1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/jhash.h> 40 #include <linux/module.h> 41 #include <linux/debugfs.h> 42 #include <linux/seq_file.h> 43 #include <net/neighbour.h> 44 #include "cxgb4.h" 45 #include "l2t.h" 46 #include "t4_msg.h" 47 #include "t4fw_api.h" 48 #include "t4_regs.h" 49 50 #define VLAN_NONE 0xfff 51 52 /* identifies sync vs async L2T_WRITE_REQs */ 53 #define F_SYNC_WR (1 << 12) 54 55 enum { 56 L2T_STATE_VALID, /* entry is up to date */ 57 L2T_STATE_STALE, /* entry may be used but needs revalidation */ 58 L2T_STATE_RESOLVING, /* entry needs address resolution */ 59 L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ 60 61 /* when state is one of the below the entry is not hashed */ 62 L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ 63 L2T_STATE_UNUSED /* entry not in use */ 64 }; 65 66 struct l2t_data { 67 rwlock_t lock; 68 atomic_t nfree; /* number of free entries */ 69 struct l2t_entry *rover; /* starting point for next allocation */ 70 struct l2t_entry l2tab[L2T_SIZE]; 71 }; 72 73 static inline unsigned int vlan_prio(const struct l2t_entry *e) 74 { 75 return e->vlan >> 13; 76 } 77 78 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) 79 { 80 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ 81 atomic_dec(&d->nfree); 82 } 83 84 /* 85 * To avoid having to check address families we do not allow v4 and v6 86 * neighbors to be on the same hash chain. We keep v4 entries in the first 87 * half of available hash buckets and v6 in the second. 88 */ 89 enum { 90 L2T_SZ_HALF = L2T_SIZE / 2, 91 L2T_HASH_MASK = L2T_SZ_HALF - 1 92 }; 93 94 static inline unsigned int arp_hash(const u32 *key, int ifindex) 95 { 96 return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK; 97 } 98 99 static inline unsigned int ipv6_hash(const u32 *key, int ifindex) 100 { 101 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; 102 103 return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK); 104 } 105 106 static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex) 107 { 108 return addr_len == 4 ? arp_hash(addr, ifindex) : 109 ipv6_hash(addr, ifindex); 110 } 111 112 /* 113 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check 114 * whether the L2T entry and the address are of the same address family. 115 * Callers ensure an address is only checked against L2T entries of the same 116 * family, something made trivial by the separation of IP and IPv6 hash chains 117 * mentioned above. Returns 0 if there's a match, 118 */ 119 static int addreq(const struct l2t_entry *e, const u32 *addr) 120 { 121 if (e->v6) 122 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | 123 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); 124 return e->addr[0] ^ addr[0]; 125 } 126 127 static void neigh_replace(struct l2t_entry *e, struct neighbour *n) 128 { 129 neigh_hold(n); 130 if (e->neigh) 131 neigh_release(e->neigh); 132 e->neigh = n; 133 } 134 135 /* 136 * Write an L2T entry. Must be called with the entry locked. 137 * The write may be synchronous or asynchronous. 138 */ 139 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) 140 { 141 struct sk_buff *skb; 142 struct cpl_l2t_write_req *req; 143 144 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 145 if (!skb) 146 return -ENOMEM; 147 148 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 149 INIT_TP_WR(req, 0); 150 151 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, 152 e->idx | (sync ? F_SYNC_WR : 0) | 153 TID_QID(adap->sge.fw_evtq.abs_id))); 154 req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync)); 155 req->l2t_idx = htons(e->idx); 156 req->vlan = htons(e->vlan); 157 if (e->neigh) 158 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); 159 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); 160 161 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 162 t4_ofld_send(adap, skb); 163 164 if (sync && e->state != L2T_STATE_SWITCHING) 165 e->state = L2T_STATE_SYNC_WRITE; 166 return 0; 167 } 168 169 /* 170 * Send packets waiting in an L2T entry's ARP queue. Must be called with the 171 * entry locked. 172 */ 173 static void send_pending(struct adapter *adap, struct l2t_entry *e) 174 { 175 while (e->arpq_head) { 176 struct sk_buff *skb = e->arpq_head; 177 178 e->arpq_head = skb->next; 179 skb->next = NULL; 180 t4_ofld_send(adap, skb); 181 } 182 e->arpq_tail = NULL; 183 } 184 185 /* 186 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a 187 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T 188 * index it refers to. 189 */ 190 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) 191 { 192 unsigned int tid = GET_TID(rpl); 193 unsigned int idx = tid & (L2T_SIZE - 1); 194 195 if (unlikely(rpl->status != CPL_ERR_NONE)) { 196 dev_err(adap->pdev_dev, 197 "Unexpected L2T_WRITE_RPL status %u for entry %u\n", 198 rpl->status, idx); 199 return; 200 } 201 202 if (tid & F_SYNC_WR) { 203 struct l2t_entry *e = &adap->l2t->l2tab[idx]; 204 205 spin_lock(&e->lock); 206 if (e->state != L2T_STATE_SWITCHING) { 207 send_pending(adap, e); 208 e->state = (e->neigh->nud_state & NUD_STALE) ? 209 L2T_STATE_STALE : L2T_STATE_VALID; 210 } 211 spin_unlock(&e->lock); 212 } 213 } 214 215 /* 216 * Add a packet to an L2T entry's queue of packets awaiting resolution. 217 * Must be called with the entry's lock held. 218 */ 219 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) 220 { 221 skb->next = NULL; 222 if (e->arpq_head) 223 e->arpq_tail->next = skb; 224 else 225 e->arpq_head = skb; 226 e->arpq_tail = skb; 227 } 228 229 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, 230 struct l2t_entry *e) 231 { 232 struct adapter *adap = netdev2adap(dev); 233 234 again: 235 switch (e->state) { 236 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 237 neigh_event_send(e->neigh, NULL); 238 spin_lock_bh(&e->lock); 239 if (e->state == L2T_STATE_STALE) 240 e->state = L2T_STATE_VALID; 241 spin_unlock_bh(&e->lock); 242 case L2T_STATE_VALID: /* fast-path, send the packet on */ 243 return t4_ofld_send(adap, skb); 244 case L2T_STATE_RESOLVING: 245 case L2T_STATE_SYNC_WRITE: 246 spin_lock_bh(&e->lock); 247 if (e->state != L2T_STATE_SYNC_WRITE && 248 e->state != L2T_STATE_RESOLVING) { 249 spin_unlock_bh(&e->lock); 250 goto again; 251 } 252 arpq_enqueue(e, skb); 253 spin_unlock_bh(&e->lock); 254 255 if (e->state == L2T_STATE_RESOLVING && 256 !neigh_event_send(e->neigh, NULL)) { 257 spin_lock_bh(&e->lock); 258 if (e->state == L2T_STATE_RESOLVING && e->arpq_head) 259 write_l2e(adap, e, 1); 260 spin_unlock_bh(&e->lock); 261 } 262 } 263 return 0; 264 } 265 EXPORT_SYMBOL(cxgb4_l2t_send); 266 267 /* 268 * Allocate a free L2T entry. Must be called with l2t_data.lock held. 269 */ 270 static struct l2t_entry *alloc_l2e(struct l2t_data *d) 271 { 272 struct l2t_entry *end, *e, **p; 273 274 if (!atomic_read(&d->nfree)) 275 return NULL; 276 277 /* there's definitely a free entry */ 278 for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e) 279 if (atomic_read(&e->refcnt) == 0) 280 goto found; 281 282 for (e = d->l2tab; atomic_read(&e->refcnt); ++e) 283 ; 284 found: 285 d->rover = e + 1; 286 atomic_dec(&d->nfree); 287 288 /* 289 * The entry we found may be an inactive entry that is 290 * presently in the hash table. We need to remove it. 291 */ 292 if (e->state < L2T_STATE_SWITCHING) 293 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) 294 if (*p == e) { 295 *p = e->next; 296 e->next = NULL; 297 break; 298 } 299 300 e->state = L2T_STATE_UNUSED; 301 return e; 302 } 303 304 /* 305 * Called when an L2T entry has no more users. 306 */ 307 static void t4_l2e_free(struct l2t_entry *e) 308 { 309 struct l2t_data *d; 310 311 spin_lock_bh(&e->lock); 312 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 313 if (e->neigh) { 314 neigh_release(e->neigh); 315 e->neigh = NULL; 316 } 317 while (e->arpq_head) { 318 struct sk_buff *skb = e->arpq_head; 319 320 e->arpq_head = skb->next; 321 kfree_skb(skb); 322 } 323 e->arpq_tail = NULL; 324 } 325 spin_unlock_bh(&e->lock); 326 327 d = container_of(e, struct l2t_data, l2tab[e->idx]); 328 atomic_inc(&d->nfree); 329 } 330 331 void cxgb4_l2t_release(struct l2t_entry *e) 332 { 333 if (atomic_dec_and_test(&e->refcnt)) 334 t4_l2e_free(e); 335 } 336 EXPORT_SYMBOL(cxgb4_l2t_release); 337 338 /* 339 * Update an L2T entry that was previously used for the same next hop as neigh. 340 * Must be called with softirqs disabled. 341 */ 342 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) 343 { 344 unsigned int nud_state; 345 346 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 347 if (neigh != e->neigh) 348 neigh_replace(e, neigh); 349 nud_state = neigh->nud_state; 350 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || 351 !(nud_state & NUD_VALID)) 352 e->state = L2T_STATE_RESOLVING; 353 else if (nud_state & NUD_CONNECTED) 354 e->state = L2T_STATE_VALID; 355 else 356 e->state = L2T_STATE_STALE; 357 spin_unlock(&e->lock); 358 } 359 360 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, 361 const struct net_device *physdev, 362 unsigned int priority) 363 { 364 u8 lport; 365 u16 vlan; 366 struct l2t_entry *e; 367 int addr_len = neigh->tbl->key_len; 368 u32 *addr = (u32 *)neigh->primary_key; 369 int ifidx = neigh->dev->ifindex; 370 int hash = addr_hash(addr, addr_len, ifidx); 371 372 if (neigh->dev->flags & IFF_LOOPBACK) 373 lport = netdev2pinfo(physdev)->tx_chan + 4; 374 else 375 lport = netdev2pinfo(physdev)->lport; 376 377 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) 378 vlan = vlan_dev_vlan_id(neigh->dev); 379 else 380 vlan = VLAN_NONE; 381 382 write_lock_bh(&d->lock); 383 for (e = d->l2tab[hash].first; e; e = e->next) 384 if (!addreq(e, addr) && e->ifindex == ifidx && 385 e->vlan == vlan && e->lport == lport) { 386 l2t_hold(d, e); 387 if (atomic_read(&e->refcnt) == 1) 388 reuse_entry(e, neigh); 389 goto done; 390 } 391 392 /* Need to allocate a new entry */ 393 e = alloc_l2e(d); 394 if (e) { 395 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 396 e->state = L2T_STATE_RESOLVING; 397 memcpy(e->addr, addr, addr_len); 398 e->ifindex = ifidx; 399 e->hash = hash; 400 e->lport = lport; 401 e->v6 = addr_len == 16; 402 atomic_set(&e->refcnt, 1); 403 neigh_replace(e, neigh); 404 e->vlan = vlan; 405 e->next = d->l2tab[hash].first; 406 d->l2tab[hash].first = e; 407 spin_unlock(&e->lock); 408 } 409 done: 410 write_unlock_bh(&d->lock); 411 return e; 412 } 413 EXPORT_SYMBOL(cxgb4_l2t_get); 414 415 u64 cxgb4_select_ntuple(struct net_device *dev, 416 const struct l2t_entry *l2t) 417 { 418 struct adapter *adap = netdev2adap(dev); 419 struct tp_params *tp = &adap->params.tp; 420 u64 ntuple = 0; 421 422 /* Initialize each of the fields which we care about which are present 423 * in the Compressed Filter Tuple. 424 */ 425 if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE) 426 ntuple |= (F_FT_VLAN_VLD | l2t->vlan) << tp->vlan_shift; 427 428 if (tp->port_shift >= 0) 429 ntuple |= (u64)l2t->lport << tp->port_shift; 430 431 if (tp->protocol_shift >= 0) 432 ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift; 433 434 if (tp->vnic_shift >= 0) { 435 u32 viid = cxgb4_port_viid(dev); 436 u32 vf = FW_VIID_VIN_GET(viid); 437 u32 pf = FW_VIID_PFN_GET(viid); 438 u32 vld = FW_VIID_VIVLD_GET(viid); 439 440 ntuple |= (u64)(V_FT_VNID_ID_VF(vf) | 441 V_FT_VNID_ID_PF(pf) | 442 V_FT_VNID_ID_VLD(vld)) << tp->vnic_shift; 443 } 444 445 return ntuple; 446 } 447 EXPORT_SYMBOL(cxgb4_select_ntuple); 448 449 /* 450 * Called when address resolution fails for an L2T entry to handle packets 451 * on the arpq head. If a packet specifies a failure handler it is invoked, 452 * otherwise the packet is sent to the device. 453 */ 454 static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq) 455 { 456 while (arpq) { 457 struct sk_buff *skb = arpq; 458 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); 459 460 arpq = skb->next; 461 skb->next = NULL; 462 if (cb->arp_err_handler) 463 cb->arp_err_handler(cb->handle, skb); 464 else 465 t4_ofld_send(adap, skb); 466 } 467 } 468 469 /* 470 * Called when the host's neighbor layer makes a change to some entry that is 471 * loaded into the HW L2 table. 472 */ 473 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) 474 { 475 struct l2t_entry *e; 476 struct sk_buff *arpq = NULL; 477 struct l2t_data *d = adap->l2t; 478 int addr_len = neigh->tbl->key_len; 479 u32 *addr = (u32 *) neigh->primary_key; 480 int ifidx = neigh->dev->ifindex; 481 int hash = addr_hash(addr, addr_len, ifidx); 482 483 read_lock_bh(&d->lock); 484 for (e = d->l2tab[hash].first; e; e = e->next) 485 if (!addreq(e, addr) && e->ifindex == ifidx) { 486 spin_lock(&e->lock); 487 if (atomic_read(&e->refcnt)) 488 goto found; 489 spin_unlock(&e->lock); 490 break; 491 } 492 read_unlock_bh(&d->lock); 493 return; 494 495 found: 496 read_unlock(&d->lock); 497 498 if (neigh != e->neigh) 499 neigh_replace(e, neigh); 500 501 if (e->state == L2T_STATE_RESOLVING) { 502 if (neigh->nud_state & NUD_FAILED) { 503 arpq = e->arpq_head; 504 e->arpq_head = e->arpq_tail = NULL; 505 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && 506 e->arpq_head) { 507 write_l2e(adap, e, 1); 508 } 509 } else { 510 e->state = neigh->nud_state & NUD_CONNECTED ? 511 L2T_STATE_VALID : L2T_STATE_STALE; 512 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) 513 write_l2e(adap, e, 0); 514 } 515 516 spin_unlock_bh(&e->lock); 517 518 if (arpq) 519 handle_failed_resolution(adap, arpq); 520 } 521 522 /* Allocate an L2T entry for use by a switching rule. Such need to be 523 * explicitly freed and while busy they are not on any hash chain, so normal 524 * address resolution updates do not see them. 525 */ 526 struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d) 527 { 528 struct l2t_entry *e; 529 530 write_lock_bh(&d->lock); 531 e = alloc_l2e(d); 532 if (e) { 533 spin_lock(&e->lock); /* avoid race with t4_l2t_free */ 534 e->state = L2T_STATE_SWITCHING; 535 atomic_set(&e->refcnt, 1); 536 spin_unlock(&e->lock); 537 } 538 write_unlock_bh(&d->lock); 539 return e; 540 } 541 542 /* Sets/updates the contents of a switching L2T entry that has been allocated 543 * with an earlier call to @t4_l2t_alloc_switching. 544 */ 545 int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan, 546 u8 port, u8 *eth_addr) 547 { 548 e->vlan = vlan; 549 e->lport = port; 550 memcpy(e->dmac, eth_addr, ETH_ALEN); 551 return write_l2e(adap, e, 0); 552 } 553 554 struct l2t_data *t4_init_l2t(void) 555 { 556 int i; 557 struct l2t_data *d; 558 559 d = t4_alloc_mem(sizeof(*d)); 560 if (!d) 561 return NULL; 562 563 d->rover = d->l2tab; 564 atomic_set(&d->nfree, L2T_SIZE); 565 rwlock_init(&d->lock); 566 567 for (i = 0; i < L2T_SIZE; ++i) { 568 d->l2tab[i].idx = i; 569 d->l2tab[i].state = L2T_STATE_UNUSED; 570 spin_lock_init(&d->l2tab[i].lock); 571 atomic_set(&d->l2tab[i].refcnt, 0); 572 } 573 return d; 574 } 575 576 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) 577 { 578 struct l2t_entry *l2tab = seq->private; 579 580 return pos >= L2T_SIZE ? NULL : &l2tab[pos]; 581 } 582 583 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) 584 { 585 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 586 } 587 588 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) 589 { 590 v = l2t_get_idx(seq, *pos); 591 if (v) 592 ++*pos; 593 return v; 594 } 595 596 static void l2t_seq_stop(struct seq_file *seq, void *v) 597 { 598 } 599 600 static char l2e_state(const struct l2t_entry *e) 601 { 602 switch (e->state) { 603 case L2T_STATE_VALID: return 'V'; 604 case L2T_STATE_STALE: return 'S'; 605 case L2T_STATE_SYNC_WRITE: return 'W'; 606 case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R'; 607 case L2T_STATE_SWITCHING: return 'X'; 608 default: 609 return 'U'; 610 } 611 } 612 613 static int l2t_seq_show(struct seq_file *seq, void *v) 614 { 615 if (v == SEQ_START_TOKEN) 616 seq_puts(seq, " Idx IP address " 617 "Ethernet address VLAN/P LP State Users Port\n"); 618 else { 619 char ip[60]; 620 struct l2t_entry *e = v; 621 622 spin_lock_bh(&e->lock); 623 if (e->state == L2T_STATE_SWITCHING) 624 ip[0] = '\0'; 625 else 626 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); 627 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", 628 e->idx, ip, e->dmac, 629 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, 630 l2e_state(e), atomic_read(&e->refcnt), 631 e->neigh ? e->neigh->dev->name : ""); 632 spin_unlock_bh(&e->lock); 633 } 634 return 0; 635 } 636 637 static const struct seq_operations l2t_seq_ops = { 638 .start = l2t_seq_start, 639 .next = l2t_seq_next, 640 .stop = l2t_seq_stop, 641 .show = l2t_seq_show 642 }; 643 644 static int l2t_seq_open(struct inode *inode, struct file *file) 645 { 646 int rc = seq_open(file, &l2t_seq_ops); 647 648 if (!rc) { 649 struct adapter *adap = inode->i_private; 650 struct seq_file *seq = file->private_data; 651 652 seq->private = adap->l2t->l2tab; 653 } 654 return rc; 655 } 656 657 const struct file_operations t4_l2t_fops = { 658 .owner = THIS_MODULE, 659 .open = l2t_seq_open, 660 .read = seq_read, 661 .llseek = seq_lseek, 662 .release = seq_release, 663 }; 664