xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_debugfs.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 #include <linux/string_helpers.h>
38 #include <linux/sort.h>
39 #include <linux/ctype.h>
40 
41 #include "cxgb4.h"
42 #include "t4_regs.h"
43 #include "t4_values.h"
44 #include "t4fw_api.h"
45 #include "cxgb4_debugfs.h"
46 #include "clip_tbl.h"
47 #include "l2t.h"
48 
49 /* generic seq_file support for showing a table of size rows x width. */
50 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
51 {
52 	pos -= tb->skip_first;
53 	return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
54 }
55 
56 static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
57 {
58 	struct seq_tab *tb = seq->private;
59 
60 	if (tb->skip_first && *pos == 0)
61 		return SEQ_START_TOKEN;
62 
63 	return seq_tab_get_idx(tb, *pos);
64 }
65 
66 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
67 {
68 	v = seq_tab_get_idx(seq->private, *pos + 1);
69 	if (v)
70 		++*pos;
71 	return v;
72 }
73 
74 static void seq_tab_stop(struct seq_file *seq, void *v)
75 {
76 }
77 
78 static int seq_tab_show(struct seq_file *seq, void *v)
79 {
80 	const struct seq_tab *tb = seq->private;
81 
82 	return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
83 }
84 
85 static const struct seq_operations seq_tab_ops = {
86 	.start = seq_tab_start,
87 	.next  = seq_tab_next,
88 	.stop  = seq_tab_stop,
89 	.show  = seq_tab_show
90 };
91 
92 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
93 			     unsigned int width, unsigned int have_header,
94 			     int (*show)(struct seq_file *seq, void *v, int i))
95 {
96 	struct seq_tab *p;
97 
98 	p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
99 	if (p) {
100 		p->show = show;
101 		p->rows = rows;
102 		p->width = width;
103 		p->skip_first = have_header != 0;
104 	}
105 	return p;
106 }
107 
108 /* Trim the size of a seq_tab to the supplied number of rows.  The operation is
109  * irreversible.
110  */
111 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
112 {
113 	if (new_rows > p->rows)
114 		return -EINVAL;
115 	p->rows = new_rows;
116 	return 0;
117 }
118 
119 static int cim_la_show(struct seq_file *seq, void *v, int idx)
120 {
121 	if (v == SEQ_START_TOKEN)
122 		seq_puts(seq, "Status   Data      PC     LS0Stat  LS0Addr "
123 			 "            LS0Data\n");
124 	else {
125 		const u32 *p = v;
126 
127 		seq_printf(seq,
128 			   "  %02x  %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
129 			   (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
130 			   p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
131 			   p[6], p[7]);
132 	}
133 	return 0;
134 }
135 
136 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
137 {
138 	if (v == SEQ_START_TOKEN) {
139 		seq_puts(seq, "Status   Data      PC\n");
140 	} else {
141 		const u32 *p = v;
142 
143 		seq_printf(seq, "  %02x   %08x %08x\n", p[5] & 0xff, p[6],
144 			   p[7]);
145 		seq_printf(seq, "  %02x   %02x%06x %02x%06x\n",
146 			   (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
147 			   p[4] & 0xff, p[5] >> 8);
148 		seq_printf(seq, "  %02x   %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
149 			   p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
150 	}
151 	return 0;
152 }
153 
154 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
155 {
156 	if (v == SEQ_START_TOKEN) {
157 		seq_puts(seq, "Status   Inst    Data      PC     LS0Stat  "
158 			 "LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data\n");
159 	} else {
160 		const u32 *p = v;
161 
162 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
163 			   (p[9] >> 16) & 0xff,       /* Status */
164 			   p[9] & 0xffff, p[8] >> 16, /* Inst */
165 			   p[8] & 0xffff, p[7] >> 16, /* Data */
166 			   p[7] & 0xffff, p[6] >> 16, /* PC */
167 			   p[2], p[1], p[0],      /* LS0 Stat, Addr and Data */
168 			   p[5], p[4], p[3]);     /* LS1 Stat, Addr and Data */
169 	}
170 	return 0;
171 }
172 
173 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
174 {
175 	if (v == SEQ_START_TOKEN) {
176 		seq_puts(seq, "Status   Inst    Data      PC\n");
177 	} else {
178 		const u32 *p = v;
179 
180 		seq_printf(seq, "  %02x   %08x %08x %08x\n",
181 			   p[3] & 0xff, p[2], p[1], p[0]);
182 		seq_printf(seq, "  %02x   %02x%06x %02x%06x %02x%06x\n",
183 			   (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
184 			   p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
185 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x\n",
186 			   (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
187 			   p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
188 			   p[6] >> 16);
189 	}
190 	return 0;
191 }
192 
193 static int cim_la_open(struct inode *inode, struct file *file)
194 {
195 	int ret;
196 	unsigned int cfg;
197 	struct seq_tab *p;
198 	struct adapter *adap = inode->i_private;
199 
200 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
201 	if (ret)
202 		return ret;
203 
204 	if (is_t6(adap->params.chip)) {
205 		/* +1 to account for integer division of CIMLA_SIZE/10 */
206 		p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
207 				 10 * sizeof(u32), 1,
208 				 cfg & UPDBGLACAPTPCONLY_F ?
209 					cim_la_show_pc_t6 : cim_la_show_t6);
210 	} else {
211 		p = seq_open_tab(file, adap->params.cim_la_size / 8,
212 				 8 * sizeof(u32), 1,
213 				 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
214 							     cim_la_show);
215 	}
216 	if (!p)
217 		return -ENOMEM;
218 
219 	ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
220 	if (ret)
221 		seq_release_private(inode, file);
222 	return ret;
223 }
224 
225 static const struct file_operations cim_la_fops = {
226 	.owner   = THIS_MODULE,
227 	.open    = cim_la_open,
228 	.read    = seq_read,
229 	.llseek  = seq_lseek,
230 	.release = seq_release_private
231 };
232 
233 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
234 {
235 	const u32 *p = v;
236 
237 	if (v == SEQ_START_TOKEN) {
238 		seq_puts(seq, "Cntl ID DataBE   Addr                 Data\n");
239 	} else if (idx < CIM_PIFLA_SIZE) {
240 		seq_printf(seq, " %02x  %02x  %04x  %08x %08x%08x%08x%08x\n",
241 			   (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
242 			   p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
243 	} else {
244 		if (idx == CIM_PIFLA_SIZE)
245 			seq_puts(seq, "\nCntl ID               Data\n");
246 		seq_printf(seq, " %02x  %02x %08x%08x%08x%08x\n",
247 			   (p[4] >> 6) & 0xff, p[4] & 0x3f,
248 			   p[3], p[2], p[1], p[0]);
249 	}
250 	return 0;
251 }
252 
253 static int cim_pif_la_open(struct inode *inode, struct file *file)
254 {
255 	struct seq_tab *p;
256 	struct adapter *adap = inode->i_private;
257 
258 	p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
259 			 cim_pif_la_show);
260 	if (!p)
261 		return -ENOMEM;
262 
263 	t4_cim_read_pif_la(adap, (u32 *)p->data,
264 			   (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
265 	return 0;
266 }
267 
268 static const struct file_operations cim_pif_la_fops = {
269 	.owner   = THIS_MODULE,
270 	.open    = cim_pif_la_open,
271 	.read    = seq_read,
272 	.llseek  = seq_lseek,
273 	.release = seq_release_private
274 };
275 
276 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
277 {
278 	const u32 *p = v;
279 
280 	if (v == SEQ_START_TOKEN) {
281 		seq_puts(seq, "\n");
282 	} else if (idx < CIM_MALA_SIZE) {
283 		seq_printf(seq, "%02x%08x%08x%08x%08x\n",
284 			   p[4], p[3], p[2], p[1], p[0]);
285 	} else {
286 		if (idx == CIM_MALA_SIZE)
287 			seq_puts(seq,
288 				 "\nCnt ID Tag UE       Data       RDY VLD\n");
289 		seq_printf(seq, "%3u %2u  %x   %u %08x%08x  %u   %u\n",
290 			   (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
291 			   (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
292 			   (p[1] >> 2) | ((p[2] & 3) << 30),
293 			   (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
294 			   p[0] & 1);
295 	}
296 	return 0;
297 }
298 
299 static int cim_ma_la_open(struct inode *inode, struct file *file)
300 {
301 	struct seq_tab *p;
302 	struct adapter *adap = inode->i_private;
303 
304 	p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
305 			 cim_ma_la_show);
306 	if (!p)
307 		return -ENOMEM;
308 
309 	t4_cim_read_ma_la(adap, (u32 *)p->data,
310 			  (u32 *)p->data + 5 * CIM_MALA_SIZE);
311 	return 0;
312 }
313 
314 static const struct file_operations cim_ma_la_fops = {
315 	.owner   = THIS_MODULE,
316 	.open    = cim_ma_la_open,
317 	.read    = seq_read,
318 	.llseek  = seq_lseek,
319 	.release = seq_release_private
320 };
321 
322 static int cim_qcfg_show(struct seq_file *seq, void *v)
323 {
324 	static const char * const qname[] = {
325 		"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
326 		"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
327 		"SGE0-RX", "SGE1-RX"
328 	};
329 
330 	int i;
331 	struct adapter *adap = seq->private;
332 	u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
333 	u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
334 	u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
335 	u16 thres[CIM_NUM_IBQ];
336 	u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
337 	u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
338 	u32 *p = stat;
339 	int cim_num_obq = is_t4(adap->params.chip) ?
340 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
341 
342 	i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
343 			UP_IBQ_0_SHADOW_RDADDR_A,
344 			ARRAY_SIZE(stat), stat);
345 	if (!i) {
346 		if (is_t4(adap->params.chip)) {
347 			i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
348 					ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
349 			wr = obq_wr_t4;
350 		} else {
351 			i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
352 					ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
353 			wr = obq_wr_t5;
354 		}
355 	}
356 	if (i)
357 		return i;
358 
359 	t4_read_cimq_cfg(adap, base, size, thres);
360 
361 	seq_printf(seq,
362 		   "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail\n");
363 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
364 		seq_printf(seq, "%7s %5x %5u %5u %6x  %4x %4u %4u %5u\n",
365 			   qname[i], base[i], size[i], thres[i],
366 			   IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
367 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
368 			   QUEREMFLITS_G(p[2]) * 16);
369 	for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
370 		seq_printf(seq, "%7s %5x %5u %12x  %4x %4u %4u %5u\n",
371 			   qname[i], base[i], size[i],
372 			   QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
373 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
374 			   QUEREMFLITS_G(p[2]) * 16);
375 	return 0;
376 }
377 
378 static int cim_qcfg_open(struct inode *inode, struct file *file)
379 {
380 	return single_open(file, cim_qcfg_show, inode->i_private);
381 }
382 
383 static const struct file_operations cim_qcfg_fops = {
384 	.owner   = THIS_MODULE,
385 	.open    = cim_qcfg_open,
386 	.read    = seq_read,
387 	.llseek  = seq_lseek,
388 	.release = single_release,
389 };
390 
391 static int cimq_show(struct seq_file *seq, void *v, int idx)
392 {
393 	const u32 *p = v;
394 
395 	seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
396 		   p[2], p[3]);
397 	return 0;
398 }
399 
400 static int cim_ibq_open(struct inode *inode, struct file *file)
401 {
402 	int ret;
403 	struct seq_tab *p;
404 	unsigned int qid = (uintptr_t)inode->i_private & 7;
405 	struct adapter *adap = inode->i_private - qid;
406 
407 	p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
408 	if (!p)
409 		return -ENOMEM;
410 
411 	ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
412 	if (ret < 0)
413 		seq_release_private(inode, file);
414 	else
415 		ret = 0;
416 	return ret;
417 }
418 
419 static const struct file_operations cim_ibq_fops = {
420 	.owner   = THIS_MODULE,
421 	.open    = cim_ibq_open,
422 	.read    = seq_read,
423 	.llseek  = seq_lseek,
424 	.release = seq_release_private
425 };
426 
427 static int cim_obq_open(struct inode *inode, struct file *file)
428 {
429 	int ret;
430 	struct seq_tab *p;
431 	unsigned int qid = (uintptr_t)inode->i_private & 7;
432 	struct adapter *adap = inode->i_private - qid;
433 
434 	p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
435 	if (!p)
436 		return -ENOMEM;
437 
438 	ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
439 	if (ret < 0) {
440 		seq_release_private(inode, file);
441 	} else {
442 		seq_tab_trim(p, ret / 4);
443 		ret = 0;
444 	}
445 	return ret;
446 }
447 
448 static const struct file_operations cim_obq_fops = {
449 	.owner   = THIS_MODULE,
450 	.open    = cim_obq_open,
451 	.read    = seq_read,
452 	.llseek  = seq_lseek,
453 	.release = seq_release_private
454 };
455 
456 struct field_desc {
457 	const char *name;
458 	unsigned int start;
459 	unsigned int width;
460 };
461 
462 static void field_desc_show(struct seq_file *seq, u64 v,
463 			    const struct field_desc *p)
464 {
465 	char buf[32];
466 	int line_size = 0;
467 
468 	while (p->name) {
469 		u64 mask = (1ULL << p->width) - 1;
470 		int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
471 				    ((unsigned long long)v >> p->start) & mask);
472 
473 		if (line_size + len >= 79) {
474 			line_size = 8;
475 			seq_puts(seq, "\n        ");
476 		}
477 		seq_printf(seq, "%s ", buf);
478 		line_size += len + 1;
479 		p++;
480 	}
481 	seq_putc(seq, '\n');
482 }
483 
484 static struct field_desc tp_la0[] = {
485 	{ "RcfOpCodeOut", 60, 4 },
486 	{ "State", 56, 4 },
487 	{ "WcfState", 52, 4 },
488 	{ "RcfOpcSrcOut", 50, 2 },
489 	{ "CRxError", 49, 1 },
490 	{ "ERxError", 48, 1 },
491 	{ "SanityFailed", 47, 1 },
492 	{ "SpuriousMsg", 46, 1 },
493 	{ "FlushInputMsg", 45, 1 },
494 	{ "FlushInputCpl", 44, 1 },
495 	{ "RssUpBit", 43, 1 },
496 	{ "RssFilterHit", 42, 1 },
497 	{ "Tid", 32, 10 },
498 	{ "InitTcb", 31, 1 },
499 	{ "LineNumber", 24, 7 },
500 	{ "Emsg", 23, 1 },
501 	{ "EdataOut", 22, 1 },
502 	{ "Cmsg", 21, 1 },
503 	{ "CdataOut", 20, 1 },
504 	{ "EreadPdu", 19, 1 },
505 	{ "CreadPdu", 18, 1 },
506 	{ "TunnelPkt", 17, 1 },
507 	{ "RcfPeerFin", 16, 1 },
508 	{ "RcfReasonOut", 12, 4 },
509 	{ "TxCchannel", 10, 2 },
510 	{ "RcfTxChannel", 8, 2 },
511 	{ "RxEchannel", 6, 2 },
512 	{ "RcfRxChannel", 5, 1 },
513 	{ "RcfDataOutSrdy", 4, 1 },
514 	{ "RxDvld", 3, 1 },
515 	{ "RxOoDvld", 2, 1 },
516 	{ "RxCongestion", 1, 1 },
517 	{ "TxCongestion", 0, 1 },
518 	{ NULL }
519 };
520 
521 static int tp_la_show(struct seq_file *seq, void *v, int idx)
522 {
523 	const u64 *p = v;
524 
525 	field_desc_show(seq, *p, tp_la0);
526 	return 0;
527 }
528 
529 static int tp_la_show2(struct seq_file *seq, void *v, int idx)
530 {
531 	const u64 *p = v;
532 
533 	if (idx)
534 		seq_putc(seq, '\n');
535 	field_desc_show(seq, p[0], tp_la0);
536 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
537 		field_desc_show(seq, p[1], tp_la0);
538 	return 0;
539 }
540 
541 static int tp_la_show3(struct seq_file *seq, void *v, int idx)
542 {
543 	static struct field_desc tp_la1[] = {
544 		{ "CplCmdIn", 56, 8 },
545 		{ "CplCmdOut", 48, 8 },
546 		{ "ESynOut", 47, 1 },
547 		{ "EAckOut", 46, 1 },
548 		{ "EFinOut", 45, 1 },
549 		{ "ERstOut", 44, 1 },
550 		{ "SynIn", 43, 1 },
551 		{ "AckIn", 42, 1 },
552 		{ "FinIn", 41, 1 },
553 		{ "RstIn", 40, 1 },
554 		{ "DataIn", 39, 1 },
555 		{ "DataInVld", 38, 1 },
556 		{ "PadIn", 37, 1 },
557 		{ "RxBufEmpty", 36, 1 },
558 		{ "RxDdp", 35, 1 },
559 		{ "RxFbCongestion", 34, 1 },
560 		{ "TxFbCongestion", 33, 1 },
561 		{ "TxPktSumSrdy", 32, 1 },
562 		{ "RcfUlpType", 28, 4 },
563 		{ "Eread", 27, 1 },
564 		{ "Ebypass", 26, 1 },
565 		{ "Esave", 25, 1 },
566 		{ "Static0", 24, 1 },
567 		{ "Cread", 23, 1 },
568 		{ "Cbypass", 22, 1 },
569 		{ "Csave", 21, 1 },
570 		{ "CPktOut", 20, 1 },
571 		{ "RxPagePoolFull", 18, 2 },
572 		{ "RxLpbkPkt", 17, 1 },
573 		{ "TxLpbkPkt", 16, 1 },
574 		{ "RxVfValid", 15, 1 },
575 		{ "SynLearned", 14, 1 },
576 		{ "SetDelEntry", 13, 1 },
577 		{ "SetInvEntry", 12, 1 },
578 		{ "CpcmdDvld", 11, 1 },
579 		{ "CpcmdSave", 10, 1 },
580 		{ "RxPstructsFull", 8, 2 },
581 		{ "EpcmdDvld", 7, 1 },
582 		{ "EpcmdFlush", 6, 1 },
583 		{ "EpcmdTrimPrefix", 5, 1 },
584 		{ "EpcmdTrimPostfix", 4, 1 },
585 		{ "ERssIp4Pkt", 3, 1 },
586 		{ "ERssIp6Pkt", 2, 1 },
587 		{ "ERssTcpUdpPkt", 1, 1 },
588 		{ "ERssFceFipPkt", 0, 1 },
589 		{ NULL }
590 	};
591 	static struct field_desc tp_la2[] = {
592 		{ "CplCmdIn", 56, 8 },
593 		{ "MpsVfVld", 55, 1 },
594 		{ "MpsPf", 52, 3 },
595 		{ "MpsVf", 44, 8 },
596 		{ "SynIn", 43, 1 },
597 		{ "AckIn", 42, 1 },
598 		{ "FinIn", 41, 1 },
599 		{ "RstIn", 40, 1 },
600 		{ "DataIn", 39, 1 },
601 		{ "DataInVld", 38, 1 },
602 		{ "PadIn", 37, 1 },
603 		{ "RxBufEmpty", 36, 1 },
604 		{ "RxDdp", 35, 1 },
605 		{ "RxFbCongestion", 34, 1 },
606 		{ "TxFbCongestion", 33, 1 },
607 		{ "TxPktSumSrdy", 32, 1 },
608 		{ "RcfUlpType", 28, 4 },
609 		{ "Eread", 27, 1 },
610 		{ "Ebypass", 26, 1 },
611 		{ "Esave", 25, 1 },
612 		{ "Static0", 24, 1 },
613 		{ "Cread", 23, 1 },
614 		{ "Cbypass", 22, 1 },
615 		{ "Csave", 21, 1 },
616 		{ "CPktOut", 20, 1 },
617 		{ "RxPagePoolFull", 18, 2 },
618 		{ "RxLpbkPkt", 17, 1 },
619 		{ "TxLpbkPkt", 16, 1 },
620 		{ "RxVfValid", 15, 1 },
621 		{ "SynLearned", 14, 1 },
622 		{ "SetDelEntry", 13, 1 },
623 		{ "SetInvEntry", 12, 1 },
624 		{ "CpcmdDvld", 11, 1 },
625 		{ "CpcmdSave", 10, 1 },
626 		{ "RxPstructsFull", 8, 2 },
627 		{ "EpcmdDvld", 7, 1 },
628 		{ "EpcmdFlush", 6, 1 },
629 		{ "EpcmdTrimPrefix", 5, 1 },
630 		{ "EpcmdTrimPostfix", 4, 1 },
631 		{ "ERssIp4Pkt", 3, 1 },
632 		{ "ERssIp6Pkt", 2, 1 },
633 		{ "ERssTcpUdpPkt", 1, 1 },
634 		{ "ERssFceFipPkt", 0, 1 },
635 		{ NULL }
636 	};
637 	const u64 *p = v;
638 
639 	if (idx)
640 		seq_putc(seq, '\n');
641 	field_desc_show(seq, p[0], tp_la0);
642 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
643 		field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
644 	return 0;
645 }
646 
647 static int tp_la_open(struct inode *inode, struct file *file)
648 {
649 	struct seq_tab *p;
650 	struct adapter *adap = inode->i_private;
651 
652 	switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
653 	case 2:
654 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
655 				 tp_la_show2);
656 		break;
657 	case 3:
658 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
659 				 tp_la_show3);
660 		break;
661 	default:
662 		p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
663 	}
664 	if (!p)
665 		return -ENOMEM;
666 
667 	t4_tp_read_la(adap, (u64 *)p->data, NULL);
668 	return 0;
669 }
670 
671 static ssize_t tp_la_write(struct file *file, const char __user *buf,
672 			   size_t count, loff_t *pos)
673 {
674 	int err;
675 	char s[32];
676 	unsigned long val;
677 	size_t size = min(sizeof(s) - 1, count);
678 	struct adapter *adap = file_inode(file)->i_private;
679 
680 	if (copy_from_user(s, buf, size))
681 		return -EFAULT;
682 	s[size] = '\0';
683 	err = kstrtoul(s, 0, &val);
684 	if (err)
685 		return err;
686 	if (val > 0xffff)
687 		return -EINVAL;
688 	adap->params.tp.la_mask = val << 16;
689 	t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
690 			 adap->params.tp.la_mask);
691 	return count;
692 }
693 
694 static const struct file_operations tp_la_fops = {
695 	.owner   = THIS_MODULE,
696 	.open    = tp_la_open,
697 	.read    = seq_read,
698 	.llseek  = seq_lseek,
699 	.release = seq_release_private,
700 	.write   = tp_la_write
701 };
702 
703 static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
704 {
705 	const u32 *p = v;
706 
707 	if (v == SEQ_START_TOKEN)
708 		seq_puts(seq, "      Pcmd        Type   Message"
709 			 "                Data\n");
710 	else
711 		seq_printf(seq, "%08x%08x  %4x  %08x  %08x%08x%08x%08x\n",
712 			   p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
713 	return 0;
714 }
715 
716 static int ulprx_la_open(struct inode *inode, struct file *file)
717 {
718 	struct seq_tab *p;
719 	struct adapter *adap = inode->i_private;
720 
721 	p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
722 			 ulprx_la_show);
723 	if (!p)
724 		return -ENOMEM;
725 
726 	t4_ulprx_read_la(adap, (u32 *)p->data);
727 	return 0;
728 }
729 
730 static const struct file_operations ulprx_la_fops = {
731 	.owner   = THIS_MODULE,
732 	.open    = ulprx_la_open,
733 	.read    = seq_read,
734 	.llseek  = seq_lseek,
735 	.release = seq_release_private
736 };
737 
738 /* Show the PM memory stats.  These stats include:
739  *
740  * TX:
741  *   Read: memory read operation
742  *   Write Bypass: cut-through
743  *   Bypass + mem: cut-through and save copy
744  *
745  * RX:
746  *   Read: memory read
747  *   Write Bypass: cut-through
748  *   Flush: payload trim or drop
749  */
750 static int pm_stats_show(struct seq_file *seq, void *v)
751 {
752 	static const char * const tx_pm_stats[] = {
753 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
754 	};
755 	static const char * const rx_pm_stats[] = {
756 		"Read:", "Write bypass:", "Write mem:", "Flush:"
757 	};
758 
759 	int i;
760 	u32 tx_cnt[PM_NSTATS], rx_cnt[PM_NSTATS];
761 	u64 tx_cyc[PM_NSTATS], rx_cyc[PM_NSTATS];
762 	struct adapter *adap = seq->private;
763 
764 	t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
765 	t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
766 
767 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Tx pcmds", "Tx bytes");
768 	for (i = 0; i < PM_NSTATS - 1; i++)
769 		seq_printf(seq, "%-13s %10u  %20llu\n",
770 			   tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
771 
772 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Rx pcmds", "Rx bytes");
773 	for (i = 0; i < PM_NSTATS - 1; i++)
774 		seq_printf(seq, "%-13s %10u  %20llu\n",
775 			   rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
776 	return 0;
777 }
778 
779 static int pm_stats_open(struct inode *inode, struct file *file)
780 {
781 	return single_open(file, pm_stats_show, inode->i_private);
782 }
783 
784 static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
785 			      size_t count, loff_t *pos)
786 {
787 	struct adapter *adap = file_inode(file)->i_private;
788 
789 	t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
790 	t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
791 	return count;
792 }
793 
794 static const struct file_operations pm_stats_debugfs_fops = {
795 	.owner   = THIS_MODULE,
796 	.open    = pm_stats_open,
797 	.read    = seq_read,
798 	.llseek  = seq_lseek,
799 	.release = single_release,
800 	.write   = pm_stats_clear
801 };
802 
803 static int tx_rate_show(struct seq_file *seq, void *v)
804 {
805 	u64 nrate[NCHAN], orate[NCHAN];
806 	struct adapter *adap = seq->private;
807 
808 	t4_get_chan_txrate(adap, nrate, orate);
809 	if (adap->params.arch.nchan == NCHAN) {
810 		seq_puts(seq, "              channel 0   channel 1   "
811 			 "channel 2   channel 3\n");
812 		seq_printf(seq, "NIC B/s:     %10llu  %10llu  %10llu  %10llu\n",
813 			   (unsigned long long)nrate[0],
814 			   (unsigned long long)nrate[1],
815 			   (unsigned long long)nrate[2],
816 			   (unsigned long long)nrate[3]);
817 		seq_printf(seq, "Offload B/s: %10llu  %10llu  %10llu  %10llu\n",
818 			   (unsigned long long)orate[0],
819 			   (unsigned long long)orate[1],
820 			   (unsigned long long)orate[2],
821 			   (unsigned long long)orate[3]);
822 	} else {
823 		seq_puts(seq, "              channel 0   channel 1\n");
824 		seq_printf(seq, "NIC B/s:     %10llu  %10llu\n",
825 			   (unsigned long long)nrate[0],
826 			   (unsigned long long)nrate[1]);
827 		seq_printf(seq, "Offload B/s: %10llu  %10llu\n",
828 			   (unsigned long long)orate[0],
829 			   (unsigned long long)orate[1]);
830 	}
831 	return 0;
832 }
833 
834 DEFINE_SIMPLE_DEBUGFS_FILE(tx_rate);
835 
836 static int cctrl_tbl_show(struct seq_file *seq, void *v)
837 {
838 	static const char * const dec_fac[] = {
839 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
840 		"0.9375" };
841 
842 	int i;
843 	u16 (*incr)[NCCTRL_WIN];
844 	struct adapter *adap = seq->private;
845 
846 	incr = kmalloc(sizeof(*incr) * NMTUS, GFP_KERNEL);
847 	if (!incr)
848 		return -ENOMEM;
849 
850 	t4_read_cong_tbl(adap, incr);
851 
852 	for (i = 0; i < NCCTRL_WIN; ++i) {
853 		seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
854 			   incr[0][i], incr[1][i], incr[2][i], incr[3][i],
855 			   incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
856 		seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
857 			   incr[8][i], incr[9][i], incr[10][i], incr[11][i],
858 			   incr[12][i], incr[13][i], incr[14][i], incr[15][i],
859 			   adap->params.a_wnd[i],
860 			   dec_fac[adap->params.b_wnd[i]]);
861 	}
862 
863 	kfree(incr);
864 	return 0;
865 }
866 
867 DEFINE_SIMPLE_DEBUGFS_FILE(cctrl_tbl);
868 
869 /* Format a value in a unit that differs from the value's native unit by the
870  * given factor.
871  */
872 static char *unit_conv(char *buf, size_t len, unsigned int val,
873 		       unsigned int factor)
874 {
875 	unsigned int rem = val % factor;
876 
877 	if (rem == 0) {
878 		snprintf(buf, len, "%u", val / factor);
879 	} else {
880 		while (rem % 10 == 0)
881 			rem /= 10;
882 		snprintf(buf, len, "%u.%u", val / factor, rem);
883 	}
884 	return buf;
885 }
886 
887 static int clk_show(struct seq_file *seq, void *v)
888 {
889 	char buf[32];
890 	struct adapter *adap = seq->private;
891 	unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk;  /* in ps */
892 	u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
893 	unsigned int tre = TIMERRESOLUTION_G(res);
894 	unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
895 	unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
896 
897 	seq_printf(seq, "Core clock period: %s ns\n",
898 		   unit_conv(buf, sizeof(buf), cclk_ps, 1000));
899 	seq_printf(seq, "TP timer tick: %s us\n",
900 		   unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
901 	seq_printf(seq, "TCP timestamp tick: %s us\n",
902 		   unit_conv(buf, sizeof(buf),
903 			     (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
904 	seq_printf(seq, "DACK tick: %s us\n",
905 		   unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
906 	seq_printf(seq, "DACK timer: %u us\n",
907 		   ((cclk_ps << dack_re) / 1000000) *
908 		   t4_read_reg(adap, TP_DACK_TIMER_A));
909 	seq_printf(seq, "Retransmit min: %llu us\n",
910 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
911 	seq_printf(seq, "Retransmit max: %llu us\n",
912 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
913 	seq_printf(seq, "Persist timer min: %llu us\n",
914 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
915 	seq_printf(seq, "Persist timer max: %llu us\n",
916 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
917 	seq_printf(seq, "Keepalive idle timer: %llu us\n",
918 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
919 	seq_printf(seq, "Keepalive interval: %llu us\n",
920 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
921 	seq_printf(seq, "Initial SRTT: %llu us\n",
922 		   tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
923 	seq_printf(seq, "FINWAIT2 timer: %llu us\n",
924 		   tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
925 
926 	return 0;
927 }
928 
929 DEFINE_SIMPLE_DEBUGFS_FILE(clk);
930 
931 /* Firmware Device Log dump. */
932 static const char * const devlog_level_strings[] = {
933 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
934 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
935 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
936 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
937 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
938 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
939 };
940 
941 static const char * const devlog_facility_strings[] = {
942 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
943 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
944 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
945 	[FW_DEVLOG_FACILITY_RES]	= "RES",
946 	[FW_DEVLOG_FACILITY_HW]		= "HW",
947 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
948 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
949 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
950 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
951 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
952 	[FW_DEVLOG_FACILITY_VI]		= "VI",
953 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
954 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
955 	[FW_DEVLOG_FACILITY_TM]		= "TM",
956 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
957 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
958 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
959 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
960 	[FW_DEVLOG_FACILITY_RI]		= "RI",
961 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
962 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
963 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
964 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE"
965 };
966 
967 /* Information gathered by Device Log Open routine for the display routine.
968  */
969 struct devlog_info {
970 	unsigned int nentries;		/* number of entries in log[] */
971 	unsigned int first;		/* first [temporal] entry in log[] */
972 	struct fw_devlog_e log[0];	/* Firmware Device Log */
973 };
974 
975 /* Dump a Firmaware Device Log entry.
976  */
977 static int devlog_show(struct seq_file *seq, void *v)
978 {
979 	if (v == SEQ_START_TOKEN)
980 		seq_printf(seq, "%10s  %15s  %8s  %8s  %s\n",
981 			   "Seq#", "Tstamp", "Level", "Facility", "Message");
982 	else {
983 		struct devlog_info *dinfo = seq->private;
984 		int fidx = (uintptr_t)v - 2;
985 		unsigned long index;
986 		struct fw_devlog_e *e;
987 
988 		/* Get a pointer to the log entry to display.  Skip unused log
989 		 * entries.
990 		 */
991 		index = dinfo->first + fidx;
992 		if (index >= dinfo->nentries)
993 			index -= dinfo->nentries;
994 		e = &dinfo->log[index];
995 		if (e->timestamp == 0)
996 			return 0;
997 
998 		/* Print the message.  This depends on the firmware using
999 		 * exactly the same formating strings as the kernel so we may
1000 		 * eventually have to put a format interpreter in here ...
1001 		 */
1002 		seq_printf(seq, "%10d  %15llu  %8s  %8s  ",
1003 			   be32_to_cpu(e->seqno),
1004 			   be64_to_cpu(e->timestamp),
1005 			   (e->level < ARRAY_SIZE(devlog_level_strings)
1006 			    ? devlog_level_strings[e->level]
1007 			    : "UNKNOWN"),
1008 			   (e->facility < ARRAY_SIZE(devlog_facility_strings)
1009 			    ? devlog_facility_strings[e->facility]
1010 			    : "UNKNOWN"));
1011 		seq_printf(seq, e->fmt,
1012 			   be32_to_cpu(e->params[0]),
1013 			   be32_to_cpu(e->params[1]),
1014 			   be32_to_cpu(e->params[2]),
1015 			   be32_to_cpu(e->params[3]),
1016 			   be32_to_cpu(e->params[4]),
1017 			   be32_to_cpu(e->params[5]),
1018 			   be32_to_cpu(e->params[6]),
1019 			   be32_to_cpu(e->params[7]));
1020 	}
1021 	return 0;
1022 }
1023 
1024 /* Sequential File Operations for Device Log.
1025  */
1026 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
1027 {
1028 	if (pos > dinfo->nentries)
1029 		return NULL;
1030 
1031 	return (void *)(uintptr_t)(pos + 1);
1032 }
1033 
1034 static void *devlog_start(struct seq_file *seq, loff_t *pos)
1035 {
1036 	struct devlog_info *dinfo = seq->private;
1037 
1038 	return (*pos
1039 		? devlog_get_idx(dinfo, *pos)
1040 		: SEQ_START_TOKEN);
1041 }
1042 
1043 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
1044 {
1045 	struct devlog_info *dinfo = seq->private;
1046 
1047 	(*pos)++;
1048 	return devlog_get_idx(dinfo, *pos);
1049 }
1050 
1051 static void devlog_stop(struct seq_file *seq, void *v)
1052 {
1053 }
1054 
1055 static const struct seq_operations devlog_seq_ops = {
1056 	.start = devlog_start,
1057 	.next  = devlog_next,
1058 	.stop  = devlog_stop,
1059 	.show  = devlog_show
1060 };
1061 
1062 /* Set up for reading the firmware's device log.  We read the entire log here
1063  * and then display it incrementally in devlog_show().
1064  */
1065 static int devlog_open(struct inode *inode, struct file *file)
1066 {
1067 	struct adapter *adap = inode->i_private;
1068 	struct devlog_params *dparams = &adap->params.devlog;
1069 	struct devlog_info *dinfo;
1070 	unsigned int index;
1071 	u32 fseqno;
1072 	int ret;
1073 
1074 	/* If we don't know where the log is we can't do anything.
1075 	 */
1076 	if (dparams->start == 0)
1077 		return -ENXIO;
1078 
1079 	/* Allocate the space to read in the firmware's device log and set up
1080 	 * for the iterated call to our display function.
1081 	 */
1082 	dinfo = __seq_open_private(file, &devlog_seq_ops,
1083 				   sizeof(*dinfo) + dparams->size);
1084 	if (!dinfo)
1085 		return -ENOMEM;
1086 
1087 	/* Record the basic log buffer information and read in the raw log.
1088 	 */
1089 	dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
1090 	dinfo->first = 0;
1091 	spin_lock(&adap->win0_lock);
1092 	ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
1093 			   dparams->start, dparams->size, (__be32 *)dinfo->log,
1094 			   T4_MEMORY_READ);
1095 	spin_unlock(&adap->win0_lock);
1096 	if (ret) {
1097 		seq_release_private(inode, file);
1098 		return ret;
1099 	}
1100 
1101 	/* Find the earliest (lowest Sequence Number) log entry in the
1102 	 * circular Device Log.
1103 	 */
1104 	for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
1105 		struct fw_devlog_e *e = &dinfo->log[index];
1106 		__u32 seqno;
1107 
1108 		if (e->timestamp == 0)
1109 			continue;
1110 
1111 		seqno = be32_to_cpu(e->seqno);
1112 		if (seqno < fseqno) {
1113 			fseqno = seqno;
1114 			dinfo->first = index;
1115 		}
1116 	}
1117 	return 0;
1118 }
1119 
1120 static const struct file_operations devlog_fops = {
1121 	.owner   = THIS_MODULE,
1122 	.open    = devlog_open,
1123 	.read    = seq_read,
1124 	.llseek  = seq_lseek,
1125 	.release = seq_release_private
1126 };
1127 
1128 static int mbox_show(struct seq_file *seq, void *v)
1129 {
1130 	static const char * const owner[] = { "none", "FW", "driver",
1131 					      "unknown" };
1132 
1133 	int i;
1134 	unsigned int mbox = (uintptr_t)seq->private & 7;
1135 	struct adapter *adap = seq->private - mbox;
1136 	void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1137 	unsigned int ctrl_reg = (is_t4(adap->params.chip)
1138 				 ? CIM_PF_MAILBOX_CTRL_A
1139 				 : CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A);
1140 	void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
1141 
1142 	i = MBOWNER_G(readl(ctrl));
1143 	seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
1144 
1145 	for (i = 0; i < MBOX_LEN; i += 8)
1146 		seq_printf(seq, "%016llx\n",
1147 			   (unsigned long long)readq(addr + i));
1148 	return 0;
1149 }
1150 
1151 static int mbox_open(struct inode *inode, struct file *file)
1152 {
1153 	return single_open(file, mbox_show, inode->i_private);
1154 }
1155 
1156 static ssize_t mbox_write(struct file *file, const char __user *buf,
1157 			  size_t count, loff_t *pos)
1158 {
1159 	int i;
1160 	char c = '\n', s[256];
1161 	unsigned long long data[8];
1162 	const struct inode *ino;
1163 	unsigned int mbox;
1164 	struct adapter *adap;
1165 	void __iomem *addr;
1166 	void __iomem *ctrl;
1167 
1168 	if (count > sizeof(s) - 1 || !count)
1169 		return -EINVAL;
1170 	if (copy_from_user(s, buf, count))
1171 		return -EFAULT;
1172 	s[count] = '\0';
1173 
1174 	if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
1175 		   &data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
1176 		   &data[7], &c) < 8 || c != '\n')
1177 		return -EINVAL;
1178 
1179 	ino = file_inode(file);
1180 	mbox = (uintptr_t)ino->i_private & 7;
1181 	adap = ino->i_private - mbox;
1182 	addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1183 	ctrl = addr + MBOX_LEN;
1184 
1185 	if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
1186 		return -EBUSY;
1187 
1188 	for (i = 0; i < 8; i++)
1189 		writeq(data[i], addr + 8 * i);
1190 
1191 	writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
1192 	return count;
1193 }
1194 
1195 static const struct file_operations mbox_debugfs_fops = {
1196 	.owner   = THIS_MODULE,
1197 	.open    = mbox_open,
1198 	.read    = seq_read,
1199 	.llseek  = seq_lseek,
1200 	.release = single_release,
1201 	.write   = mbox_write
1202 };
1203 
1204 static int mps_trc_show(struct seq_file *seq, void *v)
1205 {
1206 	int enabled, i;
1207 	struct trace_params tp;
1208 	unsigned int trcidx = (uintptr_t)seq->private & 3;
1209 	struct adapter *adap = seq->private - trcidx;
1210 
1211 	t4_get_trace_filter(adap, &tp, trcidx, &enabled);
1212 	if (!enabled) {
1213 		seq_puts(seq, "tracer is disabled\n");
1214 		return 0;
1215 	}
1216 
1217 	if (tp.skip_ofst * 8 >= TRACE_LEN) {
1218 		dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
1219 		return -EINVAL;
1220 	}
1221 	if (tp.port < 8) {
1222 		i = adap->chan_map[tp.port & 3];
1223 		if (i >= MAX_NPORTS) {
1224 			dev_err(adap->pdev_dev, "tracer %u is assigned "
1225 				"to non-existing port\n", trcidx);
1226 			return -EINVAL;
1227 		}
1228 		seq_printf(seq, "tracer is capturing %s %s, ",
1229 			   adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
1230 	} else
1231 		seq_printf(seq, "tracer is capturing loopback %d, ",
1232 			   tp.port - 8);
1233 	seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
1234 		   tp.min_len);
1235 	seq_printf(seq, "packets captured %smatch filter\n",
1236 		   tp.invert ? "do not " : "");
1237 
1238 	if (tp.skip_ofst) {
1239 		seq_puts(seq, "filter pattern: ");
1240 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1241 			seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1242 		seq_putc(seq, '/');
1243 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1244 			seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1245 		seq_puts(seq, "@0\n");
1246 	}
1247 
1248 	seq_puts(seq, "filter pattern: ");
1249 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1250 		seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1251 	seq_putc(seq, '/');
1252 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1253 		seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1254 	seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
1255 	return 0;
1256 }
1257 
1258 static int mps_trc_open(struct inode *inode, struct file *file)
1259 {
1260 	return single_open(file, mps_trc_show, inode->i_private);
1261 }
1262 
1263 static unsigned int xdigit2int(unsigned char c)
1264 {
1265 	return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
1266 }
1267 
1268 #define TRC_PORT_NONE 0xff
1269 #define TRC_RSS_ENABLE 0x33
1270 #define TRC_RSS_DISABLE 0x13
1271 
1272 /* Set an MPS trace filter.  Syntax is:
1273  *
1274  * disable
1275  *
1276  * to disable tracing, or
1277  *
1278  * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
1279  *
1280  * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
1281  * of the NIC's response qid obtained from sge_qinfo and pattern has the form
1282  *
1283  * <pattern data>[/<pattern mask>][@<anchor>]
1284  *
1285  * Up to 2 filter patterns can be specified.  If 2 are supplied the first one
1286  * must be anchored at 0.  An omited mask is taken as a mask of 1s, an omitted
1287  * anchor is taken as 0.
1288  */
1289 static ssize_t mps_trc_write(struct file *file, const char __user *buf,
1290 			     size_t count, loff_t *pos)
1291 {
1292 	int i, enable, ret;
1293 	u32 *data, *mask;
1294 	struct trace_params tp;
1295 	const struct inode *ino;
1296 	unsigned int trcidx;
1297 	char *s, *p, *word, *end;
1298 	struct adapter *adap;
1299 	u32 j;
1300 
1301 	ino = file_inode(file);
1302 	trcidx = (uintptr_t)ino->i_private & 3;
1303 	adap = ino->i_private - trcidx;
1304 
1305 	/* Don't accept input more than 1K, can't be anything valid except lots
1306 	 * of whitespace.  Well, use less.
1307 	 */
1308 	if (count > 1024)
1309 		return -EFBIG;
1310 	p = s = kzalloc(count + 1, GFP_USER);
1311 	if (!s)
1312 		return -ENOMEM;
1313 	if (copy_from_user(s, buf, count)) {
1314 		count = -EFAULT;
1315 		goto out;
1316 	}
1317 
1318 	if (s[count - 1] == '\n')
1319 		s[count - 1] = '\0';
1320 
1321 	enable = strcmp("disable", s) != 0;
1322 	if (!enable)
1323 		goto apply;
1324 
1325 	/* enable or disable trace multi rss filter */
1326 	if (adap->trace_rss)
1327 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
1328 	else
1329 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
1330 
1331 	memset(&tp, 0, sizeof(tp));
1332 	tp.port = TRC_PORT_NONE;
1333 	i = 0;	/* counts pattern nibbles */
1334 
1335 	while (p) {
1336 		while (isspace(*p))
1337 			p++;
1338 		word = strsep(&p, " ");
1339 		if (!*word)
1340 			break;
1341 
1342 		if (!strncmp(word, "qid=", 4)) {
1343 			end = (char *)word + 4;
1344 			ret = kstrtouint(end, 10, &j);
1345 			if (ret)
1346 				goto out;
1347 			if (!adap->trace_rss) {
1348 				t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
1349 				continue;
1350 			}
1351 
1352 			switch (trcidx) {
1353 			case 0:
1354 				t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
1355 				break;
1356 			case 1:
1357 				t4_write_reg(adap,
1358 					     MPS_TRC_FILTER1_RSS_CONTROL_A, j);
1359 				break;
1360 			case 2:
1361 				t4_write_reg(adap,
1362 					     MPS_TRC_FILTER2_RSS_CONTROL_A, j);
1363 				break;
1364 			case 3:
1365 				t4_write_reg(adap,
1366 					     MPS_TRC_FILTER3_RSS_CONTROL_A, j);
1367 				break;
1368 			}
1369 			continue;
1370 		}
1371 		if (!strncmp(word, "snaplen=", 8)) {
1372 			end = (char *)word + 8;
1373 			ret = kstrtouint(end, 10, &j);
1374 			if (ret || j > 9600) {
1375 inval:				count = -EINVAL;
1376 				goto out;
1377 			}
1378 			tp.snap_len = j;
1379 			continue;
1380 		}
1381 		if (!strncmp(word, "minlen=", 7)) {
1382 			end = (char *)word + 7;
1383 			ret = kstrtouint(end, 10, &j);
1384 			if (ret || j > TFMINPKTSIZE_M)
1385 				goto inval;
1386 			tp.min_len = j;
1387 			continue;
1388 		}
1389 		if (!strcmp(word, "not")) {
1390 			tp.invert = !tp.invert;
1391 			continue;
1392 		}
1393 		if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
1394 			if (word[8] < '0' || word[8] > '3' || word[9])
1395 				goto inval;
1396 			tp.port = word[8] - '0' + 8;
1397 			continue;
1398 		}
1399 		if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
1400 			if (word[2] < '0' || word[2] > '3' || word[3])
1401 				goto inval;
1402 			tp.port = word[2] - '0' + 4;
1403 			if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
1404 				goto inval;
1405 			continue;
1406 		}
1407 		if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
1408 			if (word[2] < '0' || word[2] > '3' || word[3])
1409 				goto inval;
1410 			tp.port = word[2] - '0';
1411 			if (adap->chan_map[tp.port] >= MAX_NPORTS)
1412 				goto inval;
1413 			continue;
1414 		}
1415 		if (!isxdigit(*word))
1416 			goto inval;
1417 
1418 		/* we have found a trace pattern */
1419 		if (i) {                            /* split pattern */
1420 			if (tp.skip_len)            /* too many splits */
1421 				goto inval;
1422 			tp.skip_ofst = i / 16;
1423 		}
1424 
1425 		data = &tp.data[i / 8];
1426 		mask = &tp.mask[i / 8];
1427 		j = i;
1428 
1429 		while (isxdigit(*word)) {
1430 			if (i >= TRACE_LEN * 2) {
1431 				count = -EFBIG;
1432 				goto out;
1433 			}
1434 			*data = (*data << 4) + xdigit2int(*word++);
1435 			if (++i % 8 == 0)
1436 				data++;
1437 		}
1438 		if (*word == '/') {
1439 			word++;
1440 			while (isxdigit(*word)) {
1441 				if (j >= i)         /* mask longer than data */
1442 					goto inval;
1443 				*mask = (*mask << 4) + xdigit2int(*word++);
1444 				if (++j % 8 == 0)
1445 					mask++;
1446 			}
1447 			if (i != j)                 /* mask shorter than data */
1448 				goto inval;
1449 		} else {                            /* no mask, use all 1s */
1450 			for ( ; i - j >= 8; j += 8)
1451 				*mask++ = 0xffffffff;
1452 			if (i % 8)
1453 				*mask = (1 << (i % 8) * 4) - 1;
1454 		}
1455 		if (*word == '@') {
1456 			end = (char *)word + 1;
1457 			ret = kstrtouint(end, 10, &j);
1458 			if (*end && *end != '\n')
1459 				goto inval;
1460 			if (j & 7)          /* doesn't start at multiple of 8 */
1461 				goto inval;
1462 			j /= 8;
1463 			if (j < tp.skip_ofst)     /* overlaps earlier pattern */
1464 				goto inval;
1465 			if (j - tp.skip_ofst > 31)            /* skip too big */
1466 				goto inval;
1467 			tp.skip_len = j - tp.skip_ofst;
1468 		}
1469 		if (i % 8) {
1470 			*data <<= (8 - i % 8) * 4;
1471 			*mask <<= (8 - i % 8) * 4;
1472 			i = (i + 15) & ~15;         /* 8-byte align */
1473 		}
1474 	}
1475 
1476 	if (tp.port == TRC_PORT_NONE)
1477 		goto inval;
1478 
1479 apply:
1480 	i = t4_set_trace_filter(adap, &tp, trcidx, enable);
1481 	if (i)
1482 		count = i;
1483 out:
1484 	kfree(s);
1485 	return count;
1486 }
1487 
1488 static const struct file_operations mps_trc_debugfs_fops = {
1489 	.owner   = THIS_MODULE,
1490 	.open    = mps_trc_open,
1491 	.read    = seq_read,
1492 	.llseek  = seq_lseek,
1493 	.release = single_release,
1494 	.write   = mps_trc_write
1495 };
1496 
1497 static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
1498 			  loff_t *ppos)
1499 {
1500 	loff_t pos = *ppos;
1501 	loff_t avail = file_inode(file)->i_size;
1502 	struct adapter *adap = file->private_data;
1503 
1504 	if (pos < 0)
1505 		return -EINVAL;
1506 	if (pos >= avail)
1507 		return 0;
1508 	if (count > avail - pos)
1509 		count = avail - pos;
1510 
1511 	while (count) {
1512 		size_t len;
1513 		int ret, ofst;
1514 		u8 data[256];
1515 
1516 		ofst = pos & 3;
1517 		len = min(count + ofst, sizeof(data));
1518 		ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
1519 				    (u32 *)data, 1);
1520 		if (ret)
1521 			return ret;
1522 
1523 		len -= ofst;
1524 		if (copy_to_user(buf, data + ofst, len))
1525 			return -EFAULT;
1526 
1527 		buf += len;
1528 		pos += len;
1529 		count -= len;
1530 	}
1531 	count = pos - *ppos;
1532 	*ppos = pos;
1533 	return count;
1534 }
1535 
1536 static const struct file_operations flash_debugfs_fops = {
1537 	.owner   = THIS_MODULE,
1538 	.open    = mem_open,
1539 	.read    = flash_read,
1540 };
1541 
1542 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
1543 {
1544 	*mask = x | y;
1545 	y = (__force u64)cpu_to_be64(y);
1546 	memcpy(addr, (char *)&y + 2, ETH_ALEN);
1547 }
1548 
1549 static int mps_tcam_show(struct seq_file *seq, void *v)
1550 {
1551 	struct adapter *adap = seq->private;
1552 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1553 
1554 	if (v == SEQ_START_TOKEN) {
1555 		if (adap->params.arch.mps_rplc_size > 128)
1556 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1557 				 "Vld Ports PF  VF                           "
1558 				 "Replication                                "
1559 				 "    P0 P1 P2 P3  ML\n");
1560 		else
1561 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1562 				 "Vld Ports PF  VF              Replication"
1563 				 "	         P0 P1 P2 P3  ML\n");
1564 	} else {
1565 		u64 mask;
1566 		u8 addr[ETH_ALEN];
1567 		bool replicate;
1568 		unsigned int idx = (uintptr_t)v - 2;
1569 		u64 tcamy, tcamx, val;
1570 		u32 cls_lo, cls_hi, ctl;
1571 		u32 rplc[8] = {0};
1572 
1573 		if (chip_ver > CHELSIO_T5) {
1574 			/* CtlCmdType - 0: Read, 1: Write
1575 			 * CtlTcamSel - 0: TCAM0, 1: TCAM1
1576 			 * CtlXYBitSel- 0: Y bit, 1: X bit
1577 			 */
1578 
1579 			/* Read tcamy */
1580 			ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
1581 			if (idx < 256)
1582 				ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
1583 			else
1584 				ctl |= CTLTCAMINDEX_V(idx - 256) |
1585 				       CTLTCAMSEL_V(1);
1586 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1587 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1588 			tcamy = DMACH_G(val) << 32;
1589 			tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1590 
1591 			/* Read tcamx. Change the control param */
1592 			ctl |= CTLXYBITSEL_V(1);
1593 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1594 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1595 			tcamx = DMACH_G(val) << 32;
1596 			tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1597 		} else {
1598 			tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
1599 			tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
1600 		}
1601 
1602 		cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
1603 		cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
1604 
1605 		if (tcamx & tcamy) {
1606 			seq_printf(seq, "%3u         -\n", idx);
1607 			goto out;
1608 		}
1609 
1610 		rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
1611 		if (chip_ver > CHELSIO_T5)
1612 			replicate = (cls_lo & T6_REPLICATE_F);
1613 		else
1614 			replicate = (cls_lo & REPLICATE_F);
1615 
1616 		if (replicate) {
1617 			struct fw_ldst_cmd ldst_cmd;
1618 			int ret;
1619 			struct fw_ldst_mps_rplc mps_rplc;
1620 			u32 ldst_addrspc;
1621 
1622 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
1623 			ldst_addrspc =
1624 				FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
1625 			ldst_cmd.op_to_addrspace =
1626 				htonl(FW_CMD_OP_V(FW_LDST_CMD) |
1627 				      FW_CMD_REQUEST_F |
1628 				      FW_CMD_READ_F |
1629 				      ldst_addrspc);
1630 			ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
1631 			ldst_cmd.u.mps.rplc.fid_idx =
1632 				htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
1633 				      FW_LDST_CMD_IDX_V(idx));
1634 			ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
1635 					 sizeof(ldst_cmd), &ldst_cmd);
1636 			if (ret)
1637 				dev_warn(adap->pdev_dev, "Can't read MPS "
1638 					 "replication map for idx %d: %d\n",
1639 					 idx, -ret);
1640 			else {
1641 				mps_rplc = ldst_cmd.u.mps.rplc;
1642 				rplc[0] = ntohl(mps_rplc.rplc31_0);
1643 				rplc[1] = ntohl(mps_rplc.rplc63_32);
1644 				rplc[2] = ntohl(mps_rplc.rplc95_64);
1645 				rplc[3] = ntohl(mps_rplc.rplc127_96);
1646 				if (adap->params.arch.mps_rplc_size > 128) {
1647 					rplc[4] = ntohl(mps_rplc.rplc159_128);
1648 					rplc[5] = ntohl(mps_rplc.rplc191_160);
1649 					rplc[6] = ntohl(mps_rplc.rplc223_192);
1650 					rplc[7] = ntohl(mps_rplc.rplc255_224);
1651 				}
1652 			}
1653 		}
1654 
1655 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
1656 		if (chip_ver > CHELSIO_T5)
1657 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1658 				   "%012llx%3c   %#x%4u%4d",
1659 				   idx, addr[0], addr[1], addr[2], addr[3],
1660 				   addr[4], addr[5], (unsigned long long)mask,
1661 				   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1662 				   PORTMAP_G(cls_hi),
1663 				   T6_PF_G(cls_lo),
1664 				   (cls_lo & T6_VF_VALID_F) ?
1665 				   T6_VF_G(cls_lo) : -1);
1666 		else
1667 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1668 				   "%012llx%3c   %#x%4u%4d",
1669 				   idx, addr[0], addr[1], addr[2], addr[3],
1670 				   addr[4], addr[5], (unsigned long long)mask,
1671 				   (cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
1672 				   PORTMAP_G(cls_hi),
1673 				   PF_G(cls_lo),
1674 				   (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
1675 
1676 		if (replicate) {
1677 			if (adap->params.arch.mps_rplc_size > 128)
1678 				seq_printf(seq, " %08x %08x %08x %08x "
1679 					   "%08x %08x %08x %08x",
1680 					   rplc[7], rplc[6], rplc[5], rplc[4],
1681 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1682 			else
1683 				seq_printf(seq, " %08x %08x %08x %08x",
1684 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1685 		} else {
1686 			if (adap->params.arch.mps_rplc_size > 128)
1687 				seq_printf(seq, "%72c", ' ');
1688 			else
1689 				seq_printf(seq, "%36c", ' ');
1690 		}
1691 
1692 		if (chip_ver > CHELSIO_T5)
1693 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1694 				   T6_SRAM_PRIO0_G(cls_lo),
1695 				   T6_SRAM_PRIO1_G(cls_lo),
1696 				   T6_SRAM_PRIO2_G(cls_lo),
1697 				   T6_SRAM_PRIO3_G(cls_lo),
1698 				   (cls_lo >> T6_MULTILISTEN0_S) & 0xf);
1699 		else
1700 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1701 				   SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
1702 				   SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
1703 				   (cls_lo >> MULTILISTEN0_S) & 0xf);
1704 	}
1705 out:	return 0;
1706 }
1707 
1708 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
1709 {
1710 	struct adapter *adap = seq->private;
1711 	int max_mac_addr = is_t4(adap->params.chip) ?
1712 				NUM_MPS_CLS_SRAM_L_INSTANCES :
1713 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1714 	return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
1715 }
1716 
1717 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
1718 {
1719 	return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
1720 }
1721 
1722 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
1723 {
1724 	++*pos;
1725 	return mps_tcam_get_idx(seq, *pos);
1726 }
1727 
1728 static void mps_tcam_stop(struct seq_file *seq, void *v)
1729 {
1730 }
1731 
1732 static const struct seq_operations mps_tcam_seq_ops = {
1733 	.start = mps_tcam_start,
1734 	.next  = mps_tcam_next,
1735 	.stop  = mps_tcam_stop,
1736 	.show  = mps_tcam_show
1737 };
1738 
1739 static int mps_tcam_open(struct inode *inode, struct file *file)
1740 {
1741 	int res = seq_open(file, &mps_tcam_seq_ops);
1742 
1743 	if (!res) {
1744 		struct seq_file *seq = file->private_data;
1745 
1746 		seq->private = inode->i_private;
1747 	}
1748 	return res;
1749 }
1750 
1751 static const struct file_operations mps_tcam_debugfs_fops = {
1752 	.owner   = THIS_MODULE,
1753 	.open    = mps_tcam_open,
1754 	.read    = seq_read,
1755 	.llseek  = seq_lseek,
1756 	.release = seq_release,
1757 };
1758 
1759 /* Display various sensor information.
1760  */
1761 static int sensors_show(struct seq_file *seq, void *v)
1762 {
1763 	struct adapter *adap = seq->private;
1764 	u32 param[7], val[7];
1765 	int ret;
1766 
1767 	/* Note that if the sensors haven't been initialized and turned on
1768 	 * we'll get values of 0, so treat those as "<unknown>" ...
1769 	 */
1770 	param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1771 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1772 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
1773 	param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1774 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1775 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
1776 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1777 			      param, val);
1778 
1779 	if (ret < 0 || val[0] == 0)
1780 		seq_puts(seq, "Temperature: <unknown>\n");
1781 	else
1782 		seq_printf(seq, "Temperature: %dC\n", val[0]);
1783 
1784 	if (ret < 0 || val[1] == 0)
1785 		seq_puts(seq, "Core VDD:    <unknown>\n");
1786 	else
1787 		seq_printf(seq, "Core VDD:    %dmV\n", val[1]);
1788 
1789 	return 0;
1790 }
1791 
1792 DEFINE_SIMPLE_DEBUGFS_FILE(sensors);
1793 
1794 #if IS_ENABLED(CONFIG_IPV6)
1795 static int clip_tbl_open(struct inode *inode, struct file *file)
1796 {
1797 	return single_open(file, clip_tbl_show, inode->i_private);
1798 }
1799 
1800 static const struct file_operations clip_tbl_debugfs_fops = {
1801 	.owner   = THIS_MODULE,
1802 	.open    = clip_tbl_open,
1803 	.read    = seq_read,
1804 	.llseek  = seq_lseek,
1805 	.release = single_release
1806 };
1807 #endif
1808 
1809 /*RSS Table.
1810  */
1811 
1812 static int rss_show(struct seq_file *seq, void *v, int idx)
1813 {
1814 	u16 *entry = v;
1815 
1816 	seq_printf(seq, "%4d:  %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u\n",
1817 		   idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
1818 		   entry[5], entry[6], entry[7]);
1819 	return 0;
1820 }
1821 
1822 static int rss_open(struct inode *inode, struct file *file)
1823 {
1824 	int ret;
1825 	struct seq_tab *p;
1826 	struct adapter *adap = inode->i_private;
1827 
1828 	p = seq_open_tab(file, RSS_NENTRIES / 8, 8 * sizeof(u16), 0, rss_show);
1829 	if (!p)
1830 		return -ENOMEM;
1831 
1832 	ret = t4_read_rss(adap, (u16 *)p->data);
1833 	if (ret)
1834 		seq_release_private(inode, file);
1835 
1836 	return ret;
1837 }
1838 
1839 static const struct file_operations rss_debugfs_fops = {
1840 	.owner   = THIS_MODULE,
1841 	.open    = rss_open,
1842 	.read    = seq_read,
1843 	.llseek  = seq_lseek,
1844 	.release = seq_release_private
1845 };
1846 
1847 /* RSS Configuration.
1848  */
1849 
1850 /* Small utility function to return the strings "yes" or "no" if the supplied
1851  * argument is non-zero.
1852  */
1853 static const char *yesno(int x)
1854 {
1855 	static const char *yes = "yes";
1856 	static const char *no = "no";
1857 
1858 	return x ? yes : no;
1859 }
1860 
1861 static int rss_config_show(struct seq_file *seq, void *v)
1862 {
1863 	struct adapter *adapter = seq->private;
1864 	static const char * const keymode[] = {
1865 		"global",
1866 		"global and per-VF scramble",
1867 		"per-PF and per-VF scramble",
1868 		"per-VF and per-VF scramble",
1869 	};
1870 	u32 rssconf;
1871 
1872 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
1873 	seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
1874 	seq_printf(seq, "  Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
1875 							TNL4TUPENIPV6_F));
1876 	seq_printf(seq, "  Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
1877 							TNL2TUPENIPV6_F));
1878 	seq_printf(seq, "  Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
1879 							TNL4TUPENIPV4_F));
1880 	seq_printf(seq, "  Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
1881 							TNL2TUPENIPV4_F));
1882 	seq_printf(seq, "  TnlTcpSel:     %3s\n", yesno(rssconf & TNLTCPSEL_F));
1883 	seq_printf(seq, "  TnlIp6Sel:     %3s\n", yesno(rssconf & TNLIP6SEL_F));
1884 	seq_printf(seq, "  TnlVrtSel:     %3s\n", yesno(rssconf & TNLVRTSEL_F));
1885 	seq_printf(seq, "  TnlMapEn:      %3s\n", yesno(rssconf & TNLMAPEN_F));
1886 	seq_printf(seq, "  OfdHashSave:   %3s\n", yesno(rssconf &
1887 							OFDHASHSAVE_F));
1888 	seq_printf(seq, "  OfdVrtSel:     %3s\n", yesno(rssconf & OFDVRTSEL_F));
1889 	seq_printf(seq, "  OfdMapEn:      %3s\n", yesno(rssconf & OFDMAPEN_F));
1890 	seq_printf(seq, "  OfdLkpEn:      %3s\n", yesno(rssconf & OFDLKPEN_F));
1891 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1892 							SYN4TUPENIPV6_F));
1893 	seq_printf(seq, "  Syn2TupEnIpv6: %3s\n", yesno(rssconf &
1894 							SYN2TUPENIPV6_F));
1895 	seq_printf(seq, "  Syn4TupEnIpv4: %3s\n", yesno(rssconf &
1896 							SYN4TUPENIPV4_F));
1897 	seq_printf(seq, "  Syn2TupEnIpv4: %3s\n", yesno(rssconf &
1898 							SYN2TUPENIPV4_F));
1899 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1900 							SYN4TUPENIPV6_F));
1901 	seq_printf(seq, "  SynIp6Sel:     %3s\n", yesno(rssconf & SYNIP6SEL_F));
1902 	seq_printf(seq, "  SynVrt6Sel:    %3s\n", yesno(rssconf & SYNVRTSEL_F));
1903 	seq_printf(seq, "  SynMapEn:      %3s\n", yesno(rssconf & SYNMAPEN_F));
1904 	seq_printf(seq, "  SynLkpEn:      %3s\n", yesno(rssconf & SYNLKPEN_F));
1905 	seq_printf(seq, "  ChnEn:         %3s\n", yesno(rssconf &
1906 							CHANNELENABLE_F));
1907 	seq_printf(seq, "  PrtEn:         %3s\n", yesno(rssconf &
1908 							PORTENABLE_F));
1909 	seq_printf(seq, "  TnlAllLkp:     %3s\n", yesno(rssconf &
1910 							TNLALLLOOKUP_F));
1911 	seq_printf(seq, "  VrtEn:         %3s\n", yesno(rssconf &
1912 							VIRTENABLE_F));
1913 	seq_printf(seq, "  CngEn:         %3s\n", yesno(rssconf &
1914 							CONGESTIONENABLE_F));
1915 	seq_printf(seq, "  HashToeplitz:  %3s\n", yesno(rssconf &
1916 							HASHTOEPLITZ_F));
1917 	seq_printf(seq, "  Udp4En:        %3s\n", yesno(rssconf & UDPENABLE_F));
1918 	seq_printf(seq, "  Disable:       %3s\n", yesno(rssconf & DISABLE_F));
1919 
1920 	seq_puts(seq, "\n");
1921 
1922 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
1923 	seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
1924 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
1925 	seq_printf(seq, "  MaskFilter:    %3d\n", MASKFILTER_G(rssconf));
1926 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
1927 		seq_printf(seq, "  HashAll:     %3s\n",
1928 			   yesno(rssconf & HASHALL_F));
1929 		seq_printf(seq, "  HashEth:     %3s\n",
1930 			   yesno(rssconf & HASHETH_F));
1931 	}
1932 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
1933 
1934 	seq_puts(seq, "\n");
1935 
1936 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
1937 	seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
1938 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
1939 	seq_printf(seq, "  RRCplMapEn:    %3s\n", yesno(rssconf &
1940 							RRCPLMAPEN_F));
1941 	seq_printf(seq, "  RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
1942 
1943 	seq_puts(seq, "\n");
1944 
1945 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
1946 	seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
1947 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
1948 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
1949 
1950 	seq_puts(seq, "\n");
1951 
1952 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
1953 	seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
1954 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
1955 		seq_printf(seq, "  KeyWrAddrX:     %3d\n",
1956 			   KEYWRADDRX_G(rssconf));
1957 		seq_printf(seq, "  KeyExtend:      %3s\n",
1958 			   yesno(rssconf & KEYEXTEND_F));
1959 	}
1960 	seq_printf(seq, "  VfRdRg:        %3s\n", yesno(rssconf & VFRDRG_F));
1961 	seq_printf(seq, "  VfRdEn:        %3s\n", yesno(rssconf & VFRDEN_F));
1962 	seq_printf(seq, "  VfPerrEn:      %3s\n", yesno(rssconf & VFPERREN_F));
1963 	seq_printf(seq, "  KeyPerrEn:     %3s\n", yesno(rssconf & KEYPERREN_F));
1964 	seq_printf(seq, "  DisVfVlan:     %3s\n", yesno(rssconf &
1965 							DISABLEVLAN_F));
1966 	seq_printf(seq, "  EnUpSwt:       %3s\n", yesno(rssconf & ENABLEUP0_F));
1967 	seq_printf(seq, "  HashDelay:     %3d\n", HASHDELAY_G(rssconf));
1968 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1969 		seq_printf(seq, "  VfWrAddr:      %3d\n", VFWRADDR_G(rssconf));
1970 	else
1971 		seq_printf(seq, "  VfWrAddr:      %3d\n",
1972 			   T6_VFWRADDR_G(rssconf));
1973 	seq_printf(seq, "  KeyMode:       %s\n", keymode[KEYMODE_G(rssconf)]);
1974 	seq_printf(seq, "  VfWrEn:        %3s\n", yesno(rssconf & VFWREN_F));
1975 	seq_printf(seq, "  KeyWrEn:       %3s\n", yesno(rssconf & KEYWREN_F));
1976 	seq_printf(seq, "  KeyWrAddr:     %3d\n", KEYWRADDR_G(rssconf));
1977 
1978 	seq_puts(seq, "\n");
1979 
1980 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
1981 	seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
1982 	seq_printf(seq, "  ChnCount3:     %3s\n", yesno(rssconf & CHNCOUNT3_F));
1983 	seq_printf(seq, "  ChnCount2:     %3s\n", yesno(rssconf & CHNCOUNT2_F));
1984 	seq_printf(seq, "  ChnCount1:     %3s\n", yesno(rssconf & CHNCOUNT1_F));
1985 	seq_printf(seq, "  ChnCount0:     %3s\n", yesno(rssconf & CHNCOUNT0_F));
1986 	seq_printf(seq, "  ChnUndFlow3:   %3s\n", yesno(rssconf &
1987 							CHNUNDFLOW3_F));
1988 	seq_printf(seq, "  ChnUndFlow2:   %3s\n", yesno(rssconf &
1989 							CHNUNDFLOW2_F));
1990 	seq_printf(seq, "  ChnUndFlow1:   %3s\n", yesno(rssconf &
1991 							CHNUNDFLOW1_F));
1992 	seq_printf(seq, "  ChnUndFlow0:   %3s\n", yesno(rssconf &
1993 							CHNUNDFLOW0_F));
1994 	seq_printf(seq, "  RstChn3:       %3s\n", yesno(rssconf & RSTCHN3_F));
1995 	seq_printf(seq, "  RstChn2:       %3s\n", yesno(rssconf & RSTCHN2_F));
1996 	seq_printf(seq, "  RstChn1:       %3s\n", yesno(rssconf & RSTCHN1_F));
1997 	seq_printf(seq, "  RstChn0:       %3s\n", yesno(rssconf & RSTCHN0_F));
1998 	seq_printf(seq, "  UpdVld:        %3s\n", yesno(rssconf & UPDVLD_F));
1999 	seq_printf(seq, "  Xoff:          %3s\n", yesno(rssconf & XOFF_F));
2000 	seq_printf(seq, "  UpdChn3:       %3s\n", yesno(rssconf & UPDCHN3_F));
2001 	seq_printf(seq, "  UpdChn2:       %3s\n", yesno(rssconf & UPDCHN2_F));
2002 	seq_printf(seq, "  UpdChn1:       %3s\n", yesno(rssconf & UPDCHN1_F));
2003 	seq_printf(seq, "  UpdChn0:       %3s\n", yesno(rssconf & UPDCHN0_F));
2004 	seq_printf(seq, "  Queue:         %3d\n", QUEUE_G(rssconf));
2005 
2006 	return 0;
2007 }
2008 
2009 DEFINE_SIMPLE_DEBUGFS_FILE(rss_config);
2010 
2011 /* RSS Secret Key.
2012  */
2013 
2014 static int rss_key_show(struct seq_file *seq, void *v)
2015 {
2016 	u32 key[10];
2017 
2018 	t4_read_rss_key(seq->private, key);
2019 	seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
2020 		   key[9], key[8], key[7], key[6], key[5], key[4], key[3],
2021 		   key[2], key[1], key[0]);
2022 	return 0;
2023 }
2024 
2025 static int rss_key_open(struct inode *inode, struct file *file)
2026 {
2027 	return single_open(file, rss_key_show, inode->i_private);
2028 }
2029 
2030 static ssize_t rss_key_write(struct file *file, const char __user *buf,
2031 			     size_t count, loff_t *pos)
2032 {
2033 	int i, j;
2034 	u32 key[10];
2035 	char s[100], *p;
2036 	struct adapter *adap = file_inode(file)->i_private;
2037 
2038 	if (count > sizeof(s) - 1)
2039 		return -EINVAL;
2040 	if (copy_from_user(s, buf, count))
2041 		return -EFAULT;
2042 	for (i = count; i > 0 && isspace(s[i - 1]); i--)
2043 		;
2044 	s[i] = '\0';
2045 
2046 	for (p = s, i = 9; i >= 0; i--) {
2047 		key[i] = 0;
2048 		for (j = 0; j < 8; j++, p++) {
2049 			if (!isxdigit(*p))
2050 				return -EINVAL;
2051 			key[i] = (key[i] << 4) | hex2val(*p);
2052 		}
2053 	}
2054 
2055 	t4_write_rss_key(adap, key, -1);
2056 	return count;
2057 }
2058 
2059 static const struct file_operations rss_key_debugfs_fops = {
2060 	.owner   = THIS_MODULE,
2061 	.open    = rss_key_open,
2062 	.read    = seq_read,
2063 	.llseek  = seq_lseek,
2064 	.release = single_release,
2065 	.write   = rss_key_write
2066 };
2067 
2068 /* PF RSS Configuration.
2069  */
2070 
2071 struct rss_pf_conf {
2072 	u32 rss_pf_map;
2073 	u32 rss_pf_mask;
2074 	u32 rss_pf_config;
2075 };
2076 
2077 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
2078 {
2079 	struct rss_pf_conf *pfconf;
2080 
2081 	if (v == SEQ_START_TOKEN) {
2082 		/* use the 0th entry to dump the PF Map Index Size */
2083 		pfconf = seq->private + offsetof(struct seq_tab, data);
2084 		seq_printf(seq, "PF Map Index Size = %d\n\n",
2085 			   LKPIDXSIZE_G(pfconf->rss_pf_map));
2086 
2087 		seq_puts(seq, "     RSS              PF   VF    Hash Tuple Enable         Default\n");
2088 		seq_puts(seq, "     Enable       IPF Mask Mask  IPv6      IPv4      UDP   Queue\n");
2089 		seq_puts(seq, " PF  Map Chn Prt  Map Size Size  Four Two  Four Two  Four  Ch1  Ch0\n");
2090 	} else {
2091 		#define G_PFnLKPIDX(map, n) \
2092 			(((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
2093 		#define G_PFnMSKSIZE(mask, n) \
2094 			(((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
2095 
2096 		pfconf = v;
2097 		seq_printf(seq, "%3d  %3s %3s %3s  %3d  %3d  %3d   %3s %3s   %3s %3s   %3s  %3d  %3d\n",
2098 			   idx,
2099 			   yesno(pfconf->rss_pf_config & MAPENABLE_F),
2100 			   yesno(pfconf->rss_pf_config & CHNENABLE_F),
2101 			   yesno(pfconf->rss_pf_config & PRTENABLE_F),
2102 			   G_PFnLKPIDX(pfconf->rss_pf_map, idx),
2103 			   G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
2104 			   IVFWIDTH_G(pfconf->rss_pf_config),
2105 			   yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
2106 			   yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
2107 			   yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
2108 			   yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
2109 			   yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
2110 			   CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
2111 			   CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
2112 
2113 		#undef G_PFnLKPIDX
2114 		#undef G_PFnMSKSIZE
2115 	}
2116 	return 0;
2117 }
2118 
2119 static int rss_pf_config_open(struct inode *inode, struct file *file)
2120 {
2121 	struct adapter *adapter = inode->i_private;
2122 	struct seq_tab *p;
2123 	u32 rss_pf_map, rss_pf_mask;
2124 	struct rss_pf_conf *pfconf;
2125 	int pf;
2126 
2127 	p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
2128 	if (!p)
2129 		return -ENOMEM;
2130 
2131 	pfconf = (struct rss_pf_conf *)p->data;
2132 	rss_pf_map = t4_read_rss_pf_map(adapter);
2133 	rss_pf_mask = t4_read_rss_pf_mask(adapter);
2134 	for (pf = 0; pf < 8; pf++) {
2135 		pfconf[pf].rss_pf_map = rss_pf_map;
2136 		pfconf[pf].rss_pf_mask = rss_pf_mask;
2137 		t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config);
2138 	}
2139 	return 0;
2140 }
2141 
2142 static const struct file_operations rss_pf_config_debugfs_fops = {
2143 	.owner   = THIS_MODULE,
2144 	.open    = rss_pf_config_open,
2145 	.read    = seq_read,
2146 	.llseek  = seq_lseek,
2147 	.release = seq_release_private
2148 };
2149 
2150 /* VF RSS Configuration.
2151  */
2152 
2153 struct rss_vf_conf {
2154 	u32 rss_vf_vfl;
2155 	u32 rss_vf_vfh;
2156 };
2157 
2158 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
2159 {
2160 	if (v == SEQ_START_TOKEN) {
2161 		seq_puts(seq, "     RSS                     Hash Tuple Enable\n");
2162 		seq_puts(seq, "     Enable   IVF  Dis  Enb  IPv6      IPv4      UDP    Def  Secret Key\n");
2163 		seq_puts(seq, " VF  Chn Prt  Map  VLAN  uP  Four Two  Four Two  Four   Que  Idx       Hash\n");
2164 	} else {
2165 		struct rss_vf_conf *vfconf = v;
2166 
2167 		seq_printf(seq, "%3d  %3s %3s  %3d   %3s %3s   %3s %3s   %3s  %3s   %3s  %4d  %3d %#10x\n",
2168 			   idx,
2169 			   yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
2170 			   yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
2171 			   VFLKPIDX_G(vfconf->rss_vf_vfh),
2172 			   yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
2173 			   yesno(vfconf->rss_vf_vfh & VFUPEN_F),
2174 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2175 			   yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
2176 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2177 			   yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
2178 			   yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
2179 			   DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
2180 			   KEYINDEX_G(vfconf->rss_vf_vfh),
2181 			   vfconf->rss_vf_vfl);
2182 	}
2183 	return 0;
2184 }
2185 
2186 static int rss_vf_config_open(struct inode *inode, struct file *file)
2187 {
2188 	struct adapter *adapter = inode->i_private;
2189 	struct seq_tab *p;
2190 	struct rss_vf_conf *vfconf;
2191 	int vf, vfcount = adapter->params.arch.vfcount;
2192 
2193 	p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
2194 	if (!p)
2195 		return -ENOMEM;
2196 
2197 	vfconf = (struct rss_vf_conf *)p->data;
2198 	for (vf = 0; vf < vfcount; vf++) {
2199 		t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
2200 				      &vfconf[vf].rss_vf_vfh);
2201 	}
2202 	return 0;
2203 }
2204 
2205 static const struct file_operations rss_vf_config_debugfs_fops = {
2206 	.owner   = THIS_MODULE,
2207 	.open    = rss_vf_config_open,
2208 	.read    = seq_read,
2209 	.llseek  = seq_lseek,
2210 	.release = seq_release_private
2211 };
2212 
2213 /**
2214  * ethqset2pinfo - return port_info of an Ethernet Queue Set
2215  * @adap: the adapter
2216  * @qset: Ethernet Queue Set
2217  */
2218 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
2219 {
2220 	int pidx;
2221 
2222 	for_each_port(adap, pidx) {
2223 		struct port_info *pi = adap2pinfo(adap, pidx);
2224 
2225 		if (qset >= pi->first_qset &&
2226 		    qset < pi->first_qset + pi->nqsets)
2227 			return pi;
2228 	}
2229 
2230 	/* should never happen! */
2231 	BUG_ON(1);
2232 	return NULL;
2233 }
2234 
2235 static int sge_qinfo_show(struct seq_file *seq, void *v)
2236 {
2237 	struct adapter *adap = seq->private;
2238 	int eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
2239 	int iscsi_entries = DIV_ROUND_UP(adap->sge.ofldqsets, 4);
2240 	int rdma_entries = DIV_ROUND_UP(adap->sge.rdmaqs, 4);
2241 	int ciq_entries = DIV_ROUND_UP(adap->sge.rdmaciqs, 4);
2242 	int ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
2243 	int i, r = (uintptr_t)v - 1;
2244 	int iscsi_idx = r - eth_entries;
2245 	int rdma_idx = iscsi_idx - iscsi_entries;
2246 	int ciq_idx = rdma_idx - rdma_entries;
2247 	int ctrl_idx =  ciq_idx - ciq_entries;
2248 	int fq_idx =  ctrl_idx - ctrl_entries;
2249 
2250 	if (r)
2251 		seq_putc(seq, '\n');
2252 
2253 #define S3(fmt_spec, s, v) \
2254 do { \
2255 	seq_printf(seq, "%-12s", s); \
2256 	for (i = 0; i < n; ++i) \
2257 		seq_printf(seq, " %16" fmt_spec, v); \
2258 		seq_putc(seq, '\n'); \
2259 } while (0)
2260 #define S(s, v) S3("s", s, v)
2261 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
2262 #define T(s, v) S3("u", s, tx[i].v)
2263 #define TL(s, v) T3("lu", s, v)
2264 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
2265 #define R(s, v) S3("u", s, rx[i].v)
2266 #define RL(s, v) R3("lu", s, v)
2267 
2268 	if (r < eth_entries) {
2269 		int base_qset = r * 4;
2270 		const struct sge_eth_rxq *rx = &adap->sge.ethrxq[base_qset];
2271 		const struct sge_eth_txq *tx = &adap->sge.ethtxq[base_qset];
2272 		int n = min(4, adap->sge.ethqsets - 4 * r);
2273 
2274 		S("QType:", "Ethernet");
2275 		S("Interface:",
2276 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2277 		T("TxQ ID:", q.cntxt_id);
2278 		T("TxQ size:", q.size);
2279 		T("TxQ inuse:", q.in_use);
2280 		T("TxQ CIDX:", q.cidx);
2281 		T("TxQ PIDX:", q.pidx);
2282 #ifdef CONFIG_CHELSIO_T4_DCB
2283 		T("DCB Prio:", dcb_prio);
2284 		S3("u", "DCB PGID:",
2285 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
2286 		    4*(7-tx[i].dcb_prio)) & 0xf);
2287 		S3("u", "DCB PFC:",
2288 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
2289 		    1*(7-tx[i].dcb_prio)) & 0x1);
2290 #endif
2291 		R("RspQ ID:", rspq.abs_id);
2292 		R("RspQ size:", rspq.size);
2293 		R("RspQE size:", rspq.iqe_len);
2294 		R("RspQ CIDX:", rspq.cidx);
2295 		R("RspQ Gen:", rspq.gen);
2296 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2297 		S3("u", "Intr pktcnt:",
2298 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2299 		R("FL ID:", fl.cntxt_id);
2300 		R("FL size:", fl.size - 8);
2301 		R("FL pend:", fl.pend_cred);
2302 		R("FL avail:", fl.avail);
2303 		R("FL PIDX:", fl.pidx);
2304 		R("FL CIDX:", fl.cidx);
2305 		RL("RxPackets:", stats.pkts);
2306 		RL("RxCSO:", stats.rx_cso);
2307 		RL("VLANxtract:", stats.vlan_ex);
2308 		RL("LROmerged:", stats.lro_merged);
2309 		RL("LROpackets:", stats.lro_pkts);
2310 		RL("RxDrops:", stats.rx_drops);
2311 		TL("TSO:", tso);
2312 		TL("TxCSO:", tx_cso);
2313 		TL("VLANins:", vlan_ins);
2314 		TL("TxQFull:", q.stops);
2315 		TL("TxQRestarts:", q.restarts);
2316 		TL("TxMapErr:", mapping_err);
2317 		RL("FLAllocErr:", fl.alloc_failed);
2318 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2319 		RL("FLStarving:", fl.starving);
2320 
2321 	} else if (iscsi_idx < iscsi_entries) {
2322 		const struct sge_ofld_rxq *rx =
2323 			&adap->sge.ofldrxq[iscsi_idx * 4];
2324 		const struct sge_ofld_txq *tx =
2325 			&adap->sge.ofldtxq[iscsi_idx * 4];
2326 		int n = min(4, adap->sge.ofldqsets - 4 * iscsi_idx);
2327 
2328 		S("QType:", "iSCSI");
2329 		T("TxQ ID:", q.cntxt_id);
2330 		T("TxQ size:", q.size);
2331 		T("TxQ inuse:", q.in_use);
2332 		T("TxQ CIDX:", q.cidx);
2333 		T("TxQ PIDX:", q.pidx);
2334 		R("RspQ ID:", rspq.abs_id);
2335 		R("RspQ size:", rspq.size);
2336 		R("RspQE size:", rspq.iqe_len);
2337 		R("RspQ CIDX:", rspq.cidx);
2338 		R("RspQ Gen:", rspq.gen);
2339 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2340 		S3("u", "Intr pktcnt:",
2341 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2342 		R("FL ID:", fl.cntxt_id);
2343 		R("FL size:", fl.size - 8);
2344 		R("FL pend:", fl.pend_cred);
2345 		R("FL avail:", fl.avail);
2346 		R("FL PIDX:", fl.pidx);
2347 		R("FL CIDX:", fl.cidx);
2348 		RL("RxPackets:", stats.pkts);
2349 		RL("RxImmPkts:", stats.imm);
2350 		RL("RxNoMem:", stats.nomem);
2351 		RL("FLAllocErr:", fl.alloc_failed);
2352 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2353 		RL("FLStarving:", fl.starving);
2354 
2355 	} else if (rdma_idx < rdma_entries) {
2356 		const struct sge_ofld_rxq *rx =
2357 				&adap->sge.rdmarxq[rdma_idx * 4];
2358 		int n = min(4, adap->sge.rdmaqs - 4 * rdma_idx);
2359 
2360 		S("QType:", "RDMA-CPL");
2361 		S("Interface:",
2362 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2363 		R("RspQ ID:", rspq.abs_id);
2364 		R("RspQ size:", rspq.size);
2365 		R("RspQE size:", rspq.iqe_len);
2366 		R("RspQ CIDX:", rspq.cidx);
2367 		R("RspQ Gen:", rspq.gen);
2368 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2369 		S3("u", "Intr pktcnt:",
2370 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2371 		R("FL ID:", fl.cntxt_id);
2372 		R("FL size:", fl.size - 8);
2373 		R("FL pend:", fl.pend_cred);
2374 		R("FL avail:", fl.avail);
2375 		R("FL PIDX:", fl.pidx);
2376 		R("FL CIDX:", fl.cidx);
2377 		RL("RxPackets:", stats.pkts);
2378 		RL("RxImmPkts:", stats.imm);
2379 		RL("RxNoMem:", stats.nomem);
2380 		RL("FLAllocErr:", fl.alloc_failed);
2381 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2382 		RL("FLStarving:", fl.starving);
2383 
2384 	} else if (ciq_idx < ciq_entries) {
2385 		const struct sge_ofld_rxq *rx = &adap->sge.rdmaciq[ciq_idx * 4];
2386 		int n = min(4, adap->sge.rdmaciqs - 4 * ciq_idx);
2387 
2388 		S("QType:", "RDMA-CIQ");
2389 		S("Interface:",
2390 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2391 		R("RspQ ID:", rspq.abs_id);
2392 		R("RspQ size:", rspq.size);
2393 		R("RspQE size:", rspq.iqe_len);
2394 		R("RspQ CIDX:", rspq.cidx);
2395 		R("RspQ Gen:", rspq.gen);
2396 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2397 		S3("u", "Intr pktcnt:",
2398 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2399 		RL("RxAN:", stats.an);
2400 		RL("RxNoMem:", stats.nomem);
2401 
2402 	} else if (ctrl_idx < ctrl_entries) {
2403 		const struct sge_ctrl_txq *tx = &adap->sge.ctrlq[ctrl_idx * 4];
2404 		int n = min(4, adap->params.nports - 4 * ctrl_idx);
2405 
2406 		S("QType:", "Control");
2407 		T("TxQ ID:", q.cntxt_id);
2408 		T("TxQ size:", q.size);
2409 		T("TxQ inuse:", q.in_use);
2410 		T("TxQ CIDX:", q.cidx);
2411 		T("TxQ PIDX:", q.pidx);
2412 		TL("TxQFull:", q.stops);
2413 		TL("TxQRestarts:", q.restarts);
2414 	} else if (fq_idx == 0) {
2415 		const struct sge_rspq *evtq = &adap->sge.fw_evtq;
2416 
2417 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2418 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2419 		seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
2420 		seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
2421 		seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
2422 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2423 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2424 			   qtimer_val(adap, evtq));
2425 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2426 			   adap->sge.counter_val[evtq->pktcnt_idx]);
2427 	}
2428 #undef R
2429 #undef RL
2430 #undef T
2431 #undef TL
2432 #undef S
2433 #undef R3
2434 #undef T3
2435 #undef S3
2436 	return 0;
2437 }
2438 
2439 static int sge_queue_entries(const struct adapter *adap)
2440 {
2441 	return DIV_ROUND_UP(adap->sge.ethqsets, 4) +
2442 	       DIV_ROUND_UP(adap->sge.ofldqsets, 4) +
2443 	       DIV_ROUND_UP(adap->sge.rdmaqs, 4) +
2444 	       DIV_ROUND_UP(adap->sge.rdmaciqs, 4) +
2445 	       DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
2446 }
2447 
2448 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2449 {
2450 	int entries = sge_queue_entries(seq->private);
2451 
2452 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2453 }
2454 
2455 static void sge_queue_stop(struct seq_file *seq, void *v)
2456 {
2457 }
2458 
2459 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2460 {
2461 	int entries = sge_queue_entries(seq->private);
2462 
2463 	++*pos;
2464 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2465 }
2466 
2467 static const struct seq_operations sge_qinfo_seq_ops = {
2468 	.start = sge_queue_start,
2469 	.next  = sge_queue_next,
2470 	.stop  = sge_queue_stop,
2471 	.show  = sge_qinfo_show
2472 };
2473 
2474 static int sge_qinfo_open(struct inode *inode, struct file *file)
2475 {
2476 	int res = seq_open(file, &sge_qinfo_seq_ops);
2477 
2478 	if (!res) {
2479 		struct seq_file *seq = file->private_data;
2480 
2481 		seq->private = inode->i_private;
2482 	}
2483 	return res;
2484 }
2485 
2486 static const struct file_operations sge_qinfo_debugfs_fops = {
2487 	.owner   = THIS_MODULE,
2488 	.open    = sge_qinfo_open,
2489 	.read    = seq_read,
2490 	.llseek  = seq_lseek,
2491 	.release = seq_release,
2492 };
2493 
2494 int mem_open(struct inode *inode, struct file *file)
2495 {
2496 	unsigned int mem;
2497 	struct adapter *adap;
2498 
2499 	file->private_data = inode->i_private;
2500 
2501 	mem = (uintptr_t)file->private_data & 0x3;
2502 	adap = file->private_data - mem;
2503 
2504 	(void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
2505 
2506 	return 0;
2507 }
2508 
2509 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2510 			loff_t *ppos)
2511 {
2512 	loff_t pos = *ppos;
2513 	loff_t avail = file_inode(file)->i_size;
2514 	unsigned int mem = (uintptr_t)file->private_data & 3;
2515 	struct adapter *adap = file->private_data - mem;
2516 	__be32 *data;
2517 	int ret;
2518 
2519 	if (pos < 0)
2520 		return -EINVAL;
2521 	if (pos >= avail)
2522 		return 0;
2523 	if (count > avail - pos)
2524 		count = avail - pos;
2525 
2526 	data = t4_alloc_mem(count);
2527 	if (!data)
2528 		return -ENOMEM;
2529 
2530 	spin_lock(&adap->win0_lock);
2531 	ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
2532 	spin_unlock(&adap->win0_lock);
2533 	if (ret) {
2534 		t4_free_mem(data);
2535 		return ret;
2536 	}
2537 	ret = copy_to_user(buf, data, count);
2538 
2539 	t4_free_mem(data);
2540 	if (ret)
2541 		return -EFAULT;
2542 
2543 	*ppos = pos + count;
2544 	return count;
2545 }
2546 static const struct file_operations mem_debugfs_fops = {
2547 	.owner   = THIS_MODULE,
2548 	.open    = simple_open,
2549 	.read    = mem_read,
2550 	.llseek  = default_llseek,
2551 };
2552 
2553 static int tid_info_show(struct seq_file *seq, void *v)
2554 {
2555 	struct adapter *adap = seq->private;
2556 	const struct tid_info *t = &adap->tids;
2557 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2558 
2559 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2560 		unsigned int sb;
2561 
2562 		if (chip <= CHELSIO_T5)
2563 			sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
2564 		else
2565 			sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
2566 
2567 		if (sb) {
2568 			seq_printf(seq, "TID range: 0..%u/%u..%u", sb - 1,
2569 				   adap->tids.hash_base,
2570 				   t->ntids - 1);
2571 			seq_printf(seq, ", in use: %u/%u\n",
2572 				   atomic_read(&t->tids_in_use),
2573 				   atomic_read(&t->hash_tids_in_use));
2574 		} else if (adap->flags & FW_OFLD_CONN) {
2575 			seq_printf(seq, "TID range: %u..%u/%u..%u",
2576 				   t->aftid_base,
2577 				   t->aftid_end,
2578 				   adap->tids.hash_base,
2579 				   t->ntids - 1);
2580 			seq_printf(seq, ", in use: %u/%u\n",
2581 				   atomic_read(&t->tids_in_use),
2582 				   atomic_read(&t->hash_tids_in_use));
2583 		} else {
2584 			seq_printf(seq, "TID range: %u..%u",
2585 				   adap->tids.hash_base,
2586 				   t->ntids - 1);
2587 			seq_printf(seq, ", in use: %u\n",
2588 				   atomic_read(&t->hash_tids_in_use));
2589 		}
2590 	} else if (t->ntids) {
2591 		seq_printf(seq, "TID range: 0..%u", t->ntids - 1);
2592 		seq_printf(seq, ", in use: %u\n",
2593 			   atomic_read(&t->tids_in_use));
2594 	}
2595 
2596 	if (t->nstids)
2597 		seq_printf(seq, "STID range: %u..%u, in use: %u\n",
2598 			   (!t->stid_base &&
2599 			   (chip <= CHELSIO_T5)) ?
2600 			   t->stid_base + 1 : t->stid_base,
2601 			   t->stid_base + t->nstids - 1, t->stids_in_use);
2602 	if (t->natids)
2603 		seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
2604 			   t->natids - 1, t->atids_in_use);
2605 	seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
2606 		   t->ftid_base + t->nftids - 1);
2607 	if (t->nsftids)
2608 		seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
2609 			   t->sftid_base, t->sftid_base + t->nsftids - 2,
2610 			   t->sftids_in_use);
2611 	if (t->ntids)
2612 		seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
2613 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
2614 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
2615 	return 0;
2616 }
2617 
2618 DEFINE_SIMPLE_DEBUGFS_FILE(tid_info);
2619 
2620 static void add_debugfs_mem(struct adapter *adap, const char *name,
2621 			    unsigned int idx, unsigned int size_mb)
2622 {
2623 	debugfs_create_file_size(name, S_IRUSR, adap->debugfs_root,
2624 				 (void *)adap + idx, &mem_debugfs_fops,
2625 				 size_mb << 20);
2626 }
2627 
2628 static int blocked_fl_open(struct inode *inode, struct file *file)
2629 {
2630 	file->private_data = inode->i_private;
2631 	return 0;
2632 }
2633 
2634 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
2635 			       size_t count, loff_t *ppos)
2636 {
2637 	int len;
2638 	const struct adapter *adap = filp->private_data;
2639 	char *buf;
2640 	ssize_t size = (adap->sge.egr_sz + 3) / 4 +
2641 			adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
2642 
2643 	buf = kzalloc(size, GFP_KERNEL);
2644 	if (!buf)
2645 		return -ENOMEM;
2646 
2647 	len = snprintf(buf, size - 1, "%*pb\n",
2648 		       adap->sge.egr_sz, adap->sge.blocked_fl);
2649 	len += sprintf(buf + len, "\n");
2650 	size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
2651 	t4_free_mem(buf);
2652 	return size;
2653 }
2654 
2655 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
2656 				size_t count, loff_t *ppos)
2657 {
2658 	int err;
2659 	unsigned long *t;
2660 	struct adapter *adap = filp->private_data;
2661 
2662 	t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
2663 	if (!t)
2664 		return -ENOMEM;
2665 
2666 	err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
2667 	if (err)
2668 		return err;
2669 
2670 	bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
2671 	t4_free_mem(t);
2672 	return count;
2673 }
2674 
2675 static const struct file_operations blocked_fl_fops = {
2676 	.owner   = THIS_MODULE,
2677 	.open    = blocked_fl_open,
2678 	.read    = blocked_fl_read,
2679 	.write   = blocked_fl_write,
2680 	.llseek  = generic_file_llseek,
2681 };
2682 
2683 struct mem_desc {
2684 	unsigned int base;
2685 	unsigned int limit;
2686 	unsigned int idx;
2687 };
2688 
2689 static int mem_desc_cmp(const void *a, const void *b)
2690 {
2691 	return ((const struct mem_desc *)a)->base -
2692 	       ((const struct mem_desc *)b)->base;
2693 }
2694 
2695 static void mem_region_show(struct seq_file *seq, const char *name,
2696 			    unsigned int from, unsigned int to)
2697 {
2698 	char buf[40];
2699 
2700 	string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
2701 			sizeof(buf));
2702 	seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
2703 }
2704 
2705 static int meminfo_show(struct seq_file *seq, void *v)
2706 {
2707 	static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
2708 					"MC0:", "MC1:"};
2709 	static const char * const region[] = {
2710 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
2711 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
2712 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
2713 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
2714 		"RQUDP region:", "PBL region:", "TXPBL region:",
2715 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
2716 		"On-chip queues:"
2717 	};
2718 
2719 	int i, n;
2720 	u32 lo, hi, used, alloc;
2721 	struct mem_desc avail[4];
2722 	struct mem_desc mem[ARRAY_SIZE(region) + 3];      /* up to 3 holes */
2723 	struct mem_desc *md = mem;
2724 	struct adapter *adap = seq->private;
2725 
2726 	for (i = 0; i < ARRAY_SIZE(mem); i++) {
2727 		mem[i].limit = 0;
2728 		mem[i].idx = i;
2729 	}
2730 
2731 	/* Find and sort the populated memory ranges */
2732 	i = 0;
2733 	lo = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
2734 	if (lo & EDRAM0_ENABLE_F) {
2735 		hi = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2736 		avail[i].base = EDRAM0_BASE_G(hi) << 20;
2737 		avail[i].limit = avail[i].base + (EDRAM0_SIZE_G(hi) << 20);
2738 		avail[i].idx = 0;
2739 		i++;
2740 	}
2741 	if (lo & EDRAM1_ENABLE_F) {
2742 		hi = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2743 		avail[i].base = EDRAM1_BASE_G(hi) << 20;
2744 		avail[i].limit = avail[i].base + (EDRAM1_SIZE_G(hi) << 20);
2745 		avail[i].idx = 1;
2746 		i++;
2747 	}
2748 
2749 	if (is_t5(adap->params.chip)) {
2750 		if (lo & EXT_MEM0_ENABLE_F) {
2751 			hi = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2752 			avail[i].base = EXT_MEM0_BASE_G(hi) << 20;
2753 			avail[i].limit =
2754 				avail[i].base + (EXT_MEM0_SIZE_G(hi) << 20);
2755 			avail[i].idx = 3;
2756 			i++;
2757 		}
2758 		if (lo & EXT_MEM1_ENABLE_F) {
2759 			hi = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2760 			avail[i].base = EXT_MEM1_BASE_G(hi) << 20;
2761 			avail[i].limit =
2762 				avail[i].base + (EXT_MEM1_SIZE_G(hi) << 20);
2763 			avail[i].idx = 4;
2764 			i++;
2765 		}
2766 	} else {
2767 		if (lo & EXT_MEM_ENABLE_F) {
2768 			hi = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
2769 			avail[i].base = EXT_MEM_BASE_G(hi) << 20;
2770 			avail[i].limit =
2771 				avail[i].base + (EXT_MEM_SIZE_G(hi) << 20);
2772 			avail[i].idx = 2;
2773 			i++;
2774 		}
2775 	}
2776 	if (!i)                                    /* no memory available */
2777 		return 0;
2778 	sort(avail, i, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2779 
2780 	(md++)->base = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A);
2781 	(md++)->base = t4_read_reg(adap, SGE_IMSG_CTXT_BADDR_A);
2782 	(md++)->base = t4_read_reg(adap, SGE_FLM_CACHE_BADDR_A);
2783 	(md++)->base = t4_read_reg(adap, TP_CMM_TCB_BASE_A);
2784 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_BASE_A);
2785 	(md++)->base = t4_read_reg(adap, TP_CMM_TIMER_BASE_A);
2786 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_RX_FLST_BASE_A);
2787 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_TX_FLST_BASE_A);
2788 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_PS_FLST_BASE_A);
2789 
2790 	/* the next few have explicit upper bounds */
2791 	md->base = t4_read_reg(adap, TP_PMM_TX_BASE_A);
2792 	md->limit = md->base - 1 +
2793 		    t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A) *
2794 		    PMTXMAXPAGE_G(t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A));
2795 	md++;
2796 
2797 	md->base = t4_read_reg(adap, TP_PMM_RX_BASE_A);
2798 	md->limit = md->base - 1 +
2799 		    t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) *
2800 		    PMRXMAXPAGE_G(t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A));
2801 	md++;
2802 
2803 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2804 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) {
2805 			hi = t4_read_reg(adap, LE_DB_TID_HASHBASE_A) / 4;
2806 			md->base = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2807 		 } else {
2808 			hi = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2809 			md->base = t4_read_reg(adap,
2810 					       LE_DB_HASH_TBL_BASE_ADDR_A);
2811 		}
2812 		md->limit = 0;
2813 	} else {
2814 		md->base = 0;
2815 		md->idx = ARRAY_SIZE(region);  /* hide it */
2816 	}
2817 	md++;
2818 
2819 #define ulp_region(reg) do { \
2820 	md->base = t4_read_reg(adap, ULP_ ## reg ## _LLIMIT_A);\
2821 	(md++)->limit = t4_read_reg(adap, ULP_ ## reg ## _ULIMIT_A); \
2822 } while (0)
2823 
2824 	ulp_region(RX_ISCSI);
2825 	ulp_region(RX_TDDP);
2826 	ulp_region(TX_TPT);
2827 	ulp_region(RX_STAG);
2828 	ulp_region(RX_RQ);
2829 	ulp_region(RX_RQUDP);
2830 	ulp_region(RX_PBL);
2831 	ulp_region(TX_PBL);
2832 #undef ulp_region
2833 	md->base = 0;
2834 	md->idx = ARRAY_SIZE(region);
2835 	if (!is_t4(adap->params.chip)) {
2836 		u32 size = 0;
2837 		u32 sge_ctrl = t4_read_reg(adap, SGE_CONTROL2_A);
2838 		u32 fifo_size = t4_read_reg(adap, SGE_DBVFIFO_SIZE_A);
2839 
2840 		if (is_t5(adap->params.chip)) {
2841 			if (sge_ctrl & VFIFO_ENABLE_F)
2842 				size = DBVFIFO_SIZE_G(fifo_size);
2843 		} else {
2844 			size = T6_DBVFIFO_SIZE_G(fifo_size);
2845 		}
2846 
2847 		if (size) {
2848 			md->base = BASEADDR_G(t4_read_reg(adap,
2849 					SGE_DBVFIFO_BADDR_A));
2850 			md->limit = md->base + (size << 2) - 1;
2851 		}
2852 	}
2853 
2854 	md++;
2855 
2856 	md->base = t4_read_reg(adap, ULP_RX_CTX_BASE_A);
2857 	md->limit = 0;
2858 	md++;
2859 	md->base = t4_read_reg(adap, ULP_TX_ERR_TABLE_BASE_A);
2860 	md->limit = 0;
2861 	md++;
2862 
2863 	md->base = adap->vres.ocq.start;
2864 	if (adap->vres.ocq.size)
2865 		md->limit = md->base + adap->vres.ocq.size - 1;
2866 	else
2867 		md->idx = ARRAY_SIZE(region);  /* hide it */
2868 	md++;
2869 
2870 	/* add any address-space holes, there can be up to 3 */
2871 	for (n = 0; n < i - 1; n++)
2872 		if (avail[n].limit < avail[n + 1].base)
2873 			(md++)->base = avail[n].limit;
2874 	if (avail[n].limit)
2875 		(md++)->base = avail[n].limit;
2876 
2877 	n = md - mem;
2878 	sort(mem, n, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2879 
2880 	for (lo = 0; lo < i; lo++)
2881 		mem_region_show(seq, memory[avail[lo].idx], avail[lo].base,
2882 				avail[lo].limit - 1);
2883 
2884 	seq_putc(seq, '\n');
2885 	for (i = 0; i < n; i++) {
2886 		if (mem[i].idx >= ARRAY_SIZE(region))
2887 			continue;                        /* skip holes */
2888 		if (!mem[i].limit)
2889 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
2890 		mem_region_show(seq, region[mem[i].idx], mem[i].base,
2891 				mem[i].limit);
2892 	}
2893 
2894 	seq_putc(seq, '\n');
2895 	lo = t4_read_reg(adap, CIM_SDRAM_BASE_ADDR_A);
2896 	hi = t4_read_reg(adap, CIM_SDRAM_ADDR_SIZE_A) + lo - 1;
2897 	mem_region_show(seq, "uP RAM:", lo, hi);
2898 
2899 	lo = t4_read_reg(adap, CIM_EXTMEM2_BASE_ADDR_A);
2900 	hi = t4_read_reg(adap, CIM_EXTMEM2_ADDR_SIZE_A) + lo - 1;
2901 	mem_region_show(seq, "uP Extmem2:", lo, hi);
2902 
2903 	lo = t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A);
2904 	seq_printf(seq, "\n%u Rx pages of size %uKiB for %u channels\n",
2905 		   PMRXMAXPAGE_G(lo),
2906 		   t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) >> 10,
2907 		   (lo & PMRXNUMCHN_F) ? 2 : 1);
2908 
2909 	lo = t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A);
2910 	hi = t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A);
2911 	seq_printf(seq, "%u Tx pages of size %u%ciB for %u channels\n",
2912 		   PMTXMAXPAGE_G(lo),
2913 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
2914 		   hi >= (1 << 20) ? 'M' : 'K', 1 << PMTXNUMCHN_G(lo));
2915 	seq_printf(seq, "%u p-structs\n\n",
2916 		   t4_read_reg(adap, TP_CMM_MM_MAX_PSTRUCT_A));
2917 
2918 	for (i = 0; i < 4; i++) {
2919 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
2920 			lo = t4_read_reg(adap, MPS_RX_MAC_BG_PG_CNT0_A + i * 4);
2921 		else
2922 			lo = t4_read_reg(adap, MPS_RX_PG_RSV0_A + i * 4);
2923 		if (is_t5(adap->params.chip)) {
2924 			used = T5_USED_G(lo);
2925 			alloc = T5_ALLOC_G(lo);
2926 		} else {
2927 			used = USED_G(lo);
2928 			alloc = ALLOC_G(lo);
2929 		}
2930 		/* For T6 these are MAC buffer groups */
2931 		seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
2932 			   i, used, alloc);
2933 	}
2934 	for (i = 0; i < adap->params.arch.nchan; i++) {
2935 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
2936 			lo = t4_read_reg(adap,
2937 					 MPS_RX_LPBK_BG_PG_CNT0_A + i * 4);
2938 		else
2939 			lo = t4_read_reg(adap, MPS_RX_PG_RSV4_A + i * 4);
2940 		if (is_t5(adap->params.chip)) {
2941 			used = T5_USED_G(lo);
2942 			alloc = T5_ALLOC_G(lo);
2943 		} else {
2944 			used = USED_G(lo);
2945 			alloc = ALLOC_G(lo);
2946 		}
2947 		/* For T6 these are MAC buffer groups */
2948 		seq_printf(seq,
2949 			   "Loopback %d using %u pages out of %u allocated\n",
2950 			   i, used, alloc);
2951 	}
2952 	return 0;
2953 }
2954 
2955 static int meminfo_open(struct inode *inode, struct file *file)
2956 {
2957 	return single_open(file, meminfo_show, inode->i_private);
2958 }
2959 
2960 static const struct file_operations meminfo_fops = {
2961 	.owner   = THIS_MODULE,
2962 	.open    = meminfo_open,
2963 	.read    = seq_read,
2964 	.llseek  = seq_lseek,
2965 	.release = single_release,
2966 };
2967 /* Add an array of Debug FS files.
2968  */
2969 void add_debugfs_files(struct adapter *adap,
2970 		       struct t4_debugfs_entry *files,
2971 		       unsigned int nfiles)
2972 {
2973 	int i;
2974 
2975 	/* debugfs support is best effort */
2976 	for (i = 0; i < nfiles; i++)
2977 		debugfs_create_file(files[i].name, files[i].mode,
2978 				    adap->debugfs_root,
2979 				    (void *)adap + files[i].data,
2980 				    files[i].ops);
2981 }
2982 
2983 int t4_setup_debugfs(struct adapter *adap)
2984 {
2985 	int i;
2986 	u32 size = 0;
2987 	struct dentry *de;
2988 
2989 	static struct t4_debugfs_entry t4_debugfs_files[] = {
2990 		{ "cim_la", &cim_la_fops, S_IRUSR, 0 },
2991 		{ "cim_pif_la", &cim_pif_la_fops, S_IRUSR, 0 },
2992 		{ "cim_ma_la", &cim_ma_la_fops, S_IRUSR, 0 },
2993 		{ "cim_qcfg", &cim_qcfg_fops, S_IRUSR, 0 },
2994 		{ "clk", &clk_debugfs_fops, S_IRUSR, 0 },
2995 		{ "devlog", &devlog_fops, S_IRUSR, 0 },
2996 		{ "mbox0", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
2997 		{ "mbox1", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
2998 		{ "mbox2", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
2999 		{ "mbox3", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3000 		{ "mbox4", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 4 },
3001 		{ "mbox5", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 5 },
3002 		{ "mbox6", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 6 },
3003 		{ "mbox7", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 7 },
3004 		{ "trace0", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3005 		{ "trace1", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3006 		{ "trace2", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3007 		{ "trace3", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3008 		{ "l2t", &t4_l2t_fops, S_IRUSR, 0},
3009 		{ "mps_tcam", &mps_tcam_debugfs_fops, S_IRUSR, 0 },
3010 		{ "rss", &rss_debugfs_fops, S_IRUSR, 0 },
3011 		{ "rss_config", &rss_config_debugfs_fops, S_IRUSR, 0 },
3012 		{ "rss_key", &rss_key_debugfs_fops, S_IRUSR, 0 },
3013 		{ "rss_pf_config", &rss_pf_config_debugfs_fops, S_IRUSR, 0 },
3014 		{ "rss_vf_config", &rss_vf_config_debugfs_fops, S_IRUSR, 0 },
3015 		{ "sge_qinfo", &sge_qinfo_debugfs_fops, S_IRUSR, 0 },
3016 		{ "ibq_tp0",  &cim_ibq_fops, S_IRUSR, 0 },
3017 		{ "ibq_tp1",  &cim_ibq_fops, S_IRUSR, 1 },
3018 		{ "ibq_ulp",  &cim_ibq_fops, S_IRUSR, 2 },
3019 		{ "ibq_sge0", &cim_ibq_fops, S_IRUSR, 3 },
3020 		{ "ibq_sge1", &cim_ibq_fops, S_IRUSR, 4 },
3021 		{ "ibq_ncsi", &cim_ibq_fops, S_IRUSR, 5 },
3022 		{ "obq_ulp0", &cim_obq_fops, S_IRUSR, 0 },
3023 		{ "obq_ulp1", &cim_obq_fops, S_IRUSR, 1 },
3024 		{ "obq_ulp2", &cim_obq_fops, S_IRUSR, 2 },
3025 		{ "obq_ulp3", &cim_obq_fops, S_IRUSR, 3 },
3026 		{ "obq_sge",  &cim_obq_fops, S_IRUSR, 4 },
3027 		{ "obq_ncsi", &cim_obq_fops, S_IRUSR, 5 },
3028 		{ "tp_la", &tp_la_fops, S_IRUSR, 0 },
3029 		{ "ulprx_la", &ulprx_la_fops, S_IRUSR, 0 },
3030 		{ "sensors", &sensors_debugfs_fops, S_IRUSR, 0 },
3031 		{ "pm_stats", &pm_stats_debugfs_fops, S_IRUSR, 0 },
3032 		{ "tx_rate", &tx_rate_debugfs_fops, S_IRUSR, 0 },
3033 		{ "cctrl", &cctrl_tbl_debugfs_fops, S_IRUSR, 0 },
3034 #if IS_ENABLED(CONFIG_IPV6)
3035 		{ "clip_tbl", &clip_tbl_debugfs_fops, S_IRUSR, 0 },
3036 #endif
3037 		{ "tids", &tid_info_debugfs_fops, S_IRUSR, 0},
3038 		{ "blocked_fl", &blocked_fl_fops, S_IRUSR | S_IWUSR, 0 },
3039 		{ "meminfo", &meminfo_fops, S_IRUSR, 0 },
3040 	};
3041 
3042 	/* Debug FS nodes common to all T5 and later adapters.
3043 	 */
3044 	static struct t4_debugfs_entry t5_debugfs_files[] = {
3045 		{ "obq_sge_rx_q0", &cim_obq_fops, S_IRUSR, 6 },
3046 		{ "obq_sge_rx_q1", &cim_obq_fops, S_IRUSR, 7 },
3047 	};
3048 
3049 	add_debugfs_files(adap,
3050 			  t4_debugfs_files,
3051 			  ARRAY_SIZE(t4_debugfs_files));
3052 	if (!is_t4(adap->params.chip))
3053 		add_debugfs_files(adap,
3054 				  t5_debugfs_files,
3055 				  ARRAY_SIZE(t5_debugfs_files));
3056 
3057 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
3058 	if (i & EDRAM0_ENABLE_F) {
3059 		size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3060 		add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
3061 	}
3062 	if (i & EDRAM1_ENABLE_F) {
3063 		size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3064 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
3065 	}
3066 	if (is_t5(adap->params.chip)) {
3067 		if (i & EXT_MEM0_ENABLE_F) {
3068 			size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3069 			add_debugfs_mem(adap, "mc0", MEM_MC0,
3070 					EXT_MEM0_SIZE_G(size));
3071 		}
3072 		if (i & EXT_MEM1_ENABLE_F) {
3073 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3074 			add_debugfs_mem(adap, "mc1", MEM_MC1,
3075 					EXT_MEM1_SIZE_G(size));
3076 		}
3077 	} else {
3078 		if (i & EXT_MEM_ENABLE_F) {
3079 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
3080 			add_debugfs_mem(adap, "mc", MEM_MC,
3081 					EXT_MEM_SIZE_G(size));
3082 		}
3083 	}
3084 
3085 	de = debugfs_create_file_size("flash", S_IRUSR, adap->debugfs_root, adap,
3086 				      &flash_debugfs_fops, adap->params.sf_size);
3087 	debugfs_create_bool("use_backdoor", S_IWUSR | S_IRUSR,
3088 			    adap->debugfs_root, &adap->use_bd);
3089 	debugfs_create_bool("trace_rss", S_IWUSR | S_IRUSR,
3090 			    adap->debugfs_root, &adap->trace_rss);
3091 
3092 	return 0;
3093 }
3094