1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/jhash.h>
40 #include <linux/module.h>
41 #include <linux/debugfs.h>
42 #include <linux/seq_file.h>
43 #include <net/neighbour.h>
44 #include "cxgb4.h"
45 #include "l2t.h"
46 #include "t4_msg.h"
47 #include "t4fw_api.h"
48 #include "t4_regs.h"
49 #include "t4_values.h"
50 
51 #define VLAN_NONE 0xfff
52 
53 /* identifies sync vs async L2T_WRITE_REQs */
54 #define SYNC_WR_S    12
55 #define SYNC_WR_V(x) ((x) << SYNC_WR_S)
56 #define SYNC_WR_F    SYNC_WR_V(1)
57 
58 struct l2t_data {
59 	unsigned int l2t_start;     /* start index of our piece of the L2T */
60 	unsigned int l2t_size;      /* number of entries in l2tab */
61 	rwlock_t lock;
62 	atomic_t nfree;             /* number of free entries */
63 	struct l2t_entry *rover;    /* starting point for next allocation */
64 	struct l2t_entry l2tab[0];  /* MUST BE LAST */
65 };
66 
67 static inline unsigned int vlan_prio(const struct l2t_entry *e)
68 {
69 	return e->vlan >> VLAN_PRIO_SHIFT;
70 }
71 
72 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
73 {
74 	if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */
75 		atomic_dec(&d->nfree);
76 }
77 
78 /*
79  * To avoid having to check address families we do not allow v4 and v6
80  * neighbors to be on the same hash chain.  We keep v4 entries in the first
81  * half of available hash buckets and v6 in the second.  We need at least two
82  * entries in our L2T for this scheme to work.
83  */
84 enum {
85 	L2T_MIN_HASH_BUCKETS = 2,
86 };
87 
88 static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
89 				    int ifindex)
90 {
91 	unsigned int l2t_size_half = d->l2t_size / 2;
92 
93 	return jhash_2words(*key, ifindex, 0) % l2t_size_half;
94 }
95 
96 static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
97 				     int ifindex)
98 {
99 	unsigned int l2t_size_half = d->l2t_size / 2;
100 	u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
101 
102 	return (l2t_size_half +
103 		(jhash_2words(xor, ifindex, 0) % l2t_size_half));
104 }
105 
106 static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
107 			      int addr_len, int ifindex)
108 {
109 	return addr_len == 4 ? arp_hash(d, addr, ifindex) :
110 			       ipv6_hash(d, addr, ifindex);
111 }
112 
113 /*
114  * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
115  * whether the L2T entry and the address are of the same address family.
116  * Callers ensure an address is only checked against L2T entries of the same
117  * family, something made trivial by the separation of IP and IPv6 hash chains
118  * mentioned above.  Returns 0 if there's a match,
119  */
120 static int addreq(const struct l2t_entry *e, const u32 *addr)
121 {
122 	if (e->v6)
123 		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
124 		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
125 	return e->addr[0] ^ addr[0];
126 }
127 
128 static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
129 {
130 	neigh_hold(n);
131 	if (e->neigh)
132 		neigh_release(e->neigh);
133 	e->neigh = n;
134 }
135 
136 /*
137  * Write an L2T entry.  Must be called with the entry locked.
138  * The write may be synchronous or asynchronous.
139  */
140 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
141 {
142 	struct l2t_data *d = adap->l2t;
143 	unsigned int l2t_idx = e->idx + d->l2t_start;
144 	struct sk_buff *skb;
145 	struct cpl_l2t_write_req *req;
146 
147 	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
148 	if (!skb)
149 		return -ENOMEM;
150 
151 	req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
152 	INIT_TP_WR(req, 0);
153 
154 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
155 					l2t_idx | (sync ? SYNC_WR_F : 0) |
156 					TID_QID_V(adap->sge.fw_evtq.abs_id)));
157 	req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
158 	req->l2t_idx = htons(l2t_idx);
159 	req->vlan = htons(e->vlan);
160 	if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
161 		memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
162 	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
163 
164 	t4_mgmt_tx(adap, skb);
165 
166 	if (sync && e->state != L2T_STATE_SWITCHING)
167 		e->state = L2T_STATE_SYNC_WRITE;
168 	return 0;
169 }
170 
171 /*
172  * Send packets waiting in an L2T entry's ARP queue.  Must be called with the
173  * entry locked.
174  */
175 static void send_pending(struct adapter *adap, struct l2t_entry *e)
176 {
177 	struct sk_buff *skb;
178 
179 	while ((skb = __skb_dequeue(&e->arpq)) != NULL)
180 		t4_ofld_send(adap, skb);
181 }
182 
183 /*
184  * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a
185  * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T
186  * index it refers to.
187  */
188 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
189 {
190 	struct l2t_data *d = adap->l2t;
191 	unsigned int tid = GET_TID(rpl);
192 	unsigned int l2t_idx = tid % L2T_SIZE;
193 
194 	if (unlikely(rpl->status != CPL_ERR_NONE)) {
195 		dev_err(adap->pdev_dev,
196 			"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
197 			rpl->status, l2t_idx);
198 		return;
199 	}
200 
201 	if (tid & SYNC_WR_F) {
202 		struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
203 
204 		spin_lock(&e->lock);
205 		if (e->state != L2T_STATE_SWITCHING) {
206 			send_pending(adap, e);
207 			e->state = (e->neigh->nud_state & NUD_STALE) ?
208 					L2T_STATE_STALE : L2T_STATE_VALID;
209 		}
210 		spin_unlock(&e->lock);
211 	}
212 }
213 
214 /*
215  * Add a packet to an L2T entry's queue of packets awaiting resolution.
216  * Must be called with the entry's lock held.
217  */
218 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
219 {
220 	__skb_queue_tail(&e->arpq, skb);
221 }
222 
223 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
224 		   struct l2t_entry *e)
225 {
226 	struct adapter *adap = netdev2adap(dev);
227 
228 again:
229 	switch (e->state) {
230 	case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */
231 		neigh_event_send(e->neigh, NULL);
232 		spin_lock_bh(&e->lock);
233 		if (e->state == L2T_STATE_STALE)
234 			e->state = L2T_STATE_VALID;
235 		spin_unlock_bh(&e->lock);
236 	case L2T_STATE_VALID:     /* fast-path, send the packet on */
237 		return t4_ofld_send(adap, skb);
238 	case L2T_STATE_RESOLVING:
239 	case L2T_STATE_SYNC_WRITE:
240 		spin_lock_bh(&e->lock);
241 		if (e->state != L2T_STATE_SYNC_WRITE &&
242 		    e->state != L2T_STATE_RESOLVING) {
243 			spin_unlock_bh(&e->lock);
244 			goto again;
245 		}
246 		arpq_enqueue(e, skb);
247 		spin_unlock_bh(&e->lock);
248 
249 		if (e->state == L2T_STATE_RESOLVING &&
250 		    !neigh_event_send(e->neigh, NULL)) {
251 			spin_lock_bh(&e->lock);
252 			if (e->state == L2T_STATE_RESOLVING &&
253 			    !skb_queue_empty(&e->arpq))
254 				write_l2e(adap, e, 1);
255 			spin_unlock_bh(&e->lock);
256 		}
257 	}
258 	return 0;
259 }
260 EXPORT_SYMBOL(cxgb4_l2t_send);
261 
262 /*
263  * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
264  */
265 static struct l2t_entry *alloc_l2e(struct l2t_data *d)
266 {
267 	struct l2t_entry *end, *e, **p;
268 
269 	if (!atomic_read(&d->nfree))
270 		return NULL;
271 
272 	/* there's definitely a free entry */
273 	for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
274 		if (atomic_read(&e->refcnt) == 0)
275 			goto found;
276 
277 	for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
278 		;
279 found:
280 	d->rover = e + 1;
281 	atomic_dec(&d->nfree);
282 
283 	/*
284 	 * The entry we found may be an inactive entry that is
285 	 * presently in the hash table.  We need to remove it.
286 	 */
287 	if (e->state < L2T_STATE_SWITCHING)
288 		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
289 			if (*p == e) {
290 				*p = e->next;
291 				e->next = NULL;
292 				break;
293 			}
294 
295 	e->state = L2T_STATE_UNUSED;
296 	return e;
297 }
298 
299 static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan,
300 					   u8 port, u8 *dmac)
301 {
302 	struct l2t_entry *end, *e, **p;
303 	struct l2t_entry *first_free = NULL;
304 
305 	for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) {
306 		if (atomic_read(&e->refcnt) == 0) {
307 			if (!first_free)
308 				first_free = e;
309 		} else {
310 			if (e->state == L2T_STATE_SWITCHING) {
311 				if (ether_addr_equal(e->dmac, dmac) &&
312 				    (e->vlan == vlan) && (e->lport == port))
313 					goto exists;
314 			}
315 		}
316 	}
317 
318 	if (first_free) {
319 		e = first_free;
320 		goto found;
321 	}
322 
323 	return NULL;
324 
325 found:
326 	/* The entry we found may be an inactive entry that is
327 	 * presently in the hash table.  We need to remove it.
328 	 */
329 	if (e->state < L2T_STATE_SWITCHING)
330 		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
331 			if (*p == e) {
332 				*p = e->next;
333 				e->next = NULL;
334 				break;
335 			}
336 	e->state = L2T_STATE_UNUSED;
337 
338 exists:
339 	return e;
340 }
341 
342 /* Called when an L2T entry has no more users.  The entry is left in the hash
343  * table since it is likely to be reused but we also bump nfree to indicate
344  * that the entry can be reallocated for a different neighbor.  We also drop
345  * the existing neighbor reference in case the neighbor is going away and is
346  * waiting on our reference.
347  *
348  * Because entries can be reallocated to other neighbors once their ref count
349  * drops to 0 we need to take the entry's lock to avoid races with a new
350  * incarnation.
351  */
352 static void _t4_l2e_free(struct l2t_entry *e)
353 {
354 	struct l2t_data *d;
355 	struct sk_buff *skb;
356 
357 	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
358 		if (e->neigh) {
359 			neigh_release(e->neigh);
360 			e->neigh = NULL;
361 		}
362 		while ((skb = __skb_dequeue(&e->arpq)) != NULL)
363 			kfree_skb(skb);
364 	}
365 
366 	d = container_of(e, struct l2t_data, l2tab[e->idx]);
367 	atomic_inc(&d->nfree);
368 }
369 
370 /* Locked version of _t4_l2e_free */
371 static void t4_l2e_free(struct l2t_entry *e)
372 {
373 	struct l2t_data *d;
374 	struct sk_buff *skb;
375 
376 	spin_lock_bh(&e->lock);
377 	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
378 		if (e->neigh) {
379 			neigh_release(e->neigh);
380 			e->neigh = NULL;
381 		}
382 		while ((skb = __skb_dequeue(&e->arpq)) != NULL)
383 			kfree_skb(skb);
384 	}
385 	spin_unlock_bh(&e->lock);
386 
387 	d = container_of(e, struct l2t_data, l2tab[e->idx]);
388 	atomic_inc(&d->nfree);
389 }
390 
391 void cxgb4_l2t_release(struct l2t_entry *e)
392 {
393 	if (atomic_dec_and_test(&e->refcnt))
394 		t4_l2e_free(e);
395 }
396 EXPORT_SYMBOL(cxgb4_l2t_release);
397 
398 /*
399  * Update an L2T entry that was previously used for the same next hop as neigh.
400  * Must be called with softirqs disabled.
401  */
402 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
403 {
404 	unsigned int nud_state;
405 
406 	spin_lock(&e->lock);                /* avoid race with t4_l2t_free */
407 	if (neigh != e->neigh)
408 		neigh_replace(e, neigh);
409 	nud_state = neigh->nud_state;
410 	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
411 	    !(nud_state & NUD_VALID))
412 		e->state = L2T_STATE_RESOLVING;
413 	else if (nud_state & NUD_CONNECTED)
414 		e->state = L2T_STATE_VALID;
415 	else
416 		e->state = L2T_STATE_STALE;
417 	spin_unlock(&e->lock);
418 }
419 
420 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
421 				const struct net_device *physdev,
422 				unsigned int priority)
423 {
424 	u8 lport;
425 	u16 vlan;
426 	struct l2t_entry *e;
427 	int addr_len = neigh->tbl->key_len;
428 	u32 *addr = (u32 *)neigh->primary_key;
429 	int ifidx = neigh->dev->ifindex;
430 	int hash = addr_hash(d, addr, addr_len, ifidx);
431 
432 	if (neigh->dev->flags & IFF_LOOPBACK)
433 		lport = netdev2pinfo(physdev)->tx_chan + 4;
434 	else
435 		lport = netdev2pinfo(physdev)->lport;
436 
437 	if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
438 		vlan = vlan_dev_vlan_id(neigh->dev);
439 	else
440 		vlan = VLAN_NONE;
441 
442 	write_lock_bh(&d->lock);
443 	for (e = d->l2tab[hash].first; e; e = e->next)
444 		if (!addreq(e, addr) && e->ifindex == ifidx &&
445 		    e->vlan == vlan && e->lport == lport) {
446 			l2t_hold(d, e);
447 			if (atomic_read(&e->refcnt) == 1)
448 				reuse_entry(e, neigh);
449 			goto done;
450 		}
451 
452 	/* Need to allocate a new entry */
453 	e = alloc_l2e(d);
454 	if (e) {
455 		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
456 		e->state = L2T_STATE_RESOLVING;
457 		if (neigh->dev->flags & IFF_LOOPBACK)
458 			memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
459 		memcpy(e->addr, addr, addr_len);
460 		e->ifindex = ifidx;
461 		e->hash = hash;
462 		e->lport = lport;
463 		e->v6 = addr_len == 16;
464 		atomic_set(&e->refcnt, 1);
465 		neigh_replace(e, neigh);
466 		e->vlan = vlan;
467 		e->next = d->l2tab[hash].first;
468 		d->l2tab[hash].first = e;
469 		spin_unlock(&e->lock);
470 	}
471 done:
472 	write_unlock_bh(&d->lock);
473 	return e;
474 }
475 EXPORT_SYMBOL(cxgb4_l2t_get);
476 
477 u64 cxgb4_select_ntuple(struct net_device *dev,
478 			const struct l2t_entry *l2t)
479 {
480 	struct adapter *adap = netdev2adap(dev);
481 	struct tp_params *tp = &adap->params.tp;
482 	u64 ntuple = 0;
483 
484 	/* Initialize each of the fields which we care about which are present
485 	 * in the Compressed Filter Tuple.
486 	 */
487 	if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
488 		ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
489 
490 	if (tp->port_shift >= 0)
491 		ntuple |= (u64)l2t->lport << tp->port_shift;
492 
493 	if (tp->protocol_shift >= 0)
494 		ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
495 
496 	if (tp->vnic_shift >= 0) {
497 		u32 viid = cxgb4_port_viid(dev);
498 		u32 vf = FW_VIID_VIN_G(viid);
499 		u32 pf = FW_VIID_PFN_G(viid);
500 		u32 vld = FW_VIID_VIVLD_G(viid);
501 
502 		ntuple |= (u64)(FT_VNID_ID_VF_V(vf) |
503 				FT_VNID_ID_PF_V(pf) |
504 				FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift;
505 	}
506 
507 	return ntuple;
508 }
509 EXPORT_SYMBOL(cxgb4_select_ntuple);
510 
511 /*
512  * Called when address resolution fails for an L2T entry to handle packets
513  * on the arpq head.  If a packet specifies a failure handler it is invoked,
514  * otherwise the packet is sent to the device.
515  */
516 static void handle_failed_resolution(struct adapter *adap, struct l2t_entry *e)
517 {
518 	struct sk_buff *skb;
519 
520 	while ((skb = __skb_dequeue(&e->arpq)) != NULL) {
521 		const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
522 
523 		spin_unlock(&e->lock);
524 		if (cb->arp_err_handler)
525 			cb->arp_err_handler(cb->handle, skb);
526 		else
527 			t4_ofld_send(adap, skb);
528 		spin_lock(&e->lock);
529 	}
530 }
531 
532 /*
533  * Called when the host's neighbor layer makes a change to some entry that is
534  * loaded into the HW L2 table.
535  */
536 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
537 {
538 	struct l2t_entry *e;
539 	struct sk_buff_head *arpq = NULL;
540 	struct l2t_data *d = adap->l2t;
541 	int addr_len = neigh->tbl->key_len;
542 	u32 *addr = (u32 *) neigh->primary_key;
543 	int ifidx = neigh->dev->ifindex;
544 	int hash = addr_hash(d, addr, addr_len, ifidx);
545 
546 	read_lock_bh(&d->lock);
547 	for (e = d->l2tab[hash].first; e; e = e->next)
548 		if (!addreq(e, addr) && e->ifindex == ifidx) {
549 			spin_lock(&e->lock);
550 			if (atomic_read(&e->refcnt))
551 				goto found;
552 			spin_unlock(&e->lock);
553 			break;
554 		}
555 	read_unlock_bh(&d->lock);
556 	return;
557 
558  found:
559 	read_unlock(&d->lock);
560 
561 	if (neigh != e->neigh)
562 		neigh_replace(e, neigh);
563 
564 	if (e->state == L2T_STATE_RESOLVING) {
565 		if (neigh->nud_state & NUD_FAILED) {
566 			arpq = &e->arpq;
567 		} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
568 			   !skb_queue_empty(&e->arpq)) {
569 			write_l2e(adap, e, 1);
570 		}
571 	} else {
572 		e->state = neigh->nud_state & NUD_CONNECTED ?
573 			L2T_STATE_VALID : L2T_STATE_STALE;
574 		if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
575 			write_l2e(adap, e, 0);
576 	}
577 
578 	if (arpq)
579 		handle_failed_resolution(adap, e);
580 	spin_unlock_bh(&e->lock);
581 }
582 
583 /* Allocate an L2T entry for use by a switching rule.  Such need to be
584  * explicitly freed and while busy they are not on any hash chain, so normal
585  * address resolution updates do not see them.
586  */
587 struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan,
588 					 u8 port, u8 *eth_addr)
589 {
590 	struct l2t_data *d = adap->l2t;
591 	struct l2t_entry *e;
592 	int ret;
593 
594 	write_lock_bh(&d->lock);
595 	e = find_or_alloc_l2e(d, vlan, port, eth_addr);
596 	if (e) {
597 		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
598 		if (!atomic_read(&e->refcnt)) {
599 			e->state = L2T_STATE_SWITCHING;
600 			e->vlan = vlan;
601 			e->lport = port;
602 			ether_addr_copy(e->dmac, eth_addr);
603 			atomic_set(&e->refcnt, 1);
604 			ret = write_l2e(adap, e, 0);
605 			if (ret < 0) {
606 				_t4_l2e_free(e);
607 				spin_unlock(&e->lock);
608 				write_unlock_bh(&d->lock);
609 				return NULL;
610 			}
611 		} else {
612 			atomic_inc(&e->refcnt);
613 		}
614 
615 		spin_unlock(&e->lock);
616 	}
617 	write_unlock_bh(&d->lock);
618 	return e;
619 }
620 
621 /**
622  * @dev: net_device pointer
623  * @vlan: VLAN Id
624  * @port: Associated port
625  * @dmac: Destination MAC address to add to L2T
626  * Returns pointer to the allocated l2t entry
627  *
628  * Allocates an L2T entry for use by switching rule of a filter
629  */
630 struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan,
631 					    u8 port, u8 *dmac)
632 {
633 	struct adapter *adap = netdev2adap(dev);
634 
635 	return t4_l2t_alloc_switching(adap, vlan, port, dmac);
636 }
637 EXPORT_SYMBOL(cxgb4_l2t_alloc_switching);
638 
639 struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
640 {
641 	unsigned int l2t_size;
642 	int i;
643 	struct l2t_data *d;
644 
645 	if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
646 		return NULL;
647 	l2t_size = l2t_end - l2t_start + 1;
648 	if (l2t_size < L2T_MIN_HASH_BUCKETS)
649 		return NULL;
650 
651 	d = t4_alloc_mem(sizeof(*d) + l2t_size * sizeof(struct l2t_entry));
652 	if (!d)
653 		return NULL;
654 
655 	d->l2t_start = l2t_start;
656 	d->l2t_size = l2t_size;
657 
658 	d->rover = d->l2tab;
659 	atomic_set(&d->nfree, l2t_size);
660 	rwlock_init(&d->lock);
661 
662 	for (i = 0; i < d->l2t_size; ++i) {
663 		d->l2tab[i].idx = i;
664 		d->l2tab[i].state = L2T_STATE_UNUSED;
665 		spin_lock_init(&d->l2tab[i].lock);
666 		atomic_set(&d->l2tab[i].refcnt, 0);
667 		skb_queue_head_init(&d->l2tab[i].arpq);
668 	}
669 	return d;
670 }
671 
672 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
673 {
674 	struct l2t_data *d = seq->private;
675 
676 	return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
677 }
678 
679 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
680 {
681 	return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
682 }
683 
684 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
685 {
686 	v = l2t_get_idx(seq, *pos);
687 	if (v)
688 		++*pos;
689 	return v;
690 }
691 
692 static void l2t_seq_stop(struct seq_file *seq, void *v)
693 {
694 }
695 
696 static char l2e_state(const struct l2t_entry *e)
697 {
698 	switch (e->state) {
699 	case L2T_STATE_VALID: return 'V';
700 	case L2T_STATE_STALE: return 'S';
701 	case L2T_STATE_SYNC_WRITE: return 'W';
702 	case L2T_STATE_RESOLVING:
703 		return skb_queue_empty(&e->arpq) ? 'R' : 'A';
704 	case L2T_STATE_SWITCHING: return 'X';
705 	default:
706 		return 'U';
707 	}
708 }
709 
710 static int l2t_seq_show(struct seq_file *seq, void *v)
711 {
712 	if (v == SEQ_START_TOKEN)
713 		seq_puts(seq, " Idx IP address                "
714 			 "Ethernet address  VLAN/P LP State Users Port\n");
715 	else {
716 		char ip[60];
717 		struct l2t_data *d = seq->private;
718 		struct l2t_entry *e = v;
719 
720 		spin_lock_bh(&e->lock);
721 		if (e->state == L2T_STATE_SWITCHING)
722 			ip[0] = '\0';
723 		else
724 			sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
725 		seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n",
726 			   e->idx + d->l2t_start, ip, e->dmac,
727 			   e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
728 			   l2e_state(e), atomic_read(&e->refcnt),
729 			   e->neigh ? e->neigh->dev->name : "");
730 		spin_unlock_bh(&e->lock);
731 	}
732 	return 0;
733 }
734 
735 static const struct seq_operations l2t_seq_ops = {
736 	.start = l2t_seq_start,
737 	.next = l2t_seq_next,
738 	.stop = l2t_seq_stop,
739 	.show = l2t_seq_show
740 };
741 
742 static int l2t_seq_open(struct inode *inode, struct file *file)
743 {
744 	int rc = seq_open(file, &l2t_seq_ops);
745 
746 	if (!rc) {
747 		struct adapter *adap = inode->i_private;
748 		struct seq_file *seq = file->private_data;
749 
750 		seq->private = adap->l2t;
751 	}
752 	return rc;
753 }
754 
755 const struct file_operations t4_l2t_fops = {
756 	.owner = THIS_MODULE,
757 	.open = l2t_seq_open,
758 	.read = seq_read,
759 	.llseek = seq_lseek,
760 	.release = seq_release,
761 };
762