1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 #include <linux/string_helpers.h>
38 #include <linux/sort.h>
39 #include <linux/ctype.h>
40 
41 #include "cxgb4.h"
42 #include "t4_regs.h"
43 #include "t4_values.h"
44 #include "t4fw_api.h"
45 #include "cxgb4_debugfs.h"
46 #include "clip_tbl.h"
47 #include "l2t.h"
48 #include "cudbg_if.h"
49 #include "cudbg_lib_common.h"
50 #include "cudbg_entity.h"
51 #include "cudbg_lib.h"
52 
53 /* generic seq_file support for showing a table of size rows x width. */
54 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
55 {
56 	pos -= tb->skip_first;
57 	return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
58 }
59 
60 static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
61 {
62 	struct seq_tab *tb = seq->private;
63 
64 	if (tb->skip_first && *pos == 0)
65 		return SEQ_START_TOKEN;
66 
67 	return seq_tab_get_idx(tb, *pos);
68 }
69 
70 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
71 {
72 	v = seq_tab_get_idx(seq->private, *pos + 1);
73 	if (v)
74 		++*pos;
75 	return v;
76 }
77 
78 static void seq_tab_stop(struct seq_file *seq, void *v)
79 {
80 }
81 
82 static int seq_tab_show(struct seq_file *seq, void *v)
83 {
84 	const struct seq_tab *tb = seq->private;
85 
86 	return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
87 }
88 
89 static const struct seq_operations seq_tab_ops = {
90 	.start = seq_tab_start,
91 	.next  = seq_tab_next,
92 	.stop  = seq_tab_stop,
93 	.show  = seq_tab_show
94 };
95 
96 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
97 			     unsigned int width, unsigned int have_header,
98 			     int (*show)(struct seq_file *seq, void *v, int i))
99 {
100 	struct seq_tab *p;
101 
102 	p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
103 	if (p) {
104 		p->show = show;
105 		p->rows = rows;
106 		p->width = width;
107 		p->skip_first = have_header != 0;
108 	}
109 	return p;
110 }
111 
112 /* Trim the size of a seq_tab to the supplied number of rows.  The operation is
113  * irreversible.
114  */
115 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
116 {
117 	if (new_rows > p->rows)
118 		return -EINVAL;
119 	p->rows = new_rows;
120 	return 0;
121 }
122 
123 static int cim_la_show(struct seq_file *seq, void *v, int idx)
124 {
125 	if (v == SEQ_START_TOKEN)
126 		seq_puts(seq, "Status   Data      PC     LS0Stat  LS0Addr "
127 			 "            LS0Data\n");
128 	else {
129 		const u32 *p = v;
130 
131 		seq_printf(seq,
132 			   "  %02x  %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
133 			   (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
134 			   p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
135 			   p[6], p[7]);
136 	}
137 	return 0;
138 }
139 
140 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
141 {
142 	if (v == SEQ_START_TOKEN) {
143 		seq_puts(seq, "Status   Data      PC\n");
144 	} else {
145 		const u32 *p = v;
146 
147 		seq_printf(seq, "  %02x   %08x %08x\n", p[5] & 0xff, p[6],
148 			   p[7]);
149 		seq_printf(seq, "  %02x   %02x%06x %02x%06x\n",
150 			   (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
151 			   p[4] & 0xff, p[5] >> 8);
152 		seq_printf(seq, "  %02x   %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
153 			   p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
154 	}
155 	return 0;
156 }
157 
158 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
159 {
160 	if (v == SEQ_START_TOKEN) {
161 		seq_puts(seq, "Status   Inst    Data      PC     LS0Stat  "
162 			 "LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data\n");
163 	} else {
164 		const u32 *p = v;
165 
166 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
167 			   (p[9] >> 16) & 0xff,       /* Status */
168 			   p[9] & 0xffff, p[8] >> 16, /* Inst */
169 			   p[8] & 0xffff, p[7] >> 16, /* Data */
170 			   p[7] & 0xffff, p[6] >> 16, /* PC */
171 			   p[2], p[1], p[0],      /* LS0 Stat, Addr and Data */
172 			   p[5], p[4], p[3]);     /* LS1 Stat, Addr and Data */
173 	}
174 	return 0;
175 }
176 
177 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
178 {
179 	if (v == SEQ_START_TOKEN) {
180 		seq_puts(seq, "Status   Inst    Data      PC\n");
181 	} else {
182 		const u32 *p = v;
183 
184 		seq_printf(seq, "  %02x   %08x %08x %08x\n",
185 			   p[3] & 0xff, p[2], p[1], p[0]);
186 		seq_printf(seq, "  %02x   %02x%06x %02x%06x %02x%06x\n",
187 			   (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
188 			   p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
189 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x\n",
190 			   (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
191 			   p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
192 			   p[6] >> 16);
193 	}
194 	return 0;
195 }
196 
197 static int cim_la_open(struct inode *inode, struct file *file)
198 {
199 	int ret;
200 	unsigned int cfg;
201 	struct seq_tab *p;
202 	struct adapter *adap = inode->i_private;
203 
204 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
205 	if (ret)
206 		return ret;
207 
208 	if (is_t6(adap->params.chip)) {
209 		/* +1 to account for integer division of CIMLA_SIZE/10 */
210 		p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
211 				 10 * sizeof(u32), 1,
212 				 cfg & UPDBGLACAPTPCONLY_F ?
213 					cim_la_show_pc_t6 : cim_la_show_t6);
214 	} else {
215 		p = seq_open_tab(file, adap->params.cim_la_size / 8,
216 				 8 * sizeof(u32), 1,
217 				 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
218 							     cim_la_show);
219 	}
220 	if (!p)
221 		return -ENOMEM;
222 
223 	ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
224 	if (ret)
225 		seq_release_private(inode, file);
226 	return ret;
227 }
228 
229 static const struct file_operations cim_la_fops = {
230 	.owner   = THIS_MODULE,
231 	.open    = cim_la_open,
232 	.read    = seq_read,
233 	.llseek  = seq_lseek,
234 	.release = seq_release_private
235 };
236 
237 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
238 {
239 	const u32 *p = v;
240 
241 	if (v == SEQ_START_TOKEN) {
242 		seq_puts(seq, "Cntl ID DataBE   Addr                 Data\n");
243 	} else if (idx < CIM_PIFLA_SIZE) {
244 		seq_printf(seq, " %02x  %02x  %04x  %08x %08x%08x%08x%08x\n",
245 			   (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
246 			   p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
247 	} else {
248 		if (idx == CIM_PIFLA_SIZE)
249 			seq_puts(seq, "\nCntl ID               Data\n");
250 		seq_printf(seq, " %02x  %02x %08x%08x%08x%08x\n",
251 			   (p[4] >> 6) & 0xff, p[4] & 0x3f,
252 			   p[3], p[2], p[1], p[0]);
253 	}
254 	return 0;
255 }
256 
257 static int cim_pif_la_open(struct inode *inode, struct file *file)
258 {
259 	struct seq_tab *p;
260 	struct adapter *adap = inode->i_private;
261 
262 	p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
263 			 cim_pif_la_show);
264 	if (!p)
265 		return -ENOMEM;
266 
267 	t4_cim_read_pif_la(adap, (u32 *)p->data,
268 			   (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
269 	return 0;
270 }
271 
272 static const struct file_operations cim_pif_la_fops = {
273 	.owner   = THIS_MODULE,
274 	.open    = cim_pif_la_open,
275 	.read    = seq_read,
276 	.llseek  = seq_lseek,
277 	.release = seq_release_private
278 };
279 
280 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
281 {
282 	const u32 *p = v;
283 
284 	if (v == SEQ_START_TOKEN) {
285 		seq_puts(seq, "\n");
286 	} else if (idx < CIM_MALA_SIZE) {
287 		seq_printf(seq, "%02x%08x%08x%08x%08x\n",
288 			   p[4], p[3], p[2], p[1], p[0]);
289 	} else {
290 		if (idx == CIM_MALA_SIZE)
291 			seq_puts(seq,
292 				 "\nCnt ID Tag UE       Data       RDY VLD\n");
293 		seq_printf(seq, "%3u %2u  %x   %u %08x%08x  %u   %u\n",
294 			   (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
295 			   (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
296 			   (p[1] >> 2) | ((p[2] & 3) << 30),
297 			   (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
298 			   p[0] & 1);
299 	}
300 	return 0;
301 }
302 
303 static int cim_ma_la_open(struct inode *inode, struct file *file)
304 {
305 	struct seq_tab *p;
306 	struct adapter *adap = inode->i_private;
307 
308 	p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
309 			 cim_ma_la_show);
310 	if (!p)
311 		return -ENOMEM;
312 
313 	t4_cim_read_ma_la(adap, (u32 *)p->data,
314 			  (u32 *)p->data + 5 * CIM_MALA_SIZE);
315 	return 0;
316 }
317 
318 static const struct file_operations cim_ma_la_fops = {
319 	.owner   = THIS_MODULE,
320 	.open    = cim_ma_la_open,
321 	.read    = seq_read,
322 	.llseek  = seq_lseek,
323 	.release = seq_release_private
324 };
325 
326 static int cim_qcfg_show(struct seq_file *seq, void *v)
327 {
328 	static const char * const qname[] = {
329 		"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
330 		"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
331 		"SGE0-RX", "SGE1-RX"
332 	};
333 
334 	int i;
335 	struct adapter *adap = seq->private;
336 	u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
337 	u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
338 	u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
339 	u16 thres[CIM_NUM_IBQ];
340 	u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
341 	u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
342 	u32 *p = stat;
343 	int cim_num_obq = is_t4(adap->params.chip) ?
344 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
345 
346 	i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
347 			UP_IBQ_0_SHADOW_RDADDR_A,
348 			ARRAY_SIZE(stat), stat);
349 	if (!i) {
350 		if (is_t4(adap->params.chip)) {
351 			i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
352 					ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
353 			wr = obq_wr_t4;
354 		} else {
355 			i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
356 					ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
357 			wr = obq_wr_t5;
358 		}
359 	}
360 	if (i)
361 		return i;
362 
363 	t4_read_cimq_cfg(adap, base, size, thres);
364 
365 	seq_printf(seq,
366 		   "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail\n");
367 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
368 		seq_printf(seq, "%7s %5x %5u %5u %6x  %4x %4u %4u %5u\n",
369 			   qname[i], base[i], size[i], thres[i],
370 			   IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
371 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
372 			   QUEREMFLITS_G(p[2]) * 16);
373 	for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
374 		seq_printf(seq, "%7s %5x %5u %12x  %4x %4u %4u %5u\n",
375 			   qname[i], base[i], size[i],
376 			   QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
377 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
378 			   QUEREMFLITS_G(p[2]) * 16);
379 	return 0;
380 }
381 
382 static int cim_qcfg_open(struct inode *inode, struct file *file)
383 {
384 	return single_open(file, cim_qcfg_show, inode->i_private);
385 }
386 
387 static const struct file_operations cim_qcfg_fops = {
388 	.owner   = THIS_MODULE,
389 	.open    = cim_qcfg_open,
390 	.read    = seq_read,
391 	.llseek  = seq_lseek,
392 	.release = single_release,
393 };
394 
395 static int cimq_show(struct seq_file *seq, void *v, int idx)
396 {
397 	const u32 *p = v;
398 
399 	seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
400 		   p[2], p[3]);
401 	return 0;
402 }
403 
404 static int cim_ibq_open(struct inode *inode, struct file *file)
405 {
406 	int ret;
407 	struct seq_tab *p;
408 	unsigned int qid = (uintptr_t)inode->i_private & 7;
409 	struct adapter *adap = inode->i_private - qid;
410 
411 	p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
412 	if (!p)
413 		return -ENOMEM;
414 
415 	ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
416 	if (ret < 0)
417 		seq_release_private(inode, file);
418 	else
419 		ret = 0;
420 	return ret;
421 }
422 
423 static const struct file_operations cim_ibq_fops = {
424 	.owner   = THIS_MODULE,
425 	.open    = cim_ibq_open,
426 	.read    = seq_read,
427 	.llseek  = seq_lseek,
428 	.release = seq_release_private
429 };
430 
431 static int cim_obq_open(struct inode *inode, struct file *file)
432 {
433 	int ret;
434 	struct seq_tab *p;
435 	unsigned int qid = (uintptr_t)inode->i_private & 7;
436 	struct adapter *adap = inode->i_private - qid;
437 
438 	p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
439 	if (!p)
440 		return -ENOMEM;
441 
442 	ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
443 	if (ret < 0) {
444 		seq_release_private(inode, file);
445 	} else {
446 		seq_tab_trim(p, ret / 4);
447 		ret = 0;
448 	}
449 	return ret;
450 }
451 
452 static const struct file_operations cim_obq_fops = {
453 	.owner   = THIS_MODULE,
454 	.open    = cim_obq_open,
455 	.read    = seq_read,
456 	.llseek  = seq_lseek,
457 	.release = seq_release_private
458 };
459 
460 struct field_desc {
461 	const char *name;
462 	unsigned int start;
463 	unsigned int width;
464 };
465 
466 static void field_desc_show(struct seq_file *seq, u64 v,
467 			    const struct field_desc *p)
468 {
469 	char buf[32];
470 	int line_size = 0;
471 
472 	while (p->name) {
473 		u64 mask = (1ULL << p->width) - 1;
474 		int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
475 				    ((unsigned long long)v >> p->start) & mask);
476 
477 		if (line_size + len >= 79) {
478 			line_size = 8;
479 			seq_puts(seq, "\n        ");
480 		}
481 		seq_printf(seq, "%s ", buf);
482 		line_size += len + 1;
483 		p++;
484 	}
485 	seq_putc(seq, '\n');
486 }
487 
488 static struct field_desc tp_la0[] = {
489 	{ "RcfOpCodeOut", 60, 4 },
490 	{ "State", 56, 4 },
491 	{ "WcfState", 52, 4 },
492 	{ "RcfOpcSrcOut", 50, 2 },
493 	{ "CRxError", 49, 1 },
494 	{ "ERxError", 48, 1 },
495 	{ "SanityFailed", 47, 1 },
496 	{ "SpuriousMsg", 46, 1 },
497 	{ "FlushInputMsg", 45, 1 },
498 	{ "FlushInputCpl", 44, 1 },
499 	{ "RssUpBit", 43, 1 },
500 	{ "RssFilterHit", 42, 1 },
501 	{ "Tid", 32, 10 },
502 	{ "InitTcb", 31, 1 },
503 	{ "LineNumber", 24, 7 },
504 	{ "Emsg", 23, 1 },
505 	{ "EdataOut", 22, 1 },
506 	{ "Cmsg", 21, 1 },
507 	{ "CdataOut", 20, 1 },
508 	{ "EreadPdu", 19, 1 },
509 	{ "CreadPdu", 18, 1 },
510 	{ "TunnelPkt", 17, 1 },
511 	{ "RcfPeerFin", 16, 1 },
512 	{ "RcfReasonOut", 12, 4 },
513 	{ "TxCchannel", 10, 2 },
514 	{ "RcfTxChannel", 8, 2 },
515 	{ "RxEchannel", 6, 2 },
516 	{ "RcfRxChannel", 5, 1 },
517 	{ "RcfDataOutSrdy", 4, 1 },
518 	{ "RxDvld", 3, 1 },
519 	{ "RxOoDvld", 2, 1 },
520 	{ "RxCongestion", 1, 1 },
521 	{ "TxCongestion", 0, 1 },
522 	{ NULL }
523 };
524 
525 static int tp_la_show(struct seq_file *seq, void *v, int idx)
526 {
527 	const u64 *p = v;
528 
529 	field_desc_show(seq, *p, tp_la0);
530 	return 0;
531 }
532 
533 static int tp_la_show2(struct seq_file *seq, void *v, int idx)
534 {
535 	const u64 *p = v;
536 
537 	if (idx)
538 		seq_putc(seq, '\n');
539 	field_desc_show(seq, p[0], tp_la0);
540 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
541 		field_desc_show(seq, p[1], tp_la0);
542 	return 0;
543 }
544 
545 static int tp_la_show3(struct seq_file *seq, void *v, int idx)
546 {
547 	static struct field_desc tp_la1[] = {
548 		{ "CplCmdIn", 56, 8 },
549 		{ "CplCmdOut", 48, 8 },
550 		{ "ESynOut", 47, 1 },
551 		{ "EAckOut", 46, 1 },
552 		{ "EFinOut", 45, 1 },
553 		{ "ERstOut", 44, 1 },
554 		{ "SynIn", 43, 1 },
555 		{ "AckIn", 42, 1 },
556 		{ "FinIn", 41, 1 },
557 		{ "RstIn", 40, 1 },
558 		{ "DataIn", 39, 1 },
559 		{ "DataInVld", 38, 1 },
560 		{ "PadIn", 37, 1 },
561 		{ "RxBufEmpty", 36, 1 },
562 		{ "RxDdp", 35, 1 },
563 		{ "RxFbCongestion", 34, 1 },
564 		{ "TxFbCongestion", 33, 1 },
565 		{ "TxPktSumSrdy", 32, 1 },
566 		{ "RcfUlpType", 28, 4 },
567 		{ "Eread", 27, 1 },
568 		{ "Ebypass", 26, 1 },
569 		{ "Esave", 25, 1 },
570 		{ "Static0", 24, 1 },
571 		{ "Cread", 23, 1 },
572 		{ "Cbypass", 22, 1 },
573 		{ "Csave", 21, 1 },
574 		{ "CPktOut", 20, 1 },
575 		{ "RxPagePoolFull", 18, 2 },
576 		{ "RxLpbkPkt", 17, 1 },
577 		{ "TxLpbkPkt", 16, 1 },
578 		{ "RxVfValid", 15, 1 },
579 		{ "SynLearned", 14, 1 },
580 		{ "SetDelEntry", 13, 1 },
581 		{ "SetInvEntry", 12, 1 },
582 		{ "CpcmdDvld", 11, 1 },
583 		{ "CpcmdSave", 10, 1 },
584 		{ "RxPstructsFull", 8, 2 },
585 		{ "EpcmdDvld", 7, 1 },
586 		{ "EpcmdFlush", 6, 1 },
587 		{ "EpcmdTrimPrefix", 5, 1 },
588 		{ "EpcmdTrimPostfix", 4, 1 },
589 		{ "ERssIp4Pkt", 3, 1 },
590 		{ "ERssIp6Pkt", 2, 1 },
591 		{ "ERssTcpUdpPkt", 1, 1 },
592 		{ "ERssFceFipPkt", 0, 1 },
593 		{ NULL }
594 	};
595 	static struct field_desc tp_la2[] = {
596 		{ "CplCmdIn", 56, 8 },
597 		{ "MpsVfVld", 55, 1 },
598 		{ "MpsPf", 52, 3 },
599 		{ "MpsVf", 44, 8 },
600 		{ "SynIn", 43, 1 },
601 		{ "AckIn", 42, 1 },
602 		{ "FinIn", 41, 1 },
603 		{ "RstIn", 40, 1 },
604 		{ "DataIn", 39, 1 },
605 		{ "DataInVld", 38, 1 },
606 		{ "PadIn", 37, 1 },
607 		{ "RxBufEmpty", 36, 1 },
608 		{ "RxDdp", 35, 1 },
609 		{ "RxFbCongestion", 34, 1 },
610 		{ "TxFbCongestion", 33, 1 },
611 		{ "TxPktSumSrdy", 32, 1 },
612 		{ "RcfUlpType", 28, 4 },
613 		{ "Eread", 27, 1 },
614 		{ "Ebypass", 26, 1 },
615 		{ "Esave", 25, 1 },
616 		{ "Static0", 24, 1 },
617 		{ "Cread", 23, 1 },
618 		{ "Cbypass", 22, 1 },
619 		{ "Csave", 21, 1 },
620 		{ "CPktOut", 20, 1 },
621 		{ "RxPagePoolFull", 18, 2 },
622 		{ "RxLpbkPkt", 17, 1 },
623 		{ "TxLpbkPkt", 16, 1 },
624 		{ "RxVfValid", 15, 1 },
625 		{ "SynLearned", 14, 1 },
626 		{ "SetDelEntry", 13, 1 },
627 		{ "SetInvEntry", 12, 1 },
628 		{ "CpcmdDvld", 11, 1 },
629 		{ "CpcmdSave", 10, 1 },
630 		{ "RxPstructsFull", 8, 2 },
631 		{ "EpcmdDvld", 7, 1 },
632 		{ "EpcmdFlush", 6, 1 },
633 		{ "EpcmdTrimPrefix", 5, 1 },
634 		{ "EpcmdTrimPostfix", 4, 1 },
635 		{ "ERssIp4Pkt", 3, 1 },
636 		{ "ERssIp6Pkt", 2, 1 },
637 		{ "ERssTcpUdpPkt", 1, 1 },
638 		{ "ERssFceFipPkt", 0, 1 },
639 		{ NULL }
640 	};
641 	const u64 *p = v;
642 
643 	if (idx)
644 		seq_putc(seq, '\n');
645 	field_desc_show(seq, p[0], tp_la0);
646 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
647 		field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
648 	return 0;
649 }
650 
651 static int tp_la_open(struct inode *inode, struct file *file)
652 {
653 	struct seq_tab *p;
654 	struct adapter *adap = inode->i_private;
655 
656 	switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
657 	case 2:
658 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
659 				 tp_la_show2);
660 		break;
661 	case 3:
662 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
663 				 tp_la_show3);
664 		break;
665 	default:
666 		p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
667 	}
668 	if (!p)
669 		return -ENOMEM;
670 
671 	t4_tp_read_la(adap, (u64 *)p->data, NULL);
672 	return 0;
673 }
674 
675 static ssize_t tp_la_write(struct file *file, const char __user *buf,
676 			   size_t count, loff_t *pos)
677 {
678 	int err;
679 	char s[32];
680 	unsigned long val;
681 	size_t size = min(sizeof(s) - 1, count);
682 	struct adapter *adap = file_inode(file)->i_private;
683 
684 	if (copy_from_user(s, buf, size))
685 		return -EFAULT;
686 	s[size] = '\0';
687 	err = kstrtoul(s, 0, &val);
688 	if (err)
689 		return err;
690 	if (val > 0xffff)
691 		return -EINVAL;
692 	adap->params.tp.la_mask = val << 16;
693 	t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
694 			 adap->params.tp.la_mask);
695 	return count;
696 }
697 
698 static const struct file_operations tp_la_fops = {
699 	.owner   = THIS_MODULE,
700 	.open    = tp_la_open,
701 	.read    = seq_read,
702 	.llseek  = seq_lseek,
703 	.release = seq_release_private,
704 	.write   = tp_la_write
705 };
706 
707 static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
708 {
709 	const u32 *p = v;
710 
711 	if (v == SEQ_START_TOKEN)
712 		seq_puts(seq, "      Pcmd        Type   Message"
713 			 "                Data\n");
714 	else
715 		seq_printf(seq, "%08x%08x  %4x  %08x  %08x%08x%08x%08x\n",
716 			   p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
717 	return 0;
718 }
719 
720 static int ulprx_la_open(struct inode *inode, struct file *file)
721 {
722 	struct seq_tab *p;
723 	struct adapter *adap = inode->i_private;
724 
725 	p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
726 			 ulprx_la_show);
727 	if (!p)
728 		return -ENOMEM;
729 
730 	t4_ulprx_read_la(adap, (u32 *)p->data);
731 	return 0;
732 }
733 
734 static const struct file_operations ulprx_la_fops = {
735 	.owner   = THIS_MODULE,
736 	.open    = ulprx_la_open,
737 	.read    = seq_read,
738 	.llseek  = seq_lseek,
739 	.release = seq_release_private
740 };
741 
742 /* Show the PM memory stats.  These stats include:
743  *
744  * TX:
745  *   Read: memory read operation
746  *   Write Bypass: cut-through
747  *   Bypass + mem: cut-through and save copy
748  *
749  * RX:
750  *   Read: memory read
751  *   Write Bypass: cut-through
752  *   Flush: payload trim or drop
753  */
754 static int pm_stats_show(struct seq_file *seq, void *v)
755 {
756 	static const char * const tx_pm_stats[] = {
757 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
758 	};
759 	static const char * const rx_pm_stats[] = {
760 		"Read:", "Write bypass:", "Write mem:", "Flush:"
761 	};
762 
763 	int i;
764 	u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS];
765 	u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS];
766 	struct adapter *adap = seq->private;
767 
768 	t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
769 	t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
770 
771 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Tx pcmds", "Tx bytes");
772 	for (i = 0; i < PM_NSTATS - 1; i++)
773 		seq_printf(seq, "%-13s %10u  %20llu\n",
774 			   tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
775 
776 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Rx pcmds", "Rx bytes");
777 	for (i = 0; i < PM_NSTATS - 1; i++)
778 		seq_printf(seq, "%-13s %10u  %20llu\n",
779 			   rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
780 
781 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
782 		/* In T5 the granularity of the total wait is too fine.
783 		 * It is not useful as it reaches the max value too fast.
784 		 * Hence display this Input FIFO wait for T6 onwards.
785 		 */
786 		seq_printf(seq, "%13s %10s  %20s\n",
787 			   " ", "Total wait", "Total Occupancy");
788 		seq_printf(seq, "Tx FIFO wait  %10u  %20llu\n",
789 			   tx_cnt[i], tx_cyc[i]);
790 		seq_printf(seq, "Rx FIFO wait  %10u  %20llu\n",
791 			   rx_cnt[i], rx_cyc[i]);
792 
793 		/* Skip index 6 as there is nothing useful ihere */
794 		i += 2;
795 
796 		/* At index 7, a new stat for read latency (count, total wait)
797 		 * is added.
798 		 */
799 		seq_printf(seq, "%13s %10s  %20s\n",
800 			   " ", "Reads", "Total wait");
801 		seq_printf(seq, "Tx latency    %10u  %20llu\n",
802 			   tx_cnt[i], tx_cyc[i]);
803 		seq_printf(seq, "Rx latency    %10u  %20llu\n",
804 			   rx_cnt[i], rx_cyc[i]);
805 	}
806 	return 0;
807 }
808 
809 static int pm_stats_open(struct inode *inode, struct file *file)
810 {
811 	return single_open(file, pm_stats_show, inode->i_private);
812 }
813 
814 static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
815 			      size_t count, loff_t *pos)
816 {
817 	struct adapter *adap = file_inode(file)->i_private;
818 
819 	t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
820 	t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
821 	return count;
822 }
823 
824 static const struct file_operations pm_stats_debugfs_fops = {
825 	.owner   = THIS_MODULE,
826 	.open    = pm_stats_open,
827 	.read    = seq_read,
828 	.llseek  = seq_lseek,
829 	.release = single_release,
830 	.write   = pm_stats_clear
831 };
832 
833 static int tx_rate_show(struct seq_file *seq, void *v)
834 {
835 	u64 nrate[NCHAN], orate[NCHAN];
836 	struct adapter *adap = seq->private;
837 
838 	t4_get_chan_txrate(adap, nrate, orate);
839 	if (adap->params.arch.nchan == NCHAN) {
840 		seq_puts(seq, "              channel 0   channel 1   "
841 			 "channel 2   channel 3\n");
842 		seq_printf(seq, "NIC B/s:     %10llu  %10llu  %10llu  %10llu\n",
843 			   (unsigned long long)nrate[0],
844 			   (unsigned long long)nrate[1],
845 			   (unsigned long long)nrate[2],
846 			   (unsigned long long)nrate[3]);
847 		seq_printf(seq, "Offload B/s: %10llu  %10llu  %10llu  %10llu\n",
848 			   (unsigned long long)orate[0],
849 			   (unsigned long long)orate[1],
850 			   (unsigned long long)orate[2],
851 			   (unsigned long long)orate[3]);
852 	} else {
853 		seq_puts(seq, "              channel 0   channel 1\n");
854 		seq_printf(seq, "NIC B/s:     %10llu  %10llu\n",
855 			   (unsigned long long)nrate[0],
856 			   (unsigned long long)nrate[1]);
857 		seq_printf(seq, "Offload B/s: %10llu  %10llu\n",
858 			   (unsigned long long)orate[0],
859 			   (unsigned long long)orate[1]);
860 	}
861 	return 0;
862 }
863 
864 DEFINE_SIMPLE_DEBUGFS_FILE(tx_rate);
865 
866 static int cctrl_tbl_show(struct seq_file *seq, void *v)
867 {
868 	static const char * const dec_fac[] = {
869 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
870 		"0.9375" };
871 
872 	int i;
873 	u16 (*incr)[NCCTRL_WIN];
874 	struct adapter *adap = seq->private;
875 
876 	incr = kmalloc_array(NMTUS, sizeof(*incr), GFP_KERNEL);
877 	if (!incr)
878 		return -ENOMEM;
879 
880 	t4_read_cong_tbl(adap, incr);
881 
882 	for (i = 0; i < NCCTRL_WIN; ++i) {
883 		seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
884 			   incr[0][i], incr[1][i], incr[2][i], incr[3][i],
885 			   incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
886 		seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
887 			   incr[8][i], incr[9][i], incr[10][i], incr[11][i],
888 			   incr[12][i], incr[13][i], incr[14][i], incr[15][i],
889 			   adap->params.a_wnd[i],
890 			   dec_fac[adap->params.b_wnd[i]]);
891 	}
892 
893 	kfree(incr);
894 	return 0;
895 }
896 
897 DEFINE_SIMPLE_DEBUGFS_FILE(cctrl_tbl);
898 
899 /* Format a value in a unit that differs from the value's native unit by the
900  * given factor.
901  */
902 static char *unit_conv(char *buf, size_t len, unsigned int val,
903 		       unsigned int factor)
904 {
905 	unsigned int rem = val % factor;
906 
907 	if (rem == 0) {
908 		snprintf(buf, len, "%u", val / factor);
909 	} else {
910 		while (rem % 10 == 0)
911 			rem /= 10;
912 		snprintf(buf, len, "%u.%u", val / factor, rem);
913 	}
914 	return buf;
915 }
916 
917 static int clk_show(struct seq_file *seq, void *v)
918 {
919 	char buf[32];
920 	struct adapter *adap = seq->private;
921 	unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk;  /* in ps */
922 	u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
923 	unsigned int tre = TIMERRESOLUTION_G(res);
924 	unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
925 	unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
926 
927 	seq_printf(seq, "Core clock period: %s ns\n",
928 		   unit_conv(buf, sizeof(buf), cclk_ps, 1000));
929 	seq_printf(seq, "TP timer tick: %s us\n",
930 		   unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
931 	seq_printf(seq, "TCP timestamp tick: %s us\n",
932 		   unit_conv(buf, sizeof(buf),
933 			     (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
934 	seq_printf(seq, "DACK tick: %s us\n",
935 		   unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
936 	seq_printf(seq, "DACK timer: %u us\n",
937 		   ((cclk_ps << dack_re) / 1000000) *
938 		   t4_read_reg(adap, TP_DACK_TIMER_A));
939 	seq_printf(seq, "Retransmit min: %llu us\n",
940 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
941 	seq_printf(seq, "Retransmit max: %llu us\n",
942 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
943 	seq_printf(seq, "Persist timer min: %llu us\n",
944 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
945 	seq_printf(seq, "Persist timer max: %llu us\n",
946 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
947 	seq_printf(seq, "Keepalive idle timer: %llu us\n",
948 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
949 	seq_printf(seq, "Keepalive interval: %llu us\n",
950 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
951 	seq_printf(seq, "Initial SRTT: %llu us\n",
952 		   tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
953 	seq_printf(seq, "FINWAIT2 timer: %llu us\n",
954 		   tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
955 
956 	return 0;
957 }
958 
959 DEFINE_SIMPLE_DEBUGFS_FILE(clk);
960 
961 /* Firmware Device Log dump. */
962 static const char * const devlog_level_strings[] = {
963 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
964 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
965 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
966 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
967 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
968 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
969 };
970 
971 static const char * const devlog_facility_strings[] = {
972 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
973 	[FW_DEVLOG_FACILITY_CF]         = "CF",
974 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
975 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
976 	[FW_DEVLOG_FACILITY_RES]	= "RES",
977 	[FW_DEVLOG_FACILITY_HW]		= "HW",
978 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
979 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
980 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
981 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
982 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
983 	[FW_DEVLOG_FACILITY_VI]		= "VI",
984 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
985 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
986 	[FW_DEVLOG_FACILITY_TM]		= "TM",
987 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
988 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
989 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
990 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
991 	[FW_DEVLOG_FACILITY_RI]		= "RI",
992 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
993 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
994 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
995 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE"
996 };
997 
998 /* Information gathered by Device Log Open routine for the display routine.
999  */
1000 struct devlog_info {
1001 	unsigned int nentries;		/* number of entries in log[] */
1002 	unsigned int first;		/* first [temporal] entry in log[] */
1003 	struct fw_devlog_e log[0];	/* Firmware Device Log */
1004 };
1005 
1006 /* Dump a Firmaware Device Log entry.
1007  */
1008 static int devlog_show(struct seq_file *seq, void *v)
1009 {
1010 	if (v == SEQ_START_TOKEN)
1011 		seq_printf(seq, "%10s  %15s  %8s  %8s  %s\n",
1012 			   "Seq#", "Tstamp", "Level", "Facility", "Message");
1013 	else {
1014 		struct devlog_info *dinfo = seq->private;
1015 		int fidx = (uintptr_t)v - 2;
1016 		unsigned long index;
1017 		struct fw_devlog_e *e;
1018 
1019 		/* Get a pointer to the log entry to display.  Skip unused log
1020 		 * entries.
1021 		 */
1022 		index = dinfo->first + fidx;
1023 		if (index >= dinfo->nentries)
1024 			index -= dinfo->nentries;
1025 		e = &dinfo->log[index];
1026 		if (e->timestamp == 0)
1027 			return 0;
1028 
1029 		/* Print the message.  This depends on the firmware using
1030 		 * exactly the same formating strings as the kernel so we may
1031 		 * eventually have to put a format interpreter in here ...
1032 		 */
1033 		seq_printf(seq, "%10d  %15llu  %8s  %8s  ",
1034 			   be32_to_cpu(e->seqno),
1035 			   be64_to_cpu(e->timestamp),
1036 			   (e->level < ARRAY_SIZE(devlog_level_strings)
1037 			    ? devlog_level_strings[e->level]
1038 			    : "UNKNOWN"),
1039 			   (e->facility < ARRAY_SIZE(devlog_facility_strings)
1040 			    ? devlog_facility_strings[e->facility]
1041 			    : "UNKNOWN"));
1042 		seq_printf(seq, e->fmt,
1043 			   be32_to_cpu(e->params[0]),
1044 			   be32_to_cpu(e->params[1]),
1045 			   be32_to_cpu(e->params[2]),
1046 			   be32_to_cpu(e->params[3]),
1047 			   be32_to_cpu(e->params[4]),
1048 			   be32_to_cpu(e->params[5]),
1049 			   be32_to_cpu(e->params[6]),
1050 			   be32_to_cpu(e->params[7]));
1051 	}
1052 	return 0;
1053 }
1054 
1055 /* Sequential File Operations for Device Log.
1056  */
1057 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
1058 {
1059 	if (pos > dinfo->nentries)
1060 		return NULL;
1061 
1062 	return (void *)(uintptr_t)(pos + 1);
1063 }
1064 
1065 static void *devlog_start(struct seq_file *seq, loff_t *pos)
1066 {
1067 	struct devlog_info *dinfo = seq->private;
1068 
1069 	return (*pos
1070 		? devlog_get_idx(dinfo, *pos)
1071 		: SEQ_START_TOKEN);
1072 }
1073 
1074 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
1075 {
1076 	struct devlog_info *dinfo = seq->private;
1077 
1078 	(*pos)++;
1079 	return devlog_get_idx(dinfo, *pos);
1080 }
1081 
1082 static void devlog_stop(struct seq_file *seq, void *v)
1083 {
1084 }
1085 
1086 static const struct seq_operations devlog_seq_ops = {
1087 	.start = devlog_start,
1088 	.next  = devlog_next,
1089 	.stop  = devlog_stop,
1090 	.show  = devlog_show
1091 };
1092 
1093 /* Set up for reading the firmware's device log.  We read the entire log here
1094  * and then display it incrementally in devlog_show().
1095  */
1096 static int devlog_open(struct inode *inode, struct file *file)
1097 {
1098 	struct adapter *adap = inode->i_private;
1099 	struct devlog_params *dparams = &adap->params.devlog;
1100 	struct devlog_info *dinfo;
1101 	unsigned int index;
1102 	u32 fseqno;
1103 	int ret;
1104 
1105 	/* If we don't know where the log is we can't do anything.
1106 	 */
1107 	if (dparams->start == 0)
1108 		return -ENXIO;
1109 
1110 	/* Allocate the space to read in the firmware's device log and set up
1111 	 * for the iterated call to our display function.
1112 	 */
1113 	dinfo = __seq_open_private(file, &devlog_seq_ops,
1114 				   sizeof(*dinfo) + dparams->size);
1115 	if (!dinfo)
1116 		return -ENOMEM;
1117 
1118 	/* Record the basic log buffer information and read in the raw log.
1119 	 */
1120 	dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
1121 	dinfo->first = 0;
1122 	spin_lock(&adap->win0_lock);
1123 	ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
1124 			   dparams->start, dparams->size, (__be32 *)dinfo->log,
1125 			   T4_MEMORY_READ);
1126 	spin_unlock(&adap->win0_lock);
1127 	if (ret) {
1128 		seq_release_private(inode, file);
1129 		return ret;
1130 	}
1131 
1132 	/* Find the earliest (lowest Sequence Number) log entry in the
1133 	 * circular Device Log.
1134 	 */
1135 	for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
1136 		struct fw_devlog_e *e = &dinfo->log[index];
1137 		__u32 seqno;
1138 
1139 		if (e->timestamp == 0)
1140 			continue;
1141 
1142 		seqno = be32_to_cpu(e->seqno);
1143 		if (seqno < fseqno) {
1144 			fseqno = seqno;
1145 			dinfo->first = index;
1146 		}
1147 	}
1148 	return 0;
1149 }
1150 
1151 static const struct file_operations devlog_fops = {
1152 	.owner   = THIS_MODULE,
1153 	.open    = devlog_open,
1154 	.read    = seq_read,
1155 	.llseek  = seq_lseek,
1156 	.release = seq_release_private
1157 };
1158 
1159 /* Show Firmware Mailbox Command/Reply Log
1160  *
1161  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1162  * it's possible that we can catch things during a log update and therefore
1163  * see partially corrupted log entries.  But it's probably Good Enough(tm).
1164  * If we ever decide that we want to make sure that we're dumping a coherent
1165  * log, we'd need to perform locking in the mailbox logging and in
1166  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1167  * like we do for the Firmware Device Log.
1168  */
1169 static int mboxlog_show(struct seq_file *seq, void *v)
1170 {
1171 	struct adapter *adapter = seq->private;
1172 	struct mbox_cmd_log *log = adapter->mbox_log;
1173 	struct mbox_cmd *entry;
1174 	int entry_idx, i;
1175 
1176 	if (v == SEQ_START_TOKEN) {
1177 		seq_printf(seq,
1178 			   "%10s  %15s  %5s  %5s  %s\n",
1179 			   "Seq#", "Tstamp", "Atime", "Etime",
1180 			   "Command/Reply");
1181 		return 0;
1182 	}
1183 
1184 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1185 	if (entry_idx >= log->size)
1186 		entry_idx -= log->size;
1187 	entry = mbox_cmd_log_entry(log, entry_idx);
1188 
1189 	/* skip over unused entries */
1190 	if (entry->timestamp == 0)
1191 		return 0;
1192 
1193 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1194 		   entry->seqno, entry->timestamp,
1195 		   entry->access, entry->execute);
1196 	for (i = 0; i < MBOX_LEN / 8; i++) {
1197 		u64 flit = entry->cmd[i];
1198 		u32 hi = (u32)(flit >> 32);
1199 		u32 lo = (u32)flit;
1200 
1201 		seq_printf(seq, "  %08x %08x", hi, lo);
1202 	}
1203 	seq_puts(seq, "\n");
1204 	return 0;
1205 }
1206 
1207 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1208 {
1209 	struct adapter *adapter = seq->private;
1210 	struct mbox_cmd_log *log = adapter->mbox_log;
1211 
1212 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1213 }
1214 
1215 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1216 {
1217 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1218 }
1219 
1220 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1221 {
1222 	++*pos;
1223 	return mboxlog_get_idx(seq, *pos);
1224 }
1225 
1226 static void mboxlog_stop(struct seq_file *seq, void *v)
1227 {
1228 }
1229 
1230 static const struct seq_operations mboxlog_seq_ops = {
1231 	.start = mboxlog_start,
1232 	.next  = mboxlog_next,
1233 	.stop  = mboxlog_stop,
1234 	.show  = mboxlog_show
1235 };
1236 
1237 static int mboxlog_open(struct inode *inode, struct file *file)
1238 {
1239 	int res = seq_open(file, &mboxlog_seq_ops);
1240 
1241 	if (!res) {
1242 		struct seq_file *seq = file->private_data;
1243 
1244 		seq->private = inode->i_private;
1245 	}
1246 	return res;
1247 }
1248 
1249 static const struct file_operations mboxlog_fops = {
1250 	.owner   = THIS_MODULE,
1251 	.open    = mboxlog_open,
1252 	.read    = seq_read,
1253 	.llseek  = seq_lseek,
1254 	.release = seq_release,
1255 };
1256 
1257 static int mbox_show(struct seq_file *seq, void *v)
1258 {
1259 	static const char * const owner[] = { "none", "FW", "driver",
1260 					      "unknown", "<unread>" };
1261 
1262 	int i;
1263 	unsigned int mbox = (uintptr_t)seq->private & 7;
1264 	struct adapter *adap = seq->private - mbox;
1265 	void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1266 
1267 	/* For T4 we don't have a shadow copy of the Mailbox Control register.
1268 	 * And since reading that real register causes a side effect of
1269 	 * granting ownership, we're best of simply not reading it at all.
1270 	 */
1271 	if (is_t4(adap->params.chip)) {
1272 		i = 4; /* index of "<unread>" */
1273 	} else {
1274 		unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A;
1275 		void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
1276 
1277 		i = MBOWNER_G(readl(ctrl));
1278 	}
1279 
1280 	seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
1281 
1282 	for (i = 0; i < MBOX_LEN; i += 8)
1283 		seq_printf(seq, "%016llx\n",
1284 			   (unsigned long long)readq(addr + i));
1285 	return 0;
1286 }
1287 
1288 static int mbox_open(struct inode *inode, struct file *file)
1289 {
1290 	return single_open(file, mbox_show, inode->i_private);
1291 }
1292 
1293 static ssize_t mbox_write(struct file *file, const char __user *buf,
1294 			  size_t count, loff_t *pos)
1295 {
1296 	int i;
1297 	char c = '\n', s[256];
1298 	unsigned long long data[8];
1299 	const struct inode *ino;
1300 	unsigned int mbox;
1301 	struct adapter *adap;
1302 	void __iomem *addr;
1303 	void __iomem *ctrl;
1304 
1305 	if (count > sizeof(s) - 1 || !count)
1306 		return -EINVAL;
1307 	if (copy_from_user(s, buf, count))
1308 		return -EFAULT;
1309 	s[count] = '\0';
1310 
1311 	if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
1312 		   &data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
1313 		   &data[7], &c) < 8 || c != '\n')
1314 		return -EINVAL;
1315 
1316 	ino = file_inode(file);
1317 	mbox = (uintptr_t)ino->i_private & 7;
1318 	adap = ino->i_private - mbox;
1319 	addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1320 	ctrl = addr + MBOX_LEN;
1321 
1322 	if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
1323 		return -EBUSY;
1324 
1325 	for (i = 0; i < 8; i++)
1326 		writeq(data[i], addr + 8 * i);
1327 
1328 	writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
1329 	return count;
1330 }
1331 
1332 static const struct file_operations mbox_debugfs_fops = {
1333 	.owner   = THIS_MODULE,
1334 	.open    = mbox_open,
1335 	.read    = seq_read,
1336 	.llseek  = seq_lseek,
1337 	.release = single_release,
1338 	.write   = mbox_write
1339 };
1340 
1341 static int mps_trc_show(struct seq_file *seq, void *v)
1342 {
1343 	int enabled, i;
1344 	struct trace_params tp;
1345 	unsigned int trcidx = (uintptr_t)seq->private & 3;
1346 	struct adapter *adap = seq->private - trcidx;
1347 
1348 	t4_get_trace_filter(adap, &tp, trcidx, &enabled);
1349 	if (!enabled) {
1350 		seq_puts(seq, "tracer is disabled\n");
1351 		return 0;
1352 	}
1353 
1354 	if (tp.skip_ofst * 8 >= TRACE_LEN) {
1355 		dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
1356 		return -EINVAL;
1357 	}
1358 	if (tp.port < 8) {
1359 		i = adap->chan_map[tp.port & 3];
1360 		if (i >= MAX_NPORTS) {
1361 			dev_err(adap->pdev_dev, "tracer %u is assigned "
1362 				"to non-existing port\n", trcidx);
1363 			return -EINVAL;
1364 		}
1365 		seq_printf(seq, "tracer is capturing %s %s, ",
1366 			   adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
1367 	} else
1368 		seq_printf(seq, "tracer is capturing loopback %d, ",
1369 			   tp.port - 8);
1370 	seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
1371 		   tp.min_len);
1372 	seq_printf(seq, "packets captured %smatch filter\n",
1373 		   tp.invert ? "do not " : "");
1374 
1375 	if (tp.skip_ofst) {
1376 		seq_puts(seq, "filter pattern: ");
1377 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1378 			seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1379 		seq_putc(seq, '/');
1380 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1381 			seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1382 		seq_puts(seq, "@0\n");
1383 	}
1384 
1385 	seq_puts(seq, "filter pattern: ");
1386 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1387 		seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1388 	seq_putc(seq, '/');
1389 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1390 		seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1391 	seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
1392 	return 0;
1393 }
1394 
1395 static int mps_trc_open(struct inode *inode, struct file *file)
1396 {
1397 	return single_open(file, mps_trc_show, inode->i_private);
1398 }
1399 
1400 static unsigned int xdigit2int(unsigned char c)
1401 {
1402 	return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
1403 }
1404 
1405 #define TRC_PORT_NONE 0xff
1406 #define TRC_RSS_ENABLE 0x33
1407 #define TRC_RSS_DISABLE 0x13
1408 
1409 /* Set an MPS trace filter.  Syntax is:
1410  *
1411  * disable
1412  *
1413  * to disable tracing, or
1414  *
1415  * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
1416  *
1417  * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
1418  * of the NIC's response qid obtained from sge_qinfo and pattern has the form
1419  *
1420  * <pattern data>[/<pattern mask>][@<anchor>]
1421  *
1422  * Up to 2 filter patterns can be specified.  If 2 are supplied the first one
1423  * must be anchored at 0.  An omitted mask is taken as a mask of 1s, an omitted
1424  * anchor is taken as 0.
1425  */
1426 static ssize_t mps_trc_write(struct file *file, const char __user *buf,
1427 			     size_t count, loff_t *pos)
1428 {
1429 	int i, enable, ret;
1430 	u32 *data, *mask;
1431 	struct trace_params tp;
1432 	const struct inode *ino;
1433 	unsigned int trcidx;
1434 	char *s, *p, *word, *end;
1435 	struct adapter *adap;
1436 	u32 j;
1437 
1438 	ino = file_inode(file);
1439 	trcidx = (uintptr_t)ino->i_private & 3;
1440 	adap = ino->i_private - trcidx;
1441 
1442 	/* Don't accept input more than 1K, can't be anything valid except lots
1443 	 * of whitespace.  Well, use less.
1444 	 */
1445 	if (count > 1024)
1446 		return -EFBIG;
1447 	p = s = kzalloc(count + 1, GFP_USER);
1448 	if (!s)
1449 		return -ENOMEM;
1450 	if (copy_from_user(s, buf, count)) {
1451 		count = -EFAULT;
1452 		goto out;
1453 	}
1454 
1455 	if (s[count - 1] == '\n')
1456 		s[count - 1] = '\0';
1457 
1458 	enable = strcmp("disable", s) != 0;
1459 	if (!enable)
1460 		goto apply;
1461 
1462 	/* enable or disable trace multi rss filter */
1463 	if (adap->trace_rss)
1464 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
1465 	else
1466 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
1467 
1468 	memset(&tp, 0, sizeof(tp));
1469 	tp.port = TRC_PORT_NONE;
1470 	i = 0;	/* counts pattern nibbles */
1471 
1472 	while (p) {
1473 		while (isspace(*p))
1474 			p++;
1475 		word = strsep(&p, " ");
1476 		if (!*word)
1477 			break;
1478 
1479 		if (!strncmp(word, "qid=", 4)) {
1480 			end = (char *)word + 4;
1481 			ret = kstrtouint(end, 10, &j);
1482 			if (ret)
1483 				goto out;
1484 			if (!adap->trace_rss) {
1485 				t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
1486 				continue;
1487 			}
1488 
1489 			switch (trcidx) {
1490 			case 0:
1491 				t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
1492 				break;
1493 			case 1:
1494 				t4_write_reg(adap,
1495 					     MPS_TRC_FILTER1_RSS_CONTROL_A, j);
1496 				break;
1497 			case 2:
1498 				t4_write_reg(adap,
1499 					     MPS_TRC_FILTER2_RSS_CONTROL_A, j);
1500 				break;
1501 			case 3:
1502 				t4_write_reg(adap,
1503 					     MPS_TRC_FILTER3_RSS_CONTROL_A, j);
1504 				break;
1505 			}
1506 			continue;
1507 		}
1508 		if (!strncmp(word, "snaplen=", 8)) {
1509 			end = (char *)word + 8;
1510 			ret = kstrtouint(end, 10, &j);
1511 			if (ret || j > 9600) {
1512 inval:				count = -EINVAL;
1513 				goto out;
1514 			}
1515 			tp.snap_len = j;
1516 			continue;
1517 		}
1518 		if (!strncmp(word, "minlen=", 7)) {
1519 			end = (char *)word + 7;
1520 			ret = kstrtouint(end, 10, &j);
1521 			if (ret || j > TFMINPKTSIZE_M)
1522 				goto inval;
1523 			tp.min_len = j;
1524 			continue;
1525 		}
1526 		if (!strcmp(word, "not")) {
1527 			tp.invert = !tp.invert;
1528 			continue;
1529 		}
1530 		if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
1531 			if (word[8] < '0' || word[8] > '3' || word[9])
1532 				goto inval;
1533 			tp.port = word[8] - '0' + 8;
1534 			continue;
1535 		}
1536 		if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
1537 			if (word[2] < '0' || word[2] > '3' || word[3])
1538 				goto inval;
1539 			tp.port = word[2] - '0' + 4;
1540 			if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
1541 				goto inval;
1542 			continue;
1543 		}
1544 		if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
1545 			if (word[2] < '0' || word[2] > '3' || word[3])
1546 				goto inval;
1547 			tp.port = word[2] - '0';
1548 			if (adap->chan_map[tp.port] >= MAX_NPORTS)
1549 				goto inval;
1550 			continue;
1551 		}
1552 		if (!isxdigit(*word))
1553 			goto inval;
1554 
1555 		/* we have found a trace pattern */
1556 		if (i) {                            /* split pattern */
1557 			if (tp.skip_len)            /* too many splits */
1558 				goto inval;
1559 			tp.skip_ofst = i / 16;
1560 		}
1561 
1562 		data = &tp.data[i / 8];
1563 		mask = &tp.mask[i / 8];
1564 		j = i;
1565 
1566 		while (isxdigit(*word)) {
1567 			if (i >= TRACE_LEN * 2) {
1568 				count = -EFBIG;
1569 				goto out;
1570 			}
1571 			*data = (*data << 4) + xdigit2int(*word++);
1572 			if (++i % 8 == 0)
1573 				data++;
1574 		}
1575 		if (*word == '/') {
1576 			word++;
1577 			while (isxdigit(*word)) {
1578 				if (j >= i)         /* mask longer than data */
1579 					goto inval;
1580 				*mask = (*mask << 4) + xdigit2int(*word++);
1581 				if (++j % 8 == 0)
1582 					mask++;
1583 			}
1584 			if (i != j)                 /* mask shorter than data */
1585 				goto inval;
1586 		} else {                            /* no mask, use all 1s */
1587 			for ( ; i - j >= 8; j += 8)
1588 				*mask++ = 0xffffffff;
1589 			if (i % 8)
1590 				*mask = (1 << (i % 8) * 4) - 1;
1591 		}
1592 		if (*word == '@') {
1593 			end = (char *)word + 1;
1594 			ret = kstrtouint(end, 10, &j);
1595 			if (*end && *end != '\n')
1596 				goto inval;
1597 			if (j & 7)          /* doesn't start at multiple of 8 */
1598 				goto inval;
1599 			j /= 8;
1600 			if (j < tp.skip_ofst)     /* overlaps earlier pattern */
1601 				goto inval;
1602 			if (j - tp.skip_ofst > 31)            /* skip too big */
1603 				goto inval;
1604 			tp.skip_len = j - tp.skip_ofst;
1605 		}
1606 		if (i % 8) {
1607 			*data <<= (8 - i % 8) * 4;
1608 			*mask <<= (8 - i % 8) * 4;
1609 			i = (i + 15) & ~15;         /* 8-byte align */
1610 		}
1611 	}
1612 
1613 	if (tp.port == TRC_PORT_NONE)
1614 		goto inval;
1615 
1616 apply:
1617 	i = t4_set_trace_filter(adap, &tp, trcidx, enable);
1618 	if (i)
1619 		count = i;
1620 out:
1621 	kfree(s);
1622 	return count;
1623 }
1624 
1625 static const struct file_operations mps_trc_debugfs_fops = {
1626 	.owner   = THIS_MODULE,
1627 	.open    = mps_trc_open,
1628 	.read    = seq_read,
1629 	.llseek  = seq_lseek,
1630 	.release = single_release,
1631 	.write   = mps_trc_write
1632 };
1633 
1634 static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
1635 			  loff_t *ppos)
1636 {
1637 	loff_t pos = *ppos;
1638 	loff_t avail = file_inode(file)->i_size;
1639 	struct adapter *adap = file->private_data;
1640 
1641 	if (pos < 0)
1642 		return -EINVAL;
1643 	if (pos >= avail)
1644 		return 0;
1645 	if (count > avail - pos)
1646 		count = avail - pos;
1647 
1648 	while (count) {
1649 		size_t len;
1650 		int ret, ofst;
1651 		u8 data[256];
1652 
1653 		ofst = pos & 3;
1654 		len = min(count + ofst, sizeof(data));
1655 		ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
1656 				    (u32 *)data, 1);
1657 		if (ret)
1658 			return ret;
1659 
1660 		len -= ofst;
1661 		if (copy_to_user(buf, data + ofst, len))
1662 			return -EFAULT;
1663 
1664 		buf += len;
1665 		pos += len;
1666 		count -= len;
1667 	}
1668 	count = pos - *ppos;
1669 	*ppos = pos;
1670 	return count;
1671 }
1672 
1673 static const struct file_operations flash_debugfs_fops = {
1674 	.owner   = THIS_MODULE,
1675 	.open    = mem_open,
1676 	.read    = flash_read,
1677 	.llseek  = default_llseek,
1678 };
1679 
1680 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
1681 {
1682 	*mask = x | y;
1683 	y = (__force u64)cpu_to_be64(y);
1684 	memcpy(addr, (char *)&y + 2, ETH_ALEN);
1685 }
1686 
1687 static int mps_tcam_show(struct seq_file *seq, void *v)
1688 {
1689 	struct adapter *adap = seq->private;
1690 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1691 	if (v == SEQ_START_TOKEN) {
1692 		if (chip_ver > CHELSIO_T5) {
1693 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1694 				 "  VNI   Mask   IVLAN Vld "
1695 				 "DIP_Hit   Lookup  Port "
1696 				 "Vld Ports PF  VF                           "
1697 				 "Replication                                "
1698 				 "    P0 P1 P2 P3  ML\n");
1699 		} else {
1700 			if (adap->params.arch.mps_rplc_size > 128)
1701 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1702 					 "Vld Ports PF  VF                           "
1703 					 "Replication                                "
1704 					 "    P0 P1 P2 P3  ML\n");
1705 			else
1706 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1707 					 "Vld Ports PF  VF              Replication"
1708 					 "	         P0 P1 P2 P3  ML\n");
1709 		}
1710 	} else {
1711 		u64 mask;
1712 		u8 addr[ETH_ALEN];
1713 		bool replicate, dip_hit = false, vlan_vld = false;
1714 		unsigned int idx = (uintptr_t)v - 2;
1715 		u64 tcamy, tcamx, val;
1716 		u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0;
1717 		u32 rplc[8] = {0};
1718 		u8 lookup_type = 0, port_num = 0;
1719 		u16 ivlan = 0;
1720 
1721 		if (chip_ver > CHELSIO_T5) {
1722 			/* CtlCmdType - 0: Read, 1: Write
1723 			 * CtlTcamSel - 0: TCAM0, 1: TCAM1
1724 			 * CtlXYBitSel- 0: Y bit, 1: X bit
1725 			 */
1726 
1727 			/* Read tcamy */
1728 			ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
1729 			if (idx < 256)
1730 				ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
1731 			else
1732 				ctl |= CTLTCAMINDEX_V(idx - 256) |
1733 				       CTLTCAMSEL_V(1);
1734 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1735 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1736 			tcamy = DMACH_G(val) << 32;
1737 			tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1738 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1739 			lookup_type = DATALKPTYPE_G(data2);
1740 			/* 0 - Outer header, 1 - Inner header
1741 			 * [71:48] bit locations are overloaded for
1742 			 * outer vs. inner lookup types.
1743 			 */
1744 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1745 				/* Inner header VNI */
1746 				vniy = (data2 & DATAVIDH2_F) |
1747 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1748 				dip_hit = data2 & DATADIPHIT_F;
1749 			} else {
1750 				vlan_vld = data2 & DATAVIDH2_F;
1751 				ivlan = VIDL_G(val);
1752 			}
1753 			port_num = DATAPORTNUM_G(data2);
1754 
1755 			/* Read tcamx. Change the control param */
1756 			vnix = 0;
1757 			ctl |= CTLXYBITSEL_V(1);
1758 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1759 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1760 			tcamx = DMACH_G(val) << 32;
1761 			tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1762 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1763 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1764 				/* Inner header VNI mask */
1765 				vnix = (data2 & DATAVIDH2_F) |
1766 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1767 			}
1768 		} else {
1769 			tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
1770 			tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
1771 		}
1772 
1773 		cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
1774 		cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
1775 
1776 		if (tcamx & tcamy) {
1777 			seq_printf(seq, "%3u         -\n", idx);
1778 			goto out;
1779 		}
1780 
1781 		rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
1782 		if (chip_ver > CHELSIO_T5)
1783 			replicate = (cls_lo & T6_REPLICATE_F);
1784 		else
1785 			replicate = (cls_lo & REPLICATE_F);
1786 
1787 		if (replicate) {
1788 			struct fw_ldst_cmd ldst_cmd;
1789 			int ret;
1790 			struct fw_ldst_mps_rplc mps_rplc;
1791 			u32 ldst_addrspc;
1792 
1793 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
1794 			ldst_addrspc =
1795 				FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
1796 			ldst_cmd.op_to_addrspace =
1797 				htonl(FW_CMD_OP_V(FW_LDST_CMD) |
1798 				      FW_CMD_REQUEST_F |
1799 				      FW_CMD_READ_F |
1800 				      ldst_addrspc);
1801 			ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
1802 			ldst_cmd.u.mps.rplc.fid_idx =
1803 				htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
1804 				      FW_LDST_CMD_IDX_V(idx));
1805 			ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
1806 					 sizeof(ldst_cmd), &ldst_cmd);
1807 			if (ret)
1808 				dev_warn(adap->pdev_dev, "Can't read MPS "
1809 					 "replication map for idx %d: %d\n",
1810 					 idx, -ret);
1811 			else {
1812 				mps_rplc = ldst_cmd.u.mps.rplc;
1813 				rplc[0] = ntohl(mps_rplc.rplc31_0);
1814 				rplc[1] = ntohl(mps_rplc.rplc63_32);
1815 				rplc[2] = ntohl(mps_rplc.rplc95_64);
1816 				rplc[3] = ntohl(mps_rplc.rplc127_96);
1817 				if (adap->params.arch.mps_rplc_size > 128) {
1818 					rplc[4] = ntohl(mps_rplc.rplc159_128);
1819 					rplc[5] = ntohl(mps_rplc.rplc191_160);
1820 					rplc[6] = ntohl(mps_rplc.rplc223_192);
1821 					rplc[7] = ntohl(mps_rplc.rplc255_224);
1822 				}
1823 			}
1824 		}
1825 
1826 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
1827 		if (chip_ver > CHELSIO_T5) {
1828 			/* Inner header lookup */
1829 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1830 				seq_printf(seq,
1831 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1832 					   "%012llx %06x %06x    -    -   %3c"
1833 					   "      'I'  %4x   "
1834 					   "%3c   %#x%4u%4d", idx, addr[0],
1835 					   addr[1], addr[2], addr[3],
1836 					   addr[4], addr[5],
1837 					   (unsigned long long)mask,
1838 					   vniy, (vnix | vniy),
1839 					   dip_hit ? 'Y' : 'N',
1840 					   port_num,
1841 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1842 					   PORTMAP_G(cls_hi),
1843 					   T6_PF_G(cls_lo),
1844 					   (cls_lo & T6_VF_VALID_F) ?
1845 					   T6_VF_G(cls_lo) : -1);
1846 			} else {
1847 				seq_printf(seq,
1848 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1849 					   "%012llx    -       -   ",
1850 					   idx, addr[0], addr[1], addr[2],
1851 					   addr[3], addr[4], addr[5],
1852 					   (unsigned long long)mask);
1853 
1854 				if (vlan_vld)
1855 					seq_printf(seq, "%4u   Y     ", ivlan);
1856 				else
1857 					seq_puts(seq, "  -    N     ");
1858 
1859 				seq_printf(seq,
1860 					   "-      %3c  %4x   %3c   %#x%4u%4d",
1861 					   lookup_type ? 'I' : 'O', port_num,
1862 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1863 					   PORTMAP_G(cls_hi),
1864 					   T6_PF_G(cls_lo),
1865 					   (cls_lo & T6_VF_VALID_F) ?
1866 					   T6_VF_G(cls_lo) : -1);
1867 			}
1868 		} else
1869 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1870 				   "%012llx%3c   %#x%4u%4d",
1871 				   idx, addr[0], addr[1], addr[2], addr[3],
1872 				   addr[4], addr[5], (unsigned long long)mask,
1873 				   (cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
1874 				   PORTMAP_G(cls_hi),
1875 				   PF_G(cls_lo),
1876 				   (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
1877 
1878 		if (replicate) {
1879 			if (adap->params.arch.mps_rplc_size > 128)
1880 				seq_printf(seq, " %08x %08x %08x %08x "
1881 					   "%08x %08x %08x %08x",
1882 					   rplc[7], rplc[6], rplc[5], rplc[4],
1883 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1884 			else
1885 				seq_printf(seq, " %08x %08x %08x %08x",
1886 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1887 		} else {
1888 			if (adap->params.arch.mps_rplc_size > 128)
1889 				seq_printf(seq, "%72c", ' ');
1890 			else
1891 				seq_printf(seq, "%36c", ' ');
1892 		}
1893 
1894 		if (chip_ver > CHELSIO_T5)
1895 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1896 				   T6_SRAM_PRIO0_G(cls_lo),
1897 				   T6_SRAM_PRIO1_G(cls_lo),
1898 				   T6_SRAM_PRIO2_G(cls_lo),
1899 				   T6_SRAM_PRIO3_G(cls_lo),
1900 				   (cls_lo >> T6_MULTILISTEN0_S) & 0xf);
1901 		else
1902 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1903 				   SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
1904 				   SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
1905 				   (cls_lo >> MULTILISTEN0_S) & 0xf);
1906 	}
1907 out:	return 0;
1908 }
1909 
1910 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
1911 {
1912 	struct adapter *adap = seq->private;
1913 	int max_mac_addr = is_t4(adap->params.chip) ?
1914 				NUM_MPS_CLS_SRAM_L_INSTANCES :
1915 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1916 	return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
1917 }
1918 
1919 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
1920 {
1921 	return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
1922 }
1923 
1924 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
1925 {
1926 	++*pos;
1927 	return mps_tcam_get_idx(seq, *pos);
1928 }
1929 
1930 static void mps_tcam_stop(struct seq_file *seq, void *v)
1931 {
1932 }
1933 
1934 static const struct seq_operations mps_tcam_seq_ops = {
1935 	.start = mps_tcam_start,
1936 	.next  = mps_tcam_next,
1937 	.stop  = mps_tcam_stop,
1938 	.show  = mps_tcam_show
1939 };
1940 
1941 static int mps_tcam_open(struct inode *inode, struct file *file)
1942 {
1943 	int res = seq_open(file, &mps_tcam_seq_ops);
1944 
1945 	if (!res) {
1946 		struct seq_file *seq = file->private_data;
1947 
1948 		seq->private = inode->i_private;
1949 	}
1950 	return res;
1951 }
1952 
1953 static const struct file_operations mps_tcam_debugfs_fops = {
1954 	.owner   = THIS_MODULE,
1955 	.open    = mps_tcam_open,
1956 	.read    = seq_read,
1957 	.llseek  = seq_lseek,
1958 	.release = seq_release,
1959 };
1960 
1961 /* Display various sensor information.
1962  */
1963 static int sensors_show(struct seq_file *seq, void *v)
1964 {
1965 	struct adapter *adap = seq->private;
1966 	u32 param[7], val[7];
1967 	int ret;
1968 
1969 	/* Note that if the sensors haven't been initialized and turned on
1970 	 * we'll get values of 0, so treat those as "<unknown>" ...
1971 	 */
1972 	param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1973 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1974 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
1975 	param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1976 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1977 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
1978 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1979 			      param, val);
1980 
1981 	if (ret < 0 || val[0] == 0)
1982 		seq_puts(seq, "Temperature: <unknown>\n");
1983 	else
1984 		seq_printf(seq, "Temperature: %dC\n", val[0]);
1985 
1986 	if (ret < 0 || val[1] == 0)
1987 		seq_puts(seq, "Core VDD:    <unknown>\n");
1988 	else
1989 		seq_printf(seq, "Core VDD:    %dmV\n", val[1]);
1990 
1991 	return 0;
1992 }
1993 
1994 DEFINE_SIMPLE_DEBUGFS_FILE(sensors);
1995 
1996 #if IS_ENABLED(CONFIG_IPV6)
1997 static int clip_tbl_open(struct inode *inode, struct file *file)
1998 {
1999 	return single_open(file, clip_tbl_show, inode->i_private);
2000 }
2001 
2002 static const struct file_operations clip_tbl_debugfs_fops = {
2003 	.owner   = THIS_MODULE,
2004 	.open    = clip_tbl_open,
2005 	.read    = seq_read,
2006 	.llseek  = seq_lseek,
2007 	.release = single_release
2008 };
2009 #endif
2010 
2011 /*RSS Table.
2012  */
2013 
2014 static int rss_show(struct seq_file *seq, void *v, int idx)
2015 {
2016 	u16 *entry = v;
2017 
2018 	seq_printf(seq, "%4d:  %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u\n",
2019 		   idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
2020 		   entry[5], entry[6], entry[7]);
2021 	return 0;
2022 }
2023 
2024 static int rss_open(struct inode *inode, struct file *file)
2025 {
2026 	struct adapter *adap = inode->i_private;
2027 	int ret, nentries;
2028 	struct seq_tab *p;
2029 
2030 	nentries = t4_chip_rss_size(adap);
2031 	p = seq_open_tab(file, nentries / 8, 8 * sizeof(u16), 0, rss_show);
2032 	if (!p)
2033 		return -ENOMEM;
2034 
2035 	ret = t4_read_rss(adap, (u16 *)p->data);
2036 	if (ret)
2037 		seq_release_private(inode, file);
2038 
2039 	return ret;
2040 }
2041 
2042 static const struct file_operations rss_debugfs_fops = {
2043 	.owner   = THIS_MODULE,
2044 	.open    = rss_open,
2045 	.read    = seq_read,
2046 	.llseek  = seq_lseek,
2047 	.release = seq_release_private
2048 };
2049 
2050 /* RSS Configuration.
2051  */
2052 
2053 /* Small utility function to return the strings "yes" or "no" if the supplied
2054  * argument is non-zero.
2055  */
2056 static const char *yesno(int x)
2057 {
2058 	static const char *yes = "yes";
2059 	static const char *no = "no";
2060 
2061 	return x ? yes : no;
2062 }
2063 
2064 static int rss_config_show(struct seq_file *seq, void *v)
2065 {
2066 	struct adapter *adapter = seq->private;
2067 	static const char * const keymode[] = {
2068 		"global",
2069 		"global and per-VF scramble",
2070 		"per-PF and per-VF scramble",
2071 		"per-VF and per-VF scramble",
2072 	};
2073 	u32 rssconf;
2074 
2075 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
2076 	seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
2077 	seq_printf(seq, "  Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
2078 							TNL4TUPENIPV6_F));
2079 	seq_printf(seq, "  Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
2080 							TNL2TUPENIPV6_F));
2081 	seq_printf(seq, "  Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
2082 							TNL4TUPENIPV4_F));
2083 	seq_printf(seq, "  Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
2084 							TNL2TUPENIPV4_F));
2085 	seq_printf(seq, "  TnlTcpSel:     %3s\n", yesno(rssconf & TNLTCPSEL_F));
2086 	seq_printf(seq, "  TnlIp6Sel:     %3s\n", yesno(rssconf & TNLIP6SEL_F));
2087 	seq_printf(seq, "  TnlVrtSel:     %3s\n", yesno(rssconf & TNLVRTSEL_F));
2088 	seq_printf(seq, "  TnlMapEn:      %3s\n", yesno(rssconf & TNLMAPEN_F));
2089 	seq_printf(seq, "  OfdHashSave:   %3s\n", yesno(rssconf &
2090 							OFDHASHSAVE_F));
2091 	seq_printf(seq, "  OfdVrtSel:     %3s\n", yesno(rssconf & OFDVRTSEL_F));
2092 	seq_printf(seq, "  OfdMapEn:      %3s\n", yesno(rssconf & OFDMAPEN_F));
2093 	seq_printf(seq, "  OfdLkpEn:      %3s\n", yesno(rssconf & OFDLKPEN_F));
2094 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
2095 							SYN4TUPENIPV6_F));
2096 	seq_printf(seq, "  Syn2TupEnIpv6: %3s\n", yesno(rssconf &
2097 							SYN2TUPENIPV6_F));
2098 	seq_printf(seq, "  Syn4TupEnIpv4: %3s\n", yesno(rssconf &
2099 							SYN4TUPENIPV4_F));
2100 	seq_printf(seq, "  Syn2TupEnIpv4: %3s\n", yesno(rssconf &
2101 							SYN2TUPENIPV4_F));
2102 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
2103 							SYN4TUPENIPV6_F));
2104 	seq_printf(seq, "  SynIp6Sel:     %3s\n", yesno(rssconf & SYNIP6SEL_F));
2105 	seq_printf(seq, "  SynVrt6Sel:    %3s\n", yesno(rssconf & SYNVRTSEL_F));
2106 	seq_printf(seq, "  SynMapEn:      %3s\n", yesno(rssconf & SYNMAPEN_F));
2107 	seq_printf(seq, "  SynLkpEn:      %3s\n", yesno(rssconf & SYNLKPEN_F));
2108 	seq_printf(seq, "  ChnEn:         %3s\n", yesno(rssconf &
2109 							CHANNELENABLE_F));
2110 	seq_printf(seq, "  PrtEn:         %3s\n", yesno(rssconf &
2111 							PORTENABLE_F));
2112 	seq_printf(seq, "  TnlAllLkp:     %3s\n", yesno(rssconf &
2113 							TNLALLLOOKUP_F));
2114 	seq_printf(seq, "  VrtEn:         %3s\n", yesno(rssconf &
2115 							VIRTENABLE_F));
2116 	seq_printf(seq, "  CngEn:         %3s\n", yesno(rssconf &
2117 							CONGESTIONENABLE_F));
2118 	seq_printf(seq, "  HashToeplitz:  %3s\n", yesno(rssconf &
2119 							HASHTOEPLITZ_F));
2120 	seq_printf(seq, "  Udp4En:        %3s\n", yesno(rssconf & UDPENABLE_F));
2121 	seq_printf(seq, "  Disable:       %3s\n", yesno(rssconf & DISABLE_F));
2122 
2123 	seq_puts(seq, "\n");
2124 
2125 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
2126 	seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
2127 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2128 	seq_printf(seq, "  MaskFilter:    %3d\n", MASKFILTER_G(rssconf));
2129 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2130 		seq_printf(seq, "  HashAll:     %3s\n",
2131 			   yesno(rssconf & HASHALL_F));
2132 		seq_printf(seq, "  HashEth:     %3s\n",
2133 			   yesno(rssconf & HASHETH_F));
2134 	}
2135 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2136 
2137 	seq_puts(seq, "\n");
2138 
2139 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
2140 	seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
2141 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2142 	seq_printf(seq, "  RRCplMapEn:    %3s\n", yesno(rssconf &
2143 							RRCPLMAPEN_F));
2144 	seq_printf(seq, "  RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
2145 
2146 	seq_puts(seq, "\n");
2147 
2148 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
2149 	seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
2150 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2151 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2152 
2153 	seq_puts(seq, "\n");
2154 
2155 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
2156 	seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
2157 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2158 		seq_printf(seq, "  KeyWrAddrX:     %3d\n",
2159 			   KEYWRADDRX_G(rssconf));
2160 		seq_printf(seq, "  KeyExtend:      %3s\n",
2161 			   yesno(rssconf & KEYEXTEND_F));
2162 	}
2163 	seq_printf(seq, "  VfRdRg:        %3s\n", yesno(rssconf & VFRDRG_F));
2164 	seq_printf(seq, "  VfRdEn:        %3s\n", yesno(rssconf & VFRDEN_F));
2165 	seq_printf(seq, "  VfPerrEn:      %3s\n", yesno(rssconf & VFPERREN_F));
2166 	seq_printf(seq, "  KeyPerrEn:     %3s\n", yesno(rssconf & KEYPERREN_F));
2167 	seq_printf(seq, "  DisVfVlan:     %3s\n", yesno(rssconf &
2168 							DISABLEVLAN_F));
2169 	seq_printf(seq, "  EnUpSwt:       %3s\n", yesno(rssconf & ENABLEUP0_F));
2170 	seq_printf(seq, "  HashDelay:     %3d\n", HASHDELAY_G(rssconf));
2171 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2172 		seq_printf(seq, "  VfWrAddr:      %3d\n", VFWRADDR_G(rssconf));
2173 	else
2174 		seq_printf(seq, "  VfWrAddr:      %3d\n",
2175 			   T6_VFWRADDR_G(rssconf));
2176 	seq_printf(seq, "  KeyMode:       %s\n", keymode[KEYMODE_G(rssconf)]);
2177 	seq_printf(seq, "  VfWrEn:        %3s\n", yesno(rssconf & VFWREN_F));
2178 	seq_printf(seq, "  KeyWrEn:       %3s\n", yesno(rssconf & KEYWREN_F));
2179 	seq_printf(seq, "  KeyWrAddr:     %3d\n", KEYWRADDR_G(rssconf));
2180 
2181 	seq_puts(seq, "\n");
2182 
2183 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
2184 	seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
2185 	seq_printf(seq, "  ChnCount3:     %3s\n", yesno(rssconf & CHNCOUNT3_F));
2186 	seq_printf(seq, "  ChnCount2:     %3s\n", yesno(rssconf & CHNCOUNT2_F));
2187 	seq_printf(seq, "  ChnCount1:     %3s\n", yesno(rssconf & CHNCOUNT1_F));
2188 	seq_printf(seq, "  ChnCount0:     %3s\n", yesno(rssconf & CHNCOUNT0_F));
2189 	seq_printf(seq, "  ChnUndFlow3:   %3s\n", yesno(rssconf &
2190 							CHNUNDFLOW3_F));
2191 	seq_printf(seq, "  ChnUndFlow2:   %3s\n", yesno(rssconf &
2192 							CHNUNDFLOW2_F));
2193 	seq_printf(seq, "  ChnUndFlow1:   %3s\n", yesno(rssconf &
2194 							CHNUNDFLOW1_F));
2195 	seq_printf(seq, "  ChnUndFlow0:   %3s\n", yesno(rssconf &
2196 							CHNUNDFLOW0_F));
2197 	seq_printf(seq, "  RstChn3:       %3s\n", yesno(rssconf & RSTCHN3_F));
2198 	seq_printf(seq, "  RstChn2:       %3s\n", yesno(rssconf & RSTCHN2_F));
2199 	seq_printf(seq, "  RstChn1:       %3s\n", yesno(rssconf & RSTCHN1_F));
2200 	seq_printf(seq, "  RstChn0:       %3s\n", yesno(rssconf & RSTCHN0_F));
2201 	seq_printf(seq, "  UpdVld:        %3s\n", yesno(rssconf & UPDVLD_F));
2202 	seq_printf(seq, "  Xoff:          %3s\n", yesno(rssconf & XOFF_F));
2203 	seq_printf(seq, "  UpdChn3:       %3s\n", yesno(rssconf & UPDCHN3_F));
2204 	seq_printf(seq, "  UpdChn2:       %3s\n", yesno(rssconf & UPDCHN2_F));
2205 	seq_printf(seq, "  UpdChn1:       %3s\n", yesno(rssconf & UPDCHN1_F));
2206 	seq_printf(seq, "  UpdChn0:       %3s\n", yesno(rssconf & UPDCHN0_F));
2207 	seq_printf(seq, "  Queue:         %3d\n", QUEUE_G(rssconf));
2208 
2209 	return 0;
2210 }
2211 
2212 DEFINE_SIMPLE_DEBUGFS_FILE(rss_config);
2213 
2214 /* RSS Secret Key.
2215  */
2216 
2217 static int rss_key_show(struct seq_file *seq, void *v)
2218 {
2219 	u32 key[10];
2220 
2221 	t4_read_rss_key(seq->private, key, true);
2222 	seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
2223 		   key[9], key[8], key[7], key[6], key[5], key[4], key[3],
2224 		   key[2], key[1], key[0]);
2225 	return 0;
2226 }
2227 
2228 static int rss_key_open(struct inode *inode, struct file *file)
2229 {
2230 	return single_open(file, rss_key_show, inode->i_private);
2231 }
2232 
2233 static ssize_t rss_key_write(struct file *file, const char __user *buf,
2234 			     size_t count, loff_t *pos)
2235 {
2236 	int i, j;
2237 	u32 key[10];
2238 	char s[100], *p;
2239 	struct adapter *adap = file_inode(file)->i_private;
2240 
2241 	if (count > sizeof(s) - 1)
2242 		return -EINVAL;
2243 	if (copy_from_user(s, buf, count))
2244 		return -EFAULT;
2245 	for (i = count; i > 0 && isspace(s[i - 1]); i--)
2246 		;
2247 	s[i] = '\0';
2248 
2249 	for (p = s, i = 9; i >= 0; i--) {
2250 		key[i] = 0;
2251 		for (j = 0; j < 8; j++, p++) {
2252 			if (!isxdigit(*p))
2253 				return -EINVAL;
2254 			key[i] = (key[i] << 4) | hex2val(*p);
2255 		}
2256 	}
2257 
2258 	t4_write_rss_key(adap, key, -1, true);
2259 	return count;
2260 }
2261 
2262 static const struct file_operations rss_key_debugfs_fops = {
2263 	.owner   = THIS_MODULE,
2264 	.open    = rss_key_open,
2265 	.read    = seq_read,
2266 	.llseek  = seq_lseek,
2267 	.release = single_release,
2268 	.write   = rss_key_write
2269 };
2270 
2271 /* PF RSS Configuration.
2272  */
2273 
2274 struct rss_pf_conf {
2275 	u32 rss_pf_map;
2276 	u32 rss_pf_mask;
2277 	u32 rss_pf_config;
2278 };
2279 
2280 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
2281 {
2282 	struct rss_pf_conf *pfconf;
2283 
2284 	if (v == SEQ_START_TOKEN) {
2285 		/* use the 0th entry to dump the PF Map Index Size */
2286 		pfconf = seq->private + offsetof(struct seq_tab, data);
2287 		seq_printf(seq, "PF Map Index Size = %d\n\n",
2288 			   LKPIDXSIZE_G(pfconf->rss_pf_map));
2289 
2290 		seq_puts(seq, "     RSS              PF   VF    Hash Tuple Enable         Default\n");
2291 		seq_puts(seq, "     Enable       IPF Mask Mask  IPv6      IPv4      UDP   Queue\n");
2292 		seq_puts(seq, " PF  Map Chn Prt  Map Size Size  Four Two  Four Two  Four  Ch1  Ch0\n");
2293 	} else {
2294 		#define G_PFnLKPIDX(map, n) \
2295 			(((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
2296 		#define G_PFnMSKSIZE(mask, n) \
2297 			(((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
2298 
2299 		pfconf = v;
2300 		seq_printf(seq, "%3d  %3s %3s %3s  %3d  %3d  %3d   %3s %3s   %3s %3s   %3s  %3d  %3d\n",
2301 			   idx,
2302 			   yesno(pfconf->rss_pf_config & MAPENABLE_F),
2303 			   yesno(pfconf->rss_pf_config & CHNENABLE_F),
2304 			   yesno(pfconf->rss_pf_config & PRTENABLE_F),
2305 			   G_PFnLKPIDX(pfconf->rss_pf_map, idx),
2306 			   G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
2307 			   IVFWIDTH_G(pfconf->rss_pf_config),
2308 			   yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
2309 			   yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
2310 			   yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
2311 			   yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
2312 			   yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
2313 			   CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
2314 			   CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
2315 
2316 		#undef G_PFnLKPIDX
2317 		#undef G_PFnMSKSIZE
2318 	}
2319 	return 0;
2320 }
2321 
2322 static int rss_pf_config_open(struct inode *inode, struct file *file)
2323 {
2324 	struct adapter *adapter = inode->i_private;
2325 	struct seq_tab *p;
2326 	u32 rss_pf_map, rss_pf_mask;
2327 	struct rss_pf_conf *pfconf;
2328 	int pf;
2329 
2330 	p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
2331 	if (!p)
2332 		return -ENOMEM;
2333 
2334 	pfconf = (struct rss_pf_conf *)p->data;
2335 	rss_pf_map = t4_read_rss_pf_map(adapter, true);
2336 	rss_pf_mask = t4_read_rss_pf_mask(adapter, true);
2337 	for (pf = 0; pf < 8; pf++) {
2338 		pfconf[pf].rss_pf_map = rss_pf_map;
2339 		pfconf[pf].rss_pf_mask = rss_pf_mask;
2340 		t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config,
2341 				      true);
2342 	}
2343 	return 0;
2344 }
2345 
2346 static const struct file_operations rss_pf_config_debugfs_fops = {
2347 	.owner   = THIS_MODULE,
2348 	.open    = rss_pf_config_open,
2349 	.read    = seq_read,
2350 	.llseek  = seq_lseek,
2351 	.release = seq_release_private
2352 };
2353 
2354 /* VF RSS Configuration.
2355  */
2356 
2357 struct rss_vf_conf {
2358 	u32 rss_vf_vfl;
2359 	u32 rss_vf_vfh;
2360 };
2361 
2362 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
2363 {
2364 	if (v == SEQ_START_TOKEN) {
2365 		seq_puts(seq, "     RSS                     Hash Tuple Enable\n");
2366 		seq_puts(seq, "     Enable   IVF  Dis  Enb  IPv6      IPv4      UDP    Def  Secret Key\n");
2367 		seq_puts(seq, " VF  Chn Prt  Map  VLAN  uP  Four Two  Four Two  Four   Que  Idx       Hash\n");
2368 	} else {
2369 		struct rss_vf_conf *vfconf = v;
2370 
2371 		seq_printf(seq, "%3d  %3s %3s  %3d   %3s %3s   %3s %3s   %3s  %3s   %3s  %4d  %3d %#10x\n",
2372 			   idx,
2373 			   yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
2374 			   yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
2375 			   VFLKPIDX_G(vfconf->rss_vf_vfh),
2376 			   yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
2377 			   yesno(vfconf->rss_vf_vfh & VFUPEN_F),
2378 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2379 			   yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
2380 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2381 			   yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
2382 			   yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
2383 			   DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
2384 			   KEYINDEX_G(vfconf->rss_vf_vfh),
2385 			   vfconf->rss_vf_vfl);
2386 	}
2387 	return 0;
2388 }
2389 
2390 static int rss_vf_config_open(struct inode *inode, struct file *file)
2391 {
2392 	struct adapter *adapter = inode->i_private;
2393 	struct seq_tab *p;
2394 	struct rss_vf_conf *vfconf;
2395 	int vf, vfcount = adapter->params.arch.vfcount;
2396 
2397 	p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
2398 	if (!p)
2399 		return -ENOMEM;
2400 
2401 	vfconf = (struct rss_vf_conf *)p->data;
2402 	for (vf = 0; vf < vfcount; vf++) {
2403 		t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
2404 				      &vfconf[vf].rss_vf_vfh, true);
2405 	}
2406 	return 0;
2407 }
2408 
2409 static const struct file_operations rss_vf_config_debugfs_fops = {
2410 	.owner   = THIS_MODULE,
2411 	.open    = rss_vf_config_open,
2412 	.read    = seq_read,
2413 	.llseek  = seq_lseek,
2414 	.release = seq_release_private
2415 };
2416 
2417 /**
2418  * ethqset2pinfo - return port_info of an Ethernet Queue Set
2419  * @adap: the adapter
2420  * @qset: Ethernet Queue Set
2421  */
2422 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
2423 {
2424 	int pidx;
2425 
2426 	for_each_port(adap, pidx) {
2427 		struct port_info *pi = adap2pinfo(adap, pidx);
2428 
2429 		if (qset >= pi->first_qset &&
2430 		    qset < pi->first_qset + pi->nqsets)
2431 			return pi;
2432 	}
2433 
2434 	/* should never happen! */
2435 	BUG_ON(1);
2436 	return NULL;
2437 }
2438 
2439 static int sge_qinfo_show(struct seq_file *seq, void *v)
2440 {
2441 	struct adapter *adap = seq->private;
2442 	int eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
2443 	int ofld_entries = DIV_ROUND_UP(adap->sge.ofldqsets, 4);
2444 	int ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
2445 	int i, r = (uintptr_t)v - 1;
2446 	int ofld_idx = r - eth_entries;
2447 	int ctrl_idx =  ofld_idx - ofld_entries;
2448 	int fq_idx =  ctrl_idx - ctrl_entries;
2449 
2450 	if (r)
2451 		seq_putc(seq, '\n');
2452 
2453 #define S3(fmt_spec, s, v) \
2454 do { \
2455 	seq_printf(seq, "%-12s", s); \
2456 	for (i = 0; i < n; ++i) \
2457 		seq_printf(seq, " %16" fmt_spec, v); \
2458 		seq_putc(seq, '\n'); \
2459 } while (0)
2460 #define S(s, v) S3("s", s, v)
2461 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
2462 #define T(s, v) S3("u", s, tx[i].v)
2463 #define TL(s, v) T3("lu", s, v)
2464 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
2465 #define R(s, v) S3("u", s, rx[i].v)
2466 #define RL(s, v) R3("lu", s, v)
2467 
2468 	if (r < eth_entries) {
2469 		int base_qset = r * 4;
2470 		const struct sge_eth_rxq *rx = &adap->sge.ethrxq[base_qset];
2471 		const struct sge_eth_txq *tx = &adap->sge.ethtxq[base_qset];
2472 		int n = min(4, adap->sge.ethqsets - 4 * r);
2473 
2474 		S("QType:", "Ethernet");
2475 		S("Interface:",
2476 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2477 		T("TxQ ID:", q.cntxt_id);
2478 		T("TxQ size:", q.size);
2479 		T("TxQ inuse:", q.in_use);
2480 		T("TxQ CIDX:", q.cidx);
2481 		T("TxQ PIDX:", q.pidx);
2482 #ifdef CONFIG_CHELSIO_T4_DCB
2483 		T("DCB Prio:", dcb_prio);
2484 		S3("u", "DCB PGID:",
2485 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
2486 		    4*(7-tx[i].dcb_prio)) & 0xf);
2487 		S3("u", "DCB PFC:",
2488 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
2489 		    1*(7-tx[i].dcb_prio)) & 0x1);
2490 #endif
2491 		R("RspQ ID:", rspq.abs_id);
2492 		R("RspQ size:", rspq.size);
2493 		R("RspQE size:", rspq.iqe_len);
2494 		R("RspQ CIDX:", rspq.cidx);
2495 		R("RspQ Gen:", rspq.gen);
2496 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2497 		S3("u", "Intr pktcnt:",
2498 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2499 		R("FL ID:", fl.cntxt_id);
2500 		R("FL size:", fl.size - 8);
2501 		R("FL pend:", fl.pend_cred);
2502 		R("FL avail:", fl.avail);
2503 		R("FL PIDX:", fl.pidx);
2504 		R("FL CIDX:", fl.cidx);
2505 		RL("RxPackets:", stats.pkts);
2506 		RL("RxCSO:", stats.rx_cso);
2507 		RL("VLANxtract:", stats.vlan_ex);
2508 		RL("LROmerged:", stats.lro_merged);
2509 		RL("LROpackets:", stats.lro_pkts);
2510 		RL("RxDrops:", stats.rx_drops);
2511 		TL("TSO:", tso);
2512 		TL("TxCSO:", tx_cso);
2513 		TL("VLANins:", vlan_ins);
2514 		TL("TxQFull:", q.stops);
2515 		TL("TxQRestarts:", q.restarts);
2516 		TL("TxMapErr:", mapping_err);
2517 		RL("FLAllocErr:", fl.alloc_failed);
2518 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2519 		RL("FLMapErr:", fl.mapping_err);
2520 		RL("FLLow:", fl.low);
2521 		RL("FLStarving:", fl.starving);
2522 
2523 	} else if (ctrl_idx < ctrl_entries) {
2524 		const struct sge_ctrl_txq *tx = &adap->sge.ctrlq[ctrl_idx * 4];
2525 		int n = min(4, adap->params.nports - 4 * ctrl_idx);
2526 
2527 		S("QType:", "Control");
2528 		T("TxQ ID:", q.cntxt_id);
2529 		T("TxQ size:", q.size);
2530 		T("TxQ inuse:", q.in_use);
2531 		T("TxQ CIDX:", q.cidx);
2532 		T("TxQ PIDX:", q.pidx);
2533 		TL("TxQFull:", q.stops);
2534 		TL("TxQRestarts:", q.restarts);
2535 	} else if (fq_idx == 0) {
2536 		const struct sge_rspq *evtq = &adap->sge.fw_evtq;
2537 
2538 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2539 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2540 		seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
2541 		seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
2542 		seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
2543 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2544 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2545 			   qtimer_val(adap, evtq));
2546 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2547 			   adap->sge.counter_val[evtq->pktcnt_idx]);
2548 	}
2549 #undef R
2550 #undef RL
2551 #undef T
2552 #undef TL
2553 #undef S
2554 #undef R3
2555 #undef T3
2556 #undef S3
2557 	return 0;
2558 }
2559 
2560 static int sge_queue_entries(const struct adapter *adap)
2561 {
2562 	return DIV_ROUND_UP(adap->sge.ethqsets, 4) +
2563 	       DIV_ROUND_UP(adap->sge.ofldqsets, 4) +
2564 	       DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
2565 }
2566 
2567 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2568 {
2569 	int entries = sge_queue_entries(seq->private);
2570 
2571 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2572 }
2573 
2574 static void sge_queue_stop(struct seq_file *seq, void *v)
2575 {
2576 }
2577 
2578 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2579 {
2580 	int entries = sge_queue_entries(seq->private);
2581 
2582 	++*pos;
2583 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2584 }
2585 
2586 static const struct seq_operations sge_qinfo_seq_ops = {
2587 	.start = sge_queue_start,
2588 	.next  = sge_queue_next,
2589 	.stop  = sge_queue_stop,
2590 	.show  = sge_qinfo_show
2591 };
2592 
2593 static int sge_qinfo_open(struct inode *inode, struct file *file)
2594 {
2595 	int res = seq_open(file, &sge_qinfo_seq_ops);
2596 
2597 	if (!res) {
2598 		struct seq_file *seq = file->private_data;
2599 
2600 		seq->private = inode->i_private;
2601 	}
2602 	return res;
2603 }
2604 
2605 static const struct file_operations sge_qinfo_debugfs_fops = {
2606 	.owner   = THIS_MODULE,
2607 	.open    = sge_qinfo_open,
2608 	.read    = seq_read,
2609 	.llseek  = seq_lseek,
2610 	.release = seq_release,
2611 };
2612 
2613 int mem_open(struct inode *inode, struct file *file)
2614 {
2615 	unsigned int mem;
2616 	struct adapter *adap;
2617 
2618 	file->private_data = inode->i_private;
2619 
2620 	mem = (uintptr_t)file->private_data & 0x7;
2621 	adap = file->private_data - mem;
2622 
2623 	(void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
2624 
2625 	return 0;
2626 }
2627 
2628 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2629 			loff_t *ppos)
2630 {
2631 	loff_t pos = *ppos;
2632 	loff_t avail = file_inode(file)->i_size;
2633 	unsigned int mem = (uintptr_t)file->private_data & 0x7;
2634 	struct adapter *adap = file->private_data - mem;
2635 	__be32 *data;
2636 	int ret;
2637 
2638 	if (pos < 0)
2639 		return -EINVAL;
2640 	if (pos >= avail)
2641 		return 0;
2642 	if (count > avail - pos)
2643 		count = avail - pos;
2644 
2645 	data = kvzalloc(count, GFP_KERNEL);
2646 	if (!data)
2647 		return -ENOMEM;
2648 
2649 	spin_lock(&adap->win0_lock);
2650 	ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
2651 	spin_unlock(&adap->win0_lock);
2652 	if (ret) {
2653 		kvfree(data);
2654 		return ret;
2655 	}
2656 	ret = copy_to_user(buf, data, count);
2657 
2658 	kvfree(data);
2659 	if (ret)
2660 		return -EFAULT;
2661 
2662 	*ppos = pos + count;
2663 	return count;
2664 }
2665 static const struct file_operations mem_debugfs_fops = {
2666 	.owner   = THIS_MODULE,
2667 	.open    = simple_open,
2668 	.read    = mem_read,
2669 	.llseek  = default_llseek,
2670 };
2671 
2672 static int tid_info_show(struct seq_file *seq, void *v)
2673 {
2674 	unsigned int tid_start = 0;
2675 	struct adapter *adap = seq->private;
2676 	const struct tid_info *t = &adap->tids;
2677 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2678 
2679 	if (chip > CHELSIO_T5)
2680 		tid_start = t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
2681 
2682 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2683 		unsigned int sb;
2684 		seq_printf(seq, "Connections in use: %u\n",
2685 			   atomic_read(&t->conns_in_use));
2686 
2687 		if (chip <= CHELSIO_T5)
2688 			sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
2689 		else
2690 			sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
2691 
2692 		if (sb) {
2693 			seq_printf(seq, "TID range: %u..%u/%u..%u", tid_start,
2694 				   sb - 1, adap->tids.hash_base,
2695 				   t->ntids - 1);
2696 			seq_printf(seq, ", in use: %u/%u\n",
2697 				   atomic_read(&t->tids_in_use),
2698 				   atomic_read(&t->hash_tids_in_use));
2699 		} else if (adap->flags & FW_OFLD_CONN) {
2700 			seq_printf(seq, "TID range: %u..%u/%u..%u",
2701 				   t->aftid_base,
2702 				   t->aftid_end,
2703 				   adap->tids.hash_base,
2704 				   t->ntids - 1);
2705 			seq_printf(seq, ", in use: %u/%u\n",
2706 				   atomic_read(&t->tids_in_use),
2707 				   atomic_read(&t->hash_tids_in_use));
2708 		} else {
2709 			seq_printf(seq, "TID range: %u..%u",
2710 				   adap->tids.hash_base,
2711 				   t->ntids - 1);
2712 			seq_printf(seq, ", in use: %u\n",
2713 				   atomic_read(&t->hash_tids_in_use));
2714 		}
2715 	} else if (t->ntids) {
2716 		seq_printf(seq, "Connections in use: %u\n",
2717 			   atomic_read(&t->conns_in_use));
2718 
2719 		seq_printf(seq, "TID range: %u..%u", tid_start,
2720 			   tid_start + t->ntids - 1);
2721 		seq_printf(seq, ", in use: %u\n",
2722 			   atomic_read(&t->tids_in_use));
2723 	}
2724 
2725 	if (t->nstids)
2726 		seq_printf(seq, "STID range: %u..%u, in use-IPv4/IPv6: %u/%u\n",
2727 			   (!t->stid_base &&
2728 			   (chip <= CHELSIO_T5)) ?
2729 			   t->stid_base + 1 : t->stid_base,
2730 			   t->stid_base + t->nstids - 1,
2731 			   t->stids_in_use - t->v6_stids_in_use,
2732 			   t->v6_stids_in_use);
2733 
2734 	if (t->natids)
2735 		seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
2736 			   t->natids - 1, t->atids_in_use);
2737 	seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
2738 		   t->ftid_base + t->nftids - 1);
2739 	if (t->nsftids)
2740 		seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
2741 			   t->sftid_base, t->sftid_base + t->nsftids - 2,
2742 			   t->sftids_in_use);
2743 	if (t->ntids)
2744 		seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
2745 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
2746 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
2747 	return 0;
2748 }
2749 
2750 DEFINE_SIMPLE_DEBUGFS_FILE(tid_info);
2751 
2752 static void add_debugfs_mem(struct adapter *adap, const char *name,
2753 			    unsigned int idx, unsigned int size_mb)
2754 {
2755 	debugfs_create_file_size(name, 0400, adap->debugfs_root,
2756 				 (void *)adap + idx, &mem_debugfs_fops,
2757 				 size_mb << 20);
2758 }
2759 
2760 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
2761 			       size_t count, loff_t *ppos)
2762 {
2763 	int len;
2764 	const struct adapter *adap = filp->private_data;
2765 	char *buf;
2766 	ssize_t size = (adap->sge.egr_sz + 3) / 4 +
2767 			adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
2768 
2769 	buf = kzalloc(size, GFP_KERNEL);
2770 	if (!buf)
2771 		return -ENOMEM;
2772 
2773 	len = snprintf(buf, size - 1, "%*pb\n",
2774 		       adap->sge.egr_sz, adap->sge.blocked_fl);
2775 	len += sprintf(buf + len, "\n");
2776 	size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
2777 	kvfree(buf);
2778 	return size;
2779 }
2780 
2781 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
2782 				size_t count, loff_t *ppos)
2783 {
2784 	int err;
2785 	unsigned long *t;
2786 	struct adapter *adap = filp->private_data;
2787 
2788 	t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
2789 	if (!t)
2790 		return -ENOMEM;
2791 
2792 	err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
2793 	if (err)
2794 		return err;
2795 
2796 	bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
2797 	kvfree(t);
2798 	return count;
2799 }
2800 
2801 static const struct file_operations blocked_fl_fops = {
2802 	.owner   = THIS_MODULE,
2803 	.open    = simple_open,
2804 	.read    = blocked_fl_read,
2805 	.write   = blocked_fl_write,
2806 	.llseek  = generic_file_llseek,
2807 };
2808 
2809 static void mem_region_show(struct seq_file *seq, const char *name,
2810 			    unsigned int from, unsigned int to)
2811 {
2812 	char buf[40];
2813 
2814 	string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
2815 			sizeof(buf));
2816 	seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
2817 }
2818 
2819 static int meminfo_show(struct seq_file *seq, void *v)
2820 {
2821 	static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
2822 					       "MC0:", "MC1:", "HMA:"};
2823 	struct adapter *adap = seq->private;
2824 	struct cudbg_meminfo meminfo;
2825 	int i, rc;
2826 
2827 	memset(&meminfo, 0, sizeof(struct cudbg_meminfo));
2828 	rc = cudbg_fill_meminfo(adap, &meminfo);
2829 	if (rc)
2830 		return -ENXIO;
2831 
2832 	for (i = 0; i < meminfo.avail_c; i++)
2833 		mem_region_show(seq, memory[meminfo.avail[i].idx],
2834 				meminfo.avail[i].base,
2835 				meminfo.avail[i].limit - 1);
2836 
2837 	seq_putc(seq, '\n');
2838 	for (i = 0; i < meminfo.mem_c; i++) {
2839 		if (meminfo.mem[i].idx >= ARRAY_SIZE(cudbg_region))
2840 			continue;                        /* skip holes */
2841 		if (!meminfo.mem[i].limit)
2842 			meminfo.mem[i].limit =
2843 				i < meminfo.mem_c - 1 ?
2844 				meminfo.mem[i + 1].base - 1 : ~0;
2845 		mem_region_show(seq, cudbg_region[meminfo.mem[i].idx],
2846 				meminfo.mem[i].base, meminfo.mem[i].limit);
2847 	}
2848 
2849 	seq_putc(seq, '\n');
2850 	mem_region_show(seq, "uP RAM:", meminfo.up_ram_lo, meminfo.up_ram_hi);
2851 	mem_region_show(seq, "uP Extmem2:", meminfo.up_extmem2_lo,
2852 			meminfo.up_extmem2_hi);
2853 
2854 	seq_printf(seq, "\n%u Rx pages of size %uKiB for %u channels\n",
2855 		   meminfo.rx_pages_data[0], meminfo.rx_pages_data[1],
2856 		   meminfo.rx_pages_data[2]);
2857 
2858 	seq_printf(seq, "%u Tx pages of size %u%ciB for %u channels\n",
2859 		   meminfo.tx_pages_data[0], meminfo.tx_pages_data[1],
2860 		   meminfo.tx_pages_data[2], meminfo.tx_pages_data[3]);
2861 
2862 	seq_printf(seq, "%u p-structs\n\n", meminfo.p_structs);
2863 
2864 	for (i = 0; i < 4; i++)
2865 		/* For T6 these are MAC buffer groups */
2866 		seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
2867 			   i, meminfo.port_used[i], meminfo.port_alloc[i]);
2868 
2869 	for (i = 0; i < adap->params.arch.nchan; i++)
2870 		/* For T6 these are MAC buffer groups */
2871 		seq_printf(seq,
2872 			   "Loopback %d using %u pages out of %u allocated\n",
2873 			   i, meminfo.loopback_used[i],
2874 			   meminfo.loopback_alloc[i]);
2875 
2876 	return 0;
2877 }
2878 
2879 static int meminfo_open(struct inode *inode, struct file *file)
2880 {
2881 	return single_open(file, meminfo_show, inode->i_private);
2882 }
2883 
2884 static const struct file_operations meminfo_fops = {
2885 	.owner   = THIS_MODULE,
2886 	.open    = meminfo_open,
2887 	.read    = seq_read,
2888 	.llseek  = seq_lseek,
2889 	.release = single_release,
2890 };
2891 
2892 static int chcr_show(struct seq_file *seq, void *v)
2893 {
2894 	struct adapter *adap = seq->private;
2895 
2896 	seq_puts(seq, "Chelsio Crypto Accelerator Stats \n");
2897 	seq_printf(seq, "Cipher Ops: %10u \n",
2898 		   atomic_read(&adap->chcr_stats.cipher_rqst));
2899 	seq_printf(seq, "Digest Ops: %10u \n",
2900 		   atomic_read(&adap->chcr_stats.digest_rqst));
2901 	seq_printf(seq, "Aead Ops: %10u \n",
2902 		   atomic_read(&adap->chcr_stats.aead_rqst));
2903 	seq_printf(seq, "Completion: %10u \n",
2904 		   atomic_read(&adap->chcr_stats.complete));
2905 	seq_printf(seq, "Error: %10u \n",
2906 		   atomic_read(&adap->chcr_stats.error));
2907 	seq_printf(seq, "Fallback: %10u \n",
2908 		   atomic_read(&adap->chcr_stats.fallback));
2909 	seq_printf(seq, "IPSec PDU: %10u\n",
2910 		   atomic_read(&adap->chcr_stats.ipsec_cnt));
2911 	return 0;
2912 }
2913 
2914 
2915 static int chcr_stats_open(struct inode *inode, struct file *file)
2916 {
2917         return single_open(file, chcr_show, inode->i_private);
2918 }
2919 
2920 static const struct file_operations chcr_stats_debugfs_fops = {
2921         .owner   = THIS_MODULE,
2922         .open    = chcr_stats_open,
2923         .read    = seq_read,
2924         .llseek  = seq_lseek,
2925         .release = single_release,
2926 };
2927 /* Add an array of Debug FS files.
2928  */
2929 void add_debugfs_files(struct adapter *adap,
2930 		       struct t4_debugfs_entry *files,
2931 		       unsigned int nfiles)
2932 {
2933 	int i;
2934 
2935 	/* debugfs support is best effort */
2936 	for (i = 0; i < nfiles; i++)
2937 		debugfs_create_file(files[i].name, files[i].mode,
2938 				    adap->debugfs_root,
2939 				    (void *)adap + files[i].data,
2940 				    files[i].ops);
2941 }
2942 
2943 int t4_setup_debugfs(struct adapter *adap)
2944 {
2945 	int i;
2946 	u32 size = 0;
2947 	struct dentry *de;
2948 
2949 	static struct t4_debugfs_entry t4_debugfs_files[] = {
2950 		{ "cim_la", &cim_la_fops, 0400, 0 },
2951 		{ "cim_pif_la", &cim_pif_la_fops, 0400, 0 },
2952 		{ "cim_ma_la", &cim_ma_la_fops, 0400, 0 },
2953 		{ "cim_qcfg", &cim_qcfg_fops, 0400, 0 },
2954 		{ "clk", &clk_debugfs_fops, 0400, 0 },
2955 		{ "devlog", &devlog_fops, 0400, 0 },
2956 		{ "mboxlog", &mboxlog_fops, 0400, 0 },
2957 		{ "mbox0", &mbox_debugfs_fops, 0600, 0 },
2958 		{ "mbox1", &mbox_debugfs_fops, 0600, 1 },
2959 		{ "mbox2", &mbox_debugfs_fops, 0600, 2 },
2960 		{ "mbox3", &mbox_debugfs_fops, 0600, 3 },
2961 		{ "mbox4", &mbox_debugfs_fops, 0600, 4 },
2962 		{ "mbox5", &mbox_debugfs_fops, 0600, 5 },
2963 		{ "mbox6", &mbox_debugfs_fops, 0600, 6 },
2964 		{ "mbox7", &mbox_debugfs_fops, 0600, 7 },
2965 		{ "trace0", &mps_trc_debugfs_fops, 0600, 0 },
2966 		{ "trace1", &mps_trc_debugfs_fops, 0600, 1 },
2967 		{ "trace2", &mps_trc_debugfs_fops, 0600, 2 },
2968 		{ "trace3", &mps_trc_debugfs_fops, 0600, 3 },
2969 		{ "l2t", &t4_l2t_fops, 0400, 0},
2970 		{ "mps_tcam", &mps_tcam_debugfs_fops, 0400, 0 },
2971 		{ "rss", &rss_debugfs_fops, 0400, 0 },
2972 		{ "rss_config", &rss_config_debugfs_fops, 0400, 0 },
2973 		{ "rss_key", &rss_key_debugfs_fops, 0400, 0 },
2974 		{ "rss_pf_config", &rss_pf_config_debugfs_fops, 0400, 0 },
2975 		{ "rss_vf_config", &rss_vf_config_debugfs_fops, 0400, 0 },
2976 		{ "sge_qinfo", &sge_qinfo_debugfs_fops, 0400, 0 },
2977 		{ "ibq_tp0",  &cim_ibq_fops, 0400, 0 },
2978 		{ "ibq_tp1",  &cim_ibq_fops, 0400, 1 },
2979 		{ "ibq_ulp",  &cim_ibq_fops, 0400, 2 },
2980 		{ "ibq_sge0", &cim_ibq_fops, 0400, 3 },
2981 		{ "ibq_sge1", &cim_ibq_fops, 0400, 4 },
2982 		{ "ibq_ncsi", &cim_ibq_fops, 0400, 5 },
2983 		{ "obq_ulp0", &cim_obq_fops, 0400, 0 },
2984 		{ "obq_ulp1", &cim_obq_fops, 0400, 1 },
2985 		{ "obq_ulp2", &cim_obq_fops, 0400, 2 },
2986 		{ "obq_ulp3", &cim_obq_fops, 0400, 3 },
2987 		{ "obq_sge",  &cim_obq_fops, 0400, 4 },
2988 		{ "obq_ncsi", &cim_obq_fops, 0400, 5 },
2989 		{ "tp_la", &tp_la_fops, 0400, 0 },
2990 		{ "ulprx_la", &ulprx_la_fops, 0400, 0 },
2991 		{ "sensors", &sensors_debugfs_fops, 0400, 0 },
2992 		{ "pm_stats", &pm_stats_debugfs_fops, 0400, 0 },
2993 		{ "tx_rate", &tx_rate_debugfs_fops, 0400, 0 },
2994 		{ "cctrl", &cctrl_tbl_debugfs_fops, 0400, 0 },
2995 #if IS_ENABLED(CONFIG_IPV6)
2996 		{ "clip_tbl", &clip_tbl_debugfs_fops, 0400, 0 },
2997 #endif
2998 		{ "tids", &tid_info_debugfs_fops, 0400, 0},
2999 		{ "blocked_fl", &blocked_fl_fops, 0600, 0 },
3000 		{ "meminfo", &meminfo_fops, 0400, 0 },
3001 		{ "crypto", &chcr_stats_debugfs_fops, 0400, 0 },
3002 	};
3003 
3004 	/* Debug FS nodes common to all T5 and later adapters.
3005 	 */
3006 	static struct t4_debugfs_entry t5_debugfs_files[] = {
3007 		{ "obq_sge_rx_q0", &cim_obq_fops, 0400, 6 },
3008 		{ "obq_sge_rx_q1", &cim_obq_fops, 0400, 7 },
3009 	};
3010 
3011 	add_debugfs_files(adap,
3012 			  t4_debugfs_files,
3013 			  ARRAY_SIZE(t4_debugfs_files));
3014 	if (!is_t4(adap->params.chip))
3015 		add_debugfs_files(adap,
3016 				  t5_debugfs_files,
3017 				  ARRAY_SIZE(t5_debugfs_files));
3018 
3019 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
3020 	if (i & EDRAM0_ENABLE_F) {
3021 		size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3022 		add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
3023 	}
3024 	if (i & EDRAM1_ENABLE_F) {
3025 		size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3026 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
3027 	}
3028 	if (is_t5(adap->params.chip)) {
3029 		if (i & EXT_MEM0_ENABLE_F) {
3030 			size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3031 			add_debugfs_mem(adap, "mc0", MEM_MC0,
3032 					EXT_MEM0_SIZE_G(size));
3033 		}
3034 		if (i & EXT_MEM1_ENABLE_F) {
3035 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3036 			add_debugfs_mem(adap, "mc1", MEM_MC1,
3037 					EXT_MEM1_SIZE_G(size));
3038 		}
3039 	} else {
3040 		if (i & EXT_MEM_ENABLE_F) {
3041 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
3042 			add_debugfs_mem(adap, "mc", MEM_MC,
3043 					EXT_MEM_SIZE_G(size));
3044 		}
3045 
3046 		if (i & HMA_MUX_F) {
3047 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3048 			add_debugfs_mem(adap, "hma", MEM_HMA,
3049 					EXT_MEM1_SIZE_G(size));
3050 		}
3051 	}
3052 
3053 	de = debugfs_create_file_size("flash", 0400, adap->debugfs_root, adap,
3054 				      &flash_debugfs_fops, adap->params.sf_size);
3055 	debugfs_create_bool("use_backdoor", 0600,
3056 			    adap->debugfs_root, &adap->use_bd);
3057 	debugfs_create_bool("trace_rss", 0600,
3058 			    adap->debugfs_root, &adap->trace_rss);
3059 
3060 	return 0;
3061 }
3062