1 /*
2  *  Copyright (C) 2013-2015 Chelsio Communications.  All rights reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify it
5  *  under the terms and conditions of the GNU General Public License,
6  *  version 2, as published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  *  more details.
12  *
13  *  The full GNU General Public License is included in this distribution in
14  *  the file called "COPYING".
15  *
16  */
17 
18 #include <linux/firmware.h>
19 #include <linux/mdio.h>
20 
21 #include "cxgb4.h"
22 #include "t4_regs.h"
23 #include "t4fw_api.h"
24 #include "cxgb4_cudbg.h"
25 
26 #define EEPROM_MAGIC 0x38E2F10C
27 
28 static u32 get_msglevel(struct net_device *dev)
29 {
30 	return netdev2adap(dev)->msg_enable;
31 }
32 
33 static void set_msglevel(struct net_device *dev, u32 val)
34 {
35 	netdev2adap(dev)->msg_enable = val;
36 }
37 
38 static const char stats_strings[][ETH_GSTRING_LEN] = {
39 	"tx_octets_ok           ",
40 	"tx_frames_ok           ",
41 	"tx_broadcast_frames    ",
42 	"tx_multicast_frames    ",
43 	"tx_unicast_frames      ",
44 	"tx_error_frames        ",
45 
46 	"tx_frames_64           ",
47 	"tx_frames_65_to_127    ",
48 	"tx_frames_128_to_255   ",
49 	"tx_frames_256_to_511   ",
50 	"tx_frames_512_to_1023  ",
51 	"tx_frames_1024_to_1518 ",
52 	"tx_frames_1519_to_max  ",
53 
54 	"tx_frames_dropped      ",
55 	"tx_pause_frames        ",
56 	"tx_ppp0_frames         ",
57 	"tx_ppp1_frames         ",
58 	"tx_ppp2_frames         ",
59 	"tx_ppp3_frames         ",
60 	"tx_ppp4_frames         ",
61 	"tx_ppp5_frames         ",
62 	"tx_ppp6_frames         ",
63 	"tx_ppp7_frames         ",
64 
65 	"rx_octets_ok           ",
66 	"rx_frames_ok           ",
67 	"rx_broadcast_frames    ",
68 	"rx_multicast_frames    ",
69 	"rx_unicast_frames      ",
70 
71 	"rx_frames_too_long     ",
72 	"rx_jabber_errors       ",
73 	"rx_fcs_errors          ",
74 	"rx_length_errors       ",
75 	"rx_symbol_errors       ",
76 	"rx_runt_frames         ",
77 
78 	"rx_frames_64           ",
79 	"rx_frames_65_to_127    ",
80 	"rx_frames_128_to_255   ",
81 	"rx_frames_256_to_511   ",
82 	"rx_frames_512_to_1023  ",
83 	"rx_frames_1024_to_1518 ",
84 	"rx_frames_1519_to_max  ",
85 
86 	"rx_pause_frames        ",
87 	"rx_ppp0_frames         ",
88 	"rx_ppp1_frames         ",
89 	"rx_ppp2_frames         ",
90 	"rx_ppp3_frames         ",
91 	"rx_ppp4_frames         ",
92 	"rx_ppp5_frames         ",
93 	"rx_ppp6_frames         ",
94 	"rx_ppp7_frames         ",
95 
96 	"rx_bg0_frames_dropped  ",
97 	"rx_bg1_frames_dropped  ",
98 	"rx_bg2_frames_dropped  ",
99 	"rx_bg3_frames_dropped  ",
100 	"rx_bg0_frames_trunc    ",
101 	"rx_bg1_frames_trunc    ",
102 	"rx_bg2_frames_trunc    ",
103 	"rx_bg3_frames_trunc    ",
104 
105 	"tso                    ",
106 	"tx_csum_offload        ",
107 	"rx_csum_good           ",
108 	"vlan_extractions       ",
109 	"vlan_insertions        ",
110 	"gro_packets            ",
111 	"gro_merged             ",
112 };
113 
114 static char adapter_stats_strings[][ETH_GSTRING_LEN] = {
115 	"db_drop                ",
116 	"db_full                ",
117 	"db_empty               ",
118 	"write_coal_success     ",
119 	"write_coal_fail        ",
120 };
121 
122 static char loopback_stats_strings[][ETH_GSTRING_LEN] = {
123 	"-------Loopback----------- ",
124 	"octets_ok              ",
125 	"frames_ok              ",
126 	"bcast_frames           ",
127 	"mcast_frames           ",
128 	"ucast_frames           ",
129 	"error_frames           ",
130 	"frames_64              ",
131 	"frames_65_to_127       ",
132 	"frames_128_to_255      ",
133 	"frames_256_to_511      ",
134 	"frames_512_to_1023     ",
135 	"frames_1024_to_1518    ",
136 	"frames_1519_to_max     ",
137 	"frames_dropped         ",
138 	"bg0_frames_dropped     ",
139 	"bg1_frames_dropped     ",
140 	"bg2_frames_dropped     ",
141 	"bg3_frames_dropped     ",
142 	"bg0_frames_trunc       ",
143 	"bg1_frames_trunc       ",
144 	"bg2_frames_trunc       ",
145 	"bg3_frames_trunc       ",
146 };
147 
148 static const char cxgb4_priv_flags_strings[][ETH_GSTRING_LEN] = {
149 	[PRIV_FLAG_PORT_TX_VM_BIT] = "port_tx_vm_wr",
150 };
151 
152 static int get_sset_count(struct net_device *dev, int sset)
153 {
154 	switch (sset) {
155 	case ETH_SS_STATS:
156 		return ARRAY_SIZE(stats_strings) +
157 		       ARRAY_SIZE(adapter_stats_strings) +
158 		       ARRAY_SIZE(loopback_stats_strings);
159 	case ETH_SS_PRIV_FLAGS:
160 		return ARRAY_SIZE(cxgb4_priv_flags_strings);
161 	default:
162 		return -EOPNOTSUPP;
163 	}
164 }
165 
166 static int get_regs_len(struct net_device *dev)
167 {
168 	struct adapter *adap = netdev2adap(dev);
169 
170 	return t4_get_regs_len(adap);
171 }
172 
173 static int get_eeprom_len(struct net_device *dev)
174 {
175 	return EEPROMSIZE;
176 }
177 
178 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
179 {
180 	struct adapter *adapter = netdev2adap(dev);
181 	u32 exprom_vers;
182 
183 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
184 	strlcpy(info->version, cxgb4_driver_version,
185 		sizeof(info->version));
186 	strlcpy(info->bus_info, pci_name(adapter->pdev),
187 		sizeof(info->bus_info));
188 	info->regdump_len = get_regs_len(dev);
189 
190 	if (!adapter->params.fw_vers)
191 		strcpy(info->fw_version, "N/A");
192 	else
193 		snprintf(info->fw_version, sizeof(info->fw_version),
194 			 "%u.%u.%u.%u, TP %u.%u.%u.%u",
195 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
196 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
197 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
198 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers),
199 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
200 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
201 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
202 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
203 
204 	if (!t4_get_exprom_version(adapter, &exprom_vers))
205 		snprintf(info->erom_version, sizeof(info->erom_version),
206 			 "%u.%u.%u.%u",
207 			 FW_HDR_FW_VER_MAJOR_G(exprom_vers),
208 			 FW_HDR_FW_VER_MINOR_G(exprom_vers),
209 			 FW_HDR_FW_VER_MICRO_G(exprom_vers),
210 			 FW_HDR_FW_VER_BUILD_G(exprom_vers));
211 	info->n_priv_flags = ARRAY_SIZE(cxgb4_priv_flags_strings);
212 }
213 
214 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
215 {
216 	if (stringset == ETH_SS_STATS) {
217 		memcpy(data, stats_strings, sizeof(stats_strings));
218 		data += sizeof(stats_strings);
219 		memcpy(data, adapter_stats_strings,
220 		       sizeof(adapter_stats_strings));
221 		data += sizeof(adapter_stats_strings);
222 		memcpy(data, loopback_stats_strings,
223 		       sizeof(loopback_stats_strings));
224 	} else if (stringset == ETH_SS_PRIV_FLAGS) {
225 		memcpy(data, cxgb4_priv_flags_strings,
226 		       sizeof(cxgb4_priv_flags_strings));
227 	}
228 }
229 
230 /* port stats maintained per queue of the port. They should be in the same
231  * order as in stats_strings above.
232  */
233 struct queue_port_stats {
234 	u64 tso;
235 	u64 tx_csum;
236 	u64 rx_csum;
237 	u64 vlan_ex;
238 	u64 vlan_ins;
239 	u64 gro_pkts;
240 	u64 gro_merged;
241 };
242 
243 struct adapter_stats {
244 	u64 db_drop;
245 	u64 db_full;
246 	u64 db_empty;
247 	u64 wc_success;
248 	u64 wc_fail;
249 };
250 
251 static void collect_sge_port_stats(const struct adapter *adap,
252 				   const struct port_info *p,
253 				   struct queue_port_stats *s)
254 {
255 	int i;
256 	const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
257 	const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
258 
259 	memset(s, 0, sizeof(*s));
260 	for (i = 0; i < p->nqsets; i++, rx++, tx++) {
261 		s->tso += tx->tso;
262 		s->tx_csum += tx->tx_cso;
263 		s->rx_csum += rx->stats.rx_cso;
264 		s->vlan_ex += rx->stats.vlan_ex;
265 		s->vlan_ins += tx->vlan_ins;
266 		s->gro_pkts += rx->stats.lro_pkts;
267 		s->gro_merged += rx->stats.lro_merged;
268 	}
269 }
270 
271 static void collect_adapter_stats(struct adapter *adap, struct adapter_stats *s)
272 {
273 	u64 val1, val2;
274 
275 	memset(s, 0, sizeof(*s));
276 
277 	s->db_drop = adap->db_stats.db_drop;
278 	s->db_full = adap->db_stats.db_full;
279 	s->db_empty = adap->db_stats.db_empty;
280 
281 	if (!is_t4(adap->params.chip)) {
282 		int v;
283 
284 		v = t4_read_reg(adap, SGE_STAT_CFG_A);
285 		if (STATSOURCE_T5_G(v) == 7) {
286 			val2 = t4_read_reg(adap, SGE_STAT_MATCH_A);
287 			val1 = t4_read_reg(adap, SGE_STAT_TOTAL_A);
288 			s->wc_success = val1 - val2;
289 			s->wc_fail = val2;
290 		}
291 	}
292 }
293 
294 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
295 		      u64 *data)
296 {
297 	struct port_info *pi = netdev_priv(dev);
298 	struct adapter *adapter = pi->adapter;
299 	struct lb_port_stats s;
300 	int i;
301 	u64 *p0;
302 
303 	t4_get_port_stats_offset(adapter, pi->tx_chan,
304 				 (struct port_stats *)data,
305 				 &pi->stats_base);
306 
307 	data += sizeof(struct port_stats) / sizeof(u64);
308 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
309 	data += sizeof(struct queue_port_stats) / sizeof(u64);
310 	collect_adapter_stats(adapter, (struct adapter_stats *)data);
311 	data += sizeof(struct adapter_stats) / sizeof(u64);
312 
313 	*data++ = (u64)pi->port_id;
314 	memset(&s, 0, sizeof(s));
315 	t4_get_lb_stats(adapter, pi->port_id, &s);
316 
317 	p0 = &s.octets;
318 	for (i = 0; i < ARRAY_SIZE(loopback_stats_strings) - 1; i++)
319 		*data++ = (unsigned long long)*p0++;
320 }
321 
322 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
323 		     void *buf)
324 {
325 	struct adapter *adap = netdev2adap(dev);
326 	size_t buf_size;
327 
328 	buf_size = t4_get_regs_len(adap);
329 	regs->version = mk_adap_vers(adap);
330 	t4_get_regs(adap, buf, buf_size);
331 }
332 
333 static int restart_autoneg(struct net_device *dev)
334 {
335 	struct port_info *p = netdev_priv(dev);
336 
337 	if (!netif_running(dev))
338 		return -EAGAIN;
339 	if (p->link_cfg.autoneg != AUTONEG_ENABLE)
340 		return -EINVAL;
341 	t4_restart_aneg(p->adapter, p->adapter->pf, p->tx_chan);
342 	return 0;
343 }
344 
345 static int identify_port(struct net_device *dev,
346 			 enum ethtool_phys_id_state state)
347 {
348 	unsigned int val;
349 	struct adapter *adap = netdev2adap(dev);
350 
351 	if (state == ETHTOOL_ID_ACTIVE)
352 		val = 0xffff;
353 	else if (state == ETHTOOL_ID_INACTIVE)
354 		val = 0;
355 	else
356 		return -EINVAL;
357 
358 	return t4_identify_port(adap, adap->pf, netdev2pinfo(dev)->viid, val);
359 }
360 
361 /**
362  *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
363  *	@port_type: Firmware Port Type
364  *	@mod_type: Firmware Module Type
365  *
366  *	Translate Firmware Port/Module type to Ethtool Port Type.
367  */
368 static int from_fw_port_mod_type(enum fw_port_type port_type,
369 				 enum fw_port_module_type mod_type)
370 {
371 	if (port_type == FW_PORT_TYPE_BT_SGMII ||
372 	    port_type == FW_PORT_TYPE_BT_XFI ||
373 	    port_type == FW_PORT_TYPE_BT_XAUI) {
374 		return PORT_TP;
375 	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
376 		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
377 		return PORT_FIBRE;
378 	} else if (port_type == FW_PORT_TYPE_SFP ||
379 		   port_type == FW_PORT_TYPE_QSFP_10G ||
380 		   port_type == FW_PORT_TYPE_QSA ||
381 		   port_type == FW_PORT_TYPE_QSFP ||
382 		   port_type == FW_PORT_TYPE_CR4_QSFP ||
383 		   port_type == FW_PORT_TYPE_CR_QSFP ||
384 		   port_type == FW_PORT_TYPE_CR2_QSFP ||
385 		   port_type == FW_PORT_TYPE_SFP28) {
386 		if (mod_type == FW_PORT_MOD_TYPE_LR ||
387 		    mod_type == FW_PORT_MOD_TYPE_SR ||
388 		    mod_type == FW_PORT_MOD_TYPE_ER ||
389 		    mod_type == FW_PORT_MOD_TYPE_LRM)
390 			return PORT_FIBRE;
391 		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
392 			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
393 			return PORT_DA;
394 		else
395 			return PORT_OTHER;
396 	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
397 		   port_type == FW_PORT_TYPE_KR_SFP28 ||
398 		   port_type == FW_PORT_TYPE_KR_XLAUI) {
399 		return PORT_NONE;
400 	}
401 
402 	return PORT_OTHER;
403 }
404 
405 /**
406  *	speed_to_fw_caps - translate Port Speed to Firmware Port Capabilities
407  *	@speed: speed in Kb/s
408  *
409  *	Translates a specific Port Speed into a Firmware Port Capabilities
410  *	value.
411  */
412 static unsigned int speed_to_fw_caps(int speed)
413 {
414 	if (speed == 100)
415 		return FW_PORT_CAP32_SPEED_100M;
416 	if (speed == 1000)
417 		return FW_PORT_CAP32_SPEED_1G;
418 	if (speed == 10000)
419 		return FW_PORT_CAP32_SPEED_10G;
420 	if (speed == 25000)
421 		return FW_PORT_CAP32_SPEED_25G;
422 	if (speed == 40000)
423 		return FW_PORT_CAP32_SPEED_40G;
424 	if (speed == 50000)
425 		return FW_PORT_CAP32_SPEED_50G;
426 	if (speed == 100000)
427 		return FW_PORT_CAP32_SPEED_100G;
428 	if (speed == 200000)
429 		return FW_PORT_CAP32_SPEED_200G;
430 	if (speed == 400000)
431 		return FW_PORT_CAP32_SPEED_400G;
432 	return 0;
433 }
434 
435 /**
436  *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
437  *	@port_type: Firmware Port Type
438  *	@fw_caps: Firmware Port Capabilities
439  *	@link_mode_mask: ethtool Link Mode Mask
440  *
441  *	Translate a Firmware Port Capabilities specification to an ethtool
442  *	Link Mode Mask.
443  */
444 static void fw_caps_to_lmm(enum fw_port_type port_type,
445 			   fw_port_cap32_t fw_caps,
446 			   unsigned long *link_mode_mask)
447 {
448 	#define SET_LMM(__lmm_name) \
449 		do { \
450 			__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
451 				  link_mode_mask); \
452 		} while (0)
453 
454 	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
455 		do { \
456 			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
457 				SET_LMM(__lmm_name); \
458 		} while (0)
459 
460 	switch (port_type) {
461 	case FW_PORT_TYPE_BT_SGMII:
462 	case FW_PORT_TYPE_BT_XFI:
463 	case FW_PORT_TYPE_BT_XAUI:
464 		SET_LMM(TP);
465 		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
466 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
467 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
468 		break;
469 
470 	case FW_PORT_TYPE_KX4:
471 	case FW_PORT_TYPE_KX:
472 		SET_LMM(Backplane);
473 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
474 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
475 		break;
476 
477 	case FW_PORT_TYPE_KR:
478 		SET_LMM(Backplane);
479 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
480 		break;
481 
482 	case FW_PORT_TYPE_BP_AP:
483 		SET_LMM(Backplane);
484 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
485 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
486 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
487 		break;
488 
489 	case FW_PORT_TYPE_BP4_AP:
490 		SET_LMM(Backplane);
491 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
492 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
493 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
494 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
495 		break;
496 
497 	case FW_PORT_TYPE_FIBER_XFI:
498 	case FW_PORT_TYPE_FIBER_XAUI:
499 	case FW_PORT_TYPE_SFP:
500 	case FW_PORT_TYPE_QSFP_10G:
501 	case FW_PORT_TYPE_QSA:
502 		SET_LMM(FIBRE);
503 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
504 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
505 		break;
506 
507 	case FW_PORT_TYPE_BP40_BA:
508 	case FW_PORT_TYPE_QSFP:
509 		SET_LMM(FIBRE);
510 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
511 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
512 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
513 		break;
514 
515 	case FW_PORT_TYPE_CR_QSFP:
516 	case FW_PORT_TYPE_SFP28:
517 		SET_LMM(FIBRE);
518 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
519 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
520 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
521 		break;
522 
523 	case FW_PORT_TYPE_KR_SFP28:
524 		SET_LMM(Backplane);
525 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
526 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
527 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
528 		break;
529 
530 	case FW_PORT_TYPE_KR_XLAUI:
531 		SET_LMM(Backplane);
532 		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
533 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
534 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
535 		break;
536 
537 	case FW_PORT_TYPE_CR2_QSFP:
538 		SET_LMM(FIBRE);
539 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
540 		break;
541 
542 	case FW_PORT_TYPE_KR4_100G:
543 	case FW_PORT_TYPE_CR4_QSFP:
544 		SET_LMM(FIBRE);
545 		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
546 		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
547 		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
548 		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
549 		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
550 		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
551 		break;
552 
553 	default:
554 		break;
555 	}
556 
557 	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
558 		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
559 		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
560 	} else {
561 		SET_LMM(FEC_NONE);
562 	}
563 
564 	FW_CAPS_TO_LMM(ANEG, Autoneg);
565 	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
566 	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
567 
568 	#undef FW_CAPS_TO_LMM
569 	#undef SET_LMM
570 }
571 
572 /**
573  *	lmm_to_fw_caps - translate ethtool Link Mode Mask to Firmware
574  *	capabilities
575  *	@et_lmm: ethtool Link Mode Mask
576  *
577  *	Translate ethtool Link Mode Mask into a Firmware Port capabilities
578  *	value.
579  */
580 static unsigned int lmm_to_fw_caps(const unsigned long *link_mode_mask)
581 {
582 	unsigned int fw_caps = 0;
583 
584 	#define LMM_TO_FW_CAPS(__lmm_name, __fw_name) \
585 		do { \
586 			if (test_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
587 				     link_mode_mask)) \
588 				fw_caps |= FW_PORT_CAP32_ ## __fw_name; \
589 		} while (0)
590 
591 	LMM_TO_FW_CAPS(100baseT_Full, SPEED_100M);
592 	LMM_TO_FW_CAPS(1000baseT_Full, SPEED_1G);
593 	LMM_TO_FW_CAPS(10000baseT_Full, SPEED_10G);
594 	LMM_TO_FW_CAPS(40000baseSR4_Full, SPEED_40G);
595 	LMM_TO_FW_CAPS(25000baseCR_Full, SPEED_25G);
596 	LMM_TO_FW_CAPS(50000baseCR2_Full, SPEED_50G);
597 	LMM_TO_FW_CAPS(100000baseCR4_Full, SPEED_100G);
598 
599 	#undef LMM_TO_FW_CAPS
600 
601 	return fw_caps;
602 }
603 
604 static int get_link_ksettings(struct net_device *dev,
605 			      struct ethtool_link_ksettings *link_ksettings)
606 {
607 	struct port_info *pi = netdev_priv(dev);
608 	struct ethtool_link_settings *base = &link_ksettings->base;
609 
610 	/* For the nonce, the Firmware doesn't send up Port State changes
611 	 * when the Virtual Interface attached to the Port is down.  So
612 	 * if it's down, let's grab any changes.
613 	 */
614 	if (!netif_running(dev))
615 		(void)t4_update_port_info(pi);
616 
617 	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
618 	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
619 	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
620 
621 	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
622 
623 	if (pi->mdio_addr >= 0) {
624 		base->phy_address = pi->mdio_addr;
625 		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
626 				      ? ETH_MDIO_SUPPORTS_C22
627 				      : ETH_MDIO_SUPPORTS_C45);
628 	} else {
629 		base->phy_address = 255;
630 		base->mdio_support = 0;
631 	}
632 
633 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
634 		       link_ksettings->link_modes.supported);
635 	fw_caps_to_lmm(pi->port_type,
636 		       t4_link_acaps(pi->adapter,
637 				     pi->lport,
638 				     &pi->link_cfg),
639 		       link_ksettings->link_modes.advertising);
640 	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
641 		       link_ksettings->link_modes.lp_advertising);
642 
643 	base->speed = (netif_carrier_ok(dev)
644 		       ? pi->link_cfg.speed
645 		       : SPEED_UNKNOWN);
646 	base->duplex = DUPLEX_FULL;
647 
648 	base->autoneg = pi->link_cfg.autoneg;
649 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
650 		ethtool_link_ksettings_add_link_mode(link_ksettings,
651 						     supported, Autoneg);
652 	if (pi->link_cfg.autoneg)
653 		ethtool_link_ksettings_add_link_mode(link_ksettings,
654 						     advertising, Autoneg);
655 
656 	return 0;
657 }
658 
659 static int set_link_ksettings(struct net_device *dev,
660 			    const struct ethtool_link_ksettings *link_ksettings)
661 {
662 	struct port_info *pi = netdev_priv(dev);
663 	struct link_config *lc = &pi->link_cfg;
664 	const struct ethtool_link_settings *base = &link_ksettings->base;
665 	struct link_config old_lc;
666 	unsigned int fw_caps;
667 	int ret = 0;
668 
669 	/* only full-duplex supported */
670 	if (base->duplex != DUPLEX_FULL)
671 		return -EINVAL;
672 
673 	old_lc = *lc;
674 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) ||
675 	    base->autoneg == AUTONEG_DISABLE) {
676 		fw_caps = speed_to_fw_caps(base->speed);
677 
678 		/* Speed must be supported by Physical Port Capabilities. */
679 		if (!(lc->pcaps & fw_caps))
680 			return -EINVAL;
681 
682 		lc->speed_caps = fw_caps;
683 		lc->acaps = fw_caps;
684 	} else {
685 		fw_caps =
686 			lmm_to_fw_caps(link_ksettings->link_modes.advertising);
687 		if (!(lc->pcaps & fw_caps))
688 			return -EINVAL;
689 		lc->speed_caps = 0;
690 		lc->acaps = fw_caps | FW_PORT_CAP32_ANEG;
691 	}
692 	lc->autoneg = base->autoneg;
693 
694 	/* If the firmware rejects the Link Configuration request, back out
695 	 * the changes and report the error.
696 	 */
697 	ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox, pi->tx_chan, lc);
698 	if (ret)
699 		*lc = old_lc;
700 
701 	return ret;
702 }
703 
704 /* Translate the Firmware FEC value into the ethtool value. */
705 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
706 {
707 	unsigned int eth_fec = 0;
708 
709 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
710 		eth_fec |= ETHTOOL_FEC_RS;
711 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
712 		eth_fec |= ETHTOOL_FEC_BASER;
713 
714 	/* if nothing is set, then FEC is off */
715 	if (!eth_fec)
716 		eth_fec = ETHTOOL_FEC_OFF;
717 
718 	return eth_fec;
719 }
720 
721 /* Translate Common Code FEC value into ethtool value. */
722 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
723 {
724 	unsigned int eth_fec = 0;
725 
726 	if (cc_fec & FEC_AUTO)
727 		eth_fec |= ETHTOOL_FEC_AUTO;
728 	if (cc_fec & FEC_RS)
729 		eth_fec |= ETHTOOL_FEC_RS;
730 	if (cc_fec & FEC_BASER_RS)
731 		eth_fec |= ETHTOOL_FEC_BASER;
732 
733 	/* if nothing is set, then FEC is off */
734 	if (!eth_fec)
735 		eth_fec = ETHTOOL_FEC_OFF;
736 
737 	return eth_fec;
738 }
739 
740 /* Translate ethtool FEC value into Common Code value. */
741 static inline unsigned int eth_to_cc_fec(unsigned int eth_fec)
742 {
743 	unsigned int cc_fec = 0;
744 
745 	if (eth_fec & ETHTOOL_FEC_OFF)
746 		return cc_fec;
747 
748 	if (eth_fec & ETHTOOL_FEC_AUTO)
749 		cc_fec |= FEC_AUTO;
750 	if (eth_fec & ETHTOOL_FEC_RS)
751 		cc_fec |= FEC_RS;
752 	if (eth_fec & ETHTOOL_FEC_BASER)
753 		cc_fec |= FEC_BASER_RS;
754 
755 	return cc_fec;
756 }
757 
758 static int get_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
759 {
760 	const struct port_info *pi = netdev_priv(dev);
761 	const struct link_config *lc = &pi->link_cfg;
762 
763 	/* Translate the Firmware FEC Support into the ethtool value.  We
764 	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
765 	 * any FEC is supported.
766 	 */
767 	fec->fec = fwcap_to_eth_fec(lc->pcaps);
768 	if (fec->fec != ETHTOOL_FEC_OFF)
769 		fec->fec |= ETHTOOL_FEC_AUTO;
770 
771 	/* Translate the current internal FEC parameters into the
772 	 * ethtool values.
773 	 */
774 	fec->active_fec = cc_to_eth_fec(lc->fec);
775 
776 	return 0;
777 }
778 
779 static int set_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
780 {
781 	struct port_info *pi = netdev_priv(dev);
782 	struct link_config *lc = &pi->link_cfg;
783 	struct link_config old_lc;
784 	int ret;
785 
786 	/* Save old Link Configuration in case the L1 Configure below
787 	 * fails.
788 	 */
789 	old_lc = *lc;
790 
791 	/* Try to perform the L1 Configure and return the result of that
792 	 * effort.  If it fails, revert the attempted change.
793 	 */
794 	lc->requested_fec = eth_to_cc_fec(fec->fec);
795 	ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox,
796 			    pi->tx_chan, lc);
797 	if (ret)
798 		*lc = old_lc;
799 	return ret;
800 }
801 
802 static void get_pauseparam(struct net_device *dev,
803 			   struct ethtool_pauseparam *epause)
804 {
805 	struct port_info *p = netdev_priv(dev);
806 
807 	epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
808 	epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
809 	epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
810 }
811 
812 static int set_pauseparam(struct net_device *dev,
813 			  struct ethtool_pauseparam *epause)
814 {
815 	struct port_info *p = netdev_priv(dev);
816 	struct link_config *lc = &p->link_cfg;
817 
818 	if (epause->autoneg == AUTONEG_DISABLE)
819 		lc->requested_fc = 0;
820 	else if (lc->pcaps & FW_PORT_CAP32_ANEG)
821 		lc->requested_fc = PAUSE_AUTONEG;
822 	else
823 		return -EINVAL;
824 
825 	if (epause->rx_pause)
826 		lc->requested_fc |= PAUSE_RX;
827 	if (epause->tx_pause)
828 		lc->requested_fc |= PAUSE_TX;
829 	if (netif_running(dev))
830 		return t4_link_l1cfg(p->adapter, p->adapter->mbox, p->tx_chan,
831 				     lc);
832 	return 0;
833 }
834 
835 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
836 {
837 	const struct port_info *pi = netdev_priv(dev);
838 	const struct sge *s = &pi->adapter->sge;
839 
840 	e->rx_max_pending = MAX_RX_BUFFERS;
841 	e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
842 	e->rx_jumbo_max_pending = 0;
843 	e->tx_max_pending = MAX_TXQ_ENTRIES;
844 
845 	e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
846 	e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
847 	e->rx_jumbo_pending = 0;
848 	e->tx_pending = s->ethtxq[pi->first_qset].q.size;
849 }
850 
851 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
852 {
853 	int i;
854 	const struct port_info *pi = netdev_priv(dev);
855 	struct adapter *adapter = pi->adapter;
856 	struct sge *s = &adapter->sge;
857 
858 	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
859 	    e->tx_pending > MAX_TXQ_ENTRIES ||
860 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
861 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
862 	    e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
863 		return -EINVAL;
864 
865 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
866 		return -EBUSY;
867 
868 	for (i = 0; i < pi->nqsets; ++i) {
869 		s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
870 		s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
871 		s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
872 	}
873 	return 0;
874 }
875 
876 /**
877  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
878  * @dev: the network device
879  * @us: the hold-off time in us, or 0 to disable timer
880  * @cnt: the hold-off packet count, or 0 to disable counter
881  *
882  * Set the RX interrupt hold-off parameters for a network device.
883  */
884 static int set_rx_intr_params(struct net_device *dev,
885 			      unsigned int us, unsigned int cnt)
886 {
887 	int i, err;
888 	struct port_info *pi = netdev_priv(dev);
889 	struct adapter *adap = pi->adapter;
890 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
891 
892 	for (i = 0; i < pi->nqsets; i++, q++) {
893 		err = cxgb4_set_rspq_intr_params(&q->rspq, us, cnt);
894 		if (err)
895 			return err;
896 	}
897 	return 0;
898 }
899 
900 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
901 {
902 	int i;
903 	struct port_info *pi = netdev_priv(dev);
904 	struct adapter *adap = pi->adapter;
905 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
906 
907 	for (i = 0; i < pi->nqsets; i++, q++)
908 		q->rspq.adaptive_rx = adaptive_rx;
909 
910 	return 0;
911 }
912 
913 static int get_adaptive_rx_setting(struct net_device *dev)
914 {
915 	struct port_info *pi = netdev_priv(dev);
916 	struct adapter *adap = pi->adapter;
917 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
918 
919 	return q->rspq.adaptive_rx;
920 }
921 
922 /* Return the current global Adapter SGE Doorbell Queue Timer Tick for all
923  * Ethernet TX Queues.
924  */
925 static int get_dbqtimer_tick(struct net_device *dev)
926 {
927 	struct port_info *pi = netdev_priv(dev);
928 	struct adapter *adap = pi->adapter;
929 
930 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
931 		return 0;
932 
933 	return adap->sge.dbqtimer_tick;
934 }
935 
936 /* Return the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
937  * associated with a Network Device.
938  */
939 static int get_dbqtimer(struct net_device *dev)
940 {
941 	struct port_info *pi = netdev_priv(dev);
942 	struct adapter *adap = pi->adapter;
943 	struct sge_eth_txq *txq;
944 
945 	txq = &adap->sge.ethtxq[pi->first_qset];
946 
947 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
948 		return 0;
949 
950 	/* all of the TX Queues use the same Timer Index */
951 	return adap->sge.dbqtimer_val[txq->dbqtimerix];
952 }
953 
954 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
955  * Queues.  This is the fundamental "Tick" that sets the scale of values which
956  * can be used.  Individual Ethernet TX Queues index into a relatively small
957  * array of Tick Multipliers.  Changing the base Tick will thus change all of
958  * the resulting Timer Values associated with those multipliers for all
959  * Ethernet TX Queues.
960  */
961 static int set_dbqtimer_tick(struct net_device *dev, int usecs)
962 {
963 	struct port_info *pi = netdev_priv(dev);
964 	struct adapter *adap = pi->adapter;
965 	struct sge *s = &adap->sge;
966 	u32 param, val;
967 	int ret;
968 
969 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
970 		return 0;
971 
972 	/* return early if it's the same Timer Tick we're already using */
973 	if (s->dbqtimer_tick == usecs)
974 		return 0;
975 
976 	/* attempt to set the new Timer Tick value */
977 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
978 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
979 	val = usecs;
980 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
981 	if (ret)
982 		return ret;
983 	s->dbqtimer_tick = usecs;
984 
985 	/* if successful, reread resulting dependent Timer values */
986 	ret = t4_read_sge_dbqtimers(adap, ARRAY_SIZE(s->dbqtimer_val),
987 				    s->dbqtimer_val);
988 	return ret;
989 }
990 
991 /* Set the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
992  * associated with a Network Device.  There is a relatively small array of
993  * possible Timer Values so we need to pick the closest value available.
994  */
995 static int set_dbqtimer(struct net_device *dev, int usecs)
996 {
997 	int qix, timerix, min_timerix, delta, min_delta;
998 	struct port_info *pi = netdev_priv(dev);
999 	struct adapter *adap = pi->adapter;
1000 	struct sge *s = &adap->sge;
1001 	struct sge_eth_txq *txq;
1002 	u32 param, val;
1003 	int ret;
1004 
1005 	if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
1006 		return 0;
1007 
1008 	/* Find the SGE Doorbell Timer Value that's closest to the requested
1009 	 * value.
1010 	 */
1011 	min_delta = INT_MAX;
1012 	min_timerix = 0;
1013 	for (timerix = 0; timerix < ARRAY_SIZE(s->dbqtimer_val); timerix++) {
1014 		delta = s->dbqtimer_val[timerix] - usecs;
1015 		if (delta < 0)
1016 			delta = -delta;
1017 		if (delta < min_delta) {
1018 			min_delta = delta;
1019 			min_timerix = timerix;
1020 		}
1021 	}
1022 
1023 	/* Return early if it's the same Timer Index we're already using.
1024 	 * We use the same Timer Index for all of the TX Queues for an
1025 	 * interface so it's only necessary to check the first one.
1026 	 */
1027 	txq = &s->ethtxq[pi->first_qset];
1028 	if (txq->dbqtimerix == min_timerix)
1029 		return 0;
1030 
1031 	for (qix = 0; qix < pi->nqsets; qix++, txq++) {
1032 		if (adap->flags & CXGB4_FULL_INIT_DONE) {
1033 			param =
1034 			 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1035 			  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_TIMERIX) |
1036 			  FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
1037 			val = min_timerix;
1038 			ret = t4_set_params(adap, adap->mbox, adap->pf, 0,
1039 					    1, &param, &val);
1040 			if (ret)
1041 				return ret;
1042 		}
1043 		txq->dbqtimerix = min_timerix;
1044 	}
1045 	return 0;
1046 }
1047 
1048 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
1049  * Queues and the Timer Value for the Ethernet TX Queues associated with a
1050  * Network Device.  Since changing the global Tick changes all of the
1051  * available Timer Values, we need to do this first before selecting the
1052  * resulting closest Timer Value.  Moreover, since the Tick is global,
1053  * changing it affects the Timer Values for all Network Devices on the
1054  * adapter.  So, before changing the Tick, we grab all of the current Timer
1055  * Values for other Network Devices on this Adapter and then attempt to select
1056  * new Timer Values which are close to the old values ...
1057  */
1058 static int set_dbqtimer_tickval(struct net_device *dev,
1059 				int tick_usecs, int timer_usecs)
1060 {
1061 	struct port_info *pi = netdev_priv(dev);
1062 	struct adapter *adap = pi->adapter;
1063 	int timer[MAX_NPORTS];
1064 	unsigned int port;
1065 	int ret;
1066 
1067 	/* Grab the other adapter Network Interface current timers and fill in
1068 	 * the new one for this Network Interface.
1069 	 */
1070 	for_each_port(adap, port)
1071 		if (port == pi->port_id)
1072 			timer[port] = timer_usecs;
1073 		else
1074 			timer[port] = get_dbqtimer(adap->port[port]);
1075 
1076 	/* Change the global Tick first ... */
1077 	ret = set_dbqtimer_tick(dev, tick_usecs);
1078 	if (ret)
1079 		return ret;
1080 
1081 	/* ... and then set all of the Network Interface Timer Values ... */
1082 	for_each_port(adap, port) {
1083 		ret = set_dbqtimer(adap->port[port], timer[port]);
1084 		if (ret)
1085 			return ret;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int set_coalesce(struct net_device *dev,
1092 			struct ethtool_coalesce *coalesce)
1093 {
1094 	int ret;
1095 
1096 	set_adaptive_rx_setting(dev, coalesce->use_adaptive_rx_coalesce);
1097 
1098 	ret = set_rx_intr_params(dev, coalesce->rx_coalesce_usecs,
1099 				 coalesce->rx_max_coalesced_frames);
1100 	if (ret)
1101 		return ret;
1102 
1103 	return set_dbqtimer_tickval(dev,
1104 				    coalesce->tx_coalesce_usecs_irq,
1105 				    coalesce->tx_coalesce_usecs);
1106 }
1107 
1108 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1109 {
1110 	const struct port_info *pi = netdev_priv(dev);
1111 	const struct adapter *adap = pi->adapter;
1112 	const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1113 
1114 	c->rx_coalesce_usecs = qtimer_val(adap, rq);
1115 	c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN_F) ?
1116 		adap->sge.counter_val[rq->pktcnt_idx] : 0;
1117 	c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
1118 	c->tx_coalesce_usecs_irq = get_dbqtimer_tick(dev);
1119 	c->tx_coalesce_usecs = get_dbqtimer(dev);
1120 	return 0;
1121 }
1122 
1123 /* The next two routines implement eeprom read/write from physical addresses.
1124  */
1125 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1126 {
1127 	int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1128 
1129 	if (vaddr >= 0)
1130 		vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1131 	return vaddr < 0 ? vaddr : 0;
1132 }
1133 
1134 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1135 {
1136 	int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1137 
1138 	if (vaddr >= 0)
1139 		vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1140 	return vaddr < 0 ? vaddr : 0;
1141 }
1142 
1143 #define EEPROM_MAGIC 0x38E2F10C
1144 
1145 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1146 		      u8 *data)
1147 {
1148 	int i, err = 0;
1149 	struct adapter *adapter = netdev2adap(dev);
1150 	u8 *buf = kvzalloc(EEPROMSIZE, GFP_KERNEL);
1151 
1152 	if (!buf)
1153 		return -ENOMEM;
1154 
1155 	e->magic = EEPROM_MAGIC;
1156 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1157 		err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1158 
1159 	if (!err)
1160 		memcpy(data, buf + e->offset, e->len);
1161 	kvfree(buf);
1162 	return err;
1163 }
1164 
1165 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1166 		      u8 *data)
1167 {
1168 	u8 *buf;
1169 	int err = 0;
1170 	u32 aligned_offset, aligned_len, *p;
1171 	struct adapter *adapter = netdev2adap(dev);
1172 
1173 	if (eeprom->magic != EEPROM_MAGIC)
1174 		return -EINVAL;
1175 
1176 	aligned_offset = eeprom->offset & ~3;
1177 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1178 
1179 	if (adapter->pf > 0) {
1180 		u32 start = 1024 + adapter->pf * EEPROMPFSIZE;
1181 
1182 		if (aligned_offset < start ||
1183 		    aligned_offset + aligned_len > start + EEPROMPFSIZE)
1184 			return -EPERM;
1185 	}
1186 
1187 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1188 		/* RMW possibly needed for first or last words.
1189 		 */
1190 		buf = kvzalloc(aligned_len, GFP_KERNEL);
1191 		if (!buf)
1192 			return -ENOMEM;
1193 		err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1194 		if (!err && aligned_len > 4)
1195 			err = eeprom_rd_phys(adapter,
1196 					     aligned_offset + aligned_len - 4,
1197 					     (u32 *)&buf[aligned_len - 4]);
1198 		if (err)
1199 			goto out;
1200 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1201 	} else {
1202 		buf = data;
1203 	}
1204 
1205 	err = t4_seeprom_wp(adapter, false);
1206 	if (err)
1207 		goto out;
1208 
1209 	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1210 		err = eeprom_wr_phys(adapter, aligned_offset, *p);
1211 		aligned_offset += 4;
1212 	}
1213 
1214 	if (!err)
1215 		err = t4_seeprom_wp(adapter, true);
1216 out:
1217 	if (buf != data)
1218 		kvfree(buf);
1219 	return err;
1220 }
1221 
1222 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1223 {
1224 	int ret;
1225 	const struct firmware *fw;
1226 	struct adapter *adap = netdev2adap(netdev);
1227 	unsigned int mbox = PCIE_FW_MASTER_M + 1;
1228 	u32 pcie_fw;
1229 	unsigned int master;
1230 	u8 master_vld = 0;
1231 
1232 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
1233 	master = PCIE_FW_MASTER_G(pcie_fw);
1234 	if (pcie_fw & PCIE_FW_MASTER_VLD_F)
1235 		master_vld = 1;
1236 	/* if csiostor is the master return */
1237 	if (master_vld && (master != adap->pf)) {
1238 		dev_warn(adap->pdev_dev,
1239 			 "cxgb4 driver needs to be loaded as MASTER to support FW flash\n");
1240 		return -EOPNOTSUPP;
1241 	}
1242 
1243 	ef->data[sizeof(ef->data) - 1] = '\0';
1244 	ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1245 	if (ret < 0)
1246 		return ret;
1247 
1248 	/* If the adapter has been fully initialized then we'll go ahead and
1249 	 * try to get the firmware's cooperation in upgrading to the new
1250 	 * firmware image otherwise we'll try to do the entire job from the
1251 	 * host ... and we always "force" the operation in this path.
1252 	 */
1253 	if (adap->flags & CXGB4_FULL_INIT_DONE)
1254 		mbox = adap->mbox;
1255 
1256 	ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
1257 	release_firmware(fw);
1258 	if (!ret)
1259 		dev_info(adap->pdev_dev,
1260 			 "loaded firmware %s, reload cxgb4 driver\n", ef->data);
1261 	return ret;
1262 }
1263 
1264 static int get_ts_info(struct net_device *dev, struct ethtool_ts_info *ts_info)
1265 {
1266 	struct port_info *pi = netdev_priv(dev);
1267 	struct  adapter *adapter = pi->adapter;
1268 
1269 	ts_info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1270 				   SOF_TIMESTAMPING_RX_SOFTWARE |
1271 				   SOF_TIMESTAMPING_SOFTWARE;
1272 
1273 	ts_info->so_timestamping |= SOF_TIMESTAMPING_RX_HARDWARE |
1274 				    SOF_TIMESTAMPING_TX_HARDWARE |
1275 				    SOF_TIMESTAMPING_RAW_HARDWARE;
1276 
1277 	ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1278 			    (1 << HWTSTAMP_TX_ON);
1279 
1280 	ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1281 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1282 			      (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1283 			      (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1284 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1285 			      (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1286 
1287 	if (adapter->ptp_clock)
1288 		ts_info->phc_index = ptp_clock_index(adapter->ptp_clock);
1289 	else
1290 		ts_info->phc_index = -1;
1291 
1292 	return 0;
1293 }
1294 
1295 static u32 get_rss_table_size(struct net_device *dev)
1296 {
1297 	const struct port_info *pi = netdev_priv(dev);
1298 
1299 	return pi->rss_size;
1300 }
1301 
1302 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc)
1303 {
1304 	const struct port_info *pi = netdev_priv(dev);
1305 	unsigned int n = pi->rss_size;
1306 
1307 	if (hfunc)
1308 		*hfunc = ETH_RSS_HASH_TOP;
1309 	if (!p)
1310 		return 0;
1311 	while (n--)
1312 		p[n] = pi->rss[n];
1313 	return 0;
1314 }
1315 
1316 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key,
1317 			 const u8 hfunc)
1318 {
1319 	unsigned int i;
1320 	struct port_info *pi = netdev_priv(dev);
1321 
1322 	/* We require at least one supported parameter to be changed and no
1323 	 * change in any of the unsupported parameters
1324 	 */
1325 	if (key ||
1326 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
1327 		return -EOPNOTSUPP;
1328 	if (!p)
1329 		return 0;
1330 
1331 	/* Interface must be brought up atleast once */
1332 	if (pi->adapter->flags & CXGB4_FULL_INIT_DONE) {
1333 		for (i = 0; i < pi->rss_size; i++)
1334 			pi->rss[i] = p[i];
1335 
1336 		return cxgb4_write_rss(pi, pi->rss);
1337 	}
1338 
1339 	return -EPERM;
1340 }
1341 
1342 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1343 		     u32 *rules)
1344 {
1345 	const struct port_info *pi = netdev_priv(dev);
1346 
1347 	switch (info->cmd) {
1348 	case ETHTOOL_GRXFH: {
1349 		unsigned int v = pi->rss_mode;
1350 
1351 		info->data = 0;
1352 		switch (info->flow_type) {
1353 		case TCP_V4_FLOW:
1354 			if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F)
1355 				info->data = RXH_IP_SRC | RXH_IP_DST |
1356 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1357 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1358 				info->data = RXH_IP_SRC | RXH_IP_DST;
1359 			break;
1360 		case UDP_V4_FLOW:
1361 			if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) &&
1362 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1363 				info->data = RXH_IP_SRC | RXH_IP_DST |
1364 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1365 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1366 				info->data = RXH_IP_SRC | RXH_IP_DST;
1367 			break;
1368 		case SCTP_V4_FLOW:
1369 		case AH_ESP_V4_FLOW:
1370 		case IPV4_FLOW:
1371 			if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1372 				info->data = RXH_IP_SRC | RXH_IP_DST;
1373 			break;
1374 		case TCP_V6_FLOW:
1375 			if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F)
1376 				info->data = RXH_IP_SRC | RXH_IP_DST |
1377 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1378 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1379 				info->data = RXH_IP_SRC | RXH_IP_DST;
1380 			break;
1381 		case UDP_V6_FLOW:
1382 			if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) &&
1383 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1384 				info->data = RXH_IP_SRC | RXH_IP_DST |
1385 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
1386 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1387 				info->data = RXH_IP_SRC | RXH_IP_DST;
1388 			break;
1389 		case SCTP_V6_FLOW:
1390 		case AH_ESP_V6_FLOW:
1391 		case IPV6_FLOW:
1392 			if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1393 				info->data = RXH_IP_SRC | RXH_IP_DST;
1394 			break;
1395 		}
1396 		return 0;
1397 	}
1398 	case ETHTOOL_GRXRINGS:
1399 		info->data = pi->nqsets;
1400 		return 0;
1401 	}
1402 	return -EOPNOTSUPP;
1403 }
1404 
1405 static int set_dump(struct net_device *dev, struct ethtool_dump *eth_dump)
1406 {
1407 	struct adapter *adapter = netdev2adap(dev);
1408 	u32 len = 0;
1409 
1410 	len = sizeof(struct cudbg_hdr) +
1411 	      sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1412 	len += cxgb4_get_dump_length(adapter, eth_dump->flag);
1413 
1414 	adapter->eth_dump.flag = eth_dump->flag;
1415 	adapter->eth_dump.len = len;
1416 	return 0;
1417 }
1418 
1419 static int get_dump_flag(struct net_device *dev, struct ethtool_dump *eth_dump)
1420 {
1421 	struct adapter *adapter = netdev2adap(dev);
1422 
1423 	eth_dump->flag = adapter->eth_dump.flag;
1424 	eth_dump->len = adapter->eth_dump.len;
1425 	eth_dump->version = adapter->eth_dump.version;
1426 	return 0;
1427 }
1428 
1429 static int get_dump_data(struct net_device *dev, struct ethtool_dump *eth_dump,
1430 			 void *buf)
1431 {
1432 	struct adapter *adapter = netdev2adap(dev);
1433 	u32 len = 0;
1434 	int ret = 0;
1435 
1436 	if (adapter->eth_dump.flag == CXGB4_ETH_DUMP_NONE)
1437 		return -ENOENT;
1438 
1439 	len = sizeof(struct cudbg_hdr) +
1440 	      sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1441 	len += cxgb4_get_dump_length(adapter, adapter->eth_dump.flag);
1442 	if (eth_dump->len < len)
1443 		return -ENOMEM;
1444 
1445 	ret = cxgb4_cudbg_collect(adapter, buf, &len, adapter->eth_dump.flag);
1446 	if (ret)
1447 		return ret;
1448 
1449 	eth_dump->flag = adapter->eth_dump.flag;
1450 	eth_dump->len = len;
1451 	eth_dump->version = adapter->eth_dump.version;
1452 	return 0;
1453 }
1454 
1455 static int cxgb4_get_module_info(struct net_device *dev,
1456 				 struct ethtool_modinfo *modinfo)
1457 {
1458 	struct port_info *pi = netdev_priv(dev);
1459 	u8 sff8472_comp, sff_diag_type, sff_rev;
1460 	struct adapter *adapter = pi->adapter;
1461 	int ret;
1462 
1463 	if (!t4_is_inserted_mod_type(pi->mod_type))
1464 		return -EINVAL;
1465 
1466 	switch (pi->port_type) {
1467 	case FW_PORT_TYPE_SFP:
1468 	case FW_PORT_TYPE_QSA:
1469 	case FW_PORT_TYPE_SFP28:
1470 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1471 				I2C_DEV_ADDR_A0, SFF_8472_COMP_ADDR,
1472 				SFF_8472_COMP_LEN, &sff8472_comp);
1473 		if (ret)
1474 			return ret;
1475 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1476 				I2C_DEV_ADDR_A0, SFP_DIAG_TYPE_ADDR,
1477 				SFP_DIAG_TYPE_LEN, &sff_diag_type);
1478 		if (ret)
1479 			return ret;
1480 
1481 		if (!sff8472_comp || (sff_diag_type & 4)) {
1482 			modinfo->type = ETH_MODULE_SFF_8079;
1483 			modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1484 		} else {
1485 			modinfo->type = ETH_MODULE_SFF_8472;
1486 			modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1487 		}
1488 		break;
1489 
1490 	case FW_PORT_TYPE_QSFP:
1491 	case FW_PORT_TYPE_QSFP_10G:
1492 	case FW_PORT_TYPE_CR_QSFP:
1493 	case FW_PORT_TYPE_CR2_QSFP:
1494 	case FW_PORT_TYPE_CR4_QSFP:
1495 		ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1496 				I2C_DEV_ADDR_A0, SFF_REV_ADDR,
1497 				SFF_REV_LEN, &sff_rev);
1498 		/* For QSFP type ports, revision value >= 3
1499 		 * means the SFP is 8636 compliant.
1500 		 */
1501 		if (ret)
1502 			return ret;
1503 		if (sff_rev >= 0x3) {
1504 			modinfo->type = ETH_MODULE_SFF_8636;
1505 			modinfo->eeprom_len = ETH_MODULE_SFF_8636_LEN;
1506 		} else {
1507 			modinfo->type = ETH_MODULE_SFF_8436;
1508 			modinfo->eeprom_len = ETH_MODULE_SFF_8436_LEN;
1509 		}
1510 		break;
1511 
1512 	default:
1513 		return -EINVAL;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 static int cxgb4_get_module_eeprom(struct net_device *dev,
1520 				   struct ethtool_eeprom *eprom, u8 *data)
1521 {
1522 	int ret = 0, offset = eprom->offset, len = eprom->len;
1523 	struct port_info *pi = netdev_priv(dev);
1524 	struct adapter *adapter = pi->adapter;
1525 
1526 	memset(data, 0, eprom->len);
1527 	if (offset + len <= I2C_PAGE_SIZE)
1528 		return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1529 				 I2C_DEV_ADDR_A0, offset, len, data);
1530 
1531 	/* offset + len spans 0xa0 and 0xa1 pages */
1532 	if (offset <= I2C_PAGE_SIZE) {
1533 		/* read 0xa0 page */
1534 		len = I2C_PAGE_SIZE - offset;
1535 		ret =  t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1536 				 I2C_DEV_ADDR_A0, offset, len, data);
1537 		if (ret)
1538 			return ret;
1539 		offset = I2C_PAGE_SIZE;
1540 		/* Remaining bytes to be read from second page =
1541 		 * Total length - bytes read from first page
1542 		 */
1543 		len = eprom->len - len;
1544 	}
1545 	/* Read additional optical diagnostics from page 0xa2 if supported */
1546 	return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A2,
1547 			 offset, len, &data[eprom->len - len]);
1548 }
1549 
1550 static u32 cxgb4_get_priv_flags(struct net_device *netdev)
1551 {
1552 	struct port_info *pi = netdev_priv(netdev);
1553 	struct adapter *adapter = pi->adapter;
1554 
1555 	return (adapter->eth_flags | pi->eth_flags);
1556 }
1557 
1558 /**
1559  *	set_flags - set/unset specified flags if passed in new_flags
1560  *	@cur_flags: pointer to current flags
1561  *	@new_flags: new incoming flags
1562  *	@flags: set of flags to set/unset
1563  */
1564 static inline void set_flags(u32 *cur_flags, u32 new_flags, u32 flags)
1565 {
1566 	*cur_flags = (*cur_flags & ~flags) | (new_flags & flags);
1567 }
1568 
1569 static int cxgb4_set_priv_flags(struct net_device *netdev, u32 flags)
1570 {
1571 	struct port_info *pi = netdev_priv(netdev);
1572 	struct adapter *adapter = pi->adapter;
1573 
1574 	set_flags(&adapter->eth_flags, flags, PRIV_FLAGS_ADAP);
1575 	set_flags(&pi->eth_flags, flags, PRIV_FLAGS_PORT);
1576 
1577 	return 0;
1578 }
1579 
1580 static const struct ethtool_ops cxgb_ethtool_ops = {
1581 	.get_link_ksettings = get_link_ksettings,
1582 	.set_link_ksettings = set_link_ksettings,
1583 	.get_fecparam      = get_fecparam,
1584 	.set_fecparam      = set_fecparam,
1585 	.get_drvinfo       = get_drvinfo,
1586 	.get_msglevel      = get_msglevel,
1587 	.set_msglevel      = set_msglevel,
1588 	.get_ringparam     = get_sge_param,
1589 	.set_ringparam     = set_sge_param,
1590 	.get_coalesce      = get_coalesce,
1591 	.set_coalesce      = set_coalesce,
1592 	.get_eeprom_len    = get_eeprom_len,
1593 	.get_eeprom        = get_eeprom,
1594 	.set_eeprom        = set_eeprom,
1595 	.get_pauseparam    = get_pauseparam,
1596 	.set_pauseparam    = set_pauseparam,
1597 	.get_link          = ethtool_op_get_link,
1598 	.get_strings       = get_strings,
1599 	.set_phys_id       = identify_port,
1600 	.nway_reset        = restart_autoneg,
1601 	.get_sset_count    = get_sset_count,
1602 	.get_ethtool_stats = get_stats,
1603 	.get_regs_len      = get_regs_len,
1604 	.get_regs          = get_regs,
1605 	.get_rxnfc         = get_rxnfc,
1606 	.get_rxfh_indir_size = get_rss_table_size,
1607 	.get_rxfh	   = get_rss_table,
1608 	.set_rxfh	   = set_rss_table,
1609 	.flash_device      = set_flash,
1610 	.get_ts_info       = get_ts_info,
1611 	.set_dump          = set_dump,
1612 	.get_dump_flag     = get_dump_flag,
1613 	.get_dump_data     = get_dump_data,
1614 	.get_module_info   = cxgb4_get_module_info,
1615 	.get_module_eeprom = cxgb4_get_module_eeprom,
1616 	.get_priv_flags    = cxgb4_get_priv_flags,
1617 	.set_priv_flags    = cxgb4_set_priv_flags,
1618 };
1619 
1620 void cxgb4_set_ethtool_ops(struct net_device *netdev)
1621 {
1622 	netdev->ethtool_ops = &cxgb_ethtool_ops;
1623 }
1624