1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/jhash.h> 40 #include <linux/module.h> 41 #include <linux/debugfs.h> 42 #include <linux/seq_file.h> 43 #include <net/neighbour.h> 44 #include "cxgb4.h" 45 #include "l2t.h" 46 #include "t4_msg.h" 47 #include "t4fw_api.h" 48 49 #define VLAN_NONE 0xfff 50 51 /* identifies sync vs async L2T_WRITE_REQs */ 52 #define F_SYNC_WR (1 << 12) 53 54 enum { 55 L2T_STATE_VALID, /* entry is up to date */ 56 L2T_STATE_STALE, /* entry may be used but needs revalidation */ 57 L2T_STATE_RESOLVING, /* entry needs address resolution */ 58 L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ 59 60 /* when state is one of the below the entry is not hashed */ 61 L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ 62 L2T_STATE_UNUSED /* entry not in use */ 63 }; 64 65 struct l2t_data { 66 rwlock_t lock; 67 atomic_t nfree; /* number of free entries */ 68 struct l2t_entry *rover; /* starting point for next allocation */ 69 struct l2t_entry l2tab[L2T_SIZE]; 70 }; 71 72 static inline unsigned int vlan_prio(const struct l2t_entry *e) 73 { 74 return e->vlan >> 13; 75 } 76 77 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) 78 { 79 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ 80 atomic_dec(&d->nfree); 81 } 82 83 /* 84 * To avoid having to check address families we do not allow v4 and v6 85 * neighbors to be on the same hash chain. We keep v4 entries in the first 86 * half of available hash buckets and v6 in the second. 87 */ 88 enum { 89 L2T_SZ_HALF = L2T_SIZE / 2, 90 L2T_HASH_MASK = L2T_SZ_HALF - 1 91 }; 92 93 static inline unsigned int arp_hash(const u32 *key, int ifindex) 94 { 95 return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK; 96 } 97 98 static inline unsigned int ipv6_hash(const u32 *key, int ifindex) 99 { 100 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; 101 102 return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK); 103 } 104 105 static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex) 106 { 107 return addr_len == 4 ? arp_hash(addr, ifindex) : 108 ipv6_hash(addr, ifindex); 109 } 110 111 /* 112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check 113 * whether the L2T entry and the address are of the same address family. 114 * Callers ensure an address is only checked against L2T entries of the same 115 * family, something made trivial by the separation of IP and IPv6 hash chains 116 * mentioned above. Returns 0 if there's a match, 117 */ 118 static int addreq(const struct l2t_entry *e, const u32 *addr) 119 { 120 if (e->v6) 121 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | 122 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); 123 return e->addr[0] ^ addr[0]; 124 } 125 126 static void neigh_replace(struct l2t_entry *e, struct neighbour *n) 127 { 128 neigh_hold(n); 129 if (e->neigh) 130 neigh_release(e->neigh); 131 e->neigh = n; 132 } 133 134 /* 135 * Write an L2T entry. Must be called with the entry locked. 136 * The write may be synchronous or asynchronous. 137 */ 138 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) 139 { 140 struct sk_buff *skb; 141 struct cpl_l2t_write_req *req; 142 143 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 144 if (!skb) 145 return -ENOMEM; 146 147 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 148 INIT_TP_WR(req, 0); 149 150 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, 151 e->idx | (sync ? F_SYNC_WR : 0) | 152 TID_QID(adap->sge.fw_evtq.abs_id))); 153 req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync)); 154 req->l2t_idx = htons(e->idx); 155 req->vlan = htons(e->vlan); 156 if (e->neigh) 157 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); 158 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); 159 160 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 161 t4_ofld_send(adap, skb); 162 163 if (sync && e->state != L2T_STATE_SWITCHING) 164 e->state = L2T_STATE_SYNC_WRITE; 165 return 0; 166 } 167 168 /* 169 * Send packets waiting in an L2T entry's ARP queue. Must be called with the 170 * entry locked. 171 */ 172 static void send_pending(struct adapter *adap, struct l2t_entry *e) 173 { 174 while (e->arpq_head) { 175 struct sk_buff *skb = e->arpq_head; 176 177 e->arpq_head = skb->next; 178 skb->next = NULL; 179 t4_ofld_send(adap, skb); 180 } 181 e->arpq_tail = NULL; 182 } 183 184 /* 185 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a 186 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T 187 * index it refers to. 188 */ 189 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) 190 { 191 unsigned int tid = GET_TID(rpl); 192 unsigned int idx = tid & (L2T_SIZE - 1); 193 194 if (unlikely(rpl->status != CPL_ERR_NONE)) { 195 dev_err(adap->pdev_dev, 196 "Unexpected L2T_WRITE_RPL status %u for entry %u\n", 197 rpl->status, idx); 198 return; 199 } 200 201 if (tid & F_SYNC_WR) { 202 struct l2t_entry *e = &adap->l2t->l2tab[idx]; 203 204 spin_lock(&e->lock); 205 if (e->state != L2T_STATE_SWITCHING) { 206 send_pending(adap, e); 207 e->state = (e->neigh->nud_state & NUD_STALE) ? 208 L2T_STATE_STALE : L2T_STATE_VALID; 209 } 210 spin_unlock(&e->lock); 211 } 212 } 213 214 /* 215 * Add a packet to an L2T entry's queue of packets awaiting resolution. 216 * Must be called with the entry's lock held. 217 */ 218 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) 219 { 220 skb->next = NULL; 221 if (e->arpq_head) 222 e->arpq_tail->next = skb; 223 else 224 e->arpq_head = skb; 225 e->arpq_tail = skb; 226 } 227 228 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, 229 struct l2t_entry *e) 230 { 231 struct adapter *adap = netdev2adap(dev); 232 233 again: 234 switch (e->state) { 235 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 236 neigh_event_send(e->neigh, NULL); 237 spin_lock_bh(&e->lock); 238 if (e->state == L2T_STATE_STALE) 239 e->state = L2T_STATE_VALID; 240 spin_unlock_bh(&e->lock); 241 case L2T_STATE_VALID: /* fast-path, send the packet on */ 242 return t4_ofld_send(adap, skb); 243 case L2T_STATE_RESOLVING: 244 case L2T_STATE_SYNC_WRITE: 245 spin_lock_bh(&e->lock); 246 if (e->state != L2T_STATE_SYNC_WRITE && 247 e->state != L2T_STATE_RESOLVING) { 248 spin_unlock_bh(&e->lock); 249 goto again; 250 } 251 arpq_enqueue(e, skb); 252 spin_unlock_bh(&e->lock); 253 254 if (e->state == L2T_STATE_RESOLVING && 255 !neigh_event_send(e->neigh, NULL)) { 256 spin_lock_bh(&e->lock); 257 if (e->state == L2T_STATE_RESOLVING && e->arpq_head) 258 write_l2e(adap, e, 1); 259 spin_unlock_bh(&e->lock); 260 } 261 } 262 return 0; 263 } 264 EXPORT_SYMBOL(cxgb4_l2t_send); 265 266 /* 267 * Allocate a free L2T entry. Must be called with l2t_data.lock held. 268 */ 269 static struct l2t_entry *alloc_l2e(struct l2t_data *d) 270 { 271 struct l2t_entry *end, *e, **p; 272 273 if (!atomic_read(&d->nfree)) 274 return NULL; 275 276 /* there's definitely a free entry */ 277 for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e) 278 if (atomic_read(&e->refcnt) == 0) 279 goto found; 280 281 for (e = d->l2tab; atomic_read(&e->refcnt); ++e) 282 ; 283 found: 284 d->rover = e + 1; 285 atomic_dec(&d->nfree); 286 287 /* 288 * The entry we found may be an inactive entry that is 289 * presently in the hash table. We need to remove it. 290 */ 291 if (e->state < L2T_STATE_SWITCHING) 292 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) 293 if (*p == e) { 294 *p = e->next; 295 e->next = NULL; 296 break; 297 } 298 299 e->state = L2T_STATE_UNUSED; 300 return e; 301 } 302 303 /* 304 * Called when an L2T entry has no more users. 305 */ 306 static void t4_l2e_free(struct l2t_entry *e) 307 { 308 struct l2t_data *d; 309 310 spin_lock_bh(&e->lock); 311 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 312 if (e->neigh) { 313 neigh_release(e->neigh); 314 e->neigh = NULL; 315 } 316 while (e->arpq_head) { 317 struct sk_buff *skb = e->arpq_head; 318 319 e->arpq_head = skb->next; 320 kfree_skb(skb); 321 } 322 e->arpq_tail = NULL; 323 } 324 spin_unlock_bh(&e->lock); 325 326 d = container_of(e, struct l2t_data, l2tab[e->idx]); 327 atomic_inc(&d->nfree); 328 } 329 330 void cxgb4_l2t_release(struct l2t_entry *e) 331 { 332 if (atomic_dec_and_test(&e->refcnt)) 333 t4_l2e_free(e); 334 } 335 EXPORT_SYMBOL(cxgb4_l2t_release); 336 337 /* 338 * Update an L2T entry that was previously used for the same next hop as neigh. 339 * Must be called with softirqs disabled. 340 */ 341 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) 342 { 343 unsigned int nud_state; 344 345 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 346 if (neigh != e->neigh) 347 neigh_replace(e, neigh); 348 nud_state = neigh->nud_state; 349 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || 350 !(nud_state & NUD_VALID)) 351 e->state = L2T_STATE_RESOLVING; 352 else if (nud_state & NUD_CONNECTED) 353 e->state = L2T_STATE_VALID; 354 else 355 e->state = L2T_STATE_STALE; 356 spin_unlock(&e->lock); 357 } 358 359 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, 360 const struct net_device *physdev, 361 unsigned int priority) 362 { 363 u8 lport; 364 u16 vlan; 365 struct l2t_entry *e; 366 int addr_len = neigh->tbl->key_len; 367 u32 *addr = (u32 *)neigh->primary_key; 368 int ifidx = neigh->dev->ifindex; 369 int hash = addr_hash(addr, addr_len, ifidx); 370 371 if (neigh->dev->flags & IFF_LOOPBACK) 372 lport = netdev2pinfo(physdev)->tx_chan + 4; 373 else 374 lport = netdev2pinfo(physdev)->lport; 375 376 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) 377 vlan = vlan_dev_vlan_id(neigh->dev); 378 else 379 vlan = VLAN_NONE; 380 381 write_lock_bh(&d->lock); 382 for (e = d->l2tab[hash].first; e; e = e->next) 383 if (!addreq(e, addr) && e->ifindex == ifidx && 384 e->vlan == vlan && e->lport == lport) { 385 l2t_hold(d, e); 386 if (atomic_read(&e->refcnt) == 1) 387 reuse_entry(e, neigh); 388 goto done; 389 } 390 391 /* Need to allocate a new entry */ 392 e = alloc_l2e(d); 393 if (e) { 394 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 395 e->state = L2T_STATE_RESOLVING; 396 memcpy(e->addr, addr, addr_len); 397 e->ifindex = ifidx; 398 e->hash = hash; 399 e->lport = lport; 400 e->v6 = addr_len == 16; 401 atomic_set(&e->refcnt, 1); 402 neigh_replace(e, neigh); 403 e->vlan = vlan; 404 e->next = d->l2tab[hash].first; 405 d->l2tab[hash].first = e; 406 spin_unlock(&e->lock); 407 } 408 done: 409 write_unlock_bh(&d->lock); 410 return e; 411 } 412 EXPORT_SYMBOL(cxgb4_l2t_get); 413 414 /* 415 * Called when address resolution fails for an L2T entry to handle packets 416 * on the arpq head. If a packet specifies a failure handler it is invoked, 417 * otherwise the packet is sent to the device. 418 */ 419 static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq) 420 { 421 while (arpq) { 422 struct sk_buff *skb = arpq; 423 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); 424 425 arpq = skb->next; 426 skb->next = NULL; 427 if (cb->arp_err_handler) 428 cb->arp_err_handler(cb->handle, skb); 429 else 430 t4_ofld_send(adap, skb); 431 } 432 } 433 434 /* 435 * Called when the host's neighbor layer makes a change to some entry that is 436 * loaded into the HW L2 table. 437 */ 438 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) 439 { 440 struct l2t_entry *e; 441 struct sk_buff *arpq = NULL; 442 struct l2t_data *d = adap->l2t; 443 int addr_len = neigh->tbl->key_len; 444 u32 *addr = (u32 *) neigh->primary_key; 445 int ifidx = neigh->dev->ifindex; 446 int hash = addr_hash(addr, addr_len, ifidx); 447 448 read_lock_bh(&d->lock); 449 for (e = d->l2tab[hash].first; e; e = e->next) 450 if (!addreq(e, addr) && e->ifindex == ifidx) { 451 spin_lock(&e->lock); 452 if (atomic_read(&e->refcnt)) 453 goto found; 454 spin_unlock(&e->lock); 455 break; 456 } 457 read_unlock_bh(&d->lock); 458 return; 459 460 found: 461 read_unlock(&d->lock); 462 463 if (neigh != e->neigh) 464 neigh_replace(e, neigh); 465 466 if (e->state == L2T_STATE_RESOLVING) { 467 if (neigh->nud_state & NUD_FAILED) { 468 arpq = e->arpq_head; 469 e->arpq_head = e->arpq_tail = NULL; 470 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && 471 e->arpq_head) { 472 write_l2e(adap, e, 1); 473 } 474 } else { 475 e->state = neigh->nud_state & NUD_CONNECTED ? 476 L2T_STATE_VALID : L2T_STATE_STALE; 477 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) 478 write_l2e(adap, e, 0); 479 } 480 481 spin_unlock_bh(&e->lock); 482 483 if (arpq) 484 handle_failed_resolution(adap, arpq); 485 } 486 487 /* Allocate an L2T entry for use by a switching rule. Such need to be 488 * explicitly freed and while busy they are not on any hash chain, so normal 489 * address resolution updates do not see them. 490 */ 491 struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d) 492 { 493 struct l2t_entry *e; 494 495 write_lock_bh(&d->lock); 496 e = alloc_l2e(d); 497 if (e) { 498 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 499 e->state = L2T_STATE_SWITCHING; 500 atomic_set(&e->refcnt, 1); 501 spin_unlock(&e->lock); 502 } 503 write_unlock_bh(&d->lock); 504 return e; 505 } 506 507 /* Sets/updates the contents of a switching L2T entry that has been allocated 508 * with an earlier call to @t4_l2t_alloc_switching. 509 */ 510 int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan, 511 u8 port, u8 *eth_addr) 512 { 513 e->vlan = vlan; 514 e->lport = port; 515 memcpy(e->dmac, eth_addr, ETH_ALEN); 516 return write_l2e(adap, e, 0); 517 } 518 519 struct l2t_data *t4_init_l2t(void) 520 { 521 int i; 522 struct l2t_data *d; 523 524 d = t4_alloc_mem(sizeof(*d)); 525 if (!d) 526 return NULL; 527 528 d->rover = d->l2tab; 529 atomic_set(&d->nfree, L2T_SIZE); 530 rwlock_init(&d->lock); 531 532 for (i = 0; i < L2T_SIZE; ++i) { 533 d->l2tab[i].idx = i; 534 d->l2tab[i].state = L2T_STATE_UNUSED; 535 spin_lock_init(&d->l2tab[i].lock); 536 atomic_set(&d->l2tab[i].refcnt, 0); 537 } 538 return d; 539 } 540 541 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) 542 { 543 struct l2t_entry *l2tab = seq->private; 544 545 return pos >= L2T_SIZE ? NULL : &l2tab[pos]; 546 } 547 548 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) 549 { 550 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 551 } 552 553 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) 554 { 555 v = l2t_get_idx(seq, *pos); 556 if (v) 557 ++*pos; 558 return v; 559 } 560 561 static void l2t_seq_stop(struct seq_file *seq, void *v) 562 { 563 } 564 565 static char l2e_state(const struct l2t_entry *e) 566 { 567 switch (e->state) { 568 case L2T_STATE_VALID: return 'V'; 569 case L2T_STATE_STALE: return 'S'; 570 case L2T_STATE_SYNC_WRITE: return 'W'; 571 case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R'; 572 case L2T_STATE_SWITCHING: return 'X'; 573 default: 574 return 'U'; 575 } 576 } 577 578 static int l2t_seq_show(struct seq_file *seq, void *v) 579 { 580 if (v == SEQ_START_TOKEN) 581 seq_puts(seq, " Idx IP address " 582 "Ethernet address VLAN/P LP State Users Port\n"); 583 else { 584 char ip[60]; 585 struct l2t_entry *e = v; 586 587 spin_lock_bh(&e->lock); 588 if (e->state == L2T_STATE_SWITCHING) 589 ip[0] = '\0'; 590 else 591 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); 592 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", 593 e->idx, ip, e->dmac, 594 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, 595 l2e_state(e), atomic_read(&e->refcnt), 596 e->neigh ? e->neigh->dev->name : ""); 597 spin_unlock_bh(&e->lock); 598 } 599 return 0; 600 } 601 602 static const struct seq_operations l2t_seq_ops = { 603 .start = l2t_seq_start, 604 .next = l2t_seq_next, 605 .stop = l2t_seq_stop, 606 .show = l2t_seq_show 607 }; 608 609 static int l2t_seq_open(struct inode *inode, struct file *file) 610 { 611 int rc = seq_open(file, &l2t_seq_ops); 612 613 if (!rc) { 614 struct adapter *adap = inode->i_private; 615 struct seq_file *seq = file->private_data; 616 617 seq->private = adap->l2t->l2tab; 618 } 619 return rc; 620 } 621 622 const struct file_operations t4_l2t_fops = { 623 .owner = THIS_MODULE, 624 .open = l2t_seq_open, 625 .read = seq_read, 626 .llseek = seq_lseek, 627 .release = seq_release, 628 }; 629