1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/seq_file.h> 36 #include <linux/debugfs.h> 37 #include <linux/string_helpers.h> 38 #include <linux/sort.h> 39 #include <linux/ctype.h> 40 41 #include "cxgb4.h" 42 #include "t4_regs.h" 43 #include "t4_values.h" 44 #include "t4fw_api.h" 45 #include "cxgb4_debugfs.h" 46 #include "clip_tbl.h" 47 #include "l2t.h" 48 #include "cudbg_if.h" 49 #include "cudbg_lib_common.h" 50 #include "cudbg_entity.h" 51 #include "cudbg_lib.h" 52 #include "cxgb4_tc_mqprio.h" 53 54 /* generic seq_file support for showing a table of size rows x width. */ 55 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos) 56 { 57 pos -= tb->skip_first; 58 return pos >= tb->rows ? NULL : &tb->data[pos * tb->width]; 59 } 60 61 static void *seq_tab_start(struct seq_file *seq, loff_t *pos) 62 { 63 struct seq_tab *tb = seq->private; 64 65 if (tb->skip_first && *pos == 0) 66 return SEQ_START_TOKEN; 67 68 return seq_tab_get_idx(tb, *pos); 69 } 70 71 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos) 72 { 73 v = seq_tab_get_idx(seq->private, *pos + 1); 74 ++(*pos); 75 return v; 76 } 77 78 static void seq_tab_stop(struct seq_file *seq, void *v) 79 { 80 } 81 82 static int seq_tab_show(struct seq_file *seq, void *v) 83 { 84 const struct seq_tab *tb = seq->private; 85 86 return tb->show(seq, v, ((char *)v - tb->data) / tb->width); 87 } 88 89 static const struct seq_operations seq_tab_ops = { 90 .start = seq_tab_start, 91 .next = seq_tab_next, 92 .stop = seq_tab_stop, 93 .show = seq_tab_show 94 }; 95 96 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows, 97 unsigned int width, unsigned int have_header, 98 int (*show)(struct seq_file *seq, void *v, int i)) 99 { 100 struct seq_tab *p; 101 102 p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width); 103 if (p) { 104 p->show = show; 105 p->rows = rows; 106 p->width = width; 107 p->skip_first = have_header != 0; 108 } 109 return p; 110 } 111 112 /* Trim the size of a seq_tab to the supplied number of rows. The operation is 113 * irreversible. 114 */ 115 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows) 116 { 117 if (new_rows > p->rows) 118 return -EINVAL; 119 p->rows = new_rows; 120 return 0; 121 } 122 123 static int cim_la_show(struct seq_file *seq, void *v, int idx) 124 { 125 if (v == SEQ_START_TOKEN) 126 seq_puts(seq, "Status Data PC LS0Stat LS0Addr " 127 " LS0Data\n"); 128 else { 129 const u32 *p = v; 130 131 seq_printf(seq, 132 " %02x %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n", 133 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 134 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 135 p[6], p[7]); 136 } 137 return 0; 138 } 139 140 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx) 141 { 142 if (v == SEQ_START_TOKEN) { 143 seq_puts(seq, "Status Data PC\n"); 144 } else { 145 const u32 *p = v; 146 147 seq_printf(seq, " %02x %08x %08x\n", p[5] & 0xff, p[6], 148 p[7]); 149 seq_printf(seq, " %02x %02x%06x %02x%06x\n", 150 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 151 p[4] & 0xff, p[5] >> 8); 152 seq_printf(seq, " %02x %x%07x %x%07x\n", (p[0] >> 4) & 0xff, 153 p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4); 154 } 155 return 0; 156 } 157 158 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx) 159 { 160 if (v == SEQ_START_TOKEN) { 161 seq_puts(seq, "Status Inst Data PC LS0Stat " 162 "LS0Addr LS0Data LS1Stat LS1Addr LS1Data\n"); 163 } else { 164 const u32 *p = v; 165 166 seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n", 167 (p[9] >> 16) & 0xff, /* Status */ 168 p[9] & 0xffff, p[8] >> 16, /* Inst */ 169 p[8] & 0xffff, p[7] >> 16, /* Data */ 170 p[7] & 0xffff, p[6] >> 16, /* PC */ 171 p[2], p[1], p[0], /* LS0 Stat, Addr and Data */ 172 p[5], p[4], p[3]); /* LS1 Stat, Addr and Data */ 173 } 174 return 0; 175 } 176 177 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx) 178 { 179 if (v == SEQ_START_TOKEN) { 180 seq_puts(seq, "Status Inst Data PC\n"); 181 } else { 182 const u32 *p = v; 183 184 seq_printf(seq, " %02x %08x %08x %08x\n", 185 p[3] & 0xff, p[2], p[1], p[0]); 186 seq_printf(seq, " %02x %02x%06x %02x%06x %02x%06x\n", 187 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 188 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 189 seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x\n", 190 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 191 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 192 p[6] >> 16); 193 } 194 return 0; 195 } 196 197 static int cim_la_open(struct inode *inode, struct file *file) 198 { 199 int ret; 200 unsigned int cfg; 201 struct seq_tab *p; 202 struct adapter *adap = inode->i_private; 203 204 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 205 if (ret) 206 return ret; 207 208 if (is_t6(adap->params.chip)) { 209 /* +1 to account for integer division of CIMLA_SIZE/10 */ 210 p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1, 211 10 * sizeof(u32), 1, 212 cfg & UPDBGLACAPTPCONLY_F ? 213 cim_la_show_pc_t6 : cim_la_show_t6); 214 } else { 215 p = seq_open_tab(file, adap->params.cim_la_size / 8, 216 8 * sizeof(u32), 1, 217 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 : 218 cim_la_show); 219 } 220 if (!p) 221 return -ENOMEM; 222 223 ret = t4_cim_read_la(adap, (u32 *)p->data, NULL); 224 if (ret) 225 seq_release_private(inode, file); 226 return ret; 227 } 228 229 static const struct file_operations cim_la_fops = { 230 .owner = THIS_MODULE, 231 .open = cim_la_open, 232 .read = seq_read, 233 .llseek = seq_lseek, 234 .release = seq_release_private 235 }; 236 237 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx) 238 { 239 const u32 *p = v; 240 241 if (v == SEQ_START_TOKEN) { 242 seq_puts(seq, "Cntl ID DataBE Addr Data\n"); 243 } else if (idx < CIM_PIFLA_SIZE) { 244 seq_printf(seq, " %02x %02x %04x %08x %08x%08x%08x%08x\n", 245 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, 246 p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]); 247 } else { 248 if (idx == CIM_PIFLA_SIZE) 249 seq_puts(seq, "\nCntl ID Data\n"); 250 seq_printf(seq, " %02x %02x %08x%08x%08x%08x\n", 251 (p[4] >> 6) & 0xff, p[4] & 0x3f, 252 p[3], p[2], p[1], p[0]); 253 } 254 return 0; 255 } 256 257 static int cim_pif_la_open(struct inode *inode, struct file *file) 258 { 259 struct seq_tab *p; 260 struct adapter *adap = inode->i_private; 261 262 p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1, 263 cim_pif_la_show); 264 if (!p) 265 return -ENOMEM; 266 267 t4_cim_read_pif_la(adap, (u32 *)p->data, 268 (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL); 269 return 0; 270 } 271 272 static const struct file_operations cim_pif_la_fops = { 273 .owner = THIS_MODULE, 274 .open = cim_pif_la_open, 275 .read = seq_read, 276 .llseek = seq_lseek, 277 .release = seq_release_private 278 }; 279 280 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx) 281 { 282 const u32 *p = v; 283 284 if (v == SEQ_START_TOKEN) { 285 seq_puts(seq, "\n"); 286 } else if (idx < CIM_MALA_SIZE) { 287 seq_printf(seq, "%02x%08x%08x%08x%08x\n", 288 p[4], p[3], p[2], p[1], p[0]); 289 } else { 290 if (idx == CIM_MALA_SIZE) 291 seq_puts(seq, 292 "\nCnt ID Tag UE Data RDY VLD\n"); 293 seq_printf(seq, "%3u %2u %x %u %08x%08x %u %u\n", 294 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 295 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 296 (p[1] >> 2) | ((p[2] & 3) << 30), 297 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 298 p[0] & 1); 299 } 300 return 0; 301 } 302 303 static int cim_ma_la_open(struct inode *inode, struct file *file) 304 { 305 struct seq_tab *p; 306 struct adapter *adap = inode->i_private; 307 308 p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1, 309 cim_ma_la_show); 310 if (!p) 311 return -ENOMEM; 312 313 t4_cim_read_ma_la(adap, (u32 *)p->data, 314 (u32 *)p->data + 5 * CIM_MALA_SIZE); 315 return 0; 316 } 317 318 static const struct file_operations cim_ma_la_fops = { 319 .owner = THIS_MODULE, 320 .open = cim_ma_la_open, 321 .read = seq_read, 322 .llseek = seq_lseek, 323 .release = seq_release_private 324 }; 325 326 static int cim_qcfg_show(struct seq_file *seq, void *v) 327 { 328 static const char * const qname[] = { 329 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", 330 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", 331 "SGE0-RX", "SGE1-RX" 332 }; 333 334 int i; 335 struct adapter *adap = seq->private; 336 u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 337 u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 338 u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))]; 339 u16 thres[CIM_NUM_IBQ]; 340 u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr; 341 u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5]; 342 u32 *p = stat; 343 int cim_num_obq = is_t4(adap->params.chip) ? 344 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 345 346 i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A : 347 UP_IBQ_0_SHADOW_RDADDR_A, 348 ARRAY_SIZE(stat), stat); 349 if (!i) { 350 if (is_t4(adap->params.chip)) { 351 i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A, 352 ARRAY_SIZE(obq_wr_t4), obq_wr_t4); 353 wr = obq_wr_t4; 354 } else { 355 i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A, 356 ARRAY_SIZE(obq_wr_t5), obq_wr_t5); 357 wr = obq_wr_t5; 358 } 359 } 360 if (i) 361 return i; 362 363 t4_read_cimq_cfg(adap, base, size, thres); 364 365 seq_printf(seq, 366 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail\n"); 367 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 368 seq_printf(seq, "%7s %5x %5u %5u %6x %4x %4u %4u %5u\n", 369 qname[i], base[i], size[i], thres[i], 370 IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]), 371 QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]), 372 QUEREMFLITS_G(p[2]) * 16); 373 for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2) 374 seq_printf(seq, "%7s %5x %5u %12x %4x %4u %4u %5u\n", 375 qname[i], base[i], size[i], 376 QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i], 377 QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]), 378 QUEREMFLITS_G(p[2]) * 16); 379 return 0; 380 } 381 DEFINE_SHOW_ATTRIBUTE(cim_qcfg); 382 383 static int cimq_show(struct seq_file *seq, void *v, int idx) 384 { 385 const u32 *p = v; 386 387 seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1], 388 p[2], p[3]); 389 return 0; 390 } 391 392 static int cim_ibq_open(struct inode *inode, struct file *file) 393 { 394 int ret; 395 struct seq_tab *p; 396 unsigned int qid = (uintptr_t)inode->i_private & 7; 397 struct adapter *adap = inode->i_private - qid; 398 399 p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show); 400 if (!p) 401 return -ENOMEM; 402 403 ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4); 404 if (ret < 0) 405 seq_release_private(inode, file); 406 else 407 ret = 0; 408 return ret; 409 } 410 411 static const struct file_operations cim_ibq_fops = { 412 .owner = THIS_MODULE, 413 .open = cim_ibq_open, 414 .read = seq_read, 415 .llseek = seq_lseek, 416 .release = seq_release_private 417 }; 418 419 static int cim_obq_open(struct inode *inode, struct file *file) 420 { 421 int ret; 422 struct seq_tab *p; 423 unsigned int qid = (uintptr_t)inode->i_private & 7; 424 struct adapter *adap = inode->i_private - qid; 425 426 p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show); 427 if (!p) 428 return -ENOMEM; 429 430 ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4); 431 if (ret < 0) { 432 seq_release_private(inode, file); 433 } else { 434 seq_tab_trim(p, ret / 4); 435 ret = 0; 436 } 437 return ret; 438 } 439 440 static const struct file_operations cim_obq_fops = { 441 .owner = THIS_MODULE, 442 .open = cim_obq_open, 443 .read = seq_read, 444 .llseek = seq_lseek, 445 .release = seq_release_private 446 }; 447 448 struct field_desc { 449 const char *name; 450 unsigned int start; 451 unsigned int width; 452 }; 453 454 static void field_desc_show(struct seq_file *seq, u64 v, 455 const struct field_desc *p) 456 { 457 char buf[32]; 458 int line_size = 0; 459 460 while (p->name) { 461 u64 mask = (1ULL << p->width) - 1; 462 int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name, 463 ((unsigned long long)v >> p->start) & mask); 464 465 if (line_size + len >= 79) { 466 line_size = 8; 467 seq_puts(seq, "\n "); 468 } 469 seq_printf(seq, "%s ", buf); 470 line_size += len + 1; 471 p++; 472 } 473 seq_putc(seq, '\n'); 474 } 475 476 static struct field_desc tp_la0[] = { 477 { "RcfOpCodeOut", 60, 4 }, 478 { "State", 56, 4 }, 479 { "WcfState", 52, 4 }, 480 { "RcfOpcSrcOut", 50, 2 }, 481 { "CRxError", 49, 1 }, 482 { "ERxError", 48, 1 }, 483 { "SanityFailed", 47, 1 }, 484 { "SpuriousMsg", 46, 1 }, 485 { "FlushInputMsg", 45, 1 }, 486 { "FlushInputCpl", 44, 1 }, 487 { "RssUpBit", 43, 1 }, 488 { "RssFilterHit", 42, 1 }, 489 { "Tid", 32, 10 }, 490 { "InitTcb", 31, 1 }, 491 { "LineNumber", 24, 7 }, 492 { "Emsg", 23, 1 }, 493 { "EdataOut", 22, 1 }, 494 { "Cmsg", 21, 1 }, 495 { "CdataOut", 20, 1 }, 496 { "EreadPdu", 19, 1 }, 497 { "CreadPdu", 18, 1 }, 498 { "TunnelPkt", 17, 1 }, 499 { "RcfPeerFin", 16, 1 }, 500 { "RcfReasonOut", 12, 4 }, 501 { "TxCchannel", 10, 2 }, 502 { "RcfTxChannel", 8, 2 }, 503 { "RxEchannel", 6, 2 }, 504 { "RcfRxChannel", 5, 1 }, 505 { "RcfDataOutSrdy", 4, 1 }, 506 { "RxDvld", 3, 1 }, 507 { "RxOoDvld", 2, 1 }, 508 { "RxCongestion", 1, 1 }, 509 { "TxCongestion", 0, 1 }, 510 { NULL } 511 }; 512 513 static int tp_la_show(struct seq_file *seq, void *v, int idx) 514 { 515 const u64 *p = v; 516 517 field_desc_show(seq, *p, tp_la0); 518 return 0; 519 } 520 521 static int tp_la_show2(struct seq_file *seq, void *v, int idx) 522 { 523 const u64 *p = v; 524 525 if (idx) 526 seq_putc(seq, '\n'); 527 field_desc_show(seq, p[0], tp_la0); 528 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 529 field_desc_show(seq, p[1], tp_la0); 530 return 0; 531 } 532 533 static int tp_la_show3(struct seq_file *seq, void *v, int idx) 534 { 535 static struct field_desc tp_la1[] = { 536 { "CplCmdIn", 56, 8 }, 537 { "CplCmdOut", 48, 8 }, 538 { "ESynOut", 47, 1 }, 539 { "EAckOut", 46, 1 }, 540 { "EFinOut", 45, 1 }, 541 { "ERstOut", 44, 1 }, 542 { "SynIn", 43, 1 }, 543 { "AckIn", 42, 1 }, 544 { "FinIn", 41, 1 }, 545 { "RstIn", 40, 1 }, 546 { "DataIn", 39, 1 }, 547 { "DataInVld", 38, 1 }, 548 { "PadIn", 37, 1 }, 549 { "RxBufEmpty", 36, 1 }, 550 { "RxDdp", 35, 1 }, 551 { "RxFbCongestion", 34, 1 }, 552 { "TxFbCongestion", 33, 1 }, 553 { "TxPktSumSrdy", 32, 1 }, 554 { "RcfUlpType", 28, 4 }, 555 { "Eread", 27, 1 }, 556 { "Ebypass", 26, 1 }, 557 { "Esave", 25, 1 }, 558 { "Static0", 24, 1 }, 559 { "Cread", 23, 1 }, 560 { "Cbypass", 22, 1 }, 561 { "Csave", 21, 1 }, 562 { "CPktOut", 20, 1 }, 563 { "RxPagePoolFull", 18, 2 }, 564 { "RxLpbkPkt", 17, 1 }, 565 { "TxLpbkPkt", 16, 1 }, 566 { "RxVfValid", 15, 1 }, 567 { "SynLearned", 14, 1 }, 568 { "SetDelEntry", 13, 1 }, 569 { "SetInvEntry", 12, 1 }, 570 { "CpcmdDvld", 11, 1 }, 571 { "CpcmdSave", 10, 1 }, 572 { "RxPstructsFull", 8, 2 }, 573 { "EpcmdDvld", 7, 1 }, 574 { "EpcmdFlush", 6, 1 }, 575 { "EpcmdTrimPrefix", 5, 1 }, 576 { "EpcmdTrimPostfix", 4, 1 }, 577 { "ERssIp4Pkt", 3, 1 }, 578 { "ERssIp6Pkt", 2, 1 }, 579 { "ERssTcpUdpPkt", 1, 1 }, 580 { "ERssFceFipPkt", 0, 1 }, 581 { NULL } 582 }; 583 static struct field_desc tp_la2[] = { 584 { "CplCmdIn", 56, 8 }, 585 { "MpsVfVld", 55, 1 }, 586 { "MpsPf", 52, 3 }, 587 { "MpsVf", 44, 8 }, 588 { "SynIn", 43, 1 }, 589 { "AckIn", 42, 1 }, 590 { "FinIn", 41, 1 }, 591 { "RstIn", 40, 1 }, 592 { "DataIn", 39, 1 }, 593 { "DataInVld", 38, 1 }, 594 { "PadIn", 37, 1 }, 595 { "RxBufEmpty", 36, 1 }, 596 { "RxDdp", 35, 1 }, 597 { "RxFbCongestion", 34, 1 }, 598 { "TxFbCongestion", 33, 1 }, 599 { "TxPktSumSrdy", 32, 1 }, 600 { "RcfUlpType", 28, 4 }, 601 { "Eread", 27, 1 }, 602 { "Ebypass", 26, 1 }, 603 { "Esave", 25, 1 }, 604 { "Static0", 24, 1 }, 605 { "Cread", 23, 1 }, 606 { "Cbypass", 22, 1 }, 607 { "Csave", 21, 1 }, 608 { "CPktOut", 20, 1 }, 609 { "RxPagePoolFull", 18, 2 }, 610 { "RxLpbkPkt", 17, 1 }, 611 { "TxLpbkPkt", 16, 1 }, 612 { "RxVfValid", 15, 1 }, 613 { "SynLearned", 14, 1 }, 614 { "SetDelEntry", 13, 1 }, 615 { "SetInvEntry", 12, 1 }, 616 { "CpcmdDvld", 11, 1 }, 617 { "CpcmdSave", 10, 1 }, 618 { "RxPstructsFull", 8, 2 }, 619 { "EpcmdDvld", 7, 1 }, 620 { "EpcmdFlush", 6, 1 }, 621 { "EpcmdTrimPrefix", 5, 1 }, 622 { "EpcmdTrimPostfix", 4, 1 }, 623 { "ERssIp4Pkt", 3, 1 }, 624 { "ERssIp6Pkt", 2, 1 }, 625 { "ERssTcpUdpPkt", 1, 1 }, 626 { "ERssFceFipPkt", 0, 1 }, 627 { NULL } 628 }; 629 const u64 *p = v; 630 631 if (idx) 632 seq_putc(seq, '\n'); 633 field_desc_show(seq, p[0], tp_la0); 634 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 635 field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1); 636 return 0; 637 } 638 639 static int tp_la_open(struct inode *inode, struct file *file) 640 { 641 struct seq_tab *p; 642 struct adapter *adap = inode->i_private; 643 644 switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) { 645 case 2: 646 p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0, 647 tp_la_show2); 648 break; 649 case 3: 650 p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0, 651 tp_la_show3); 652 break; 653 default: 654 p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show); 655 } 656 if (!p) 657 return -ENOMEM; 658 659 t4_tp_read_la(adap, (u64 *)p->data, NULL); 660 return 0; 661 } 662 663 static ssize_t tp_la_write(struct file *file, const char __user *buf, 664 size_t count, loff_t *pos) 665 { 666 int err; 667 char s[32]; 668 unsigned long val; 669 size_t size = min(sizeof(s) - 1, count); 670 struct adapter *adap = file_inode(file)->i_private; 671 672 if (copy_from_user(s, buf, size)) 673 return -EFAULT; 674 s[size] = '\0'; 675 err = kstrtoul(s, 0, &val); 676 if (err) 677 return err; 678 if (val > 0xffff) 679 return -EINVAL; 680 adap->params.tp.la_mask = val << 16; 681 t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U, 682 adap->params.tp.la_mask); 683 return count; 684 } 685 686 static const struct file_operations tp_la_fops = { 687 .owner = THIS_MODULE, 688 .open = tp_la_open, 689 .read = seq_read, 690 .llseek = seq_lseek, 691 .release = seq_release_private, 692 .write = tp_la_write 693 }; 694 695 static int ulprx_la_show(struct seq_file *seq, void *v, int idx) 696 { 697 const u32 *p = v; 698 699 if (v == SEQ_START_TOKEN) 700 seq_puts(seq, " Pcmd Type Message" 701 " Data\n"); 702 else 703 seq_printf(seq, "%08x%08x %4x %08x %08x%08x%08x%08x\n", 704 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 705 return 0; 706 } 707 708 static int ulprx_la_open(struct inode *inode, struct file *file) 709 { 710 struct seq_tab *p; 711 struct adapter *adap = inode->i_private; 712 713 p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1, 714 ulprx_la_show); 715 if (!p) 716 return -ENOMEM; 717 718 t4_ulprx_read_la(adap, (u32 *)p->data); 719 return 0; 720 } 721 722 static const struct file_operations ulprx_la_fops = { 723 .owner = THIS_MODULE, 724 .open = ulprx_la_open, 725 .read = seq_read, 726 .llseek = seq_lseek, 727 .release = seq_release_private 728 }; 729 730 /* Show the PM memory stats. These stats include: 731 * 732 * TX: 733 * Read: memory read operation 734 * Write Bypass: cut-through 735 * Bypass + mem: cut-through and save copy 736 * 737 * RX: 738 * Read: memory read 739 * Write Bypass: cut-through 740 * Flush: payload trim or drop 741 */ 742 static int pm_stats_show(struct seq_file *seq, void *v) 743 { 744 static const char * const tx_pm_stats[] = { 745 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:" 746 }; 747 static const char * const rx_pm_stats[] = { 748 "Read:", "Write bypass:", "Write mem:", "Flush:" 749 }; 750 751 int i; 752 u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS]; 753 u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS]; 754 struct adapter *adap = seq->private; 755 756 t4_pmtx_get_stats(adap, tx_cnt, tx_cyc); 757 t4_pmrx_get_stats(adap, rx_cnt, rx_cyc); 758 759 seq_printf(seq, "%13s %10s %20s\n", " ", "Tx pcmds", "Tx bytes"); 760 for (i = 0; i < PM_NSTATS - 1; i++) 761 seq_printf(seq, "%-13s %10u %20llu\n", 762 tx_pm_stats[i], tx_cnt[i], tx_cyc[i]); 763 764 seq_printf(seq, "%13s %10s %20s\n", " ", "Rx pcmds", "Rx bytes"); 765 for (i = 0; i < PM_NSTATS - 1; i++) 766 seq_printf(seq, "%-13s %10u %20llu\n", 767 rx_pm_stats[i], rx_cnt[i], rx_cyc[i]); 768 769 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 770 /* In T5 the granularity of the total wait is too fine. 771 * It is not useful as it reaches the max value too fast. 772 * Hence display this Input FIFO wait for T6 onwards. 773 */ 774 seq_printf(seq, "%13s %10s %20s\n", 775 " ", "Total wait", "Total Occupancy"); 776 seq_printf(seq, "Tx FIFO wait %10u %20llu\n", 777 tx_cnt[i], tx_cyc[i]); 778 seq_printf(seq, "Rx FIFO wait %10u %20llu\n", 779 rx_cnt[i], rx_cyc[i]); 780 781 /* Skip index 6 as there is nothing useful ihere */ 782 i += 2; 783 784 /* At index 7, a new stat for read latency (count, total wait) 785 * is added. 786 */ 787 seq_printf(seq, "%13s %10s %20s\n", 788 " ", "Reads", "Total wait"); 789 seq_printf(seq, "Tx latency %10u %20llu\n", 790 tx_cnt[i], tx_cyc[i]); 791 seq_printf(seq, "Rx latency %10u %20llu\n", 792 rx_cnt[i], rx_cyc[i]); 793 } 794 return 0; 795 } 796 797 static int pm_stats_open(struct inode *inode, struct file *file) 798 { 799 return single_open(file, pm_stats_show, inode->i_private); 800 } 801 802 static ssize_t pm_stats_clear(struct file *file, const char __user *buf, 803 size_t count, loff_t *pos) 804 { 805 struct adapter *adap = file_inode(file)->i_private; 806 807 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0); 808 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0); 809 return count; 810 } 811 812 static const struct file_operations pm_stats_debugfs_fops = { 813 .owner = THIS_MODULE, 814 .open = pm_stats_open, 815 .read = seq_read, 816 .llseek = seq_lseek, 817 .release = single_release, 818 .write = pm_stats_clear 819 }; 820 821 static int tx_rate_show(struct seq_file *seq, void *v) 822 { 823 u64 nrate[NCHAN], orate[NCHAN]; 824 struct adapter *adap = seq->private; 825 826 t4_get_chan_txrate(adap, nrate, orate); 827 if (adap->params.arch.nchan == NCHAN) { 828 seq_puts(seq, " channel 0 channel 1 " 829 "channel 2 channel 3\n"); 830 seq_printf(seq, "NIC B/s: %10llu %10llu %10llu %10llu\n", 831 (unsigned long long)nrate[0], 832 (unsigned long long)nrate[1], 833 (unsigned long long)nrate[2], 834 (unsigned long long)nrate[3]); 835 seq_printf(seq, "Offload B/s: %10llu %10llu %10llu %10llu\n", 836 (unsigned long long)orate[0], 837 (unsigned long long)orate[1], 838 (unsigned long long)orate[2], 839 (unsigned long long)orate[3]); 840 } else { 841 seq_puts(seq, " channel 0 channel 1\n"); 842 seq_printf(seq, "NIC B/s: %10llu %10llu\n", 843 (unsigned long long)nrate[0], 844 (unsigned long long)nrate[1]); 845 seq_printf(seq, "Offload B/s: %10llu %10llu\n", 846 (unsigned long long)orate[0], 847 (unsigned long long)orate[1]); 848 } 849 return 0; 850 } 851 DEFINE_SHOW_ATTRIBUTE(tx_rate); 852 853 static int cctrl_tbl_show(struct seq_file *seq, void *v) 854 { 855 static const char * const dec_fac[] = { 856 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 857 "0.9375" }; 858 859 int i; 860 u16 (*incr)[NCCTRL_WIN]; 861 struct adapter *adap = seq->private; 862 863 incr = kmalloc_array(NMTUS, sizeof(*incr), GFP_KERNEL); 864 if (!incr) 865 return -ENOMEM; 866 867 t4_read_cong_tbl(adap, incr); 868 869 for (i = 0; i < NCCTRL_WIN; ++i) { 870 seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 871 incr[0][i], incr[1][i], incr[2][i], incr[3][i], 872 incr[4][i], incr[5][i], incr[6][i], incr[7][i]); 873 seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 874 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 875 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 876 adap->params.a_wnd[i], 877 dec_fac[adap->params.b_wnd[i]]); 878 } 879 880 kfree(incr); 881 return 0; 882 } 883 DEFINE_SHOW_ATTRIBUTE(cctrl_tbl); 884 885 /* Format a value in a unit that differs from the value's native unit by the 886 * given factor. 887 */ 888 static char *unit_conv(char *buf, size_t len, unsigned int val, 889 unsigned int factor) 890 { 891 unsigned int rem = val % factor; 892 893 if (rem == 0) { 894 snprintf(buf, len, "%u", val / factor); 895 } else { 896 while (rem % 10 == 0) 897 rem /= 10; 898 snprintf(buf, len, "%u.%u", val / factor, rem); 899 } 900 return buf; 901 } 902 903 static int clk_show(struct seq_file *seq, void *v) 904 { 905 char buf[32]; 906 struct adapter *adap = seq->private; 907 unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk; /* in ps */ 908 u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 909 unsigned int tre = TIMERRESOLUTION_G(res); 910 unsigned int dack_re = DELAYEDACKRESOLUTION_G(res); 911 unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */ 912 913 seq_printf(seq, "Core clock period: %s ns\n", 914 unit_conv(buf, sizeof(buf), cclk_ps, 1000)); 915 seq_printf(seq, "TP timer tick: %s us\n", 916 unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000)); 917 seq_printf(seq, "TCP timestamp tick: %s us\n", 918 unit_conv(buf, sizeof(buf), 919 (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000)); 920 seq_printf(seq, "DACK tick: %s us\n", 921 unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000)); 922 seq_printf(seq, "DACK timer: %u us\n", 923 ((cclk_ps << dack_re) / 1000000) * 924 t4_read_reg(adap, TP_DACK_TIMER_A)); 925 seq_printf(seq, "Retransmit min: %llu us\n", 926 tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A)); 927 seq_printf(seq, "Retransmit max: %llu us\n", 928 tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A)); 929 seq_printf(seq, "Persist timer min: %llu us\n", 930 tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A)); 931 seq_printf(seq, "Persist timer max: %llu us\n", 932 tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A)); 933 seq_printf(seq, "Keepalive idle timer: %llu us\n", 934 tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A)); 935 seq_printf(seq, "Keepalive interval: %llu us\n", 936 tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A)); 937 seq_printf(seq, "Initial SRTT: %llu us\n", 938 tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A))); 939 seq_printf(seq, "FINWAIT2 timer: %llu us\n", 940 tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A)); 941 942 return 0; 943 } 944 DEFINE_SHOW_ATTRIBUTE(clk); 945 946 /* Firmware Device Log dump. */ 947 static const char * const devlog_level_strings[] = { 948 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 949 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 950 [FW_DEVLOG_LEVEL_ERR] = "ERR", 951 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 952 [FW_DEVLOG_LEVEL_INFO] = "INFO", 953 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 954 }; 955 956 static const char * const devlog_facility_strings[] = { 957 [FW_DEVLOG_FACILITY_CORE] = "CORE", 958 [FW_DEVLOG_FACILITY_CF] = "CF", 959 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 960 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 961 [FW_DEVLOG_FACILITY_RES] = "RES", 962 [FW_DEVLOG_FACILITY_HW] = "HW", 963 [FW_DEVLOG_FACILITY_FLR] = "FLR", 964 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 965 [FW_DEVLOG_FACILITY_PHY] = "PHY", 966 [FW_DEVLOG_FACILITY_MAC] = "MAC", 967 [FW_DEVLOG_FACILITY_PORT] = "PORT", 968 [FW_DEVLOG_FACILITY_VI] = "VI", 969 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 970 [FW_DEVLOG_FACILITY_ACL] = "ACL", 971 [FW_DEVLOG_FACILITY_TM] = "TM", 972 [FW_DEVLOG_FACILITY_QFC] = "QFC", 973 [FW_DEVLOG_FACILITY_DCB] = "DCB", 974 [FW_DEVLOG_FACILITY_ETH] = "ETH", 975 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 976 [FW_DEVLOG_FACILITY_RI] = "RI", 977 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 978 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 979 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 980 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE" 981 }; 982 983 /* Information gathered by Device Log Open routine for the display routine. 984 */ 985 struct devlog_info { 986 unsigned int nentries; /* number of entries in log[] */ 987 unsigned int first; /* first [temporal] entry in log[] */ 988 struct fw_devlog_e log[]; /* Firmware Device Log */ 989 }; 990 991 /* Dump a Firmaware Device Log entry. 992 */ 993 static int devlog_show(struct seq_file *seq, void *v) 994 { 995 if (v == SEQ_START_TOKEN) 996 seq_printf(seq, "%10s %15s %8s %8s %s\n", 997 "Seq#", "Tstamp", "Level", "Facility", "Message"); 998 else { 999 struct devlog_info *dinfo = seq->private; 1000 int fidx = (uintptr_t)v - 2; 1001 unsigned long index; 1002 struct fw_devlog_e *e; 1003 1004 /* Get a pointer to the log entry to display. Skip unused log 1005 * entries. 1006 */ 1007 index = dinfo->first + fidx; 1008 if (index >= dinfo->nentries) 1009 index -= dinfo->nentries; 1010 e = &dinfo->log[index]; 1011 if (e->timestamp == 0) 1012 return 0; 1013 1014 /* Print the message. This depends on the firmware using 1015 * exactly the same formating strings as the kernel so we may 1016 * eventually have to put a format interpreter in here ... 1017 */ 1018 seq_printf(seq, "%10d %15llu %8s %8s ", 1019 be32_to_cpu(e->seqno), 1020 be64_to_cpu(e->timestamp), 1021 (e->level < ARRAY_SIZE(devlog_level_strings) 1022 ? devlog_level_strings[e->level] 1023 : "UNKNOWN"), 1024 (e->facility < ARRAY_SIZE(devlog_facility_strings) 1025 ? devlog_facility_strings[e->facility] 1026 : "UNKNOWN")); 1027 seq_printf(seq, e->fmt, 1028 be32_to_cpu(e->params[0]), 1029 be32_to_cpu(e->params[1]), 1030 be32_to_cpu(e->params[2]), 1031 be32_to_cpu(e->params[3]), 1032 be32_to_cpu(e->params[4]), 1033 be32_to_cpu(e->params[5]), 1034 be32_to_cpu(e->params[6]), 1035 be32_to_cpu(e->params[7])); 1036 } 1037 return 0; 1038 } 1039 1040 /* Sequential File Operations for Device Log. 1041 */ 1042 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos) 1043 { 1044 if (pos > dinfo->nentries) 1045 return NULL; 1046 1047 return (void *)(uintptr_t)(pos + 1); 1048 } 1049 1050 static void *devlog_start(struct seq_file *seq, loff_t *pos) 1051 { 1052 struct devlog_info *dinfo = seq->private; 1053 1054 return (*pos 1055 ? devlog_get_idx(dinfo, *pos) 1056 : SEQ_START_TOKEN); 1057 } 1058 1059 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos) 1060 { 1061 struct devlog_info *dinfo = seq->private; 1062 1063 (*pos)++; 1064 return devlog_get_idx(dinfo, *pos); 1065 } 1066 1067 static void devlog_stop(struct seq_file *seq, void *v) 1068 { 1069 } 1070 1071 static const struct seq_operations devlog_seq_ops = { 1072 .start = devlog_start, 1073 .next = devlog_next, 1074 .stop = devlog_stop, 1075 .show = devlog_show 1076 }; 1077 1078 /* Set up for reading the firmware's device log. We read the entire log here 1079 * and then display it incrementally in devlog_show(). 1080 */ 1081 static int devlog_open(struct inode *inode, struct file *file) 1082 { 1083 struct adapter *adap = inode->i_private; 1084 struct devlog_params *dparams = &adap->params.devlog; 1085 struct devlog_info *dinfo; 1086 unsigned int index; 1087 u32 fseqno; 1088 int ret; 1089 1090 /* If we don't know where the log is we can't do anything. 1091 */ 1092 if (dparams->start == 0) 1093 return -ENXIO; 1094 1095 /* Allocate the space to read in the firmware's device log and set up 1096 * for the iterated call to our display function. 1097 */ 1098 dinfo = __seq_open_private(file, &devlog_seq_ops, 1099 sizeof(*dinfo) + dparams->size); 1100 if (!dinfo) 1101 return -ENOMEM; 1102 1103 /* Record the basic log buffer information and read in the raw log. 1104 */ 1105 dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e)); 1106 dinfo->first = 0; 1107 spin_lock(&adap->win0_lock); 1108 ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype, 1109 dparams->start, dparams->size, (__be32 *)dinfo->log, 1110 T4_MEMORY_READ); 1111 spin_unlock(&adap->win0_lock); 1112 if (ret) { 1113 seq_release_private(inode, file); 1114 return ret; 1115 } 1116 1117 /* Find the earliest (lowest Sequence Number) log entry in the 1118 * circular Device Log. 1119 */ 1120 for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) { 1121 struct fw_devlog_e *e = &dinfo->log[index]; 1122 __u32 seqno; 1123 1124 if (e->timestamp == 0) 1125 continue; 1126 1127 seqno = be32_to_cpu(e->seqno); 1128 if (seqno < fseqno) { 1129 fseqno = seqno; 1130 dinfo->first = index; 1131 } 1132 } 1133 return 0; 1134 } 1135 1136 static const struct file_operations devlog_fops = { 1137 .owner = THIS_MODULE, 1138 .open = devlog_open, 1139 .read = seq_read, 1140 .llseek = seq_lseek, 1141 .release = seq_release_private 1142 }; 1143 1144 /* Show Firmware Mailbox Command/Reply Log 1145 * 1146 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1147 * it's possible that we can catch things during a log update and therefore 1148 * see partially corrupted log entries. But it's probably Good Enough(tm). 1149 * If we ever decide that we want to make sure that we're dumping a coherent 1150 * log, we'd need to perform locking in the mailbox logging and in 1151 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1152 * like we do for the Firmware Device Log. 1153 */ 1154 static int mboxlog_show(struct seq_file *seq, void *v) 1155 { 1156 struct adapter *adapter = seq->private; 1157 struct mbox_cmd_log *log = adapter->mbox_log; 1158 struct mbox_cmd *entry; 1159 int entry_idx, i; 1160 1161 if (v == SEQ_START_TOKEN) { 1162 seq_printf(seq, 1163 "%10s %15s %5s %5s %s\n", 1164 "Seq#", "Tstamp", "Atime", "Etime", 1165 "Command/Reply"); 1166 return 0; 1167 } 1168 1169 entry_idx = log->cursor + ((uintptr_t)v - 2); 1170 if (entry_idx >= log->size) 1171 entry_idx -= log->size; 1172 entry = mbox_cmd_log_entry(log, entry_idx); 1173 1174 /* skip over unused entries */ 1175 if (entry->timestamp == 0) 1176 return 0; 1177 1178 seq_printf(seq, "%10u %15llu %5d %5d", 1179 entry->seqno, entry->timestamp, 1180 entry->access, entry->execute); 1181 for (i = 0; i < MBOX_LEN / 8; i++) { 1182 u64 flit = entry->cmd[i]; 1183 u32 hi = (u32)(flit >> 32); 1184 u32 lo = (u32)flit; 1185 1186 seq_printf(seq, " %08x %08x", hi, lo); 1187 } 1188 seq_puts(seq, "\n"); 1189 return 0; 1190 } 1191 1192 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1193 { 1194 struct adapter *adapter = seq->private; 1195 struct mbox_cmd_log *log = adapter->mbox_log; 1196 1197 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1198 } 1199 1200 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1201 { 1202 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1203 } 1204 1205 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1206 { 1207 ++*pos; 1208 return mboxlog_get_idx(seq, *pos); 1209 } 1210 1211 static void mboxlog_stop(struct seq_file *seq, void *v) 1212 { 1213 } 1214 1215 static const struct seq_operations mboxlog_seq_ops = { 1216 .start = mboxlog_start, 1217 .next = mboxlog_next, 1218 .stop = mboxlog_stop, 1219 .show = mboxlog_show 1220 }; 1221 1222 static int mboxlog_open(struct inode *inode, struct file *file) 1223 { 1224 int res = seq_open(file, &mboxlog_seq_ops); 1225 1226 if (!res) { 1227 struct seq_file *seq = file->private_data; 1228 1229 seq->private = inode->i_private; 1230 } 1231 return res; 1232 } 1233 1234 static const struct file_operations mboxlog_fops = { 1235 .owner = THIS_MODULE, 1236 .open = mboxlog_open, 1237 .read = seq_read, 1238 .llseek = seq_lseek, 1239 .release = seq_release, 1240 }; 1241 1242 static int mbox_show(struct seq_file *seq, void *v) 1243 { 1244 static const char * const owner[] = { "none", "FW", "driver", 1245 "unknown", "<unread>" }; 1246 1247 int i; 1248 unsigned int mbox = (uintptr_t)seq->private & 7; 1249 struct adapter *adap = seq->private - mbox; 1250 void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 1251 1252 /* For T4 we don't have a shadow copy of the Mailbox Control register. 1253 * And since reading that real register causes a side effect of 1254 * granting ownership, we're best of simply not reading it at all. 1255 */ 1256 if (is_t4(adap->params.chip)) { 1257 i = 4; /* index of "<unread>" */ 1258 } else { 1259 unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A; 1260 void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg); 1261 1262 i = MBOWNER_G(readl(ctrl)); 1263 } 1264 1265 seq_printf(seq, "mailbox owned by %s\n\n", owner[i]); 1266 1267 for (i = 0; i < MBOX_LEN; i += 8) 1268 seq_printf(seq, "%016llx\n", 1269 (unsigned long long)readq(addr + i)); 1270 return 0; 1271 } 1272 1273 static int mbox_open(struct inode *inode, struct file *file) 1274 { 1275 return single_open(file, mbox_show, inode->i_private); 1276 } 1277 1278 static ssize_t mbox_write(struct file *file, const char __user *buf, 1279 size_t count, loff_t *pos) 1280 { 1281 int i; 1282 char c = '\n', s[256]; 1283 unsigned long long data[8]; 1284 const struct inode *ino; 1285 unsigned int mbox; 1286 struct adapter *adap; 1287 void __iomem *addr; 1288 void __iomem *ctrl; 1289 1290 if (count > sizeof(s) - 1 || !count) 1291 return -EINVAL; 1292 if (copy_from_user(s, buf, count)) 1293 return -EFAULT; 1294 s[count] = '\0'; 1295 1296 if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0], 1297 &data[1], &data[2], &data[3], &data[4], &data[5], &data[6], 1298 &data[7], &c) < 8 || c != '\n') 1299 return -EINVAL; 1300 1301 ino = file_inode(file); 1302 mbox = (uintptr_t)ino->i_private & 7; 1303 adap = ino->i_private - mbox; 1304 addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 1305 ctrl = addr + MBOX_LEN; 1306 1307 if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL) 1308 return -EBUSY; 1309 1310 for (i = 0; i < 8; i++) 1311 writeq(data[i], addr + 8 * i); 1312 1313 writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl); 1314 return count; 1315 } 1316 1317 static const struct file_operations mbox_debugfs_fops = { 1318 .owner = THIS_MODULE, 1319 .open = mbox_open, 1320 .read = seq_read, 1321 .llseek = seq_lseek, 1322 .release = single_release, 1323 .write = mbox_write 1324 }; 1325 1326 static int mps_trc_show(struct seq_file *seq, void *v) 1327 { 1328 int enabled, i; 1329 struct trace_params tp; 1330 unsigned int trcidx = (uintptr_t)seq->private & 3; 1331 struct adapter *adap = seq->private - trcidx; 1332 1333 t4_get_trace_filter(adap, &tp, trcidx, &enabled); 1334 if (!enabled) { 1335 seq_puts(seq, "tracer is disabled\n"); 1336 return 0; 1337 } 1338 1339 if (tp.skip_ofst * 8 >= TRACE_LEN) { 1340 dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n"); 1341 return -EINVAL; 1342 } 1343 if (tp.port < 8) { 1344 i = adap->chan_map[tp.port & 3]; 1345 if (i >= MAX_NPORTS) { 1346 dev_err(adap->pdev_dev, "tracer %u is assigned " 1347 "to non-existing port\n", trcidx); 1348 return -EINVAL; 1349 } 1350 seq_printf(seq, "tracer is capturing %s %s, ", 1351 adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx"); 1352 } else 1353 seq_printf(seq, "tracer is capturing loopback %d, ", 1354 tp.port - 8); 1355 seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len, 1356 tp.min_len); 1357 seq_printf(seq, "packets captured %smatch filter\n", 1358 tp.invert ? "do not " : ""); 1359 1360 if (tp.skip_ofst) { 1361 seq_puts(seq, "filter pattern: "); 1362 for (i = 0; i < tp.skip_ofst * 2; i += 2) 1363 seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]); 1364 seq_putc(seq, '/'); 1365 for (i = 0; i < tp.skip_ofst * 2; i += 2) 1366 seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]); 1367 seq_puts(seq, "@0\n"); 1368 } 1369 1370 seq_puts(seq, "filter pattern: "); 1371 for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2) 1372 seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]); 1373 seq_putc(seq, '/'); 1374 for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2) 1375 seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]); 1376 seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8); 1377 return 0; 1378 } 1379 1380 static int mps_trc_open(struct inode *inode, struct file *file) 1381 { 1382 return single_open(file, mps_trc_show, inode->i_private); 1383 } 1384 1385 static unsigned int xdigit2int(unsigned char c) 1386 { 1387 return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10; 1388 } 1389 1390 #define TRC_PORT_NONE 0xff 1391 #define TRC_RSS_ENABLE 0x33 1392 #define TRC_RSS_DISABLE 0x13 1393 1394 /* Set an MPS trace filter. Syntax is: 1395 * 1396 * disable 1397 * 1398 * to disable tracing, or 1399 * 1400 * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]... 1401 * 1402 * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one 1403 * of the NIC's response qid obtained from sge_qinfo and pattern has the form 1404 * 1405 * <pattern data>[/<pattern mask>][@<anchor>] 1406 * 1407 * Up to 2 filter patterns can be specified. If 2 are supplied the first one 1408 * must be anchored at 0. An omitted mask is taken as a mask of 1s, an omitted 1409 * anchor is taken as 0. 1410 */ 1411 static ssize_t mps_trc_write(struct file *file, const char __user *buf, 1412 size_t count, loff_t *pos) 1413 { 1414 int i, enable, ret; 1415 u32 *data, *mask; 1416 struct trace_params tp; 1417 const struct inode *ino; 1418 unsigned int trcidx; 1419 char *s, *p, *word, *end; 1420 struct adapter *adap; 1421 u32 j; 1422 1423 ino = file_inode(file); 1424 trcidx = (uintptr_t)ino->i_private & 3; 1425 adap = ino->i_private - trcidx; 1426 1427 /* Don't accept input more than 1K, can't be anything valid except lots 1428 * of whitespace. Well, use less. 1429 */ 1430 if (count > 1024) 1431 return -EFBIG; 1432 p = s = kzalloc(count + 1, GFP_USER); 1433 if (!s) 1434 return -ENOMEM; 1435 if (copy_from_user(s, buf, count)) { 1436 count = -EFAULT; 1437 goto out; 1438 } 1439 1440 if (s[count - 1] == '\n') 1441 s[count - 1] = '\0'; 1442 1443 enable = strcmp("disable", s) != 0; 1444 if (!enable) 1445 goto apply; 1446 1447 /* enable or disable trace multi rss filter */ 1448 if (adap->trace_rss) 1449 t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE); 1450 else 1451 t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE); 1452 1453 memset(&tp, 0, sizeof(tp)); 1454 tp.port = TRC_PORT_NONE; 1455 i = 0; /* counts pattern nibbles */ 1456 1457 while (p) { 1458 while (isspace(*p)) 1459 p++; 1460 word = strsep(&p, " "); 1461 if (!*word) 1462 break; 1463 1464 if (!strncmp(word, "qid=", 4)) { 1465 end = (char *)word + 4; 1466 ret = kstrtouint(end, 10, &j); 1467 if (ret) 1468 goto out; 1469 if (!adap->trace_rss) { 1470 t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j); 1471 continue; 1472 } 1473 1474 switch (trcidx) { 1475 case 0: 1476 t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j); 1477 break; 1478 case 1: 1479 t4_write_reg(adap, 1480 MPS_TRC_FILTER1_RSS_CONTROL_A, j); 1481 break; 1482 case 2: 1483 t4_write_reg(adap, 1484 MPS_TRC_FILTER2_RSS_CONTROL_A, j); 1485 break; 1486 case 3: 1487 t4_write_reg(adap, 1488 MPS_TRC_FILTER3_RSS_CONTROL_A, j); 1489 break; 1490 } 1491 continue; 1492 } 1493 if (!strncmp(word, "snaplen=", 8)) { 1494 end = (char *)word + 8; 1495 ret = kstrtouint(end, 10, &j); 1496 if (ret || j > 9600) { 1497 inval: count = -EINVAL; 1498 goto out; 1499 } 1500 tp.snap_len = j; 1501 continue; 1502 } 1503 if (!strncmp(word, "minlen=", 7)) { 1504 end = (char *)word + 7; 1505 ret = kstrtouint(end, 10, &j); 1506 if (ret || j > TFMINPKTSIZE_M) 1507 goto inval; 1508 tp.min_len = j; 1509 continue; 1510 } 1511 if (!strcmp(word, "not")) { 1512 tp.invert = !tp.invert; 1513 continue; 1514 } 1515 if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) { 1516 if (word[8] < '0' || word[8] > '3' || word[9]) 1517 goto inval; 1518 tp.port = word[8] - '0' + 8; 1519 continue; 1520 } 1521 if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) { 1522 if (word[2] < '0' || word[2] > '3' || word[3]) 1523 goto inval; 1524 tp.port = word[2] - '0' + 4; 1525 if (adap->chan_map[tp.port & 3] >= MAX_NPORTS) 1526 goto inval; 1527 continue; 1528 } 1529 if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) { 1530 if (word[2] < '0' || word[2] > '3' || word[3]) 1531 goto inval; 1532 tp.port = word[2] - '0'; 1533 if (adap->chan_map[tp.port] >= MAX_NPORTS) 1534 goto inval; 1535 continue; 1536 } 1537 if (!isxdigit(*word)) 1538 goto inval; 1539 1540 /* we have found a trace pattern */ 1541 if (i) { /* split pattern */ 1542 if (tp.skip_len) /* too many splits */ 1543 goto inval; 1544 tp.skip_ofst = i / 16; 1545 } 1546 1547 data = &tp.data[i / 8]; 1548 mask = &tp.mask[i / 8]; 1549 j = i; 1550 1551 while (isxdigit(*word)) { 1552 if (i >= TRACE_LEN * 2) { 1553 count = -EFBIG; 1554 goto out; 1555 } 1556 *data = (*data << 4) + xdigit2int(*word++); 1557 if (++i % 8 == 0) 1558 data++; 1559 } 1560 if (*word == '/') { 1561 word++; 1562 while (isxdigit(*word)) { 1563 if (j >= i) /* mask longer than data */ 1564 goto inval; 1565 *mask = (*mask << 4) + xdigit2int(*word++); 1566 if (++j % 8 == 0) 1567 mask++; 1568 } 1569 if (i != j) /* mask shorter than data */ 1570 goto inval; 1571 } else { /* no mask, use all 1s */ 1572 for ( ; i - j >= 8; j += 8) 1573 *mask++ = 0xffffffff; 1574 if (i % 8) 1575 *mask = (1 << (i % 8) * 4) - 1; 1576 } 1577 if (*word == '@') { 1578 end = (char *)word + 1; 1579 ret = kstrtouint(end, 10, &j); 1580 if (*end && *end != '\n') 1581 goto inval; 1582 if (j & 7) /* doesn't start at multiple of 8 */ 1583 goto inval; 1584 j /= 8; 1585 if (j < tp.skip_ofst) /* overlaps earlier pattern */ 1586 goto inval; 1587 if (j - tp.skip_ofst > 31) /* skip too big */ 1588 goto inval; 1589 tp.skip_len = j - tp.skip_ofst; 1590 } 1591 if (i % 8) { 1592 *data <<= (8 - i % 8) * 4; 1593 *mask <<= (8 - i % 8) * 4; 1594 i = (i + 15) & ~15; /* 8-byte align */ 1595 } 1596 } 1597 1598 if (tp.port == TRC_PORT_NONE) 1599 goto inval; 1600 1601 apply: 1602 i = t4_set_trace_filter(adap, &tp, trcidx, enable); 1603 if (i) 1604 count = i; 1605 out: 1606 kfree(s); 1607 return count; 1608 } 1609 1610 static const struct file_operations mps_trc_debugfs_fops = { 1611 .owner = THIS_MODULE, 1612 .open = mps_trc_open, 1613 .read = seq_read, 1614 .llseek = seq_lseek, 1615 .release = single_release, 1616 .write = mps_trc_write 1617 }; 1618 1619 static ssize_t flash_read(struct file *file, char __user *buf, size_t count, 1620 loff_t *ppos) 1621 { 1622 loff_t pos = *ppos; 1623 loff_t avail = file_inode(file)->i_size; 1624 struct adapter *adap = file->private_data; 1625 1626 if (pos < 0) 1627 return -EINVAL; 1628 if (pos >= avail) 1629 return 0; 1630 if (count > avail - pos) 1631 count = avail - pos; 1632 1633 while (count) { 1634 size_t len; 1635 int ret, ofst; 1636 u8 data[256]; 1637 1638 ofst = pos & 3; 1639 len = min(count + ofst, sizeof(data)); 1640 ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4, 1641 (u32 *)data, 1); 1642 if (ret) 1643 return ret; 1644 1645 len -= ofst; 1646 if (copy_to_user(buf, data + ofst, len)) 1647 return -EFAULT; 1648 1649 buf += len; 1650 pos += len; 1651 count -= len; 1652 } 1653 count = pos - *ppos; 1654 *ppos = pos; 1655 return count; 1656 } 1657 1658 static const struct file_operations flash_debugfs_fops = { 1659 .owner = THIS_MODULE, 1660 .open = mem_open, 1661 .read = flash_read, 1662 .llseek = default_llseek, 1663 }; 1664 1665 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask) 1666 { 1667 *mask = x | y; 1668 y = (__force u64)cpu_to_be64(y); 1669 memcpy(addr, (char *)&y + 2, ETH_ALEN); 1670 } 1671 1672 static int mps_tcam_show(struct seq_file *seq, void *v) 1673 { 1674 struct adapter *adap = seq->private; 1675 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1676 if (v == SEQ_START_TOKEN) { 1677 if (chip_ver > CHELSIO_T5) { 1678 seq_puts(seq, "Idx Ethernet address Mask " 1679 " VNI Mask IVLAN Vld " 1680 "DIP_Hit Lookup Port " 1681 "Vld Ports PF VF " 1682 "Replication " 1683 " P0 P1 P2 P3 ML\n"); 1684 } else { 1685 if (adap->params.arch.mps_rplc_size > 128) 1686 seq_puts(seq, "Idx Ethernet address Mask " 1687 "Vld Ports PF VF " 1688 "Replication " 1689 " P0 P1 P2 P3 ML\n"); 1690 else 1691 seq_puts(seq, "Idx Ethernet address Mask " 1692 "Vld Ports PF VF Replication" 1693 " P0 P1 P2 P3 ML\n"); 1694 } 1695 } else { 1696 u64 mask; 1697 u8 addr[ETH_ALEN]; 1698 bool replicate, dip_hit = false, vlan_vld = false; 1699 unsigned int idx = (uintptr_t)v - 2; 1700 u64 tcamy, tcamx, val; 1701 u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0; 1702 u32 rplc[8] = {0}; 1703 u8 lookup_type = 0, port_num = 0; 1704 u16 ivlan = 0; 1705 1706 if (chip_ver > CHELSIO_T5) { 1707 /* CtlCmdType - 0: Read, 1: Write 1708 * CtlTcamSel - 0: TCAM0, 1: TCAM1 1709 * CtlXYBitSel- 0: Y bit, 1: X bit 1710 */ 1711 1712 /* Read tcamy */ 1713 ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0); 1714 if (idx < 256) 1715 ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0); 1716 else 1717 ctl |= CTLTCAMINDEX_V(idx - 256) | 1718 CTLTCAMSEL_V(1); 1719 t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); 1720 val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A); 1721 tcamy = DMACH_G(val) << 32; 1722 tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A); 1723 data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A); 1724 lookup_type = DATALKPTYPE_G(data2); 1725 /* 0 - Outer header, 1 - Inner header 1726 * [71:48] bit locations are overloaded for 1727 * outer vs. inner lookup types. 1728 */ 1729 if (lookup_type && (lookup_type != DATALKPTYPE_M)) { 1730 /* Inner header VNI */ 1731 vniy = (data2 & DATAVIDH2_F) | 1732 (DATAVIDH1_G(data2) << 16) | VIDL_G(val); 1733 dip_hit = data2 & DATADIPHIT_F; 1734 } else { 1735 vlan_vld = data2 & DATAVIDH2_F; 1736 ivlan = VIDL_G(val); 1737 } 1738 port_num = DATAPORTNUM_G(data2); 1739 1740 /* Read tcamx. Change the control param */ 1741 vnix = 0; 1742 ctl |= CTLXYBITSEL_V(1); 1743 t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); 1744 val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A); 1745 tcamx = DMACH_G(val) << 32; 1746 tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A); 1747 data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A); 1748 if (lookup_type && (lookup_type != DATALKPTYPE_M)) { 1749 /* Inner header VNI mask */ 1750 vnix = (data2 & DATAVIDH2_F) | 1751 (DATAVIDH1_G(data2) << 16) | VIDL_G(val); 1752 } 1753 } else { 1754 tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx)); 1755 tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx)); 1756 } 1757 1758 cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx)); 1759 cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx)); 1760 1761 if (tcamx & tcamy) { 1762 seq_printf(seq, "%3u -\n", idx); 1763 goto out; 1764 } 1765 1766 rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0; 1767 if (chip_ver > CHELSIO_T5) 1768 replicate = (cls_lo & T6_REPLICATE_F); 1769 else 1770 replicate = (cls_lo & REPLICATE_F); 1771 1772 if (replicate) { 1773 struct fw_ldst_cmd ldst_cmd; 1774 int ret; 1775 struct fw_ldst_mps_rplc mps_rplc; 1776 u32 ldst_addrspc; 1777 1778 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 1779 ldst_addrspc = 1780 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS); 1781 ldst_cmd.op_to_addrspace = 1782 htonl(FW_CMD_OP_V(FW_LDST_CMD) | 1783 FW_CMD_REQUEST_F | 1784 FW_CMD_READ_F | 1785 ldst_addrspc); 1786 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd)); 1787 ldst_cmd.u.mps.rplc.fid_idx = 1788 htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) | 1789 FW_LDST_CMD_IDX_V(idx)); 1790 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, 1791 sizeof(ldst_cmd), &ldst_cmd); 1792 if (ret) 1793 dev_warn(adap->pdev_dev, "Can't read MPS " 1794 "replication map for idx %d: %d\n", 1795 idx, -ret); 1796 else { 1797 mps_rplc = ldst_cmd.u.mps.rplc; 1798 rplc[0] = ntohl(mps_rplc.rplc31_0); 1799 rplc[1] = ntohl(mps_rplc.rplc63_32); 1800 rplc[2] = ntohl(mps_rplc.rplc95_64); 1801 rplc[3] = ntohl(mps_rplc.rplc127_96); 1802 if (adap->params.arch.mps_rplc_size > 128) { 1803 rplc[4] = ntohl(mps_rplc.rplc159_128); 1804 rplc[5] = ntohl(mps_rplc.rplc191_160); 1805 rplc[6] = ntohl(mps_rplc.rplc223_192); 1806 rplc[7] = ntohl(mps_rplc.rplc255_224); 1807 } 1808 } 1809 } 1810 1811 tcamxy2valmask(tcamx, tcamy, addr, &mask); 1812 if (chip_ver > CHELSIO_T5) { 1813 /* Inner header lookup */ 1814 if (lookup_type && (lookup_type != DATALKPTYPE_M)) { 1815 seq_printf(seq, 1816 "%3u %pM %012llx %06x %06x - - %3c 'I' %4x %3c %#x%4u%4d", 1817 idx, addr, 1818 (unsigned long long)mask, 1819 vniy, (vnix | vniy), 1820 dip_hit ? 'Y' : 'N', 1821 port_num, 1822 (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N', 1823 PORTMAP_G(cls_hi), 1824 T6_PF_G(cls_lo), 1825 (cls_lo & T6_VF_VALID_F) ? 1826 T6_VF_G(cls_lo) : -1); 1827 } else { 1828 seq_printf(seq, 1829 "%3u %pM %012llx - - ", 1830 idx, addr, 1831 (unsigned long long)mask); 1832 1833 if (vlan_vld) 1834 seq_printf(seq, "%4u Y ", ivlan); 1835 else 1836 seq_puts(seq, " - N "); 1837 1838 seq_printf(seq, 1839 "- %3c %4x %3c %#x%4u%4d", 1840 lookup_type ? 'I' : 'O', port_num, 1841 (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N', 1842 PORTMAP_G(cls_hi), 1843 T6_PF_G(cls_lo), 1844 (cls_lo & T6_VF_VALID_F) ? 1845 T6_VF_G(cls_lo) : -1); 1846 } 1847 } else 1848 seq_printf(seq, "%3u %pM %012llx%3c %#x%4u%4d", 1849 idx, addr, (unsigned long long)mask, 1850 (cls_lo & SRAM_VLD_F) ? 'Y' : 'N', 1851 PORTMAP_G(cls_hi), 1852 PF_G(cls_lo), 1853 (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1); 1854 1855 if (replicate) { 1856 if (adap->params.arch.mps_rplc_size > 128) 1857 seq_printf(seq, " %08x %08x %08x %08x " 1858 "%08x %08x %08x %08x", 1859 rplc[7], rplc[6], rplc[5], rplc[4], 1860 rplc[3], rplc[2], rplc[1], rplc[0]); 1861 else 1862 seq_printf(seq, " %08x %08x %08x %08x", 1863 rplc[3], rplc[2], rplc[1], rplc[0]); 1864 } else { 1865 if (adap->params.arch.mps_rplc_size > 128) 1866 seq_printf(seq, "%72c", ' '); 1867 else 1868 seq_printf(seq, "%36c", ' '); 1869 } 1870 1871 if (chip_ver > CHELSIO_T5) 1872 seq_printf(seq, "%4u%3u%3u%3u %#x\n", 1873 T6_SRAM_PRIO0_G(cls_lo), 1874 T6_SRAM_PRIO1_G(cls_lo), 1875 T6_SRAM_PRIO2_G(cls_lo), 1876 T6_SRAM_PRIO3_G(cls_lo), 1877 (cls_lo >> T6_MULTILISTEN0_S) & 0xf); 1878 else 1879 seq_printf(seq, "%4u%3u%3u%3u %#x\n", 1880 SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo), 1881 SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo), 1882 (cls_lo >> MULTILISTEN0_S) & 0xf); 1883 } 1884 out: return 0; 1885 } 1886 1887 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos) 1888 { 1889 struct adapter *adap = seq->private; 1890 int max_mac_addr = is_t4(adap->params.chip) ? 1891 NUM_MPS_CLS_SRAM_L_INSTANCES : 1892 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1893 return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL); 1894 } 1895 1896 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos) 1897 { 1898 return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN; 1899 } 1900 1901 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos) 1902 { 1903 ++*pos; 1904 return mps_tcam_get_idx(seq, *pos); 1905 } 1906 1907 static void mps_tcam_stop(struct seq_file *seq, void *v) 1908 { 1909 } 1910 1911 static const struct seq_operations mps_tcam_seq_ops = { 1912 .start = mps_tcam_start, 1913 .next = mps_tcam_next, 1914 .stop = mps_tcam_stop, 1915 .show = mps_tcam_show 1916 }; 1917 1918 static int mps_tcam_open(struct inode *inode, struct file *file) 1919 { 1920 int res = seq_open(file, &mps_tcam_seq_ops); 1921 1922 if (!res) { 1923 struct seq_file *seq = file->private_data; 1924 1925 seq->private = inode->i_private; 1926 } 1927 return res; 1928 } 1929 1930 static const struct file_operations mps_tcam_debugfs_fops = { 1931 .owner = THIS_MODULE, 1932 .open = mps_tcam_open, 1933 .read = seq_read, 1934 .llseek = seq_lseek, 1935 .release = seq_release, 1936 }; 1937 1938 /* Display various sensor information. 1939 */ 1940 static int sensors_show(struct seq_file *seq, void *v) 1941 { 1942 struct adapter *adap = seq->private; 1943 u32 param[7], val[7]; 1944 int ret; 1945 1946 /* Note that if the sensors haven't been initialized and turned on 1947 * we'll get values of 0, so treat those as "<unknown>" ... 1948 */ 1949 param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 1950 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) | 1951 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP)); 1952 param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 1953 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) | 1954 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD)); 1955 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 1956 param, val); 1957 1958 if (ret < 0 || val[0] == 0) 1959 seq_puts(seq, "Temperature: <unknown>\n"); 1960 else 1961 seq_printf(seq, "Temperature: %dC\n", val[0]); 1962 1963 if (ret < 0 || val[1] == 0) 1964 seq_puts(seq, "Core VDD: <unknown>\n"); 1965 else 1966 seq_printf(seq, "Core VDD: %dmV\n", val[1]); 1967 1968 return 0; 1969 } 1970 DEFINE_SHOW_ATTRIBUTE(sensors); 1971 1972 #if IS_ENABLED(CONFIG_IPV6) 1973 DEFINE_SHOW_ATTRIBUTE(clip_tbl); 1974 #endif 1975 1976 /*RSS Table. 1977 */ 1978 1979 static int rss_show(struct seq_file *seq, void *v, int idx) 1980 { 1981 u16 *entry = v; 1982 1983 seq_printf(seq, "%4d: %4u %4u %4u %4u %4u %4u %4u %4u\n", 1984 idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4], 1985 entry[5], entry[6], entry[7]); 1986 return 0; 1987 } 1988 1989 static int rss_open(struct inode *inode, struct file *file) 1990 { 1991 struct adapter *adap = inode->i_private; 1992 int ret, nentries; 1993 struct seq_tab *p; 1994 1995 nentries = t4_chip_rss_size(adap); 1996 p = seq_open_tab(file, nentries / 8, 8 * sizeof(u16), 0, rss_show); 1997 if (!p) 1998 return -ENOMEM; 1999 2000 ret = t4_read_rss(adap, (u16 *)p->data); 2001 if (ret) 2002 seq_release_private(inode, file); 2003 2004 return ret; 2005 } 2006 2007 static const struct file_operations rss_debugfs_fops = { 2008 .owner = THIS_MODULE, 2009 .open = rss_open, 2010 .read = seq_read, 2011 .llseek = seq_lseek, 2012 .release = seq_release_private 2013 }; 2014 2015 /* RSS Configuration. 2016 */ 2017 2018 /* Small utility function to return the strings "yes" or "no" if the supplied 2019 * argument is non-zero. 2020 */ 2021 static const char *yesno(int x) 2022 { 2023 static const char *yes = "yes"; 2024 static const char *no = "no"; 2025 2026 return x ? yes : no; 2027 } 2028 2029 static int rss_config_show(struct seq_file *seq, void *v) 2030 { 2031 struct adapter *adapter = seq->private; 2032 static const char * const keymode[] = { 2033 "global", 2034 "global and per-VF scramble", 2035 "per-PF and per-VF scramble", 2036 "per-VF and per-VF scramble", 2037 }; 2038 u32 rssconf; 2039 2040 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A); 2041 seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf); 2042 seq_printf(seq, " Tnl4TupEnIpv6: %3s\n", yesno(rssconf & 2043 TNL4TUPENIPV6_F)); 2044 seq_printf(seq, " Tnl2TupEnIpv6: %3s\n", yesno(rssconf & 2045 TNL2TUPENIPV6_F)); 2046 seq_printf(seq, " Tnl4TupEnIpv4: %3s\n", yesno(rssconf & 2047 TNL4TUPENIPV4_F)); 2048 seq_printf(seq, " Tnl2TupEnIpv4: %3s\n", yesno(rssconf & 2049 TNL2TUPENIPV4_F)); 2050 seq_printf(seq, " TnlTcpSel: %3s\n", yesno(rssconf & TNLTCPSEL_F)); 2051 seq_printf(seq, " TnlIp6Sel: %3s\n", yesno(rssconf & TNLIP6SEL_F)); 2052 seq_printf(seq, " TnlVrtSel: %3s\n", yesno(rssconf & TNLVRTSEL_F)); 2053 seq_printf(seq, " TnlMapEn: %3s\n", yesno(rssconf & TNLMAPEN_F)); 2054 seq_printf(seq, " OfdHashSave: %3s\n", yesno(rssconf & 2055 OFDHASHSAVE_F)); 2056 seq_printf(seq, " OfdVrtSel: %3s\n", yesno(rssconf & OFDVRTSEL_F)); 2057 seq_printf(seq, " OfdMapEn: %3s\n", yesno(rssconf & OFDMAPEN_F)); 2058 seq_printf(seq, " OfdLkpEn: %3s\n", yesno(rssconf & OFDLKPEN_F)); 2059 seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf & 2060 SYN4TUPENIPV6_F)); 2061 seq_printf(seq, " Syn2TupEnIpv6: %3s\n", yesno(rssconf & 2062 SYN2TUPENIPV6_F)); 2063 seq_printf(seq, " Syn4TupEnIpv4: %3s\n", yesno(rssconf & 2064 SYN4TUPENIPV4_F)); 2065 seq_printf(seq, " Syn2TupEnIpv4: %3s\n", yesno(rssconf & 2066 SYN2TUPENIPV4_F)); 2067 seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf & 2068 SYN4TUPENIPV6_F)); 2069 seq_printf(seq, " SynIp6Sel: %3s\n", yesno(rssconf & SYNIP6SEL_F)); 2070 seq_printf(seq, " SynVrt6Sel: %3s\n", yesno(rssconf & SYNVRTSEL_F)); 2071 seq_printf(seq, " SynMapEn: %3s\n", yesno(rssconf & SYNMAPEN_F)); 2072 seq_printf(seq, " SynLkpEn: %3s\n", yesno(rssconf & SYNLKPEN_F)); 2073 seq_printf(seq, " ChnEn: %3s\n", yesno(rssconf & 2074 CHANNELENABLE_F)); 2075 seq_printf(seq, " PrtEn: %3s\n", yesno(rssconf & 2076 PORTENABLE_F)); 2077 seq_printf(seq, " TnlAllLkp: %3s\n", yesno(rssconf & 2078 TNLALLLOOKUP_F)); 2079 seq_printf(seq, " VrtEn: %3s\n", yesno(rssconf & 2080 VIRTENABLE_F)); 2081 seq_printf(seq, " CngEn: %3s\n", yesno(rssconf & 2082 CONGESTIONENABLE_F)); 2083 seq_printf(seq, " HashToeplitz: %3s\n", yesno(rssconf & 2084 HASHTOEPLITZ_F)); 2085 seq_printf(seq, " Udp4En: %3s\n", yesno(rssconf & UDPENABLE_F)); 2086 seq_printf(seq, " Disable: %3s\n", yesno(rssconf & DISABLE_F)); 2087 2088 seq_puts(seq, "\n"); 2089 2090 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A); 2091 seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf); 2092 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); 2093 seq_printf(seq, " MaskFilter: %3d\n", MASKFILTER_G(rssconf)); 2094 if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) { 2095 seq_printf(seq, " HashAll: %3s\n", 2096 yesno(rssconf & HASHALL_F)); 2097 seq_printf(seq, " HashEth: %3s\n", 2098 yesno(rssconf & HASHETH_F)); 2099 } 2100 seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F)); 2101 2102 seq_puts(seq, "\n"); 2103 2104 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A); 2105 seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf); 2106 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); 2107 seq_printf(seq, " RRCplMapEn: %3s\n", yesno(rssconf & 2108 RRCPLMAPEN_F)); 2109 seq_printf(seq, " RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf)); 2110 2111 seq_puts(seq, "\n"); 2112 2113 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A); 2114 seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf); 2115 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); 2116 seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F)); 2117 2118 seq_puts(seq, "\n"); 2119 2120 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 2121 seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf); 2122 if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) { 2123 seq_printf(seq, " KeyWrAddrX: %3d\n", 2124 KEYWRADDRX_G(rssconf)); 2125 seq_printf(seq, " KeyExtend: %3s\n", 2126 yesno(rssconf & KEYEXTEND_F)); 2127 } 2128 seq_printf(seq, " VfRdRg: %3s\n", yesno(rssconf & VFRDRG_F)); 2129 seq_printf(seq, " VfRdEn: %3s\n", yesno(rssconf & VFRDEN_F)); 2130 seq_printf(seq, " VfPerrEn: %3s\n", yesno(rssconf & VFPERREN_F)); 2131 seq_printf(seq, " KeyPerrEn: %3s\n", yesno(rssconf & KEYPERREN_F)); 2132 seq_printf(seq, " DisVfVlan: %3s\n", yesno(rssconf & 2133 DISABLEVLAN_F)); 2134 seq_printf(seq, " EnUpSwt: %3s\n", yesno(rssconf & ENABLEUP0_F)); 2135 seq_printf(seq, " HashDelay: %3d\n", HASHDELAY_G(rssconf)); 2136 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 2137 seq_printf(seq, " VfWrAddr: %3d\n", VFWRADDR_G(rssconf)); 2138 else 2139 seq_printf(seq, " VfWrAddr: %3d\n", 2140 T6_VFWRADDR_G(rssconf)); 2141 seq_printf(seq, " KeyMode: %s\n", keymode[KEYMODE_G(rssconf)]); 2142 seq_printf(seq, " VfWrEn: %3s\n", yesno(rssconf & VFWREN_F)); 2143 seq_printf(seq, " KeyWrEn: %3s\n", yesno(rssconf & KEYWREN_F)); 2144 seq_printf(seq, " KeyWrAddr: %3d\n", KEYWRADDR_G(rssconf)); 2145 2146 seq_puts(seq, "\n"); 2147 2148 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A); 2149 seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf); 2150 seq_printf(seq, " ChnCount3: %3s\n", yesno(rssconf & CHNCOUNT3_F)); 2151 seq_printf(seq, " ChnCount2: %3s\n", yesno(rssconf & CHNCOUNT2_F)); 2152 seq_printf(seq, " ChnCount1: %3s\n", yesno(rssconf & CHNCOUNT1_F)); 2153 seq_printf(seq, " ChnCount0: %3s\n", yesno(rssconf & CHNCOUNT0_F)); 2154 seq_printf(seq, " ChnUndFlow3: %3s\n", yesno(rssconf & 2155 CHNUNDFLOW3_F)); 2156 seq_printf(seq, " ChnUndFlow2: %3s\n", yesno(rssconf & 2157 CHNUNDFLOW2_F)); 2158 seq_printf(seq, " ChnUndFlow1: %3s\n", yesno(rssconf & 2159 CHNUNDFLOW1_F)); 2160 seq_printf(seq, " ChnUndFlow0: %3s\n", yesno(rssconf & 2161 CHNUNDFLOW0_F)); 2162 seq_printf(seq, " RstChn3: %3s\n", yesno(rssconf & RSTCHN3_F)); 2163 seq_printf(seq, " RstChn2: %3s\n", yesno(rssconf & RSTCHN2_F)); 2164 seq_printf(seq, " RstChn1: %3s\n", yesno(rssconf & RSTCHN1_F)); 2165 seq_printf(seq, " RstChn0: %3s\n", yesno(rssconf & RSTCHN0_F)); 2166 seq_printf(seq, " UpdVld: %3s\n", yesno(rssconf & UPDVLD_F)); 2167 seq_printf(seq, " Xoff: %3s\n", yesno(rssconf & XOFF_F)); 2168 seq_printf(seq, " UpdChn3: %3s\n", yesno(rssconf & UPDCHN3_F)); 2169 seq_printf(seq, " UpdChn2: %3s\n", yesno(rssconf & UPDCHN2_F)); 2170 seq_printf(seq, " UpdChn1: %3s\n", yesno(rssconf & UPDCHN1_F)); 2171 seq_printf(seq, " UpdChn0: %3s\n", yesno(rssconf & UPDCHN0_F)); 2172 seq_printf(seq, " Queue: %3d\n", QUEUE_G(rssconf)); 2173 2174 return 0; 2175 } 2176 DEFINE_SHOW_ATTRIBUTE(rss_config); 2177 2178 /* RSS Secret Key. 2179 */ 2180 2181 static int rss_key_show(struct seq_file *seq, void *v) 2182 { 2183 u32 key[10]; 2184 2185 t4_read_rss_key(seq->private, key, true); 2186 seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 2187 key[9], key[8], key[7], key[6], key[5], key[4], key[3], 2188 key[2], key[1], key[0]); 2189 return 0; 2190 } 2191 2192 static int rss_key_open(struct inode *inode, struct file *file) 2193 { 2194 return single_open(file, rss_key_show, inode->i_private); 2195 } 2196 2197 static ssize_t rss_key_write(struct file *file, const char __user *buf, 2198 size_t count, loff_t *pos) 2199 { 2200 int i, j; 2201 u32 key[10]; 2202 char s[100], *p; 2203 struct adapter *adap = file_inode(file)->i_private; 2204 2205 if (count > sizeof(s) - 1) 2206 return -EINVAL; 2207 if (copy_from_user(s, buf, count)) 2208 return -EFAULT; 2209 for (i = count; i > 0 && isspace(s[i - 1]); i--) 2210 ; 2211 s[i] = '\0'; 2212 2213 for (p = s, i = 9; i >= 0; i--) { 2214 key[i] = 0; 2215 for (j = 0; j < 8; j++, p++) { 2216 if (!isxdigit(*p)) 2217 return -EINVAL; 2218 key[i] = (key[i] << 4) | hex2val(*p); 2219 } 2220 } 2221 2222 t4_write_rss_key(adap, key, -1, true); 2223 return count; 2224 } 2225 2226 static const struct file_operations rss_key_debugfs_fops = { 2227 .owner = THIS_MODULE, 2228 .open = rss_key_open, 2229 .read = seq_read, 2230 .llseek = seq_lseek, 2231 .release = single_release, 2232 .write = rss_key_write 2233 }; 2234 2235 /* PF RSS Configuration. 2236 */ 2237 2238 struct rss_pf_conf { 2239 u32 rss_pf_map; 2240 u32 rss_pf_mask; 2241 u32 rss_pf_config; 2242 }; 2243 2244 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx) 2245 { 2246 struct rss_pf_conf *pfconf; 2247 2248 if (v == SEQ_START_TOKEN) { 2249 /* use the 0th entry to dump the PF Map Index Size */ 2250 pfconf = seq->private + offsetof(struct seq_tab, data); 2251 seq_printf(seq, "PF Map Index Size = %d\n\n", 2252 LKPIDXSIZE_G(pfconf->rss_pf_map)); 2253 2254 seq_puts(seq, " RSS PF VF Hash Tuple Enable Default\n"); 2255 seq_puts(seq, " Enable IPF Mask Mask IPv6 IPv4 UDP Queue\n"); 2256 seq_puts(seq, " PF Map Chn Prt Map Size Size Four Two Four Two Four Ch1 Ch0\n"); 2257 } else { 2258 #define G_PFnLKPIDX(map, n) \ 2259 (((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M) 2260 #define G_PFnMSKSIZE(mask, n) \ 2261 (((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M) 2262 2263 pfconf = v; 2264 seq_printf(seq, "%3d %3s %3s %3s %3d %3d %3d %3s %3s %3s %3s %3s %3d %3d\n", 2265 idx, 2266 yesno(pfconf->rss_pf_config & MAPENABLE_F), 2267 yesno(pfconf->rss_pf_config & CHNENABLE_F), 2268 yesno(pfconf->rss_pf_config & PRTENABLE_F), 2269 G_PFnLKPIDX(pfconf->rss_pf_map, idx), 2270 G_PFnMSKSIZE(pfconf->rss_pf_mask, idx), 2271 IVFWIDTH_G(pfconf->rss_pf_config), 2272 yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F), 2273 yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F), 2274 yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F), 2275 yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F), 2276 yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F), 2277 CH1DEFAULTQUEUE_G(pfconf->rss_pf_config), 2278 CH0DEFAULTQUEUE_G(pfconf->rss_pf_config)); 2279 2280 #undef G_PFnLKPIDX 2281 #undef G_PFnMSKSIZE 2282 } 2283 return 0; 2284 } 2285 2286 static int rss_pf_config_open(struct inode *inode, struct file *file) 2287 { 2288 struct adapter *adapter = inode->i_private; 2289 struct seq_tab *p; 2290 u32 rss_pf_map, rss_pf_mask; 2291 struct rss_pf_conf *pfconf; 2292 int pf; 2293 2294 p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show); 2295 if (!p) 2296 return -ENOMEM; 2297 2298 pfconf = (struct rss_pf_conf *)p->data; 2299 rss_pf_map = t4_read_rss_pf_map(adapter, true); 2300 rss_pf_mask = t4_read_rss_pf_mask(adapter, true); 2301 for (pf = 0; pf < 8; pf++) { 2302 pfconf[pf].rss_pf_map = rss_pf_map; 2303 pfconf[pf].rss_pf_mask = rss_pf_mask; 2304 t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config, 2305 true); 2306 } 2307 return 0; 2308 } 2309 2310 static const struct file_operations rss_pf_config_debugfs_fops = { 2311 .owner = THIS_MODULE, 2312 .open = rss_pf_config_open, 2313 .read = seq_read, 2314 .llseek = seq_lseek, 2315 .release = seq_release_private 2316 }; 2317 2318 /* VF RSS Configuration. 2319 */ 2320 2321 struct rss_vf_conf { 2322 u32 rss_vf_vfl; 2323 u32 rss_vf_vfh; 2324 }; 2325 2326 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx) 2327 { 2328 if (v == SEQ_START_TOKEN) { 2329 seq_puts(seq, " RSS Hash Tuple Enable\n"); 2330 seq_puts(seq, " Enable IVF Dis Enb IPv6 IPv4 UDP Def Secret Key\n"); 2331 seq_puts(seq, " VF Chn Prt Map VLAN uP Four Two Four Two Four Que Idx Hash\n"); 2332 } else { 2333 struct rss_vf_conf *vfconf = v; 2334 2335 seq_printf(seq, "%3d %3s %3s %3d %3s %3s %3s %3s %3s %3s %3s %4d %3d %#10x\n", 2336 idx, 2337 yesno(vfconf->rss_vf_vfh & VFCHNEN_F), 2338 yesno(vfconf->rss_vf_vfh & VFPRTEN_F), 2339 VFLKPIDX_G(vfconf->rss_vf_vfh), 2340 yesno(vfconf->rss_vf_vfh & VFVLNEX_F), 2341 yesno(vfconf->rss_vf_vfh & VFUPEN_F), 2342 yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F), 2343 yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F), 2344 yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F), 2345 yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F), 2346 yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F), 2347 DEFAULTQUEUE_G(vfconf->rss_vf_vfh), 2348 KEYINDEX_G(vfconf->rss_vf_vfh), 2349 vfconf->rss_vf_vfl); 2350 } 2351 return 0; 2352 } 2353 2354 static int rss_vf_config_open(struct inode *inode, struct file *file) 2355 { 2356 struct adapter *adapter = inode->i_private; 2357 struct seq_tab *p; 2358 struct rss_vf_conf *vfconf; 2359 int vf, vfcount = adapter->params.arch.vfcount; 2360 2361 p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show); 2362 if (!p) 2363 return -ENOMEM; 2364 2365 vfconf = (struct rss_vf_conf *)p->data; 2366 for (vf = 0; vf < vfcount; vf++) { 2367 t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl, 2368 &vfconf[vf].rss_vf_vfh, true); 2369 } 2370 return 0; 2371 } 2372 2373 static const struct file_operations rss_vf_config_debugfs_fops = { 2374 .owner = THIS_MODULE, 2375 .open = rss_vf_config_open, 2376 .read = seq_read, 2377 .llseek = seq_lseek, 2378 .release = seq_release_private 2379 }; 2380 2381 #ifdef CONFIG_CHELSIO_T4_DCB 2382 2383 /* Data Center Briging information for each port. 2384 */ 2385 static int dcb_info_show(struct seq_file *seq, void *v) 2386 { 2387 struct adapter *adap = seq->private; 2388 2389 if (v == SEQ_START_TOKEN) { 2390 seq_puts(seq, "Data Center Bridging Information\n"); 2391 } else { 2392 int port = (uintptr_t)v - 2; 2393 struct net_device *dev = adap->port[port]; 2394 struct port_info *pi = netdev2pinfo(dev); 2395 struct port_dcb_info *dcb = &pi->dcb; 2396 2397 seq_puts(seq, "\n"); 2398 seq_printf(seq, "Port: %d (DCB negotiated: %s)\n", 2399 port, 2400 cxgb4_dcb_enabled(dev) ? "yes" : "no"); 2401 2402 if (cxgb4_dcb_enabled(dev)) 2403 seq_printf(seq, "[ DCBx Version %s ]\n", 2404 dcb_ver_array[dcb->dcb_version]); 2405 2406 if (dcb->msgs) { 2407 int i; 2408 2409 seq_puts(seq, "\n Index\t\t\t :\t"); 2410 for (i = 0; i < 8; i++) 2411 seq_printf(seq, " %3d", i); 2412 seq_puts(seq, "\n\n"); 2413 } 2414 2415 if (dcb->msgs & CXGB4_DCB_FW_PGID) { 2416 int prio, pgid; 2417 2418 seq_puts(seq, " Priority Group IDs\t :\t"); 2419 for (prio = 0; prio < 8; prio++) { 2420 pgid = (dcb->pgid >> 4 * (7 - prio)) & 0xf; 2421 seq_printf(seq, " %3d", pgid); 2422 } 2423 seq_puts(seq, "\n"); 2424 } 2425 2426 if (dcb->msgs & CXGB4_DCB_FW_PGRATE) { 2427 int pg; 2428 2429 seq_puts(seq, " Priority Group BW(%)\t :\t"); 2430 for (pg = 0; pg < 8; pg++) 2431 seq_printf(seq, " %3d", dcb->pgrate[pg]); 2432 seq_puts(seq, "\n"); 2433 2434 if (dcb->dcb_version == FW_PORT_DCB_VER_IEEE) { 2435 seq_puts(seq, " TSA Algorithm\t\t :\t"); 2436 for (pg = 0; pg < 8; pg++) 2437 seq_printf(seq, " %3d", dcb->tsa[pg]); 2438 seq_puts(seq, "\n"); 2439 } 2440 2441 seq_printf(seq, " Max PG Traffic Classes [%3d ]\n", 2442 dcb->pg_num_tcs_supported); 2443 2444 seq_puts(seq, "\n"); 2445 } 2446 2447 if (dcb->msgs & CXGB4_DCB_FW_PRIORATE) { 2448 int prio; 2449 2450 seq_puts(seq, " Priority Rate\t:\t"); 2451 for (prio = 0; prio < 8; prio++) 2452 seq_printf(seq, " %3d", dcb->priorate[prio]); 2453 seq_puts(seq, "\n"); 2454 } 2455 2456 if (dcb->msgs & CXGB4_DCB_FW_PFC) { 2457 int prio; 2458 2459 seq_puts(seq, " Priority Flow Control :\t"); 2460 for (prio = 0; prio < 8; prio++) { 2461 int pfcen = (dcb->pfcen >> 1 * (7 - prio)) 2462 & 0x1; 2463 seq_printf(seq, " %3d", pfcen); 2464 } 2465 seq_puts(seq, "\n"); 2466 2467 seq_printf(seq, " Max PFC Traffic Classes [%3d ]\n", 2468 dcb->pfc_num_tcs_supported); 2469 2470 seq_puts(seq, "\n"); 2471 } 2472 2473 if (dcb->msgs & CXGB4_DCB_FW_APP_ID) { 2474 int app, napps; 2475 2476 seq_puts(seq, " Application Information:\n"); 2477 seq_puts(seq, " App Priority Selection Protocol\n"); 2478 seq_puts(seq, " Index Map Field ID\n"); 2479 for (app = 0, napps = 0; 2480 app < CXGB4_MAX_DCBX_APP_SUPPORTED; app++) { 2481 struct app_priority *ap; 2482 static const char * const sel_names[] = { 2483 "Ethertype", 2484 "Socket TCP", 2485 "Socket UDP", 2486 "Socket All", 2487 }; 2488 const char *sel_name; 2489 2490 ap = &dcb->app_priority[app]; 2491 /* skip empty slots */ 2492 if (ap->protocolid == 0) 2493 continue; 2494 napps++; 2495 2496 if (ap->sel_field < ARRAY_SIZE(sel_names)) 2497 sel_name = sel_names[ap->sel_field]; 2498 else 2499 sel_name = "UNKNOWN"; 2500 2501 seq_printf(seq, " %3d %#04x %-10s (%d) %#06x (%d)\n", 2502 app, 2503 ap->user_prio_map, 2504 sel_name, ap->sel_field, 2505 ap->protocolid, ap->protocolid); 2506 } 2507 if (napps == 0) 2508 seq_puts(seq, " --- None ---\n"); 2509 } 2510 } 2511 return 0; 2512 } 2513 2514 static inline void *dcb_info_get_idx(struct adapter *adap, loff_t pos) 2515 { 2516 return (pos <= adap->params.nports 2517 ? (void *)((uintptr_t)pos + 1) 2518 : NULL); 2519 } 2520 2521 static void *dcb_info_start(struct seq_file *seq, loff_t *pos) 2522 { 2523 struct adapter *adap = seq->private; 2524 2525 return (*pos 2526 ? dcb_info_get_idx(adap, *pos) 2527 : SEQ_START_TOKEN); 2528 } 2529 2530 static void dcb_info_stop(struct seq_file *seq, void *v) 2531 { 2532 } 2533 2534 static void *dcb_info_next(struct seq_file *seq, void *v, loff_t *pos) 2535 { 2536 struct adapter *adap = seq->private; 2537 2538 (*pos)++; 2539 return dcb_info_get_idx(adap, *pos); 2540 } 2541 2542 static const struct seq_operations dcb_info_seq_ops = { 2543 .start = dcb_info_start, 2544 .next = dcb_info_next, 2545 .stop = dcb_info_stop, 2546 .show = dcb_info_show 2547 }; 2548 2549 static int dcb_info_open(struct inode *inode, struct file *file) 2550 { 2551 int res = seq_open(file, &dcb_info_seq_ops); 2552 2553 if (!res) { 2554 struct seq_file *seq = file->private_data; 2555 2556 seq->private = inode->i_private; 2557 } 2558 return res; 2559 } 2560 2561 static const struct file_operations dcb_info_debugfs_fops = { 2562 .owner = THIS_MODULE, 2563 .open = dcb_info_open, 2564 .read = seq_read, 2565 .llseek = seq_lseek, 2566 .release = seq_release, 2567 }; 2568 #endif /* CONFIG_CHELSIO_T4_DCB */ 2569 2570 static int resources_show(struct seq_file *seq, void *v) 2571 { 2572 struct adapter *adapter = seq->private; 2573 struct pf_resources *pfres = &adapter->params.pfres; 2574 2575 #define S(desc, fmt, var) \ 2576 seq_printf(seq, "%-60s " fmt "\n", \ 2577 desc " (" #var "):", pfres->var) 2578 2579 S("Virtual Interfaces", "%d", nvi); 2580 S("Egress Queues", "%d", neq); 2581 S("Ethernet Control", "%d", nethctrl); 2582 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2583 S("Ingress Queues", "%d", niq); 2584 S("Traffic Class", "%d", tc); 2585 S("Port Access Rights Mask", "%#x", pmask); 2586 S("MAC Address Filters", "%d", nexactf); 2587 S("Firmware Command Read Capabilities", "%#x", r_caps); 2588 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2589 2590 #undef S 2591 2592 return 0; 2593 } 2594 DEFINE_SHOW_ATTRIBUTE(resources); 2595 2596 /** 2597 * ethqset2pinfo - return port_info of an Ethernet Queue Set 2598 * @adap: the adapter 2599 * @qset: Ethernet Queue Set 2600 */ 2601 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset) 2602 { 2603 int pidx; 2604 2605 for_each_port(adap, pidx) { 2606 struct port_info *pi = adap2pinfo(adap, pidx); 2607 2608 if (qset >= pi->first_qset && 2609 qset < pi->first_qset + pi->nqsets) 2610 return pi; 2611 } 2612 2613 /* should never happen! */ 2614 BUG(); 2615 return NULL; 2616 } 2617 2618 static int sge_qinfo_uld_txq_entries(const struct adapter *adap, int uld) 2619 { 2620 const struct sge_uld_txq_info *utxq_info = adap->sge.uld_txq_info[uld]; 2621 2622 if (!utxq_info) 2623 return 0; 2624 2625 return DIV_ROUND_UP(utxq_info->ntxq, 4); 2626 } 2627 2628 static int sge_qinfo_uld_rspq_entries(const struct adapter *adap, int uld, 2629 bool ciq) 2630 { 2631 const struct sge_uld_rxq_info *urxq_info = adap->sge.uld_rxq_info[uld]; 2632 2633 if (!urxq_info) 2634 return 0; 2635 2636 return ciq ? DIV_ROUND_UP(urxq_info->nciq, 4) : 2637 DIV_ROUND_UP(urxq_info->nrxq, 4); 2638 } 2639 2640 static int sge_qinfo_uld_rxq_entries(const struct adapter *adap, int uld) 2641 { 2642 return sge_qinfo_uld_rspq_entries(adap, uld, false); 2643 } 2644 2645 static int sge_qinfo_uld_ciq_entries(const struct adapter *adap, int uld) 2646 { 2647 return sge_qinfo_uld_rspq_entries(adap, uld, true); 2648 } 2649 2650 static int sge_qinfo_show(struct seq_file *seq, void *v) 2651 { 2652 int eth_entries, ctrl_entries, eohw_entries = 0, eosw_entries = 0; 2653 int uld_rxq_entries[CXGB4_ULD_MAX] = { 0 }; 2654 int uld_ciq_entries[CXGB4_ULD_MAX] = { 0 }; 2655 int uld_txq_entries[CXGB4_TX_MAX] = { 0 }; 2656 const struct sge_uld_txq_info *utxq_info; 2657 const struct sge_uld_rxq_info *urxq_info; 2658 struct cxgb4_tc_port_mqprio *port_mqprio; 2659 struct adapter *adap = seq->private; 2660 int i, j, n, r = (uintptr_t)v - 1; 2661 struct sge *s = &adap->sge; 2662 2663 eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4); 2664 ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4); 2665 2666 if (r) 2667 seq_putc(seq, '\n'); 2668 2669 #define S3(fmt_spec, s, v) \ 2670 do { \ 2671 seq_printf(seq, "%-12s", s); \ 2672 for (i = 0; i < n; ++i) \ 2673 seq_printf(seq, " %16" fmt_spec, v); \ 2674 seq_putc(seq, '\n'); \ 2675 } while (0) 2676 #define S(s, v) S3("s", s, v) 2677 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v) 2678 #define T(s, v) S3("u", s, tx[i].v) 2679 #define TL(s, v) T3("lu", s, v) 2680 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v) 2681 #define R(s, v) S3("u", s, rx[i].v) 2682 #define RL(s, v) R3("lu", s, v) 2683 2684 if (r < eth_entries) { 2685 int base_qset = r * 4; 2686 const struct sge_eth_rxq *rx = &s->ethrxq[base_qset]; 2687 const struct sge_eth_txq *tx = &s->ethtxq[base_qset]; 2688 2689 n = min(4, s->ethqsets - 4 * r); 2690 2691 S("QType:", "Ethernet"); 2692 S("Interface:", 2693 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2694 T("TxQ ID:", q.cntxt_id); 2695 T("TxQ size:", q.size); 2696 T("TxQ inuse:", q.in_use); 2697 T("TxQ CIDX:", q.cidx); 2698 T("TxQ PIDX:", q.pidx); 2699 #ifdef CONFIG_CHELSIO_T4_DCB 2700 T("DCB Prio:", dcb_prio); 2701 S3("u", "DCB PGID:", 2702 (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >> 2703 4*(7-tx[i].dcb_prio)) & 0xf); 2704 S3("u", "DCB PFC:", 2705 (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >> 2706 1*(7-tx[i].dcb_prio)) & 0x1); 2707 #endif 2708 R("RspQ ID:", rspq.abs_id); 2709 R("RspQ size:", rspq.size); 2710 R("RspQE size:", rspq.iqe_len); 2711 R("RspQ CIDX:", rspq.cidx); 2712 R("RspQ Gen:", rspq.gen); 2713 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2714 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2715 R("FL ID:", fl.cntxt_id); 2716 R("FL size:", fl.size - 8); 2717 R("FL pend:", fl.pend_cred); 2718 R("FL avail:", fl.avail); 2719 R("FL PIDX:", fl.pidx); 2720 R("FL CIDX:", fl.cidx); 2721 RL("RxPackets:", stats.pkts); 2722 RL("RxCSO:", stats.rx_cso); 2723 RL("VLANxtract:", stats.vlan_ex); 2724 RL("LROmerged:", stats.lro_merged); 2725 RL("LROpackets:", stats.lro_pkts); 2726 RL("RxDrops:", stats.rx_drops); 2727 RL("RxBadPkts:", stats.bad_rx_pkts); 2728 TL("TSO:", tso); 2729 TL("USO:", uso); 2730 TL("TxCSO:", tx_cso); 2731 TL("VLANins:", vlan_ins); 2732 TL("TxQFull:", q.stops); 2733 TL("TxQRestarts:", q.restarts); 2734 TL("TxMapErr:", mapping_err); 2735 RL("FLAllocErr:", fl.alloc_failed); 2736 RL("FLLrgAlcErr:", fl.large_alloc_failed); 2737 RL("FLMapErr:", fl.mapping_err); 2738 RL("FLLow:", fl.low); 2739 RL("FLStarving:", fl.starving); 2740 2741 goto out; 2742 } 2743 2744 r -= eth_entries; 2745 for_each_port(adap, j) { 2746 struct port_info *pi = adap2pinfo(adap, j); 2747 const struct sge_eth_rxq *rx; 2748 2749 mutex_lock(&pi->vi_mirror_mutex); 2750 if (!pi->vi_mirror_count) { 2751 mutex_unlock(&pi->vi_mirror_mutex); 2752 continue; 2753 } 2754 2755 if (r >= DIV_ROUND_UP(pi->nmirrorqsets, 4)) { 2756 r -= DIV_ROUND_UP(pi->nmirrorqsets, 4); 2757 mutex_unlock(&pi->vi_mirror_mutex); 2758 continue; 2759 } 2760 2761 rx = &s->mirror_rxq[j][r * 4]; 2762 n = min(4, pi->nmirrorqsets - 4 * r); 2763 2764 S("QType:", "Mirror-Rxq"); 2765 S("Interface:", 2766 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2767 R("RspQ ID:", rspq.abs_id); 2768 R("RspQ size:", rspq.size); 2769 R("RspQE size:", rspq.iqe_len); 2770 R("RspQ CIDX:", rspq.cidx); 2771 R("RspQ Gen:", rspq.gen); 2772 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2773 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2774 R("FL ID:", fl.cntxt_id); 2775 R("FL size:", fl.size - 8); 2776 R("FL pend:", fl.pend_cred); 2777 R("FL avail:", fl.avail); 2778 R("FL PIDX:", fl.pidx); 2779 R("FL CIDX:", fl.cidx); 2780 RL("RxPackets:", stats.pkts); 2781 RL("RxCSO:", stats.rx_cso); 2782 RL("VLANxtract:", stats.vlan_ex); 2783 RL("LROmerged:", stats.lro_merged); 2784 RL("LROpackets:", stats.lro_pkts); 2785 RL("RxDrops:", stats.rx_drops); 2786 RL("RxBadPkts:", stats.bad_rx_pkts); 2787 RL("FLAllocErr:", fl.alloc_failed); 2788 RL("FLLrgAlcErr:", fl.large_alloc_failed); 2789 RL("FLMapErr:", fl.mapping_err); 2790 RL("FLLow:", fl.low); 2791 RL("FLStarving:", fl.starving); 2792 2793 mutex_unlock(&pi->vi_mirror_mutex); 2794 goto out; 2795 } 2796 2797 if (!adap->tc_mqprio) 2798 goto skip_mqprio; 2799 2800 mutex_lock(&adap->tc_mqprio->mqprio_mutex); 2801 if (!refcount_read(&adap->tc_mqprio->refcnt)) { 2802 mutex_unlock(&adap->tc_mqprio->mqprio_mutex); 2803 goto skip_mqprio; 2804 } 2805 2806 eohw_entries = DIV_ROUND_UP(adap->sge.eoqsets, 4); 2807 if (r < eohw_entries) { 2808 int base_qset = r * 4; 2809 const struct sge_ofld_rxq *rx = &s->eohw_rxq[base_qset]; 2810 const struct sge_eohw_txq *tx = &s->eohw_txq[base_qset]; 2811 2812 n = min(4, s->eoqsets - 4 * r); 2813 2814 S("QType:", "ETHOFLD"); 2815 S("Interface:", 2816 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2817 T("TxQ ID:", q.cntxt_id); 2818 T("TxQ size:", q.size); 2819 T("TxQ inuse:", q.in_use); 2820 T("TxQ CIDX:", q.cidx); 2821 T("TxQ PIDX:", q.pidx); 2822 R("RspQ ID:", rspq.abs_id); 2823 R("RspQ size:", rspq.size); 2824 R("RspQE size:", rspq.iqe_len); 2825 R("RspQ CIDX:", rspq.cidx); 2826 R("RspQ Gen:", rspq.gen); 2827 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2828 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2829 R("FL ID:", fl.cntxt_id); 2830 S3("u", "FL size:", rx->fl.size ? rx->fl.size - 8 : 0); 2831 R("FL pend:", fl.pend_cred); 2832 R("FL avail:", fl.avail); 2833 R("FL PIDX:", fl.pidx); 2834 R("FL CIDX:", fl.cidx); 2835 RL("RxPackets:", stats.pkts); 2836 RL("RxImm:", stats.imm); 2837 RL("RxAN", stats.an); 2838 RL("RxNoMem", stats.nomem); 2839 TL("TSO:", tso); 2840 TL("USO:", uso); 2841 TL("TxCSO:", tx_cso); 2842 TL("VLANins:", vlan_ins); 2843 TL("TxQFull:", q.stops); 2844 TL("TxQRestarts:", q.restarts); 2845 TL("TxMapErr:", mapping_err); 2846 RL("FLAllocErr:", fl.alloc_failed); 2847 RL("FLLrgAlcErr:", fl.large_alloc_failed); 2848 RL("FLMapErr:", fl.mapping_err); 2849 RL("FLLow:", fl.low); 2850 RL("FLStarving:", fl.starving); 2851 2852 mutex_unlock(&adap->tc_mqprio->mqprio_mutex); 2853 goto out; 2854 } 2855 2856 r -= eohw_entries; 2857 for (j = 0; j < adap->params.nports; j++) { 2858 int entries; 2859 u8 tc; 2860 2861 port_mqprio = &adap->tc_mqprio->port_mqprio[j]; 2862 entries = 0; 2863 for (tc = 0; tc < port_mqprio->mqprio.qopt.num_tc; tc++) 2864 entries += port_mqprio->mqprio.qopt.count[tc]; 2865 2866 if (!entries) 2867 continue; 2868 2869 eosw_entries = DIV_ROUND_UP(entries, 4); 2870 if (r < eosw_entries) { 2871 const struct sge_eosw_txq *tx; 2872 2873 n = min(4, entries - 4 * r); 2874 tx = &port_mqprio->eosw_txq[4 * r]; 2875 2876 S("QType:", "EOSW-TXQ"); 2877 S("Interface:", 2878 adap->port[j] ? adap->port[j]->name : "N/A"); 2879 T("EOTID:", hwtid); 2880 T("HWQID:", hwqid); 2881 T("State:", state); 2882 T("Size:", ndesc); 2883 T("In-Use:", inuse); 2884 T("Credits:", cred); 2885 T("Compl:", ncompl); 2886 T("Last-Compl:", last_compl); 2887 T("PIDX:", pidx); 2888 T("Last-PIDX:", last_pidx); 2889 T("CIDX:", cidx); 2890 T("Last-CIDX:", last_cidx); 2891 T("FLOWC-IDX:", flowc_idx); 2892 2893 mutex_unlock(&adap->tc_mqprio->mqprio_mutex); 2894 goto out; 2895 } 2896 2897 r -= eosw_entries; 2898 } 2899 mutex_unlock(&adap->tc_mqprio->mqprio_mutex); 2900 2901 skip_mqprio: 2902 if (!is_uld(adap)) 2903 goto skip_uld; 2904 2905 mutex_lock(&uld_mutex); 2906 if (s->uld_txq_info) 2907 for (i = 0; i < ARRAY_SIZE(uld_txq_entries); i++) 2908 uld_txq_entries[i] = sge_qinfo_uld_txq_entries(adap, i); 2909 2910 if (s->uld_rxq_info) { 2911 for (i = 0; i < ARRAY_SIZE(uld_rxq_entries); i++) { 2912 uld_rxq_entries[i] = sge_qinfo_uld_rxq_entries(adap, i); 2913 uld_ciq_entries[i] = sge_qinfo_uld_ciq_entries(adap, i); 2914 } 2915 } 2916 2917 if (r < uld_txq_entries[CXGB4_TX_OFLD]) { 2918 const struct sge_uld_txq *tx; 2919 2920 utxq_info = s->uld_txq_info[CXGB4_TX_OFLD]; 2921 tx = &utxq_info->uldtxq[r * 4]; 2922 n = min(4, utxq_info->ntxq - 4 * r); 2923 2924 S("QType:", "OFLD-TXQ"); 2925 T("TxQ ID:", q.cntxt_id); 2926 T("TxQ size:", q.size); 2927 T("TxQ inuse:", q.in_use); 2928 T("TxQ CIDX:", q.cidx); 2929 T("TxQ PIDX:", q.pidx); 2930 2931 goto unlock; 2932 } 2933 2934 r -= uld_txq_entries[CXGB4_TX_OFLD]; 2935 if (r < uld_rxq_entries[CXGB4_ULD_RDMA]) { 2936 const struct sge_ofld_rxq *rx; 2937 2938 urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 2939 rx = &urxq_info->uldrxq[r * 4]; 2940 n = min(4, urxq_info->nrxq - 4 * r); 2941 2942 S("QType:", "RDMA-CPL"); 2943 S("Interface:", 2944 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2945 R("RspQ ID:", rspq.abs_id); 2946 R("RspQ size:", rspq.size); 2947 R("RspQE size:", rspq.iqe_len); 2948 R("RspQ CIDX:", rspq.cidx); 2949 R("RspQ Gen:", rspq.gen); 2950 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2951 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2952 R("FL ID:", fl.cntxt_id); 2953 R("FL size:", fl.size - 8); 2954 R("FL pend:", fl.pend_cred); 2955 R("FL avail:", fl.avail); 2956 R("FL PIDX:", fl.pidx); 2957 R("FL CIDX:", fl.cidx); 2958 2959 goto unlock; 2960 } 2961 2962 r -= uld_rxq_entries[CXGB4_ULD_RDMA]; 2963 if (r < uld_ciq_entries[CXGB4_ULD_RDMA]) { 2964 const struct sge_ofld_rxq *rx; 2965 int ciq_idx = 0; 2966 2967 urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 2968 ciq_idx = urxq_info->nrxq + (r * 4); 2969 rx = &urxq_info->uldrxq[ciq_idx]; 2970 n = min(4, urxq_info->nciq - 4 * r); 2971 2972 S("QType:", "RDMA-CIQ"); 2973 S("Interface:", 2974 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2975 R("RspQ ID:", rspq.abs_id); 2976 R("RspQ size:", rspq.size); 2977 R("RspQE size:", rspq.iqe_len); 2978 R("RspQ CIDX:", rspq.cidx); 2979 R("RspQ Gen:", rspq.gen); 2980 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2981 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2982 2983 goto unlock; 2984 } 2985 2986 r -= uld_ciq_entries[CXGB4_ULD_RDMA]; 2987 if (r < uld_rxq_entries[CXGB4_ULD_ISCSI]) { 2988 const struct sge_ofld_rxq *rx; 2989 2990 urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSI]; 2991 rx = &urxq_info->uldrxq[r * 4]; 2992 n = min(4, urxq_info->nrxq - 4 * r); 2993 2994 S("QType:", "iSCSI"); 2995 R("RspQ ID:", rspq.abs_id); 2996 R("RspQ size:", rspq.size); 2997 R("RspQE size:", rspq.iqe_len); 2998 R("RspQ CIDX:", rspq.cidx); 2999 R("RspQ Gen:", rspq.gen); 3000 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 3001 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 3002 R("FL ID:", fl.cntxt_id); 3003 R("FL size:", fl.size - 8); 3004 R("FL pend:", fl.pend_cred); 3005 R("FL avail:", fl.avail); 3006 R("FL PIDX:", fl.pidx); 3007 R("FL CIDX:", fl.cidx); 3008 3009 goto unlock; 3010 } 3011 3012 r -= uld_rxq_entries[CXGB4_ULD_ISCSI]; 3013 if (r < uld_rxq_entries[CXGB4_ULD_ISCSIT]) { 3014 const struct sge_ofld_rxq *rx; 3015 3016 urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSIT]; 3017 rx = &urxq_info->uldrxq[r * 4]; 3018 n = min(4, urxq_info->nrxq - 4 * r); 3019 3020 S("QType:", "iSCSIT"); 3021 R("RspQ ID:", rspq.abs_id); 3022 R("RspQ size:", rspq.size); 3023 R("RspQE size:", rspq.iqe_len); 3024 R("RspQ CIDX:", rspq.cidx); 3025 R("RspQ Gen:", rspq.gen); 3026 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 3027 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 3028 R("FL ID:", fl.cntxt_id); 3029 R("FL size:", fl.size - 8); 3030 R("FL pend:", fl.pend_cred); 3031 R("FL avail:", fl.avail); 3032 R("FL PIDX:", fl.pidx); 3033 R("FL CIDX:", fl.cidx); 3034 3035 goto unlock; 3036 } 3037 3038 r -= uld_rxq_entries[CXGB4_ULD_ISCSIT]; 3039 if (r < uld_rxq_entries[CXGB4_ULD_TLS]) { 3040 const struct sge_ofld_rxq *rx; 3041 3042 urxq_info = s->uld_rxq_info[CXGB4_ULD_TLS]; 3043 rx = &urxq_info->uldrxq[r * 4]; 3044 n = min(4, urxq_info->nrxq - 4 * r); 3045 3046 S("QType:", "TLS"); 3047 R("RspQ ID:", rspq.abs_id); 3048 R("RspQ size:", rspq.size); 3049 R("RspQE size:", rspq.iqe_len); 3050 R("RspQ CIDX:", rspq.cidx); 3051 R("RspQ Gen:", rspq.gen); 3052 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 3053 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 3054 R("FL ID:", fl.cntxt_id); 3055 R("FL size:", fl.size - 8); 3056 R("FL pend:", fl.pend_cred); 3057 R("FL avail:", fl.avail); 3058 R("FL PIDX:", fl.pidx); 3059 R("FL CIDX:", fl.cidx); 3060 3061 goto unlock; 3062 } 3063 3064 r -= uld_rxq_entries[CXGB4_ULD_TLS]; 3065 if (r < uld_txq_entries[CXGB4_TX_CRYPTO]) { 3066 const struct sge_ofld_rxq *rx; 3067 const struct sge_uld_txq *tx; 3068 3069 utxq_info = s->uld_txq_info[CXGB4_TX_CRYPTO]; 3070 urxq_info = s->uld_rxq_info[CXGB4_ULD_CRYPTO]; 3071 tx = &utxq_info->uldtxq[r * 4]; 3072 rx = &urxq_info->uldrxq[r * 4]; 3073 n = min(4, utxq_info->ntxq - 4 * r); 3074 3075 S("QType:", "Crypto"); 3076 T("TxQ ID:", q.cntxt_id); 3077 T("TxQ size:", q.size); 3078 T("TxQ inuse:", q.in_use); 3079 T("TxQ CIDX:", q.cidx); 3080 T("TxQ PIDX:", q.pidx); 3081 R("RspQ ID:", rspq.abs_id); 3082 R("RspQ size:", rspq.size); 3083 R("RspQE size:", rspq.iqe_len); 3084 R("RspQ CIDX:", rspq.cidx); 3085 R("RspQ Gen:", rspq.gen); 3086 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 3087 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 3088 R("FL ID:", fl.cntxt_id); 3089 R("FL size:", fl.size - 8); 3090 R("FL pend:", fl.pend_cred); 3091 R("FL avail:", fl.avail); 3092 R("FL PIDX:", fl.pidx); 3093 R("FL CIDX:", fl.cidx); 3094 3095 goto unlock; 3096 } 3097 3098 r -= uld_txq_entries[CXGB4_TX_CRYPTO]; 3099 mutex_unlock(&uld_mutex); 3100 3101 skip_uld: 3102 if (r < ctrl_entries) { 3103 const struct sge_ctrl_txq *tx = &s->ctrlq[r * 4]; 3104 3105 n = min(4, adap->params.nports - 4 * r); 3106 3107 S("QType:", "Control"); 3108 T("TxQ ID:", q.cntxt_id); 3109 T("TxQ size:", q.size); 3110 T("TxQ inuse:", q.in_use); 3111 T("TxQ CIDX:", q.cidx); 3112 T("TxQ PIDX:", q.pidx); 3113 TL("TxQFull:", q.stops); 3114 TL("TxQRestarts:", q.restarts); 3115 3116 goto out; 3117 } 3118 3119 r -= ctrl_entries; 3120 if (r < 1) { 3121 const struct sge_rspq *evtq = &s->fw_evtq; 3122 3123 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 3124 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 3125 seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size); 3126 seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len); 3127 seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx); 3128 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 3129 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 3130 qtimer_val(adap, evtq)); 3131 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 3132 s->counter_val[evtq->pktcnt_idx]); 3133 3134 goto out; 3135 } 3136 3137 #undef R 3138 #undef RL 3139 #undef T 3140 #undef TL 3141 #undef S 3142 #undef R3 3143 #undef T3 3144 #undef S3 3145 out: 3146 return 0; 3147 3148 unlock: 3149 mutex_unlock(&uld_mutex); 3150 return 0; 3151 } 3152 3153 static int sge_queue_entries(struct adapter *adap) 3154 { 3155 int i, tot_uld_entries = 0, eohw_entries = 0, eosw_entries = 0; 3156 int mirror_rxq_entries = 0; 3157 3158 if (adap->tc_mqprio) { 3159 struct cxgb4_tc_port_mqprio *port_mqprio; 3160 u8 tc; 3161 3162 mutex_lock(&adap->tc_mqprio->mqprio_mutex); 3163 if (adap->sge.eohw_txq) 3164 eohw_entries = DIV_ROUND_UP(adap->sge.eoqsets, 4); 3165 3166 for (i = 0; i < adap->params.nports; i++) { 3167 u32 entries = 0; 3168 3169 port_mqprio = &adap->tc_mqprio->port_mqprio[i]; 3170 for (tc = 0; tc < port_mqprio->mqprio.qopt.num_tc; tc++) 3171 entries += port_mqprio->mqprio.qopt.count[tc]; 3172 3173 if (entries) 3174 eosw_entries += DIV_ROUND_UP(entries, 4); 3175 } 3176 mutex_unlock(&adap->tc_mqprio->mqprio_mutex); 3177 } 3178 3179 for_each_port(adap, i) { 3180 struct port_info *pi = adap2pinfo(adap, i); 3181 3182 mutex_lock(&pi->vi_mirror_mutex); 3183 if (pi->vi_mirror_count) 3184 mirror_rxq_entries += DIV_ROUND_UP(pi->nmirrorqsets, 4); 3185 mutex_unlock(&pi->vi_mirror_mutex); 3186 } 3187 3188 if (!is_uld(adap)) 3189 goto lld_only; 3190 3191 mutex_lock(&uld_mutex); 3192 for (i = 0; i < CXGB4_TX_MAX; i++) 3193 tot_uld_entries += sge_qinfo_uld_txq_entries(adap, i); 3194 3195 for (i = 0; i < CXGB4_ULD_MAX; i++) { 3196 tot_uld_entries += sge_qinfo_uld_rxq_entries(adap, i); 3197 tot_uld_entries += sge_qinfo_uld_ciq_entries(adap, i); 3198 } 3199 mutex_unlock(&uld_mutex); 3200 3201 lld_only: 3202 return DIV_ROUND_UP(adap->sge.ethqsets, 4) + mirror_rxq_entries + 3203 eohw_entries + eosw_entries + tot_uld_entries + 3204 DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1; 3205 } 3206 3207 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 3208 { 3209 int entries = sge_queue_entries(seq->private); 3210 3211 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 3212 } 3213 3214 static void sge_queue_stop(struct seq_file *seq, void *v) 3215 { 3216 } 3217 3218 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 3219 { 3220 int entries = sge_queue_entries(seq->private); 3221 3222 ++*pos; 3223 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 3224 } 3225 3226 static const struct seq_operations sge_qinfo_seq_ops = { 3227 .start = sge_queue_start, 3228 .next = sge_queue_next, 3229 .stop = sge_queue_stop, 3230 .show = sge_qinfo_show 3231 }; 3232 3233 static int sge_qinfo_open(struct inode *inode, struct file *file) 3234 { 3235 int res = seq_open(file, &sge_qinfo_seq_ops); 3236 3237 if (!res) { 3238 struct seq_file *seq = file->private_data; 3239 3240 seq->private = inode->i_private; 3241 } 3242 return res; 3243 } 3244 3245 static const struct file_operations sge_qinfo_debugfs_fops = { 3246 .owner = THIS_MODULE, 3247 .open = sge_qinfo_open, 3248 .read = seq_read, 3249 .llseek = seq_lseek, 3250 .release = seq_release, 3251 }; 3252 3253 int mem_open(struct inode *inode, struct file *file) 3254 { 3255 unsigned int mem; 3256 struct adapter *adap; 3257 3258 file->private_data = inode->i_private; 3259 3260 mem = (uintptr_t)file->private_data & 0x7; 3261 adap = file->private_data - mem; 3262 3263 (void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH); 3264 3265 return 0; 3266 } 3267 3268 static ssize_t mem_read(struct file *file, char __user *buf, size_t count, 3269 loff_t *ppos) 3270 { 3271 loff_t pos = *ppos; 3272 loff_t avail = file_inode(file)->i_size; 3273 unsigned int mem = (uintptr_t)file->private_data & 0x7; 3274 struct adapter *adap = file->private_data - mem; 3275 __be32 *data; 3276 int ret; 3277 3278 if (pos < 0) 3279 return -EINVAL; 3280 if (pos >= avail) 3281 return 0; 3282 if (count > avail - pos) 3283 count = avail - pos; 3284 3285 data = kvzalloc(count, GFP_KERNEL); 3286 if (!data) 3287 return -ENOMEM; 3288 3289 spin_lock(&adap->win0_lock); 3290 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ); 3291 spin_unlock(&adap->win0_lock); 3292 if (ret) { 3293 kvfree(data); 3294 return ret; 3295 } 3296 ret = copy_to_user(buf, data, count); 3297 3298 kvfree(data); 3299 if (ret) 3300 return -EFAULT; 3301 3302 *ppos = pos + count; 3303 return count; 3304 } 3305 static const struct file_operations mem_debugfs_fops = { 3306 .owner = THIS_MODULE, 3307 .open = simple_open, 3308 .read = mem_read, 3309 .llseek = default_llseek, 3310 }; 3311 3312 static int tid_info_show(struct seq_file *seq, void *v) 3313 { 3314 struct adapter *adap = seq->private; 3315 const struct tid_info *t; 3316 enum chip_type chip; 3317 3318 t = &adap->tids; 3319 chip = CHELSIO_CHIP_VERSION(adap->params.chip); 3320 if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) { 3321 unsigned int sb; 3322 seq_printf(seq, "Connections in use: %u\n", 3323 atomic_read(&t->conns_in_use)); 3324 3325 if (chip <= CHELSIO_T5) 3326 sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4; 3327 else 3328 sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A); 3329 3330 if (sb) { 3331 seq_printf(seq, "TID range: %u..%u/%u..%u", t->tid_base, 3332 sb - 1, adap->tids.hash_base, 3333 t->tid_base + t->ntids - 1); 3334 seq_printf(seq, ", in use: %u/%u\n", 3335 atomic_read(&t->tids_in_use), 3336 atomic_read(&t->hash_tids_in_use)); 3337 } else if (adap->flags & CXGB4_FW_OFLD_CONN) { 3338 seq_printf(seq, "TID range: %u..%u/%u..%u", 3339 t->aftid_base, 3340 t->aftid_end, 3341 adap->tids.hash_base, 3342 t->tid_base + t->ntids - 1); 3343 seq_printf(seq, ", in use: %u/%u\n", 3344 atomic_read(&t->tids_in_use), 3345 atomic_read(&t->hash_tids_in_use)); 3346 } else { 3347 seq_printf(seq, "TID range: %u..%u", 3348 adap->tids.hash_base, 3349 t->tid_base + t->ntids - 1); 3350 seq_printf(seq, ", in use: %u\n", 3351 atomic_read(&t->hash_tids_in_use)); 3352 } 3353 } else if (t->ntids) { 3354 seq_printf(seq, "Connections in use: %u\n", 3355 atomic_read(&t->conns_in_use)); 3356 3357 seq_printf(seq, "TID range: %u..%u", t->tid_base, 3358 t->tid_base + t->ntids - 1); 3359 seq_printf(seq, ", in use: %u\n", 3360 atomic_read(&t->tids_in_use)); 3361 } 3362 3363 if (t->nstids) 3364 seq_printf(seq, "STID range: %u..%u, in use-IPv4/IPv6: %u/%u\n", 3365 (!t->stid_base && 3366 (chip <= CHELSIO_T5)) ? 3367 t->stid_base + 1 : t->stid_base, 3368 t->stid_base + t->nstids - 1, 3369 t->stids_in_use - t->v6_stids_in_use, 3370 t->v6_stids_in_use); 3371 3372 if (t->natids) 3373 seq_printf(seq, "ATID range: 0..%u, in use: %u\n", 3374 t->natids - 1, t->atids_in_use); 3375 seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base, 3376 t->ftid_base + t->nftids - 1); 3377 if (t->nsftids) 3378 seq_printf(seq, "SFTID range: %u..%u in use: %u\n", 3379 t->sftid_base, t->sftid_base + t->nsftids - 2, 3380 t->sftids_in_use); 3381 if (t->nhpftids) 3382 seq_printf(seq, "HPFTID range: %u..%u\n", t->hpftid_base, 3383 t->hpftid_base + t->nhpftids - 1); 3384 if (t->neotids) 3385 seq_printf(seq, "EOTID range: %u..%u, in use: %u\n", 3386 t->eotid_base, t->eotid_base + t->neotids - 1, 3387 atomic_read(&t->eotids_in_use)); 3388 if (t->ntids) 3389 seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n", 3390 t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A), 3391 t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A)); 3392 return 0; 3393 } 3394 DEFINE_SHOW_ATTRIBUTE(tid_info); 3395 3396 static void add_debugfs_mem(struct adapter *adap, const char *name, 3397 unsigned int idx, unsigned int size_mb) 3398 { 3399 debugfs_create_file_size(name, 0400, adap->debugfs_root, 3400 (void *)adap + idx, &mem_debugfs_fops, 3401 size_mb << 20); 3402 } 3403 3404 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf, 3405 size_t count, loff_t *ppos) 3406 { 3407 int len; 3408 const struct adapter *adap = filp->private_data; 3409 char *buf; 3410 ssize_t size = (adap->sge.egr_sz + 3) / 4 + 3411 adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */ 3412 3413 buf = kzalloc(size, GFP_KERNEL); 3414 if (!buf) 3415 return -ENOMEM; 3416 3417 len = snprintf(buf, size - 1, "%*pb\n", 3418 adap->sge.egr_sz, adap->sge.blocked_fl); 3419 len += sprintf(buf + len, "\n"); 3420 size = simple_read_from_buffer(ubuf, count, ppos, buf, len); 3421 kfree(buf); 3422 return size; 3423 } 3424 3425 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf, 3426 size_t count, loff_t *ppos) 3427 { 3428 int err; 3429 unsigned long *t; 3430 struct adapter *adap = filp->private_data; 3431 3432 t = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL); 3433 if (!t) 3434 return -ENOMEM; 3435 3436 err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz); 3437 if (err) { 3438 bitmap_free(t); 3439 return err; 3440 } 3441 3442 bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz); 3443 bitmap_free(t); 3444 return count; 3445 } 3446 3447 static const struct file_operations blocked_fl_fops = { 3448 .owner = THIS_MODULE, 3449 .open = simple_open, 3450 .read = blocked_fl_read, 3451 .write = blocked_fl_write, 3452 .llseek = generic_file_llseek, 3453 }; 3454 3455 static void mem_region_show(struct seq_file *seq, const char *name, 3456 unsigned int from, unsigned int to) 3457 { 3458 char buf[40]; 3459 3460 string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf, 3461 sizeof(buf)); 3462 seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf); 3463 } 3464 3465 static int meminfo_show(struct seq_file *seq, void *v) 3466 { 3467 static const char * const memory[] = { "EDC0:", "EDC1:", "MC:", 3468 "MC0:", "MC1:", "HMA:"}; 3469 struct adapter *adap = seq->private; 3470 struct cudbg_meminfo meminfo; 3471 int i, rc; 3472 3473 memset(&meminfo, 0, sizeof(struct cudbg_meminfo)); 3474 rc = cudbg_fill_meminfo(adap, &meminfo); 3475 if (rc) 3476 return -ENXIO; 3477 3478 for (i = 0; i < meminfo.avail_c; i++) 3479 mem_region_show(seq, memory[meminfo.avail[i].idx], 3480 meminfo.avail[i].base, 3481 meminfo.avail[i].limit - 1); 3482 3483 seq_putc(seq, '\n'); 3484 for (i = 0; i < meminfo.mem_c; i++) { 3485 if (meminfo.mem[i].idx >= ARRAY_SIZE(cudbg_region)) 3486 continue; /* skip holes */ 3487 if (!meminfo.mem[i].limit) 3488 meminfo.mem[i].limit = 3489 i < meminfo.mem_c - 1 ? 3490 meminfo.mem[i + 1].base - 1 : ~0; 3491 mem_region_show(seq, cudbg_region[meminfo.mem[i].idx], 3492 meminfo.mem[i].base, meminfo.mem[i].limit); 3493 } 3494 3495 seq_putc(seq, '\n'); 3496 mem_region_show(seq, "uP RAM:", meminfo.up_ram_lo, meminfo.up_ram_hi); 3497 mem_region_show(seq, "uP Extmem2:", meminfo.up_extmem2_lo, 3498 meminfo.up_extmem2_hi); 3499 3500 seq_printf(seq, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 3501 meminfo.rx_pages_data[0], meminfo.free_rx_cnt, 3502 meminfo.rx_pages_data[1], meminfo.rx_pages_data[2]); 3503 3504 seq_printf(seq, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 3505 meminfo.tx_pages_data[0], meminfo.free_tx_cnt, 3506 meminfo.tx_pages_data[1], meminfo.tx_pages_data[2], 3507 meminfo.tx_pages_data[3]); 3508 3509 seq_printf(seq, "%u p-structs (%u free)\n\n", 3510 meminfo.p_structs, meminfo.p_structs_free_cnt); 3511 3512 for (i = 0; i < 4; i++) 3513 /* For T6 these are MAC buffer groups */ 3514 seq_printf(seq, "Port %d using %u pages out of %u allocated\n", 3515 i, meminfo.port_used[i], meminfo.port_alloc[i]); 3516 3517 for (i = 0; i < adap->params.arch.nchan; i++) 3518 /* For T6 these are MAC buffer groups */ 3519 seq_printf(seq, 3520 "Loopback %d using %u pages out of %u allocated\n", 3521 i, meminfo.loopback_used[i], 3522 meminfo.loopback_alloc[i]); 3523 3524 return 0; 3525 } 3526 DEFINE_SHOW_ATTRIBUTE(meminfo); 3527 3528 static int chcr_stats_show(struct seq_file *seq, void *v) 3529 { 3530 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 3531 struct ch_ktls_port_stats_debug *ktls_port; 3532 int i = 0; 3533 #endif 3534 struct adapter *adap = seq->private; 3535 3536 seq_puts(seq, "Chelsio Crypto Accelerator Stats \n"); 3537 seq_printf(seq, "Cipher Ops: %10u \n", 3538 atomic_read(&adap->chcr_stats.cipher_rqst)); 3539 seq_printf(seq, "Digest Ops: %10u \n", 3540 atomic_read(&adap->chcr_stats.digest_rqst)); 3541 seq_printf(seq, "Aead Ops: %10u \n", 3542 atomic_read(&adap->chcr_stats.aead_rqst)); 3543 seq_printf(seq, "Completion: %10u \n", 3544 atomic_read(&adap->chcr_stats.complete)); 3545 seq_printf(seq, "Error: %10u \n", 3546 atomic_read(&adap->chcr_stats.error)); 3547 seq_printf(seq, "Fallback: %10u \n", 3548 atomic_read(&adap->chcr_stats.fallback)); 3549 seq_printf(seq, "TLS PDU Tx: %10u\n", 3550 atomic_read(&adap->chcr_stats.tls_pdu_tx)); 3551 seq_printf(seq, "TLS PDU Rx: %10u\n", 3552 atomic_read(&adap->chcr_stats.tls_pdu_rx)); 3553 seq_printf(seq, "TLS Keys (DDR) Count: %10u\n", 3554 atomic_read(&adap->chcr_stats.tls_key)); 3555 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 3556 seq_puts(seq, "\nChelsio Inline IPsec Crypto Accelerator Stats\n"); 3557 seq_printf(seq, "IPSec PDU: %10u\n", 3558 atomic_read(&adap->ch_ipsec_stats.ipsec_cnt)); 3559 #endif 3560 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 3561 seq_puts(seq, "\nChelsio KTLS Crypto Accelerator Stats\n"); 3562 seq_printf(seq, "Tx TLS offload refcount: %20u\n", 3563 refcount_read(&adap->chcr_ktls.ktls_refcount)); 3564 seq_printf(seq, "Tx records send: %20llu\n", 3565 atomic64_read(&adap->ch_ktls_stats.ktls_tx_send_records)); 3566 seq_printf(seq, "Tx partial start of records: %20llu\n", 3567 atomic64_read(&adap->ch_ktls_stats.ktls_tx_start_pkts)); 3568 seq_printf(seq, "Tx partial middle of records: %20llu\n", 3569 atomic64_read(&adap->ch_ktls_stats.ktls_tx_middle_pkts)); 3570 seq_printf(seq, "Tx partial end of record: %20llu\n", 3571 atomic64_read(&adap->ch_ktls_stats.ktls_tx_end_pkts)); 3572 seq_printf(seq, "Tx complete records: %20llu\n", 3573 atomic64_read(&adap->ch_ktls_stats.ktls_tx_complete_pkts)); 3574 seq_printf(seq, "TX trim pkts : %20llu\n", 3575 atomic64_read(&adap->ch_ktls_stats.ktls_tx_trimmed_pkts)); 3576 seq_printf(seq, "TX sw fallback : %20llu\n", 3577 atomic64_read(&adap->ch_ktls_stats.ktls_tx_fallback)); 3578 while (i < MAX_NPORTS) { 3579 ktls_port = &adap->ch_ktls_stats.ktls_port[i]; 3580 seq_printf(seq, "Port %d\n", i); 3581 seq_printf(seq, "Tx connection created: %20llu\n", 3582 atomic64_read(&ktls_port->ktls_tx_connection_open)); 3583 seq_printf(seq, "Tx connection failed: %20llu\n", 3584 atomic64_read(&ktls_port->ktls_tx_connection_fail)); 3585 seq_printf(seq, "Tx connection closed: %20llu\n", 3586 atomic64_read(&ktls_port->ktls_tx_connection_close)); 3587 i++; 3588 } 3589 #endif 3590 return 0; 3591 } 3592 DEFINE_SHOW_ATTRIBUTE(chcr_stats); 3593 3594 #define PRINT_ADAP_STATS(string, value) \ 3595 seq_printf(seq, "%-25s %-20llu\n", (string), \ 3596 (unsigned long long)(value)) 3597 3598 #define PRINT_CH_STATS(string, value) \ 3599 do { \ 3600 seq_printf(seq, "%-25s ", (string)); \ 3601 for (i = 0; i < adap->params.arch.nchan; i++) \ 3602 seq_printf(seq, "%-20llu ", \ 3603 (unsigned long long)stats.value[i]); \ 3604 seq_printf(seq, "\n"); \ 3605 } while (0) 3606 3607 #define PRINT_CH_STATS2(string, value) \ 3608 do { \ 3609 seq_printf(seq, "%-25s ", (string)); \ 3610 for (i = 0; i < adap->params.arch.nchan; i++) \ 3611 seq_printf(seq, "%-20llu ", \ 3612 (unsigned long long)stats[i].value); \ 3613 seq_printf(seq, "\n"); \ 3614 } while (0) 3615 3616 static void show_tcp_stats(struct seq_file *seq) 3617 { 3618 struct adapter *adap = seq->private; 3619 struct tp_tcp_stats v4, v6; 3620 3621 spin_lock(&adap->stats_lock); 3622 t4_tp_get_tcp_stats(adap, &v4, &v6, false); 3623 spin_unlock(&adap->stats_lock); 3624 3625 PRINT_ADAP_STATS("tcp_ipv4_out_rsts:", v4.tcp_out_rsts); 3626 PRINT_ADAP_STATS("tcp_ipv4_in_segs:", v4.tcp_in_segs); 3627 PRINT_ADAP_STATS("tcp_ipv4_out_segs:", v4.tcp_out_segs); 3628 PRINT_ADAP_STATS("tcp_ipv4_retrans_segs:", v4.tcp_retrans_segs); 3629 PRINT_ADAP_STATS("tcp_ipv6_out_rsts:", v6.tcp_out_rsts); 3630 PRINT_ADAP_STATS("tcp_ipv6_in_segs:", v6.tcp_in_segs); 3631 PRINT_ADAP_STATS("tcp_ipv6_out_segs:", v6.tcp_out_segs); 3632 PRINT_ADAP_STATS("tcp_ipv6_retrans_segs:", v6.tcp_retrans_segs); 3633 } 3634 3635 static void show_ddp_stats(struct seq_file *seq) 3636 { 3637 struct adapter *adap = seq->private; 3638 struct tp_usm_stats stats; 3639 3640 spin_lock(&adap->stats_lock); 3641 t4_get_usm_stats(adap, &stats, false); 3642 spin_unlock(&adap->stats_lock); 3643 3644 PRINT_ADAP_STATS("usm_ddp_frames:", stats.frames); 3645 PRINT_ADAP_STATS("usm_ddp_octets:", stats.octets); 3646 PRINT_ADAP_STATS("usm_ddp_drops:", stats.drops); 3647 } 3648 3649 static void show_rdma_stats(struct seq_file *seq) 3650 { 3651 struct adapter *adap = seq->private; 3652 struct tp_rdma_stats stats; 3653 3654 spin_lock(&adap->stats_lock); 3655 t4_tp_get_rdma_stats(adap, &stats, false); 3656 spin_unlock(&adap->stats_lock); 3657 3658 PRINT_ADAP_STATS("rdma_no_rqe_mod_defer:", stats.rqe_dfr_mod); 3659 PRINT_ADAP_STATS("rdma_no_rqe_pkt_defer:", stats.rqe_dfr_pkt); 3660 } 3661 3662 static void show_tp_err_adapter_stats(struct seq_file *seq) 3663 { 3664 struct adapter *adap = seq->private; 3665 struct tp_err_stats stats; 3666 3667 spin_lock(&adap->stats_lock); 3668 t4_tp_get_err_stats(adap, &stats, false); 3669 spin_unlock(&adap->stats_lock); 3670 3671 PRINT_ADAP_STATS("tp_err_ofld_no_neigh:", stats.ofld_no_neigh); 3672 PRINT_ADAP_STATS("tp_err_ofld_cong_defer:", stats.ofld_cong_defer); 3673 } 3674 3675 static void show_cpl_stats(struct seq_file *seq) 3676 { 3677 struct adapter *adap = seq->private; 3678 struct tp_cpl_stats stats; 3679 u8 i; 3680 3681 spin_lock(&adap->stats_lock); 3682 t4_tp_get_cpl_stats(adap, &stats, false); 3683 spin_unlock(&adap->stats_lock); 3684 3685 PRINT_CH_STATS("tp_cpl_requests:", req); 3686 PRINT_CH_STATS("tp_cpl_responses:", rsp); 3687 } 3688 3689 static void show_tp_err_channel_stats(struct seq_file *seq) 3690 { 3691 struct adapter *adap = seq->private; 3692 struct tp_err_stats stats; 3693 u8 i; 3694 3695 spin_lock(&adap->stats_lock); 3696 t4_tp_get_err_stats(adap, &stats, false); 3697 spin_unlock(&adap->stats_lock); 3698 3699 PRINT_CH_STATS("tp_mac_in_errs:", mac_in_errs); 3700 PRINT_CH_STATS("tp_hdr_in_errs:", hdr_in_errs); 3701 PRINT_CH_STATS("tp_tcp_in_errs:", tcp_in_errs); 3702 PRINT_CH_STATS("tp_tcp6_in_errs:", tcp6_in_errs); 3703 PRINT_CH_STATS("tp_tnl_cong_drops:", tnl_cong_drops); 3704 PRINT_CH_STATS("tp_tnl_tx_drops:", tnl_tx_drops); 3705 PRINT_CH_STATS("tp_ofld_vlan_drops:", ofld_vlan_drops); 3706 PRINT_CH_STATS("tp_ofld_chan_drops:", ofld_chan_drops); 3707 } 3708 3709 static void show_fcoe_stats(struct seq_file *seq) 3710 { 3711 struct adapter *adap = seq->private; 3712 struct tp_fcoe_stats stats[NCHAN]; 3713 u8 i; 3714 3715 spin_lock(&adap->stats_lock); 3716 for (i = 0; i < adap->params.arch.nchan; i++) 3717 t4_get_fcoe_stats(adap, i, &stats[i], false); 3718 spin_unlock(&adap->stats_lock); 3719 3720 PRINT_CH_STATS2("fcoe_octets_ddp", octets_ddp); 3721 PRINT_CH_STATS2("fcoe_frames_ddp", frames_ddp); 3722 PRINT_CH_STATS2("fcoe_frames_drop", frames_drop); 3723 } 3724 3725 #undef PRINT_CH_STATS2 3726 #undef PRINT_CH_STATS 3727 #undef PRINT_ADAP_STATS 3728 3729 static int tp_stats_show(struct seq_file *seq, void *v) 3730 { 3731 struct adapter *adap = seq->private; 3732 3733 seq_puts(seq, "\n--------Adapter Stats--------\n"); 3734 show_tcp_stats(seq); 3735 show_ddp_stats(seq); 3736 show_rdma_stats(seq); 3737 show_tp_err_adapter_stats(seq); 3738 3739 seq_puts(seq, "\n-------- Channel Stats --------\n"); 3740 if (adap->params.arch.nchan == NCHAN) 3741 seq_printf(seq, "%-25s %-20s %-20s %-20s %-20s\n", 3742 " ", "channel 0", "channel 1", 3743 "channel 2", "channel 3"); 3744 else 3745 seq_printf(seq, "%-25s %-20s %-20s\n", 3746 " ", "channel 0", "channel 1"); 3747 show_cpl_stats(seq); 3748 show_tp_err_channel_stats(seq); 3749 show_fcoe_stats(seq); 3750 3751 return 0; 3752 } 3753 DEFINE_SHOW_ATTRIBUTE(tp_stats); 3754 3755 /* Add an array of Debug FS files. 3756 */ 3757 void add_debugfs_files(struct adapter *adap, 3758 struct t4_debugfs_entry *files, 3759 unsigned int nfiles) 3760 { 3761 int i; 3762 3763 /* debugfs support is best effort */ 3764 for (i = 0; i < nfiles; i++) 3765 debugfs_create_file(files[i].name, files[i].mode, 3766 adap->debugfs_root, 3767 (void *)adap + files[i].data, 3768 files[i].ops); 3769 } 3770 3771 int t4_setup_debugfs(struct adapter *adap) 3772 { 3773 int i; 3774 u32 size = 0; 3775 3776 static struct t4_debugfs_entry t4_debugfs_files[] = { 3777 { "cim_la", &cim_la_fops, 0400, 0 }, 3778 { "cim_pif_la", &cim_pif_la_fops, 0400, 0 }, 3779 { "cim_ma_la", &cim_ma_la_fops, 0400, 0 }, 3780 { "cim_qcfg", &cim_qcfg_fops, 0400, 0 }, 3781 { "clk", &clk_fops, 0400, 0 }, 3782 { "devlog", &devlog_fops, 0400, 0 }, 3783 { "mboxlog", &mboxlog_fops, 0400, 0 }, 3784 { "mbox0", &mbox_debugfs_fops, 0600, 0 }, 3785 { "mbox1", &mbox_debugfs_fops, 0600, 1 }, 3786 { "mbox2", &mbox_debugfs_fops, 0600, 2 }, 3787 { "mbox3", &mbox_debugfs_fops, 0600, 3 }, 3788 { "mbox4", &mbox_debugfs_fops, 0600, 4 }, 3789 { "mbox5", &mbox_debugfs_fops, 0600, 5 }, 3790 { "mbox6", &mbox_debugfs_fops, 0600, 6 }, 3791 { "mbox7", &mbox_debugfs_fops, 0600, 7 }, 3792 { "trace0", &mps_trc_debugfs_fops, 0600, 0 }, 3793 { "trace1", &mps_trc_debugfs_fops, 0600, 1 }, 3794 { "trace2", &mps_trc_debugfs_fops, 0600, 2 }, 3795 { "trace3", &mps_trc_debugfs_fops, 0600, 3 }, 3796 { "l2t", &t4_l2t_fops, 0400, 0}, 3797 { "mps_tcam", &mps_tcam_debugfs_fops, 0400, 0 }, 3798 { "rss", &rss_debugfs_fops, 0400, 0 }, 3799 { "rss_config", &rss_config_fops, 0400, 0 }, 3800 { "rss_key", &rss_key_debugfs_fops, 0400, 0 }, 3801 { "rss_pf_config", &rss_pf_config_debugfs_fops, 0400, 0 }, 3802 { "rss_vf_config", &rss_vf_config_debugfs_fops, 0400, 0 }, 3803 { "resources", &resources_fops, 0400, 0 }, 3804 #ifdef CONFIG_CHELSIO_T4_DCB 3805 { "dcb_info", &dcb_info_debugfs_fops, 0400, 0 }, 3806 #endif 3807 { "sge_qinfo", &sge_qinfo_debugfs_fops, 0400, 0 }, 3808 { "ibq_tp0", &cim_ibq_fops, 0400, 0 }, 3809 { "ibq_tp1", &cim_ibq_fops, 0400, 1 }, 3810 { "ibq_ulp", &cim_ibq_fops, 0400, 2 }, 3811 { "ibq_sge0", &cim_ibq_fops, 0400, 3 }, 3812 { "ibq_sge1", &cim_ibq_fops, 0400, 4 }, 3813 { "ibq_ncsi", &cim_ibq_fops, 0400, 5 }, 3814 { "obq_ulp0", &cim_obq_fops, 0400, 0 }, 3815 { "obq_ulp1", &cim_obq_fops, 0400, 1 }, 3816 { "obq_ulp2", &cim_obq_fops, 0400, 2 }, 3817 { "obq_ulp3", &cim_obq_fops, 0400, 3 }, 3818 { "obq_sge", &cim_obq_fops, 0400, 4 }, 3819 { "obq_ncsi", &cim_obq_fops, 0400, 5 }, 3820 { "tp_la", &tp_la_fops, 0400, 0 }, 3821 { "ulprx_la", &ulprx_la_fops, 0400, 0 }, 3822 { "sensors", &sensors_fops, 0400, 0 }, 3823 { "pm_stats", &pm_stats_debugfs_fops, 0400, 0 }, 3824 { "tx_rate", &tx_rate_fops, 0400, 0 }, 3825 { "cctrl", &cctrl_tbl_fops, 0400, 0 }, 3826 #if IS_ENABLED(CONFIG_IPV6) 3827 { "clip_tbl", &clip_tbl_fops, 0400, 0 }, 3828 #endif 3829 { "tids", &tid_info_fops, 0400, 0}, 3830 { "blocked_fl", &blocked_fl_fops, 0600, 0 }, 3831 { "meminfo", &meminfo_fops, 0400, 0 }, 3832 { "crypto", &chcr_stats_fops, 0400, 0 }, 3833 { "tp_stats", &tp_stats_fops, 0400, 0 }, 3834 }; 3835 3836 /* Debug FS nodes common to all T5 and later adapters. 3837 */ 3838 static struct t4_debugfs_entry t5_debugfs_files[] = { 3839 { "obq_sge_rx_q0", &cim_obq_fops, 0400, 6 }, 3840 { "obq_sge_rx_q1", &cim_obq_fops, 0400, 7 }, 3841 }; 3842 3843 add_debugfs_files(adap, 3844 t4_debugfs_files, 3845 ARRAY_SIZE(t4_debugfs_files)); 3846 if (!is_t4(adap->params.chip)) 3847 add_debugfs_files(adap, 3848 t5_debugfs_files, 3849 ARRAY_SIZE(t5_debugfs_files)); 3850 3851 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A); 3852 if (i & EDRAM0_ENABLE_F) { 3853 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 3854 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size)); 3855 } 3856 if (i & EDRAM1_ENABLE_F) { 3857 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 3858 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size)); 3859 } 3860 if (is_t5(adap->params.chip)) { 3861 if (i & EXT_MEM0_ENABLE_F) { 3862 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 3863 add_debugfs_mem(adap, "mc0", MEM_MC0, 3864 EXT_MEM0_SIZE_G(size)); 3865 } 3866 if (i & EXT_MEM1_ENABLE_F) { 3867 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 3868 add_debugfs_mem(adap, "mc1", MEM_MC1, 3869 EXT_MEM1_SIZE_G(size)); 3870 } 3871 } else { 3872 if (i & EXT_MEM_ENABLE_F) { 3873 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A); 3874 add_debugfs_mem(adap, "mc", MEM_MC, 3875 EXT_MEM_SIZE_G(size)); 3876 } 3877 3878 if (i & HMA_MUX_F) { 3879 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 3880 add_debugfs_mem(adap, "hma", MEM_HMA, 3881 EXT_MEM1_SIZE_G(size)); 3882 } 3883 } 3884 3885 debugfs_create_file_size("flash", 0400, adap->debugfs_root, adap, 3886 &flash_debugfs_fops, adap->params.sf_size); 3887 debugfs_create_bool("use_backdoor", 0600, 3888 adap->debugfs_root, &adap->use_bd); 3889 debugfs_create_bool("trace_rss", 0600, 3890 adap->debugfs_root, &adap->trace_rss); 3891 3892 return 0; 3893 } 3894