1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/jhash.h> 40 #include <linux/module.h> 41 #include <linux/debugfs.h> 42 #include <linux/seq_file.h> 43 #include <net/neighbour.h> 44 #include "cxgb4.h" 45 #include "l2t.h" 46 #include "t4_msg.h" 47 #include "t4fw_api.h" 48 #include "t4_regs.h" 49 #include "t4_values.h" 50 51 #define VLAN_NONE 0xfff 52 53 /* identifies sync vs async L2T_WRITE_REQs */ 54 #define F_SYNC_WR (1 << 12) 55 56 enum { 57 L2T_STATE_VALID, /* entry is up to date */ 58 L2T_STATE_STALE, /* entry may be used but needs revalidation */ 59 L2T_STATE_RESOLVING, /* entry needs address resolution */ 60 L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ 61 62 /* when state is one of the below the entry is not hashed */ 63 L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ 64 L2T_STATE_UNUSED /* entry not in use */ 65 }; 66 67 struct l2t_data { 68 rwlock_t lock; 69 atomic_t nfree; /* number of free entries */ 70 struct l2t_entry *rover; /* starting point for next allocation */ 71 struct l2t_entry l2tab[L2T_SIZE]; 72 }; 73 74 static inline unsigned int vlan_prio(const struct l2t_entry *e) 75 { 76 return e->vlan >> 13; 77 } 78 79 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) 80 { 81 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ 82 atomic_dec(&d->nfree); 83 } 84 85 /* 86 * To avoid having to check address families we do not allow v4 and v6 87 * neighbors to be on the same hash chain. We keep v4 entries in the first 88 * half of available hash buckets and v6 in the second. 89 */ 90 enum { 91 L2T_SZ_HALF = L2T_SIZE / 2, 92 L2T_HASH_MASK = L2T_SZ_HALF - 1 93 }; 94 95 static inline unsigned int arp_hash(const u32 *key, int ifindex) 96 { 97 return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK; 98 } 99 100 static inline unsigned int ipv6_hash(const u32 *key, int ifindex) 101 { 102 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; 103 104 return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK); 105 } 106 107 static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex) 108 { 109 return addr_len == 4 ? arp_hash(addr, ifindex) : 110 ipv6_hash(addr, ifindex); 111 } 112 113 /* 114 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check 115 * whether the L2T entry and the address are of the same address family. 116 * Callers ensure an address is only checked against L2T entries of the same 117 * family, something made trivial by the separation of IP and IPv6 hash chains 118 * mentioned above. Returns 0 if there's a match, 119 */ 120 static int addreq(const struct l2t_entry *e, const u32 *addr) 121 { 122 if (e->v6) 123 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | 124 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); 125 return e->addr[0] ^ addr[0]; 126 } 127 128 static void neigh_replace(struct l2t_entry *e, struct neighbour *n) 129 { 130 neigh_hold(n); 131 if (e->neigh) 132 neigh_release(e->neigh); 133 e->neigh = n; 134 } 135 136 /* 137 * Write an L2T entry. Must be called with the entry locked. 138 * The write may be synchronous or asynchronous. 139 */ 140 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) 141 { 142 struct sk_buff *skb; 143 struct cpl_l2t_write_req *req; 144 145 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 146 if (!skb) 147 return -ENOMEM; 148 149 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 150 INIT_TP_WR(req, 0); 151 152 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, 153 e->idx | (sync ? F_SYNC_WR : 0) | 154 TID_QID_V(adap->sge.fw_evtq.abs_id))); 155 req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync)); 156 req->l2t_idx = htons(e->idx); 157 req->vlan = htons(e->vlan); 158 if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK)) 159 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); 160 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); 161 162 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 163 t4_ofld_send(adap, skb); 164 165 if (sync && e->state != L2T_STATE_SWITCHING) 166 e->state = L2T_STATE_SYNC_WRITE; 167 return 0; 168 } 169 170 /* 171 * Send packets waiting in an L2T entry's ARP queue. Must be called with the 172 * entry locked. 173 */ 174 static void send_pending(struct adapter *adap, struct l2t_entry *e) 175 { 176 while (e->arpq_head) { 177 struct sk_buff *skb = e->arpq_head; 178 179 e->arpq_head = skb->next; 180 skb->next = NULL; 181 t4_ofld_send(adap, skb); 182 } 183 e->arpq_tail = NULL; 184 } 185 186 /* 187 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a 188 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T 189 * index it refers to. 190 */ 191 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) 192 { 193 unsigned int tid = GET_TID(rpl); 194 unsigned int idx = tid & (L2T_SIZE - 1); 195 196 if (unlikely(rpl->status != CPL_ERR_NONE)) { 197 dev_err(adap->pdev_dev, 198 "Unexpected L2T_WRITE_RPL status %u for entry %u\n", 199 rpl->status, idx); 200 return; 201 } 202 203 if (tid & F_SYNC_WR) { 204 struct l2t_entry *e = &adap->l2t->l2tab[idx]; 205 206 spin_lock(&e->lock); 207 if (e->state != L2T_STATE_SWITCHING) { 208 send_pending(adap, e); 209 e->state = (e->neigh->nud_state & NUD_STALE) ? 210 L2T_STATE_STALE : L2T_STATE_VALID; 211 } 212 spin_unlock(&e->lock); 213 } 214 } 215 216 /* 217 * Add a packet to an L2T entry's queue of packets awaiting resolution. 218 * Must be called with the entry's lock held. 219 */ 220 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) 221 { 222 skb->next = NULL; 223 if (e->arpq_head) 224 e->arpq_tail->next = skb; 225 else 226 e->arpq_head = skb; 227 e->arpq_tail = skb; 228 } 229 230 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, 231 struct l2t_entry *e) 232 { 233 struct adapter *adap = netdev2adap(dev); 234 235 again: 236 switch (e->state) { 237 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 238 neigh_event_send(e->neigh, NULL); 239 spin_lock_bh(&e->lock); 240 if (e->state == L2T_STATE_STALE) 241 e->state = L2T_STATE_VALID; 242 spin_unlock_bh(&e->lock); 243 case L2T_STATE_VALID: /* fast-path, send the packet on */ 244 return t4_ofld_send(adap, skb); 245 case L2T_STATE_RESOLVING: 246 case L2T_STATE_SYNC_WRITE: 247 spin_lock_bh(&e->lock); 248 if (e->state != L2T_STATE_SYNC_WRITE && 249 e->state != L2T_STATE_RESOLVING) { 250 spin_unlock_bh(&e->lock); 251 goto again; 252 } 253 arpq_enqueue(e, skb); 254 spin_unlock_bh(&e->lock); 255 256 if (e->state == L2T_STATE_RESOLVING && 257 !neigh_event_send(e->neigh, NULL)) { 258 spin_lock_bh(&e->lock); 259 if (e->state == L2T_STATE_RESOLVING && e->arpq_head) 260 write_l2e(adap, e, 1); 261 spin_unlock_bh(&e->lock); 262 } 263 } 264 return 0; 265 } 266 EXPORT_SYMBOL(cxgb4_l2t_send); 267 268 /* 269 * Allocate a free L2T entry. Must be called with l2t_data.lock held. 270 */ 271 static struct l2t_entry *alloc_l2e(struct l2t_data *d) 272 { 273 struct l2t_entry *end, *e, **p; 274 275 if (!atomic_read(&d->nfree)) 276 return NULL; 277 278 /* there's definitely a free entry */ 279 for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e) 280 if (atomic_read(&e->refcnt) == 0) 281 goto found; 282 283 for (e = d->l2tab; atomic_read(&e->refcnt); ++e) 284 ; 285 found: 286 d->rover = e + 1; 287 atomic_dec(&d->nfree); 288 289 /* 290 * The entry we found may be an inactive entry that is 291 * presently in the hash table. We need to remove it. 292 */ 293 if (e->state < L2T_STATE_SWITCHING) 294 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) 295 if (*p == e) { 296 *p = e->next; 297 e->next = NULL; 298 break; 299 } 300 301 e->state = L2T_STATE_UNUSED; 302 return e; 303 } 304 305 /* 306 * Called when an L2T entry has no more users. 307 */ 308 static void t4_l2e_free(struct l2t_entry *e) 309 { 310 struct l2t_data *d; 311 312 spin_lock_bh(&e->lock); 313 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 314 if (e->neigh) { 315 neigh_release(e->neigh); 316 e->neigh = NULL; 317 } 318 while (e->arpq_head) { 319 struct sk_buff *skb = e->arpq_head; 320 321 e->arpq_head = skb->next; 322 kfree_skb(skb); 323 } 324 e->arpq_tail = NULL; 325 } 326 spin_unlock_bh(&e->lock); 327 328 d = container_of(e, struct l2t_data, l2tab[e->idx]); 329 atomic_inc(&d->nfree); 330 } 331 332 void cxgb4_l2t_release(struct l2t_entry *e) 333 { 334 if (atomic_dec_and_test(&e->refcnt)) 335 t4_l2e_free(e); 336 } 337 EXPORT_SYMBOL(cxgb4_l2t_release); 338 339 /* 340 * Update an L2T entry that was previously used for the same next hop as neigh. 341 * Must be called with softirqs disabled. 342 */ 343 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) 344 { 345 unsigned int nud_state; 346 347 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 348 if (neigh != e->neigh) 349 neigh_replace(e, neigh); 350 nud_state = neigh->nud_state; 351 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || 352 !(nud_state & NUD_VALID)) 353 e->state = L2T_STATE_RESOLVING; 354 else if (nud_state & NUD_CONNECTED) 355 e->state = L2T_STATE_VALID; 356 else 357 e->state = L2T_STATE_STALE; 358 spin_unlock(&e->lock); 359 } 360 361 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, 362 const struct net_device *physdev, 363 unsigned int priority) 364 { 365 u8 lport; 366 u16 vlan; 367 struct l2t_entry *e; 368 int addr_len = neigh->tbl->key_len; 369 u32 *addr = (u32 *)neigh->primary_key; 370 int ifidx = neigh->dev->ifindex; 371 int hash = addr_hash(addr, addr_len, ifidx); 372 373 if (neigh->dev->flags & IFF_LOOPBACK) 374 lport = netdev2pinfo(physdev)->tx_chan + 4; 375 else 376 lport = netdev2pinfo(physdev)->lport; 377 378 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) 379 vlan = vlan_dev_vlan_id(neigh->dev); 380 else 381 vlan = VLAN_NONE; 382 383 write_lock_bh(&d->lock); 384 for (e = d->l2tab[hash].first; e; e = e->next) 385 if (!addreq(e, addr) && e->ifindex == ifidx && 386 e->vlan == vlan && e->lport == lport) { 387 l2t_hold(d, e); 388 if (atomic_read(&e->refcnt) == 1) 389 reuse_entry(e, neigh); 390 goto done; 391 } 392 393 /* Need to allocate a new entry */ 394 e = alloc_l2e(d); 395 if (e) { 396 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 397 e->state = L2T_STATE_RESOLVING; 398 if (neigh->dev->flags & IFF_LOOPBACK) 399 memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac)); 400 memcpy(e->addr, addr, addr_len); 401 e->ifindex = ifidx; 402 e->hash = hash; 403 e->lport = lport; 404 e->v6 = addr_len == 16; 405 atomic_set(&e->refcnt, 1); 406 neigh_replace(e, neigh); 407 e->vlan = vlan; 408 e->next = d->l2tab[hash].first; 409 d->l2tab[hash].first = e; 410 spin_unlock(&e->lock); 411 } 412 done: 413 write_unlock_bh(&d->lock); 414 return e; 415 } 416 EXPORT_SYMBOL(cxgb4_l2t_get); 417 418 u64 cxgb4_select_ntuple(struct net_device *dev, 419 const struct l2t_entry *l2t) 420 { 421 struct adapter *adap = netdev2adap(dev); 422 struct tp_params *tp = &adap->params.tp; 423 u64 ntuple = 0; 424 425 /* Initialize each of the fields which we care about which are present 426 * in the Compressed Filter Tuple. 427 */ 428 if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE) 429 ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift; 430 431 if (tp->port_shift >= 0) 432 ntuple |= (u64)l2t->lport << tp->port_shift; 433 434 if (tp->protocol_shift >= 0) 435 ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift; 436 437 if (tp->vnic_shift >= 0) { 438 u32 viid = cxgb4_port_viid(dev); 439 u32 vf = FW_VIID_VIN_G(viid); 440 u32 pf = FW_VIID_PFN_G(viid); 441 u32 vld = FW_VIID_VIVLD_G(viid); 442 443 ntuple |= (u64)(FT_VNID_ID_VF_V(vf) | 444 FT_VNID_ID_PF_V(pf) | 445 FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift; 446 } 447 448 return ntuple; 449 } 450 EXPORT_SYMBOL(cxgb4_select_ntuple); 451 452 /* 453 * Called when address resolution fails for an L2T entry to handle packets 454 * on the arpq head. If a packet specifies a failure handler it is invoked, 455 * otherwise the packet is sent to the device. 456 */ 457 static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq) 458 { 459 while (arpq) { 460 struct sk_buff *skb = arpq; 461 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); 462 463 arpq = skb->next; 464 skb->next = NULL; 465 if (cb->arp_err_handler) 466 cb->arp_err_handler(cb->handle, skb); 467 else 468 t4_ofld_send(adap, skb); 469 } 470 } 471 472 /* 473 * Called when the host's neighbor layer makes a change to some entry that is 474 * loaded into the HW L2 table. 475 */ 476 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) 477 { 478 struct l2t_entry *e; 479 struct sk_buff *arpq = NULL; 480 struct l2t_data *d = adap->l2t; 481 int addr_len = neigh->tbl->key_len; 482 u32 *addr = (u32 *) neigh->primary_key; 483 int ifidx = neigh->dev->ifindex; 484 int hash = addr_hash(addr, addr_len, ifidx); 485 486 read_lock_bh(&d->lock); 487 for (e = d->l2tab[hash].first; e; e = e->next) 488 if (!addreq(e, addr) && e->ifindex == ifidx) { 489 spin_lock(&e->lock); 490 if (atomic_read(&e->refcnt)) 491 goto found; 492 spin_unlock(&e->lock); 493 break; 494 } 495 read_unlock_bh(&d->lock); 496 return; 497 498 found: 499 read_unlock(&d->lock); 500 501 if (neigh != e->neigh) 502 neigh_replace(e, neigh); 503 504 if (e->state == L2T_STATE_RESOLVING) { 505 if (neigh->nud_state & NUD_FAILED) { 506 arpq = e->arpq_head; 507 e->arpq_head = e->arpq_tail = NULL; 508 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && 509 e->arpq_head) { 510 write_l2e(adap, e, 1); 511 } 512 } else { 513 e->state = neigh->nud_state & NUD_CONNECTED ? 514 L2T_STATE_VALID : L2T_STATE_STALE; 515 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) 516 write_l2e(adap, e, 0); 517 } 518 519 spin_unlock_bh(&e->lock); 520 521 if (arpq) 522 handle_failed_resolution(adap, arpq); 523 } 524 525 /* Allocate an L2T entry for use by a switching rule. Such need to be 526 * explicitly freed and while busy they are not on any hash chain, so normal 527 * address resolution updates do not see them. 528 */ 529 struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d) 530 { 531 struct l2t_entry *e; 532 533 write_lock_bh(&d->lock); 534 e = alloc_l2e(d); 535 if (e) { 536 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 537 e->state = L2T_STATE_SWITCHING; 538 atomic_set(&e->refcnt, 1); 539 spin_unlock(&e->lock); 540 } 541 write_unlock_bh(&d->lock); 542 return e; 543 } 544 545 /* Sets/updates the contents of a switching L2T entry that has been allocated 546 * with an earlier call to @t4_l2t_alloc_switching. 547 */ 548 int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan, 549 u8 port, u8 *eth_addr) 550 { 551 e->vlan = vlan; 552 e->lport = port; 553 memcpy(e->dmac, eth_addr, ETH_ALEN); 554 return write_l2e(adap, e, 0); 555 } 556 557 struct l2t_data *t4_init_l2t(void) 558 { 559 int i; 560 struct l2t_data *d; 561 562 d = t4_alloc_mem(sizeof(*d)); 563 if (!d) 564 return NULL; 565 566 d->rover = d->l2tab; 567 atomic_set(&d->nfree, L2T_SIZE); 568 rwlock_init(&d->lock); 569 570 for (i = 0; i < L2T_SIZE; ++i) { 571 d->l2tab[i].idx = i; 572 d->l2tab[i].state = L2T_STATE_UNUSED; 573 spin_lock_init(&d->l2tab[i].lock); 574 atomic_set(&d->l2tab[i].refcnt, 0); 575 } 576 return d; 577 } 578 579 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) 580 { 581 struct l2t_entry *l2tab = seq->private; 582 583 return pos >= L2T_SIZE ? NULL : &l2tab[pos]; 584 } 585 586 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) 587 { 588 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 589 } 590 591 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) 592 { 593 v = l2t_get_idx(seq, *pos); 594 if (v) 595 ++*pos; 596 return v; 597 } 598 599 static void l2t_seq_stop(struct seq_file *seq, void *v) 600 { 601 } 602 603 static char l2e_state(const struct l2t_entry *e) 604 { 605 switch (e->state) { 606 case L2T_STATE_VALID: return 'V'; 607 case L2T_STATE_STALE: return 'S'; 608 case L2T_STATE_SYNC_WRITE: return 'W'; 609 case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R'; 610 case L2T_STATE_SWITCHING: return 'X'; 611 default: 612 return 'U'; 613 } 614 } 615 616 static int l2t_seq_show(struct seq_file *seq, void *v) 617 { 618 if (v == SEQ_START_TOKEN) 619 seq_puts(seq, " Idx IP address " 620 "Ethernet address VLAN/P LP State Users Port\n"); 621 else { 622 char ip[60]; 623 struct l2t_entry *e = v; 624 625 spin_lock_bh(&e->lock); 626 if (e->state == L2T_STATE_SWITCHING) 627 ip[0] = '\0'; 628 else 629 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); 630 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", 631 e->idx, ip, e->dmac, 632 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, 633 l2e_state(e), atomic_read(&e->refcnt), 634 e->neigh ? e->neigh->dev->name : ""); 635 spin_unlock_bh(&e->lock); 636 } 637 return 0; 638 } 639 640 static const struct seq_operations l2t_seq_ops = { 641 .start = l2t_seq_start, 642 .next = l2t_seq_next, 643 .stop = l2t_seq_stop, 644 .show = l2t_seq_show 645 }; 646 647 static int l2t_seq_open(struct inode *inode, struct file *file) 648 { 649 int rc = seq_open(file, &l2t_seq_ops); 650 651 if (!rc) { 652 struct adapter *adap = inode->i_private; 653 struct seq_file *seq = file->private_data; 654 655 seq->private = adap->l2t->l2tab; 656 } 657 return rc; 658 } 659 660 const struct file_operations t4_l2t_fops = { 661 .owner = THIS_MODULE, 662 .open = l2t_seq_open, 663 .read = seq_read, 664 .llseek = seq_lseek, 665 .release = seq_release, 666 }; 667