1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/jhash.h> 40 #include <linux/module.h> 41 #include <linux/debugfs.h> 42 #include <linux/seq_file.h> 43 #include <net/neighbour.h> 44 #include "cxgb4.h" 45 #include "l2t.h" 46 #include "t4_msg.h" 47 #include "t4fw_api.h" 48 #include "t4_regs.h" 49 #include "t4_values.h" 50 51 /* identifies sync vs async L2T_WRITE_REQs */ 52 #define SYNC_WR_S 12 53 #define SYNC_WR_V(x) ((x) << SYNC_WR_S) 54 #define SYNC_WR_F SYNC_WR_V(1) 55 56 struct l2t_data { 57 unsigned int l2t_start; /* start index of our piece of the L2T */ 58 unsigned int l2t_size; /* number of entries in l2tab */ 59 rwlock_t lock; 60 atomic_t nfree; /* number of free entries */ 61 struct l2t_entry *rover; /* starting point for next allocation */ 62 struct l2t_entry l2tab[0]; /* MUST BE LAST */ 63 }; 64 65 static inline unsigned int vlan_prio(const struct l2t_entry *e) 66 { 67 return e->vlan >> VLAN_PRIO_SHIFT; 68 } 69 70 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) 71 { 72 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ 73 atomic_dec(&d->nfree); 74 } 75 76 /* 77 * To avoid having to check address families we do not allow v4 and v6 78 * neighbors to be on the same hash chain. We keep v4 entries in the first 79 * half of available hash buckets and v6 in the second. We need at least two 80 * entries in our L2T for this scheme to work. 81 */ 82 enum { 83 L2T_MIN_HASH_BUCKETS = 2, 84 }; 85 86 static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key, 87 int ifindex) 88 { 89 unsigned int l2t_size_half = d->l2t_size / 2; 90 91 return jhash_2words(*key, ifindex, 0) % l2t_size_half; 92 } 93 94 static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key, 95 int ifindex) 96 { 97 unsigned int l2t_size_half = d->l2t_size / 2; 98 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; 99 100 return (l2t_size_half + 101 (jhash_2words(xor, ifindex, 0) % l2t_size_half)); 102 } 103 104 static unsigned int addr_hash(struct l2t_data *d, const u32 *addr, 105 int addr_len, int ifindex) 106 { 107 return addr_len == 4 ? arp_hash(d, addr, ifindex) : 108 ipv6_hash(d, addr, ifindex); 109 } 110 111 /* 112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check 113 * whether the L2T entry and the address are of the same address family. 114 * Callers ensure an address is only checked against L2T entries of the same 115 * family, something made trivial by the separation of IP and IPv6 hash chains 116 * mentioned above. Returns 0 if there's a match, 117 */ 118 static int addreq(const struct l2t_entry *e, const u32 *addr) 119 { 120 if (e->v6) 121 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | 122 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); 123 return e->addr[0] ^ addr[0]; 124 } 125 126 static void neigh_replace(struct l2t_entry *e, struct neighbour *n) 127 { 128 neigh_hold(n); 129 if (e->neigh) 130 neigh_release(e->neigh); 131 e->neigh = n; 132 } 133 134 /* 135 * Write an L2T entry. Must be called with the entry locked. 136 * The write may be synchronous or asynchronous. 137 */ 138 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) 139 { 140 struct l2t_data *d = adap->l2t; 141 unsigned int l2t_idx = e->idx + d->l2t_start; 142 struct sk_buff *skb; 143 struct cpl_l2t_write_req *req; 144 145 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 146 if (!skb) 147 return -ENOMEM; 148 149 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 150 INIT_TP_WR(req, 0); 151 152 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, 153 l2t_idx | (sync ? SYNC_WR_F : 0) | 154 TID_QID_V(adap->sge.fw_evtq.abs_id))); 155 req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync)); 156 req->l2t_idx = htons(l2t_idx); 157 req->vlan = htons(e->vlan); 158 if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK)) 159 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); 160 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); 161 162 t4_mgmt_tx(adap, skb); 163 164 if (sync && e->state != L2T_STATE_SWITCHING) 165 e->state = L2T_STATE_SYNC_WRITE; 166 return 0; 167 } 168 169 /* 170 * Send packets waiting in an L2T entry's ARP queue. Must be called with the 171 * entry locked. 172 */ 173 static void send_pending(struct adapter *adap, struct l2t_entry *e) 174 { 175 struct sk_buff *skb; 176 177 while ((skb = __skb_dequeue(&e->arpq)) != NULL) 178 t4_ofld_send(adap, skb); 179 } 180 181 /* 182 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a 183 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T 184 * index it refers to. 185 */ 186 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) 187 { 188 struct l2t_data *d = adap->l2t; 189 unsigned int tid = GET_TID(rpl); 190 unsigned int l2t_idx = tid % L2T_SIZE; 191 192 if (unlikely(rpl->status != CPL_ERR_NONE)) { 193 dev_err(adap->pdev_dev, 194 "Unexpected L2T_WRITE_RPL status %u for entry %u\n", 195 rpl->status, l2t_idx); 196 return; 197 } 198 199 if (tid & SYNC_WR_F) { 200 struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start]; 201 202 spin_lock(&e->lock); 203 if (e->state != L2T_STATE_SWITCHING) { 204 send_pending(adap, e); 205 e->state = (e->neigh->nud_state & NUD_STALE) ? 206 L2T_STATE_STALE : L2T_STATE_VALID; 207 } 208 spin_unlock(&e->lock); 209 } 210 } 211 212 /* 213 * Add a packet to an L2T entry's queue of packets awaiting resolution. 214 * Must be called with the entry's lock held. 215 */ 216 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) 217 { 218 __skb_queue_tail(&e->arpq, skb); 219 } 220 221 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, 222 struct l2t_entry *e) 223 { 224 struct adapter *adap = netdev2adap(dev); 225 226 again: 227 switch (e->state) { 228 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 229 neigh_event_send(e->neigh, NULL); 230 spin_lock_bh(&e->lock); 231 if (e->state == L2T_STATE_STALE) 232 e->state = L2T_STATE_VALID; 233 spin_unlock_bh(&e->lock); 234 case L2T_STATE_VALID: /* fast-path, send the packet on */ 235 return t4_ofld_send(adap, skb); 236 case L2T_STATE_RESOLVING: 237 case L2T_STATE_SYNC_WRITE: 238 spin_lock_bh(&e->lock); 239 if (e->state != L2T_STATE_SYNC_WRITE && 240 e->state != L2T_STATE_RESOLVING) { 241 spin_unlock_bh(&e->lock); 242 goto again; 243 } 244 arpq_enqueue(e, skb); 245 spin_unlock_bh(&e->lock); 246 247 if (e->state == L2T_STATE_RESOLVING && 248 !neigh_event_send(e->neigh, NULL)) { 249 spin_lock_bh(&e->lock); 250 if (e->state == L2T_STATE_RESOLVING && 251 !skb_queue_empty(&e->arpq)) 252 write_l2e(adap, e, 1); 253 spin_unlock_bh(&e->lock); 254 } 255 } 256 return 0; 257 } 258 EXPORT_SYMBOL(cxgb4_l2t_send); 259 260 /* 261 * Allocate a free L2T entry. Must be called with l2t_data.lock held. 262 */ 263 static struct l2t_entry *alloc_l2e(struct l2t_data *d) 264 { 265 struct l2t_entry *end, *e, **p; 266 267 if (!atomic_read(&d->nfree)) 268 return NULL; 269 270 /* there's definitely a free entry */ 271 for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e) 272 if (atomic_read(&e->refcnt) == 0) 273 goto found; 274 275 for (e = d->l2tab; atomic_read(&e->refcnt); ++e) 276 ; 277 found: 278 d->rover = e + 1; 279 atomic_dec(&d->nfree); 280 281 /* 282 * The entry we found may be an inactive entry that is 283 * presently in the hash table. We need to remove it. 284 */ 285 if (e->state < L2T_STATE_SWITCHING) 286 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) 287 if (*p == e) { 288 *p = e->next; 289 e->next = NULL; 290 break; 291 } 292 293 e->state = L2T_STATE_UNUSED; 294 return e; 295 } 296 297 static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan, 298 u8 port, u8 *dmac) 299 { 300 struct l2t_entry *end, *e, **p; 301 struct l2t_entry *first_free = NULL; 302 303 for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) { 304 if (atomic_read(&e->refcnt) == 0) { 305 if (!first_free) 306 first_free = e; 307 } else { 308 if (e->state == L2T_STATE_SWITCHING) { 309 if (ether_addr_equal(e->dmac, dmac) && 310 (e->vlan == vlan) && (e->lport == port)) 311 goto exists; 312 } 313 } 314 } 315 316 if (first_free) { 317 e = first_free; 318 goto found; 319 } 320 321 return NULL; 322 323 found: 324 /* The entry we found may be an inactive entry that is 325 * presently in the hash table. We need to remove it. 326 */ 327 if (e->state < L2T_STATE_SWITCHING) 328 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) 329 if (*p == e) { 330 *p = e->next; 331 e->next = NULL; 332 break; 333 } 334 e->state = L2T_STATE_UNUSED; 335 336 exists: 337 return e; 338 } 339 340 /* Called when an L2T entry has no more users. The entry is left in the hash 341 * table since it is likely to be reused but we also bump nfree to indicate 342 * that the entry can be reallocated for a different neighbor. We also drop 343 * the existing neighbor reference in case the neighbor is going away and is 344 * waiting on our reference. 345 * 346 * Because entries can be reallocated to other neighbors once their ref count 347 * drops to 0 we need to take the entry's lock to avoid races with a new 348 * incarnation. 349 */ 350 static void _t4_l2e_free(struct l2t_entry *e) 351 { 352 struct l2t_data *d; 353 struct sk_buff *skb; 354 355 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 356 if (e->neigh) { 357 neigh_release(e->neigh); 358 e->neigh = NULL; 359 } 360 while ((skb = __skb_dequeue(&e->arpq)) != NULL) 361 kfree_skb(skb); 362 } 363 364 d = container_of(e, struct l2t_data, l2tab[e->idx]); 365 atomic_inc(&d->nfree); 366 } 367 368 /* Locked version of _t4_l2e_free */ 369 static void t4_l2e_free(struct l2t_entry *e) 370 { 371 struct l2t_data *d; 372 struct sk_buff *skb; 373 374 spin_lock_bh(&e->lock); 375 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 376 if (e->neigh) { 377 neigh_release(e->neigh); 378 e->neigh = NULL; 379 } 380 while ((skb = __skb_dequeue(&e->arpq)) != NULL) 381 kfree_skb(skb); 382 } 383 spin_unlock_bh(&e->lock); 384 385 d = container_of(e, struct l2t_data, l2tab[e->idx]); 386 atomic_inc(&d->nfree); 387 } 388 389 void cxgb4_l2t_release(struct l2t_entry *e) 390 { 391 if (atomic_dec_and_test(&e->refcnt)) 392 t4_l2e_free(e); 393 } 394 EXPORT_SYMBOL(cxgb4_l2t_release); 395 396 /* 397 * Update an L2T entry that was previously used for the same next hop as neigh. 398 * Must be called with softirqs disabled. 399 */ 400 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) 401 { 402 unsigned int nud_state; 403 404 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 405 if (neigh != e->neigh) 406 neigh_replace(e, neigh); 407 nud_state = neigh->nud_state; 408 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || 409 !(nud_state & NUD_VALID)) 410 e->state = L2T_STATE_RESOLVING; 411 else if (nud_state & NUD_CONNECTED) 412 e->state = L2T_STATE_VALID; 413 else 414 e->state = L2T_STATE_STALE; 415 spin_unlock(&e->lock); 416 } 417 418 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, 419 const struct net_device *physdev, 420 unsigned int priority) 421 { 422 u8 lport; 423 u16 vlan; 424 struct l2t_entry *e; 425 int addr_len = neigh->tbl->key_len; 426 u32 *addr = (u32 *)neigh->primary_key; 427 int ifidx = neigh->dev->ifindex; 428 int hash = addr_hash(d, addr, addr_len, ifidx); 429 430 if (neigh->dev->flags & IFF_LOOPBACK) 431 lport = netdev2pinfo(physdev)->tx_chan + 4; 432 else 433 lport = netdev2pinfo(physdev)->lport; 434 435 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) 436 vlan = vlan_dev_vlan_id(neigh->dev); 437 else 438 vlan = VLAN_NONE; 439 440 write_lock_bh(&d->lock); 441 for (e = d->l2tab[hash].first; e; e = e->next) 442 if (!addreq(e, addr) && e->ifindex == ifidx && 443 e->vlan == vlan && e->lport == lport) { 444 l2t_hold(d, e); 445 if (atomic_read(&e->refcnt) == 1) 446 reuse_entry(e, neigh); 447 goto done; 448 } 449 450 /* Need to allocate a new entry */ 451 e = alloc_l2e(d); 452 if (e) { 453 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 454 e->state = L2T_STATE_RESOLVING; 455 if (neigh->dev->flags & IFF_LOOPBACK) 456 memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac)); 457 memcpy(e->addr, addr, addr_len); 458 e->ifindex = ifidx; 459 e->hash = hash; 460 e->lport = lport; 461 e->v6 = addr_len == 16; 462 atomic_set(&e->refcnt, 1); 463 neigh_replace(e, neigh); 464 e->vlan = vlan; 465 e->next = d->l2tab[hash].first; 466 d->l2tab[hash].first = e; 467 spin_unlock(&e->lock); 468 } 469 done: 470 write_unlock_bh(&d->lock); 471 return e; 472 } 473 EXPORT_SYMBOL(cxgb4_l2t_get); 474 475 u64 cxgb4_select_ntuple(struct net_device *dev, 476 const struct l2t_entry *l2t) 477 { 478 struct adapter *adap = netdev2adap(dev); 479 struct tp_params *tp = &adap->params.tp; 480 u64 ntuple = 0; 481 482 /* Initialize each of the fields which we care about which are present 483 * in the Compressed Filter Tuple. 484 */ 485 if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE) 486 ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift; 487 488 if (tp->port_shift >= 0) 489 ntuple |= (u64)l2t->lport << tp->port_shift; 490 491 if (tp->protocol_shift >= 0) 492 ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift; 493 494 if (tp->vnic_shift >= 0) { 495 u32 viid = cxgb4_port_viid(dev); 496 u32 vf = FW_VIID_VIN_G(viid); 497 u32 pf = FW_VIID_PFN_G(viid); 498 u32 vld = FW_VIID_VIVLD_G(viid); 499 500 ntuple |= (u64)(FT_VNID_ID_VF_V(vf) | 501 FT_VNID_ID_PF_V(pf) | 502 FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift; 503 } 504 505 return ntuple; 506 } 507 EXPORT_SYMBOL(cxgb4_select_ntuple); 508 509 /* 510 * Called when address resolution fails for an L2T entry to handle packets 511 * on the arpq head. If a packet specifies a failure handler it is invoked, 512 * otherwise the packet is sent to the device. 513 */ 514 static void handle_failed_resolution(struct adapter *adap, struct l2t_entry *e) 515 { 516 struct sk_buff *skb; 517 518 while ((skb = __skb_dequeue(&e->arpq)) != NULL) { 519 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); 520 521 spin_unlock(&e->lock); 522 if (cb->arp_err_handler) 523 cb->arp_err_handler(cb->handle, skb); 524 else 525 t4_ofld_send(adap, skb); 526 spin_lock(&e->lock); 527 } 528 } 529 530 /* 531 * Called when the host's neighbor layer makes a change to some entry that is 532 * loaded into the HW L2 table. 533 */ 534 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) 535 { 536 struct l2t_entry *e; 537 struct sk_buff_head *arpq = NULL; 538 struct l2t_data *d = adap->l2t; 539 int addr_len = neigh->tbl->key_len; 540 u32 *addr = (u32 *) neigh->primary_key; 541 int ifidx = neigh->dev->ifindex; 542 int hash = addr_hash(d, addr, addr_len, ifidx); 543 544 read_lock_bh(&d->lock); 545 for (e = d->l2tab[hash].first; e; e = e->next) 546 if (!addreq(e, addr) && e->ifindex == ifidx) { 547 spin_lock(&e->lock); 548 if (atomic_read(&e->refcnt)) 549 goto found; 550 spin_unlock(&e->lock); 551 break; 552 } 553 read_unlock_bh(&d->lock); 554 return; 555 556 found: 557 read_unlock(&d->lock); 558 559 if (neigh != e->neigh) 560 neigh_replace(e, neigh); 561 562 if (e->state == L2T_STATE_RESOLVING) { 563 if (neigh->nud_state & NUD_FAILED) { 564 arpq = &e->arpq; 565 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && 566 !skb_queue_empty(&e->arpq)) { 567 write_l2e(adap, e, 1); 568 } 569 } else { 570 e->state = neigh->nud_state & NUD_CONNECTED ? 571 L2T_STATE_VALID : L2T_STATE_STALE; 572 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) 573 write_l2e(adap, e, 0); 574 } 575 576 if (arpq) 577 handle_failed_resolution(adap, e); 578 spin_unlock_bh(&e->lock); 579 } 580 581 /* Allocate an L2T entry for use by a switching rule. Such need to be 582 * explicitly freed and while busy they are not on any hash chain, so normal 583 * address resolution updates do not see them. 584 */ 585 struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan, 586 u8 port, u8 *eth_addr) 587 { 588 struct l2t_data *d = adap->l2t; 589 struct l2t_entry *e; 590 int ret; 591 592 write_lock_bh(&d->lock); 593 e = find_or_alloc_l2e(d, vlan, port, eth_addr); 594 if (e) { 595 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 596 if (!atomic_read(&e->refcnt)) { 597 e->state = L2T_STATE_SWITCHING; 598 e->vlan = vlan; 599 e->lport = port; 600 ether_addr_copy(e->dmac, eth_addr); 601 atomic_set(&e->refcnt, 1); 602 ret = write_l2e(adap, e, 0); 603 if (ret < 0) { 604 _t4_l2e_free(e); 605 spin_unlock(&e->lock); 606 write_unlock_bh(&d->lock); 607 return NULL; 608 } 609 } else { 610 atomic_inc(&e->refcnt); 611 } 612 613 spin_unlock(&e->lock); 614 } 615 write_unlock_bh(&d->lock); 616 return e; 617 } 618 619 /** 620 * @dev: net_device pointer 621 * @vlan: VLAN Id 622 * @port: Associated port 623 * @dmac: Destination MAC address to add to L2T 624 * Returns pointer to the allocated l2t entry 625 * 626 * Allocates an L2T entry for use by switching rule of a filter 627 */ 628 struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan, 629 u8 port, u8 *dmac) 630 { 631 struct adapter *adap = netdev2adap(dev); 632 633 return t4_l2t_alloc_switching(adap, vlan, port, dmac); 634 } 635 EXPORT_SYMBOL(cxgb4_l2t_alloc_switching); 636 637 struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end) 638 { 639 unsigned int l2t_size; 640 int i; 641 struct l2t_data *d; 642 643 if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE) 644 return NULL; 645 l2t_size = l2t_end - l2t_start + 1; 646 if (l2t_size < L2T_MIN_HASH_BUCKETS) 647 return NULL; 648 649 d = t4_alloc_mem(sizeof(*d) + l2t_size * sizeof(struct l2t_entry)); 650 if (!d) 651 return NULL; 652 653 d->l2t_start = l2t_start; 654 d->l2t_size = l2t_size; 655 656 d->rover = d->l2tab; 657 atomic_set(&d->nfree, l2t_size); 658 rwlock_init(&d->lock); 659 660 for (i = 0; i < d->l2t_size; ++i) { 661 d->l2tab[i].idx = i; 662 d->l2tab[i].state = L2T_STATE_UNUSED; 663 spin_lock_init(&d->l2tab[i].lock); 664 atomic_set(&d->l2tab[i].refcnt, 0); 665 skb_queue_head_init(&d->l2tab[i].arpq); 666 } 667 return d; 668 } 669 670 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) 671 { 672 struct l2t_data *d = seq->private; 673 674 return pos >= d->l2t_size ? NULL : &d->l2tab[pos]; 675 } 676 677 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) 678 { 679 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 680 } 681 682 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) 683 { 684 v = l2t_get_idx(seq, *pos); 685 if (v) 686 ++*pos; 687 return v; 688 } 689 690 static void l2t_seq_stop(struct seq_file *seq, void *v) 691 { 692 } 693 694 static char l2e_state(const struct l2t_entry *e) 695 { 696 switch (e->state) { 697 case L2T_STATE_VALID: return 'V'; 698 case L2T_STATE_STALE: return 'S'; 699 case L2T_STATE_SYNC_WRITE: return 'W'; 700 case L2T_STATE_RESOLVING: 701 return skb_queue_empty(&e->arpq) ? 'R' : 'A'; 702 case L2T_STATE_SWITCHING: return 'X'; 703 default: 704 return 'U'; 705 } 706 } 707 708 static int l2t_seq_show(struct seq_file *seq, void *v) 709 { 710 if (v == SEQ_START_TOKEN) 711 seq_puts(seq, " Idx IP address " 712 "Ethernet address VLAN/P LP State Users Port\n"); 713 else { 714 char ip[60]; 715 struct l2t_data *d = seq->private; 716 struct l2t_entry *e = v; 717 718 spin_lock_bh(&e->lock); 719 if (e->state == L2T_STATE_SWITCHING) 720 ip[0] = '\0'; 721 else 722 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); 723 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", 724 e->idx + d->l2t_start, ip, e->dmac, 725 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, 726 l2e_state(e), atomic_read(&e->refcnt), 727 e->neigh ? e->neigh->dev->name : ""); 728 spin_unlock_bh(&e->lock); 729 } 730 return 0; 731 } 732 733 static const struct seq_operations l2t_seq_ops = { 734 .start = l2t_seq_start, 735 .next = l2t_seq_next, 736 .stop = l2t_seq_stop, 737 .show = l2t_seq_show 738 }; 739 740 static int l2t_seq_open(struct inode *inode, struct file *file) 741 { 742 int rc = seq_open(file, &l2t_seq_ops); 743 744 if (!rc) { 745 struct adapter *adap = inode->i_private; 746 struct seq_file *seq = file->private_data; 747 748 seq->private = adap->l2t; 749 } 750 return rc; 751 } 752 753 const struct file_operations t4_l2t_fops = { 754 .owner = THIS_MODULE, 755 .open = l2t_seq_open, 756 .read = seq_read, 757 .llseek = seq_lseek, 758 .release = seq_release, 759 }; 760