1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/jhash.h> 40 #include <linux/module.h> 41 #include <linux/debugfs.h> 42 #include <linux/seq_file.h> 43 #include <net/neighbour.h> 44 #include "cxgb4.h" 45 #include "l2t.h" 46 #include "t4_msg.h" 47 #include "t4fw_api.h" 48 #include "t4_regs.h" 49 #include "t4_values.h" 50 51 /* identifies sync vs async L2T_WRITE_REQs */ 52 #define SYNC_WR_S 12 53 #define SYNC_WR_V(x) ((x) << SYNC_WR_S) 54 #define SYNC_WR_F SYNC_WR_V(1) 55 56 struct l2t_data { 57 unsigned int l2t_start; /* start index of our piece of the L2T */ 58 unsigned int l2t_size; /* number of entries in l2tab */ 59 rwlock_t lock; 60 atomic_t nfree; /* number of free entries */ 61 struct l2t_entry *rover; /* starting point for next allocation */ 62 struct l2t_entry l2tab[]; /* MUST BE LAST */ 63 }; 64 65 static inline unsigned int vlan_prio(const struct l2t_entry *e) 66 { 67 return e->vlan >> VLAN_PRIO_SHIFT; 68 } 69 70 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) 71 { 72 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ 73 atomic_dec(&d->nfree); 74 } 75 76 /* 77 * To avoid having to check address families we do not allow v4 and v6 78 * neighbors to be on the same hash chain. We keep v4 entries in the first 79 * half of available hash buckets and v6 in the second. We need at least two 80 * entries in our L2T for this scheme to work. 81 */ 82 enum { 83 L2T_MIN_HASH_BUCKETS = 2, 84 }; 85 86 static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key, 87 int ifindex) 88 { 89 unsigned int l2t_size_half = d->l2t_size / 2; 90 91 return jhash_2words(*key, ifindex, 0) % l2t_size_half; 92 } 93 94 static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key, 95 int ifindex) 96 { 97 unsigned int l2t_size_half = d->l2t_size / 2; 98 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; 99 100 return (l2t_size_half + 101 (jhash_2words(xor, ifindex, 0) % l2t_size_half)); 102 } 103 104 static unsigned int addr_hash(struct l2t_data *d, const u32 *addr, 105 int addr_len, int ifindex) 106 { 107 return addr_len == 4 ? arp_hash(d, addr, ifindex) : 108 ipv6_hash(d, addr, ifindex); 109 } 110 111 /* 112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check 113 * whether the L2T entry and the address are of the same address family. 114 * Callers ensure an address is only checked against L2T entries of the same 115 * family, something made trivial by the separation of IP and IPv6 hash chains 116 * mentioned above. Returns 0 if there's a match, 117 */ 118 static int addreq(const struct l2t_entry *e, const u32 *addr) 119 { 120 if (e->v6) 121 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | 122 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); 123 return e->addr[0] ^ addr[0]; 124 } 125 126 static void neigh_replace(struct l2t_entry *e, struct neighbour *n) 127 { 128 neigh_hold(n); 129 if (e->neigh) 130 neigh_release(e->neigh); 131 e->neigh = n; 132 } 133 134 /* 135 * Write an L2T entry. Must be called with the entry locked. 136 * The write may be synchronous or asynchronous. 137 */ 138 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) 139 { 140 struct l2t_data *d = adap->l2t; 141 unsigned int l2t_idx = e->idx + d->l2t_start; 142 struct sk_buff *skb; 143 struct cpl_l2t_write_req *req; 144 145 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 146 if (!skb) 147 return -ENOMEM; 148 149 req = __skb_put(skb, sizeof(*req)); 150 INIT_TP_WR(req, 0); 151 152 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, 153 l2t_idx | (sync ? SYNC_WR_F : 0) | 154 TID_QID_V(adap->sge.fw_evtq.abs_id))); 155 req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync)); 156 req->l2t_idx = htons(l2t_idx); 157 req->vlan = htons(e->vlan); 158 if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK)) 159 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); 160 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); 161 162 t4_mgmt_tx(adap, skb); 163 164 if (sync && e->state != L2T_STATE_SWITCHING) 165 e->state = L2T_STATE_SYNC_WRITE; 166 return 0; 167 } 168 169 /* 170 * Send packets waiting in an L2T entry's ARP queue. Must be called with the 171 * entry locked. 172 */ 173 static void send_pending(struct adapter *adap, struct l2t_entry *e) 174 { 175 struct sk_buff *skb; 176 177 while ((skb = __skb_dequeue(&e->arpq)) != NULL) 178 t4_ofld_send(adap, skb); 179 } 180 181 /* 182 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a 183 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T 184 * index it refers to. 185 */ 186 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) 187 { 188 struct l2t_data *d = adap->l2t; 189 unsigned int tid = GET_TID(rpl); 190 unsigned int l2t_idx = tid % L2T_SIZE; 191 192 if (unlikely(rpl->status != CPL_ERR_NONE)) { 193 dev_err(adap->pdev_dev, 194 "Unexpected L2T_WRITE_RPL status %u for entry %u\n", 195 rpl->status, l2t_idx); 196 return; 197 } 198 199 if (tid & SYNC_WR_F) { 200 struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start]; 201 202 spin_lock(&e->lock); 203 if (e->state != L2T_STATE_SWITCHING) { 204 send_pending(adap, e); 205 e->state = (e->neigh->nud_state & NUD_STALE) ? 206 L2T_STATE_STALE : L2T_STATE_VALID; 207 } 208 spin_unlock(&e->lock); 209 } 210 } 211 212 /* 213 * Add a packet to an L2T entry's queue of packets awaiting resolution. 214 * Must be called with the entry's lock held. 215 */ 216 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) 217 { 218 __skb_queue_tail(&e->arpq, skb); 219 } 220 221 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, 222 struct l2t_entry *e) 223 { 224 struct adapter *adap = netdev2adap(dev); 225 226 again: 227 switch (e->state) { 228 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 229 neigh_event_send(e->neigh, NULL); 230 spin_lock_bh(&e->lock); 231 if (e->state == L2T_STATE_STALE) 232 e->state = L2T_STATE_VALID; 233 spin_unlock_bh(&e->lock); 234 /* fall through */ 235 case L2T_STATE_VALID: /* fast-path, send the packet on */ 236 return t4_ofld_send(adap, skb); 237 case L2T_STATE_RESOLVING: 238 case L2T_STATE_SYNC_WRITE: 239 spin_lock_bh(&e->lock); 240 if (e->state != L2T_STATE_SYNC_WRITE && 241 e->state != L2T_STATE_RESOLVING) { 242 spin_unlock_bh(&e->lock); 243 goto again; 244 } 245 arpq_enqueue(e, skb); 246 spin_unlock_bh(&e->lock); 247 248 if (e->state == L2T_STATE_RESOLVING && 249 !neigh_event_send(e->neigh, NULL)) { 250 spin_lock_bh(&e->lock); 251 if (e->state == L2T_STATE_RESOLVING && 252 !skb_queue_empty(&e->arpq)) 253 write_l2e(adap, e, 1); 254 spin_unlock_bh(&e->lock); 255 } 256 } 257 return 0; 258 } 259 EXPORT_SYMBOL(cxgb4_l2t_send); 260 261 /* 262 * Allocate a free L2T entry. Must be called with l2t_data.lock held. 263 */ 264 static struct l2t_entry *alloc_l2e(struct l2t_data *d) 265 { 266 struct l2t_entry *end, *e, **p; 267 268 if (!atomic_read(&d->nfree)) 269 return NULL; 270 271 /* there's definitely a free entry */ 272 for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e) 273 if (atomic_read(&e->refcnt) == 0) 274 goto found; 275 276 for (e = d->l2tab; atomic_read(&e->refcnt); ++e) 277 ; 278 found: 279 d->rover = e + 1; 280 atomic_dec(&d->nfree); 281 282 /* 283 * The entry we found may be an inactive entry that is 284 * presently in the hash table. We need to remove it. 285 */ 286 if (e->state < L2T_STATE_SWITCHING) 287 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) 288 if (*p == e) { 289 *p = e->next; 290 e->next = NULL; 291 break; 292 } 293 294 e->state = L2T_STATE_UNUSED; 295 return e; 296 } 297 298 static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan, 299 u8 port, u8 *dmac) 300 { 301 struct l2t_entry *end, *e, **p; 302 struct l2t_entry *first_free = NULL; 303 304 for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) { 305 if (atomic_read(&e->refcnt) == 0) { 306 if (!first_free) 307 first_free = e; 308 } else { 309 if (e->state == L2T_STATE_SWITCHING) { 310 if (ether_addr_equal(e->dmac, dmac) && 311 (e->vlan == vlan) && (e->lport == port)) 312 goto exists; 313 } 314 } 315 } 316 317 if (first_free) { 318 e = first_free; 319 goto found; 320 } 321 322 return NULL; 323 324 found: 325 /* The entry we found may be an inactive entry that is 326 * presently in the hash table. We need to remove it. 327 */ 328 if (e->state < L2T_STATE_SWITCHING) 329 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) 330 if (*p == e) { 331 *p = e->next; 332 e->next = NULL; 333 break; 334 } 335 e->state = L2T_STATE_UNUSED; 336 337 exists: 338 return e; 339 } 340 341 /* Called when an L2T entry has no more users. The entry is left in the hash 342 * table since it is likely to be reused but we also bump nfree to indicate 343 * that the entry can be reallocated for a different neighbor. We also drop 344 * the existing neighbor reference in case the neighbor is going away and is 345 * waiting on our reference. 346 * 347 * Because entries can be reallocated to other neighbors once their ref count 348 * drops to 0 we need to take the entry's lock to avoid races with a new 349 * incarnation. 350 */ 351 static void _t4_l2e_free(struct l2t_entry *e) 352 { 353 struct l2t_data *d; 354 355 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 356 if (e->neigh) { 357 neigh_release(e->neigh); 358 e->neigh = NULL; 359 } 360 __skb_queue_purge(&e->arpq); 361 } 362 363 d = container_of(e, struct l2t_data, l2tab[e->idx]); 364 atomic_inc(&d->nfree); 365 } 366 367 /* Locked version of _t4_l2e_free */ 368 static void t4_l2e_free(struct l2t_entry *e) 369 { 370 struct l2t_data *d; 371 372 spin_lock_bh(&e->lock); 373 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 374 if (e->neigh) { 375 neigh_release(e->neigh); 376 e->neigh = NULL; 377 } 378 __skb_queue_purge(&e->arpq); 379 } 380 spin_unlock_bh(&e->lock); 381 382 d = container_of(e, struct l2t_data, l2tab[e->idx]); 383 atomic_inc(&d->nfree); 384 } 385 386 void cxgb4_l2t_release(struct l2t_entry *e) 387 { 388 if (atomic_dec_and_test(&e->refcnt)) 389 t4_l2e_free(e); 390 } 391 EXPORT_SYMBOL(cxgb4_l2t_release); 392 393 /* 394 * Update an L2T entry that was previously used for the same next hop as neigh. 395 * Must be called with softirqs disabled. 396 */ 397 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) 398 { 399 unsigned int nud_state; 400 401 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 402 if (neigh != e->neigh) 403 neigh_replace(e, neigh); 404 nud_state = neigh->nud_state; 405 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || 406 !(nud_state & NUD_VALID)) 407 e->state = L2T_STATE_RESOLVING; 408 else if (nud_state & NUD_CONNECTED) 409 e->state = L2T_STATE_VALID; 410 else 411 e->state = L2T_STATE_STALE; 412 spin_unlock(&e->lock); 413 } 414 415 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, 416 const struct net_device *physdev, 417 unsigned int priority) 418 { 419 u8 lport; 420 u16 vlan; 421 struct l2t_entry *e; 422 unsigned int addr_len = neigh->tbl->key_len; 423 u32 *addr = (u32 *)neigh->primary_key; 424 int ifidx = neigh->dev->ifindex; 425 int hash = addr_hash(d, addr, addr_len, ifidx); 426 427 if (neigh->dev->flags & IFF_LOOPBACK) 428 lport = netdev2pinfo(physdev)->tx_chan + 4; 429 else 430 lport = netdev2pinfo(physdev)->lport; 431 432 if (is_vlan_dev(neigh->dev)) { 433 vlan = vlan_dev_vlan_id(neigh->dev); 434 vlan |= vlan_dev_get_egress_qos_mask(neigh->dev, priority); 435 } else { 436 vlan = VLAN_NONE; 437 } 438 439 write_lock_bh(&d->lock); 440 for (e = d->l2tab[hash].first; e; e = e->next) 441 if (!addreq(e, addr) && e->ifindex == ifidx && 442 e->vlan == vlan && e->lport == lport) { 443 l2t_hold(d, e); 444 if (atomic_read(&e->refcnt) == 1) 445 reuse_entry(e, neigh); 446 goto done; 447 } 448 449 /* Need to allocate a new entry */ 450 e = alloc_l2e(d); 451 if (e) { 452 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 453 e->state = L2T_STATE_RESOLVING; 454 if (neigh->dev->flags & IFF_LOOPBACK) 455 memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac)); 456 memcpy(e->addr, addr, addr_len); 457 e->ifindex = ifidx; 458 e->hash = hash; 459 e->lport = lport; 460 e->v6 = addr_len == 16; 461 atomic_set(&e->refcnt, 1); 462 neigh_replace(e, neigh); 463 e->vlan = vlan; 464 e->next = d->l2tab[hash].first; 465 d->l2tab[hash].first = e; 466 spin_unlock(&e->lock); 467 } 468 done: 469 write_unlock_bh(&d->lock); 470 return e; 471 } 472 EXPORT_SYMBOL(cxgb4_l2t_get); 473 474 u64 cxgb4_select_ntuple(struct net_device *dev, 475 const struct l2t_entry *l2t) 476 { 477 struct adapter *adap = netdev2adap(dev); 478 struct tp_params *tp = &adap->params.tp; 479 u64 ntuple = 0; 480 481 /* Initialize each of the fields which we care about which are present 482 * in the Compressed Filter Tuple. 483 */ 484 if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE) 485 ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift; 486 487 if (tp->port_shift >= 0) 488 ntuple |= (u64)l2t->lport << tp->port_shift; 489 490 if (tp->protocol_shift >= 0) 491 ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift; 492 493 if (tp->vnic_shift >= 0 && (tp->ingress_config & VNIC_F)) { 494 struct port_info *pi = (struct port_info *)netdev_priv(dev); 495 496 ntuple |= (u64)(FT_VNID_ID_VF_V(pi->vin) | 497 FT_VNID_ID_PF_V(adap->pf) | 498 FT_VNID_ID_VLD_V(pi->vivld)) << tp->vnic_shift; 499 } 500 501 return ntuple; 502 } 503 EXPORT_SYMBOL(cxgb4_select_ntuple); 504 505 /* 506 * Called when the host's neighbor layer makes a change to some entry that is 507 * loaded into the HW L2 table. 508 */ 509 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) 510 { 511 unsigned int addr_len = neigh->tbl->key_len; 512 u32 *addr = (u32 *) neigh->primary_key; 513 int hash, ifidx = neigh->dev->ifindex; 514 struct sk_buff_head *arpq = NULL; 515 struct l2t_data *d = adap->l2t; 516 struct l2t_entry *e; 517 518 hash = addr_hash(d, addr, addr_len, ifidx); 519 read_lock_bh(&d->lock); 520 for (e = d->l2tab[hash].first; e; e = e->next) 521 if (!addreq(e, addr) && e->ifindex == ifidx) { 522 spin_lock(&e->lock); 523 if (atomic_read(&e->refcnt)) 524 goto found; 525 spin_unlock(&e->lock); 526 break; 527 } 528 read_unlock_bh(&d->lock); 529 return; 530 531 found: 532 read_unlock(&d->lock); 533 534 if (neigh != e->neigh) 535 neigh_replace(e, neigh); 536 537 if (e->state == L2T_STATE_RESOLVING) { 538 if (neigh->nud_state & NUD_FAILED) { 539 arpq = &e->arpq; 540 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && 541 !skb_queue_empty(&e->arpq)) { 542 write_l2e(adap, e, 1); 543 } 544 } else { 545 e->state = neigh->nud_state & NUD_CONNECTED ? 546 L2T_STATE_VALID : L2T_STATE_STALE; 547 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) 548 write_l2e(adap, e, 0); 549 } 550 551 if (arpq) { 552 struct sk_buff *skb; 553 554 /* Called when address resolution fails for an L2T 555 * entry to handle packets on the arpq head. If a 556 * packet specifies a failure handler it is invoked, 557 * otherwise the packet is sent to the device. 558 */ 559 while ((skb = __skb_dequeue(&e->arpq)) != NULL) { 560 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); 561 562 spin_unlock(&e->lock); 563 if (cb->arp_err_handler) 564 cb->arp_err_handler(cb->handle, skb); 565 else 566 t4_ofld_send(adap, skb); 567 spin_lock(&e->lock); 568 } 569 } 570 spin_unlock_bh(&e->lock); 571 } 572 573 /* Allocate an L2T entry for use by a switching rule. Such need to be 574 * explicitly freed and while busy they are not on any hash chain, so normal 575 * address resolution updates do not see them. 576 */ 577 struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan, 578 u8 port, u8 *eth_addr) 579 { 580 struct l2t_data *d = adap->l2t; 581 struct l2t_entry *e; 582 int ret; 583 584 write_lock_bh(&d->lock); 585 e = find_or_alloc_l2e(d, vlan, port, eth_addr); 586 if (e) { 587 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 588 if (!atomic_read(&e->refcnt)) { 589 e->state = L2T_STATE_SWITCHING; 590 e->vlan = vlan; 591 e->lport = port; 592 ether_addr_copy(e->dmac, eth_addr); 593 atomic_set(&e->refcnt, 1); 594 ret = write_l2e(adap, e, 0); 595 if (ret < 0) { 596 _t4_l2e_free(e); 597 spin_unlock(&e->lock); 598 write_unlock_bh(&d->lock); 599 return NULL; 600 } 601 } else { 602 atomic_inc(&e->refcnt); 603 } 604 605 spin_unlock(&e->lock); 606 } 607 write_unlock_bh(&d->lock); 608 return e; 609 } 610 611 /** 612 * cxgb4_l2t_alloc_switching - Allocates an L2T entry for switch filters 613 * @dev: net_device pointer 614 * @vlan: VLAN Id 615 * @port: Associated port 616 * @dmac: Destination MAC address to add to L2T 617 * Returns pointer to the allocated l2t entry 618 * 619 * Allocates an L2T entry for use by switching rule of a filter 620 */ 621 struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan, 622 u8 port, u8 *dmac) 623 { 624 struct adapter *adap = netdev2adap(dev); 625 626 return t4_l2t_alloc_switching(adap, vlan, port, dmac); 627 } 628 EXPORT_SYMBOL(cxgb4_l2t_alloc_switching); 629 630 struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end) 631 { 632 unsigned int l2t_size; 633 int i; 634 struct l2t_data *d; 635 636 if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE) 637 return NULL; 638 l2t_size = l2t_end - l2t_start + 1; 639 if (l2t_size < L2T_MIN_HASH_BUCKETS) 640 return NULL; 641 642 d = kvzalloc(struct_size(d, l2tab, l2t_size), GFP_KERNEL); 643 if (!d) 644 return NULL; 645 646 d->l2t_start = l2t_start; 647 d->l2t_size = l2t_size; 648 649 d->rover = d->l2tab; 650 atomic_set(&d->nfree, l2t_size); 651 rwlock_init(&d->lock); 652 653 for (i = 0; i < d->l2t_size; ++i) { 654 d->l2tab[i].idx = i; 655 d->l2tab[i].state = L2T_STATE_UNUSED; 656 spin_lock_init(&d->l2tab[i].lock); 657 atomic_set(&d->l2tab[i].refcnt, 0); 658 skb_queue_head_init(&d->l2tab[i].arpq); 659 } 660 return d; 661 } 662 663 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) 664 { 665 struct l2t_data *d = seq->private; 666 667 return pos >= d->l2t_size ? NULL : &d->l2tab[pos]; 668 } 669 670 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) 671 { 672 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 673 } 674 675 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) 676 { 677 v = l2t_get_idx(seq, *pos); 678 ++(*pos); 679 return v; 680 } 681 682 static void l2t_seq_stop(struct seq_file *seq, void *v) 683 { 684 } 685 686 static char l2e_state(const struct l2t_entry *e) 687 { 688 switch (e->state) { 689 case L2T_STATE_VALID: return 'V'; 690 case L2T_STATE_STALE: return 'S'; 691 case L2T_STATE_SYNC_WRITE: return 'W'; 692 case L2T_STATE_RESOLVING: 693 return skb_queue_empty(&e->arpq) ? 'R' : 'A'; 694 case L2T_STATE_SWITCHING: return 'X'; 695 default: 696 return 'U'; 697 } 698 } 699 700 bool cxgb4_check_l2t_valid(struct l2t_entry *e) 701 { 702 bool valid; 703 704 spin_lock(&e->lock); 705 valid = (e->state == L2T_STATE_VALID); 706 spin_unlock(&e->lock); 707 return valid; 708 } 709 EXPORT_SYMBOL(cxgb4_check_l2t_valid); 710 711 static int l2t_seq_show(struct seq_file *seq, void *v) 712 { 713 if (v == SEQ_START_TOKEN) 714 seq_puts(seq, " Idx IP address " 715 "Ethernet address VLAN/P LP State Users Port\n"); 716 else { 717 char ip[60]; 718 struct l2t_data *d = seq->private; 719 struct l2t_entry *e = v; 720 721 spin_lock_bh(&e->lock); 722 if (e->state == L2T_STATE_SWITCHING) 723 ip[0] = '\0'; 724 else 725 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); 726 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", 727 e->idx + d->l2t_start, ip, e->dmac, 728 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, 729 l2e_state(e), atomic_read(&e->refcnt), 730 e->neigh ? e->neigh->dev->name : ""); 731 spin_unlock_bh(&e->lock); 732 } 733 return 0; 734 } 735 736 static const struct seq_operations l2t_seq_ops = { 737 .start = l2t_seq_start, 738 .next = l2t_seq_next, 739 .stop = l2t_seq_stop, 740 .show = l2t_seq_show 741 }; 742 743 static int l2t_seq_open(struct inode *inode, struct file *file) 744 { 745 int rc = seq_open(file, &l2t_seq_ops); 746 747 if (!rc) { 748 struct adapter *adap = inode->i_private; 749 struct seq_file *seq = file->private_data; 750 751 seq->private = adap->l2t; 752 } 753 return rc; 754 } 755 756 const struct file_operations t4_l2t_fops = { 757 .owner = THIS_MODULE, 758 .open = l2t_seq_open, 759 .read = seq_read, 760 .llseek = seq_lseek, 761 .release = seq_release, 762 }; 763