
2451 		     struct sge_fl *fl, rspq_handler_t hnd, int cong)
2452 {
2453 	int ret, flsz = 0;
2454 	struct fw_iq_cmd c;
2455 	struct sge *s = &adap->sge;
2456 	struct port_info *pi = netdev_priv(dev);
2457 
2458 	/* Size needs to be multiple of 16, including status entry. */
2459 	iq->size = roundup(iq->size, 16);
2460 
2461 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2462 			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2463 	if (!iq->desc)
2464 		return -ENOMEM;
2465 
2466 	memset(&c, 0, sizeof(c));
2467 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2468 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2469 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2470 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2471 				 FW_LEN16(c));
2472 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2473 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2474 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
2475 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2476 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2477 							-intr_idx - 1));
2478 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2479 		FW_IQ_CMD_IQGTSMODE_F |
2480 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2481 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2482 	c.iqsize = htons(iq->size);
2483 	c.iqaddr = cpu_to_be64(iq->phys_addr);
2484 	if (cong >= 0)
2485 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
2486 
2487 	if (fl) {
2488 		enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2489 
2490 		/* Allocate the ring for the hardware free list (with space
2491 		 * for its status page) along with the associated software
2492 		 * descriptor ring.  The free list size needs to be a multiple
2493 		 * of the Egress Queue Unit and at least 2 Egress Units larger
2494 		 * than the SGE's Egress Congrestion Threshold
2495 		 * (fl_starve_thres - 1).
2496 		 */
2497 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
2498 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
2499 		fl->size = roundup(fl->size, 8);
2500 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2501 				      sizeof(struct rx_sw_desc), &fl->addr,
2502 				      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2503 		if (!fl->desc)
2504 			goto fl_nomem;
2505 
2506 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2507 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
2508 					     FW_IQ_CMD_FL0FETCHRO_F |
2509 					     FW_IQ_CMD_FL0DATARO_F |
2510 					     FW_IQ_CMD_FL0PADEN_F);
2511 		if (cong >= 0)
2512 			c.iqns_to_fl0congen |=
2513 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
2514 				      FW_IQ_CMD_FL0CONGCIF_F |
2515 				      FW_IQ_CMD_FL0CONGEN_F);
2516 		c.fl0dcaen_to_fl0cidxfthresh =
2517 			htons(FW_IQ_CMD_FL0FBMIN_V(FETCHBURSTMIN_64B_X) |
2518 			      FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2519 						   FETCHBURSTMAX_512B_X :
2520 						   FETCHBURSTMAX_256B_X));
2521 		c.fl0size = htons(flsz);
2522 		c.fl0addr = cpu_to_be64(fl->addr);
2523 	}
2524 
2525 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2526 	if (ret)
2527 		goto err;
2528 
2529 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2530 	iq->cur_desc = iq->desc;
2531 	iq->cidx = 0;
2532 	iq->gen = 1;
2533 	iq->next_intr_params = iq->intr_params;
2534 	iq->cntxt_id = ntohs(c.iqid);
2535 	iq->abs_id = ntohs(c.physiqid);
2536 	iq->bar2_addr = bar2_address(adap,
2537 				     iq->cntxt_id,
2538 				     T4_BAR2_QTYPE_INGRESS,
2539 				     &iq->bar2_qid);
2540 	iq->size--;                           /* subtract status entry */
2541 	iq->netdev = dev;
2542 	iq->handler = hnd;
2543 
2544 	/* set offset to -1 to distinguish ingress queues without FL */
2545 	iq->offset = fl ? 0 : -1;
2546 
2547 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2548 
2549 	if (fl) {
2550 		fl->cntxt_id = ntohs(c.fl0id);
2551 		fl->avail = fl->pend_cred = 0;
2552 		fl->pidx = fl->cidx = 0;
2553 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2554 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2555 
2556 		/* Note, we must initialize the BAR2 Free List User Doorbell
2557 		 * information before refilling the Free List!
2558 		 */
2559 		fl->bar2_addr = bar2_address(adap,
2560 					     fl->cntxt_id,
2561 					     T4_BAR2_QTYPE_EGRESS,
2562 					     &fl->bar2_qid);
2563 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2564 	}
2565 
2566 	/* For T5 and later we attempt to set up the Congestion Manager values
2567 	 * of the new RX Ethernet Queue.  This should really be handled by
2568 	 * firmware because it's more complex than any host driver wants to
2569 	 * get involved with and it's different per chip and this is almost
2570 	 * certainly wrong.  Firmware would be wrong as well, but it would be
2571 	 * a lot easier to fix in one place ...  For now we do something very
2572 	 * simple (and hopefully less wrong).
2573 	 */
2574 	if (!is_t4(adap->params.chip) && cong >= 0) {
2575 		u32 param, val;
2576 		int i;
2577 
2578 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2579 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2580 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
2581 		if (cong == 0) {
2582 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
2583 		} else {
2584 			val =
2585 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
2586 			for (i = 0; i < 4; i++) {
2587 				if (cong & (1 << i))
2588 					val |=
2589 					     CONMCTXT_CNGCHMAP_V(1 << (i << 2));
2590 			}
2591 		}
2592 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
2593 				    &param, &val);
2594 		if (ret)
2595 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
2596 				 " Manager Context for Ingress Queue %d: %d\n",
2597 				 iq->cntxt_id, -ret);
2598 	}
2599 
2600 	return 0;
2601 
2602 fl_nomem:
2603 	ret = -ENOMEM;
2604 err:
2605 	if (iq->desc) {
2606 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2607 				  iq->desc, iq->phys_addr);
2608 		iq->desc = NULL;
2609 	}
2610 	if (fl && fl->desc) {
2611 		kfree(fl->sdesc);
2612 		fl->sdesc = NULL;
2613 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2614 				  fl->desc, fl->addr);
2615 		fl->desc = NULL;
2616 	}
2617 	return ret;
2618 }
2619 
2620 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2621 {
2622 	q->cntxt_id = id;
2623 	q->bar2_addr = bar2_address(adap,
2624 				    q->cntxt_id,
2625 				    T4_BAR2_QTYPE_EGRESS,
2626 				    &q->bar2_qid);
2627 	q->in_use = 0;
2628 	q->cidx = q->pidx = 0;
2629 	q->stops = q->restarts = 0;
2630 	q->stat = (void *)&q->desc[q->size];
2631 	spin_lock_init(&q->db_lock);
2632 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2633 }
2634 
2635 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2636 			 struct net_device *dev, struct netdev_queue *netdevq,
2637 			 unsigned int iqid)
2638 {
2639 	int ret, nentries;
2640 	struct fw_eq_eth_cmd c;
2641 	struct sge *s = &adap->sge;
2642 	struct port_info *pi = netdev_priv(dev);
2643 
2644 	/* Add status entries */
2645 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2646 
2647 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2648 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2649 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2650 			netdev_queue_numa_node_read(netdevq));
2651 	if (!txq->q.desc)
2652 		return -ENOMEM;
2653 
2654 	memset(&c, 0, sizeof(c));
2655 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2656 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2657 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
2658 			    FW_EQ_ETH_CMD_VFN_V(0));
2659 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2660 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2661 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2662 			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2663 	c.fetchszm_to_iqid =
2664 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2665 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2666 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
2667 	c.dcaen_to_eqsize =
2668 		htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2669 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2670 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2671 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2672 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2673 
2674 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2675 	if (ret) {
2676 		kfree(txq->q.sdesc);
2677 		txq->q.sdesc = NULL;
2678 		dma_free_coherent(adap->pdev_dev,
2679 				  nentries * sizeof(struct tx_desc),
2680 				  txq->q.desc, txq->q.phys_addr);
2681 		txq->q.desc = NULL;
2682 		return ret;
2683 	}
2684 
2685 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2686 	txq->txq = netdevq;
2687 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2688 	txq->mapping_err = 0;
2689 	return 0;
2690 }
2691 
2692 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2693 			  struct net_device *dev, unsigned int iqid,
2694 			  unsigned int cmplqid)
2695 {
2696 	int ret, nentries;
2697 	struct fw_eq_ctrl_cmd c;
2698 	struct sge *s = &adap->sge;
2699 	struct port_info *pi = netdev_priv(dev);
2700 
2701 	/* Add status entries */
2702 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2703 
2704 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2705 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2706 				 NULL, 0, dev_to_node(adap->pdev_dev));
2707 	if (!txq->q.desc)
2708 		return -ENOMEM;
2709 
2710 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2711 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2712 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
2713 			    FW_EQ_CTRL_CMD_VFN_V(0));
2714 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2715 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2716 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2717 	c.physeqid_pkd = htonl(0);
2718 	c.fetchszm_to_iqid =
2719 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2720 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2721 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
2722 	c.dcaen_to_eqsize =
2723 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2724 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2725 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2726 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2727 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2728 
2729 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2730 	if (ret) {
2731 		dma_free_coherent(adap->pdev_dev,
2732 				  nentries * sizeof(struct tx_desc),
2733 				  txq->q.desc, txq->q.phys_addr);
2734 		txq->q.desc = NULL;
2735 		return ret;
2736 	}
2737 
2738 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2739 	txq->adap = adap;
2740 	skb_queue_head_init(&txq->sendq);
2741 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2742 	txq->full = 0;
2743 	return 0;
2744 }
2745 
2746 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2747 			  struct net_device *dev, unsigned int iqid)
2748 {
2749 	int ret, nentries;
2750 	struct fw_eq_ofld_cmd c;
2751 	struct sge *s = &adap->sge;
2752 	struct port_info *pi = netdev_priv(dev);
2753 
2754 	/* Add status entries */
2755 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2756 
2757 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2758 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2759 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2760 			NUMA_NO_NODE);
2761 	if (!txq->q.desc)
2762 		return -ENOMEM;
2763 
2764 	memset(&c, 0, sizeof(c));
2765 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2766 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2767 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
2768 			    FW_EQ_OFLD_CMD_VFN_V(0));
2769 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2770 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2771 	c.fetchszm_to_iqid =
2772 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2773 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2774 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
2775 	c.dcaen_to_eqsize =
2776 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2777 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2778 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2779 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2780 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2781 
2782 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2783 	if (ret) {
2784 		kfree(txq->q.sdesc);
2785 		txq->q.sdesc = NULL;
2786 		dma_free_coherent(adap->pdev_dev,
2787 				  nentries * sizeof(struct tx_desc),
2788 				  txq->q.desc, txq->q.phys_addr);
2789 		txq->q.desc = NULL;
2790 		return ret;
2791 	}
2792 
2793 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2794 	txq->adap = adap;
2795 	skb_queue_head_init(&txq->sendq);
2796 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2797 	txq->full = 0;
2798 	txq->mapping_err = 0;
2799 	return 0;
2800 }
2801 
2802 static void free_txq(struct adapter *adap, struct sge_txq *q)
2803 {
2804 	struct sge *s = &adap->sge;
2805 
2806 	dma_free_coherent(adap->pdev_dev,
2807 			  q->size * sizeof(struct tx_desc) + s->stat_len,
2808 			  q->desc, q->phys_addr);
2809 	q->cntxt_id = 0;
2810 	q->sdesc = NULL;
2811 	q->desc = NULL;
2812 }
2813 
2814 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2815 			 struct sge_fl *fl)
2816 {
2817 	struct sge *s = &adap->sge;
2818 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2819 
2820 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2821 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2822 		   rq->cntxt_id, fl_id, 0xffff);
2823 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2824 			  rq->desc, rq->phys_addr);
2825 	napi_hash_del(&rq->napi);
2826 	netif_napi_del(&rq->napi);
2827 	rq->netdev = NULL;
2828 	rq->cntxt_id = rq->abs_id = 0;
2829 	rq->desc = NULL;
2830 
2831 	if (fl) {
2832 		free_rx_bufs(adap, fl, fl->avail);
2833 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2834 				  fl->desc, fl->addr);
2835 		kfree(fl->sdesc);
2836 		fl->sdesc = NULL;
2837 		fl->cntxt_id = 0;
2838 		fl->desc = NULL;
2839 	}
2840 }
2841 
2842 /**
2843  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
2844  *      @adap: the adapter
2845  *      @n: number of queues
2846  *      @q: pointer to first queue
2847  *
2848  *      Release the resources of a consecutive block of offload Rx queues.
2849  */
2850 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2851 {
2852 	for ( ; n; n--, q++)
2853 		if (q->rspq.desc)
2854 			free_rspq_fl(adap, &q->rspq,
2855 				     q->fl.size ? &q->fl : NULL);
2856 }
2857 
2858 /**
2859  *	t4_free_sge_resources - free SGE resources
2860  *	@adap: the adapter
2861  *
2862  *	Frees resources used by the SGE queue sets.
2863  */
2864 void t4_free_sge_resources(struct adapter *adap)
2865 {
2866 	int i;
2867 	struct sge_eth_rxq *eq = adap->sge.ethrxq;
2868 	struct sge_eth_txq *etq = adap->sge.ethtxq;
2869 
2870 	/* clean up Ethernet Tx/Rx queues */
2871 	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2872 		if (eq->rspq.desc)
2873 			free_rspq_fl(adap, &eq->rspq,
2874 				     eq->fl.size ? &eq->fl : NULL);
2875 		if (etq->q.desc) {
2876 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
2877 				       etq->q.cntxt_id);
2878 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2879 			kfree(etq->q.sdesc);
2880 			free_txq(adap, &etq->q);
2881 		}
2882 	}
2883 
2884 	/* clean up RDMA and iSCSI Rx queues */
2885 	t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2886 	t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2887 	t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
2888 
2889 	/* clean up offload Tx queues */
2890 	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2891 		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2892 
2893 		if (q->q.desc) {
2894 			tasklet_kill(&q->qresume_tsk);
2895 			t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
2896 					q->q.cntxt_id);
2897 			free_tx_desc(adap, &q->q, q->q.in_use, false);
2898 			kfree(q->q.sdesc);
2899 			__skb_queue_purge(&q->sendq);
2900 			free_txq(adap, &q->q);
2901 		}
2902 	}
2903 
2904 	/* clean up control Tx queues */
2905 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2906 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2907 
2908 		if (cq->q.desc) {
2909 			tasklet_kill(&cq->qresume_tsk);
2910 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
2911 					cq->q.cntxt_id);
2912 			__skb_queue_purge(&cq->sendq);
2913 			free_txq(adap, &cq->q);
2914 		}
2915 	}
2916 
2917 	if (adap->sge.fw_evtq.desc)
2918 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2919 
2920 	if (adap->sge.intrq.desc)
2921 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
2922 
2923 	/* clear the reverse egress queue map */
2924 	memset(adap->sge.egr_map, 0,
2925 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
2926 }
2927 
2928 void t4_sge_start(struct adapter *adap)
2929 {
2930 	adap->sge.ethtxq_rover = 0;
2931 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2932 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2933 }
2934 
2935 /**
2936  *	t4_sge_stop - disable SGE operation
2937  *	@adap: the adapter
2938  *
2939  *	Stop tasklets and timers associated with the DMA engine.  Note that
2940  *	this is effective only if measures have been taken to disable any HW
2941  *	events that may restart them.
2942  */
2943 void t4_sge_stop(struct adapter *adap)
2944 {
2945 	int i;
2946 	struct sge *s = &adap->sge;
2947 
2948 	if (in_interrupt())  /* actions below require waiting */
2949 		return;
2950 
2951 	if (s->rx_timer.function)
2952 		del_timer_sync(&s->rx_timer);
2953 	if (s->tx_timer.function)
2954 		del_timer_sync(&s->tx_timer);
2955 
2956 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2957 		struct sge_ofld_txq *q = &s->ofldtxq[i];
2958 
2959 		if (q->q.desc)
2960 			tasklet_kill(&q->qresume_tsk);
2961 	}
2962 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2963 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
2964 
2965 		if (cq->q.desc)
2966 			tasklet_kill(&cq->qresume_tsk);
2967 	}
2968 }
2969 
2970 /**
2971  *	t4_sge_init_soft - grab core SGE values needed by SGE code
2972  *	@adap: the adapter
2973  *
2974  *	We need to grab the SGE operating parameters that we need to have
2975  *	in order to do our job and make sure we can live with them.
2976  */
2977 
2978 static int t4_sge_init_soft(struct adapter *adap)
2979 {
2980 	struct sge *s = &adap->sge;
2981 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2982 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2983 	u32 ingress_rx_threshold;
2984 
2985 	/*
2986 	 * Verify that CPL messages are going to the Ingress Queue for
2987 	 * process_responses() and that only packet data is going to the
2988 	 * Free Lists.
2989 	 */
2990 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
2991 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2992 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2993 		return -EINVAL;
2994 	}
2995 
2996 	/*
2997 	 * Validate the Host Buffer Register Array indices that we want to
2998 	 * use ...
2999 	 *
3000 	 * XXX Note that we should really read through the Host Buffer Size
3001 	 * XXX register array and find the indices of the Buffer Sizes which
3002 	 * XXX meet our needs!
3003 	 */
3004 	#define READ_FL_BUF(x) \
3005 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
3006 
3007 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
3008 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
3009 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
3010 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
3011 
3012 	/* We only bother using the Large Page logic if the Large Page Buffer
3013 	 * is larger than our Page Size Buffer.
3014 	 */
3015 	if (fl_large_pg <= fl_small_pg)
3016 		fl_large_pg = 0;
3017 
3018 	#undef READ_FL_BUF
3019 
3020 	/* The Page Size Buffer must be exactly equal to our Page Size and the
3021 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
3022 	 */
3023 	if (fl_small_pg != PAGE_SIZE ||
3024 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
3025 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
3026 			fl_small_pg, fl_large_pg);
3027 		return -EINVAL;
3028 	}
3029 	if (fl_large_pg)
3030 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
3031 
3032 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
3033 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
3034 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
3035 			fl_small_mtu, fl_large_mtu);
3036 		return -EINVAL;
3037 	}
3038 
3039 	/*
3040 	 * Retrieve our RX interrupt holdoff timer values and counter
3041 	 * threshold values from the SGE parameters.
3042 	 */
3043 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
3044 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
3045 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3046 	s->timer_val[0] = core_ticks_to_us(adap,
3047 		TIMERVALUE0_G(timer_value_0_and_1));
3048 	s->timer_val[1] = core_ticks_to_us(adap,
3049 		TIMERVALUE1_G(timer_value_0_and_1));
3050 	s->timer_val[2] = core_ticks_to_us(adap,
3051 		TIMERVALUE2_G(timer_value_2_and_3));
3052 	s->timer_val[3] = core_ticks_to_us(adap,
3053 		TIMERVALUE3_G(timer_value_2_and_3));
3054 	s->timer_val[4] = core_ticks_to_us(adap,
3055 		TIMERVALUE4_G(timer_value_4_and_5));
3056 	s->timer_val[5] = core_ticks_to_us(adap,
3057 		TIMERVALUE5_G(timer_value_4_and_5));
3058 
3059 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
3060 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
3061 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
3062 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
3063 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3064 
3065 	return 0;
3066 }
3067 
3068 /**
3069  *     t4_sge_init - initialize SGE
3070  *     @adap: the adapter
3071  *
3072  *     Perform low-level SGE code initialization needed every time after a
3073  *     chip reset.
3074  */
3075 int t4_sge_init(struct adapter *adap)
3076 {
3077 	struct sge *s = &adap->sge;
3078 	u32 sge_control, sge_control2, sge_conm_ctrl;
3079 	unsigned int ingpadboundary, ingpackboundary;
3080 	int ret, egress_threshold;
3081 
3082 	/*
3083 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
3084 	 * t4_fixup_host_params().
3085 	 */
3086 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3087 	s->pktshift = PKTSHIFT_G(sge_control);
3088 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3089 
3090 	/* T4 uses a single control field to specify both the PCIe Padding and
3091 	 * Packing Boundary.  T5 introduced the ability to specify these
3092 	 * separately.  The actual Ingress Packet Data alignment boundary
3093 	 * within Packed Buffer Mode is the maximum of these two
3094 	 * specifications.  (Note that it makes no real practical sense to
3095 	 * have the Pading Boudary be larger than the Packing Boundary but you
3096 	 * could set the chip up that way and, in fact, legacy T4 code would
3097 	 * end doing this because it would initialize the Padding Boundary and
3098 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
3099 	 */
3100 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
3101 			       INGPADBOUNDARY_SHIFT_X);
3102 	if (is_t4(adap->params.chip)) {
3103 		s->fl_align = ingpadboundary;
3104 	} else {
3105 		/* T5 has a different interpretation of one of the PCIe Packing
3106 		 * Boundary values.
3107 		 */
3108 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
3109 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
3110 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
3111 			ingpackboundary = 16;
3112 		else
3113 			ingpackboundary = 1 << (ingpackboundary +
3114 						INGPACKBOUNDARY_SHIFT_X);
3115 
3116 		s->fl_align = max(ingpadboundary, ingpackboundary);
3117 	}
3118 
3119 	ret = t4_sge_init_soft(adap);
3120 	if (ret < 0)
3121 		return ret;
3122 
3123 	/*
3124 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
3125 	 * timer will attempt to refill it.  This needs to be larger than the
3126 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3127 	 * stuck waiting for new packets while the SGE is waiting for us to
3128 	 * give it more Free List entries.  (Note that the SGE's Egress
3129 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3130 	 * there was only a single field to control this.  For T5 there's the
3131 	 * original field which now only applies to Unpacked Mode Free List
3132 	 * buffers and a new field which only applies to Packed Mode Free List
3133 	 * buffers.
3134 	 */
3135 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3136 	if (is_t4(adap->params.chip))
3137 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3138 	else
3139 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3140 	s->fl_starve_thres = 2*egress_threshold + 1;
3141 
3142 	t4_idma_monitor_init(adap, &s->idma_monitor);
3143 
3144 	/* Set up timers used for recuring callbacks to process RX and TX
3145 	 * administrative tasks.
3146 	 */
3147 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
3148 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3149 
3150 	spin_lock_init(&s->intrq_lock);
3151 
3152 	return 0;
3153 }
3154