1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60 
61 /*
62  * Rx buffer size.  We use largish buffers if possible but settle for single
63  * pages under memory shortage.
64  */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70 
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES    256
73 #define RX_PULL_LEN      128
74 
75 /*
76  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78  */
79 #define RX_PKT_SKB_LEN   512
80 
81 /*
82  * Max number of Tx descriptors we clean up at a time.  Should be modest as
83  * freeing skbs isn't cheap and it happens while holding locks.  We just need
84  * to free packets faster than they arrive, we eventually catch up and keep
85  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86  * also match the CIDX Flush Threshold.
87  */
88 #define MAX_TX_RECLAIM 32
89 
90 /*
91  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92  * allocating buffers isn't cheap either.
93  */
94 #define MAX_RX_REFILL 16U
95 
96 /*
97  * Period of the Rx queue check timer.  This timer is infrequent as it has
98  * something to do only when the system experiences severe memory shortage.
99  */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101 
102 /*
103  * Period of the Tx queue check timer.
104  */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106 
107 /*
108  * Max number of Tx descriptors to be reclaimed by the Tx timer.
109  */
110 #define MAX_TIMER_TX_RECLAIM 100
111 
112 /*
113  * Timer index used when backing off due to memory shortage.
114  */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116 
117 /*
118  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119  * for a full sized WR.
120  */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122 
123 /*
124  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125  * into a WR.
126  */
127 #define MAX_IMM_TX_PKT_LEN 256
128 
129 /*
130  * Max size of a WR sent through a control Tx queue.
131  */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133 
134 struct rx_sw_desc {                /* SW state per Rx descriptor */
135 	struct page *page;
136 	dma_addr_t dma_addr;
137 };
138 
139 /*
140  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142  * We could easily support more but there doesn't seem to be much need for
143  * that ...
144  */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147 
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 					  unsigned int mtu)
150 {
151 	struct sge *s = &adapter->sge;
152 
153 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155 
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158 
159 /*
160  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161  * these to specify the buffer size as an index into the SGE Free List Buffer
162  * Size register array.  We also use bit 4, when the buffer has been unmapped
163  * for DMA, but this is of course never sent to the hardware and is only used
164  * to prevent double unmappings.  All of the above requires that the Free List
165  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167  * Free List Buffer alignment is 32 bytes, this works out for us ...
168  */
169 enum {
170 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173 
174 	/*
175 	 * XXX We shouldn't depend on being able to use these indices.
176 	 * XXX Especially when some other Master PF has initialized the
177 	 * XXX adapter or we use the Firmware Configuration File.  We
178 	 * XXX should really search through the Host Buffer Size register
179 	 * XXX array for the appropriately sized buffer indices.
180 	 */
181 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183 
184 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186 };
187 
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK  1
190 
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195 
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 	return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200 
201 /**
202  *	txq_avail - return the number of available slots in a Tx queue
203  *	@q: the Tx queue
204  *
205  *	Returns the number of descriptors in a Tx queue available to write new
206  *	packets.
207  */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 	return q->size - 1 - q->in_use;
211 }
212 
213 /**
214  *	fl_cap - return the capacity of a free-buffer list
215  *	@fl: the FL
216  *
217  *	Returns the capacity of a free-buffer list.  The capacity is less than
218  *	the size because one descriptor needs to be left unpopulated, otherwise
219  *	HW will think the FL is empty.
220  */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224 }
225 
226 /**
227  *	fl_starving - return whether a Free List is starving.
228  *	@adapter: pointer to the adapter
229  *	@fl: the Free List
230  *
231  *	Tests specified Free List to see whether the number of buffers
232  *	available to the hardware has falled below our "starvation"
233  *	threshold.
234  */
235 static inline bool fl_starving(const struct adapter *adapter,
236 			       const struct sge_fl *fl)
237 {
238 	const struct sge *s = &adapter->sge;
239 
240 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242 
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 		  dma_addr_t *addr)
245 {
246 	const skb_frag_t *fp, *end;
247 	const struct skb_shared_info *si;
248 
249 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 	if (dma_mapping_error(dev, *addr))
251 		goto out_err;
252 
253 	si = skb_shinfo(skb);
254 	end = &si->frags[si->nr_frags];
255 
256 	for (fp = si->frags; fp < end; fp++) {
257 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 					   DMA_TO_DEVICE);
259 		if (dma_mapping_error(dev, *addr))
260 			goto unwind;
261 	}
262 	return 0;
263 
264 unwind:
265 	while (fp-- > si->frags)
266 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267 
268 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 	return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273 
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 		      const dma_addr_t *addr)
276 {
277 	const skb_frag_t *fp, *end;
278 	const struct skb_shared_info *si;
279 
280 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281 
282 	si = skb_shinfo(skb);
283 	end = &si->frags[si->nr_frags];
284 	for (fp = si->frags; fp < end; fp++)
285 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287 
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290  *	deferred_unmap_destructor - unmap a packet when it is freed
291  *	@skb: the packet
292  *
293  *	This is the packet destructor used for Tx packets that need to remain
294  *	mapped until they are freed rather than until their Tx descriptors are
295  *	freed.
296  */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302 
303 /**
304  *	free_tx_desc - reclaims Tx descriptors and their buffers
305  *	@adap: the adapter
306  *	@q: the Tx queue to reclaim descriptors from
307  *	@n: the number of descriptors to reclaim
308  *	@unmap: whether the buffers should be unmapped for DMA
309  *
310  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311  *	Tx buffers.  Called with the Tx queue lock held.
312  */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 		  unsigned int n, bool unmap)
315 {
316 	unsigned int cidx = q->cidx;
317 	struct tx_sw_desc *d;
318 
319 	d = &q->sdesc[cidx];
320 	while (n--) {
321 		if (d->skb) {                       /* an SGL is present */
322 			if (unmap && d->addr[0]) {
323 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 				memset(d->addr, 0, sizeof(d->addr));
325 			}
326 			dev_consume_skb_any(d->skb);
327 			d->skb = NULL;
328 		}
329 		++d;
330 		if (++cidx == q->size) {
331 			cidx = 0;
332 			d = q->sdesc;
333 		}
334 	}
335 	q->cidx = cidx;
336 }
337 
338 /*
339  * Return the number of reclaimable descriptors in a Tx queue.
340  */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 	hw_cidx -= q->cidx;
345 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347 
348 /**
349  *	reclaim_completed_tx - reclaims completed TX Descriptors
350  *	@adap: the adapter
351  *	@q: the Tx queue to reclaim completed descriptors from
352  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353  *	@unmap: whether the buffers should be unmapped for DMA
354  *
355  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356  *	and frees the associated buffers if possible.  If @max == -1, then
357  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358  */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 				       int maxreclaim, bool unmap)
361 {
362 	int reclaim = reclaimable(q);
363 
364 	if (reclaim) {
365 		/*
366 		 * Limit the amount of clean up work we do at a time to keep
367 		 * the Tx lock hold time O(1).
368 		 */
369 		if (maxreclaim < 0)
370 			maxreclaim = MAX_TX_RECLAIM;
371 		if (reclaim > maxreclaim)
372 			reclaim = maxreclaim;
373 
374 		free_tx_desc(adap, q, reclaim, unmap);
375 		q->in_use -= reclaim;
376 	}
377 
378 	return reclaim;
379 }
380 
381 /**
382  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383  *	@adap: the adapter
384  *	@q: the Tx queue to reclaim completed descriptors from
385  *	@unmap: whether the buffers should be unmapped for DMA
386  *
387  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388  *	and frees the associated buffers if possible.  Called with the Tx
389  *	queue locked.
390  */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 				bool unmap)
393 {
394 	(void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397 
398 static inline int get_buf_size(struct adapter *adapter,
399 			       const struct rx_sw_desc *d)
400 {
401 	struct sge *s = &adapter->sge;
402 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 	int buf_size;
404 
405 	switch (rx_buf_size_idx) {
406 	case RX_SMALL_PG_BUF:
407 		buf_size = PAGE_SIZE;
408 		break;
409 
410 	case RX_LARGE_PG_BUF:
411 		buf_size = PAGE_SIZE << s->fl_pg_order;
412 		break;
413 
414 	case RX_SMALL_MTU_BUF:
415 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 		break;
417 
418 	case RX_LARGE_MTU_BUF:
419 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 		break;
421 
422 	default:
423 		BUG();
424 	}
425 
426 	return buf_size;
427 }
428 
429 /**
430  *	free_rx_bufs - free the Rx buffers on an SGE free list
431  *	@adap: the adapter
432  *	@q: the SGE free list to free buffers from
433  *	@n: how many buffers to free
434  *
435  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436  *	buffers must be made inaccessible to HW before calling this function.
437  */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 	while (n--) {
441 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442 
443 		if (is_buf_mapped(d))
444 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 				       get_buf_size(adap, d),
446 				       PCI_DMA_FROMDEVICE);
447 		put_page(d->page);
448 		d->page = NULL;
449 		if (++q->cidx == q->size)
450 			q->cidx = 0;
451 		q->avail--;
452 	}
453 }
454 
455 /**
456  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457  *	@adap: the adapter
458  *	@q: the SGE free list
459  *
460  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461  *	buffer must be made inaccessible to HW before calling this function.
462  *
463  *	This is similar to @free_rx_bufs above but does not free the buffer.
464  *	Do note that the FL still loses any further access to the buffer.
465  */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469 
470 	if (is_buf_mapped(d))
471 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 	d->page = NULL;
474 	if (++q->cidx == q->size)
475 		q->cidx = 0;
476 	q->avail--;
477 }
478 
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 	if (q->pend_cred >= 8) {
482 		u32 val = adap->params.arch.sge_fl_db;
483 
484 		if (is_t4(adap->params.chip))
485 			val |= PIDX_V(q->pend_cred / 8);
486 		else
487 			val |= PIDX_T5_V(q->pend_cred / 8);
488 
489 		/* Make sure all memory writes to the Free List queue are
490 		 * committed before we tell the hardware about them.
491 		 */
492 		wmb();
493 
494 		/* If we don't have access to the new User Doorbell (T5+), use
495 		 * the old doorbell mechanism; otherwise use the new BAR2
496 		 * mechanism.
497 		 */
498 		if (unlikely(q->bar2_addr == NULL)) {
499 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 				     val | QID_V(q->cntxt_id));
501 		} else {
502 			writel(val | QID_V(q->bar2_qid),
503 			       q->bar2_addr + SGE_UDB_KDOORBELL);
504 
505 			/* This Write memory Barrier will force the write to
506 			 * the User Doorbell area to be flushed.
507 			 */
508 			wmb();
509 		}
510 		q->pend_cred &= 7;
511 	}
512 }
513 
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 				  dma_addr_t mapping)
516 {
517 	sd->page = pg;
518 	sd->dma_addr = mapping;      /* includes size low bits */
519 }
520 
521 /**
522  *	refill_fl - refill an SGE Rx buffer ring
523  *	@adap: the adapter
524  *	@q: the ring to refill
525  *	@n: the number of new buffers to allocate
526  *	@gfp: the gfp flags for the allocations
527  *
528  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529  *	allocated with the supplied gfp flags.  The caller must assure that
530  *	@n does not exceed the queue's capacity.  If afterwards the queue is
531  *	found critically low mark it as starving in the bitmap of starving FLs.
532  *
533  *	Returns the number of buffers allocated.
534  */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 			      gfp_t gfp)
537 {
538 	struct sge *s = &adap->sge;
539 	struct page *pg;
540 	dma_addr_t mapping;
541 	unsigned int cred = q->avail;
542 	__be64 *d = &q->desc[q->pidx];
543 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 	int node;
545 
546 #ifdef CONFIG_DEBUG_FS
547 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 		goto out;
549 #endif
550 
551 	gfp |= __GFP_NOWARN;
552 	node = dev_to_node(adap->pdev_dev);
553 
554 	if (s->fl_pg_order == 0)
555 		goto alloc_small_pages;
556 
557 	/*
558 	 * Prefer large buffers
559 	 */
560 	while (n) {
561 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 		if (unlikely(!pg)) {
563 			q->large_alloc_failed++;
564 			break;       /* fall back to single pages */
565 		}
566 
567 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 				       PAGE_SIZE << s->fl_pg_order,
569 				       PCI_DMA_FROMDEVICE);
570 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 			__free_pages(pg, s->fl_pg_order);
572 			q->mapping_err++;
573 			goto out;   /* do not try small pages for this error */
574 		}
575 		mapping |= RX_LARGE_PG_BUF;
576 		*d++ = cpu_to_be64(mapping);
577 
578 		set_rx_sw_desc(sd, pg, mapping);
579 		sd++;
580 
581 		q->avail++;
582 		if (++q->pidx == q->size) {
583 			q->pidx = 0;
584 			sd = q->sdesc;
585 			d = q->desc;
586 		}
587 		n--;
588 	}
589 
590 alloc_small_pages:
591 	while (n--) {
592 		pg = alloc_pages_node(node, gfp, 0);
593 		if (unlikely(!pg)) {
594 			q->alloc_failed++;
595 			break;
596 		}
597 
598 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 				       PCI_DMA_FROMDEVICE);
600 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 			put_page(pg);
602 			q->mapping_err++;
603 			goto out;
604 		}
605 		*d++ = cpu_to_be64(mapping);
606 
607 		set_rx_sw_desc(sd, pg, mapping);
608 		sd++;
609 
610 		q->avail++;
611 		if (++q->pidx == q->size) {
612 			q->pidx = 0;
613 			sd = q->sdesc;
614 			d = q->desc;
615 		}
616 	}
617 
618 out:	cred = q->avail - cred;
619 	q->pend_cred += cred;
620 	ring_fl_db(adap, q);
621 
622 	if (unlikely(fl_starving(adap, q))) {
623 		smp_wmb();
624 		q->low++;
625 		set_bit(q->cntxt_id - adap->sge.egr_start,
626 			adap->sge.starving_fl);
627 	}
628 
629 	return cred;
630 }
631 
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 		  GFP_ATOMIC);
636 }
637 
638 /**
639  *	alloc_ring - allocate resources for an SGE descriptor ring
640  *	@dev: the PCI device's core device
641  *	@nelem: the number of descriptors
642  *	@elem_size: the size of each descriptor
643  *	@sw_size: the size of the SW state associated with each ring element
644  *	@phys: the physical address of the allocated ring
645  *	@metadata: address of the array holding the SW state for the ring
646  *	@stat_size: extra space in HW ring for status information
647  *	@node: preferred node for memory allocations
648  *
649  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650  *	free buffer lists, or response queues.  Each SGE ring requires
651  *	space for its HW descriptors plus, optionally, space for the SW state
652  *	associated with each HW entry (the metadata).  The function returns
653  *	three values: the virtual address for the HW ring (the return value
654  *	of the function), the bus address of the HW ring, and the address
655  *	of the SW ring.
656  */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 			size_t sw_size, dma_addr_t *phys, void *metadata,
659 			size_t stat_size, int node)
660 {
661 	size_t len = nelem * elem_size + stat_size;
662 	void *s = NULL;
663 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664 
665 	if (!p)
666 		return NULL;
667 	if (sw_size) {
668 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669 
670 		if (!s) {
671 			dma_free_coherent(dev, len, p, *phys);
672 			return NULL;
673 		}
674 	}
675 	if (metadata)
676 		*(void **)metadata = s;
677 	return p;
678 }
679 
680 /**
681  *	sgl_len - calculates the size of an SGL of the given capacity
682  *	@n: the number of SGL entries
683  *
684  *	Calculates the number of flits needed for a scatter/gather list that
685  *	can hold the given number of entries.
686  */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695 	 * Address[N+1] is omitted.
696 	 *
697 	 * The following calculation incorporates all of the above.  It's
698 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 	 * first two flits which include the DSGL header, Length0 and
700 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 	 * (n-1) is odd ...
704 	 */
705 	n--;
706 	return (3 * n) / 2 + (n & 1) + 2;
707 }
708 
709 /**
710  *	flits_to_desc - returns the num of Tx descriptors for the given flits
711  *	@n: the number of flits
712  *
713  *	Returns the number of Tx descriptors needed for the supplied number
714  *	of flits.
715  */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 	return DIV_ROUND_UP(n, 8);
720 }
721 
722 /**
723  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724  *	@skb: the packet
725  *	@chip_ver: chip version
726  *
727  *	Returns whether an Ethernet packet is small enough to fit as
728  *	immediate data. Return value corresponds to headroom required.
729  */
730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731 {
732 	int hdrlen = 0;
733 
734 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735 	    chip_ver > CHELSIO_T5) {
736 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
737 		hdrlen += sizeof(struct cpl_tx_pkt_core);
738 	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739 		return 0;
740 	} else {
741 		hdrlen = skb_shinfo(skb)->gso_size ?
742 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743 		hdrlen += sizeof(struct cpl_tx_pkt);
744 	}
745 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746 		return hdrlen;
747 	return 0;
748 }
749 
750 /**
751  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
752  *	@skb: the packet
753  *	@chip_ver: chip version
754  *
755  *	Returns the number of flits needed for a Tx WR for the given Ethernet
756  *	packet, including the needed WR and CPL headers.
757  */
758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759 					 unsigned int chip_ver)
760 {
761 	unsigned int flits;
762 	int hdrlen = is_eth_imm(skb, chip_ver);
763 
764 	/* If the skb is small enough, we can pump it out as a work request
765 	 * with only immediate data.  In that case we just have to have the
766 	 * TX Packet header plus the skb data in the Work Request.
767 	 */
768 
769 	if (hdrlen)
770 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771 
772 	/* Otherwise, we're going to have to construct a Scatter gather list
773 	 * of the skb body and fragments.  We also include the flits necessary
774 	 * for the TX Packet Work Request and CPL.  We always have a firmware
775 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
778 	 * with an embedded TX Packet Write CPL message.
779 	 */
780 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781 	if (skb_shinfo(skb)->gso_size) {
782 		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784 				 sizeof(struct cpl_tx_tnl_lso);
785 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786 			u32 pkt_hdrlen;
787 
788 			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789 						     skb_headlen(skb));
790 			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791 				 round_up(pkt_hdrlen, 16);
792 		} else {
793 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794 				 sizeof(struct cpl_tx_pkt_lso_core);
795 		}
796 
797 		hdrlen += sizeof(struct cpl_tx_pkt_core);
798 		flits += (hdrlen / sizeof(__be64));
799 	} else {
800 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802 	}
803 	return flits;
804 }
805 
806 /**
807  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
808  *	@skb: the packet
809  *	@chip_ver: chip version
810  *
811  *	Returns the number of Tx descriptors needed for the given Ethernet
812  *	packet, including the needed WR and CPL headers.
813  */
814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
815 					 unsigned int chip_ver)
816 {
817 	return flits_to_desc(calc_tx_flits(skb, chip_ver));
818 }
819 
820 /**
821  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
822  *	@skb: the packet
823  *	@q: the Tx queue we are writing into
824  *	@sgl: starting location for writing the SGL
825  *	@end: points right after the end of the SGL
826  *	@start: start offset into skb main-body data to include in the SGL
827  *	@addr: the list of bus addresses for the SGL elements
828  *
829  *	Generates a gather list for the buffers that make up a packet.
830  *	The caller must provide adequate space for the SGL that will be written.
831  *	The SGL includes all of the packet's page fragments and the data in its
832  *	main body except for the first @start bytes.  @sgl must be 16-byte
833  *	aligned and within a Tx descriptor with available space.  @end points
834  *	right after the end of the SGL but does not account for any potential
835  *	wrap around, i.e., @end > @sgl.
836  */
837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
838 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
839 		     const dma_addr_t *addr)
840 {
841 	unsigned int i, len;
842 	struct ulptx_sge_pair *to;
843 	const struct skb_shared_info *si = skb_shinfo(skb);
844 	unsigned int nfrags = si->nr_frags;
845 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
846 
847 	len = skb_headlen(skb) - start;
848 	if (likely(len)) {
849 		sgl->len0 = htonl(len);
850 		sgl->addr0 = cpu_to_be64(addr[0] + start);
851 		nfrags++;
852 	} else {
853 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
854 		sgl->addr0 = cpu_to_be64(addr[1]);
855 	}
856 
857 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
858 			      ULPTX_NSGE_V(nfrags));
859 	if (likely(--nfrags == 0))
860 		return;
861 	/*
862 	 * Most of the complexity below deals with the possibility we hit the
863 	 * end of the queue in the middle of writing the SGL.  For this case
864 	 * only we create the SGL in a temporary buffer and then copy it.
865 	 */
866 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
867 
868 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
869 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
870 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
871 		to->addr[0] = cpu_to_be64(addr[i]);
872 		to->addr[1] = cpu_to_be64(addr[++i]);
873 	}
874 	if (nfrags) {
875 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
876 		to->len[1] = cpu_to_be32(0);
877 		to->addr[0] = cpu_to_be64(addr[i + 1]);
878 	}
879 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
880 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
881 
882 		if (likely(part0))
883 			memcpy(sgl->sge, buf, part0);
884 		part1 = (u8 *)end - (u8 *)q->stat;
885 		memcpy(q->desc, (u8 *)buf + part0, part1);
886 		end = (void *)q->desc + part1;
887 	}
888 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
889 		*end = 0;
890 }
891 EXPORT_SYMBOL(cxgb4_write_sgl);
892 
893 /* This function copies 64 byte coalesced work request to
894  * memory mapped BAR2 space. For coalesced WR SGE fetches
895  * data from the FIFO instead of from Host.
896  */
897 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
898 {
899 	int count = 8;
900 
901 	while (count) {
902 		writeq(*src, dst);
903 		src++;
904 		dst++;
905 		count--;
906 	}
907 }
908 
909 /**
910  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
911  *	@adap: the adapter
912  *	@q: the Tx queue
913  *	@n: number of new descriptors to give to HW
914  *
915  *	Ring the doorbel for a Tx queue.
916  */
917 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
918 {
919 	/* Make sure that all writes to the TX Descriptors are committed
920 	 * before we tell the hardware about them.
921 	 */
922 	wmb();
923 
924 	/* If we don't have access to the new User Doorbell (T5+), use the old
925 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
926 	 */
927 	if (unlikely(q->bar2_addr == NULL)) {
928 		u32 val = PIDX_V(n);
929 		unsigned long flags;
930 
931 		/* For T4 we need to participate in the Doorbell Recovery
932 		 * mechanism.
933 		 */
934 		spin_lock_irqsave(&q->db_lock, flags);
935 		if (!q->db_disabled)
936 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
937 				     QID_V(q->cntxt_id) | val);
938 		else
939 			q->db_pidx_inc += n;
940 		q->db_pidx = q->pidx;
941 		spin_unlock_irqrestore(&q->db_lock, flags);
942 	} else {
943 		u32 val = PIDX_T5_V(n);
944 
945 		/* T4 and later chips share the same PIDX field offset within
946 		 * the doorbell, but T5 and later shrank the field in order to
947 		 * gain a bit for Doorbell Priority.  The field was absurdly
948 		 * large in the first place (14 bits) so we just use the T5
949 		 * and later limits and warn if a Queue ID is too large.
950 		 */
951 		WARN_ON(val & DBPRIO_F);
952 
953 		/* If we're only writing a single TX Descriptor and we can use
954 		 * Inferred QID registers, we can use the Write Combining
955 		 * Gather Buffer; otherwise we use the simple doorbell.
956 		 */
957 		if (n == 1 && q->bar2_qid == 0) {
958 			int index = (q->pidx
959 				     ? (q->pidx - 1)
960 				     : (q->size - 1));
961 			u64 *wr = (u64 *)&q->desc[index];
962 
963 			cxgb_pio_copy((u64 __iomem *)
964 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
965 				      wr);
966 		} else {
967 			writel(val | QID_V(q->bar2_qid),
968 			       q->bar2_addr + SGE_UDB_KDOORBELL);
969 		}
970 
971 		/* This Write Memory Barrier will force the write to the User
972 		 * Doorbell area to be flushed.  This is needed to prevent
973 		 * writes on different CPUs for the same queue from hitting
974 		 * the adapter out of order.  This is required when some Work
975 		 * Requests take the Write Combine Gather Buffer path (user
976 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
977 		 * take the traditional path where we simply increment the
978 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
979 		 * hardware DMA read the actual Work Request.
980 		 */
981 		wmb();
982 	}
983 }
984 EXPORT_SYMBOL(cxgb4_ring_tx_db);
985 
986 /**
987  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
988  *	@skb: the packet
989  *	@q: the Tx queue where the packet will be inlined
990  *	@pos: starting position in the Tx queue where to inline the packet
991  *
992  *	Inline a packet's contents directly into Tx descriptors, starting at
993  *	the given position within the Tx DMA ring.
994  *	Most of the complexity of this operation is dealing with wrap arounds
995  *	in the middle of the packet we want to inline.
996  */
997 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
998 			 const struct sge_txq *q, void *pos)
999 {
1000 	int left = (void *)q->stat - pos;
1001 	u64 *p;
1002 
1003 	if (likely(skb->len <= left)) {
1004 		if (likely(!skb->data_len))
1005 			skb_copy_from_linear_data(skb, pos, skb->len);
1006 		else
1007 			skb_copy_bits(skb, 0, pos, skb->len);
1008 		pos += skb->len;
1009 	} else {
1010 		skb_copy_bits(skb, 0, pos, left);
1011 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1012 		pos = (void *)q->desc + (skb->len - left);
1013 	}
1014 
1015 	/* 0-pad to multiple of 16 */
1016 	p = PTR_ALIGN(pos, 8);
1017 	if ((uintptr_t)p & 8)
1018 		*p = 0;
1019 }
1020 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1021 
1022 static void *inline_tx_skb_header(const struct sk_buff *skb,
1023 				  const struct sge_txq *q,  void *pos,
1024 				  int length)
1025 {
1026 	u64 *p;
1027 	int left = (void *)q->stat - pos;
1028 
1029 	if (likely(length <= left)) {
1030 		memcpy(pos, skb->data, length);
1031 		pos += length;
1032 	} else {
1033 		memcpy(pos, skb->data, left);
1034 		memcpy(q->desc, skb->data + left, length - left);
1035 		pos = (void *)q->desc + (length - left);
1036 	}
1037 	/* 0-pad to multiple of 16 */
1038 	p = PTR_ALIGN(pos, 8);
1039 	if ((uintptr_t)p & 8) {
1040 		*p = 0;
1041 		return p + 1;
1042 	}
1043 	return p;
1044 }
1045 
1046 /*
1047  * Figure out what HW csum a packet wants and return the appropriate control
1048  * bits.
1049  */
1050 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1051 {
1052 	int csum_type;
1053 	bool inner_hdr_csum = false;
1054 	u16 proto, ver;
1055 
1056 	if (skb->encapsulation &&
1057 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1058 		inner_hdr_csum = true;
1059 
1060 	if (inner_hdr_csum) {
1061 		ver = inner_ip_hdr(skb)->version;
1062 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1063 			inner_ipv6_hdr(skb)->nexthdr;
1064 	} else {
1065 		ver = ip_hdr(skb)->version;
1066 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1067 			ipv6_hdr(skb)->nexthdr;
1068 	}
1069 
1070 	if (ver == 4) {
1071 		if (proto == IPPROTO_TCP)
1072 			csum_type = TX_CSUM_TCPIP;
1073 		else if (proto == IPPROTO_UDP)
1074 			csum_type = TX_CSUM_UDPIP;
1075 		else {
1076 nocsum:			/*
1077 			 * unknown protocol, disable HW csum
1078 			 * and hope a bad packet is detected
1079 			 */
1080 			return TXPKT_L4CSUM_DIS_F;
1081 		}
1082 	} else {
1083 		/*
1084 		 * this doesn't work with extension headers
1085 		 */
1086 		if (proto == IPPROTO_TCP)
1087 			csum_type = TX_CSUM_TCPIP6;
1088 		else if (proto == IPPROTO_UDP)
1089 			csum_type = TX_CSUM_UDPIP6;
1090 		else
1091 			goto nocsum;
1092 	}
1093 
1094 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1095 		int eth_hdr_len, l4_len;
1096 		u64 hdr_len;
1097 
1098 		if (inner_hdr_csum) {
1099 			/* This allows checksum offload for all encapsulated
1100 			 * packets like GRE etc..
1101 			 */
1102 			l4_len = skb_inner_network_header_len(skb);
1103 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1104 		} else {
1105 			l4_len = skb_network_header_len(skb);
1106 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1107 		}
1108 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1109 
1110 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1111 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1112 		else
1113 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1114 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1115 	} else {
1116 		int start = skb_transport_offset(skb);
1117 
1118 		return TXPKT_CSUM_TYPE_V(csum_type) |
1119 			TXPKT_CSUM_START_V(start) |
1120 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1121 	}
1122 }
1123 
1124 static void eth_txq_stop(struct sge_eth_txq *q)
1125 {
1126 	netif_tx_stop_queue(q->txq);
1127 	q->q.stops++;
1128 }
1129 
1130 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1131 {
1132 	q->in_use += n;
1133 	q->pidx += n;
1134 	if (q->pidx >= q->size)
1135 		q->pidx -= q->size;
1136 }
1137 
1138 #ifdef CONFIG_CHELSIO_T4_FCOE
1139 static inline int
1140 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1141 		  const struct port_info *pi, u64 *cntrl)
1142 {
1143 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1144 
1145 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1146 		return 0;
1147 
1148 	if (skb->protocol != htons(ETH_P_FCOE))
1149 		return 0;
1150 
1151 	skb_reset_mac_header(skb);
1152 	skb->mac_len = sizeof(struct ethhdr);
1153 
1154 	skb_set_network_header(skb, skb->mac_len);
1155 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1156 
1157 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1158 		return -ENOTSUPP;
1159 
1160 	/* FC CRC offload */
1161 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1162 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1163 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1164 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1165 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1166 	return 0;
1167 }
1168 #endif /* CONFIG_CHELSIO_T4_FCOE */
1169 
1170 /* Returns tunnel type if hardware supports offloading of the same.
1171  * It is called only for T5 and onwards.
1172  */
1173 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1174 {
1175 	u8 l4_hdr = 0;
1176 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1177 	struct port_info *pi = netdev_priv(skb->dev);
1178 	struct adapter *adapter = pi->adapter;
1179 
1180 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1181 	    skb->inner_protocol != htons(ETH_P_TEB))
1182 		return tnl_type;
1183 
1184 	switch (vlan_get_protocol(skb)) {
1185 	case htons(ETH_P_IP):
1186 		l4_hdr = ip_hdr(skb)->protocol;
1187 		break;
1188 	case htons(ETH_P_IPV6):
1189 		l4_hdr = ipv6_hdr(skb)->nexthdr;
1190 		break;
1191 	default:
1192 		return tnl_type;
1193 	}
1194 
1195 	switch (l4_hdr) {
1196 	case IPPROTO_UDP:
1197 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1198 			tnl_type = TX_TNL_TYPE_VXLAN;
1199 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1200 			tnl_type = TX_TNL_TYPE_GENEVE;
1201 		break;
1202 	default:
1203 		return tnl_type;
1204 	}
1205 
1206 	return tnl_type;
1207 }
1208 
1209 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1210 				   struct cpl_tx_tnl_lso *tnl_lso,
1211 				   enum cpl_tx_tnl_lso_type tnl_type)
1212 {
1213 	u32 val;
1214 	int in_eth_xtra_len;
1215 	int l3hdr_len = skb_network_header_len(skb);
1216 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1217 	const struct skb_shared_info *ssi = skb_shinfo(skb);
1218 	bool v6 = (ip_hdr(skb)->version == 6);
1219 
1220 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1221 	      CPL_TX_TNL_LSO_FIRST_F |
1222 	      CPL_TX_TNL_LSO_LAST_F |
1223 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1224 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1225 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1226 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1227 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1228 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1229 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1230 
1231 	tnl_lso->IpIdOffsetOut = 0;
1232 
1233 	/* Get the tunnel header length */
1234 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1235 	in_eth_xtra_len = skb_inner_network_header(skb) -
1236 			  skb_inner_mac_header(skb) - ETH_HLEN;
1237 
1238 	switch (tnl_type) {
1239 	case TX_TNL_TYPE_VXLAN:
1240 	case TX_TNL_TYPE_GENEVE:
1241 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1242 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1243 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1244 		break;
1245 	default:
1246 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1247 		break;
1248 	}
1249 
1250 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1251 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1252 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1253 
1254 	tnl_lso->r1 = 0;
1255 
1256 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1257 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1258 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1259 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1260 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1261 
1262 	tnl_lso->IpIdOffset = htons(0);
1263 
1264 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1265 	tnl_lso->TCPSeqOffset = htonl(0);
1266 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1267 }
1268 
1269 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1270 				 struct cpl_tx_pkt_lso_core *lso)
1271 {
1272 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1273 	int l3hdr_len = skb_network_header_len(skb);
1274 	const struct skb_shared_info *ssi;
1275 	bool ipv6 = false;
1276 
1277 	ssi = skb_shinfo(skb);
1278 	if (ssi->gso_type & SKB_GSO_TCPV6)
1279 		ipv6 = true;
1280 
1281 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1282 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1283 			      LSO_IPV6_V(ipv6) |
1284 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1285 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1286 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1287 	lso->ipid_ofst = htons(0);
1288 	lso->mss = htons(ssi->gso_size);
1289 	lso->seqno_offset = htonl(0);
1290 	if (is_t4(adap->params.chip))
1291 		lso->len = htonl(skb->len);
1292 	else
1293 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1294 
1295 	return (void *)(lso + 1);
1296 }
1297 
1298 /**
1299  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1300  *	@adap: the adapter
1301  *	@eq: the Ethernet TX Queue
1302  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1303  *
1304  *	We're typically called here to update the state of an Ethernet TX
1305  *	Queue with respect to the hardware's progress in consuming the TX
1306  *	Work Requests that we've put on that Egress Queue.  This happens
1307  *	when we get Egress Queue Update messages and also prophylactically
1308  *	in regular timer-based Ethernet TX Queue maintenance.
1309  */
1310 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1311 				 int maxreclaim)
1312 {
1313 	unsigned int reclaimed, hw_cidx;
1314 	struct sge_txq *q = &eq->q;
1315 	int hw_in_use;
1316 
1317 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1318 		return 0;
1319 
1320 	/* Reclaim pending completed TX Descriptors. */
1321 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1322 
1323 	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1324 	hw_in_use = q->pidx - hw_cidx;
1325 	if (hw_in_use < 0)
1326 		hw_in_use += q->size;
1327 
1328 	/* If the TX Queue is currently stopped and there's now more than half
1329 	 * the queue available, restart it.  Otherwise bail out since the rest
1330 	 * of what we want do here is with the possibility of shipping any
1331 	 * currently buffered Coalesced TX Work Request.
1332 	 */
1333 	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1334 		netif_tx_wake_queue(eq->txq);
1335 		eq->q.restarts++;
1336 	}
1337 
1338 	__netif_tx_unlock(eq->txq);
1339 	return reclaimed;
1340 }
1341 
1342 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1343 				     struct net_device *dev,
1344 				     u32 min_pkt_len)
1345 {
1346 	u32 max_pkt_len;
1347 
1348 	/* The chip min packet length is 10 octets but some firmware
1349 	 * commands have a minimum packet length requirement. So, play
1350 	 * safe and reject anything shorter than @min_pkt_len.
1351 	 */
1352 	if (unlikely(skb->len < min_pkt_len))
1353 		return -EINVAL;
1354 
1355 	/* Discard the packet if the length is greater than mtu */
1356 	max_pkt_len = ETH_HLEN + dev->mtu;
1357 
1358 	if (skb_vlan_tagged(skb))
1359 		max_pkt_len += VLAN_HLEN;
1360 
1361 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1362 		return -EINVAL;
1363 
1364 	return 0;
1365 }
1366 
1367 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1368 			     u32 hdr_len)
1369 {
1370 	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1371 	wr->u.udpseg.ethlen = skb_network_offset(skb);
1372 	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1373 	wr->u.udpseg.udplen = sizeof(struct udphdr);
1374 	wr->u.udpseg.rtplen = 0;
1375 	wr->u.udpseg.r4 = 0;
1376 	if (skb_shinfo(skb)->gso_size)
1377 		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1378 	else
1379 		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1380 	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1381 	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1382 
1383 	return (void *)(wr + 1);
1384 }
1385 
1386 /**
1387  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1388  *	@skb: the packet
1389  *	@dev: the egress net device
1390  *
1391  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1392  */
1393 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1394 {
1395 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1396 	bool ptp_enabled = is_ptp_enabled(skb, dev);
1397 	unsigned int last_desc, flits, ndesc;
1398 	u32 wr_mid, ctrl0, op, sgl_off = 0;
1399 	const struct skb_shared_info *ssi;
1400 	int len, qidx, credits, ret, left;
1401 	struct tx_sw_desc *sgl_sdesc;
1402 	struct fw_eth_tx_eo_wr *eowr;
1403 	struct fw_eth_tx_pkt_wr *wr;
1404 	struct cpl_tx_pkt_core *cpl;
1405 	const struct port_info *pi;
1406 	bool immediate = false;
1407 	u64 cntrl, *end, *sgl;
1408 	struct sge_eth_txq *q;
1409 	unsigned int chip_ver;
1410 	struct adapter *adap;
1411 
1412 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1413 	if (ret)
1414 		goto out_free;
1415 
1416 	pi = netdev_priv(dev);
1417 	adap = pi->adapter;
1418 	ssi = skb_shinfo(skb);
1419 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1420 	if (xfrm_offload(skb) && !ssi->gso_size)
1421 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1422 #endif /* CHELSIO_IPSEC_INLINE */
1423 
1424 #ifdef CONFIG_CHELSIO_TLS_DEVICE
1425 	if (skb->decrypted)
1426 		return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1427 #endif /* CHELSIO_TLS_DEVICE */
1428 
1429 	qidx = skb_get_queue_mapping(skb);
1430 	if (ptp_enabled) {
1431 		if (!(adap->ptp_tx_skb)) {
1432 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1433 			adap->ptp_tx_skb = skb_get(skb);
1434 		} else {
1435 			goto out_free;
1436 		}
1437 		q = &adap->sge.ptptxq;
1438 	} else {
1439 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1440 	}
1441 	skb_tx_timestamp(skb);
1442 
1443 	reclaim_completed_tx(adap, &q->q, -1, true);
1444 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1445 
1446 #ifdef CONFIG_CHELSIO_T4_FCOE
1447 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1448 	if (unlikely(ret == -EOPNOTSUPP))
1449 		goto out_free;
1450 #endif /* CONFIG_CHELSIO_T4_FCOE */
1451 
1452 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1453 	flits = calc_tx_flits(skb, chip_ver);
1454 	ndesc = flits_to_desc(flits);
1455 	credits = txq_avail(&q->q) - ndesc;
1456 
1457 	if (unlikely(credits < 0)) {
1458 		eth_txq_stop(q);
1459 		dev_err(adap->pdev_dev,
1460 			"%s: Tx ring %u full while queue awake!\n",
1461 			dev->name, qidx);
1462 		return NETDEV_TX_BUSY;
1463 	}
1464 
1465 	if (is_eth_imm(skb, chip_ver))
1466 		immediate = true;
1467 
1468 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1469 		tnl_type = cxgb_encap_offload_supported(skb);
1470 
1471 	last_desc = q->q.pidx + ndesc - 1;
1472 	if (last_desc >= q->q.size)
1473 		last_desc -= q->q.size;
1474 	sgl_sdesc = &q->q.sdesc[last_desc];
1475 
1476 	if (!immediate &&
1477 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1478 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1479 		q->mapping_err++;
1480 		goto out_free;
1481 	}
1482 
1483 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1484 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1485 		/* After we're done injecting the Work Request for this
1486 		 * packet, we'll be below our "stop threshold" so stop the TX
1487 		 * Queue now and schedule a request for an SGE Egress Queue
1488 		 * Update message. The queue will get started later on when
1489 		 * the firmware processes this Work Request and sends us an
1490 		 * Egress Queue Status Update message indicating that space
1491 		 * has opened up.
1492 		 */
1493 		eth_txq_stop(q);
1494 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1495 	}
1496 
1497 	wr = (void *)&q->q.desc[q->q.pidx];
1498 	eowr = (void *)&q->q.desc[q->q.pidx];
1499 	wr->equiq_to_len16 = htonl(wr_mid);
1500 	wr->r3 = cpu_to_be64(0);
1501 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1502 		end = (u64 *)eowr + flits;
1503 	else
1504 		end = (u64 *)wr + flits;
1505 
1506 	len = immediate ? skb->len : 0;
1507 	len += sizeof(*cpl);
1508 	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1509 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1510 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1511 
1512 		if (tnl_type)
1513 			len += sizeof(*tnl_lso);
1514 		else
1515 			len += sizeof(*lso);
1516 
1517 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1518 				       FW_WR_IMMDLEN_V(len));
1519 		if (tnl_type) {
1520 			struct iphdr *iph = ip_hdr(skb);
1521 
1522 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1523 			cpl = (void *)(tnl_lso + 1);
1524 			/* Driver is expected to compute partial checksum that
1525 			 * does not include the IP Total Length.
1526 			 */
1527 			if (iph->version == 4) {
1528 				iph->check = 0;
1529 				iph->tot_len = 0;
1530 				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1531 			}
1532 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1533 				cntrl = hwcsum(adap->params.chip, skb);
1534 		} else {
1535 			cpl = write_tso_wr(adap, skb, lso);
1536 			cntrl = hwcsum(adap->params.chip, skb);
1537 		}
1538 		sgl = (u64 *)(cpl + 1); /* sgl start here */
1539 		q->tso++;
1540 		q->tx_cso += ssi->gso_segs;
1541 	} else if (ssi->gso_size) {
1542 		u64 *start;
1543 		u32 hdrlen;
1544 
1545 		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1546 		len += hdrlen;
1547 		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1548 					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1549 		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1550 		cntrl = hwcsum(adap->params.chip, skb);
1551 
1552 		start = (u64 *)(cpl + 1);
1553 		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1554 						  hdrlen);
1555 		if (unlikely(start > sgl)) {
1556 			left = (u8 *)end - (u8 *)q->q.stat;
1557 			end = (void *)q->q.desc + left;
1558 		}
1559 		sgl_off = hdrlen;
1560 		q->uso++;
1561 		q->tx_cso += ssi->gso_segs;
1562 	} else {
1563 		if (ptp_enabled)
1564 			op = FW_PTP_TX_PKT_WR;
1565 		else
1566 			op = FW_ETH_TX_PKT_WR;
1567 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1568 				       FW_WR_IMMDLEN_V(len));
1569 		cpl = (void *)(wr + 1);
1570 		sgl = (u64 *)(cpl + 1);
1571 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1572 			cntrl = hwcsum(adap->params.chip, skb) |
1573 				TXPKT_IPCSUM_DIS_F;
1574 			q->tx_cso++;
1575 		}
1576 	}
1577 
1578 	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1579 		/* If current position is already at the end of the
1580 		 * txq, reset the current to point to start of the queue
1581 		 * and update the end ptr as well.
1582 		 */
1583 		left = (u8 *)end - (u8 *)q->q.stat;
1584 		end = (void *)q->q.desc + left;
1585 		sgl = (void *)q->q.desc;
1586 	}
1587 
1588 	if (skb_vlan_tag_present(skb)) {
1589 		q->vlan_ins++;
1590 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1591 #ifdef CONFIG_CHELSIO_T4_FCOE
1592 		if (skb->protocol == htons(ETH_P_FCOE))
1593 			cntrl |= TXPKT_VLAN_V(
1594 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1595 #endif /* CONFIG_CHELSIO_T4_FCOE */
1596 	}
1597 
1598 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1599 		TXPKT_PF_V(adap->pf);
1600 	if (ptp_enabled)
1601 		ctrl0 |= TXPKT_TSTAMP_F;
1602 #ifdef CONFIG_CHELSIO_T4_DCB
1603 	if (is_t4(adap->params.chip))
1604 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1605 	else
1606 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1607 #endif
1608 	cpl->ctrl0 = htonl(ctrl0);
1609 	cpl->pack = htons(0);
1610 	cpl->len = htons(skb->len);
1611 	cpl->ctrl1 = cpu_to_be64(cntrl);
1612 
1613 	if (immediate) {
1614 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1615 		dev_consume_skb_any(skb);
1616 	} else {
1617 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1618 				sgl_sdesc->addr);
1619 		skb_orphan(skb);
1620 		sgl_sdesc->skb = skb;
1621 	}
1622 
1623 	txq_advance(&q->q, ndesc);
1624 
1625 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1626 	return NETDEV_TX_OK;
1627 
1628 out_free:
1629 	dev_kfree_skb_any(skb);
1630 	return NETDEV_TX_OK;
1631 }
1632 
1633 /* Constants ... */
1634 enum {
1635 	/* Egress Queue sizes, producer and consumer indices are all in units
1636 	 * of Egress Context Units bytes.  Note that as far as the hardware is
1637 	 * concerned, the free list is an Egress Queue (the host produces free
1638 	 * buffers which the hardware consumes) and free list entries are
1639 	 * 64-bit PCI DMA addresses.
1640 	 */
1641 	EQ_UNIT = SGE_EQ_IDXSIZE,
1642 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1643 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1644 
1645 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1646 			       sizeof(struct cpl_tx_pkt_lso_core) +
1647 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1648 };
1649 
1650 /**
1651  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1652  *	@skb: the packet
1653  *
1654  *	Returns whether an Ethernet packet is small enough to fit completely as
1655  *	immediate data.
1656  */
1657 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1658 {
1659 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1660 	 * which does not accommodate immediate data.  We could dike out all
1661 	 * of the support code for immediate data but that would tie our hands
1662 	 * too much if we ever want to enhace the firmware.  It would also
1663 	 * create more differences between the PF and VF Drivers.
1664 	 */
1665 	return false;
1666 }
1667 
1668 /**
1669  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1670  *	@skb: the packet
1671  *
1672  *	Returns the number of flits needed for a TX Work Request for the
1673  *	given Ethernet packet, including the needed WR and CPL headers.
1674  */
1675 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1676 {
1677 	unsigned int flits;
1678 
1679 	/* If the skb is small enough, we can pump it out as a work request
1680 	 * with only immediate data.  In that case we just have to have the
1681 	 * TX Packet header plus the skb data in the Work Request.
1682 	 */
1683 	if (t4vf_is_eth_imm(skb))
1684 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1685 				    sizeof(__be64));
1686 
1687 	/* Otherwise, we're going to have to construct a Scatter gather list
1688 	 * of the skb body and fragments.  We also include the flits necessary
1689 	 * for the TX Packet Work Request and CPL.  We always have a firmware
1690 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1691 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1692 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1693 	 * with an embedded TX Packet Write CPL message.
1694 	 */
1695 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1696 	if (skb_shinfo(skb)->gso_size)
1697 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1698 			  sizeof(struct cpl_tx_pkt_lso_core) +
1699 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1700 	else
1701 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1702 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1703 	return flits;
1704 }
1705 
1706 /**
1707  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1708  *	@skb: the packet
1709  *	@dev: the egress net device
1710  *
1711  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1712  */
1713 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1714 				     struct net_device *dev)
1715 {
1716 	unsigned int last_desc, flits, ndesc;
1717 	const struct skb_shared_info *ssi;
1718 	struct fw_eth_tx_pkt_vm_wr *wr;
1719 	struct tx_sw_desc *sgl_sdesc;
1720 	struct cpl_tx_pkt_core *cpl;
1721 	const struct port_info *pi;
1722 	struct sge_eth_txq *txq;
1723 	struct adapter *adapter;
1724 	int qidx, credits, ret;
1725 	size_t fw_hdr_copy_len;
1726 	u64 cntrl, *end;
1727 	u32 wr_mid;
1728 
1729 	/* The chip minimum packet length is 10 octets but the firmware
1730 	 * command that we are using requires that we copy the Ethernet header
1731 	 * (including the VLAN tag) into the header so we reject anything
1732 	 * smaller than that ...
1733 	 */
1734 	fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1735 			  sizeof(wr->ethtype) + sizeof(wr->vlantci);
1736 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1737 	if (ret)
1738 		goto out_free;
1739 
1740 	/* Figure out which TX Queue we're going to use. */
1741 	pi = netdev_priv(dev);
1742 	adapter = pi->adapter;
1743 	qidx = skb_get_queue_mapping(skb);
1744 	WARN_ON(qidx >= pi->nqsets);
1745 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1746 
1747 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1748 	 * transfers have completed.
1749 	 */
1750 	reclaim_completed_tx(adapter, &txq->q, -1, true);
1751 
1752 	/* Calculate the number of flits and TX Descriptors we're going to
1753 	 * need along with how many TX Descriptors will be left over after
1754 	 * we inject our Work Request.
1755 	 */
1756 	flits = t4vf_calc_tx_flits(skb);
1757 	ndesc = flits_to_desc(flits);
1758 	credits = txq_avail(&txq->q) - ndesc;
1759 
1760 	if (unlikely(credits < 0)) {
1761 		/* Not enough room for this packet's Work Request.  Stop the
1762 		 * TX Queue and return a "busy" condition.  The queue will get
1763 		 * started later on when the firmware informs us that space
1764 		 * has opened up.
1765 		 */
1766 		eth_txq_stop(txq);
1767 		dev_err(adapter->pdev_dev,
1768 			"%s: TX ring %u full while queue awake!\n",
1769 			dev->name, qidx);
1770 		return NETDEV_TX_BUSY;
1771 	}
1772 
1773 	last_desc = txq->q.pidx + ndesc - 1;
1774 	if (last_desc >= txq->q.size)
1775 		last_desc -= txq->q.size;
1776 	sgl_sdesc = &txq->q.sdesc[last_desc];
1777 
1778 	if (!t4vf_is_eth_imm(skb) &&
1779 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1780 				   sgl_sdesc->addr) < 0)) {
1781 		/* We need to map the skb into PCI DMA space (because it can't
1782 		 * be in-lined directly into the Work Request) and the mapping
1783 		 * operation failed.  Record the error and drop the packet.
1784 		 */
1785 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1786 		txq->mapping_err++;
1787 		goto out_free;
1788 	}
1789 
1790 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1791 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1792 		/* After we're done injecting the Work Request for this
1793 		 * packet, we'll be below our "stop threshold" so stop the TX
1794 		 * Queue now and schedule a request for an SGE Egress Queue
1795 		 * Update message.  The queue will get started later on when
1796 		 * the firmware processes this Work Request and sends us an
1797 		 * Egress Queue Status Update message indicating that space
1798 		 * has opened up.
1799 		 */
1800 		eth_txq_stop(txq);
1801 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1802 	}
1803 
1804 	/* Start filling in our Work Request.  Note that we do _not_ handle
1805 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1806 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1807 	 * do something else here.
1808 	 */
1809 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1810 	wr = (void *)&txq->q.desc[txq->q.pidx];
1811 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1812 	wr->r3[0] = cpu_to_be32(0);
1813 	wr->r3[1] = cpu_to_be32(0);
1814 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1815 	end = (u64 *)wr + flits;
1816 
1817 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1818 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1819 	 * just use a TX Packet CPL message.
1820 	 */
1821 	ssi = skb_shinfo(skb);
1822 	if (ssi->gso_size) {
1823 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1824 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1825 		int l3hdr_len = skb_network_header_len(skb);
1826 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1827 
1828 		wr->op_immdlen =
1829 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1830 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1831 						    sizeof(*cpl)));
1832 		 /* Fill in the LSO CPL message. */
1833 		lso->lso_ctrl =
1834 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1835 				    LSO_FIRST_SLICE_F |
1836 				    LSO_LAST_SLICE_F |
1837 				    LSO_IPV6_V(v6) |
1838 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1839 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1840 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1841 		lso->ipid_ofst = cpu_to_be16(0);
1842 		lso->mss = cpu_to_be16(ssi->gso_size);
1843 		lso->seqno_offset = cpu_to_be32(0);
1844 		if (is_t4(adapter->params.chip))
1845 			lso->len = cpu_to_be32(skb->len);
1846 		else
1847 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1848 
1849 		/* Set up TX Packet CPL pointer, control word and perform
1850 		 * accounting.
1851 		 */
1852 		cpl = (void *)(lso + 1);
1853 
1854 		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1855 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1856 		else
1857 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1858 
1859 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1860 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1861 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1862 		txq->tso++;
1863 		txq->tx_cso += ssi->gso_segs;
1864 	} else {
1865 		int len;
1866 
1867 		len = (t4vf_is_eth_imm(skb)
1868 		       ? skb->len + sizeof(*cpl)
1869 		       : sizeof(*cpl));
1870 		wr->op_immdlen =
1871 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1872 				    FW_WR_IMMDLEN_V(len));
1873 
1874 		/* Set up TX Packet CPL pointer, control word and perform
1875 		 * accounting.
1876 		 */
1877 		cpl = (void *)(wr + 1);
1878 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1879 			cntrl = hwcsum(adapter->params.chip, skb) |
1880 				TXPKT_IPCSUM_DIS_F;
1881 			txq->tx_cso++;
1882 		} else {
1883 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1884 		}
1885 	}
1886 
1887 	/* If there's a VLAN tag present, add that to the list of things to
1888 	 * do in this Work Request.
1889 	 */
1890 	if (skb_vlan_tag_present(skb)) {
1891 		txq->vlan_ins++;
1892 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1893 	}
1894 
1895 	 /* Fill in the TX Packet CPL message header. */
1896 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1897 				 TXPKT_INTF_V(pi->port_id) |
1898 				 TXPKT_PF_V(0));
1899 	cpl->pack = cpu_to_be16(0);
1900 	cpl->len = cpu_to_be16(skb->len);
1901 	cpl->ctrl1 = cpu_to_be64(cntrl);
1902 
1903 	/* Fill in the body of the TX Packet CPL message with either in-lined
1904 	 * data or a Scatter/Gather List.
1905 	 */
1906 	if (t4vf_is_eth_imm(skb)) {
1907 		/* In-line the packet's data and free the skb since we don't
1908 		 * need it any longer.
1909 		 */
1910 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1911 		dev_consume_skb_any(skb);
1912 	} else {
1913 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
1914 		 * message and retain a pointer to the skb so we can free it
1915 		 * later when its DMA completes.  (We store the skb pointer
1916 		 * in the Software Descriptor corresponding to the last TX
1917 		 * Descriptor used by the Work Request.)
1918 		 *
1919 		 * The retained skb will be freed when the corresponding TX
1920 		 * Descriptors are reclaimed after their DMAs complete.
1921 		 * However, this could take quite a while since, in general,
1922 		 * the hardware is set up to be lazy about sending DMA
1923 		 * completion notifications to us and we mostly perform TX
1924 		 * reclaims in the transmit routine.
1925 		 *
1926 		 * This is good for performamce but means that we rely on new
1927 		 * TX packets arriving to run the destructors of completed
1928 		 * packets, which open up space in their sockets' send queues.
1929 		 * Sometimes we do not get such new packets causing TX to
1930 		 * stall.  A single UDP transmitter is a good example of this
1931 		 * situation.  We have a clean up timer that periodically
1932 		 * reclaims completed packets but it doesn't run often enough
1933 		 * (nor do we want it to) to prevent lengthy stalls.  A
1934 		 * solution to this problem is to run the destructor early,
1935 		 * after the packet is queued but before it's DMAd.  A con is
1936 		 * that we lie to socket memory accounting, but the amount of
1937 		 * extra memory is reasonable (limited by the number of TX
1938 		 * descriptors), the packets do actually get freed quickly by
1939 		 * new packets almost always, and for protocols like TCP that
1940 		 * wait for acks to really free up the data the extra memory
1941 		 * is even less.  On the positive side we run the destructors
1942 		 * on the sending CPU rather than on a potentially different
1943 		 * completing CPU, usually a good thing.
1944 		 *
1945 		 * Run the destructor before telling the DMA engine about the
1946 		 * packet to make sure it doesn't complete and get freed
1947 		 * prematurely.
1948 		 */
1949 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1950 		struct sge_txq *tq = &txq->q;
1951 
1952 		/* If the Work Request header was an exact multiple of our TX
1953 		 * Descriptor length, then it's possible that the starting SGL
1954 		 * pointer lines up exactly with the end of our TX Descriptor
1955 		 * ring.  If that's the case, wrap around to the beginning
1956 		 * here ...
1957 		 */
1958 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1959 			sgl = (void *)tq->desc;
1960 			end = (void *)((void *)tq->desc +
1961 				       ((void *)end - (void *)tq->stat));
1962 		}
1963 
1964 		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
1965 		skb_orphan(skb);
1966 		sgl_sdesc->skb = skb;
1967 	}
1968 
1969 	/* Advance our internal TX Queue state, tell the hardware about
1970 	 * the new TX descriptors and return success.
1971 	 */
1972 	txq_advance(&txq->q, ndesc);
1973 
1974 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1975 	return NETDEV_TX_OK;
1976 
1977 out_free:
1978 	/* An error of some sort happened.  Free the TX skb and tell the
1979 	 * OS that we've "dealt" with the packet ...
1980 	 */
1981 	dev_kfree_skb_any(skb);
1982 	return NETDEV_TX_OK;
1983 }
1984 
1985 /**
1986  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1987  * @q: the SGE control Tx queue
1988  *
1989  * This is a variant of cxgb4_reclaim_completed_tx() that is used
1990  * for Tx queues that send only immediate data (presently just
1991  * the control queues) and	thus do not have any sk_buffs to release.
1992  */
1993 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1994 {
1995 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1996 	int reclaim = hw_cidx - q->cidx;
1997 
1998 	if (reclaim < 0)
1999 		reclaim += q->size;
2000 
2001 	q->in_use -= reclaim;
2002 	q->cidx = hw_cidx;
2003 }
2004 
2005 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2006 {
2007 	u32 val = *idx + n;
2008 
2009 	if (val >= max)
2010 		val -= max;
2011 
2012 	*idx = val;
2013 }
2014 
2015 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2016 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2017 {
2018 	struct tx_sw_desc *d;
2019 
2020 	d = &eosw_txq->desc[eosw_txq->last_cidx];
2021 	while (ndesc--) {
2022 		if (d->skb) {
2023 			if (d->addr[0]) {
2024 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2025 				memset(d->addr, 0, sizeof(d->addr));
2026 			}
2027 			dev_consume_skb_any(d->skb);
2028 			d->skb = NULL;
2029 		}
2030 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2031 				       eosw_txq->ndesc);
2032 		d = &eosw_txq->desc[eosw_txq->last_cidx];
2033 	}
2034 }
2035 
2036 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2037 {
2038 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2039 	eosw_txq->inuse += n;
2040 }
2041 
2042 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2043 				   struct sk_buff *skb)
2044 {
2045 	if (eosw_txq->inuse == eosw_txq->ndesc)
2046 		return -ENOMEM;
2047 
2048 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2049 	return 0;
2050 }
2051 
2052 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2053 {
2054 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2055 }
2056 
2057 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2058 				       struct sk_buff *skb, u32 hdr_len)
2059 {
2060 	u8 flits, nsgl = 0;
2061 	u32 wrlen;
2062 
2063 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2064 	if (skb_shinfo(skb)->gso_size &&
2065 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2066 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2067 
2068 	wrlen += roundup(hdr_len, 16);
2069 
2070 	/* Packet headers + WR + CPLs */
2071 	flits = DIV_ROUND_UP(wrlen, 8);
2072 
2073 	if (skb_shinfo(skb)->nr_frags > 0) {
2074 		if (skb_headlen(skb) - hdr_len)
2075 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2076 		else
2077 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2078 	} else if (skb->len - hdr_len) {
2079 		nsgl = sgl_len(1);
2080 	}
2081 
2082 	return flits + nsgl;
2083 }
2084 
2085 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2086 			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2087 			 u32 hdr_len, u32 wrlen)
2088 {
2089 	const struct skb_shared_info *ssi = skb_shinfo(skb);
2090 	struct cpl_tx_pkt_core *cpl;
2091 	u32 immd_len, wrlen16;
2092 	bool compl = false;
2093 	u8 ver, proto;
2094 
2095 	ver = ip_hdr(skb)->version;
2096 	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2097 
2098 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2099 	immd_len = sizeof(struct cpl_tx_pkt_core);
2100 	if (skb_shinfo(skb)->gso_size &&
2101 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2102 		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2103 	immd_len += hdr_len;
2104 
2105 	if (!eosw_txq->ncompl ||
2106 	    (eosw_txq->last_compl + wrlen16) >=
2107 	    (adap->params.ofldq_wr_cred / 2)) {
2108 		compl = true;
2109 		eosw_txq->ncompl++;
2110 		eosw_txq->last_compl = 0;
2111 	}
2112 
2113 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2114 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2115 				     FW_WR_COMPL_V(compl));
2116 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2117 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2118 	wr->r3 = 0;
2119 	if (proto == IPPROTO_UDP) {
2120 		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2121 	} else {
2122 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2123 		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2124 		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2125 		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2126 		wr->u.tcpseg.tsclk_tsoff = 0;
2127 		wr->u.tcpseg.r4 = 0;
2128 		wr->u.tcpseg.r5 = 0;
2129 		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2130 
2131 		if (ssi->gso_size) {
2132 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2133 
2134 			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2135 			cpl = write_tso_wr(adap, skb, lso);
2136 		} else {
2137 			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2138 			cpl = (void *)(wr + 1);
2139 		}
2140 	}
2141 
2142 	eosw_txq->cred -= wrlen16;
2143 	eosw_txq->last_compl += wrlen16;
2144 	return cpl;
2145 }
2146 
2147 static int ethofld_hard_xmit(struct net_device *dev,
2148 			     struct sge_eosw_txq *eosw_txq)
2149 {
2150 	struct port_info *pi = netdev2pinfo(dev);
2151 	struct adapter *adap = netdev2adap(dev);
2152 	u32 wrlen, wrlen16, hdr_len, data_len;
2153 	enum sge_eosw_state next_state;
2154 	u64 cntrl, *start, *end, *sgl;
2155 	struct sge_eohw_txq *eohw_txq;
2156 	struct cpl_tx_pkt_core *cpl;
2157 	struct fw_eth_tx_eo_wr *wr;
2158 	bool skip_eotx_wr = false;
2159 	struct tx_sw_desc *d;
2160 	struct sk_buff *skb;
2161 	int left, ret = 0;
2162 	u8 flits, ndesc;
2163 
2164 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2165 	spin_lock(&eohw_txq->lock);
2166 	reclaim_completed_tx_imm(&eohw_txq->q);
2167 
2168 	d = &eosw_txq->desc[eosw_txq->last_pidx];
2169 	skb = d->skb;
2170 	skb_tx_timestamp(skb);
2171 
2172 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2173 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2174 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2175 		hdr_len = skb->len;
2176 		data_len = 0;
2177 		flits = DIV_ROUND_UP(hdr_len, 8);
2178 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2179 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2180 		else
2181 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2182 		skip_eotx_wr = true;
2183 	} else {
2184 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2185 		data_len = skb->len - hdr_len;
2186 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2187 	}
2188 	ndesc = flits_to_desc(flits);
2189 	wrlen = flits * 8;
2190 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2191 
2192 	left = txq_avail(&eohw_txq->q) - ndesc;
2193 
2194 	/* If there are no descriptors left in hardware queues or no
2195 	 * CPL credits left in software queues, then wait for them
2196 	 * to come back and retry again. Note that we always request
2197 	 * for credits update via interrupt for every half credits
2198 	 * consumed. So, the interrupt will eventually restore the
2199 	 * credits and invoke the Tx path again.
2200 	 */
2201 	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2202 		ret = -ENOMEM;
2203 		goto out_unlock;
2204 	}
2205 
2206 	if (unlikely(skip_eotx_wr)) {
2207 		start = (u64 *)wr;
2208 		eosw_txq->state = next_state;
2209 		eosw_txq->cred -= wrlen16;
2210 		eosw_txq->ncompl++;
2211 		eosw_txq->last_compl = 0;
2212 		goto write_wr_headers;
2213 	}
2214 
2215 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2216 	cntrl = hwcsum(adap->params.chip, skb);
2217 	if (skb_vlan_tag_present(skb))
2218 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2219 
2220 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2221 				 TXPKT_INTF_V(pi->tx_chan) |
2222 				 TXPKT_PF_V(adap->pf));
2223 	cpl->pack = 0;
2224 	cpl->len = cpu_to_be16(skb->len);
2225 	cpl->ctrl1 = cpu_to_be64(cntrl);
2226 
2227 	start = (u64 *)(cpl + 1);
2228 
2229 write_wr_headers:
2230 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2231 					  hdr_len);
2232 	if (data_len) {
2233 		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2234 		if (unlikely(ret)) {
2235 			memset(d->addr, 0, sizeof(d->addr));
2236 			eohw_txq->mapping_err++;
2237 			goto out_unlock;
2238 		}
2239 
2240 		end = (u64 *)wr + flits;
2241 		if (unlikely(start > sgl)) {
2242 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2243 			end = (void *)eohw_txq->q.desc + left;
2244 		}
2245 
2246 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2247 			/* If current position is already at the end of the
2248 			 * txq, reset the current to point to start of the queue
2249 			 * and update the end ptr as well.
2250 			 */
2251 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2252 
2253 			end = (void *)eohw_txq->q.desc + left;
2254 			sgl = (void *)eohw_txq->q.desc;
2255 		}
2256 
2257 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2258 				d->addr);
2259 	}
2260 
2261 	if (skb_shinfo(skb)->gso_size) {
2262 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2263 			eohw_txq->uso++;
2264 		else
2265 			eohw_txq->tso++;
2266 		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2267 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2268 		eohw_txq->tx_cso++;
2269 	}
2270 
2271 	if (skb_vlan_tag_present(skb))
2272 		eohw_txq->vlan_ins++;
2273 
2274 	txq_advance(&eohw_txq->q, ndesc);
2275 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2276 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2277 
2278 out_unlock:
2279 	spin_unlock(&eohw_txq->lock);
2280 	return ret;
2281 }
2282 
2283 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2284 {
2285 	struct sk_buff *skb;
2286 	int pktcount, ret;
2287 
2288 	switch (eosw_txq->state) {
2289 	case CXGB4_EO_STATE_ACTIVE:
2290 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2291 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2292 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2293 		if (pktcount < 0)
2294 			pktcount += eosw_txq->ndesc;
2295 		break;
2296 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2297 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2298 	case CXGB4_EO_STATE_CLOSED:
2299 	default:
2300 		return;
2301 	}
2302 
2303 	while (pktcount--) {
2304 		skb = eosw_txq_peek(eosw_txq);
2305 		if (!skb) {
2306 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2307 					       eosw_txq->ndesc);
2308 			continue;
2309 		}
2310 
2311 		ret = ethofld_hard_xmit(dev, eosw_txq);
2312 		if (ret)
2313 			break;
2314 	}
2315 }
2316 
2317 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2318 				      struct net_device *dev)
2319 {
2320 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2321 	struct port_info *pi = netdev2pinfo(dev);
2322 	struct adapter *adap = netdev2adap(dev);
2323 	struct sge_eosw_txq *eosw_txq;
2324 	u32 qid;
2325 	int ret;
2326 
2327 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2328 	if (ret)
2329 		goto out_free;
2330 
2331 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2332 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2333 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2334 	spin_lock_bh(&eosw_txq->lock);
2335 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2336 		goto out_unlock;
2337 
2338 	ret = eosw_txq_enqueue(eosw_txq, skb);
2339 	if (ret)
2340 		goto out_unlock;
2341 
2342 	/* SKB is queued for processing until credits are available.
2343 	 * So, call the destructor now and we'll free the skb later
2344 	 * after it has been successfully transmitted.
2345 	 */
2346 	skb_orphan(skb);
2347 
2348 	eosw_txq_advance(eosw_txq, 1);
2349 	ethofld_xmit(dev, eosw_txq);
2350 	spin_unlock_bh(&eosw_txq->lock);
2351 	return NETDEV_TX_OK;
2352 
2353 out_unlock:
2354 	spin_unlock_bh(&eosw_txq->lock);
2355 out_free:
2356 	dev_kfree_skb_any(skb);
2357 	return NETDEV_TX_OK;
2358 }
2359 
2360 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2361 {
2362 	struct port_info *pi = netdev_priv(dev);
2363 	u16 qid = skb_get_queue_mapping(skb);
2364 
2365 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2366 		return cxgb4_vf_eth_xmit(skb, dev);
2367 
2368 	if (unlikely(qid >= pi->nqsets))
2369 		return cxgb4_ethofld_xmit(skb, dev);
2370 
2371 	if (is_ptp_enabled(skb, dev)) {
2372 		struct adapter *adap = netdev2adap(dev);
2373 		netdev_tx_t ret;
2374 
2375 		spin_lock(&adap->ptp_lock);
2376 		ret = cxgb4_eth_xmit(skb, dev);
2377 		spin_unlock(&adap->ptp_lock);
2378 		return ret;
2379 	}
2380 
2381 	return cxgb4_eth_xmit(skb, dev);
2382 }
2383 
2384 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2385 {
2386 	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2387 	int pidx = eosw_txq->pidx;
2388 	struct sk_buff *skb;
2389 
2390 	if (!pktcount)
2391 		return;
2392 
2393 	if (pktcount < 0)
2394 		pktcount += eosw_txq->ndesc;
2395 
2396 	while (pktcount--) {
2397 		pidx--;
2398 		if (pidx < 0)
2399 			pidx += eosw_txq->ndesc;
2400 
2401 		skb = eosw_txq->desc[pidx].skb;
2402 		if (skb) {
2403 			dev_consume_skb_any(skb);
2404 			eosw_txq->desc[pidx].skb = NULL;
2405 			eosw_txq->inuse--;
2406 		}
2407 	}
2408 
2409 	eosw_txq->pidx = eosw_txq->last_pidx + 1;
2410 }
2411 
2412 /**
2413  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2414  * @dev: netdevice
2415  * @eotid: ETHOFLD tid to bind/unbind
2416  * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2417  *
2418  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2419  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2420  * a traffic class.
2421  */
2422 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2423 {
2424 	struct port_info *pi = netdev2pinfo(dev);
2425 	struct adapter *adap = netdev2adap(dev);
2426 	enum sge_eosw_state next_state;
2427 	struct sge_eosw_txq *eosw_txq;
2428 	u32 len, len16, nparams = 6;
2429 	struct fw_flowc_wr *flowc;
2430 	struct eotid_entry *entry;
2431 	struct sge_ofld_rxq *rxq;
2432 	struct sk_buff *skb;
2433 	int ret = 0;
2434 
2435 	len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2436 	len16 = DIV_ROUND_UP(len, 16);
2437 
2438 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2439 	if (!entry)
2440 		return -ENOMEM;
2441 
2442 	eosw_txq = (struct sge_eosw_txq *)entry->data;
2443 	if (!eosw_txq)
2444 		return -ENOMEM;
2445 
2446 	skb = alloc_skb(len, GFP_KERNEL);
2447 	if (!skb)
2448 		return -ENOMEM;
2449 
2450 	spin_lock_bh(&eosw_txq->lock);
2451 	if (tc != FW_SCHED_CLS_NONE) {
2452 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2453 			goto out_unlock;
2454 
2455 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2456 	} else {
2457 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2458 			goto out_unlock;
2459 
2460 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2461 	}
2462 
2463 	flowc = __skb_put(skb, len);
2464 	memset(flowc, 0, len);
2465 
2466 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2467 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2468 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2469 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2470 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2471 					   FW_WR_COMPL_V(1));
2472 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2473 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2474 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2475 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2476 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2477 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2478 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2479 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2480 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2481 	flowc->mnemval[4].val = cpu_to_be32(tc);
2482 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2483 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2484 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2485 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2486 
2487 	/* Free up any pending skbs to ensure there's room for
2488 	 * termination FLOWC.
2489 	 */
2490 	if (tc == FW_SCHED_CLS_NONE)
2491 		eosw_txq_flush_pending_skbs(eosw_txq);
2492 
2493 	ret = eosw_txq_enqueue(eosw_txq, skb);
2494 	if (ret) {
2495 		dev_consume_skb_any(skb);
2496 		goto out_unlock;
2497 	}
2498 
2499 	eosw_txq->state = next_state;
2500 	eosw_txq->flowc_idx = eosw_txq->pidx;
2501 	eosw_txq_advance(eosw_txq, 1);
2502 	ethofld_xmit(dev, eosw_txq);
2503 
2504 out_unlock:
2505 	spin_unlock_bh(&eosw_txq->lock);
2506 	return ret;
2507 }
2508 
2509 /**
2510  *	is_imm - check whether a packet can be sent as immediate data
2511  *	@skb: the packet
2512  *
2513  *	Returns true if a packet can be sent as a WR with immediate data.
2514  */
2515 static inline int is_imm(const struct sk_buff *skb)
2516 {
2517 	return skb->len <= MAX_CTRL_WR_LEN;
2518 }
2519 
2520 /**
2521  *	ctrlq_check_stop - check if a control queue is full and should stop
2522  *	@q: the queue
2523  *	@wr: most recent WR written to the queue
2524  *
2525  *	Check if a control queue has become full and should be stopped.
2526  *	We clean up control queue descriptors very lazily, only when we are out.
2527  *	If the queue is still full after reclaiming any completed descriptors
2528  *	we suspend it and have the last WR wake it up.
2529  */
2530 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2531 {
2532 	reclaim_completed_tx_imm(&q->q);
2533 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2534 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2535 		q->q.stops++;
2536 		q->full = 1;
2537 	}
2538 }
2539 
2540 /**
2541  *	ctrl_xmit - send a packet through an SGE control Tx queue
2542  *	@q: the control queue
2543  *	@skb: the packet
2544  *
2545  *	Send a packet through an SGE control Tx queue.  Packets sent through
2546  *	a control queue must fit entirely as immediate data.
2547  */
2548 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2549 {
2550 	unsigned int ndesc;
2551 	struct fw_wr_hdr *wr;
2552 
2553 	if (unlikely(!is_imm(skb))) {
2554 		WARN_ON(1);
2555 		dev_kfree_skb(skb);
2556 		return NET_XMIT_DROP;
2557 	}
2558 
2559 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2560 	spin_lock(&q->sendq.lock);
2561 
2562 	if (unlikely(q->full)) {
2563 		skb->priority = ndesc;                  /* save for restart */
2564 		__skb_queue_tail(&q->sendq, skb);
2565 		spin_unlock(&q->sendq.lock);
2566 		return NET_XMIT_CN;
2567 	}
2568 
2569 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2570 	cxgb4_inline_tx_skb(skb, &q->q, wr);
2571 
2572 	txq_advance(&q->q, ndesc);
2573 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2574 		ctrlq_check_stop(q, wr);
2575 
2576 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2577 	spin_unlock(&q->sendq.lock);
2578 
2579 	kfree_skb(skb);
2580 	return NET_XMIT_SUCCESS;
2581 }
2582 
2583 /**
2584  *	restart_ctrlq - restart a suspended control queue
2585  *	@data: the control queue to restart
2586  *
2587  *	Resumes transmission on a suspended Tx control queue.
2588  */
2589 static void restart_ctrlq(unsigned long data)
2590 {
2591 	struct sk_buff *skb;
2592 	unsigned int written = 0;
2593 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2594 
2595 	spin_lock(&q->sendq.lock);
2596 	reclaim_completed_tx_imm(&q->q);
2597 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2598 
2599 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2600 		struct fw_wr_hdr *wr;
2601 		unsigned int ndesc = skb->priority;     /* previously saved */
2602 
2603 		written += ndesc;
2604 		/* Write descriptors and free skbs outside the lock to limit
2605 		 * wait times.  q->full is still set so new skbs will be queued.
2606 		 */
2607 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2608 		txq_advance(&q->q, ndesc);
2609 		spin_unlock(&q->sendq.lock);
2610 
2611 		cxgb4_inline_tx_skb(skb, &q->q, wr);
2612 		kfree_skb(skb);
2613 
2614 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2615 			unsigned long old = q->q.stops;
2616 
2617 			ctrlq_check_stop(q, wr);
2618 			if (q->q.stops != old) {          /* suspended anew */
2619 				spin_lock(&q->sendq.lock);
2620 				goto ringdb;
2621 			}
2622 		}
2623 		if (written > 16) {
2624 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2625 			written = 0;
2626 		}
2627 		spin_lock(&q->sendq.lock);
2628 	}
2629 	q->full = 0;
2630 ringdb:
2631 	if (written)
2632 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2633 	spin_unlock(&q->sendq.lock);
2634 }
2635 
2636 /**
2637  *	t4_mgmt_tx - send a management message
2638  *	@adap: the adapter
2639  *	@skb: the packet containing the management message
2640  *
2641  *	Send a management message through control queue 0.
2642  */
2643 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2644 {
2645 	int ret;
2646 
2647 	local_bh_disable();
2648 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2649 	local_bh_enable();
2650 	return ret;
2651 }
2652 
2653 /**
2654  *	is_ofld_imm - check whether a packet can be sent as immediate data
2655  *	@skb: the packet
2656  *
2657  *	Returns true if a packet can be sent as an offload WR with immediate
2658  *	data.  We currently use the same limit as for Ethernet packets.
2659  */
2660 static inline int is_ofld_imm(const struct sk_buff *skb)
2661 {
2662 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2663 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2664 
2665 	if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2666 		return skb->len <= SGE_MAX_WR_LEN;
2667 	else
2668 		return skb->len <= MAX_IMM_TX_PKT_LEN;
2669 }
2670 
2671 /**
2672  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2673  *	@skb: the packet
2674  *
2675  *	Returns the number of flits needed for the given offload packet.
2676  *	These packets are already fully constructed and no additional headers
2677  *	will be added.
2678  */
2679 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2680 {
2681 	unsigned int flits, cnt;
2682 
2683 	if (is_ofld_imm(skb))
2684 		return DIV_ROUND_UP(skb->len, 8);
2685 
2686 	flits = skb_transport_offset(skb) / 8U;   /* headers */
2687 	cnt = skb_shinfo(skb)->nr_frags;
2688 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2689 		cnt++;
2690 	return flits + sgl_len(cnt);
2691 }
2692 
2693 /**
2694  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2695  *	@q: the queue to stop
2696  *
2697  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2698  *	inability to map packets.  A periodic timer attempts to restart
2699  *	queues so marked.
2700  */
2701 static void txq_stop_maperr(struct sge_uld_txq *q)
2702 {
2703 	q->mapping_err++;
2704 	q->q.stops++;
2705 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2706 		q->adap->sge.txq_maperr);
2707 }
2708 
2709 /**
2710  *	ofldtxq_stop - stop an offload Tx queue that has become full
2711  *	@q: the queue to stop
2712  *	@wr: the Work Request causing the queue to become full
2713  *
2714  *	Stops an offload Tx queue that has become full and modifies the packet
2715  *	being written to request a wakeup.
2716  */
2717 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2718 {
2719 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2720 	q->q.stops++;
2721 	q->full = 1;
2722 }
2723 
2724 /**
2725  *	service_ofldq - service/restart a suspended offload queue
2726  *	@q: the offload queue
2727  *
2728  *	Services an offload Tx queue by moving packets from its Pending Send
2729  *	Queue to the Hardware TX ring.  The function starts and ends with the
2730  *	Send Queue locked, but drops the lock while putting the skb at the
2731  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2732  *	allows more skbs to be added to the Send Queue by other threads.
2733  *	The packet being processed at the head of the Pending Send Queue is
2734  *	left on the queue in case we experience DMA Mapping errors, etc.
2735  *	and need to give up and restart later.
2736  *
2737  *	service_ofldq() can be thought of as a task which opportunistically
2738  *	uses other threads execution contexts.  We use the Offload Queue
2739  *	boolean "service_ofldq_running" to make sure that only one instance
2740  *	is ever running at a time ...
2741  */
2742 static void service_ofldq(struct sge_uld_txq *q)
2743 	__must_hold(&q->sendq.lock)
2744 {
2745 	u64 *pos, *before, *end;
2746 	int credits;
2747 	struct sk_buff *skb;
2748 	struct sge_txq *txq;
2749 	unsigned int left;
2750 	unsigned int written = 0;
2751 	unsigned int flits, ndesc;
2752 
2753 	/* If another thread is currently in service_ofldq() processing the
2754 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2755 	 * that we're doing the work and continue.  Examining/modifying
2756 	 * the Offload Queue boolean "service_ofldq_running" must be done
2757 	 * while holding the Pending Send Queue Lock.
2758 	 */
2759 	if (q->service_ofldq_running)
2760 		return;
2761 	q->service_ofldq_running = true;
2762 
2763 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2764 		/* We drop the lock while we're working with the skb at the
2765 		 * head of the Pending Send Queue.  This allows more skbs to
2766 		 * be added to the Pending Send Queue while we're working on
2767 		 * this one.  We don't need to lock to guard the TX Ring
2768 		 * updates because only one thread of execution is ever
2769 		 * allowed into service_ofldq() at a time.
2770 		 */
2771 		spin_unlock(&q->sendq.lock);
2772 
2773 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2774 
2775 		flits = skb->priority;                /* previously saved */
2776 		ndesc = flits_to_desc(flits);
2777 		credits = txq_avail(&q->q) - ndesc;
2778 		BUG_ON(credits < 0);
2779 		if (unlikely(credits < TXQ_STOP_THRES))
2780 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2781 
2782 		pos = (u64 *)&q->q.desc[q->q.pidx];
2783 		if (is_ofld_imm(skb))
2784 			cxgb4_inline_tx_skb(skb, &q->q, pos);
2785 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2786 				       (dma_addr_t *)skb->head)) {
2787 			txq_stop_maperr(q);
2788 			spin_lock(&q->sendq.lock);
2789 			break;
2790 		} else {
2791 			int last_desc, hdr_len = skb_transport_offset(skb);
2792 
2793 			/* The WR headers  may not fit within one descriptor.
2794 			 * So we need to deal with wrap-around here.
2795 			 */
2796 			before = (u64 *)pos;
2797 			end = (u64 *)pos + flits;
2798 			txq = &q->q;
2799 			pos = (void *)inline_tx_skb_header(skb, &q->q,
2800 							   (void *)pos,
2801 							   hdr_len);
2802 			if (before > (u64 *)pos) {
2803 				left = (u8 *)end - (u8 *)txq->stat;
2804 				end = (void *)txq->desc + left;
2805 			}
2806 
2807 			/* If current position is already at the end of the
2808 			 * ofld queue, reset the current to point to
2809 			 * start of the queue and update the end ptr as well.
2810 			 */
2811 			if (pos == (u64 *)txq->stat) {
2812 				left = (u8 *)end - (u8 *)txq->stat;
2813 				end = (void *)txq->desc + left;
2814 				pos = (void *)txq->desc;
2815 			}
2816 
2817 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
2818 					end, hdr_len,
2819 					(dma_addr_t *)skb->head);
2820 #ifdef CONFIG_NEED_DMA_MAP_STATE
2821 			skb->dev = q->adap->port[0];
2822 			skb->destructor = deferred_unmap_destructor;
2823 #endif
2824 			last_desc = q->q.pidx + ndesc - 1;
2825 			if (last_desc >= q->q.size)
2826 				last_desc -= q->q.size;
2827 			q->q.sdesc[last_desc].skb = skb;
2828 		}
2829 
2830 		txq_advance(&q->q, ndesc);
2831 		written += ndesc;
2832 		if (unlikely(written > 32)) {
2833 			cxgb4_ring_tx_db(q->adap, &q->q, written);
2834 			written = 0;
2835 		}
2836 
2837 		/* Reacquire the Pending Send Queue Lock so we can unlink the
2838 		 * skb we've just successfully transferred to the TX Ring and
2839 		 * loop for the next skb which may be at the head of the
2840 		 * Pending Send Queue.
2841 		 */
2842 		spin_lock(&q->sendq.lock);
2843 		__skb_unlink(skb, &q->sendq);
2844 		if (is_ofld_imm(skb))
2845 			kfree_skb(skb);
2846 	}
2847 	if (likely(written))
2848 		cxgb4_ring_tx_db(q->adap, &q->q, written);
2849 
2850 	/*Indicate that no thread is processing the Pending Send Queue
2851 	 * currently.
2852 	 */
2853 	q->service_ofldq_running = false;
2854 }
2855 
2856 /**
2857  *	ofld_xmit - send a packet through an offload queue
2858  *	@q: the Tx offload queue
2859  *	@skb: the packet
2860  *
2861  *	Send an offload packet through an SGE offload queue.
2862  */
2863 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2864 {
2865 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
2866 	spin_lock(&q->sendq.lock);
2867 
2868 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
2869 	 * that results in this new skb being the only one on the queue, start
2870 	 * servicing it.  If there are other skbs already on the list, then
2871 	 * either the queue is currently being processed or it's been stopped
2872 	 * for some reason and it'll be restarted at a later time.  Restart
2873 	 * paths are triggered by events like experiencing a DMA Mapping Error
2874 	 * or filling the Hardware TX Ring.
2875 	 */
2876 	__skb_queue_tail(&q->sendq, skb);
2877 	if (q->sendq.qlen == 1)
2878 		service_ofldq(q);
2879 
2880 	spin_unlock(&q->sendq.lock);
2881 	return NET_XMIT_SUCCESS;
2882 }
2883 
2884 /**
2885  *	restart_ofldq - restart a suspended offload queue
2886  *	@data: the offload queue to restart
2887  *
2888  *	Resumes transmission on a suspended Tx offload queue.
2889  */
2890 static void restart_ofldq(unsigned long data)
2891 {
2892 	struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2893 
2894 	spin_lock(&q->sendq.lock);
2895 	q->full = 0;            /* the queue actually is completely empty now */
2896 	service_ofldq(q);
2897 	spin_unlock(&q->sendq.lock);
2898 }
2899 
2900 /**
2901  *	skb_txq - return the Tx queue an offload packet should use
2902  *	@skb: the packet
2903  *
2904  *	Returns the Tx queue an offload packet should use as indicated by bits
2905  *	1-15 in the packet's queue_mapping.
2906  */
2907 static inline unsigned int skb_txq(const struct sk_buff *skb)
2908 {
2909 	return skb->queue_mapping >> 1;
2910 }
2911 
2912 /**
2913  *	is_ctrl_pkt - return whether an offload packet is a control packet
2914  *	@skb: the packet
2915  *
2916  *	Returns whether an offload packet should use an OFLD or a CTRL
2917  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
2918  */
2919 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2920 {
2921 	return skb->queue_mapping & 1;
2922 }
2923 
2924 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2925 			   unsigned int tx_uld_type)
2926 {
2927 	struct sge_uld_txq_info *txq_info;
2928 	struct sge_uld_txq *txq;
2929 	unsigned int idx = skb_txq(skb);
2930 
2931 	if (unlikely(is_ctrl_pkt(skb))) {
2932 		/* Single ctrl queue is a requirement for LE workaround path */
2933 		if (adap->tids.nsftids)
2934 			idx = 0;
2935 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2936 	}
2937 
2938 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
2939 	if (unlikely(!txq_info)) {
2940 		WARN_ON(true);
2941 		return NET_XMIT_DROP;
2942 	}
2943 
2944 	txq = &txq_info->uldtxq[idx];
2945 	return ofld_xmit(txq, skb);
2946 }
2947 
2948 /**
2949  *	t4_ofld_send - send an offload packet
2950  *	@adap: the adapter
2951  *	@skb: the packet
2952  *
2953  *	Sends an offload packet.  We use the packet queue_mapping to select the
2954  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
2955  *	should be sent as regular or control, bits 1-15 select the queue.
2956  */
2957 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2958 {
2959 	int ret;
2960 
2961 	local_bh_disable();
2962 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2963 	local_bh_enable();
2964 	return ret;
2965 }
2966 
2967 /**
2968  *	cxgb4_ofld_send - send an offload packet
2969  *	@dev: the net device
2970  *	@skb: the packet
2971  *
2972  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
2973  *	intended for ULDs.
2974  */
2975 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2976 {
2977 	return t4_ofld_send(netdev2adap(dev), skb);
2978 }
2979 EXPORT_SYMBOL(cxgb4_ofld_send);
2980 
2981 static void *inline_tx_header(const void *src,
2982 			      const struct sge_txq *q,
2983 			      void *pos, int length)
2984 {
2985 	int left = (void *)q->stat - pos;
2986 	u64 *p;
2987 
2988 	if (likely(length <= left)) {
2989 		memcpy(pos, src, length);
2990 		pos += length;
2991 	} else {
2992 		memcpy(pos, src, left);
2993 		memcpy(q->desc, src + left, length - left);
2994 		pos = (void *)q->desc + (length - left);
2995 	}
2996 	/* 0-pad to multiple of 16 */
2997 	p = PTR_ALIGN(pos, 8);
2998 	if ((uintptr_t)p & 8) {
2999 		*p = 0;
3000 		return p + 1;
3001 	}
3002 	return p;
3003 }
3004 
3005 /**
3006  *      ofld_xmit_direct - copy a WR into offload queue
3007  *      @q: the Tx offload queue
3008  *      @src: location of WR
3009  *      @len: WR length
3010  *
3011  *      Copy an immediate WR into an uncontended SGE offload queue.
3012  */
3013 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3014 			    unsigned int len)
3015 {
3016 	unsigned int ndesc;
3017 	int credits;
3018 	u64 *pos;
3019 
3020 	/* Use the lower limit as the cut-off */
3021 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3022 		WARN_ON(1);
3023 		return NET_XMIT_DROP;
3024 	}
3025 
3026 	/* Don't return NET_XMIT_CN here as the current
3027 	 * implementation doesn't queue the request
3028 	 * using an skb when the following conditions not met
3029 	 */
3030 	if (!spin_trylock(&q->sendq.lock))
3031 		return NET_XMIT_DROP;
3032 
3033 	if (q->full || !skb_queue_empty(&q->sendq) ||
3034 	    q->service_ofldq_running) {
3035 		spin_unlock(&q->sendq.lock);
3036 		return NET_XMIT_DROP;
3037 	}
3038 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3039 	credits = txq_avail(&q->q) - ndesc;
3040 	pos = (u64 *)&q->q.desc[q->q.pidx];
3041 
3042 	/* ofldtxq_stop modifies WR header in-situ */
3043 	inline_tx_header(src, &q->q, pos, len);
3044 	if (unlikely(credits < TXQ_STOP_THRES))
3045 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3046 	txq_advance(&q->q, ndesc);
3047 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3048 
3049 	spin_unlock(&q->sendq.lock);
3050 	return NET_XMIT_SUCCESS;
3051 }
3052 
3053 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3054 		       const void *src, unsigned int len)
3055 {
3056 	struct sge_uld_txq_info *txq_info;
3057 	struct sge_uld_txq *txq;
3058 	struct adapter *adap;
3059 	int ret;
3060 
3061 	adap = netdev2adap(dev);
3062 
3063 	local_bh_disable();
3064 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3065 	if (unlikely(!txq_info)) {
3066 		WARN_ON(true);
3067 		local_bh_enable();
3068 		return NET_XMIT_DROP;
3069 	}
3070 	txq = &txq_info->uldtxq[idx];
3071 
3072 	ret = ofld_xmit_direct(txq, src, len);
3073 	local_bh_enable();
3074 	return net_xmit_eval(ret);
3075 }
3076 EXPORT_SYMBOL(cxgb4_immdata_send);
3077 
3078 /**
3079  *	t4_crypto_send - send crypto packet
3080  *	@adap: the adapter
3081  *	@skb: the packet
3082  *
3083  *	Sends crypto packet.  We use the packet queue_mapping to select the
3084  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3085  *	should be sent as regular or control, bits 1-15 select the queue.
3086  */
3087 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3088 {
3089 	int ret;
3090 
3091 	local_bh_disable();
3092 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3093 	local_bh_enable();
3094 	return ret;
3095 }
3096 
3097 /**
3098  *	cxgb4_crypto_send - send crypto packet
3099  *	@dev: the net device
3100  *	@skb: the packet
3101  *
3102  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3103  *	intended for ULDs.
3104  */
3105 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3106 {
3107 	return t4_crypto_send(netdev2adap(dev), skb);
3108 }
3109 EXPORT_SYMBOL(cxgb4_crypto_send);
3110 
3111 static inline void copy_frags(struct sk_buff *skb,
3112 			      const struct pkt_gl *gl, unsigned int offset)
3113 {
3114 	int i;
3115 
3116 	/* usually there's just one frag */
3117 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3118 			     gl->frags[0].offset + offset,
3119 			     gl->frags[0].size - offset);
3120 	skb_shinfo(skb)->nr_frags = gl->nfrags;
3121 	for (i = 1; i < gl->nfrags; i++)
3122 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3123 				     gl->frags[i].offset,
3124 				     gl->frags[i].size);
3125 
3126 	/* get a reference to the last page, we don't own it */
3127 	get_page(gl->frags[gl->nfrags - 1].page);
3128 }
3129 
3130 /**
3131  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3132  *	@gl: the gather list
3133  *	@skb_len: size of sk_buff main body if it carries fragments
3134  *	@pull_len: amount of data to move to the sk_buff's main body
3135  *
3136  *	Builds an sk_buff from the given packet gather list.  Returns the
3137  *	sk_buff or %NULL if sk_buff allocation failed.
3138  */
3139 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3140 				   unsigned int skb_len, unsigned int pull_len)
3141 {
3142 	struct sk_buff *skb;
3143 
3144 	/*
3145 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3146 	 * size, which is expected since buffers are at least PAGE_SIZEd.
3147 	 * In this case packets up to RX_COPY_THRES have only one fragment.
3148 	 */
3149 	if (gl->tot_len <= RX_COPY_THRES) {
3150 		skb = dev_alloc_skb(gl->tot_len);
3151 		if (unlikely(!skb))
3152 			goto out;
3153 		__skb_put(skb, gl->tot_len);
3154 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3155 	} else {
3156 		skb = dev_alloc_skb(skb_len);
3157 		if (unlikely(!skb))
3158 			goto out;
3159 		__skb_put(skb, pull_len);
3160 		skb_copy_to_linear_data(skb, gl->va, pull_len);
3161 
3162 		copy_frags(skb, gl, pull_len);
3163 		skb->len = gl->tot_len;
3164 		skb->data_len = skb->len - pull_len;
3165 		skb->truesize += skb->data_len;
3166 	}
3167 out:	return skb;
3168 }
3169 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3170 
3171 /**
3172  *	t4_pktgl_free - free a packet gather list
3173  *	@gl: the gather list
3174  *
3175  *	Releases the pages of a packet gather list.  We do not own the last
3176  *	page on the list and do not free it.
3177  */
3178 static void t4_pktgl_free(const struct pkt_gl *gl)
3179 {
3180 	int n;
3181 	const struct page_frag *p;
3182 
3183 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3184 		put_page(p->page);
3185 }
3186 
3187 /*
3188  * Process an MPS trace packet.  Give it an unused protocol number so it won't
3189  * be delivered to anyone and send it to the stack for capture.
3190  */
3191 static noinline int handle_trace_pkt(struct adapter *adap,
3192 				     const struct pkt_gl *gl)
3193 {
3194 	struct sk_buff *skb;
3195 
3196 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3197 	if (unlikely(!skb)) {
3198 		t4_pktgl_free(gl);
3199 		return 0;
3200 	}
3201 
3202 	if (is_t4(adap->params.chip))
3203 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3204 	else
3205 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3206 
3207 	skb_reset_mac_header(skb);
3208 	skb->protocol = htons(0xffff);
3209 	skb->dev = adap->port[0];
3210 	netif_receive_skb(skb);
3211 	return 0;
3212 }
3213 
3214 /**
3215  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3216  * @adap: the adapter
3217  * @hwtstamps: time stamp structure to update
3218  * @sgetstamp: 60bit iqe timestamp
3219  *
3220  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3221  * which is in Core Clock ticks into ktime_t and assign it
3222  **/
3223 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3224 				     struct skb_shared_hwtstamps *hwtstamps,
3225 				     u64 sgetstamp)
3226 {
3227 	u64 ns;
3228 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3229 
3230 	ns = div_u64(tmp, adap->params.vpd.cclk);
3231 
3232 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3233 	hwtstamps->hwtstamp = ns_to_ktime(ns);
3234 }
3235 
3236 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3237 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3238 {
3239 	struct adapter *adapter = rxq->rspq.adap;
3240 	struct sge *s = &adapter->sge;
3241 	struct port_info *pi;
3242 	int ret;
3243 	struct sk_buff *skb;
3244 
3245 	skb = napi_get_frags(&rxq->rspq.napi);
3246 	if (unlikely(!skb)) {
3247 		t4_pktgl_free(gl);
3248 		rxq->stats.rx_drops++;
3249 		return;
3250 	}
3251 
3252 	copy_frags(skb, gl, s->pktshift);
3253 	if (tnl_hdr_len)
3254 		skb->csum_level = 1;
3255 	skb->len = gl->tot_len - s->pktshift;
3256 	skb->data_len = skb->len;
3257 	skb->truesize += skb->data_len;
3258 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3259 	skb_record_rx_queue(skb, rxq->rspq.idx);
3260 	pi = netdev_priv(skb->dev);
3261 	if (pi->rxtstamp)
3262 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3263 					 gl->sgetstamp);
3264 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3265 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3266 			     PKT_HASH_TYPE_L3);
3267 
3268 	if (unlikely(pkt->vlan_ex)) {
3269 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3270 		rxq->stats.vlan_ex++;
3271 	}
3272 	ret = napi_gro_frags(&rxq->rspq.napi);
3273 	if (ret == GRO_HELD)
3274 		rxq->stats.lro_pkts++;
3275 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3276 		rxq->stats.lro_merged++;
3277 	rxq->stats.pkts++;
3278 	rxq->stats.rx_cso++;
3279 }
3280 
3281 enum {
3282 	RX_NON_PTP_PKT = 0,
3283 	RX_PTP_PKT_SUC = 1,
3284 	RX_PTP_PKT_ERR = 2
3285 };
3286 
3287 /**
3288  *     t4_systim_to_hwstamp - read hardware time stamp
3289  *     @adapter: the adapter
3290  *     @skb: the packet
3291  *
3292  *     Read Time Stamp from MPS packet and insert in skb which
3293  *     is forwarded to PTP application
3294  */
3295 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3296 					 struct sk_buff *skb)
3297 {
3298 	struct skb_shared_hwtstamps *hwtstamps;
3299 	struct cpl_rx_mps_pkt *cpl = NULL;
3300 	unsigned char *data;
3301 	int offset;
3302 
3303 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3304 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3305 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3306 		return RX_PTP_PKT_ERR;
3307 
3308 	data = skb->data + sizeof(*cpl);
3309 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3310 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3311 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3312 		return RX_PTP_PKT_ERR;
3313 
3314 	hwtstamps = skb_hwtstamps(skb);
3315 	memset(hwtstamps, 0, sizeof(*hwtstamps));
3316 	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3317 
3318 	return RX_PTP_PKT_SUC;
3319 }
3320 
3321 /**
3322  *     t4_rx_hststamp - Recv PTP Event Message
3323  *     @adapter: the adapter
3324  *     @rsp: the response queue descriptor holding the RX_PKT message
3325  *     @rxq: the response queue holding the RX_PKT message
3326  *     @skb: the packet
3327  *
3328  *     PTP enabled and MPS packet, read HW timestamp
3329  */
3330 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3331 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3332 {
3333 	int ret;
3334 
3335 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3336 		     !is_t4(adapter->params.chip))) {
3337 		ret = t4_systim_to_hwstamp(adapter, skb);
3338 		if (ret == RX_PTP_PKT_ERR) {
3339 			kfree_skb(skb);
3340 			rxq->stats.rx_drops++;
3341 		}
3342 		return ret;
3343 	}
3344 	return RX_NON_PTP_PKT;
3345 }
3346 
3347 /**
3348  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3349  *      @adapter: the adapter
3350  *      @skb: the packet
3351  *      @dev: the ingress net device
3352  *
3353  *      Read hardware timestamp for the loopback PTP Tx event message
3354  */
3355 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3356 			  struct net_device *dev)
3357 {
3358 	struct port_info *pi = netdev_priv(dev);
3359 
3360 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3361 		cxgb4_ptp_read_hwstamp(adapter, pi);
3362 		kfree_skb(skb);
3363 		return 0;
3364 	}
3365 	return 1;
3366 }
3367 
3368 /**
3369  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3370  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3371  *	@rsp: Response Entry pointer into Response Queue
3372  *	@gl: Gather List pointer
3373  *
3374  *	For adapters which support the SGE Doorbell Queue Timer facility,
3375  *	we configure the Ethernet TX Queues to send CIDX Updates to the
3376  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3377  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3378  *	potentially, higher CPU Interrupt load, but allows us to respond
3379  *	much more quickly to the CIDX Updates.  This is important for
3380  *	Upper Layer Software which isn't willing to have a large amount
3381  *	of TX Data outstanding before receiving DMA Completions.
3382  */
3383 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3384 				     const __be64 *rsp,
3385 				     const struct pkt_gl *gl)
3386 {
3387 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3388 	struct port_info *pi = netdev_priv(rspq->netdev);
3389 	struct adapter *adapter = rspq->adap;
3390 	struct sge *s = &adapter->sge;
3391 	struct sge_eth_txq *txq;
3392 
3393 	/* skip RSS header */
3394 	rsp++;
3395 
3396 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3397 	 */
3398 	if (unlikely(opcode == CPL_FW4_MSG &&
3399 		     ((const struct cpl_fw4_msg *)rsp)->type ==
3400 							FW_TYPE_RSSCPL)) {
3401 		rsp++;
3402 		opcode = ((const struct rss_header *)rsp)->opcode;
3403 		rsp++;
3404 	}
3405 
3406 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3407 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3408 			__func__, opcode);
3409 		return;
3410 	}
3411 
3412 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3413 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3414 }
3415 
3416 /**
3417  *	t4_ethrx_handler - process an ingress ethernet packet
3418  *	@q: the response queue that received the packet
3419  *	@rsp: the response queue descriptor holding the RX_PKT message
3420  *	@si: the gather list of packet fragments
3421  *
3422  *	Process an ingress ethernet packet and deliver it to the stack.
3423  */
3424 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3425 		     const struct pkt_gl *si)
3426 {
3427 	bool csum_ok;
3428 	struct sk_buff *skb;
3429 	const struct cpl_rx_pkt *pkt;
3430 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3431 	struct adapter *adapter = q->adap;
3432 	struct sge *s = &q->adap->sge;
3433 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3434 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3435 	u16 err_vec, tnl_hdr_len = 0;
3436 	struct port_info *pi;
3437 	int ret = 0;
3438 
3439 	/* If we're looking at TX Queue CIDX Update, handle that separately
3440 	 * and return.
3441 	 */
3442 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3443 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3444 		t4_tx_completion_handler(q, rsp, si);
3445 		return 0;
3446 	}
3447 
3448 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3449 		return handle_trace_pkt(q->adap, si);
3450 
3451 	pkt = (const struct cpl_rx_pkt *)rsp;
3452 	/* Compressed error vector is enabled for T6 only */
3453 	if (q->adap->params.tp.rx_pkt_encap) {
3454 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3455 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3456 	} else {
3457 		err_vec = be16_to_cpu(pkt->err_vec);
3458 	}
3459 
3460 	csum_ok = pkt->csum_calc && !err_vec &&
3461 		  (q->netdev->features & NETIF_F_RXCSUM);
3462 
3463 	if (err_vec)
3464 		rxq->stats.bad_rx_pkts++;
3465 
3466 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3467 	     tnl_hdr_len) &&
3468 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3469 		do_gro(rxq, si, pkt, tnl_hdr_len);
3470 		return 0;
3471 	}
3472 
3473 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3474 	if (unlikely(!skb)) {
3475 		t4_pktgl_free(si);
3476 		rxq->stats.rx_drops++;
3477 		return 0;
3478 	}
3479 	pi = netdev_priv(q->netdev);
3480 
3481 	/* Handle PTP Event Rx packet */
3482 	if (unlikely(pi->ptp_enable)) {
3483 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3484 		if (ret == RX_PTP_PKT_ERR)
3485 			return 0;
3486 	}
3487 	if (likely(!ret))
3488 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3489 
3490 	/* Handle the PTP Event Tx Loopback packet */
3491 	if (unlikely(pi->ptp_enable && !ret &&
3492 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3493 		     cxgb4_ptp_is_ptp_rx(skb))) {
3494 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3495 			return 0;
3496 	}
3497 
3498 	skb->protocol = eth_type_trans(skb, q->netdev);
3499 	skb_record_rx_queue(skb, q->idx);
3500 	if (skb->dev->features & NETIF_F_RXHASH)
3501 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3502 			     PKT_HASH_TYPE_L3);
3503 
3504 	rxq->stats.pkts++;
3505 
3506 	if (pi->rxtstamp)
3507 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3508 					 si->sgetstamp);
3509 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3510 		if (!pkt->ip_frag) {
3511 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3512 			rxq->stats.rx_cso++;
3513 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3514 			__sum16 c = (__force __sum16)pkt->csum;
3515 			skb->csum = csum_unfold(c);
3516 
3517 			if (tnl_hdr_len) {
3518 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3519 				skb->csum_level = 1;
3520 			} else {
3521 				skb->ip_summed = CHECKSUM_COMPLETE;
3522 			}
3523 			rxq->stats.rx_cso++;
3524 		}
3525 	} else {
3526 		skb_checksum_none_assert(skb);
3527 #ifdef CONFIG_CHELSIO_T4_FCOE
3528 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3529 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3530 
3531 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3532 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3533 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3534 				if (q->adap->params.tp.rx_pkt_encap)
3535 					csum_ok = err_vec &
3536 						  T6_COMPR_RXERR_SUM_F;
3537 				else
3538 					csum_ok = err_vec & RXERR_CSUM_F;
3539 				if (!csum_ok)
3540 					skb->ip_summed = CHECKSUM_UNNECESSARY;
3541 			}
3542 		}
3543 
3544 #undef CPL_RX_PKT_FLAGS
3545 #endif /* CONFIG_CHELSIO_T4_FCOE */
3546 	}
3547 
3548 	if (unlikely(pkt->vlan_ex)) {
3549 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3550 		rxq->stats.vlan_ex++;
3551 	}
3552 	skb_mark_napi_id(skb, &q->napi);
3553 	netif_receive_skb(skb);
3554 	return 0;
3555 }
3556 
3557 /**
3558  *	restore_rx_bufs - put back a packet's Rx buffers
3559  *	@si: the packet gather list
3560  *	@q: the SGE free list
3561  *	@frags: number of FL buffers to restore
3562  *
3563  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3564  *	have already been unmapped and are left unmapped, we mark them so to
3565  *	prevent further unmapping attempts.
3566  *
3567  *	This function undoes a series of @unmap_rx_buf calls when we find out
3568  *	that the current packet can't be processed right away afterall and we
3569  *	need to come back to it later.  This is a very rare event and there's
3570  *	no effort to make this particularly efficient.
3571  */
3572 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3573 			    int frags)
3574 {
3575 	struct rx_sw_desc *d;
3576 
3577 	while (frags--) {
3578 		if (q->cidx == 0)
3579 			q->cidx = q->size - 1;
3580 		else
3581 			q->cidx--;
3582 		d = &q->sdesc[q->cidx];
3583 		d->page = si->frags[frags].page;
3584 		d->dma_addr |= RX_UNMAPPED_BUF;
3585 		q->avail++;
3586 	}
3587 }
3588 
3589 /**
3590  *	is_new_response - check if a response is newly written
3591  *	@r: the response descriptor
3592  *	@q: the response queue
3593  *
3594  *	Returns true if a response descriptor contains a yet unprocessed
3595  *	response.
3596  */
3597 static inline bool is_new_response(const struct rsp_ctrl *r,
3598 				   const struct sge_rspq *q)
3599 {
3600 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3601 }
3602 
3603 /**
3604  *	rspq_next - advance to the next entry in a response queue
3605  *	@q: the queue
3606  *
3607  *	Updates the state of a response queue to advance it to the next entry.
3608  */
3609 static inline void rspq_next(struct sge_rspq *q)
3610 {
3611 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3612 	if (unlikely(++q->cidx == q->size)) {
3613 		q->cidx = 0;
3614 		q->gen ^= 1;
3615 		q->cur_desc = q->desc;
3616 	}
3617 }
3618 
3619 /**
3620  *	process_responses - process responses from an SGE response queue
3621  *	@q: the ingress queue to process
3622  *	@budget: how many responses can be processed in this round
3623  *
3624  *	Process responses from an SGE response queue up to the supplied budget.
3625  *	Responses include received packets as well as control messages from FW
3626  *	or HW.
3627  *
3628  *	Additionally choose the interrupt holdoff time for the next interrupt
3629  *	on this queue.  If the system is under memory shortage use a fairly
3630  *	long delay to help recovery.
3631  */
3632 static int process_responses(struct sge_rspq *q, int budget)
3633 {
3634 	int ret, rsp_type;
3635 	int budget_left = budget;
3636 	const struct rsp_ctrl *rc;
3637 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3638 	struct adapter *adapter = q->adap;
3639 	struct sge *s = &adapter->sge;
3640 
3641 	while (likely(budget_left)) {
3642 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3643 		if (!is_new_response(rc, q)) {
3644 			if (q->flush_handler)
3645 				q->flush_handler(q);
3646 			break;
3647 		}
3648 
3649 		dma_rmb();
3650 		rsp_type = RSPD_TYPE_G(rc->type_gen);
3651 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3652 			struct page_frag *fp;
3653 			struct pkt_gl si;
3654 			const struct rx_sw_desc *rsd;
3655 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3656 
3657 			if (len & RSPD_NEWBUF_F) {
3658 				if (likely(q->offset > 0)) {
3659 					free_rx_bufs(q->adap, &rxq->fl, 1);
3660 					q->offset = 0;
3661 				}
3662 				len = RSPD_LEN_G(len);
3663 			}
3664 			si.tot_len = len;
3665 
3666 			/* gather packet fragments */
3667 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3668 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3669 				bufsz = get_buf_size(adapter, rsd);
3670 				fp->page = rsd->page;
3671 				fp->offset = q->offset;
3672 				fp->size = min(bufsz, len);
3673 				len -= fp->size;
3674 				if (!len)
3675 					break;
3676 				unmap_rx_buf(q->adap, &rxq->fl);
3677 			}
3678 
3679 			si.sgetstamp = SGE_TIMESTAMP_G(
3680 					be64_to_cpu(rc->last_flit));
3681 			/*
3682 			 * Last buffer remains mapped so explicitly make it
3683 			 * coherent for CPU access.
3684 			 */
3685 			dma_sync_single_for_cpu(q->adap->pdev_dev,
3686 						get_buf_addr(rsd),
3687 						fp->size, DMA_FROM_DEVICE);
3688 
3689 			si.va = page_address(si.frags[0].page) +
3690 				si.frags[0].offset;
3691 			prefetch(si.va);
3692 
3693 			si.nfrags = frags + 1;
3694 			ret = q->handler(q, q->cur_desc, &si);
3695 			if (likely(ret == 0))
3696 				q->offset += ALIGN(fp->size, s->fl_align);
3697 			else
3698 				restore_rx_bufs(&si, &rxq->fl, frags);
3699 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3700 			ret = q->handler(q, q->cur_desc, NULL);
3701 		} else {
3702 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3703 		}
3704 
3705 		if (unlikely(ret)) {
3706 			/* couldn't process descriptor, back off for recovery */
3707 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3708 			break;
3709 		}
3710 
3711 		rspq_next(q);
3712 		budget_left--;
3713 	}
3714 
3715 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3716 		__refill_fl(q->adap, &rxq->fl);
3717 	return budget - budget_left;
3718 }
3719 
3720 /**
3721  *	napi_rx_handler - the NAPI handler for Rx processing
3722  *	@napi: the napi instance
3723  *	@budget: how many packets we can process in this round
3724  *
3725  *	Handler for new data events when using NAPI.  This does not need any
3726  *	locking or protection from interrupts as data interrupts are off at
3727  *	this point and other adapter interrupts do not interfere (the latter
3728  *	in not a concern at all with MSI-X as non-data interrupts then have
3729  *	a separate handler).
3730  */
3731 static int napi_rx_handler(struct napi_struct *napi, int budget)
3732 {
3733 	unsigned int params;
3734 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3735 	int work_done;
3736 	u32 val;
3737 
3738 	work_done = process_responses(q, budget);
3739 	if (likely(work_done < budget)) {
3740 		int timer_index;
3741 
3742 		napi_complete_done(napi, work_done);
3743 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3744 
3745 		if (q->adaptive_rx) {
3746 			if (work_done > max(timer_pkt_quota[timer_index],
3747 					    MIN_NAPI_WORK))
3748 				timer_index = (timer_index + 1);
3749 			else
3750 				timer_index = timer_index - 1;
3751 
3752 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3753 			q->next_intr_params =
3754 					QINTR_TIMER_IDX_V(timer_index) |
3755 					QINTR_CNT_EN_V(0);
3756 			params = q->next_intr_params;
3757 		} else {
3758 			params = q->next_intr_params;
3759 			q->next_intr_params = q->intr_params;
3760 		}
3761 	} else
3762 		params = QINTR_TIMER_IDX_V(7);
3763 
3764 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
3765 
3766 	/* If we don't have access to the new User GTS (T5+), use the old
3767 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3768 	 */
3769 	if (unlikely(q->bar2_addr == NULL)) {
3770 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3771 			     val | INGRESSQID_V((u32)q->cntxt_id));
3772 	} else {
3773 		writel(val | INGRESSQID_V(q->bar2_qid),
3774 		       q->bar2_addr + SGE_UDB_GTS);
3775 		wmb();
3776 	}
3777 	return work_done;
3778 }
3779 
3780 void cxgb4_ethofld_restart(unsigned long data)
3781 {
3782 	struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3783 	int pktcount;
3784 
3785 	spin_lock(&eosw_txq->lock);
3786 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3787 	if (pktcount < 0)
3788 		pktcount += eosw_txq->ndesc;
3789 
3790 	if (pktcount) {
3791 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3792 					 eosw_txq, pktcount);
3793 		eosw_txq->inuse -= pktcount;
3794 	}
3795 
3796 	/* There may be some packets waiting for completions. So,
3797 	 * attempt to send these packets now.
3798 	 */
3799 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
3800 	spin_unlock(&eosw_txq->lock);
3801 }
3802 
3803 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3804  * @q: the response queue that received the packet
3805  * @rsp: the response queue descriptor holding the CPL message
3806  * @si: the gather list of packet fragments
3807  *
3808  * Process a ETHOFLD Tx completion. Increment the cidx here, but
3809  * free up the descriptors in a tasklet later.
3810  */
3811 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3812 			     const struct pkt_gl *si)
3813 {
3814 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3815 
3816 	/* skip RSS header */
3817 	rsp++;
3818 
3819 	if (opcode == CPL_FW4_ACK) {
3820 		const struct cpl_fw4_ack *cpl;
3821 		struct sge_eosw_txq *eosw_txq;
3822 		struct eotid_entry *entry;
3823 		struct sk_buff *skb;
3824 		u32 hdr_len, eotid;
3825 		u8 flits, wrlen16;
3826 		int credits;
3827 
3828 		cpl = (const struct cpl_fw4_ack *)rsp;
3829 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3830 			q->adap->tids.eotid_base;
3831 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3832 		if (!entry)
3833 			goto out_done;
3834 
3835 		eosw_txq = (struct sge_eosw_txq *)entry->data;
3836 		if (!eosw_txq)
3837 			goto out_done;
3838 
3839 		spin_lock(&eosw_txq->lock);
3840 		credits = cpl->credits;
3841 		while (credits > 0) {
3842 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
3843 			if (!skb)
3844 				break;
3845 
3846 			if (unlikely((eosw_txq->state ==
3847 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3848 				      eosw_txq->state ==
3849 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3850 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
3851 				flits = DIV_ROUND_UP(skb->len, 8);
3852 				if (eosw_txq->state ==
3853 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3854 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3855 				else
3856 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3857 				complete(&eosw_txq->completion);
3858 			} else {
3859 				hdr_len = eth_get_headlen(eosw_txq->netdev,
3860 							  skb->data,
3861 							  skb_headlen(skb));
3862 				flits = ethofld_calc_tx_flits(q->adap, skb,
3863 							      hdr_len);
3864 			}
3865 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
3866 					       eosw_txq->ndesc);
3867 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3868 			credits -= wrlen16;
3869 		}
3870 
3871 		eosw_txq->cred += cpl->credits;
3872 		eosw_txq->ncompl--;
3873 
3874 		spin_unlock(&eosw_txq->lock);
3875 
3876 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3877 		 * if there were packets waiting for completion.
3878 		 */
3879 		tasklet_schedule(&eosw_txq->qresume_tsk);
3880 	}
3881 
3882 out_done:
3883 	return 0;
3884 }
3885 
3886 /*
3887  * The MSI-X interrupt handler for an SGE response queue.
3888  */
3889 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3890 {
3891 	struct sge_rspq *q = cookie;
3892 
3893 	napi_schedule(&q->napi);
3894 	return IRQ_HANDLED;
3895 }
3896 
3897 /*
3898  * Process the indirect interrupt entries in the interrupt queue and kick off
3899  * NAPI for each queue that has generated an entry.
3900  */
3901 static unsigned int process_intrq(struct adapter *adap)
3902 {
3903 	unsigned int credits;
3904 	const struct rsp_ctrl *rc;
3905 	struct sge_rspq *q = &adap->sge.intrq;
3906 	u32 val;
3907 
3908 	spin_lock(&adap->sge.intrq_lock);
3909 	for (credits = 0; ; credits++) {
3910 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3911 		if (!is_new_response(rc, q))
3912 			break;
3913 
3914 		dma_rmb();
3915 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3916 			unsigned int qid = ntohl(rc->pldbuflen_qid);
3917 
3918 			qid -= adap->sge.ingr_start;
3919 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
3920 		}
3921 
3922 		rspq_next(q);
3923 	}
3924 
3925 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3926 
3927 	/* If we don't have access to the new User GTS (T5+), use the old
3928 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3929 	 */
3930 	if (unlikely(q->bar2_addr == NULL)) {
3931 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3932 			     val | INGRESSQID_V(q->cntxt_id));
3933 	} else {
3934 		writel(val | INGRESSQID_V(q->bar2_qid),
3935 		       q->bar2_addr + SGE_UDB_GTS);
3936 		wmb();
3937 	}
3938 	spin_unlock(&adap->sge.intrq_lock);
3939 	return credits;
3940 }
3941 
3942 /*
3943  * The MSI interrupt handler, which handles data events from SGE response queues
3944  * as well as error and other async events as they all use the same MSI vector.
3945  */
3946 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3947 {
3948 	struct adapter *adap = cookie;
3949 
3950 	if (adap->flags & CXGB4_MASTER_PF)
3951 		t4_slow_intr_handler(adap);
3952 	process_intrq(adap);
3953 	return IRQ_HANDLED;
3954 }
3955 
3956 /*
3957  * Interrupt handler for legacy INTx interrupts.
3958  * Handles data events from SGE response queues as well as error and other
3959  * async events as they all use the same interrupt line.
3960  */
3961 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3962 {
3963 	struct adapter *adap = cookie;
3964 
3965 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3966 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3967 	    process_intrq(adap))
3968 		return IRQ_HANDLED;
3969 	return IRQ_NONE;             /* probably shared interrupt */
3970 }
3971 
3972 /**
3973  *	t4_intr_handler - select the top-level interrupt handler
3974  *	@adap: the adapter
3975  *
3976  *	Selects the top-level interrupt handler based on the type of interrupts
3977  *	(MSI-X, MSI, or INTx).
3978  */
3979 irq_handler_t t4_intr_handler(struct adapter *adap)
3980 {
3981 	if (adap->flags & CXGB4_USING_MSIX)
3982 		return t4_sge_intr_msix;
3983 	if (adap->flags & CXGB4_USING_MSI)
3984 		return t4_intr_msi;
3985 	return t4_intr_intx;
3986 }
3987 
3988 static void sge_rx_timer_cb(struct timer_list *t)
3989 {
3990 	unsigned long m;
3991 	unsigned int i;
3992 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3993 	struct sge *s = &adap->sge;
3994 
3995 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3996 		for (m = s->starving_fl[i]; m; m &= m - 1) {
3997 			struct sge_eth_rxq *rxq;
3998 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3999 			struct sge_fl *fl = s->egr_map[id];
4000 
4001 			clear_bit(id, s->starving_fl);
4002 			smp_mb__after_atomic();
4003 
4004 			if (fl_starving(adap, fl)) {
4005 				rxq = container_of(fl, struct sge_eth_rxq, fl);
4006 				if (napi_reschedule(&rxq->rspq.napi))
4007 					fl->starving++;
4008 				else
4009 					set_bit(id, s->starving_fl);
4010 			}
4011 		}
4012 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
4013 	 * global Master PF activities like checking for chip ingress stalls,
4014 	 * etc.
4015 	 */
4016 	if (!(adap->flags & CXGB4_MASTER_PF))
4017 		goto done;
4018 
4019 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4020 
4021 done:
4022 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4023 }
4024 
4025 static void sge_tx_timer_cb(struct timer_list *t)
4026 {
4027 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4028 	struct sge *s = &adap->sge;
4029 	unsigned long m, period;
4030 	unsigned int i, budget;
4031 
4032 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4033 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4034 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4035 			struct sge_uld_txq *txq = s->egr_map[id];
4036 
4037 			clear_bit(id, s->txq_maperr);
4038 			tasklet_schedule(&txq->qresume_tsk);
4039 		}
4040 
4041 	if (!is_t4(adap->params.chip)) {
4042 		struct sge_eth_txq *q = &s->ptptxq;
4043 		int avail;
4044 
4045 		spin_lock(&adap->ptp_lock);
4046 		avail = reclaimable(&q->q);
4047 
4048 		if (avail) {
4049 			free_tx_desc(adap, &q->q, avail, false);
4050 			q->q.in_use -= avail;
4051 		}
4052 		spin_unlock(&adap->ptp_lock);
4053 	}
4054 
4055 	budget = MAX_TIMER_TX_RECLAIM;
4056 	i = s->ethtxq_rover;
4057 	do {
4058 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4059 						       budget);
4060 		if (!budget)
4061 			break;
4062 
4063 		if (++i >= s->ethqsets)
4064 			i = 0;
4065 	} while (i != s->ethtxq_rover);
4066 	s->ethtxq_rover = i;
4067 
4068 	if (budget == 0) {
4069 		/* If we found too many reclaimable packets schedule a timer
4070 		 * in the near future to continue where we left off.
4071 		 */
4072 		period = 2;
4073 	} else {
4074 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4075 		 * at the normal period.
4076 		 */
4077 		period = TX_QCHECK_PERIOD;
4078 	}
4079 
4080 	mod_timer(&s->tx_timer, jiffies + period);
4081 }
4082 
4083 /**
4084  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4085  *	@adapter: the adapter
4086  *	@qid: the SGE Queue ID
4087  *	@qtype: the SGE Queue Type (Egress or Ingress)
4088  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4089  *
4090  *	Returns the BAR2 address for the SGE Queue Registers associated with
4091  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4092  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4093  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4094  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4095  */
4096 static void __iomem *bar2_address(struct adapter *adapter,
4097 				  unsigned int qid,
4098 				  enum t4_bar2_qtype qtype,
4099 				  unsigned int *pbar2_qid)
4100 {
4101 	u64 bar2_qoffset;
4102 	int ret;
4103 
4104 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4105 				&bar2_qoffset, pbar2_qid);
4106 	if (ret)
4107 		return NULL;
4108 
4109 	return adapter->bar2 + bar2_qoffset;
4110 }
4111 
4112 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4113  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4114  */
4115 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4116 		     struct net_device *dev, int intr_idx,
4117 		     struct sge_fl *fl, rspq_handler_t hnd,
4118 		     rspq_flush_handler_t flush_hnd, int cong)
4119 {
4120 	int ret, flsz = 0;
4121 	struct fw_iq_cmd c;
4122 	struct sge *s = &adap->sge;
4123 	struct port_info *pi = netdev_priv(dev);
4124 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4125 
4126 	/* Size needs to be multiple of 16, including status entry. */
4127 	iq->size = roundup(iq->size, 16);
4128 
4129 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4130 			      &iq->phys_addr, NULL, 0,
4131 			      dev_to_node(adap->pdev_dev));
4132 	if (!iq->desc)
4133 		return -ENOMEM;
4134 
4135 	memset(&c, 0, sizeof(c));
4136 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4137 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4138 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4139 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4140 				 FW_LEN16(c));
4141 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4142 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4143 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4144 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4145 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4146 							-intr_idx - 1));
4147 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4148 		FW_IQ_CMD_IQGTSMODE_F |
4149 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4150 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4151 	c.iqsize = htons(iq->size);
4152 	c.iqaddr = cpu_to_be64(iq->phys_addr);
4153 	if (cong >= 0)
4154 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4155 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4156 							:  FW_IQ_IQTYPE_OFLD));
4157 
4158 	if (fl) {
4159 		unsigned int chip_ver =
4160 			CHELSIO_CHIP_VERSION(adap->params.chip);
4161 
4162 		/* Allocate the ring for the hardware free list (with space
4163 		 * for its status page) along with the associated software
4164 		 * descriptor ring.  The free list size needs to be a multiple
4165 		 * of the Egress Queue Unit and at least 2 Egress Units larger
4166 		 * than the SGE's Egress Congrestion Threshold
4167 		 * (fl_starve_thres - 1).
4168 		 */
4169 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4170 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4171 		fl->size = roundup(fl->size, 8);
4172 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4173 				      sizeof(struct rx_sw_desc), &fl->addr,
4174 				      &fl->sdesc, s->stat_len,
4175 				      dev_to_node(adap->pdev_dev));
4176 		if (!fl->desc)
4177 			goto fl_nomem;
4178 
4179 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4180 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4181 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4182 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4183 					     FW_IQ_CMD_FL0PADEN_F);
4184 		if (cong >= 0)
4185 			c.iqns_to_fl0congen |=
4186 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4187 				      FW_IQ_CMD_FL0CONGCIF_F |
4188 				      FW_IQ_CMD_FL0CONGEN_F);
4189 		/* In T6, for egress queue type FL there is internal overhead
4190 		 * of 16B for header going into FLM module.  Hence the maximum
4191 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4192 		 * doesn't coalesce fetch requests if more than 64 bytes of
4193 		 * Free List pointers are provided, so we use a 128-byte Fetch
4194 		 * Burst Minimum there (T6 implements coalescing so we can use
4195 		 * the smaller 64-byte value there).
4196 		 */
4197 		c.fl0dcaen_to_fl0cidxfthresh =
4198 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4199 						   FETCHBURSTMIN_128B_X :
4200 						   FETCHBURSTMIN_64B_T6_X) |
4201 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4202 						   FETCHBURSTMAX_512B_X :
4203 						   FETCHBURSTMAX_256B_X));
4204 		c.fl0size = htons(flsz);
4205 		c.fl0addr = cpu_to_be64(fl->addr);
4206 	}
4207 
4208 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4209 	if (ret)
4210 		goto err;
4211 
4212 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4213 	iq->cur_desc = iq->desc;
4214 	iq->cidx = 0;
4215 	iq->gen = 1;
4216 	iq->next_intr_params = iq->intr_params;
4217 	iq->cntxt_id = ntohs(c.iqid);
4218 	iq->abs_id = ntohs(c.physiqid);
4219 	iq->bar2_addr = bar2_address(adap,
4220 				     iq->cntxt_id,
4221 				     T4_BAR2_QTYPE_INGRESS,
4222 				     &iq->bar2_qid);
4223 	iq->size--;                           /* subtract status entry */
4224 	iq->netdev = dev;
4225 	iq->handler = hnd;
4226 	iq->flush_handler = flush_hnd;
4227 
4228 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4229 	skb_queue_head_init(&iq->lro_mgr.lroq);
4230 
4231 	/* set offset to -1 to distinguish ingress queues without FL */
4232 	iq->offset = fl ? 0 : -1;
4233 
4234 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4235 
4236 	if (fl) {
4237 		fl->cntxt_id = ntohs(c.fl0id);
4238 		fl->avail = fl->pend_cred = 0;
4239 		fl->pidx = fl->cidx = 0;
4240 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4241 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4242 
4243 		/* Note, we must initialize the BAR2 Free List User Doorbell
4244 		 * information before refilling the Free List!
4245 		 */
4246 		fl->bar2_addr = bar2_address(adap,
4247 					     fl->cntxt_id,
4248 					     T4_BAR2_QTYPE_EGRESS,
4249 					     &fl->bar2_qid);
4250 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4251 	}
4252 
4253 	/* For T5 and later we attempt to set up the Congestion Manager values
4254 	 * of the new RX Ethernet Queue.  This should really be handled by
4255 	 * firmware because it's more complex than any host driver wants to
4256 	 * get involved with and it's different per chip and this is almost
4257 	 * certainly wrong.  Firmware would be wrong as well, but it would be
4258 	 * a lot easier to fix in one place ...  For now we do something very
4259 	 * simple (and hopefully less wrong).
4260 	 */
4261 	if (!is_t4(adap->params.chip) && cong >= 0) {
4262 		u32 param, val, ch_map = 0;
4263 		int i;
4264 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4265 
4266 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4267 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4268 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4269 		if (cong == 0) {
4270 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4271 		} else {
4272 			val =
4273 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4274 			for (i = 0; i < 4; i++) {
4275 				if (cong & (1 << i))
4276 					ch_map |= 1 << (i << cng_ch_bits_log);
4277 			}
4278 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4279 		}
4280 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4281 				    &param, &val);
4282 		if (ret)
4283 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4284 				 " Manager Context for Ingress Queue %d: %d\n",
4285 				 iq->cntxt_id, -ret);
4286 	}
4287 
4288 	return 0;
4289 
4290 fl_nomem:
4291 	ret = -ENOMEM;
4292 err:
4293 	if (iq->desc) {
4294 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4295 				  iq->desc, iq->phys_addr);
4296 		iq->desc = NULL;
4297 	}
4298 	if (fl && fl->desc) {
4299 		kfree(fl->sdesc);
4300 		fl->sdesc = NULL;
4301 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4302 				  fl->desc, fl->addr);
4303 		fl->desc = NULL;
4304 	}
4305 	return ret;
4306 }
4307 
4308 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4309 {
4310 	q->cntxt_id = id;
4311 	q->bar2_addr = bar2_address(adap,
4312 				    q->cntxt_id,
4313 				    T4_BAR2_QTYPE_EGRESS,
4314 				    &q->bar2_qid);
4315 	q->in_use = 0;
4316 	q->cidx = q->pidx = 0;
4317 	q->stops = q->restarts = 0;
4318 	q->stat = (void *)&q->desc[q->size];
4319 	spin_lock_init(&q->db_lock);
4320 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4321 }
4322 
4323 /**
4324  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4325  *	@adap: the adapter
4326  *	@txq: the SGE Ethernet TX Queue to initialize
4327  *	@dev: the Linux Network Device
4328  *	@netdevq: the corresponding Linux TX Queue
4329  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4330  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4331  */
4332 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4333 			 struct net_device *dev, struct netdev_queue *netdevq,
4334 			 unsigned int iqid, u8 dbqt)
4335 {
4336 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4337 	struct port_info *pi = netdev_priv(dev);
4338 	struct sge *s = &adap->sge;
4339 	struct fw_eq_eth_cmd c;
4340 	int ret, nentries;
4341 
4342 	/* Add status entries */
4343 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4344 
4345 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4346 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4347 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4348 			netdev_queue_numa_node_read(netdevq));
4349 	if (!txq->q.desc)
4350 		return -ENOMEM;
4351 
4352 	memset(&c, 0, sizeof(c));
4353 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4354 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4355 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4356 			    FW_EQ_ETH_CMD_VFN_V(0));
4357 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4358 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4359 
4360 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4361 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4362 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4363 	 * write the CIDX Updates into the Status Page at the end of the
4364 	 * TX Queue.
4365 	 */
4366 	c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4367 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4368 
4369 	c.fetchszm_to_iqid =
4370 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4371 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4372 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4373 
4374 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4375 	c.dcaen_to_eqsize =
4376 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4377 					    ? FETCHBURSTMIN_64B_X
4378 					    : FETCHBURSTMIN_64B_T6_X) |
4379 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4380 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4381 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4382 
4383 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4384 
4385 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4386 	 * currently configured Timer Index.  THis can be changed later via an
4387 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4388 	 * Doorbell Queue mode is currently automatically enabled in the
4389 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4390 	 */
4391 	if (dbqt)
4392 		c.timeren_timerix =
4393 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4394 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4395 
4396 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4397 	if (ret) {
4398 		kfree(txq->q.sdesc);
4399 		txq->q.sdesc = NULL;
4400 		dma_free_coherent(adap->pdev_dev,
4401 				  nentries * sizeof(struct tx_desc),
4402 				  txq->q.desc, txq->q.phys_addr);
4403 		txq->q.desc = NULL;
4404 		return ret;
4405 	}
4406 
4407 	txq->q.q_type = CXGB4_TXQ_ETH;
4408 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4409 	txq->txq = netdevq;
4410 	txq->tso = 0;
4411 	txq->uso = 0;
4412 	txq->tx_cso = 0;
4413 	txq->vlan_ins = 0;
4414 	txq->mapping_err = 0;
4415 	txq->dbqt = dbqt;
4416 
4417 	return 0;
4418 }
4419 
4420 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4421 			  struct net_device *dev, unsigned int iqid,
4422 			  unsigned int cmplqid)
4423 {
4424 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4425 	struct port_info *pi = netdev_priv(dev);
4426 	struct sge *s = &adap->sge;
4427 	struct fw_eq_ctrl_cmd c;
4428 	int ret, nentries;
4429 
4430 	/* Add status entries */
4431 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4432 
4433 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4434 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4435 				 NULL, 0, dev_to_node(adap->pdev_dev));
4436 	if (!txq->q.desc)
4437 		return -ENOMEM;
4438 
4439 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4440 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4441 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4442 			    FW_EQ_CTRL_CMD_VFN_V(0));
4443 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4444 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4445 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4446 	c.physeqid_pkd = htonl(0);
4447 	c.fetchszm_to_iqid =
4448 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4449 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4450 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4451 	c.dcaen_to_eqsize =
4452 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4453 					     ? FETCHBURSTMIN_64B_X
4454 					     : FETCHBURSTMIN_64B_T6_X) |
4455 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4456 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4457 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4458 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4459 
4460 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4461 	if (ret) {
4462 		dma_free_coherent(adap->pdev_dev,
4463 				  nentries * sizeof(struct tx_desc),
4464 				  txq->q.desc, txq->q.phys_addr);
4465 		txq->q.desc = NULL;
4466 		return ret;
4467 	}
4468 
4469 	txq->q.q_type = CXGB4_TXQ_CTRL;
4470 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4471 	txq->adap = adap;
4472 	skb_queue_head_init(&txq->sendq);
4473 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4474 	txq->full = 0;
4475 	return 0;
4476 }
4477 
4478 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4479 			unsigned int cmplqid)
4480 {
4481 	u32 param, val;
4482 
4483 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4484 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4485 		 FW_PARAMS_PARAM_YZ_V(eqid));
4486 	val = cmplqid;
4487 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4488 }
4489 
4490 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4491 				 struct net_device *dev, u32 cmd, u32 iqid)
4492 {
4493 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4494 	struct port_info *pi = netdev_priv(dev);
4495 	struct sge *s = &adap->sge;
4496 	struct fw_eq_ofld_cmd c;
4497 	u32 fb_min, nentries;
4498 	int ret;
4499 
4500 	/* Add status entries */
4501 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4502 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4503 			     sizeof(struct tx_sw_desc), &q->phys_addr,
4504 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4505 	if (!q->desc)
4506 		return -ENOMEM;
4507 
4508 	if (chip_ver <= CHELSIO_T5)
4509 		fb_min = FETCHBURSTMIN_64B_X;
4510 	else
4511 		fb_min = FETCHBURSTMIN_64B_T6_X;
4512 
4513 	memset(&c, 0, sizeof(c));
4514 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4515 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4516 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4517 			    FW_EQ_OFLD_CMD_VFN_V(0));
4518 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4519 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4520 	c.fetchszm_to_iqid =
4521 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4522 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4523 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4524 	c.dcaen_to_eqsize =
4525 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4526 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4527 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4528 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4529 	c.eqaddr = cpu_to_be64(q->phys_addr);
4530 
4531 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4532 	if (ret) {
4533 		kfree(q->sdesc);
4534 		q->sdesc = NULL;
4535 		dma_free_coherent(adap->pdev_dev,
4536 				  nentries * sizeof(struct tx_desc),
4537 				  q->desc, q->phys_addr);
4538 		q->desc = NULL;
4539 		return ret;
4540 	}
4541 
4542 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4543 	return 0;
4544 }
4545 
4546 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4547 			 struct net_device *dev, unsigned int iqid,
4548 			 unsigned int uld_type)
4549 {
4550 	u32 cmd = FW_EQ_OFLD_CMD;
4551 	int ret;
4552 
4553 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4554 		cmd = FW_EQ_CTRL_CMD;
4555 
4556 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4557 	if (ret)
4558 		return ret;
4559 
4560 	txq->q.q_type = CXGB4_TXQ_ULD;
4561 	txq->adap = adap;
4562 	skb_queue_head_init(&txq->sendq);
4563 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4564 	txq->full = 0;
4565 	txq->mapping_err = 0;
4566 	return 0;
4567 }
4568 
4569 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4570 			     struct net_device *dev, u32 iqid)
4571 {
4572 	int ret;
4573 
4574 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4575 	if (ret)
4576 		return ret;
4577 
4578 	txq->q.q_type = CXGB4_TXQ_ULD;
4579 	spin_lock_init(&txq->lock);
4580 	txq->adap = adap;
4581 	txq->tso = 0;
4582 	txq->uso = 0;
4583 	txq->tx_cso = 0;
4584 	txq->vlan_ins = 0;
4585 	txq->mapping_err = 0;
4586 	return 0;
4587 }
4588 
4589 void free_txq(struct adapter *adap, struct sge_txq *q)
4590 {
4591 	struct sge *s = &adap->sge;
4592 
4593 	dma_free_coherent(adap->pdev_dev,
4594 			  q->size * sizeof(struct tx_desc) + s->stat_len,
4595 			  q->desc, q->phys_addr);
4596 	q->cntxt_id = 0;
4597 	q->sdesc = NULL;
4598 	q->desc = NULL;
4599 }
4600 
4601 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4602 		  struct sge_fl *fl)
4603 {
4604 	struct sge *s = &adap->sge;
4605 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4606 
4607 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4608 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4609 		   rq->cntxt_id, fl_id, 0xffff);
4610 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4611 			  rq->desc, rq->phys_addr);
4612 	netif_napi_del(&rq->napi);
4613 	rq->netdev = NULL;
4614 	rq->cntxt_id = rq->abs_id = 0;
4615 	rq->desc = NULL;
4616 
4617 	if (fl) {
4618 		free_rx_bufs(adap, fl, fl->avail);
4619 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4620 				  fl->desc, fl->addr);
4621 		kfree(fl->sdesc);
4622 		fl->sdesc = NULL;
4623 		fl->cntxt_id = 0;
4624 		fl->desc = NULL;
4625 	}
4626 }
4627 
4628 /**
4629  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4630  *      @adap: the adapter
4631  *      @n: number of queues
4632  *      @q: pointer to first queue
4633  *
4634  *      Release the resources of a consecutive block of offload Rx queues.
4635  */
4636 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4637 {
4638 	for ( ; n; n--, q++)
4639 		if (q->rspq.desc)
4640 			free_rspq_fl(adap, &q->rspq,
4641 				     q->fl.size ? &q->fl : NULL);
4642 }
4643 
4644 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4645 {
4646 	if (txq->q.desc) {
4647 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4648 				txq->q.cntxt_id);
4649 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4650 		kfree(txq->q.sdesc);
4651 		free_txq(adap, &txq->q);
4652 	}
4653 }
4654 
4655 /**
4656  *	t4_free_sge_resources - free SGE resources
4657  *	@adap: the adapter
4658  *
4659  *	Frees resources used by the SGE queue sets.
4660  */
4661 void t4_free_sge_resources(struct adapter *adap)
4662 {
4663 	int i;
4664 	struct sge_eth_rxq *eq;
4665 	struct sge_eth_txq *etq;
4666 
4667 	/* stop all Rx queues in order to start them draining */
4668 	for (i = 0; i < adap->sge.ethqsets; i++) {
4669 		eq = &adap->sge.ethrxq[i];
4670 		if (eq->rspq.desc)
4671 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4672 				   FW_IQ_TYPE_FL_INT_CAP,
4673 				   eq->rspq.cntxt_id,
4674 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4675 				   0xffff);
4676 	}
4677 
4678 	/* clean up Ethernet Tx/Rx queues */
4679 	for (i = 0; i < adap->sge.ethqsets; i++) {
4680 		eq = &adap->sge.ethrxq[i];
4681 		if (eq->rspq.desc)
4682 			free_rspq_fl(adap, &eq->rspq,
4683 				     eq->fl.size ? &eq->fl : NULL);
4684 		if (eq->msix) {
4685 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4686 			eq->msix = NULL;
4687 		}
4688 
4689 		etq = &adap->sge.ethtxq[i];
4690 		if (etq->q.desc) {
4691 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4692 				       etq->q.cntxt_id);
4693 			__netif_tx_lock_bh(etq->txq);
4694 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4695 			__netif_tx_unlock_bh(etq->txq);
4696 			kfree(etq->q.sdesc);
4697 			free_txq(adap, &etq->q);
4698 		}
4699 	}
4700 
4701 	/* clean up control Tx queues */
4702 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4703 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4704 
4705 		if (cq->q.desc) {
4706 			tasklet_kill(&cq->qresume_tsk);
4707 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4708 					cq->q.cntxt_id);
4709 			__skb_queue_purge(&cq->sendq);
4710 			free_txq(adap, &cq->q);
4711 		}
4712 	}
4713 
4714 	if (adap->sge.fw_evtq.desc) {
4715 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4716 		if (adap->sge.fwevtq_msix_idx >= 0)
4717 			cxgb4_free_msix_idx_in_bmap(adap,
4718 						    adap->sge.fwevtq_msix_idx);
4719 	}
4720 
4721 	if (adap->sge.nd_msix_idx >= 0)
4722 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4723 
4724 	if (adap->sge.intrq.desc)
4725 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4726 
4727 	if (!is_t4(adap->params.chip)) {
4728 		etq = &adap->sge.ptptxq;
4729 		if (etq->q.desc) {
4730 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4731 				       etq->q.cntxt_id);
4732 			spin_lock_bh(&adap->ptp_lock);
4733 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4734 			spin_unlock_bh(&adap->ptp_lock);
4735 			kfree(etq->q.sdesc);
4736 			free_txq(adap, &etq->q);
4737 		}
4738 	}
4739 
4740 	/* clear the reverse egress queue map */
4741 	memset(adap->sge.egr_map, 0,
4742 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4743 }
4744 
4745 void t4_sge_start(struct adapter *adap)
4746 {
4747 	adap->sge.ethtxq_rover = 0;
4748 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4749 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4750 }
4751 
4752 /**
4753  *	t4_sge_stop - disable SGE operation
4754  *	@adap: the adapter
4755  *
4756  *	Stop tasklets and timers associated with the DMA engine.  Note that
4757  *	this is effective only if measures have been taken to disable any HW
4758  *	events that may restart them.
4759  */
4760 void t4_sge_stop(struct adapter *adap)
4761 {
4762 	int i;
4763 	struct sge *s = &adap->sge;
4764 
4765 	if (in_interrupt())  /* actions below require waiting */
4766 		return;
4767 
4768 	if (s->rx_timer.function)
4769 		del_timer_sync(&s->rx_timer);
4770 	if (s->tx_timer.function)
4771 		del_timer_sync(&s->tx_timer);
4772 
4773 	if (is_offload(adap)) {
4774 		struct sge_uld_txq_info *txq_info;
4775 
4776 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4777 		if (txq_info) {
4778 			struct sge_uld_txq *txq = txq_info->uldtxq;
4779 
4780 			for_each_ofldtxq(&adap->sge, i) {
4781 				if (txq->q.desc)
4782 					tasklet_kill(&txq->qresume_tsk);
4783 			}
4784 		}
4785 	}
4786 
4787 	if (is_pci_uld(adap)) {
4788 		struct sge_uld_txq_info *txq_info;
4789 
4790 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4791 		if (txq_info) {
4792 			struct sge_uld_txq *txq = txq_info->uldtxq;
4793 
4794 			for_each_ofldtxq(&adap->sge, i) {
4795 				if (txq->q.desc)
4796 					tasklet_kill(&txq->qresume_tsk);
4797 			}
4798 		}
4799 	}
4800 
4801 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4802 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
4803 
4804 		if (cq->q.desc)
4805 			tasklet_kill(&cq->qresume_tsk);
4806 	}
4807 }
4808 
4809 /**
4810  *	t4_sge_init_soft - grab core SGE values needed by SGE code
4811  *	@adap: the adapter
4812  *
4813  *	We need to grab the SGE operating parameters that we need to have
4814  *	in order to do our job and make sure we can live with them.
4815  */
4816 
4817 static int t4_sge_init_soft(struct adapter *adap)
4818 {
4819 	struct sge *s = &adap->sge;
4820 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4821 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4822 	u32 ingress_rx_threshold;
4823 
4824 	/*
4825 	 * Verify that CPL messages are going to the Ingress Queue for
4826 	 * process_responses() and that only packet data is going to the
4827 	 * Free Lists.
4828 	 */
4829 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4830 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4831 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4832 		return -EINVAL;
4833 	}
4834 
4835 	/*
4836 	 * Validate the Host Buffer Register Array indices that we want to
4837 	 * use ...
4838 	 *
4839 	 * XXX Note that we should really read through the Host Buffer Size
4840 	 * XXX register array and find the indices of the Buffer Sizes which
4841 	 * XXX meet our needs!
4842 	 */
4843 	#define READ_FL_BUF(x) \
4844 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4845 
4846 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4847 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4848 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4849 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4850 
4851 	/* We only bother using the Large Page logic if the Large Page Buffer
4852 	 * is larger than our Page Size Buffer.
4853 	 */
4854 	if (fl_large_pg <= fl_small_pg)
4855 		fl_large_pg = 0;
4856 
4857 	#undef READ_FL_BUF
4858 
4859 	/* The Page Size Buffer must be exactly equal to our Page Size and the
4860 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4861 	 */
4862 	if (fl_small_pg != PAGE_SIZE ||
4863 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
4864 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4865 			fl_small_pg, fl_large_pg);
4866 		return -EINVAL;
4867 	}
4868 	if (fl_large_pg)
4869 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4870 
4871 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4872 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4873 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4874 			fl_small_mtu, fl_large_mtu);
4875 		return -EINVAL;
4876 	}
4877 
4878 	/*
4879 	 * Retrieve our RX interrupt holdoff timer values and counter
4880 	 * threshold values from the SGE parameters.
4881 	 */
4882 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4883 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4884 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4885 	s->timer_val[0] = core_ticks_to_us(adap,
4886 		TIMERVALUE0_G(timer_value_0_and_1));
4887 	s->timer_val[1] = core_ticks_to_us(adap,
4888 		TIMERVALUE1_G(timer_value_0_and_1));
4889 	s->timer_val[2] = core_ticks_to_us(adap,
4890 		TIMERVALUE2_G(timer_value_2_and_3));
4891 	s->timer_val[3] = core_ticks_to_us(adap,
4892 		TIMERVALUE3_G(timer_value_2_and_3));
4893 	s->timer_val[4] = core_ticks_to_us(adap,
4894 		TIMERVALUE4_G(timer_value_4_and_5));
4895 	s->timer_val[5] = core_ticks_to_us(adap,
4896 		TIMERVALUE5_G(timer_value_4_and_5));
4897 
4898 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4899 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4900 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4901 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4902 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4903 
4904 	return 0;
4905 }
4906 
4907 /**
4908  *     t4_sge_init - initialize SGE
4909  *     @adap: the adapter
4910  *
4911  *     Perform low-level SGE code initialization needed every time after a
4912  *     chip reset.
4913  */
4914 int t4_sge_init(struct adapter *adap)
4915 {
4916 	struct sge *s = &adap->sge;
4917 	u32 sge_control, sge_conm_ctrl;
4918 	int ret, egress_threshold;
4919 
4920 	/*
4921 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
4922 	 * t4_fixup_host_params().
4923 	 */
4924 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4925 	s->pktshift = PKTSHIFT_G(sge_control);
4926 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4927 
4928 	s->fl_align = t4_fl_pkt_align(adap);
4929 	ret = t4_sge_init_soft(adap);
4930 	if (ret < 0)
4931 		return ret;
4932 
4933 	/*
4934 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
4935 	 * timer will attempt to refill it.  This needs to be larger than the
4936 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
4937 	 * stuck waiting for new packets while the SGE is waiting for us to
4938 	 * give it more Free List entries.  (Note that the SGE's Egress
4939 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4940 	 * there was only a single field to control this.  For T5 there's the
4941 	 * original field which now only applies to Unpacked Mode Free List
4942 	 * buffers and a new field which only applies to Packed Mode Free List
4943 	 * buffers.
4944 	 */
4945 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4946 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4947 	case CHELSIO_T4:
4948 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4949 		break;
4950 	case CHELSIO_T5:
4951 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4952 		break;
4953 	case CHELSIO_T6:
4954 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4955 		break;
4956 	default:
4957 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4958 			CHELSIO_CHIP_VERSION(adap->params.chip));
4959 		return -EINVAL;
4960 	}
4961 	s->fl_starve_thres = 2*egress_threshold + 1;
4962 
4963 	t4_idma_monitor_init(adap, &s->idma_monitor);
4964 
4965 	/* Set up timers used for recuring callbacks to process RX and TX
4966 	 * administrative tasks.
4967 	 */
4968 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4969 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4970 
4971 	spin_lock_init(&s->intrq_lock);
4972 
4973 	return 0;
4974 }
4975