xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_ethtool.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2013-2015 Chelsio Communications.  All rights reserved.
4  */
5 
6 #include <linux/firmware.h>
7 #include <linux/mdio.h>
8 
9 #include "cxgb4.h"
10 #include "t4_regs.h"
11 #include "t4fw_api.h"
12 #include "cxgb4_cudbg.h"
13 #include "cxgb4_filter.h"
14 #include "cxgb4_tc_flower.h"
15 
16 #define EEPROM_MAGIC 0x38E2F10C
17 
18 static u32 get_msglevel(struct net_device *dev)
19 {
20 	return netdev2adap(dev)->msg_enable;
21 }
22 
23 static void set_msglevel(struct net_device *dev, u32 val)
24 {
25 	netdev2adap(dev)->msg_enable = val;
26 }
27 
28 enum cxgb4_ethtool_tests {
29 	CXGB4_ETHTOOL_LB_TEST,
30 	CXGB4_ETHTOOL_MAX_TEST,
31 };
32 
33 static const char cxgb4_selftest_strings[CXGB4_ETHTOOL_MAX_TEST][ETH_GSTRING_LEN] = {
34 	"Loop back test (offline)",
35 };
36 
37 static const char * const flash_region_strings[] = {
38 	"All",
39 	"Firmware",
40 	"PHY Firmware",
41 	"Boot",
42 	"Boot CFG",
43 };
44 
45 static const char stats_strings[][ETH_GSTRING_LEN] = {
46 	"tx_octets_ok           ",
47 	"tx_frames_ok           ",
48 	"tx_broadcast_frames    ",
49 	"tx_multicast_frames    ",
50 	"tx_unicast_frames      ",
51 	"tx_error_frames        ",
52 
53 	"tx_frames_64           ",
54 	"tx_frames_65_to_127    ",
55 	"tx_frames_128_to_255   ",
56 	"tx_frames_256_to_511   ",
57 	"tx_frames_512_to_1023  ",
58 	"tx_frames_1024_to_1518 ",
59 	"tx_frames_1519_to_max  ",
60 
61 	"tx_frames_dropped      ",
62 	"tx_pause_frames        ",
63 	"tx_ppp0_frames         ",
64 	"tx_ppp1_frames         ",
65 	"tx_ppp2_frames         ",
66 	"tx_ppp3_frames         ",
67 	"tx_ppp4_frames         ",
68 	"tx_ppp5_frames         ",
69 	"tx_ppp6_frames         ",
70 	"tx_ppp7_frames         ",
71 
72 	"rx_octets_ok           ",
73 	"rx_frames_ok           ",
74 	"rx_broadcast_frames    ",
75 	"rx_multicast_frames    ",
76 	"rx_unicast_frames      ",
77 
78 	"rx_frames_too_long     ",
79 	"rx_jabber_errors       ",
80 	"rx_fcs_errors          ",
81 	"rx_length_errors       ",
82 	"rx_symbol_errors       ",
83 	"rx_runt_frames         ",
84 
85 	"rx_frames_64           ",
86 	"rx_frames_65_to_127    ",
87 	"rx_frames_128_to_255   ",
88 	"rx_frames_256_to_511   ",
89 	"rx_frames_512_to_1023  ",
90 	"rx_frames_1024_to_1518 ",
91 	"rx_frames_1519_to_max  ",
92 
93 	"rx_pause_frames        ",
94 	"rx_ppp0_frames         ",
95 	"rx_ppp1_frames         ",
96 	"rx_ppp2_frames         ",
97 	"rx_ppp3_frames         ",
98 	"rx_ppp4_frames         ",
99 	"rx_ppp5_frames         ",
100 	"rx_ppp6_frames         ",
101 	"rx_ppp7_frames         ",
102 
103 	"rx_bg0_frames_dropped  ",
104 	"rx_bg1_frames_dropped  ",
105 	"rx_bg2_frames_dropped  ",
106 	"rx_bg3_frames_dropped  ",
107 	"rx_bg0_frames_trunc    ",
108 	"rx_bg1_frames_trunc    ",
109 	"rx_bg2_frames_trunc    ",
110 	"rx_bg3_frames_trunc    ",
111 
112 	"tso                    ",
113 	"uso                    ",
114 	"tx_csum_offload        ",
115 	"rx_csum_good           ",
116 	"vlan_extractions       ",
117 	"vlan_insertions        ",
118 	"gro_packets            ",
119 	"gro_merged             ",
120 #if  IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
121 	"tx_tls_encrypted_packets",
122 	"tx_tls_encrypted_bytes  ",
123 	"tx_tls_ctx              ",
124 	"tx_tls_ooo              ",
125 	"tx_tls_skip_no_sync_data",
126 	"tx_tls_drop_no_sync_data",
127 	"tx_tls_drop_bypass_req  ",
128 #endif
129 };
130 
131 static char adapter_stats_strings[][ETH_GSTRING_LEN] = {
132 	"db_drop                ",
133 	"db_full                ",
134 	"db_empty               ",
135 	"write_coal_success     ",
136 	"write_coal_fail        ",
137 };
138 
139 static char loopback_stats_strings[][ETH_GSTRING_LEN] = {
140 	"-------Loopback----------- ",
141 	"octets_ok              ",
142 	"frames_ok              ",
143 	"bcast_frames           ",
144 	"mcast_frames           ",
145 	"ucast_frames           ",
146 	"error_frames           ",
147 	"frames_64              ",
148 	"frames_65_to_127       ",
149 	"frames_128_to_255      ",
150 	"frames_256_to_511      ",
151 	"frames_512_to_1023     ",
152 	"frames_1024_to_1518    ",
153 	"frames_1519_to_max     ",
154 	"frames_dropped         ",
155 	"bg0_frames_dropped     ",
156 	"bg1_frames_dropped     ",
157 	"bg2_frames_dropped     ",
158 	"bg3_frames_dropped     ",
159 	"bg0_frames_trunc       ",
160 	"bg1_frames_trunc       ",
161 	"bg2_frames_trunc       ",
162 	"bg3_frames_trunc       ",
163 };
164 
165 static const char cxgb4_priv_flags_strings[][ETH_GSTRING_LEN] = {
166 	[PRIV_FLAG_PORT_TX_VM_BIT] = "port_tx_vm_wr",
167 };
168 
169 static int get_sset_count(struct net_device *dev, int sset)
170 {
171 	switch (sset) {
172 	case ETH_SS_STATS:
173 		return ARRAY_SIZE(stats_strings) +
174 		       ARRAY_SIZE(adapter_stats_strings) +
175 		       ARRAY_SIZE(loopback_stats_strings);
176 	case ETH_SS_PRIV_FLAGS:
177 		return ARRAY_SIZE(cxgb4_priv_flags_strings);
178 	case ETH_SS_TEST:
179 		return ARRAY_SIZE(cxgb4_selftest_strings);
180 	default:
181 		return -EOPNOTSUPP;
182 	}
183 }
184 
185 static int get_regs_len(struct net_device *dev)
186 {
187 	struct adapter *adap = netdev2adap(dev);
188 
189 	return t4_get_regs_len(adap);
190 }
191 
192 static int get_eeprom_len(struct net_device *dev)
193 {
194 	return EEPROMSIZE;
195 }
196 
197 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
198 {
199 	struct adapter *adapter = netdev2adap(dev);
200 	u32 exprom_vers;
201 
202 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
203 	strlcpy(info->bus_info, pci_name(adapter->pdev),
204 		sizeof(info->bus_info));
205 	info->regdump_len = get_regs_len(dev);
206 
207 	if (adapter->params.fw_vers)
208 		snprintf(info->fw_version, sizeof(info->fw_version),
209 			 "%u.%u.%u.%u, TP %u.%u.%u.%u",
210 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
211 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
212 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
213 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers),
214 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
215 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
216 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
217 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
218 
219 	if (!t4_get_exprom_version(adapter, &exprom_vers))
220 		snprintf(info->erom_version, sizeof(info->erom_version),
221 			 "%u.%u.%u.%u",
222 			 FW_HDR_FW_VER_MAJOR_G(exprom_vers),
223 			 FW_HDR_FW_VER_MINOR_G(exprom_vers),
224 			 FW_HDR_FW_VER_MICRO_G(exprom_vers),
225 			 FW_HDR_FW_VER_BUILD_G(exprom_vers));
226 	info->n_priv_flags = ARRAY_SIZE(cxgb4_priv_flags_strings);
227 }
228 
229 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
230 {
231 	if (stringset == ETH_SS_STATS) {
232 		memcpy(data, stats_strings, sizeof(stats_strings));
233 		data += sizeof(stats_strings);
234 		memcpy(data, adapter_stats_strings,
235 		       sizeof(adapter_stats_strings));
236 		data += sizeof(adapter_stats_strings);
237 		memcpy(data, loopback_stats_strings,
238 		       sizeof(loopback_stats_strings));
239 	} else if (stringset == ETH_SS_PRIV_FLAGS) {
240 		memcpy(data, cxgb4_priv_flags_strings,
241 		       sizeof(cxgb4_priv_flags_strings));
242 	} else if (stringset == ETH_SS_TEST) {
243 		memcpy(data, cxgb4_selftest_strings,
244 		       sizeof(cxgb4_selftest_strings));
245 	}
246 }
247 
248 /* port stats maintained per queue of the port. They should be in the same
249  * order as in stats_strings above.
250  */
251 struct queue_port_stats {
252 	u64 tso;
253 	u64 uso;
254 	u64 tx_csum;
255 	u64 rx_csum;
256 	u64 vlan_ex;
257 	u64 vlan_ins;
258 	u64 gro_pkts;
259 	u64 gro_merged;
260 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
261 	u64 tx_tls_encrypted_packets;
262 	u64 tx_tls_encrypted_bytes;
263 	u64 tx_tls_ctx;
264 	u64 tx_tls_ooo;
265 	u64 tx_tls_skip_no_sync_data;
266 	u64 tx_tls_drop_no_sync_data;
267 	u64 tx_tls_drop_bypass_req;
268 #endif
269 };
270 
271 struct adapter_stats {
272 	u64 db_drop;
273 	u64 db_full;
274 	u64 db_empty;
275 	u64 wc_success;
276 	u64 wc_fail;
277 };
278 
279 static void collect_sge_port_stats(const struct adapter *adap,
280 				   const struct port_info *p,
281 				   struct queue_port_stats *s)
282 {
283 	const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
284 	const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
285 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
286 	const struct ch_ktls_port_stats_debug *ktls_stats;
287 #endif
288 	struct sge_eohw_txq *eohw_tx;
289 	unsigned int i;
290 
291 	memset(s, 0, sizeof(*s));
292 	for (i = 0; i < p->nqsets; i++, rx++, tx++) {
293 		s->tso += tx->tso;
294 		s->uso += tx->uso;
295 		s->tx_csum += tx->tx_cso;
296 		s->rx_csum += rx->stats.rx_cso;
297 		s->vlan_ex += rx->stats.vlan_ex;
298 		s->vlan_ins += tx->vlan_ins;
299 		s->gro_pkts += rx->stats.lro_pkts;
300 		s->gro_merged += rx->stats.lro_merged;
301 	}
302 
303 	if (adap->sge.eohw_txq) {
304 		eohw_tx = &adap->sge.eohw_txq[p->first_qset];
305 		for (i = 0; i < p->nqsets; i++, eohw_tx++) {
306 			s->tso += eohw_tx->tso;
307 			s->uso += eohw_tx->uso;
308 			s->tx_csum += eohw_tx->tx_cso;
309 			s->vlan_ins += eohw_tx->vlan_ins;
310 		}
311 	}
312 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
313 	ktls_stats = &adap->ch_ktls_stats.ktls_port[p->port_id];
314 	s->tx_tls_encrypted_packets =
315 		atomic64_read(&ktls_stats->ktls_tx_encrypted_packets);
316 	s->tx_tls_encrypted_bytes =
317 		atomic64_read(&ktls_stats->ktls_tx_encrypted_bytes);
318 	s->tx_tls_ctx = atomic64_read(&ktls_stats->ktls_tx_ctx);
319 	s->tx_tls_ooo = atomic64_read(&ktls_stats->ktls_tx_ooo);
320 	s->tx_tls_skip_no_sync_data =
321 		atomic64_read(&ktls_stats->ktls_tx_skip_no_sync_data);
322 	s->tx_tls_drop_no_sync_data =
323 		atomic64_read(&ktls_stats->ktls_tx_drop_no_sync_data);
324 	s->tx_tls_drop_bypass_req =
325 		atomic64_read(&ktls_stats->ktls_tx_drop_bypass_req);
326 #endif
327 }
328 
329 static void collect_adapter_stats(struct adapter *adap, struct adapter_stats *s)
330 {
331 	u64 val1, val2;
332 
333 	memset(s, 0, sizeof(*s));
334 
335 	s->db_drop = adap->db_stats.db_drop;
336 	s->db_full = adap->db_stats.db_full;
337 	s->db_empty = adap->db_stats.db_empty;
338 
339 	if (!is_t4(adap->params.chip)) {
340 		int v;
341 
342 		v = t4_read_reg(adap, SGE_STAT_CFG_A);
343 		if (STATSOURCE_T5_G(v) == 7) {
344 			val2 = t4_read_reg(adap, SGE_STAT_MATCH_A);
345 			val1 = t4_read_reg(adap, SGE_STAT_TOTAL_A);
346 			s->wc_success = val1 - val2;
347 			s->wc_fail = val2;
348 		}
349 	}
350 }
351 
352 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
353 		      u64 *data)
354 {
355 	struct port_info *pi = netdev_priv(dev);
356 	struct adapter *adapter = pi->adapter;
357 	struct lb_port_stats s;
358 	int i;
359 	u64 *p0;
360 
361 	t4_get_port_stats_offset(adapter, pi->tx_chan,
362 				 (struct port_stats *)data,
363 				 &pi->stats_base);
364 
365 	data += sizeof(struct port_stats) / sizeof(u64);
366 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
367 	data += sizeof(struct queue_port_stats) / sizeof(u64);
368 	collect_adapter_stats(adapter, (struct adapter_stats *)data);
369 	data += sizeof(struct adapter_stats) / sizeof(u64);
370 
371 	*data++ = (u64)pi->port_id;
372 	memset(&s, 0, sizeof(s));
373 	t4_get_lb_stats(adapter, pi->port_id, &s);
374 
375 	p0 = &s.octets;
376 	for (i = 0; i < ARRAY_SIZE(loopback_stats_strings) - 1; i++)
377 		*data++ = (unsigned long long)*p0++;
378 }
379 
380 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
381 		     void *buf)
382 {
383 	struct adapter *adap = netdev2adap(dev);
384 	size_t buf_size;
385 
386 	buf_size = t4_get_regs_len(adap);
387 	regs->version = mk_adap_vers(adap);
388 	t4_get_regs(adap, buf, buf_size);
389 }
390 
391 static int restart_autoneg(struct net_device *dev)
392 {
393 	struct port_info *p = netdev_priv(dev);
394 
395 	if (!netif_running(dev))
396 		return -EAGAIN;
397 	if (p->link_cfg.autoneg != AUTONEG_ENABLE)
398 		return -EINVAL;
399 	t4_restart_aneg(p->adapter, p->adapter->pf, p->tx_chan);
400 	return 0;
401 }
402 
403 static int identify_port(struct net_device *dev,
404 			 enum ethtool_phys_id_state state)
405 {
406 	unsigned int val;
407 	struct adapter *adap = netdev2adap(dev);
408 
409 	if (state == ETHTOOL_ID_ACTIVE)
410 		val = 0xffff;
411 	else if (state == ETHTOOL_ID_INACTIVE)
412 		val = 0;
413 	else
414 		return -EINVAL;
415 
416 	return t4_identify_port(adap, adap->pf, netdev2pinfo(dev)->viid, val);
417 }
418 
419 /**
420  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
421  *	@port_type: Firmware Port Type
422  *	@mod_type: Firmware Module Type
423  *
424  *	Translate Firmware Port/Module type to Ethtool Port Type.
425  */
426 static int from_fw_port_mod_type(enum fw_port_type port_type,
427 				 enum fw_port_module_type mod_type)
428 {
429 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
430 	    port_type == FW_PORT_TYPE_BT_XFI ||
431 	    port_type == FW_PORT_TYPE_BT_XAUI) {
432 		return PORT_TP;
433 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
434 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
435 		return PORT_FIBRE;
436 	} else if (port_type == FW_PORT_TYPE_SFP ||
437 		   port_type == FW_PORT_TYPE_QSFP_10G ||
438 		   port_type == FW_PORT_TYPE_QSA ||
439 		   port_type == FW_PORT_TYPE_QSFP ||
440 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
441 		   port_type == FW_PORT_TYPE_CR_QSFP ||
442 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
443 		   port_type == FW_PORT_TYPE_SFP28) {
444 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
445 		    mod_type == FW_PORT_MOD_TYPE_SR ||
446 		    mod_type == FW_PORT_MOD_TYPE_ER ||
447 		    mod_type == FW_PORT_MOD_TYPE_LRM)
448 			return PORT_FIBRE;
449 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
450 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
451 			return PORT_DA;
452 		else
453 			return PORT_OTHER;
454 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
455 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
456 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
457 		return PORT_NONE;
458 	}
459 
460 	return PORT_OTHER;
461 }
462 
463 /**
464  *	speed_to_fw_caps - translate Port Speed to Firmware Port Capabilities
465  *	@speed: speed in Kb/s
466  *
467  *	Translates a specific Port Speed into a Firmware Port Capabilities
468  *	value.
469  */
470 static unsigned int speed_to_fw_caps(int speed)
471 {
472 	if (speed == 100)
473 		return FW_PORT_CAP32_SPEED_100M;
474 	if (speed == 1000)
475 		return FW_PORT_CAP32_SPEED_1G;
476 	if (speed == 10000)
477 		return FW_PORT_CAP32_SPEED_10G;
478 	if (speed == 25000)
479 		return FW_PORT_CAP32_SPEED_25G;
480 	if (speed == 40000)
481 		return FW_PORT_CAP32_SPEED_40G;
482 	if (speed == 50000)
483 		return FW_PORT_CAP32_SPEED_50G;
484 	if (speed == 100000)
485 		return FW_PORT_CAP32_SPEED_100G;
486 	if (speed == 200000)
487 		return FW_PORT_CAP32_SPEED_200G;
488 	if (speed == 400000)
489 		return FW_PORT_CAP32_SPEED_400G;
490 	return 0;
491 }
492 
493 /**
494  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
495  *	@port_type: Firmware Port Type
496  *	@fw_caps: Firmware Port Capabilities
497  *	@link_mode_mask: ethtool Link Mode Mask
498  *
499  *	Translate a Firmware Port Capabilities specification to an ethtool
500  *	Link Mode Mask.
501  */
502 static void fw_caps_to_lmm(enum fw_port_type port_type,
503 			   fw_port_cap32_t fw_caps,
504 			   unsigned long *link_mode_mask)
505 {
506 	#define SET_LMM(__lmm_name) \
507 		do { \
508 			__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
509 				  link_mode_mask); \
510 		} while (0)
511 
512 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
513 		do { \
514 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
515 				SET_LMM(__lmm_name); \
516 		} while (0)
517 
518 	switch (port_type) {
519 	case FW_PORT_TYPE_BT_SGMII:
520 	case FW_PORT_TYPE_BT_XFI:
521 	case FW_PORT_TYPE_BT_XAUI:
522 		SET_LMM(TP);
523 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
524 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
525 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
526 		break;
527 
528 	case FW_PORT_TYPE_KX4:
529 	case FW_PORT_TYPE_KX:
530 		SET_LMM(Backplane);
531 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
532 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
533 		break;
534 
535 	case FW_PORT_TYPE_KR:
536 		SET_LMM(Backplane);
537 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
538 		break;
539 
540 	case FW_PORT_TYPE_BP_AP:
541 		SET_LMM(Backplane);
542 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
543 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
544 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
545 		break;
546 
547 	case FW_PORT_TYPE_BP4_AP:
548 		SET_LMM(Backplane);
549 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
550 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
551 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
552 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
553 		break;
554 
555 	case FW_PORT_TYPE_FIBER_XFI:
556 	case FW_PORT_TYPE_FIBER_XAUI:
557 	case FW_PORT_TYPE_SFP:
558 	case FW_PORT_TYPE_QSFP_10G:
559 	case FW_PORT_TYPE_QSA:
560 		SET_LMM(FIBRE);
561 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
562 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
563 		break;
564 
565 	case FW_PORT_TYPE_BP40_BA:
566 	case FW_PORT_TYPE_QSFP:
567 		SET_LMM(FIBRE);
568 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
569 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
570 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
571 		break;
572 
573 	case FW_PORT_TYPE_CR_QSFP:
574 	case FW_PORT_TYPE_SFP28:
575 		SET_LMM(FIBRE);
576 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
577 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
578 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
579 		break;
580 
581 	case FW_PORT_TYPE_KR_SFP28:
582 		SET_LMM(Backplane);
583 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
584 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
585 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
586 		break;
587 
588 	case FW_PORT_TYPE_KR_XLAUI:
589 		SET_LMM(Backplane);
590 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
591 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
592 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
593 		break;
594 
595 	case FW_PORT_TYPE_CR2_QSFP:
596 		SET_LMM(FIBRE);
597 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
598 		break;
599 
600 	case FW_PORT_TYPE_KR4_100G:
601 	case FW_PORT_TYPE_CR4_QSFP:
602 		SET_LMM(FIBRE);
603 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
604 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
605 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
606 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
607 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
608 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
609 		break;
610 
611 	default:
612 		break;
613 	}
614 
615 	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
616 		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
617 		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
618 	} else {
619 		SET_LMM(FEC_NONE);
620 	}
621 
622 	FW_CAPS_TO_LMM(ANEG, Autoneg);
623 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
624 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
625 
626 	#undef FW_CAPS_TO_LMM
627 	#undef SET_LMM
628 }
629 
630 /**
631  *	lmm_to_fw_caps - translate ethtool Link Mode Mask to Firmware
632  *	capabilities
633  *	@link_mode_mask: ethtool Link Mode Mask
634  *
635  *	Translate ethtool Link Mode Mask into a Firmware Port capabilities
636  *	value.
637  */
638 static unsigned int lmm_to_fw_caps(const unsigned long *link_mode_mask)
639 {
640 	unsigned int fw_caps = 0;
641 
642 	#define LMM_TO_FW_CAPS(__lmm_name, __fw_name) \
643 		do { \
644 			if (test_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
645 				     link_mode_mask)) \
646 				fw_caps |= FW_PORT_CAP32_ ## __fw_name; \
647 		} while (0)
648 
649 	LMM_TO_FW_CAPS(100baseT_Full, SPEED_100M);
650 	LMM_TO_FW_CAPS(1000baseT_Full, SPEED_1G);
651 	LMM_TO_FW_CAPS(10000baseT_Full, SPEED_10G);
652 	LMM_TO_FW_CAPS(40000baseSR4_Full, SPEED_40G);
653 	LMM_TO_FW_CAPS(25000baseCR_Full, SPEED_25G);
654 	LMM_TO_FW_CAPS(50000baseCR2_Full, SPEED_50G);
655 	LMM_TO_FW_CAPS(100000baseCR4_Full, SPEED_100G);
656 
657 	#undef LMM_TO_FW_CAPS
658 
659 	return fw_caps;
660 }
661 
662 static int get_link_ksettings(struct net_device *dev,
663 			      struct ethtool_link_ksettings *link_ksettings)
664 {
665 	struct port_info *pi = netdev_priv(dev);
666 	struct ethtool_link_settings *base = &link_ksettings->base;
667 
668 	/* For the nonce, the Firmware doesn't send up Port State changes
669 	 * when the Virtual Interface attached to the Port is down.  So
670 	 * if it's down, let's grab any changes.
671 	 */
672 	if (!netif_running(dev))
673 		(void)t4_update_port_info(pi);
674 
675 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
676 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
677 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
678 
679 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
680 
681 	if (pi->mdio_addr >= 0) {
682 		base->phy_address = pi->mdio_addr;
683 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
684 				      ? ETH_MDIO_SUPPORTS_C22
685 				      : ETH_MDIO_SUPPORTS_C45);
686 	} else {
687 		base->phy_address = 255;
688 		base->mdio_support = 0;
689 	}
690 
691 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
692 		       link_ksettings->link_modes.supported);
693 	fw_caps_to_lmm(pi->port_type,
694 		       t4_link_acaps(pi->adapter,
695 				     pi->lport,
696 				     &pi->link_cfg),
697 		       link_ksettings->link_modes.advertising);
698 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
699 		       link_ksettings->link_modes.lp_advertising);
700 
701 	base->speed = (netif_carrier_ok(dev)
702 		       ? pi->link_cfg.speed
703 		       : SPEED_UNKNOWN);
704 	base->duplex = DUPLEX_FULL;
705 
706 	base->autoneg = pi->link_cfg.autoneg;
707 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
708 		ethtool_link_ksettings_add_link_mode(link_ksettings,
709 						     supported, Autoneg);
710 	if (pi->link_cfg.autoneg)
711 		ethtool_link_ksettings_add_link_mode(link_ksettings,
712 						     advertising, Autoneg);
713 
714 	return 0;
715 }
716 
717 static int set_link_ksettings(struct net_device *dev,
718 			    const struct ethtool_link_ksettings *link_ksettings)
719 {
720 	struct port_info *pi = netdev_priv(dev);
721 	struct link_config *lc = &pi->link_cfg;
722 	const struct ethtool_link_settings *base = &link_ksettings->base;
723 	struct link_config old_lc;
724 	unsigned int fw_caps;
725 	int ret = 0;
726 
727 	/* only full-duplex supported */
728 	if (base->duplex != DUPLEX_FULL)
729 		return -EINVAL;
730 
731 	old_lc = *lc;
732 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) ||
733 	    base->autoneg == AUTONEG_DISABLE) {
734 		fw_caps = speed_to_fw_caps(base->speed);
735 
736 		/* Speed must be supported by Physical Port Capabilities. */
737 		if (!(lc->pcaps & fw_caps))
738 			return -EINVAL;
739 
740 		lc->speed_caps = fw_caps;
741 		lc->acaps = fw_caps;
742 	} else {
743 		fw_caps =
744 			lmm_to_fw_caps(link_ksettings->link_modes.advertising);
745 		if (!(lc->pcaps & fw_caps))
746 			return -EINVAL;
747 		lc->speed_caps = 0;
748 		lc->acaps = fw_caps | FW_PORT_CAP32_ANEG;
749 	}
750 	lc->autoneg = base->autoneg;
751 
752 	/* If the firmware rejects the Link Configuration request, back out
753 	 * the changes and report the error.
754 	 */
755 	ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox, pi->tx_chan, lc);
756 	if (ret)
757 		*lc = old_lc;
758 
759 	return ret;
760 }
761 
762 /* Translate the Firmware FEC value into the ethtool value. */
763 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
764 {
765 	unsigned int eth_fec = 0;
766 
767 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
768 		eth_fec |= ETHTOOL_FEC_RS;
769 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
770 		eth_fec |= ETHTOOL_FEC_BASER;
771 
772 	/* if nothing is set, then FEC is off */
773 	if (!eth_fec)
774 		eth_fec = ETHTOOL_FEC_OFF;
775 
776 	return eth_fec;
777 }
778 
779 /* Translate Common Code FEC value into ethtool value. */
780 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
781 {
782 	unsigned int eth_fec = 0;
783 
784 	if (cc_fec & FEC_AUTO)
785 		eth_fec |= ETHTOOL_FEC_AUTO;
786 	if (cc_fec & FEC_RS)
787 		eth_fec |= ETHTOOL_FEC_RS;
788 	if (cc_fec & FEC_BASER_RS)
789 		eth_fec |= ETHTOOL_FEC_BASER;
790 
791 	/* if nothing is set, then FEC is off */
792 	if (!eth_fec)
793 		eth_fec = ETHTOOL_FEC_OFF;
794 
795 	return eth_fec;
796 }
797 
798 /* Translate ethtool FEC value into Common Code value. */
799 static inline unsigned int eth_to_cc_fec(unsigned int eth_fec)
800 {
801 	unsigned int cc_fec = 0;
802 
803 	if (eth_fec & ETHTOOL_FEC_OFF)
804 		return cc_fec;
805 
806 	if (eth_fec & ETHTOOL_FEC_AUTO)
807 		cc_fec |= FEC_AUTO;
808 	if (eth_fec & ETHTOOL_FEC_RS)
809 		cc_fec |= FEC_RS;
810 	if (eth_fec & ETHTOOL_FEC_BASER)
811 		cc_fec |= FEC_BASER_RS;
812 
813 	return cc_fec;
814 }
815 
816 static int get_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
817 {
818 	const struct port_info *pi = netdev_priv(dev);
819 	const struct link_config *lc = &pi->link_cfg;
820 
821 	/* Translate the Firmware FEC Support into the ethtool value.  We
822 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
823 	 * any FEC is supported.
824 	 */
825 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
826 	if (fec->fec != ETHTOOL_FEC_OFF)
827 		fec->fec |= ETHTOOL_FEC_AUTO;
828 
829 	/* Translate the current internal FEC parameters into the
830 	 * ethtool values.
831 	 */
832 	fec->active_fec = cc_to_eth_fec(lc->fec);
833 
834 	return 0;
835 }
836 
837 static int set_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
838 {
839 	struct port_info *pi = netdev_priv(dev);
840 	struct link_config *lc = &pi->link_cfg;
841 	struct link_config old_lc;
842 	int ret;
843 
844 	/* Save old Link Configuration in case the L1 Configure below
845 	 * fails.
846 	 */
847 	old_lc = *lc;
848 
849 	/* Try to perform the L1 Configure and return the result of that
850 	 * effort.  If it fails, revert the attempted change.
851 	 */
852 	lc->requested_fec = eth_to_cc_fec(fec->fec);
853 	ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox,
854 			    pi->tx_chan, lc);
855 	if (ret)
856 		*lc = old_lc;
857 	return ret;
858 }
859 
860 static void get_pauseparam(struct net_device *dev,
861 			   struct ethtool_pauseparam *epause)
862 {
863 	struct port_info *p = netdev_priv(dev);
864 
865 	epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
866 	epause->rx_pause = (p->link_cfg.advertised_fc & PAUSE_RX) != 0;
867 	epause->tx_pause = (p->link_cfg.advertised_fc & PAUSE_TX) != 0;
868 }
869 
870 static int set_pauseparam(struct net_device *dev,
871 			  struct ethtool_pauseparam *epause)
872 {
873 	struct port_info *p = netdev_priv(dev);
874 	struct link_config *lc = &p->link_cfg;
875 
876 	if (epause->autoneg == AUTONEG_DISABLE)
877 		lc->requested_fc = 0;
878 	else if (lc->pcaps & FW_PORT_CAP32_ANEG)
879 		lc->requested_fc = PAUSE_AUTONEG;
880 	else
881 		return -EINVAL;
882 
883 	if (epause->rx_pause)
884 		lc->requested_fc |= PAUSE_RX;
885 	if (epause->tx_pause)
886 		lc->requested_fc |= PAUSE_TX;
887 	if (netif_running(dev))
888 		return t4_link_l1cfg(p->adapter, p->adapter->mbox, p->tx_chan,
889 				     lc);
890 	return 0;
891 }
892 
893 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e,
894 			  struct kernel_ethtool_ringparam *kernel_e,
895 			  struct netlink_ext_ack *extack)
896 {
897 	const struct port_info *pi = netdev_priv(dev);
898 	const struct sge *s = &pi->adapter->sge;
899 
900 	e->rx_max_pending = MAX_RX_BUFFERS;
901 	e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
902 	e->rx_jumbo_max_pending = 0;
903 	e->tx_max_pending = MAX_TXQ_ENTRIES;
904 
905 	e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
906 	e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
907 	e->rx_jumbo_pending = 0;
908 	e->tx_pending = s->ethtxq[pi->first_qset].q.size;
909 }
910 
911 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e,
912 			 struct kernel_ethtool_ringparam *kernel_e,
913 			 struct netlink_ext_ack *extack)
914 {
915 	int i;
916 	const struct port_info *pi = netdev_priv(dev);
917 	struct adapter *adapter = pi->adapter;
918 	struct sge *s = &adapter->sge;
919 
920 	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
921 	    e->tx_pending > MAX_TXQ_ENTRIES ||
922 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
923 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
924 	    e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
925 		return -EINVAL;
926 
927 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
928 		return -EBUSY;
929 
930 	for (i = 0; i < pi->nqsets; ++i) {
931 		s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
932 		s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
933 		s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
934 	}
935 	return 0;
936 }
937 
938 /**
939  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
940  * @dev: the network device
941  * @us: the hold-off time in us, or 0 to disable timer
942  * @cnt: the hold-off packet count, or 0 to disable counter
943  *
944  * Set the RX interrupt hold-off parameters for a network device.
945  */
946 static int set_rx_intr_params(struct net_device *dev,
947 			      unsigned int us, unsigned int cnt)
948 {
949 	int i, err;
950 	struct port_info *pi = netdev_priv(dev);
951 	struct adapter *adap = pi->adapter;
952 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
953 
954 	for (i = 0; i < pi->nqsets; i++, q++) {
955 		err = cxgb4_set_rspq_intr_params(&q->rspq, us, cnt);
956 		if (err)
957 			return err;
958 	}
959 	return 0;
960 }
961 
962 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
963 {
964 	int i;
965 	struct port_info *pi = netdev_priv(dev);
966 	struct adapter *adap = pi->adapter;
967 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
968 
969 	for (i = 0; i < pi->nqsets; i++, q++)
970 		q->rspq.adaptive_rx = adaptive_rx;
971 
972 	return 0;
973 }
974 
975 static int get_adaptive_rx_setting(struct net_device *dev)
976 {
977 	struct port_info *pi = netdev_priv(dev);
978 	struct adapter *adap = pi->adapter;
979 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
980 
981 	return q->rspq.adaptive_rx;
982 }
983 
984 /* Return the current global Adapter SGE Doorbell Queue Timer Tick for all
985  * Ethernet TX Queues.
986  */
987 static int get_dbqtimer_tick(struct net_device *dev)
988 {
989 	struct port_info *pi = netdev_priv(dev);
990 	struct adapter *adap = pi->adapter;
991 
992 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
993 		return 0;
994 
995 	return adap->sge.dbqtimer_tick;
996 }
997 
998 /* Return the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
999  * associated with a Network Device.
1000  */
1001 static int get_dbqtimer(struct net_device *dev)
1002 {
1003 	struct port_info *pi = netdev_priv(dev);
1004 	struct adapter *adap = pi->adapter;
1005 	struct sge_eth_txq *txq;
1006 
1007 	txq = &adap->sge.ethtxq[pi->first_qset];
1008 
1009 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
1010 		return 0;
1011 
1012 	/* all of the TX Queues use the same Timer Index */
1013 	return adap->sge.dbqtimer_val[txq->dbqtimerix];
1014 }
1015 
1016 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
1017  * Queues.  This is the fundamental "Tick" that sets the scale of values which
1018  * can be used.  Individual Ethernet TX Queues index into a relatively small
1019  * array of Tick Multipliers.  Changing the base Tick will thus change all of
1020  * the resulting Timer Values associated with those multipliers for all
1021  * Ethernet TX Queues.
1022  */
1023 static int set_dbqtimer_tick(struct net_device *dev, int usecs)
1024 {
1025 	struct port_info *pi = netdev_priv(dev);
1026 	struct adapter *adap = pi->adapter;
1027 	struct sge *s = &adap->sge;
1028 	u32 param, val;
1029 	int ret;
1030 
1031 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
1032 		return 0;
1033 
1034 	/* return early if it's the same Timer Tick we're already using */
1035 	if (s->dbqtimer_tick == usecs)
1036 		return 0;
1037 
1038 	/* attempt to set the new Timer Tick value */
1039 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1040 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
1041 	val = usecs;
1042 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
1043 	if (ret)
1044 		return ret;
1045 	s->dbqtimer_tick = usecs;
1046 
1047 	/* if successful, reread resulting dependent Timer values */
1048 	ret = t4_read_sge_dbqtimers(adap, ARRAY_SIZE(s->dbqtimer_val),
1049 				    s->dbqtimer_val);
1050 	return ret;
1051 }
1052 
1053 /* Set the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
1054  * associated with a Network Device.  There is a relatively small array of
1055  * possible Timer Values so we need to pick the closest value available.
1056  */
1057 static int set_dbqtimer(struct net_device *dev, int usecs)
1058 {
1059 	int qix, timerix, min_timerix, delta, min_delta;
1060 	struct port_info *pi = netdev_priv(dev);
1061 	struct adapter *adap = pi->adapter;
1062 	struct sge *s = &adap->sge;
1063 	struct sge_eth_txq *txq;
1064 	u32 param, val;
1065 	int ret;
1066 
1067 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
1068 		return 0;
1069 
1070 	/* Find the SGE Doorbell Timer Value that's closest to the requested
1071 	 * value.
1072 	 */
1073 	min_delta = INT_MAX;
1074 	min_timerix = 0;
1075 	for (timerix = 0; timerix < ARRAY_SIZE(s->dbqtimer_val); timerix++) {
1076 		delta = s->dbqtimer_val[timerix] - usecs;
1077 		if (delta < 0)
1078 			delta = -delta;
1079 		if (delta < min_delta) {
1080 			min_delta = delta;
1081 			min_timerix = timerix;
1082 		}
1083 	}
1084 
1085 	/* Return early if it's the same Timer Index we're already using.
1086 	 * We use the same Timer Index for all of the TX Queues for an
1087 	 * interface so it's only necessary to check the first one.
1088 	 */
1089 	txq = &s->ethtxq[pi->first_qset];
1090 	if (txq->dbqtimerix == min_timerix)
1091 		return 0;
1092 
1093 	for (qix = 0; qix < pi->nqsets; qix++, txq++) {
1094 		if (adap->flags & CXGB4_FULL_INIT_DONE) {
1095 			param =
1096 			 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1097 			  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_TIMERIX) |
1098 			  FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
1099 			val = min_timerix;
1100 			ret = t4_set_params(adap, adap->mbox, adap->pf, 0,
1101 					    1, &param, &val);
1102 			if (ret)
1103 				return ret;
1104 		}
1105 		txq->dbqtimerix = min_timerix;
1106 	}
1107 	return 0;
1108 }
1109 
1110 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
1111  * Queues and the Timer Value for the Ethernet TX Queues associated with a
1112  * Network Device.  Since changing the global Tick changes all of the
1113  * available Timer Values, we need to do this first before selecting the
1114  * resulting closest Timer Value.  Moreover, since the Tick is global,
1115  * changing it affects the Timer Values for all Network Devices on the
1116  * adapter.  So, before changing the Tick, we grab all of the current Timer
1117  * Values for other Network Devices on this Adapter and then attempt to select
1118  * new Timer Values which are close to the old values ...
1119  */
1120 static int set_dbqtimer_tickval(struct net_device *dev,
1121 				int tick_usecs, int timer_usecs)
1122 {
1123 	struct port_info *pi = netdev_priv(dev);
1124 	struct adapter *adap = pi->adapter;
1125 	int timer[MAX_NPORTS];
1126 	unsigned int port;
1127 	int ret;
1128 
1129 	/* Grab the other adapter Network Interface current timers and fill in
1130 	 * the new one for this Network Interface.
1131 	 */
1132 	for_each_port(adap, port)
1133 		if (port == pi->port_id)
1134 			timer[port] = timer_usecs;
1135 		else
1136 			timer[port] = get_dbqtimer(adap->port[port]);
1137 
1138 	/* Change the global Tick first ... */
1139 	ret = set_dbqtimer_tick(dev, tick_usecs);
1140 	if (ret)
1141 		return ret;
1142 
1143 	/* ... and then set all of the Network Interface Timer Values ... */
1144 	for_each_port(adap, port) {
1145 		ret = set_dbqtimer(adap->port[port], timer[port]);
1146 		if (ret)
1147 			return ret;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int set_coalesce(struct net_device *dev,
1154 			struct ethtool_coalesce *coalesce,
1155 			struct kernel_ethtool_coalesce *kernel_coal,
1156 			struct netlink_ext_ack *extack)
1157 {
1158 	int ret;
1159 
1160 	set_adaptive_rx_setting(dev, coalesce->use_adaptive_rx_coalesce);
1161 
1162 	ret = set_rx_intr_params(dev, coalesce->rx_coalesce_usecs,
1163 				 coalesce->rx_max_coalesced_frames);
1164 	if (ret)
1165 		return ret;
1166 
1167 	return set_dbqtimer_tickval(dev,
1168 				    coalesce->tx_coalesce_usecs_irq,
1169 				    coalesce->tx_coalesce_usecs);
1170 }
1171 
1172 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c,
1173 			struct kernel_ethtool_coalesce *kernel_coal,
1174 			struct netlink_ext_ack *extack)
1175 {
1176 	const struct port_info *pi = netdev_priv(dev);
1177 	const struct adapter *adap = pi->adapter;
1178 	const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1179 
1180 	c->rx_coalesce_usecs = qtimer_val(adap, rq);
1181 	c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN_F) ?
1182 		adap->sge.counter_val[rq->pktcnt_idx] : 0;
1183 	c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
1184 	c->tx_coalesce_usecs_irq = get_dbqtimer_tick(dev);
1185 	c->tx_coalesce_usecs = get_dbqtimer(dev);
1186 	return 0;
1187 }
1188 
1189 /* The next two routines implement eeprom read/write from physical addresses.
1190  */
1191 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1192 {
1193 	int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1194 
1195 	if (vaddr >= 0)
1196 		vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1197 	return vaddr < 0 ? vaddr : 0;
1198 }
1199 
1200 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1201 {
1202 	int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1203 
1204 	if (vaddr >= 0)
1205 		vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1206 	return vaddr < 0 ? vaddr : 0;
1207 }
1208 
1209 #define EEPROM_MAGIC 0x38E2F10C
1210 
1211 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1212 		      u8 *data)
1213 {
1214 	int i, err = 0;
1215 	struct adapter *adapter = netdev2adap(dev);
1216 	u8 *buf = kvzalloc(EEPROMSIZE, GFP_KERNEL);
1217 
1218 	if (!buf)
1219 		return -ENOMEM;
1220 
1221 	e->magic = EEPROM_MAGIC;
1222 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1223 		err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1224 
1225 	if (!err)
1226 		memcpy(data, buf + e->offset, e->len);
1227 	kvfree(buf);
1228 	return err;
1229 }
1230 
1231 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1232 		      u8 *data)
1233 {
1234 	u8 *buf;
1235 	int err = 0;
1236 	u32 aligned_offset, aligned_len, *p;
1237 	struct adapter *adapter = netdev2adap(dev);
1238 
1239 	if (eeprom->magic != EEPROM_MAGIC)
1240 		return -EINVAL;
1241 
1242 	aligned_offset = eeprom->offset & ~3;
1243 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1244 
1245 	if (adapter->pf > 0) {
1246 		u32 start = 1024 + adapter->pf * EEPROMPFSIZE;
1247 
1248 		if (aligned_offset < start ||
1249 		    aligned_offset + aligned_len > start + EEPROMPFSIZE)
1250 			return -EPERM;
1251 	}
1252 
1253 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1254 		/* RMW possibly needed for first or last words.
1255 		 */
1256 		buf = kvzalloc(aligned_len, GFP_KERNEL);
1257 		if (!buf)
1258 			return -ENOMEM;
1259 		err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1260 		if (!err && aligned_len > 4)
1261 			err = eeprom_rd_phys(adapter,
1262 					     aligned_offset + aligned_len - 4,
1263 					     (u32 *)&buf[aligned_len - 4]);
1264 		if (err)
1265 			goto out;
1266 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1267 	} else {
1268 		buf = data;
1269 	}
1270 
1271 	err = t4_seeprom_wp(adapter, false);
1272 	if (err)
1273 		goto out;
1274 
1275 	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1276 		err = eeprom_wr_phys(adapter, aligned_offset, *p);
1277 		aligned_offset += 4;
1278 	}
1279 
1280 	if (!err)
1281 		err = t4_seeprom_wp(adapter, true);
1282 out:
1283 	if (buf != data)
1284 		kvfree(buf);
1285 	return err;
1286 }
1287 
1288 static int cxgb4_ethtool_flash_bootcfg(struct net_device *netdev,
1289 				       const u8 *data, u32 size)
1290 {
1291 	struct adapter *adap = netdev2adap(netdev);
1292 	int ret;
1293 
1294 	ret = t4_load_bootcfg(adap, data, size);
1295 	if (ret)
1296 		dev_err(adap->pdev_dev, "Failed to load boot cfg image\n");
1297 
1298 	return ret;
1299 }
1300 
1301 static int cxgb4_ethtool_flash_boot(struct net_device *netdev,
1302 				    const u8 *bdata, u32 size)
1303 {
1304 	struct adapter *adap = netdev2adap(netdev);
1305 	unsigned int offset;
1306 	u8 *data;
1307 	int ret;
1308 
1309 	data = kmemdup(bdata, size, GFP_KERNEL);
1310 	if (!data)
1311 		return -ENOMEM;
1312 
1313 	offset = OFFSET_G(t4_read_reg(adap, PF_REG(0, PCIE_PF_EXPROM_OFST_A)));
1314 
1315 	ret = t4_load_boot(adap, data, offset, size);
1316 	if (ret)
1317 		dev_err(adap->pdev_dev, "Failed to load boot image\n");
1318 
1319 	kfree(data);
1320 	return ret;
1321 }
1322 
1323 #define CXGB4_PHY_SIG 0x130000ea
1324 
1325 static int cxgb4_validate_phy_image(const u8 *data, u32 *size)
1326 {
1327 	struct cxgb4_fw_data *header;
1328 
1329 	header = (struct cxgb4_fw_data *)data;
1330 	if (be32_to_cpu(header->signature) != CXGB4_PHY_SIG)
1331 		return -EINVAL;
1332 
1333 	return 0;
1334 }
1335 
1336 static int cxgb4_ethtool_flash_phy(struct net_device *netdev,
1337 				   const u8 *data, u32 size)
1338 {
1339 	struct adapter *adap = netdev2adap(netdev);
1340 	int ret;
1341 
1342 	ret = cxgb4_validate_phy_image(data, NULL);
1343 	if (ret) {
1344 		dev_err(adap->pdev_dev, "PHY signature mismatch\n");
1345 		return ret;
1346 	}
1347 
1348 	/* We have to RESET the chip/firmware because we need the
1349 	 * chip in uninitialized state for loading new PHY image.
1350 	 * Otherwise, the running firmware will only store the PHY
1351 	 * image in local RAM which will be lost after next reset.
1352 	 */
1353 	ret = t4_fw_reset(adap, adap->mbox, PIORSTMODE_F | PIORST_F);
1354 	if (ret < 0) {
1355 		dev_err(adap->pdev_dev,
1356 			"Set FW to RESET for flashing PHY FW failed. ret: %d\n",
1357 			ret);
1358 		return ret;
1359 	}
1360 
1361 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, NULL, data, size);
1362 	if (ret < 0) {
1363 		dev_err(adap->pdev_dev, "Failed to load PHY FW. ret: %d\n",
1364 			ret);
1365 		return ret;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static int cxgb4_ethtool_flash_fw(struct net_device *netdev,
1372 				  const u8 *data, u32 size)
1373 {
1374 	struct adapter *adap = netdev2adap(netdev);
1375 	unsigned int mbox = PCIE_FW_MASTER_M + 1;
1376 	int ret;
1377 
1378 	/* If the adapter has been fully initialized then we'll go ahead and
1379 	 * try to get the firmware's cooperation in upgrading to the new
1380 	 * firmware image otherwise we'll try to do the entire job from the
1381 	 * host ... and we always "force" the operation in this path.
1382 	 */
1383 	if (adap->flags & CXGB4_FULL_INIT_DONE)
1384 		mbox = adap->mbox;
1385 
1386 	ret = t4_fw_upgrade(adap, mbox, data, size, 1);
1387 	if (ret)
1388 		dev_err(adap->pdev_dev,
1389 			"Failed to flash firmware\n");
1390 
1391 	return ret;
1392 }
1393 
1394 static int cxgb4_ethtool_flash_region(struct net_device *netdev,
1395 				      const u8 *data, u32 size, u32 region)
1396 {
1397 	struct adapter *adap = netdev2adap(netdev);
1398 	int ret;
1399 
1400 	switch (region) {
1401 	case CXGB4_ETHTOOL_FLASH_FW:
1402 		ret = cxgb4_ethtool_flash_fw(netdev, data, size);
1403 		break;
1404 	case CXGB4_ETHTOOL_FLASH_PHY:
1405 		ret = cxgb4_ethtool_flash_phy(netdev, data, size);
1406 		break;
1407 	case CXGB4_ETHTOOL_FLASH_BOOT:
1408 		ret = cxgb4_ethtool_flash_boot(netdev, data, size);
1409 		break;
1410 	case CXGB4_ETHTOOL_FLASH_BOOTCFG:
1411 		ret = cxgb4_ethtool_flash_bootcfg(netdev, data, size);
1412 		break;
1413 	default:
1414 		ret = -EOPNOTSUPP;
1415 		break;
1416 	}
1417 
1418 	if (!ret)
1419 		dev_info(adap->pdev_dev,
1420 			 "loading %s successful, reload cxgb4 driver\n",
1421 			 flash_region_strings[region]);
1422 	return ret;
1423 }
1424 
1425 #define CXGB4_FW_SIG 0x4368656c
1426 #define CXGB4_FW_SIG_OFFSET 0x160
1427 
1428 static int cxgb4_validate_fw_image(const u8 *data, u32 *size)
1429 {
1430 	struct cxgb4_fw_data *header;
1431 
1432 	header = (struct cxgb4_fw_data *)&data[CXGB4_FW_SIG_OFFSET];
1433 	if (be32_to_cpu(header->signature) != CXGB4_FW_SIG)
1434 		return -EINVAL;
1435 
1436 	if (size)
1437 		*size = be16_to_cpu(((struct fw_hdr *)data)->len512) * 512;
1438 
1439 	return 0;
1440 }
1441 
1442 static int cxgb4_validate_bootcfg_image(const u8 *data, u32 *size)
1443 {
1444 	struct cxgb4_bootcfg_data *header;
1445 
1446 	header = (struct cxgb4_bootcfg_data *)data;
1447 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG)
1448 		return -EINVAL;
1449 
1450 	return 0;
1451 }
1452 
1453 static int cxgb4_validate_boot_image(const u8 *data, u32 *size)
1454 {
1455 	struct cxgb4_pci_exp_rom_header *exp_header;
1456 	struct cxgb4_pcir_data *pcir_header;
1457 	struct legacy_pci_rom_hdr *header;
1458 	const u8 *cur_header = data;
1459 	u16 pcir_offset;
1460 
1461 	exp_header = (struct cxgb4_pci_exp_rom_header *)data;
1462 
1463 	if (le16_to_cpu(exp_header->signature) != BOOT_SIGNATURE)
1464 		return -EINVAL;
1465 
1466 	if (size) {
1467 		do {
1468 			header = (struct legacy_pci_rom_hdr *)cur_header;
1469 			pcir_offset = le16_to_cpu(header->pcir_offset);
1470 			pcir_header = (struct cxgb4_pcir_data *)(cur_header +
1471 				      pcir_offset);
1472 
1473 			*size += header->size512 * 512;
1474 			cur_header += header->size512 * 512;
1475 		} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static int cxgb4_ethtool_get_flash_region(const u8 *data, u32 *size)
1482 {
1483 	if (!cxgb4_validate_fw_image(data, size))
1484 		return CXGB4_ETHTOOL_FLASH_FW;
1485 	if (!cxgb4_validate_boot_image(data, size))
1486 		return CXGB4_ETHTOOL_FLASH_BOOT;
1487 	if (!cxgb4_validate_phy_image(data, size))
1488 		return CXGB4_ETHTOOL_FLASH_PHY;
1489 	if (!cxgb4_validate_bootcfg_image(data, size))
1490 		return CXGB4_ETHTOOL_FLASH_BOOTCFG;
1491 
1492 	return -EOPNOTSUPP;
1493 }
1494 
1495 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1496 {
1497 	struct adapter *adap = netdev2adap(netdev);
1498 	const struct firmware *fw;
1499 	unsigned int master;
1500 	u8 master_vld = 0;
1501 	const u8 *fw_data;
1502 	size_t fw_size;
1503 	u32 size = 0;
1504 	u32 pcie_fw;
1505 	int region;
1506 	int ret;
1507 
1508 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
1509 	master = PCIE_FW_MASTER_G(pcie_fw);
1510 	if (pcie_fw & PCIE_FW_MASTER_VLD_F)
1511 		master_vld = 1;
1512 	/* if csiostor is the master return */
1513 	if (master_vld && (master != adap->pf)) {
1514 		dev_warn(adap->pdev_dev,
1515 			 "cxgb4 driver needs to be loaded as MASTER to support FW flash\n");
1516 		return -EOPNOTSUPP;
1517 	}
1518 
1519 	ef->data[sizeof(ef->data) - 1] = '\0';
1520 	ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1521 	if (ret < 0)
1522 		return ret;
1523 
1524 	fw_data = fw->data;
1525 	fw_size = fw->size;
1526 	if (ef->region == ETHTOOL_FLASH_ALL_REGIONS) {
1527 		while (fw_size > 0) {
1528 			size = 0;
1529 			region = cxgb4_ethtool_get_flash_region(fw_data, &size);
1530 			if (region < 0 || !size) {
1531 				ret = region;
1532 				goto out_free_fw;
1533 			}
1534 
1535 			ret = cxgb4_ethtool_flash_region(netdev, fw_data, size,
1536 							 region);
1537 			if (ret)
1538 				goto out_free_fw;
1539 
1540 			fw_data += size;
1541 			fw_size -= size;
1542 		}
1543 	} else {
1544 		ret = cxgb4_ethtool_flash_region(netdev, fw_data, fw_size,
1545 						 ef->region);
1546 	}
1547 
1548 out_free_fw:
1549 	release_firmware(fw);
1550 	return ret;
1551 }
1552 
1553 static int get_ts_info(struct net_device *dev, struct ethtool_ts_info *ts_info)
1554 {
1555 	struct port_info *pi = netdev_priv(dev);
1556 	struct  adapter *adapter = pi->adapter;
1557 
1558 	ts_info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1559 				   SOF_TIMESTAMPING_RX_SOFTWARE |
1560 				   SOF_TIMESTAMPING_SOFTWARE;
1561 
1562 	ts_info->so_timestamping |= SOF_TIMESTAMPING_RX_HARDWARE |
1563 				    SOF_TIMESTAMPING_TX_HARDWARE |
1564 				    SOF_TIMESTAMPING_RAW_HARDWARE;
1565 
1566 	ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1567 			    (1 << HWTSTAMP_TX_ON);
1568 
1569 	ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1570 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1571 			      (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1572 			      (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1573 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1574 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1575 
1576 	if (adapter->ptp_clock)
1577 		ts_info->phc_index = ptp_clock_index(adapter->ptp_clock);
1578 	else
1579 		ts_info->phc_index = -1;
1580 
1581 	return 0;
1582 }
1583 
1584 static u32 get_rss_table_size(struct net_device *dev)
1585 {
1586 	const struct port_info *pi = netdev_priv(dev);
1587 
1588 	return pi->rss_size;
1589 }
1590 
1591 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc)
1592 {
1593 	const struct port_info *pi = netdev_priv(dev);
1594 	unsigned int n = pi->rss_size;
1595 
1596 	if (hfunc)
1597 		*hfunc = ETH_RSS_HASH_TOP;
1598 	if (!p)
1599 		return 0;
1600 	while (n--)
1601 		p[n] = pi->rss[n];
1602 	return 0;
1603 }
1604 
1605 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key,
1606 			 const u8 hfunc)
1607 {
1608 	unsigned int i;
1609 	struct port_info *pi = netdev_priv(dev);
1610 
1611 	/* We require at least one supported parameter to be changed and no
1612 	 * change in any of the unsupported parameters
1613 	 */
1614 	if (key ||
1615 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
1616 		return -EOPNOTSUPP;
1617 	if (!p)
1618 		return 0;
1619 
1620 	/* Interface must be brought up atleast once */
1621 	if (pi->adapter->flags & CXGB4_FULL_INIT_DONE) {
1622 		for (i = 0; i < pi->rss_size; i++)
1623 			pi->rss[i] = p[i];
1624 
1625 		return cxgb4_write_rss(pi, pi->rss);
1626 	}
1627 
1628 	return -EPERM;
1629 }
1630 
1631 static struct filter_entry *cxgb4_get_filter_entry(struct adapter *adap,
1632 						   u32 ftid)
1633 {
1634 	struct tid_info *t = &adap->tids;
1635 
1636 	if (ftid >= t->hpftid_base && ftid < t->hpftid_base + t->nhpftids)
1637 		return &t->hpftid_tab[ftid - t->hpftid_base];
1638 
1639 	if (ftid >= t->ftid_base && ftid < t->ftid_base + t->nftids)
1640 		return &t->ftid_tab[ftid - t->ftid_base];
1641 
1642 	return lookup_tid(t, ftid);
1643 }
1644 
1645 static void cxgb4_fill_filter_rule(struct ethtool_rx_flow_spec *fs,
1646 				   struct ch_filter_specification *dfs)
1647 {
1648 	switch (dfs->val.proto) {
1649 	case IPPROTO_TCP:
1650 		if (dfs->type)
1651 			fs->flow_type = TCP_V6_FLOW;
1652 		else
1653 			fs->flow_type = TCP_V4_FLOW;
1654 		break;
1655 	case IPPROTO_UDP:
1656 		if (dfs->type)
1657 			fs->flow_type = UDP_V6_FLOW;
1658 		else
1659 			fs->flow_type = UDP_V4_FLOW;
1660 		break;
1661 	}
1662 
1663 	if (dfs->type) {
1664 		fs->h_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->val.fport);
1665 		fs->m_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->mask.fport);
1666 		fs->h_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->val.lport);
1667 		fs->m_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->mask.lport);
1668 		memcpy(&fs->h_u.tcp_ip6_spec.ip6src, &dfs->val.fip[0],
1669 		       sizeof(fs->h_u.tcp_ip6_spec.ip6src));
1670 		memcpy(&fs->m_u.tcp_ip6_spec.ip6src, &dfs->mask.fip[0],
1671 		       sizeof(fs->m_u.tcp_ip6_spec.ip6src));
1672 		memcpy(&fs->h_u.tcp_ip6_spec.ip6dst, &dfs->val.lip[0],
1673 		       sizeof(fs->h_u.tcp_ip6_spec.ip6dst));
1674 		memcpy(&fs->m_u.tcp_ip6_spec.ip6dst, &dfs->mask.lip[0],
1675 		       sizeof(fs->m_u.tcp_ip6_spec.ip6dst));
1676 		fs->h_u.tcp_ip6_spec.tclass = dfs->val.tos;
1677 		fs->m_u.tcp_ip6_spec.tclass = dfs->mask.tos;
1678 	} else {
1679 		fs->h_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->val.fport);
1680 		fs->m_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->mask.fport);
1681 		fs->h_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->val.lport);
1682 		fs->m_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->mask.lport);
1683 		memcpy(&fs->h_u.tcp_ip4_spec.ip4src, &dfs->val.fip[0],
1684 		       sizeof(fs->h_u.tcp_ip4_spec.ip4src));
1685 		memcpy(&fs->m_u.tcp_ip4_spec.ip4src, &dfs->mask.fip[0],
1686 		       sizeof(fs->m_u.tcp_ip4_spec.ip4src));
1687 		memcpy(&fs->h_u.tcp_ip4_spec.ip4dst, &dfs->val.lip[0],
1688 		       sizeof(fs->h_u.tcp_ip4_spec.ip4dst));
1689 		memcpy(&fs->m_u.tcp_ip4_spec.ip4dst, &dfs->mask.lip[0],
1690 		       sizeof(fs->m_u.tcp_ip4_spec.ip4dst));
1691 		fs->h_u.tcp_ip4_spec.tos = dfs->val.tos;
1692 		fs->m_u.tcp_ip4_spec.tos = dfs->mask.tos;
1693 	}
1694 	fs->h_ext.vlan_tci = cpu_to_be16(dfs->val.ivlan);
1695 	fs->m_ext.vlan_tci = cpu_to_be16(dfs->mask.ivlan);
1696 	fs->flow_type |= FLOW_EXT;
1697 
1698 	if (dfs->action == FILTER_DROP)
1699 		fs->ring_cookie = RX_CLS_FLOW_DISC;
1700 	else
1701 		fs->ring_cookie = dfs->iq;
1702 }
1703 
1704 static int cxgb4_ntuple_get_filter(struct net_device *dev,
1705 				   struct ethtool_rxnfc *cmd,
1706 				   unsigned int loc)
1707 {
1708 	const struct port_info *pi = netdev_priv(dev);
1709 	struct adapter *adap = netdev2adap(dev);
1710 	struct filter_entry *f;
1711 	int ftid;
1712 
1713 	if (!(adap->flags & CXGB4_FULL_INIT_DONE))
1714 		return -EAGAIN;
1715 
1716 	/* Check for maximum filter range */
1717 	if (!adap->ethtool_filters)
1718 		return -EOPNOTSUPP;
1719 
1720 	if (loc >= adap->ethtool_filters->nentries)
1721 		return -ERANGE;
1722 
1723 	if (!test_bit(loc, adap->ethtool_filters->port[pi->port_id].bmap))
1724 		return -ENOENT;
1725 
1726 	ftid = adap->ethtool_filters->port[pi->port_id].loc_array[loc];
1727 
1728 	/* Fetch filter_entry */
1729 	f = cxgb4_get_filter_entry(adap, ftid);
1730 
1731 	cxgb4_fill_filter_rule(&cmd->fs, &f->fs);
1732 
1733 	return 0;
1734 }
1735 
1736 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1737 		     u32 *rules)
1738 {
1739 	const struct port_info *pi = netdev_priv(dev);
1740 	struct adapter *adap = netdev2adap(dev);
1741 	unsigned int count = 0, index = 0;
1742 	int ret = 0;
1743 
1744 	switch (info->cmd) {
1745 	case ETHTOOL_GRXFH: {
1746 		unsigned int v = pi->rss_mode;
1747 
1748 		info->data = 0;
1749 		switch (info->flow_type) {
1750 		case TCP_V4_FLOW:
1751 			if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F)
1752 				info->data = RXH_IP_SRC | RXH_IP_DST |
1753 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1754 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1755 				info->data = RXH_IP_SRC | RXH_IP_DST;
1756 			break;
1757 		case UDP_V4_FLOW:
1758 			if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) &&
1759 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1760 				info->data = RXH_IP_SRC | RXH_IP_DST |
1761 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1762 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1763 				info->data = RXH_IP_SRC | RXH_IP_DST;
1764 			break;
1765 		case SCTP_V4_FLOW:
1766 		case AH_ESP_V4_FLOW:
1767 		case IPV4_FLOW:
1768 			if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1769 				info->data = RXH_IP_SRC | RXH_IP_DST;
1770 			break;
1771 		case TCP_V6_FLOW:
1772 			if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F)
1773 				info->data = RXH_IP_SRC | RXH_IP_DST |
1774 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1775 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1776 				info->data = RXH_IP_SRC | RXH_IP_DST;
1777 			break;
1778 		case UDP_V6_FLOW:
1779 			if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) &&
1780 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1781 				info->data = RXH_IP_SRC | RXH_IP_DST |
1782 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1783 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1784 				info->data = RXH_IP_SRC | RXH_IP_DST;
1785 			break;
1786 		case SCTP_V6_FLOW:
1787 		case AH_ESP_V6_FLOW:
1788 		case IPV6_FLOW:
1789 			if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1790 				info->data = RXH_IP_SRC | RXH_IP_DST;
1791 			break;
1792 		}
1793 		return 0;
1794 	}
1795 	case ETHTOOL_GRXRINGS:
1796 		info->data = pi->nqsets;
1797 		return 0;
1798 	case ETHTOOL_GRXCLSRLCNT:
1799 		info->rule_cnt =
1800 		       adap->ethtool_filters->port[pi->port_id].in_use;
1801 		return 0;
1802 	case ETHTOOL_GRXCLSRULE:
1803 		return cxgb4_ntuple_get_filter(dev, info, info->fs.location);
1804 	case ETHTOOL_GRXCLSRLALL:
1805 		info->data = adap->ethtool_filters->nentries;
1806 		while (count < info->rule_cnt) {
1807 			ret = cxgb4_ntuple_get_filter(dev, info, index);
1808 			if (!ret)
1809 				rules[count++] = index;
1810 			index++;
1811 		}
1812 		return 0;
1813 	}
1814 
1815 	return -EOPNOTSUPP;
1816 }
1817 
1818 static int cxgb4_ntuple_del_filter(struct net_device *dev,
1819 				   struct ethtool_rxnfc *cmd)
1820 {
1821 	struct cxgb4_ethtool_filter_info *filter_info;
1822 	struct adapter *adapter = netdev2adap(dev);
1823 	struct port_info *pi = netdev_priv(dev);
1824 	struct filter_entry *f;
1825 	u32 filter_id;
1826 	int ret;
1827 
1828 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE))
1829 		return -EAGAIN;  /* can still change nfilters */
1830 
1831 	if (!adapter->ethtool_filters)
1832 		return -EOPNOTSUPP;
1833 
1834 	if (cmd->fs.location >= adapter->ethtool_filters->nentries) {
1835 		dev_err(adapter->pdev_dev,
1836 			"Location must be < %u",
1837 			adapter->ethtool_filters->nentries);
1838 		return -ERANGE;
1839 	}
1840 
1841 	filter_info = &adapter->ethtool_filters->port[pi->port_id];
1842 
1843 	if (!test_bit(cmd->fs.location, filter_info->bmap))
1844 		return -ENOENT;
1845 
1846 	filter_id = filter_info->loc_array[cmd->fs.location];
1847 	f = cxgb4_get_filter_entry(adapter, filter_id);
1848 
1849 	if (f->fs.prio)
1850 		filter_id -= adapter->tids.hpftid_base;
1851 	else if (!f->fs.hash)
1852 		filter_id -= (adapter->tids.ftid_base - adapter->tids.nhpftids);
1853 
1854 	ret = cxgb4_flow_rule_destroy(dev, f->fs.tc_prio, &f->fs, filter_id);
1855 	if (ret)
1856 		goto err;
1857 
1858 	clear_bit(cmd->fs.location, filter_info->bmap);
1859 	filter_info->in_use--;
1860 
1861 err:
1862 	return ret;
1863 }
1864 
1865 /* Add Ethtool n-tuple filters. */
1866 static int cxgb4_ntuple_set_filter(struct net_device *netdev,
1867 				   struct ethtool_rxnfc *cmd)
1868 {
1869 	struct ethtool_rx_flow_spec_input input = {};
1870 	struct cxgb4_ethtool_filter_info *filter_info;
1871 	struct adapter *adapter = netdev2adap(netdev);
1872 	struct port_info *pi = netdev_priv(netdev);
1873 	struct ch_filter_specification fs;
1874 	struct ethtool_rx_flow_rule *flow;
1875 	u32 tid;
1876 	int ret;
1877 
1878 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE))
1879 		return -EAGAIN;  /* can still change nfilters */
1880 
1881 	if (!adapter->ethtool_filters)
1882 		return -EOPNOTSUPP;
1883 
1884 	if (cmd->fs.location >= adapter->ethtool_filters->nentries) {
1885 		dev_err(adapter->pdev_dev,
1886 			"Location must be < %u",
1887 			adapter->ethtool_filters->nentries);
1888 		return -ERANGE;
1889 	}
1890 
1891 	if (test_bit(cmd->fs.location,
1892 		     adapter->ethtool_filters->port[pi->port_id].bmap))
1893 		return -EEXIST;
1894 
1895 	memset(&fs, 0, sizeof(fs));
1896 
1897 	input.fs = &cmd->fs;
1898 	flow = ethtool_rx_flow_rule_create(&input);
1899 	if (IS_ERR(flow)) {
1900 		ret = PTR_ERR(flow);
1901 		goto exit;
1902 	}
1903 
1904 	fs.hitcnts = 1;
1905 
1906 	ret = cxgb4_flow_rule_replace(netdev, flow->rule, cmd->fs.location,
1907 				      NULL, &fs, &tid);
1908 	if (ret)
1909 		goto free;
1910 
1911 	filter_info = &adapter->ethtool_filters->port[pi->port_id];
1912 
1913 	if (fs.prio)
1914 		tid += adapter->tids.hpftid_base;
1915 	else if (!fs.hash)
1916 		tid += (adapter->tids.ftid_base - adapter->tids.nhpftids);
1917 
1918 	filter_info->loc_array[cmd->fs.location] = tid;
1919 	set_bit(cmd->fs.location, filter_info->bmap);
1920 	filter_info->in_use++;
1921 
1922 free:
1923 	ethtool_rx_flow_rule_destroy(flow);
1924 exit:
1925 	return ret;
1926 }
1927 
1928 static int set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1929 {
1930 	int ret = -EOPNOTSUPP;
1931 
1932 	switch (cmd->cmd) {
1933 	case ETHTOOL_SRXCLSRLINS:
1934 		ret = cxgb4_ntuple_set_filter(dev, cmd);
1935 		break;
1936 	case ETHTOOL_SRXCLSRLDEL:
1937 		ret = cxgb4_ntuple_del_filter(dev, cmd);
1938 		break;
1939 	default:
1940 		break;
1941 	}
1942 
1943 	return ret;
1944 }
1945 
1946 static int set_dump(struct net_device *dev, struct ethtool_dump *eth_dump)
1947 {
1948 	struct adapter *adapter = netdev2adap(dev);
1949 	u32 len = 0;
1950 
1951 	len = sizeof(struct cudbg_hdr) +
1952 	      sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1953 	len += cxgb4_get_dump_length(adapter, eth_dump->flag);
1954 
1955 	adapter->eth_dump.flag = eth_dump->flag;
1956 	adapter->eth_dump.len = len;
1957 	return 0;
1958 }
1959 
1960 static int get_dump_flag(struct net_device *dev, struct ethtool_dump *eth_dump)
1961 {
1962 	struct adapter *adapter = netdev2adap(dev);
1963 
1964 	eth_dump->flag = adapter->eth_dump.flag;
1965 	eth_dump->len = adapter->eth_dump.len;
1966 	eth_dump->version = adapter->eth_dump.version;
1967 	return 0;
1968 }
1969 
1970 static int get_dump_data(struct net_device *dev, struct ethtool_dump *eth_dump,
1971 			 void *buf)
1972 {
1973 	struct adapter *adapter = netdev2adap(dev);
1974 	u32 len = 0;
1975 	int ret = 0;
1976 
1977 	if (adapter->eth_dump.flag == CXGB4_ETH_DUMP_NONE)
1978 		return -ENOENT;
1979 
1980 	len = sizeof(struct cudbg_hdr) +
1981 	      sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1982 	len += cxgb4_get_dump_length(adapter, adapter->eth_dump.flag);
1983 	if (eth_dump->len < len)
1984 		return -ENOMEM;
1985 
1986 	ret = cxgb4_cudbg_collect(adapter, buf, &len, adapter->eth_dump.flag);
1987 	if (ret)
1988 		return ret;
1989 
1990 	eth_dump->flag = adapter->eth_dump.flag;
1991 	eth_dump->len = len;
1992 	eth_dump->version = adapter->eth_dump.version;
1993 	return 0;
1994 }
1995 
1996 static bool cxgb4_fw_mod_type_info_available(unsigned int fw_mod_type)
1997 {
1998 	/* Read port module EEPROM as long as it is plugged-in and
1999 	 * safe to read.
2000 	 */
2001 	return (fw_mod_type != FW_PORT_MOD_TYPE_NONE &&
2002 		fw_mod_type != FW_PORT_MOD_TYPE_ERROR);
2003 }
2004 
2005 static int cxgb4_get_module_info(struct net_device *dev,
2006 				 struct ethtool_modinfo *modinfo)
2007 {
2008 	struct port_info *pi = netdev_priv(dev);
2009 	u8 sff8472_comp, sff_diag_type, sff_rev;
2010 	struct adapter *adapter = pi->adapter;
2011 	int ret;
2012 
2013 	if (!cxgb4_fw_mod_type_info_available(pi->mod_type))
2014 		return -EINVAL;
2015 
2016 	switch (pi->port_type) {
2017 	case FW_PORT_TYPE_SFP:
2018 	case FW_PORT_TYPE_QSA:
2019 	case FW_PORT_TYPE_SFP28:
2020 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2021 				I2C_DEV_ADDR_A0, SFF_8472_COMP_ADDR,
2022 				SFF_8472_COMP_LEN, &sff8472_comp);
2023 		if (ret)
2024 			return ret;
2025 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2026 				I2C_DEV_ADDR_A0, SFP_DIAG_TYPE_ADDR,
2027 				SFP_DIAG_TYPE_LEN, &sff_diag_type);
2028 		if (ret)
2029 			return ret;
2030 
2031 		if (!sff8472_comp || (sff_diag_type & SFP_DIAG_ADDRMODE)) {
2032 			modinfo->type = ETH_MODULE_SFF_8079;
2033 			modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2034 		} else {
2035 			modinfo->type = ETH_MODULE_SFF_8472;
2036 			if (sff_diag_type & SFP_DIAG_IMPLEMENTED)
2037 				modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2038 			else
2039 				modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN / 2;
2040 		}
2041 		break;
2042 
2043 	case FW_PORT_TYPE_QSFP:
2044 	case FW_PORT_TYPE_QSFP_10G:
2045 	case FW_PORT_TYPE_CR_QSFP:
2046 	case FW_PORT_TYPE_CR2_QSFP:
2047 	case FW_PORT_TYPE_CR4_QSFP:
2048 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2049 				I2C_DEV_ADDR_A0, SFF_REV_ADDR,
2050 				SFF_REV_LEN, &sff_rev);
2051 		/* For QSFP type ports, revision value >= 3
2052 		 * means the SFP is 8636 compliant.
2053 		 */
2054 		if (ret)
2055 			return ret;
2056 		if (sff_rev >= 0x3) {
2057 			modinfo->type = ETH_MODULE_SFF_8636;
2058 			modinfo->eeprom_len = ETH_MODULE_SFF_8636_LEN;
2059 		} else {
2060 			modinfo->type = ETH_MODULE_SFF_8436;
2061 			modinfo->eeprom_len = ETH_MODULE_SFF_8436_LEN;
2062 		}
2063 		break;
2064 
2065 	default:
2066 		return -EINVAL;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 static int cxgb4_get_module_eeprom(struct net_device *dev,
2073 				   struct ethtool_eeprom *eprom, u8 *data)
2074 {
2075 	int ret = 0, offset = eprom->offset, len = eprom->len;
2076 	struct port_info *pi = netdev_priv(dev);
2077 	struct adapter *adapter = pi->adapter;
2078 
2079 	memset(data, 0, eprom->len);
2080 	if (offset + len <= I2C_PAGE_SIZE)
2081 		return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2082 				 I2C_DEV_ADDR_A0, offset, len, data);
2083 
2084 	/* offset + len spans 0xa0 and 0xa1 pages */
2085 	if (offset <= I2C_PAGE_SIZE) {
2086 		/* read 0xa0 page */
2087 		len = I2C_PAGE_SIZE - offset;
2088 		ret =  t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2089 				 I2C_DEV_ADDR_A0, offset, len, data);
2090 		if (ret)
2091 			return ret;
2092 		offset = I2C_PAGE_SIZE;
2093 		/* Remaining bytes to be read from second page =
2094 		 * Total length - bytes read from first page
2095 		 */
2096 		len = eprom->len - len;
2097 	}
2098 	/* Read additional optical diagnostics from page 0xa2 if supported */
2099 	return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A2,
2100 			 offset, len, &data[eprom->len - len]);
2101 }
2102 
2103 static u32 cxgb4_get_priv_flags(struct net_device *netdev)
2104 {
2105 	struct port_info *pi = netdev_priv(netdev);
2106 	struct adapter *adapter = pi->adapter;
2107 
2108 	return (adapter->eth_flags | pi->eth_flags);
2109 }
2110 
2111 /**
2112  *	set_flags - set/unset specified flags if passed in new_flags
2113  *	@cur_flags: pointer to current flags
2114  *	@new_flags: new incoming flags
2115  *	@flags: set of flags to set/unset
2116  */
2117 static inline void set_flags(u32 *cur_flags, u32 new_flags, u32 flags)
2118 {
2119 	*cur_flags = (*cur_flags & ~flags) | (new_flags & flags);
2120 }
2121 
2122 static int cxgb4_set_priv_flags(struct net_device *netdev, u32 flags)
2123 {
2124 	struct port_info *pi = netdev_priv(netdev);
2125 	struct adapter *adapter = pi->adapter;
2126 
2127 	set_flags(&adapter->eth_flags, flags, PRIV_FLAGS_ADAP);
2128 	set_flags(&pi->eth_flags, flags, PRIV_FLAGS_PORT);
2129 
2130 	return 0;
2131 }
2132 
2133 static void cxgb4_lb_test(struct net_device *netdev, u64 *lb_status)
2134 {
2135 	int dev_state = netif_running(netdev);
2136 
2137 	if (dev_state) {
2138 		netif_tx_stop_all_queues(netdev);
2139 		netif_carrier_off(netdev);
2140 	}
2141 
2142 	*lb_status = cxgb4_selftest_lb_pkt(netdev);
2143 
2144 	if (dev_state) {
2145 		netif_tx_start_all_queues(netdev);
2146 		netif_carrier_on(netdev);
2147 	}
2148 }
2149 
2150 static void cxgb4_self_test(struct net_device *netdev,
2151 			    struct ethtool_test *eth_test, u64 *data)
2152 {
2153 	struct port_info *pi = netdev_priv(netdev);
2154 	struct adapter *adap = pi->adapter;
2155 
2156 	memset(data, 0, sizeof(u64) * CXGB4_ETHTOOL_MAX_TEST);
2157 
2158 	if (!(adap->flags & CXGB4_FULL_INIT_DONE) ||
2159 	    !(adap->flags & CXGB4_FW_OK)) {
2160 		eth_test->flags |= ETH_TEST_FL_FAILED;
2161 		return;
2162 	}
2163 
2164 	if (eth_test->flags & ETH_TEST_FL_OFFLINE)
2165 		cxgb4_lb_test(netdev, &data[CXGB4_ETHTOOL_LB_TEST]);
2166 
2167 	if (data[CXGB4_ETHTOOL_LB_TEST])
2168 		eth_test->flags |= ETH_TEST_FL_FAILED;
2169 }
2170 
2171 static const struct ethtool_ops cxgb_ethtool_ops = {
2172 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2173 				     ETHTOOL_COALESCE_RX_MAX_FRAMES |
2174 				     ETHTOOL_COALESCE_TX_USECS_IRQ |
2175 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
2176 	.get_link_ksettings = get_link_ksettings,
2177 	.set_link_ksettings = set_link_ksettings,
2178 	.get_fecparam      = get_fecparam,
2179 	.set_fecparam      = set_fecparam,
2180 	.get_drvinfo       = get_drvinfo,
2181 	.get_msglevel      = get_msglevel,
2182 	.set_msglevel      = set_msglevel,
2183 	.get_ringparam     = get_sge_param,
2184 	.set_ringparam     = set_sge_param,
2185 	.get_coalesce      = get_coalesce,
2186 	.set_coalesce      = set_coalesce,
2187 	.get_eeprom_len    = get_eeprom_len,
2188 	.get_eeprom        = get_eeprom,
2189 	.set_eeprom        = set_eeprom,
2190 	.get_pauseparam    = get_pauseparam,
2191 	.set_pauseparam    = set_pauseparam,
2192 	.get_link          = ethtool_op_get_link,
2193 	.get_strings       = get_strings,
2194 	.set_phys_id       = identify_port,
2195 	.nway_reset        = restart_autoneg,
2196 	.get_sset_count    = get_sset_count,
2197 	.get_ethtool_stats = get_stats,
2198 	.get_regs_len      = get_regs_len,
2199 	.get_regs          = get_regs,
2200 	.get_rxnfc         = get_rxnfc,
2201 	.set_rxnfc         = set_rxnfc,
2202 	.get_rxfh_indir_size = get_rss_table_size,
2203 	.get_rxfh	   = get_rss_table,
2204 	.set_rxfh	   = set_rss_table,
2205 	.self_test	   = cxgb4_self_test,
2206 	.flash_device      = set_flash,
2207 	.get_ts_info       = get_ts_info,
2208 	.set_dump          = set_dump,
2209 	.get_dump_flag     = get_dump_flag,
2210 	.get_dump_data     = get_dump_data,
2211 	.get_module_info   = cxgb4_get_module_info,
2212 	.get_module_eeprom = cxgb4_get_module_eeprom,
2213 	.get_priv_flags    = cxgb4_get_priv_flags,
2214 	.set_priv_flags    = cxgb4_set_priv_flags,
2215 };
2216 
2217 void cxgb4_cleanup_ethtool_filters(struct adapter *adap)
2218 {
2219 	struct cxgb4_ethtool_filter_info *eth_filter_info;
2220 	u8 i;
2221 
2222 	if (!adap->ethtool_filters)
2223 		return;
2224 
2225 	eth_filter_info = adap->ethtool_filters->port;
2226 
2227 	if (eth_filter_info) {
2228 		for (i = 0; i < adap->params.nports; i++) {
2229 			kvfree(eth_filter_info[i].loc_array);
2230 			kfree(eth_filter_info[i].bmap);
2231 		}
2232 		kfree(eth_filter_info);
2233 	}
2234 
2235 	kfree(adap->ethtool_filters);
2236 }
2237 
2238 int cxgb4_init_ethtool_filters(struct adapter *adap)
2239 {
2240 	struct cxgb4_ethtool_filter_info *eth_filter_info;
2241 	struct cxgb4_ethtool_filter *eth_filter;
2242 	struct tid_info *tids = &adap->tids;
2243 	u32 nentries, i;
2244 	int ret;
2245 
2246 	eth_filter = kzalloc(sizeof(*eth_filter), GFP_KERNEL);
2247 	if (!eth_filter)
2248 		return -ENOMEM;
2249 
2250 	eth_filter_info = kcalloc(adap->params.nports,
2251 				  sizeof(*eth_filter_info),
2252 				  GFP_KERNEL);
2253 	if (!eth_filter_info) {
2254 		ret = -ENOMEM;
2255 		goto free_eth_filter;
2256 	}
2257 
2258 	eth_filter->port = eth_filter_info;
2259 
2260 	nentries = tids->nhpftids + tids->nftids;
2261 	if (is_hashfilter(adap))
2262 		nentries += tids->nhash +
2263 			    (adap->tids.stid_base - adap->tids.tid_base);
2264 	eth_filter->nentries = nentries;
2265 
2266 	for (i = 0; i < adap->params.nports; i++) {
2267 		eth_filter->port[i].loc_array = kvzalloc(nentries, GFP_KERNEL);
2268 		if (!eth_filter->port[i].loc_array) {
2269 			ret = -ENOMEM;
2270 			goto free_eth_finfo;
2271 		}
2272 
2273 		eth_filter->port[i].bmap = kcalloc(BITS_TO_LONGS(nentries),
2274 						   sizeof(unsigned long),
2275 						   GFP_KERNEL);
2276 		if (!eth_filter->port[i].bmap) {
2277 			ret = -ENOMEM;
2278 			goto free_eth_finfo;
2279 		}
2280 	}
2281 
2282 	adap->ethtool_filters = eth_filter;
2283 	return 0;
2284 
2285 free_eth_finfo:
2286 	while (i-- > 0) {
2287 		kfree(eth_filter->port[i].bmap);
2288 		kvfree(eth_filter->port[i].loc_array);
2289 	}
2290 	kfree(eth_filter_info);
2291 
2292 free_eth_filter:
2293 	kfree(eth_filter);
2294 
2295 	return ret;
2296 }
2297 
2298 void cxgb4_set_ethtool_ops(struct net_device *netdev)
2299 {
2300 	netdev->ethtool_ops = &cxgb_ethtool_ops;
2301 }
2302