1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 #include <linux/string_helpers.h>
38 #include <linux/sort.h>
39 #include <linux/ctype.h>
40 
41 #include "cxgb4.h"
42 #include "t4_regs.h"
43 #include "t4_values.h"
44 #include "t4fw_api.h"
45 #include "cxgb4_debugfs.h"
46 #include "clip_tbl.h"
47 #include "l2t.h"
48 
49 /* generic seq_file support for showing a table of size rows x width. */
50 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
51 {
52 	pos -= tb->skip_first;
53 	return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
54 }
55 
56 static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
57 {
58 	struct seq_tab *tb = seq->private;
59 
60 	if (tb->skip_first && *pos == 0)
61 		return SEQ_START_TOKEN;
62 
63 	return seq_tab_get_idx(tb, *pos);
64 }
65 
66 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
67 {
68 	v = seq_tab_get_idx(seq->private, *pos + 1);
69 	if (v)
70 		++*pos;
71 	return v;
72 }
73 
74 static void seq_tab_stop(struct seq_file *seq, void *v)
75 {
76 }
77 
78 static int seq_tab_show(struct seq_file *seq, void *v)
79 {
80 	const struct seq_tab *tb = seq->private;
81 
82 	return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
83 }
84 
85 static const struct seq_operations seq_tab_ops = {
86 	.start = seq_tab_start,
87 	.next  = seq_tab_next,
88 	.stop  = seq_tab_stop,
89 	.show  = seq_tab_show
90 };
91 
92 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
93 			     unsigned int width, unsigned int have_header,
94 			     int (*show)(struct seq_file *seq, void *v, int i))
95 {
96 	struct seq_tab *p;
97 
98 	p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
99 	if (p) {
100 		p->show = show;
101 		p->rows = rows;
102 		p->width = width;
103 		p->skip_first = have_header != 0;
104 	}
105 	return p;
106 }
107 
108 /* Trim the size of a seq_tab to the supplied number of rows.  The operation is
109  * irreversible.
110  */
111 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
112 {
113 	if (new_rows > p->rows)
114 		return -EINVAL;
115 	p->rows = new_rows;
116 	return 0;
117 }
118 
119 static int cim_la_show(struct seq_file *seq, void *v, int idx)
120 {
121 	if (v == SEQ_START_TOKEN)
122 		seq_puts(seq, "Status   Data      PC     LS0Stat  LS0Addr "
123 			 "            LS0Data\n");
124 	else {
125 		const u32 *p = v;
126 
127 		seq_printf(seq,
128 			   "  %02x  %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
129 			   (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
130 			   p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
131 			   p[6], p[7]);
132 	}
133 	return 0;
134 }
135 
136 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
137 {
138 	if (v == SEQ_START_TOKEN) {
139 		seq_puts(seq, "Status   Data      PC\n");
140 	} else {
141 		const u32 *p = v;
142 
143 		seq_printf(seq, "  %02x   %08x %08x\n", p[5] & 0xff, p[6],
144 			   p[7]);
145 		seq_printf(seq, "  %02x   %02x%06x %02x%06x\n",
146 			   (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
147 			   p[4] & 0xff, p[5] >> 8);
148 		seq_printf(seq, "  %02x   %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
149 			   p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
150 	}
151 	return 0;
152 }
153 
154 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
155 {
156 	if (v == SEQ_START_TOKEN) {
157 		seq_puts(seq, "Status   Inst    Data      PC     LS0Stat  "
158 			 "LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data\n");
159 	} else {
160 		const u32 *p = v;
161 
162 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
163 			   (p[9] >> 16) & 0xff,       /* Status */
164 			   p[9] & 0xffff, p[8] >> 16, /* Inst */
165 			   p[8] & 0xffff, p[7] >> 16, /* Data */
166 			   p[7] & 0xffff, p[6] >> 16, /* PC */
167 			   p[2], p[1], p[0],      /* LS0 Stat, Addr and Data */
168 			   p[5], p[4], p[3]);     /* LS1 Stat, Addr and Data */
169 	}
170 	return 0;
171 }
172 
173 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
174 {
175 	if (v == SEQ_START_TOKEN) {
176 		seq_puts(seq, "Status   Inst    Data      PC\n");
177 	} else {
178 		const u32 *p = v;
179 
180 		seq_printf(seq, "  %02x   %08x %08x %08x\n",
181 			   p[3] & 0xff, p[2], p[1], p[0]);
182 		seq_printf(seq, "  %02x   %02x%06x %02x%06x %02x%06x\n",
183 			   (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
184 			   p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
185 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x\n",
186 			   (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
187 			   p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
188 			   p[6] >> 16);
189 	}
190 	return 0;
191 }
192 
193 static int cim_la_open(struct inode *inode, struct file *file)
194 {
195 	int ret;
196 	unsigned int cfg;
197 	struct seq_tab *p;
198 	struct adapter *adap = inode->i_private;
199 
200 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
201 	if (ret)
202 		return ret;
203 
204 	if (is_t6(adap->params.chip)) {
205 		/* +1 to account for integer division of CIMLA_SIZE/10 */
206 		p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
207 				 10 * sizeof(u32), 1,
208 				 cfg & UPDBGLACAPTPCONLY_F ?
209 					cim_la_show_pc_t6 : cim_la_show_t6);
210 	} else {
211 		p = seq_open_tab(file, adap->params.cim_la_size / 8,
212 				 8 * sizeof(u32), 1,
213 				 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
214 							     cim_la_show);
215 	}
216 	if (!p)
217 		return -ENOMEM;
218 
219 	ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
220 	if (ret)
221 		seq_release_private(inode, file);
222 	return ret;
223 }
224 
225 static const struct file_operations cim_la_fops = {
226 	.owner   = THIS_MODULE,
227 	.open    = cim_la_open,
228 	.read    = seq_read,
229 	.llseek  = seq_lseek,
230 	.release = seq_release_private
231 };
232 
233 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
234 {
235 	const u32 *p = v;
236 
237 	if (v == SEQ_START_TOKEN) {
238 		seq_puts(seq, "Cntl ID DataBE   Addr                 Data\n");
239 	} else if (idx < CIM_PIFLA_SIZE) {
240 		seq_printf(seq, " %02x  %02x  %04x  %08x %08x%08x%08x%08x\n",
241 			   (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
242 			   p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
243 	} else {
244 		if (idx == CIM_PIFLA_SIZE)
245 			seq_puts(seq, "\nCntl ID               Data\n");
246 		seq_printf(seq, " %02x  %02x %08x%08x%08x%08x\n",
247 			   (p[4] >> 6) & 0xff, p[4] & 0x3f,
248 			   p[3], p[2], p[1], p[0]);
249 	}
250 	return 0;
251 }
252 
253 static int cim_pif_la_open(struct inode *inode, struct file *file)
254 {
255 	struct seq_tab *p;
256 	struct adapter *adap = inode->i_private;
257 
258 	p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
259 			 cim_pif_la_show);
260 	if (!p)
261 		return -ENOMEM;
262 
263 	t4_cim_read_pif_la(adap, (u32 *)p->data,
264 			   (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
265 	return 0;
266 }
267 
268 static const struct file_operations cim_pif_la_fops = {
269 	.owner   = THIS_MODULE,
270 	.open    = cim_pif_la_open,
271 	.read    = seq_read,
272 	.llseek  = seq_lseek,
273 	.release = seq_release_private
274 };
275 
276 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
277 {
278 	const u32 *p = v;
279 
280 	if (v == SEQ_START_TOKEN) {
281 		seq_puts(seq, "\n");
282 	} else if (idx < CIM_MALA_SIZE) {
283 		seq_printf(seq, "%02x%08x%08x%08x%08x\n",
284 			   p[4], p[3], p[2], p[1], p[0]);
285 	} else {
286 		if (idx == CIM_MALA_SIZE)
287 			seq_puts(seq,
288 				 "\nCnt ID Tag UE       Data       RDY VLD\n");
289 		seq_printf(seq, "%3u %2u  %x   %u %08x%08x  %u   %u\n",
290 			   (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
291 			   (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
292 			   (p[1] >> 2) | ((p[2] & 3) << 30),
293 			   (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
294 			   p[0] & 1);
295 	}
296 	return 0;
297 }
298 
299 static int cim_ma_la_open(struct inode *inode, struct file *file)
300 {
301 	struct seq_tab *p;
302 	struct adapter *adap = inode->i_private;
303 
304 	p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
305 			 cim_ma_la_show);
306 	if (!p)
307 		return -ENOMEM;
308 
309 	t4_cim_read_ma_la(adap, (u32 *)p->data,
310 			  (u32 *)p->data + 5 * CIM_MALA_SIZE);
311 	return 0;
312 }
313 
314 static const struct file_operations cim_ma_la_fops = {
315 	.owner   = THIS_MODULE,
316 	.open    = cim_ma_la_open,
317 	.read    = seq_read,
318 	.llseek  = seq_lseek,
319 	.release = seq_release_private
320 };
321 
322 static int cim_qcfg_show(struct seq_file *seq, void *v)
323 {
324 	static const char * const qname[] = {
325 		"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
326 		"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
327 		"SGE0-RX", "SGE1-RX"
328 	};
329 
330 	int i;
331 	struct adapter *adap = seq->private;
332 	u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
333 	u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
334 	u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
335 	u16 thres[CIM_NUM_IBQ];
336 	u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
337 	u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
338 	u32 *p = stat;
339 	int cim_num_obq = is_t4(adap->params.chip) ?
340 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
341 
342 	i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
343 			UP_IBQ_0_SHADOW_RDADDR_A,
344 			ARRAY_SIZE(stat), stat);
345 	if (!i) {
346 		if (is_t4(adap->params.chip)) {
347 			i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
348 					ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
349 			wr = obq_wr_t4;
350 		} else {
351 			i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
352 					ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
353 			wr = obq_wr_t5;
354 		}
355 	}
356 	if (i)
357 		return i;
358 
359 	t4_read_cimq_cfg(adap, base, size, thres);
360 
361 	seq_printf(seq,
362 		   "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail\n");
363 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
364 		seq_printf(seq, "%7s %5x %5u %5u %6x  %4x %4u %4u %5u\n",
365 			   qname[i], base[i], size[i], thres[i],
366 			   IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
367 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
368 			   QUEREMFLITS_G(p[2]) * 16);
369 	for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
370 		seq_printf(seq, "%7s %5x %5u %12x  %4x %4u %4u %5u\n",
371 			   qname[i], base[i], size[i],
372 			   QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
373 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
374 			   QUEREMFLITS_G(p[2]) * 16);
375 	return 0;
376 }
377 
378 static int cim_qcfg_open(struct inode *inode, struct file *file)
379 {
380 	return single_open(file, cim_qcfg_show, inode->i_private);
381 }
382 
383 static const struct file_operations cim_qcfg_fops = {
384 	.owner   = THIS_MODULE,
385 	.open    = cim_qcfg_open,
386 	.read    = seq_read,
387 	.llseek  = seq_lseek,
388 	.release = single_release,
389 };
390 
391 static int cimq_show(struct seq_file *seq, void *v, int idx)
392 {
393 	const u32 *p = v;
394 
395 	seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
396 		   p[2], p[3]);
397 	return 0;
398 }
399 
400 static int cim_ibq_open(struct inode *inode, struct file *file)
401 {
402 	int ret;
403 	struct seq_tab *p;
404 	unsigned int qid = (uintptr_t)inode->i_private & 7;
405 	struct adapter *adap = inode->i_private - qid;
406 
407 	p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
408 	if (!p)
409 		return -ENOMEM;
410 
411 	ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
412 	if (ret < 0)
413 		seq_release_private(inode, file);
414 	else
415 		ret = 0;
416 	return ret;
417 }
418 
419 static const struct file_operations cim_ibq_fops = {
420 	.owner   = THIS_MODULE,
421 	.open    = cim_ibq_open,
422 	.read    = seq_read,
423 	.llseek  = seq_lseek,
424 	.release = seq_release_private
425 };
426 
427 static int cim_obq_open(struct inode *inode, struct file *file)
428 {
429 	int ret;
430 	struct seq_tab *p;
431 	unsigned int qid = (uintptr_t)inode->i_private & 7;
432 	struct adapter *adap = inode->i_private - qid;
433 
434 	p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
435 	if (!p)
436 		return -ENOMEM;
437 
438 	ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
439 	if (ret < 0) {
440 		seq_release_private(inode, file);
441 	} else {
442 		seq_tab_trim(p, ret / 4);
443 		ret = 0;
444 	}
445 	return ret;
446 }
447 
448 static const struct file_operations cim_obq_fops = {
449 	.owner   = THIS_MODULE,
450 	.open    = cim_obq_open,
451 	.read    = seq_read,
452 	.llseek  = seq_lseek,
453 	.release = seq_release_private
454 };
455 
456 struct field_desc {
457 	const char *name;
458 	unsigned int start;
459 	unsigned int width;
460 };
461 
462 static void field_desc_show(struct seq_file *seq, u64 v,
463 			    const struct field_desc *p)
464 {
465 	char buf[32];
466 	int line_size = 0;
467 
468 	while (p->name) {
469 		u64 mask = (1ULL << p->width) - 1;
470 		int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
471 				    ((unsigned long long)v >> p->start) & mask);
472 
473 		if (line_size + len >= 79) {
474 			line_size = 8;
475 			seq_puts(seq, "\n        ");
476 		}
477 		seq_printf(seq, "%s ", buf);
478 		line_size += len + 1;
479 		p++;
480 	}
481 	seq_putc(seq, '\n');
482 }
483 
484 static struct field_desc tp_la0[] = {
485 	{ "RcfOpCodeOut", 60, 4 },
486 	{ "State", 56, 4 },
487 	{ "WcfState", 52, 4 },
488 	{ "RcfOpcSrcOut", 50, 2 },
489 	{ "CRxError", 49, 1 },
490 	{ "ERxError", 48, 1 },
491 	{ "SanityFailed", 47, 1 },
492 	{ "SpuriousMsg", 46, 1 },
493 	{ "FlushInputMsg", 45, 1 },
494 	{ "FlushInputCpl", 44, 1 },
495 	{ "RssUpBit", 43, 1 },
496 	{ "RssFilterHit", 42, 1 },
497 	{ "Tid", 32, 10 },
498 	{ "InitTcb", 31, 1 },
499 	{ "LineNumber", 24, 7 },
500 	{ "Emsg", 23, 1 },
501 	{ "EdataOut", 22, 1 },
502 	{ "Cmsg", 21, 1 },
503 	{ "CdataOut", 20, 1 },
504 	{ "EreadPdu", 19, 1 },
505 	{ "CreadPdu", 18, 1 },
506 	{ "TunnelPkt", 17, 1 },
507 	{ "RcfPeerFin", 16, 1 },
508 	{ "RcfReasonOut", 12, 4 },
509 	{ "TxCchannel", 10, 2 },
510 	{ "RcfTxChannel", 8, 2 },
511 	{ "RxEchannel", 6, 2 },
512 	{ "RcfRxChannel", 5, 1 },
513 	{ "RcfDataOutSrdy", 4, 1 },
514 	{ "RxDvld", 3, 1 },
515 	{ "RxOoDvld", 2, 1 },
516 	{ "RxCongestion", 1, 1 },
517 	{ "TxCongestion", 0, 1 },
518 	{ NULL }
519 };
520 
521 static int tp_la_show(struct seq_file *seq, void *v, int idx)
522 {
523 	const u64 *p = v;
524 
525 	field_desc_show(seq, *p, tp_la0);
526 	return 0;
527 }
528 
529 static int tp_la_show2(struct seq_file *seq, void *v, int idx)
530 {
531 	const u64 *p = v;
532 
533 	if (idx)
534 		seq_putc(seq, '\n');
535 	field_desc_show(seq, p[0], tp_la0);
536 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
537 		field_desc_show(seq, p[1], tp_la0);
538 	return 0;
539 }
540 
541 static int tp_la_show3(struct seq_file *seq, void *v, int idx)
542 {
543 	static struct field_desc tp_la1[] = {
544 		{ "CplCmdIn", 56, 8 },
545 		{ "CplCmdOut", 48, 8 },
546 		{ "ESynOut", 47, 1 },
547 		{ "EAckOut", 46, 1 },
548 		{ "EFinOut", 45, 1 },
549 		{ "ERstOut", 44, 1 },
550 		{ "SynIn", 43, 1 },
551 		{ "AckIn", 42, 1 },
552 		{ "FinIn", 41, 1 },
553 		{ "RstIn", 40, 1 },
554 		{ "DataIn", 39, 1 },
555 		{ "DataInVld", 38, 1 },
556 		{ "PadIn", 37, 1 },
557 		{ "RxBufEmpty", 36, 1 },
558 		{ "RxDdp", 35, 1 },
559 		{ "RxFbCongestion", 34, 1 },
560 		{ "TxFbCongestion", 33, 1 },
561 		{ "TxPktSumSrdy", 32, 1 },
562 		{ "RcfUlpType", 28, 4 },
563 		{ "Eread", 27, 1 },
564 		{ "Ebypass", 26, 1 },
565 		{ "Esave", 25, 1 },
566 		{ "Static0", 24, 1 },
567 		{ "Cread", 23, 1 },
568 		{ "Cbypass", 22, 1 },
569 		{ "Csave", 21, 1 },
570 		{ "CPktOut", 20, 1 },
571 		{ "RxPagePoolFull", 18, 2 },
572 		{ "RxLpbkPkt", 17, 1 },
573 		{ "TxLpbkPkt", 16, 1 },
574 		{ "RxVfValid", 15, 1 },
575 		{ "SynLearned", 14, 1 },
576 		{ "SetDelEntry", 13, 1 },
577 		{ "SetInvEntry", 12, 1 },
578 		{ "CpcmdDvld", 11, 1 },
579 		{ "CpcmdSave", 10, 1 },
580 		{ "RxPstructsFull", 8, 2 },
581 		{ "EpcmdDvld", 7, 1 },
582 		{ "EpcmdFlush", 6, 1 },
583 		{ "EpcmdTrimPrefix", 5, 1 },
584 		{ "EpcmdTrimPostfix", 4, 1 },
585 		{ "ERssIp4Pkt", 3, 1 },
586 		{ "ERssIp6Pkt", 2, 1 },
587 		{ "ERssTcpUdpPkt", 1, 1 },
588 		{ "ERssFceFipPkt", 0, 1 },
589 		{ NULL }
590 	};
591 	static struct field_desc tp_la2[] = {
592 		{ "CplCmdIn", 56, 8 },
593 		{ "MpsVfVld", 55, 1 },
594 		{ "MpsPf", 52, 3 },
595 		{ "MpsVf", 44, 8 },
596 		{ "SynIn", 43, 1 },
597 		{ "AckIn", 42, 1 },
598 		{ "FinIn", 41, 1 },
599 		{ "RstIn", 40, 1 },
600 		{ "DataIn", 39, 1 },
601 		{ "DataInVld", 38, 1 },
602 		{ "PadIn", 37, 1 },
603 		{ "RxBufEmpty", 36, 1 },
604 		{ "RxDdp", 35, 1 },
605 		{ "RxFbCongestion", 34, 1 },
606 		{ "TxFbCongestion", 33, 1 },
607 		{ "TxPktSumSrdy", 32, 1 },
608 		{ "RcfUlpType", 28, 4 },
609 		{ "Eread", 27, 1 },
610 		{ "Ebypass", 26, 1 },
611 		{ "Esave", 25, 1 },
612 		{ "Static0", 24, 1 },
613 		{ "Cread", 23, 1 },
614 		{ "Cbypass", 22, 1 },
615 		{ "Csave", 21, 1 },
616 		{ "CPktOut", 20, 1 },
617 		{ "RxPagePoolFull", 18, 2 },
618 		{ "RxLpbkPkt", 17, 1 },
619 		{ "TxLpbkPkt", 16, 1 },
620 		{ "RxVfValid", 15, 1 },
621 		{ "SynLearned", 14, 1 },
622 		{ "SetDelEntry", 13, 1 },
623 		{ "SetInvEntry", 12, 1 },
624 		{ "CpcmdDvld", 11, 1 },
625 		{ "CpcmdSave", 10, 1 },
626 		{ "RxPstructsFull", 8, 2 },
627 		{ "EpcmdDvld", 7, 1 },
628 		{ "EpcmdFlush", 6, 1 },
629 		{ "EpcmdTrimPrefix", 5, 1 },
630 		{ "EpcmdTrimPostfix", 4, 1 },
631 		{ "ERssIp4Pkt", 3, 1 },
632 		{ "ERssIp6Pkt", 2, 1 },
633 		{ "ERssTcpUdpPkt", 1, 1 },
634 		{ "ERssFceFipPkt", 0, 1 },
635 		{ NULL }
636 	};
637 	const u64 *p = v;
638 
639 	if (idx)
640 		seq_putc(seq, '\n');
641 	field_desc_show(seq, p[0], tp_la0);
642 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
643 		field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
644 	return 0;
645 }
646 
647 static int tp_la_open(struct inode *inode, struct file *file)
648 {
649 	struct seq_tab *p;
650 	struct adapter *adap = inode->i_private;
651 
652 	switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
653 	case 2:
654 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
655 				 tp_la_show2);
656 		break;
657 	case 3:
658 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
659 				 tp_la_show3);
660 		break;
661 	default:
662 		p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
663 	}
664 	if (!p)
665 		return -ENOMEM;
666 
667 	t4_tp_read_la(adap, (u64 *)p->data, NULL);
668 	return 0;
669 }
670 
671 static ssize_t tp_la_write(struct file *file, const char __user *buf,
672 			   size_t count, loff_t *pos)
673 {
674 	int err;
675 	char s[32];
676 	unsigned long val;
677 	size_t size = min(sizeof(s) - 1, count);
678 	struct adapter *adap = file_inode(file)->i_private;
679 
680 	if (copy_from_user(s, buf, size))
681 		return -EFAULT;
682 	s[size] = '\0';
683 	err = kstrtoul(s, 0, &val);
684 	if (err)
685 		return err;
686 	if (val > 0xffff)
687 		return -EINVAL;
688 	adap->params.tp.la_mask = val << 16;
689 	t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
690 			 adap->params.tp.la_mask);
691 	return count;
692 }
693 
694 static const struct file_operations tp_la_fops = {
695 	.owner   = THIS_MODULE,
696 	.open    = tp_la_open,
697 	.read    = seq_read,
698 	.llseek  = seq_lseek,
699 	.release = seq_release_private,
700 	.write   = tp_la_write
701 };
702 
703 static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
704 {
705 	const u32 *p = v;
706 
707 	if (v == SEQ_START_TOKEN)
708 		seq_puts(seq, "      Pcmd        Type   Message"
709 			 "                Data\n");
710 	else
711 		seq_printf(seq, "%08x%08x  %4x  %08x  %08x%08x%08x%08x\n",
712 			   p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
713 	return 0;
714 }
715 
716 static int ulprx_la_open(struct inode *inode, struct file *file)
717 {
718 	struct seq_tab *p;
719 	struct adapter *adap = inode->i_private;
720 
721 	p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
722 			 ulprx_la_show);
723 	if (!p)
724 		return -ENOMEM;
725 
726 	t4_ulprx_read_la(adap, (u32 *)p->data);
727 	return 0;
728 }
729 
730 static const struct file_operations ulprx_la_fops = {
731 	.owner   = THIS_MODULE,
732 	.open    = ulprx_la_open,
733 	.read    = seq_read,
734 	.llseek  = seq_lseek,
735 	.release = seq_release_private
736 };
737 
738 /* Show the PM memory stats.  These stats include:
739  *
740  * TX:
741  *   Read: memory read operation
742  *   Write Bypass: cut-through
743  *   Bypass + mem: cut-through and save copy
744  *
745  * RX:
746  *   Read: memory read
747  *   Write Bypass: cut-through
748  *   Flush: payload trim or drop
749  */
750 static int pm_stats_show(struct seq_file *seq, void *v)
751 {
752 	static const char * const tx_pm_stats[] = {
753 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
754 	};
755 	static const char * const rx_pm_stats[] = {
756 		"Read:", "Write bypass:", "Write mem:", "Flush:"
757 	};
758 
759 	int i;
760 	u32 tx_cnt[PM_NSTATS], rx_cnt[PM_NSTATS];
761 	u64 tx_cyc[PM_NSTATS], rx_cyc[PM_NSTATS];
762 	struct adapter *adap = seq->private;
763 
764 	t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
765 	t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
766 
767 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Tx pcmds", "Tx bytes");
768 	for (i = 0; i < PM_NSTATS - 1; i++)
769 		seq_printf(seq, "%-13s %10u  %20llu\n",
770 			   tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
771 
772 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Rx pcmds", "Rx bytes");
773 	for (i = 0; i < PM_NSTATS - 1; i++)
774 		seq_printf(seq, "%-13s %10u  %20llu\n",
775 			   rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
776 	return 0;
777 }
778 
779 static int pm_stats_open(struct inode *inode, struct file *file)
780 {
781 	return single_open(file, pm_stats_show, inode->i_private);
782 }
783 
784 static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
785 			      size_t count, loff_t *pos)
786 {
787 	struct adapter *adap = file_inode(file)->i_private;
788 
789 	t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
790 	t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
791 	return count;
792 }
793 
794 static const struct file_operations pm_stats_debugfs_fops = {
795 	.owner   = THIS_MODULE,
796 	.open    = pm_stats_open,
797 	.read    = seq_read,
798 	.llseek  = seq_lseek,
799 	.release = single_release,
800 	.write   = pm_stats_clear
801 };
802 
803 static int tx_rate_show(struct seq_file *seq, void *v)
804 {
805 	u64 nrate[NCHAN], orate[NCHAN];
806 	struct adapter *adap = seq->private;
807 
808 	t4_get_chan_txrate(adap, nrate, orate);
809 	if (adap->params.arch.nchan == NCHAN) {
810 		seq_puts(seq, "              channel 0   channel 1   "
811 			 "channel 2   channel 3\n");
812 		seq_printf(seq, "NIC B/s:     %10llu  %10llu  %10llu  %10llu\n",
813 			   (unsigned long long)nrate[0],
814 			   (unsigned long long)nrate[1],
815 			   (unsigned long long)nrate[2],
816 			   (unsigned long long)nrate[3]);
817 		seq_printf(seq, "Offload B/s: %10llu  %10llu  %10llu  %10llu\n",
818 			   (unsigned long long)orate[0],
819 			   (unsigned long long)orate[1],
820 			   (unsigned long long)orate[2],
821 			   (unsigned long long)orate[3]);
822 	} else {
823 		seq_puts(seq, "              channel 0   channel 1\n");
824 		seq_printf(seq, "NIC B/s:     %10llu  %10llu\n",
825 			   (unsigned long long)nrate[0],
826 			   (unsigned long long)nrate[1]);
827 		seq_printf(seq, "Offload B/s: %10llu  %10llu\n",
828 			   (unsigned long long)orate[0],
829 			   (unsigned long long)orate[1]);
830 	}
831 	return 0;
832 }
833 
834 DEFINE_SIMPLE_DEBUGFS_FILE(tx_rate);
835 
836 static int cctrl_tbl_show(struct seq_file *seq, void *v)
837 {
838 	static const char * const dec_fac[] = {
839 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
840 		"0.9375" };
841 
842 	int i;
843 	u16 (*incr)[NCCTRL_WIN];
844 	struct adapter *adap = seq->private;
845 
846 	incr = kmalloc(sizeof(*incr) * NMTUS, GFP_KERNEL);
847 	if (!incr)
848 		return -ENOMEM;
849 
850 	t4_read_cong_tbl(adap, incr);
851 
852 	for (i = 0; i < NCCTRL_WIN; ++i) {
853 		seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
854 			   incr[0][i], incr[1][i], incr[2][i], incr[3][i],
855 			   incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
856 		seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
857 			   incr[8][i], incr[9][i], incr[10][i], incr[11][i],
858 			   incr[12][i], incr[13][i], incr[14][i], incr[15][i],
859 			   adap->params.a_wnd[i],
860 			   dec_fac[adap->params.b_wnd[i]]);
861 	}
862 
863 	kfree(incr);
864 	return 0;
865 }
866 
867 DEFINE_SIMPLE_DEBUGFS_FILE(cctrl_tbl);
868 
869 /* Format a value in a unit that differs from the value's native unit by the
870  * given factor.
871  */
872 static char *unit_conv(char *buf, size_t len, unsigned int val,
873 		       unsigned int factor)
874 {
875 	unsigned int rem = val % factor;
876 
877 	if (rem == 0) {
878 		snprintf(buf, len, "%u", val / factor);
879 	} else {
880 		while (rem % 10 == 0)
881 			rem /= 10;
882 		snprintf(buf, len, "%u.%u", val / factor, rem);
883 	}
884 	return buf;
885 }
886 
887 static int clk_show(struct seq_file *seq, void *v)
888 {
889 	char buf[32];
890 	struct adapter *adap = seq->private;
891 	unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk;  /* in ps */
892 	u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
893 	unsigned int tre = TIMERRESOLUTION_G(res);
894 	unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
895 	unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
896 
897 	seq_printf(seq, "Core clock period: %s ns\n",
898 		   unit_conv(buf, sizeof(buf), cclk_ps, 1000));
899 	seq_printf(seq, "TP timer tick: %s us\n",
900 		   unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
901 	seq_printf(seq, "TCP timestamp tick: %s us\n",
902 		   unit_conv(buf, sizeof(buf),
903 			     (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
904 	seq_printf(seq, "DACK tick: %s us\n",
905 		   unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
906 	seq_printf(seq, "DACK timer: %u us\n",
907 		   ((cclk_ps << dack_re) / 1000000) *
908 		   t4_read_reg(adap, TP_DACK_TIMER_A));
909 	seq_printf(seq, "Retransmit min: %llu us\n",
910 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
911 	seq_printf(seq, "Retransmit max: %llu us\n",
912 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
913 	seq_printf(seq, "Persist timer min: %llu us\n",
914 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
915 	seq_printf(seq, "Persist timer max: %llu us\n",
916 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
917 	seq_printf(seq, "Keepalive idle timer: %llu us\n",
918 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
919 	seq_printf(seq, "Keepalive interval: %llu us\n",
920 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
921 	seq_printf(seq, "Initial SRTT: %llu us\n",
922 		   tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
923 	seq_printf(seq, "FINWAIT2 timer: %llu us\n",
924 		   tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
925 
926 	return 0;
927 }
928 
929 DEFINE_SIMPLE_DEBUGFS_FILE(clk);
930 
931 /* Firmware Device Log dump. */
932 static const char * const devlog_level_strings[] = {
933 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
934 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
935 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
936 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
937 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
938 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
939 };
940 
941 static const char * const devlog_facility_strings[] = {
942 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
943 	[FW_DEVLOG_FACILITY_CF]         = "CF",
944 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
945 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
946 	[FW_DEVLOG_FACILITY_RES]	= "RES",
947 	[FW_DEVLOG_FACILITY_HW]		= "HW",
948 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
949 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
950 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
951 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
952 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
953 	[FW_DEVLOG_FACILITY_VI]		= "VI",
954 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
955 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
956 	[FW_DEVLOG_FACILITY_TM]		= "TM",
957 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
958 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
959 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
960 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
961 	[FW_DEVLOG_FACILITY_RI]		= "RI",
962 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
963 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
964 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
965 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE"
966 };
967 
968 /* Information gathered by Device Log Open routine for the display routine.
969  */
970 struct devlog_info {
971 	unsigned int nentries;		/* number of entries in log[] */
972 	unsigned int first;		/* first [temporal] entry in log[] */
973 	struct fw_devlog_e log[0];	/* Firmware Device Log */
974 };
975 
976 /* Dump a Firmaware Device Log entry.
977  */
978 static int devlog_show(struct seq_file *seq, void *v)
979 {
980 	if (v == SEQ_START_TOKEN)
981 		seq_printf(seq, "%10s  %15s  %8s  %8s  %s\n",
982 			   "Seq#", "Tstamp", "Level", "Facility", "Message");
983 	else {
984 		struct devlog_info *dinfo = seq->private;
985 		int fidx = (uintptr_t)v - 2;
986 		unsigned long index;
987 		struct fw_devlog_e *e;
988 
989 		/* Get a pointer to the log entry to display.  Skip unused log
990 		 * entries.
991 		 */
992 		index = dinfo->first + fidx;
993 		if (index >= dinfo->nentries)
994 			index -= dinfo->nentries;
995 		e = &dinfo->log[index];
996 		if (e->timestamp == 0)
997 			return 0;
998 
999 		/* Print the message.  This depends on the firmware using
1000 		 * exactly the same formating strings as the kernel so we may
1001 		 * eventually have to put a format interpreter in here ...
1002 		 */
1003 		seq_printf(seq, "%10d  %15llu  %8s  %8s  ",
1004 			   be32_to_cpu(e->seqno),
1005 			   be64_to_cpu(e->timestamp),
1006 			   (e->level < ARRAY_SIZE(devlog_level_strings)
1007 			    ? devlog_level_strings[e->level]
1008 			    : "UNKNOWN"),
1009 			   (e->facility < ARRAY_SIZE(devlog_facility_strings)
1010 			    ? devlog_facility_strings[e->facility]
1011 			    : "UNKNOWN"));
1012 		seq_printf(seq, e->fmt,
1013 			   be32_to_cpu(e->params[0]),
1014 			   be32_to_cpu(e->params[1]),
1015 			   be32_to_cpu(e->params[2]),
1016 			   be32_to_cpu(e->params[3]),
1017 			   be32_to_cpu(e->params[4]),
1018 			   be32_to_cpu(e->params[5]),
1019 			   be32_to_cpu(e->params[6]),
1020 			   be32_to_cpu(e->params[7]));
1021 	}
1022 	return 0;
1023 }
1024 
1025 /* Sequential File Operations for Device Log.
1026  */
1027 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
1028 {
1029 	if (pos > dinfo->nentries)
1030 		return NULL;
1031 
1032 	return (void *)(uintptr_t)(pos + 1);
1033 }
1034 
1035 static void *devlog_start(struct seq_file *seq, loff_t *pos)
1036 {
1037 	struct devlog_info *dinfo = seq->private;
1038 
1039 	return (*pos
1040 		? devlog_get_idx(dinfo, *pos)
1041 		: SEQ_START_TOKEN);
1042 }
1043 
1044 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
1045 {
1046 	struct devlog_info *dinfo = seq->private;
1047 
1048 	(*pos)++;
1049 	return devlog_get_idx(dinfo, *pos);
1050 }
1051 
1052 static void devlog_stop(struct seq_file *seq, void *v)
1053 {
1054 }
1055 
1056 static const struct seq_operations devlog_seq_ops = {
1057 	.start = devlog_start,
1058 	.next  = devlog_next,
1059 	.stop  = devlog_stop,
1060 	.show  = devlog_show
1061 };
1062 
1063 /* Set up for reading the firmware's device log.  We read the entire log here
1064  * and then display it incrementally in devlog_show().
1065  */
1066 static int devlog_open(struct inode *inode, struct file *file)
1067 {
1068 	struct adapter *adap = inode->i_private;
1069 	struct devlog_params *dparams = &adap->params.devlog;
1070 	struct devlog_info *dinfo;
1071 	unsigned int index;
1072 	u32 fseqno;
1073 	int ret;
1074 
1075 	/* If we don't know where the log is we can't do anything.
1076 	 */
1077 	if (dparams->start == 0)
1078 		return -ENXIO;
1079 
1080 	/* Allocate the space to read in the firmware's device log and set up
1081 	 * for the iterated call to our display function.
1082 	 */
1083 	dinfo = __seq_open_private(file, &devlog_seq_ops,
1084 				   sizeof(*dinfo) + dparams->size);
1085 	if (!dinfo)
1086 		return -ENOMEM;
1087 
1088 	/* Record the basic log buffer information and read in the raw log.
1089 	 */
1090 	dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
1091 	dinfo->first = 0;
1092 	spin_lock(&adap->win0_lock);
1093 	ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
1094 			   dparams->start, dparams->size, (__be32 *)dinfo->log,
1095 			   T4_MEMORY_READ);
1096 	spin_unlock(&adap->win0_lock);
1097 	if (ret) {
1098 		seq_release_private(inode, file);
1099 		return ret;
1100 	}
1101 
1102 	/* Find the earliest (lowest Sequence Number) log entry in the
1103 	 * circular Device Log.
1104 	 */
1105 	for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
1106 		struct fw_devlog_e *e = &dinfo->log[index];
1107 		__u32 seqno;
1108 
1109 		if (e->timestamp == 0)
1110 			continue;
1111 
1112 		seqno = be32_to_cpu(e->seqno);
1113 		if (seqno < fseqno) {
1114 			fseqno = seqno;
1115 			dinfo->first = index;
1116 		}
1117 	}
1118 	return 0;
1119 }
1120 
1121 static const struct file_operations devlog_fops = {
1122 	.owner   = THIS_MODULE,
1123 	.open    = devlog_open,
1124 	.read    = seq_read,
1125 	.llseek  = seq_lseek,
1126 	.release = seq_release_private
1127 };
1128 
1129 static int mbox_show(struct seq_file *seq, void *v)
1130 {
1131 	static const char * const owner[] = { "none", "FW", "driver",
1132 					      "unknown", "<unread>" };
1133 
1134 	int i;
1135 	unsigned int mbox = (uintptr_t)seq->private & 7;
1136 	struct adapter *adap = seq->private - mbox;
1137 	void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1138 
1139 	/* For T4 we don't have a shadow copy of the Mailbox Control register.
1140 	 * And since reading that real register causes a side effect of
1141 	 * granting ownership, we're best of simply not reading it at all.
1142 	 */
1143 	if (is_t4(adap->params.chip)) {
1144 		i = 4; /* index of "<unread>" */
1145 	} else {
1146 		unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A;
1147 		void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
1148 
1149 		i = MBOWNER_G(readl(ctrl));
1150 	}
1151 
1152 	seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
1153 
1154 	for (i = 0; i < MBOX_LEN; i += 8)
1155 		seq_printf(seq, "%016llx\n",
1156 			   (unsigned long long)readq(addr + i));
1157 	return 0;
1158 }
1159 
1160 static int mbox_open(struct inode *inode, struct file *file)
1161 {
1162 	return single_open(file, mbox_show, inode->i_private);
1163 }
1164 
1165 static ssize_t mbox_write(struct file *file, const char __user *buf,
1166 			  size_t count, loff_t *pos)
1167 {
1168 	int i;
1169 	char c = '\n', s[256];
1170 	unsigned long long data[8];
1171 	const struct inode *ino;
1172 	unsigned int mbox;
1173 	struct adapter *adap;
1174 	void __iomem *addr;
1175 	void __iomem *ctrl;
1176 
1177 	if (count > sizeof(s) - 1 || !count)
1178 		return -EINVAL;
1179 	if (copy_from_user(s, buf, count))
1180 		return -EFAULT;
1181 	s[count] = '\0';
1182 
1183 	if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
1184 		   &data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
1185 		   &data[7], &c) < 8 || c != '\n')
1186 		return -EINVAL;
1187 
1188 	ino = file_inode(file);
1189 	mbox = (uintptr_t)ino->i_private & 7;
1190 	adap = ino->i_private - mbox;
1191 	addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1192 	ctrl = addr + MBOX_LEN;
1193 
1194 	if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
1195 		return -EBUSY;
1196 
1197 	for (i = 0; i < 8; i++)
1198 		writeq(data[i], addr + 8 * i);
1199 
1200 	writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
1201 	return count;
1202 }
1203 
1204 static const struct file_operations mbox_debugfs_fops = {
1205 	.owner   = THIS_MODULE,
1206 	.open    = mbox_open,
1207 	.read    = seq_read,
1208 	.llseek  = seq_lseek,
1209 	.release = single_release,
1210 	.write   = mbox_write
1211 };
1212 
1213 static int mps_trc_show(struct seq_file *seq, void *v)
1214 {
1215 	int enabled, i;
1216 	struct trace_params tp;
1217 	unsigned int trcidx = (uintptr_t)seq->private & 3;
1218 	struct adapter *adap = seq->private - trcidx;
1219 
1220 	t4_get_trace_filter(adap, &tp, trcidx, &enabled);
1221 	if (!enabled) {
1222 		seq_puts(seq, "tracer is disabled\n");
1223 		return 0;
1224 	}
1225 
1226 	if (tp.skip_ofst * 8 >= TRACE_LEN) {
1227 		dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
1228 		return -EINVAL;
1229 	}
1230 	if (tp.port < 8) {
1231 		i = adap->chan_map[tp.port & 3];
1232 		if (i >= MAX_NPORTS) {
1233 			dev_err(adap->pdev_dev, "tracer %u is assigned "
1234 				"to non-existing port\n", trcidx);
1235 			return -EINVAL;
1236 		}
1237 		seq_printf(seq, "tracer is capturing %s %s, ",
1238 			   adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
1239 	} else
1240 		seq_printf(seq, "tracer is capturing loopback %d, ",
1241 			   tp.port - 8);
1242 	seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
1243 		   tp.min_len);
1244 	seq_printf(seq, "packets captured %smatch filter\n",
1245 		   tp.invert ? "do not " : "");
1246 
1247 	if (tp.skip_ofst) {
1248 		seq_puts(seq, "filter pattern: ");
1249 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1250 			seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1251 		seq_putc(seq, '/');
1252 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1253 			seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1254 		seq_puts(seq, "@0\n");
1255 	}
1256 
1257 	seq_puts(seq, "filter pattern: ");
1258 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1259 		seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1260 	seq_putc(seq, '/');
1261 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1262 		seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1263 	seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
1264 	return 0;
1265 }
1266 
1267 static int mps_trc_open(struct inode *inode, struct file *file)
1268 {
1269 	return single_open(file, mps_trc_show, inode->i_private);
1270 }
1271 
1272 static unsigned int xdigit2int(unsigned char c)
1273 {
1274 	return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
1275 }
1276 
1277 #define TRC_PORT_NONE 0xff
1278 #define TRC_RSS_ENABLE 0x33
1279 #define TRC_RSS_DISABLE 0x13
1280 
1281 /* Set an MPS trace filter.  Syntax is:
1282  *
1283  * disable
1284  *
1285  * to disable tracing, or
1286  *
1287  * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
1288  *
1289  * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
1290  * of the NIC's response qid obtained from sge_qinfo and pattern has the form
1291  *
1292  * <pattern data>[/<pattern mask>][@<anchor>]
1293  *
1294  * Up to 2 filter patterns can be specified.  If 2 are supplied the first one
1295  * must be anchored at 0.  An omited mask is taken as a mask of 1s, an omitted
1296  * anchor is taken as 0.
1297  */
1298 static ssize_t mps_trc_write(struct file *file, const char __user *buf,
1299 			     size_t count, loff_t *pos)
1300 {
1301 	int i, enable, ret;
1302 	u32 *data, *mask;
1303 	struct trace_params tp;
1304 	const struct inode *ino;
1305 	unsigned int trcidx;
1306 	char *s, *p, *word, *end;
1307 	struct adapter *adap;
1308 	u32 j;
1309 
1310 	ino = file_inode(file);
1311 	trcidx = (uintptr_t)ino->i_private & 3;
1312 	adap = ino->i_private - trcidx;
1313 
1314 	/* Don't accept input more than 1K, can't be anything valid except lots
1315 	 * of whitespace.  Well, use less.
1316 	 */
1317 	if (count > 1024)
1318 		return -EFBIG;
1319 	p = s = kzalloc(count + 1, GFP_USER);
1320 	if (!s)
1321 		return -ENOMEM;
1322 	if (copy_from_user(s, buf, count)) {
1323 		count = -EFAULT;
1324 		goto out;
1325 	}
1326 
1327 	if (s[count - 1] == '\n')
1328 		s[count - 1] = '\0';
1329 
1330 	enable = strcmp("disable", s) != 0;
1331 	if (!enable)
1332 		goto apply;
1333 
1334 	/* enable or disable trace multi rss filter */
1335 	if (adap->trace_rss)
1336 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
1337 	else
1338 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
1339 
1340 	memset(&tp, 0, sizeof(tp));
1341 	tp.port = TRC_PORT_NONE;
1342 	i = 0;	/* counts pattern nibbles */
1343 
1344 	while (p) {
1345 		while (isspace(*p))
1346 			p++;
1347 		word = strsep(&p, " ");
1348 		if (!*word)
1349 			break;
1350 
1351 		if (!strncmp(word, "qid=", 4)) {
1352 			end = (char *)word + 4;
1353 			ret = kstrtouint(end, 10, &j);
1354 			if (ret)
1355 				goto out;
1356 			if (!adap->trace_rss) {
1357 				t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
1358 				continue;
1359 			}
1360 
1361 			switch (trcidx) {
1362 			case 0:
1363 				t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
1364 				break;
1365 			case 1:
1366 				t4_write_reg(adap,
1367 					     MPS_TRC_FILTER1_RSS_CONTROL_A, j);
1368 				break;
1369 			case 2:
1370 				t4_write_reg(adap,
1371 					     MPS_TRC_FILTER2_RSS_CONTROL_A, j);
1372 				break;
1373 			case 3:
1374 				t4_write_reg(adap,
1375 					     MPS_TRC_FILTER3_RSS_CONTROL_A, j);
1376 				break;
1377 			}
1378 			continue;
1379 		}
1380 		if (!strncmp(word, "snaplen=", 8)) {
1381 			end = (char *)word + 8;
1382 			ret = kstrtouint(end, 10, &j);
1383 			if (ret || j > 9600) {
1384 inval:				count = -EINVAL;
1385 				goto out;
1386 			}
1387 			tp.snap_len = j;
1388 			continue;
1389 		}
1390 		if (!strncmp(word, "minlen=", 7)) {
1391 			end = (char *)word + 7;
1392 			ret = kstrtouint(end, 10, &j);
1393 			if (ret || j > TFMINPKTSIZE_M)
1394 				goto inval;
1395 			tp.min_len = j;
1396 			continue;
1397 		}
1398 		if (!strcmp(word, "not")) {
1399 			tp.invert = !tp.invert;
1400 			continue;
1401 		}
1402 		if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
1403 			if (word[8] < '0' || word[8] > '3' || word[9])
1404 				goto inval;
1405 			tp.port = word[8] - '0' + 8;
1406 			continue;
1407 		}
1408 		if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
1409 			if (word[2] < '0' || word[2] > '3' || word[3])
1410 				goto inval;
1411 			tp.port = word[2] - '0' + 4;
1412 			if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
1413 				goto inval;
1414 			continue;
1415 		}
1416 		if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
1417 			if (word[2] < '0' || word[2] > '3' || word[3])
1418 				goto inval;
1419 			tp.port = word[2] - '0';
1420 			if (adap->chan_map[tp.port] >= MAX_NPORTS)
1421 				goto inval;
1422 			continue;
1423 		}
1424 		if (!isxdigit(*word))
1425 			goto inval;
1426 
1427 		/* we have found a trace pattern */
1428 		if (i) {                            /* split pattern */
1429 			if (tp.skip_len)            /* too many splits */
1430 				goto inval;
1431 			tp.skip_ofst = i / 16;
1432 		}
1433 
1434 		data = &tp.data[i / 8];
1435 		mask = &tp.mask[i / 8];
1436 		j = i;
1437 
1438 		while (isxdigit(*word)) {
1439 			if (i >= TRACE_LEN * 2) {
1440 				count = -EFBIG;
1441 				goto out;
1442 			}
1443 			*data = (*data << 4) + xdigit2int(*word++);
1444 			if (++i % 8 == 0)
1445 				data++;
1446 		}
1447 		if (*word == '/') {
1448 			word++;
1449 			while (isxdigit(*word)) {
1450 				if (j >= i)         /* mask longer than data */
1451 					goto inval;
1452 				*mask = (*mask << 4) + xdigit2int(*word++);
1453 				if (++j % 8 == 0)
1454 					mask++;
1455 			}
1456 			if (i != j)                 /* mask shorter than data */
1457 				goto inval;
1458 		} else {                            /* no mask, use all 1s */
1459 			for ( ; i - j >= 8; j += 8)
1460 				*mask++ = 0xffffffff;
1461 			if (i % 8)
1462 				*mask = (1 << (i % 8) * 4) - 1;
1463 		}
1464 		if (*word == '@') {
1465 			end = (char *)word + 1;
1466 			ret = kstrtouint(end, 10, &j);
1467 			if (*end && *end != '\n')
1468 				goto inval;
1469 			if (j & 7)          /* doesn't start at multiple of 8 */
1470 				goto inval;
1471 			j /= 8;
1472 			if (j < tp.skip_ofst)     /* overlaps earlier pattern */
1473 				goto inval;
1474 			if (j - tp.skip_ofst > 31)            /* skip too big */
1475 				goto inval;
1476 			tp.skip_len = j - tp.skip_ofst;
1477 		}
1478 		if (i % 8) {
1479 			*data <<= (8 - i % 8) * 4;
1480 			*mask <<= (8 - i % 8) * 4;
1481 			i = (i + 15) & ~15;         /* 8-byte align */
1482 		}
1483 	}
1484 
1485 	if (tp.port == TRC_PORT_NONE)
1486 		goto inval;
1487 
1488 apply:
1489 	i = t4_set_trace_filter(adap, &tp, trcidx, enable);
1490 	if (i)
1491 		count = i;
1492 out:
1493 	kfree(s);
1494 	return count;
1495 }
1496 
1497 static const struct file_operations mps_trc_debugfs_fops = {
1498 	.owner   = THIS_MODULE,
1499 	.open    = mps_trc_open,
1500 	.read    = seq_read,
1501 	.llseek  = seq_lseek,
1502 	.release = single_release,
1503 	.write   = mps_trc_write
1504 };
1505 
1506 static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
1507 			  loff_t *ppos)
1508 {
1509 	loff_t pos = *ppos;
1510 	loff_t avail = file_inode(file)->i_size;
1511 	struct adapter *adap = file->private_data;
1512 
1513 	if (pos < 0)
1514 		return -EINVAL;
1515 	if (pos >= avail)
1516 		return 0;
1517 	if (count > avail - pos)
1518 		count = avail - pos;
1519 
1520 	while (count) {
1521 		size_t len;
1522 		int ret, ofst;
1523 		u8 data[256];
1524 
1525 		ofst = pos & 3;
1526 		len = min(count + ofst, sizeof(data));
1527 		ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
1528 				    (u32 *)data, 1);
1529 		if (ret)
1530 			return ret;
1531 
1532 		len -= ofst;
1533 		if (copy_to_user(buf, data + ofst, len))
1534 			return -EFAULT;
1535 
1536 		buf += len;
1537 		pos += len;
1538 		count -= len;
1539 	}
1540 	count = pos - *ppos;
1541 	*ppos = pos;
1542 	return count;
1543 }
1544 
1545 static const struct file_operations flash_debugfs_fops = {
1546 	.owner   = THIS_MODULE,
1547 	.open    = mem_open,
1548 	.read    = flash_read,
1549 };
1550 
1551 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
1552 {
1553 	*mask = x | y;
1554 	y = (__force u64)cpu_to_be64(y);
1555 	memcpy(addr, (char *)&y + 2, ETH_ALEN);
1556 }
1557 
1558 static int mps_tcam_show(struct seq_file *seq, void *v)
1559 {
1560 	struct adapter *adap = seq->private;
1561 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1562 
1563 	if (v == SEQ_START_TOKEN) {
1564 		if (adap->params.arch.mps_rplc_size > 128)
1565 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1566 				 "Vld Ports PF  VF                           "
1567 				 "Replication                                "
1568 				 "    P0 P1 P2 P3  ML\n");
1569 		else
1570 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1571 				 "Vld Ports PF  VF              Replication"
1572 				 "	         P0 P1 P2 P3  ML\n");
1573 	} else {
1574 		u64 mask;
1575 		u8 addr[ETH_ALEN];
1576 		bool replicate;
1577 		unsigned int idx = (uintptr_t)v - 2;
1578 		u64 tcamy, tcamx, val;
1579 		u32 cls_lo, cls_hi, ctl;
1580 		u32 rplc[8] = {0};
1581 
1582 		if (chip_ver > CHELSIO_T5) {
1583 			/* CtlCmdType - 0: Read, 1: Write
1584 			 * CtlTcamSel - 0: TCAM0, 1: TCAM1
1585 			 * CtlXYBitSel- 0: Y bit, 1: X bit
1586 			 */
1587 
1588 			/* Read tcamy */
1589 			ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
1590 			if (idx < 256)
1591 				ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
1592 			else
1593 				ctl |= CTLTCAMINDEX_V(idx - 256) |
1594 				       CTLTCAMSEL_V(1);
1595 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1596 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1597 			tcamy = DMACH_G(val) << 32;
1598 			tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1599 
1600 			/* Read tcamx. Change the control param */
1601 			ctl |= CTLXYBITSEL_V(1);
1602 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1603 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1604 			tcamx = DMACH_G(val) << 32;
1605 			tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1606 		} else {
1607 			tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
1608 			tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
1609 		}
1610 
1611 		cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
1612 		cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
1613 
1614 		if (tcamx & tcamy) {
1615 			seq_printf(seq, "%3u         -\n", idx);
1616 			goto out;
1617 		}
1618 
1619 		rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
1620 		if (chip_ver > CHELSIO_T5)
1621 			replicate = (cls_lo & T6_REPLICATE_F);
1622 		else
1623 			replicate = (cls_lo & REPLICATE_F);
1624 
1625 		if (replicate) {
1626 			struct fw_ldst_cmd ldst_cmd;
1627 			int ret;
1628 			struct fw_ldst_mps_rplc mps_rplc;
1629 			u32 ldst_addrspc;
1630 
1631 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
1632 			ldst_addrspc =
1633 				FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
1634 			ldst_cmd.op_to_addrspace =
1635 				htonl(FW_CMD_OP_V(FW_LDST_CMD) |
1636 				      FW_CMD_REQUEST_F |
1637 				      FW_CMD_READ_F |
1638 				      ldst_addrspc);
1639 			ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
1640 			ldst_cmd.u.mps.rplc.fid_idx =
1641 				htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
1642 				      FW_LDST_CMD_IDX_V(idx));
1643 			ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
1644 					 sizeof(ldst_cmd), &ldst_cmd);
1645 			if (ret)
1646 				dev_warn(adap->pdev_dev, "Can't read MPS "
1647 					 "replication map for idx %d: %d\n",
1648 					 idx, -ret);
1649 			else {
1650 				mps_rplc = ldst_cmd.u.mps.rplc;
1651 				rplc[0] = ntohl(mps_rplc.rplc31_0);
1652 				rplc[1] = ntohl(mps_rplc.rplc63_32);
1653 				rplc[2] = ntohl(mps_rplc.rplc95_64);
1654 				rplc[3] = ntohl(mps_rplc.rplc127_96);
1655 				if (adap->params.arch.mps_rplc_size > 128) {
1656 					rplc[4] = ntohl(mps_rplc.rplc159_128);
1657 					rplc[5] = ntohl(mps_rplc.rplc191_160);
1658 					rplc[6] = ntohl(mps_rplc.rplc223_192);
1659 					rplc[7] = ntohl(mps_rplc.rplc255_224);
1660 				}
1661 			}
1662 		}
1663 
1664 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
1665 		if (chip_ver > CHELSIO_T5)
1666 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1667 				   "%012llx%3c   %#x%4u%4d",
1668 				   idx, addr[0], addr[1], addr[2], addr[3],
1669 				   addr[4], addr[5], (unsigned long long)mask,
1670 				   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1671 				   PORTMAP_G(cls_hi),
1672 				   T6_PF_G(cls_lo),
1673 				   (cls_lo & T6_VF_VALID_F) ?
1674 				   T6_VF_G(cls_lo) : -1);
1675 		else
1676 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1677 				   "%012llx%3c   %#x%4u%4d",
1678 				   idx, addr[0], addr[1], addr[2], addr[3],
1679 				   addr[4], addr[5], (unsigned long long)mask,
1680 				   (cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
1681 				   PORTMAP_G(cls_hi),
1682 				   PF_G(cls_lo),
1683 				   (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
1684 
1685 		if (replicate) {
1686 			if (adap->params.arch.mps_rplc_size > 128)
1687 				seq_printf(seq, " %08x %08x %08x %08x "
1688 					   "%08x %08x %08x %08x",
1689 					   rplc[7], rplc[6], rplc[5], rplc[4],
1690 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1691 			else
1692 				seq_printf(seq, " %08x %08x %08x %08x",
1693 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1694 		} else {
1695 			if (adap->params.arch.mps_rplc_size > 128)
1696 				seq_printf(seq, "%72c", ' ');
1697 			else
1698 				seq_printf(seq, "%36c", ' ');
1699 		}
1700 
1701 		if (chip_ver > CHELSIO_T5)
1702 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1703 				   T6_SRAM_PRIO0_G(cls_lo),
1704 				   T6_SRAM_PRIO1_G(cls_lo),
1705 				   T6_SRAM_PRIO2_G(cls_lo),
1706 				   T6_SRAM_PRIO3_G(cls_lo),
1707 				   (cls_lo >> T6_MULTILISTEN0_S) & 0xf);
1708 		else
1709 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1710 				   SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
1711 				   SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
1712 				   (cls_lo >> MULTILISTEN0_S) & 0xf);
1713 	}
1714 out:	return 0;
1715 }
1716 
1717 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
1718 {
1719 	struct adapter *adap = seq->private;
1720 	int max_mac_addr = is_t4(adap->params.chip) ?
1721 				NUM_MPS_CLS_SRAM_L_INSTANCES :
1722 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1723 	return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
1724 }
1725 
1726 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
1727 {
1728 	return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
1729 }
1730 
1731 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
1732 {
1733 	++*pos;
1734 	return mps_tcam_get_idx(seq, *pos);
1735 }
1736 
1737 static void mps_tcam_stop(struct seq_file *seq, void *v)
1738 {
1739 }
1740 
1741 static const struct seq_operations mps_tcam_seq_ops = {
1742 	.start = mps_tcam_start,
1743 	.next  = mps_tcam_next,
1744 	.stop  = mps_tcam_stop,
1745 	.show  = mps_tcam_show
1746 };
1747 
1748 static int mps_tcam_open(struct inode *inode, struct file *file)
1749 {
1750 	int res = seq_open(file, &mps_tcam_seq_ops);
1751 
1752 	if (!res) {
1753 		struct seq_file *seq = file->private_data;
1754 
1755 		seq->private = inode->i_private;
1756 	}
1757 	return res;
1758 }
1759 
1760 static const struct file_operations mps_tcam_debugfs_fops = {
1761 	.owner   = THIS_MODULE,
1762 	.open    = mps_tcam_open,
1763 	.read    = seq_read,
1764 	.llseek  = seq_lseek,
1765 	.release = seq_release,
1766 };
1767 
1768 /* Display various sensor information.
1769  */
1770 static int sensors_show(struct seq_file *seq, void *v)
1771 {
1772 	struct adapter *adap = seq->private;
1773 	u32 param[7], val[7];
1774 	int ret;
1775 
1776 	/* Note that if the sensors haven't been initialized and turned on
1777 	 * we'll get values of 0, so treat those as "<unknown>" ...
1778 	 */
1779 	param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1780 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1781 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
1782 	param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1783 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1784 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
1785 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1786 			      param, val);
1787 
1788 	if (ret < 0 || val[0] == 0)
1789 		seq_puts(seq, "Temperature: <unknown>\n");
1790 	else
1791 		seq_printf(seq, "Temperature: %dC\n", val[0]);
1792 
1793 	if (ret < 0 || val[1] == 0)
1794 		seq_puts(seq, "Core VDD:    <unknown>\n");
1795 	else
1796 		seq_printf(seq, "Core VDD:    %dmV\n", val[1]);
1797 
1798 	return 0;
1799 }
1800 
1801 DEFINE_SIMPLE_DEBUGFS_FILE(sensors);
1802 
1803 #if IS_ENABLED(CONFIG_IPV6)
1804 static int clip_tbl_open(struct inode *inode, struct file *file)
1805 {
1806 	return single_open(file, clip_tbl_show, inode->i_private);
1807 }
1808 
1809 static const struct file_operations clip_tbl_debugfs_fops = {
1810 	.owner   = THIS_MODULE,
1811 	.open    = clip_tbl_open,
1812 	.read    = seq_read,
1813 	.llseek  = seq_lseek,
1814 	.release = single_release
1815 };
1816 #endif
1817 
1818 /*RSS Table.
1819  */
1820 
1821 static int rss_show(struct seq_file *seq, void *v, int idx)
1822 {
1823 	u16 *entry = v;
1824 
1825 	seq_printf(seq, "%4d:  %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u\n",
1826 		   idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
1827 		   entry[5], entry[6], entry[7]);
1828 	return 0;
1829 }
1830 
1831 static int rss_open(struct inode *inode, struct file *file)
1832 {
1833 	int ret;
1834 	struct seq_tab *p;
1835 	struct adapter *adap = inode->i_private;
1836 
1837 	p = seq_open_tab(file, RSS_NENTRIES / 8, 8 * sizeof(u16), 0, rss_show);
1838 	if (!p)
1839 		return -ENOMEM;
1840 
1841 	ret = t4_read_rss(adap, (u16 *)p->data);
1842 	if (ret)
1843 		seq_release_private(inode, file);
1844 
1845 	return ret;
1846 }
1847 
1848 static const struct file_operations rss_debugfs_fops = {
1849 	.owner   = THIS_MODULE,
1850 	.open    = rss_open,
1851 	.read    = seq_read,
1852 	.llseek  = seq_lseek,
1853 	.release = seq_release_private
1854 };
1855 
1856 /* RSS Configuration.
1857  */
1858 
1859 /* Small utility function to return the strings "yes" or "no" if the supplied
1860  * argument is non-zero.
1861  */
1862 static const char *yesno(int x)
1863 {
1864 	static const char *yes = "yes";
1865 	static const char *no = "no";
1866 
1867 	return x ? yes : no;
1868 }
1869 
1870 static int rss_config_show(struct seq_file *seq, void *v)
1871 {
1872 	struct adapter *adapter = seq->private;
1873 	static const char * const keymode[] = {
1874 		"global",
1875 		"global and per-VF scramble",
1876 		"per-PF and per-VF scramble",
1877 		"per-VF and per-VF scramble",
1878 	};
1879 	u32 rssconf;
1880 
1881 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
1882 	seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
1883 	seq_printf(seq, "  Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
1884 							TNL4TUPENIPV6_F));
1885 	seq_printf(seq, "  Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
1886 							TNL2TUPENIPV6_F));
1887 	seq_printf(seq, "  Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
1888 							TNL4TUPENIPV4_F));
1889 	seq_printf(seq, "  Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
1890 							TNL2TUPENIPV4_F));
1891 	seq_printf(seq, "  TnlTcpSel:     %3s\n", yesno(rssconf & TNLTCPSEL_F));
1892 	seq_printf(seq, "  TnlIp6Sel:     %3s\n", yesno(rssconf & TNLIP6SEL_F));
1893 	seq_printf(seq, "  TnlVrtSel:     %3s\n", yesno(rssconf & TNLVRTSEL_F));
1894 	seq_printf(seq, "  TnlMapEn:      %3s\n", yesno(rssconf & TNLMAPEN_F));
1895 	seq_printf(seq, "  OfdHashSave:   %3s\n", yesno(rssconf &
1896 							OFDHASHSAVE_F));
1897 	seq_printf(seq, "  OfdVrtSel:     %3s\n", yesno(rssconf & OFDVRTSEL_F));
1898 	seq_printf(seq, "  OfdMapEn:      %3s\n", yesno(rssconf & OFDMAPEN_F));
1899 	seq_printf(seq, "  OfdLkpEn:      %3s\n", yesno(rssconf & OFDLKPEN_F));
1900 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1901 							SYN4TUPENIPV6_F));
1902 	seq_printf(seq, "  Syn2TupEnIpv6: %3s\n", yesno(rssconf &
1903 							SYN2TUPENIPV6_F));
1904 	seq_printf(seq, "  Syn4TupEnIpv4: %3s\n", yesno(rssconf &
1905 							SYN4TUPENIPV4_F));
1906 	seq_printf(seq, "  Syn2TupEnIpv4: %3s\n", yesno(rssconf &
1907 							SYN2TUPENIPV4_F));
1908 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1909 							SYN4TUPENIPV6_F));
1910 	seq_printf(seq, "  SynIp6Sel:     %3s\n", yesno(rssconf & SYNIP6SEL_F));
1911 	seq_printf(seq, "  SynVrt6Sel:    %3s\n", yesno(rssconf & SYNVRTSEL_F));
1912 	seq_printf(seq, "  SynMapEn:      %3s\n", yesno(rssconf & SYNMAPEN_F));
1913 	seq_printf(seq, "  SynLkpEn:      %3s\n", yesno(rssconf & SYNLKPEN_F));
1914 	seq_printf(seq, "  ChnEn:         %3s\n", yesno(rssconf &
1915 							CHANNELENABLE_F));
1916 	seq_printf(seq, "  PrtEn:         %3s\n", yesno(rssconf &
1917 							PORTENABLE_F));
1918 	seq_printf(seq, "  TnlAllLkp:     %3s\n", yesno(rssconf &
1919 							TNLALLLOOKUP_F));
1920 	seq_printf(seq, "  VrtEn:         %3s\n", yesno(rssconf &
1921 							VIRTENABLE_F));
1922 	seq_printf(seq, "  CngEn:         %3s\n", yesno(rssconf &
1923 							CONGESTIONENABLE_F));
1924 	seq_printf(seq, "  HashToeplitz:  %3s\n", yesno(rssconf &
1925 							HASHTOEPLITZ_F));
1926 	seq_printf(seq, "  Udp4En:        %3s\n", yesno(rssconf & UDPENABLE_F));
1927 	seq_printf(seq, "  Disable:       %3s\n", yesno(rssconf & DISABLE_F));
1928 
1929 	seq_puts(seq, "\n");
1930 
1931 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
1932 	seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
1933 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
1934 	seq_printf(seq, "  MaskFilter:    %3d\n", MASKFILTER_G(rssconf));
1935 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
1936 		seq_printf(seq, "  HashAll:     %3s\n",
1937 			   yesno(rssconf & HASHALL_F));
1938 		seq_printf(seq, "  HashEth:     %3s\n",
1939 			   yesno(rssconf & HASHETH_F));
1940 	}
1941 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
1942 
1943 	seq_puts(seq, "\n");
1944 
1945 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
1946 	seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
1947 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
1948 	seq_printf(seq, "  RRCplMapEn:    %3s\n", yesno(rssconf &
1949 							RRCPLMAPEN_F));
1950 	seq_printf(seq, "  RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
1951 
1952 	seq_puts(seq, "\n");
1953 
1954 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
1955 	seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
1956 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
1957 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
1958 
1959 	seq_puts(seq, "\n");
1960 
1961 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
1962 	seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
1963 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
1964 		seq_printf(seq, "  KeyWrAddrX:     %3d\n",
1965 			   KEYWRADDRX_G(rssconf));
1966 		seq_printf(seq, "  KeyExtend:      %3s\n",
1967 			   yesno(rssconf & KEYEXTEND_F));
1968 	}
1969 	seq_printf(seq, "  VfRdRg:        %3s\n", yesno(rssconf & VFRDRG_F));
1970 	seq_printf(seq, "  VfRdEn:        %3s\n", yesno(rssconf & VFRDEN_F));
1971 	seq_printf(seq, "  VfPerrEn:      %3s\n", yesno(rssconf & VFPERREN_F));
1972 	seq_printf(seq, "  KeyPerrEn:     %3s\n", yesno(rssconf & KEYPERREN_F));
1973 	seq_printf(seq, "  DisVfVlan:     %3s\n", yesno(rssconf &
1974 							DISABLEVLAN_F));
1975 	seq_printf(seq, "  EnUpSwt:       %3s\n", yesno(rssconf & ENABLEUP0_F));
1976 	seq_printf(seq, "  HashDelay:     %3d\n", HASHDELAY_G(rssconf));
1977 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1978 		seq_printf(seq, "  VfWrAddr:      %3d\n", VFWRADDR_G(rssconf));
1979 	else
1980 		seq_printf(seq, "  VfWrAddr:      %3d\n",
1981 			   T6_VFWRADDR_G(rssconf));
1982 	seq_printf(seq, "  KeyMode:       %s\n", keymode[KEYMODE_G(rssconf)]);
1983 	seq_printf(seq, "  VfWrEn:        %3s\n", yesno(rssconf & VFWREN_F));
1984 	seq_printf(seq, "  KeyWrEn:       %3s\n", yesno(rssconf & KEYWREN_F));
1985 	seq_printf(seq, "  KeyWrAddr:     %3d\n", KEYWRADDR_G(rssconf));
1986 
1987 	seq_puts(seq, "\n");
1988 
1989 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
1990 	seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
1991 	seq_printf(seq, "  ChnCount3:     %3s\n", yesno(rssconf & CHNCOUNT3_F));
1992 	seq_printf(seq, "  ChnCount2:     %3s\n", yesno(rssconf & CHNCOUNT2_F));
1993 	seq_printf(seq, "  ChnCount1:     %3s\n", yesno(rssconf & CHNCOUNT1_F));
1994 	seq_printf(seq, "  ChnCount0:     %3s\n", yesno(rssconf & CHNCOUNT0_F));
1995 	seq_printf(seq, "  ChnUndFlow3:   %3s\n", yesno(rssconf &
1996 							CHNUNDFLOW3_F));
1997 	seq_printf(seq, "  ChnUndFlow2:   %3s\n", yesno(rssconf &
1998 							CHNUNDFLOW2_F));
1999 	seq_printf(seq, "  ChnUndFlow1:   %3s\n", yesno(rssconf &
2000 							CHNUNDFLOW1_F));
2001 	seq_printf(seq, "  ChnUndFlow0:   %3s\n", yesno(rssconf &
2002 							CHNUNDFLOW0_F));
2003 	seq_printf(seq, "  RstChn3:       %3s\n", yesno(rssconf & RSTCHN3_F));
2004 	seq_printf(seq, "  RstChn2:       %3s\n", yesno(rssconf & RSTCHN2_F));
2005 	seq_printf(seq, "  RstChn1:       %3s\n", yesno(rssconf & RSTCHN1_F));
2006 	seq_printf(seq, "  RstChn0:       %3s\n", yesno(rssconf & RSTCHN0_F));
2007 	seq_printf(seq, "  UpdVld:        %3s\n", yesno(rssconf & UPDVLD_F));
2008 	seq_printf(seq, "  Xoff:          %3s\n", yesno(rssconf & XOFF_F));
2009 	seq_printf(seq, "  UpdChn3:       %3s\n", yesno(rssconf & UPDCHN3_F));
2010 	seq_printf(seq, "  UpdChn2:       %3s\n", yesno(rssconf & UPDCHN2_F));
2011 	seq_printf(seq, "  UpdChn1:       %3s\n", yesno(rssconf & UPDCHN1_F));
2012 	seq_printf(seq, "  UpdChn0:       %3s\n", yesno(rssconf & UPDCHN0_F));
2013 	seq_printf(seq, "  Queue:         %3d\n", QUEUE_G(rssconf));
2014 
2015 	return 0;
2016 }
2017 
2018 DEFINE_SIMPLE_DEBUGFS_FILE(rss_config);
2019 
2020 /* RSS Secret Key.
2021  */
2022 
2023 static int rss_key_show(struct seq_file *seq, void *v)
2024 {
2025 	u32 key[10];
2026 
2027 	t4_read_rss_key(seq->private, key);
2028 	seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
2029 		   key[9], key[8], key[7], key[6], key[5], key[4], key[3],
2030 		   key[2], key[1], key[0]);
2031 	return 0;
2032 }
2033 
2034 static int rss_key_open(struct inode *inode, struct file *file)
2035 {
2036 	return single_open(file, rss_key_show, inode->i_private);
2037 }
2038 
2039 static ssize_t rss_key_write(struct file *file, const char __user *buf,
2040 			     size_t count, loff_t *pos)
2041 {
2042 	int i, j;
2043 	u32 key[10];
2044 	char s[100], *p;
2045 	struct adapter *adap = file_inode(file)->i_private;
2046 
2047 	if (count > sizeof(s) - 1)
2048 		return -EINVAL;
2049 	if (copy_from_user(s, buf, count))
2050 		return -EFAULT;
2051 	for (i = count; i > 0 && isspace(s[i - 1]); i--)
2052 		;
2053 	s[i] = '\0';
2054 
2055 	for (p = s, i = 9; i >= 0; i--) {
2056 		key[i] = 0;
2057 		for (j = 0; j < 8; j++, p++) {
2058 			if (!isxdigit(*p))
2059 				return -EINVAL;
2060 			key[i] = (key[i] << 4) | hex2val(*p);
2061 		}
2062 	}
2063 
2064 	t4_write_rss_key(adap, key, -1);
2065 	return count;
2066 }
2067 
2068 static const struct file_operations rss_key_debugfs_fops = {
2069 	.owner   = THIS_MODULE,
2070 	.open    = rss_key_open,
2071 	.read    = seq_read,
2072 	.llseek  = seq_lseek,
2073 	.release = single_release,
2074 	.write   = rss_key_write
2075 };
2076 
2077 /* PF RSS Configuration.
2078  */
2079 
2080 struct rss_pf_conf {
2081 	u32 rss_pf_map;
2082 	u32 rss_pf_mask;
2083 	u32 rss_pf_config;
2084 };
2085 
2086 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
2087 {
2088 	struct rss_pf_conf *pfconf;
2089 
2090 	if (v == SEQ_START_TOKEN) {
2091 		/* use the 0th entry to dump the PF Map Index Size */
2092 		pfconf = seq->private + offsetof(struct seq_tab, data);
2093 		seq_printf(seq, "PF Map Index Size = %d\n\n",
2094 			   LKPIDXSIZE_G(pfconf->rss_pf_map));
2095 
2096 		seq_puts(seq, "     RSS              PF   VF    Hash Tuple Enable         Default\n");
2097 		seq_puts(seq, "     Enable       IPF Mask Mask  IPv6      IPv4      UDP   Queue\n");
2098 		seq_puts(seq, " PF  Map Chn Prt  Map Size Size  Four Two  Four Two  Four  Ch1  Ch0\n");
2099 	} else {
2100 		#define G_PFnLKPIDX(map, n) \
2101 			(((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
2102 		#define G_PFnMSKSIZE(mask, n) \
2103 			(((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
2104 
2105 		pfconf = v;
2106 		seq_printf(seq, "%3d  %3s %3s %3s  %3d  %3d  %3d   %3s %3s   %3s %3s   %3s  %3d  %3d\n",
2107 			   idx,
2108 			   yesno(pfconf->rss_pf_config & MAPENABLE_F),
2109 			   yesno(pfconf->rss_pf_config & CHNENABLE_F),
2110 			   yesno(pfconf->rss_pf_config & PRTENABLE_F),
2111 			   G_PFnLKPIDX(pfconf->rss_pf_map, idx),
2112 			   G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
2113 			   IVFWIDTH_G(pfconf->rss_pf_config),
2114 			   yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
2115 			   yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
2116 			   yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
2117 			   yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
2118 			   yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
2119 			   CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
2120 			   CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
2121 
2122 		#undef G_PFnLKPIDX
2123 		#undef G_PFnMSKSIZE
2124 	}
2125 	return 0;
2126 }
2127 
2128 static int rss_pf_config_open(struct inode *inode, struct file *file)
2129 {
2130 	struct adapter *adapter = inode->i_private;
2131 	struct seq_tab *p;
2132 	u32 rss_pf_map, rss_pf_mask;
2133 	struct rss_pf_conf *pfconf;
2134 	int pf;
2135 
2136 	p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
2137 	if (!p)
2138 		return -ENOMEM;
2139 
2140 	pfconf = (struct rss_pf_conf *)p->data;
2141 	rss_pf_map = t4_read_rss_pf_map(adapter);
2142 	rss_pf_mask = t4_read_rss_pf_mask(adapter);
2143 	for (pf = 0; pf < 8; pf++) {
2144 		pfconf[pf].rss_pf_map = rss_pf_map;
2145 		pfconf[pf].rss_pf_mask = rss_pf_mask;
2146 		t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config);
2147 	}
2148 	return 0;
2149 }
2150 
2151 static const struct file_operations rss_pf_config_debugfs_fops = {
2152 	.owner   = THIS_MODULE,
2153 	.open    = rss_pf_config_open,
2154 	.read    = seq_read,
2155 	.llseek  = seq_lseek,
2156 	.release = seq_release_private
2157 };
2158 
2159 /* VF RSS Configuration.
2160  */
2161 
2162 struct rss_vf_conf {
2163 	u32 rss_vf_vfl;
2164 	u32 rss_vf_vfh;
2165 };
2166 
2167 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
2168 {
2169 	if (v == SEQ_START_TOKEN) {
2170 		seq_puts(seq, "     RSS                     Hash Tuple Enable\n");
2171 		seq_puts(seq, "     Enable   IVF  Dis  Enb  IPv6      IPv4      UDP    Def  Secret Key\n");
2172 		seq_puts(seq, " VF  Chn Prt  Map  VLAN  uP  Four Two  Four Two  Four   Que  Idx       Hash\n");
2173 	} else {
2174 		struct rss_vf_conf *vfconf = v;
2175 
2176 		seq_printf(seq, "%3d  %3s %3s  %3d   %3s %3s   %3s %3s   %3s  %3s   %3s  %4d  %3d %#10x\n",
2177 			   idx,
2178 			   yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
2179 			   yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
2180 			   VFLKPIDX_G(vfconf->rss_vf_vfh),
2181 			   yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
2182 			   yesno(vfconf->rss_vf_vfh & VFUPEN_F),
2183 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2184 			   yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
2185 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2186 			   yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
2187 			   yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
2188 			   DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
2189 			   KEYINDEX_G(vfconf->rss_vf_vfh),
2190 			   vfconf->rss_vf_vfl);
2191 	}
2192 	return 0;
2193 }
2194 
2195 static int rss_vf_config_open(struct inode *inode, struct file *file)
2196 {
2197 	struct adapter *adapter = inode->i_private;
2198 	struct seq_tab *p;
2199 	struct rss_vf_conf *vfconf;
2200 	int vf, vfcount = adapter->params.arch.vfcount;
2201 
2202 	p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
2203 	if (!p)
2204 		return -ENOMEM;
2205 
2206 	vfconf = (struct rss_vf_conf *)p->data;
2207 	for (vf = 0; vf < vfcount; vf++) {
2208 		t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
2209 				      &vfconf[vf].rss_vf_vfh);
2210 	}
2211 	return 0;
2212 }
2213 
2214 static const struct file_operations rss_vf_config_debugfs_fops = {
2215 	.owner   = THIS_MODULE,
2216 	.open    = rss_vf_config_open,
2217 	.read    = seq_read,
2218 	.llseek  = seq_lseek,
2219 	.release = seq_release_private
2220 };
2221 
2222 /**
2223  * ethqset2pinfo - return port_info of an Ethernet Queue Set
2224  * @adap: the adapter
2225  * @qset: Ethernet Queue Set
2226  */
2227 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
2228 {
2229 	int pidx;
2230 
2231 	for_each_port(adap, pidx) {
2232 		struct port_info *pi = adap2pinfo(adap, pidx);
2233 
2234 		if (qset >= pi->first_qset &&
2235 		    qset < pi->first_qset + pi->nqsets)
2236 			return pi;
2237 	}
2238 
2239 	/* should never happen! */
2240 	BUG_ON(1);
2241 	return NULL;
2242 }
2243 
2244 static int sge_qinfo_show(struct seq_file *seq, void *v)
2245 {
2246 	struct adapter *adap = seq->private;
2247 	int eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
2248 	int iscsi_entries = DIV_ROUND_UP(adap->sge.ofldqsets, 4);
2249 	int rdma_entries = DIV_ROUND_UP(adap->sge.rdmaqs, 4);
2250 	int ciq_entries = DIV_ROUND_UP(adap->sge.rdmaciqs, 4);
2251 	int ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
2252 	int i, r = (uintptr_t)v - 1;
2253 	int iscsi_idx = r - eth_entries;
2254 	int rdma_idx = iscsi_idx - iscsi_entries;
2255 	int ciq_idx = rdma_idx - rdma_entries;
2256 	int ctrl_idx =  ciq_idx - ciq_entries;
2257 	int fq_idx =  ctrl_idx - ctrl_entries;
2258 
2259 	if (r)
2260 		seq_putc(seq, '\n');
2261 
2262 #define S3(fmt_spec, s, v) \
2263 do { \
2264 	seq_printf(seq, "%-12s", s); \
2265 	for (i = 0; i < n; ++i) \
2266 		seq_printf(seq, " %16" fmt_spec, v); \
2267 		seq_putc(seq, '\n'); \
2268 } while (0)
2269 #define S(s, v) S3("s", s, v)
2270 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
2271 #define T(s, v) S3("u", s, tx[i].v)
2272 #define TL(s, v) T3("lu", s, v)
2273 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
2274 #define R(s, v) S3("u", s, rx[i].v)
2275 #define RL(s, v) R3("lu", s, v)
2276 
2277 	if (r < eth_entries) {
2278 		int base_qset = r * 4;
2279 		const struct sge_eth_rxq *rx = &adap->sge.ethrxq[base_qset];
2280 		const struct sge_eth_txq *tx = &adap->sge.ethtxq[base_qset];
2281 		int n = min(4, adap->sge.ethqsets - 4 * r);
2282 
2283 		S("QType:", "Ethernet");
2284 		S("Interface:",
2285 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2286 		T("TxQ ID:", q.cntxt_id);
2287 		T("TxQ size:", q.size);
2288 		T("TxQ inuse:", q.in_use);
2289 		T("TxQ CIDX:", q.cidx);
2290 		T("TxQ PIDX:", q.pidx);
2291 #ifdef CONFIG_CHELSIO_T4_DCB
2292 		T("DCB Prio:", dcb_prio);
2293 		S3("u", "DCB PGID:",
2294 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
2295 		    4*(7-tx[i].dcb_prio)) & 0xf);
2296 		S3("u", "DCB PFC:",
2297 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
2298 		    1*(7-tx[i].dcb_prio)) & 0x1);
2299 #endif
2300 		R("RspQ ID:", rspq.abs_id);
2301 		R("RspQ size:", rspq.size);
2302 		R("RspQE size:", rspq.iqe_len);
2303 		R("RspQ CIDX:", rspq.cidx);
2304 		R("RspQ Gen:", rspq.gen);
2305 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2306 		S3("u", "Intr pktcnt:",
2307 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2308 		R("FL ID:", fl.cntxt_id);
2309 		R("FL size:", fl.size - 8);
2310 		R("FL pend:", fl.pend_cred);
2311 		R("FL avail:", fl.avail);
2312 		R("FL PIDX:", fl.pidx);
2313 		R("FL CIDX:", fl.cidx);
2314 		RL("RxPackets:", stats.pkts);
2315 		RL("RxCSO:", stats.rx_cso);
2316 		RL("VLANxtract:", stats.vlan_ex);
2317 		RL("LROmerged:", stats.lro_merged);
2318 		RL("LROpackets:", stats.lro_pkts);
2319 		RL("RxDrops:", stats.rx_drops);
2320 		TL("TSO:", tso);
2321 		TL("TxCSO:", tx_cso);
2322 		TL("VLANins:", vlan_ins);
2323 		TL("TxQFull:", q.stops);
2324 		TL("TxQRestarts:", q.restarts);
2325 		TL("TxMapErr:", mapping_err);
2326 		RL("FLAllocErr:", fl.alloc_failed);
2327 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2328 		RL("FLStarving:", fl.starving);
2329 
2330 	} else if (iscsi_idx < iscsi_entries) {
2331 		const struct sge_ofld_rxq *rx =
2332 			&adap->sge.ofldrxq[iscsi_idx * 4];
2333 		const struct sge_ofld_txq *tx =
2334 			&adap->sge.ofldtxq[iscsi_idx * 4];
2335 		int n = min(4, adap->sge.ofldqsets - 4 * iscsi_idx);
2336 
2337 		S("QType:", "iSCSI");
2338 		T("TxQ ID:", q.cntxt_id);
2339 		T("TxQ size:", q.size);
2340 		T("TxQ inuse:", q.in_use);
2341 		T("TxQ CIDX:", q.cidx);
2342 		T("TxQ PIDX:", q.pidx);
2343 		R("RspQ ID:", rspq.abs_id);
2344 		R("RspQ size:", rspq.size);
2345 		R("RspQE size:", rspq.iqe_len);
2346 		R("RspQ CIDX:", rspq.cidx);
2347 		R("RspQ Gen:", rspq.gen);
2348 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2349 		S3("u", "Intr pktcnt:",
2350 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2351 		R("FL ID:", fl.cntxt_id);
2352 		R("FL size:", fl.size - 8);
2353 		R("FL pend:", fl.pend_cred);
2354 		R("FL avail:", fl.avail);
2355 		R("FL PIDX:", fl.pidx);
2356 		R("FL CIDX:", fl.cidx);
2357 		RL("RxPackets:", stats.pkts);
2358 		RL("RxImmPkts:", stats.imm);
2359 		RL("RxNoMem:", stats.nomem);
2360 		RL("FLAllocErr:", fl.alloc_failed);
2361 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2362 		RL("FLStarving:", fl.starving);
2363 
2364 	} else if (rdma_idx < rdma_entries) {
2365 		const struct sge_ofld_rxq *rx =
2366 				&adap->sge.rdmarxq[rdma_idx * 4];
2367 		int n = min(4, adap->sge.rdmaqs - 4 * rdma_idx);
2368 
2369 		S("QType:", "RDMA-CPL");
2370 		S("Interface:",
2371 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2372 		R("RspQ ID:", rspq.abs_id);
2373 		R("RspQ size:", rspq.size);
2374 		R("RspQE size:", rspq.iqe_len);
2375 		R("RspQ CIDX:", rspq.cidx);
2376 		R("RspQ Gen:", rspq.gen);
2377 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2378 		S3("u", "Intr pktcnt:",
2379 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2380 		R("FL ID:", fl.cntxt_id);
2381 		R("FL size:", fl.size - 8);
2382 		R("FL pend:", fl.pend_cred);
2383 		R("FL avail:", fl.avail);
2384 		R("FL PIDX:", fl.pidx);
2385 		R("FL CIDX:", fl.cidx);
2386 		RL("RxPackets:", stats.pkts);
2387 		RL("RxImmPkts:", stats.imm);
2388 		RL("RxNoMem:", stats.nomem);
2389 		RL("FLAllocErr:", fl.alloc_failed);
2390 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2391 		RL("FLStarving:", fl.starving);
2392 
2393 	} else if (ciq_idx < ciq_entries) {
2394 		const struct sge_ofld_rxq *rx = &adap->sge.rdmaciq[ciq_idx * 4];
2395 		int n = min(4, adap->sge.rdmaciqs - 4 * ciq_idx);
2396 
2397 		S("QType:", "RDMA-CIQ");
2398 		S("Interface:",
2399 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2400 		R("RspQ ID:", rspq.abs_id);
2401 		R("RspQ size:", rspq.size);
2402 		R("RspQE size:", rspq.iqe_len);
2403 		R("RspQ CIDX:", rspq.cidx);
2404 		R("RspQ Gen:", rspq.gen);
2405 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2406 		S3("u", "Intr pktcnt:",
2407 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2408 		RL("RxAN:", stats.an);
2409 		RL("RxNoMem:", stats.nomem);
2410 
2411 	} else if (ctrl_idx < ctrl_entries) {
2412 		const struct sge_ctrl_txq *tx = &adap->sge.ctrlq[ctrl_idx * 4];
2413 		int n = min(4, adap->params.nports - 4 * ctrl_idx);
2414 
2415 		S("QType:", "Control");
2416 		T("TxQ ID:", q.cntxt_id);
2417 		T("TxQ size:", q.size);
2418 		T("TxQ inuse:", q.in_use);
2419 		T("TxQ CIDX:", q.cidx);
2420 		T("TxQ PIDX:", q.pidx);
2421 		TL("TxQFull:", q.stops);
2422 		TL("TxQRestarts:", q.restarts);
2423 	} else if (fq_idx == 0) {
2424 		const struct sge_rspq *evtq = &adap->sge.fw_evtq;
2425 
2426 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2427 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2428 		seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
2429 		seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
2430 		seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
2431 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2432 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2433 			   qtimer_val(adap, evtq));
2434 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2435 			   adap->sge.counter_val[evtq->pktcnt_idx]);
2436 	}
2437 #undef R
2438 #undef RL
2439 #undef T
2440 #undef TL
2441 #undef S
2442 #undef R3
2443 #undef T3
2444 #undef S3
2445 	return 0;
2446 }
2447 
2448 static int sge_queue_entries(const struct adapter *adap)
2449 {
2450 	return DIV_ROUND_UP(adap->sge.ethqsets, 4) +
2451 	       DIV_ROUND_UP(adap->sge.ofldqsets, 4) +
2452 	       DIV_ROUND_UP(adap->sge.rdmaqs, 4) +
2453 	       DIV_ROUND_UP(adap->sge.rdmaciqs, 4) +
2454 	       DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
2455 }
2456 
2457 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2458 {
2459 	int entries = sge_queue_entries(seq->private);
2460 
2461 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2462 }
2463 
2464 static void sge_queue_stop(struct seq_file *seq, void *v)
2465 {
2466 }
2467 
2468 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2469 {
2470 	int entries = sge_queue_entries(seq->private);
2471 
2472 	++*pos;
2473 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2474 }
2475 
2476 static const struct seq_operations sge_qinfo_seq_ops = {
2477 	.start = sge_queue_start,
2478 	.next  = sge_queue_next,
2479 	.stop  = sge_queue_stop,
2480 	.show  = sge_qinfo_show
2481 };
2482 
2483 static int sge_qinfo_open(struct inode *inode, struct file *file)
2484 {
2485 	int res = seq_open(file, &sge_qinfo_seq_ops);
2486 
2487 	if (!res) {
2488 		struct seq_file *seq = file->private_data;
2489 
2490 		seq->private = inode->i_private;
2491 	}
2492 	return res;
2493 }
2494 
2495 static const struct file_operations sge_qinfo_debugfs_fops = {
2496 	.owner   = THIS_MODULE,
2497 	.open    = sge_qinfo_open,
2498 	.read    = seq_read,
2499 	.llseek  = seq_lseek,
2500 	.release = seq_release,
2501 };
2502 
2503 int mem_open(struct inode *inode, struct file *file)
2504 {
2505 	unsigned int mem;
2506 	struct adapter *adap;
2507 
2508 	file->private_data = inode->i_private;
2509 
2510 	mem = (uintptr_t)file->private_data & 0x3;
2511 	adap = file->private_data - mem;
2512 
2513 	(void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
2514 
2515 	return 0;
2516 }
2517 
2518 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2519 			loff_t *ppos)
2520 {
2521 	loff_t pos = *ppos;
2522 	loff_t avail = file_inode(file)->i_size;
2523 	unsigned int mem = (uintptr_t)file->private_data & 3;
2524 	struct adapter *adap = file->private_data - mem;
2525 	__be32 *data;
2526 	int ret;
2527 
2528 	if (pos < 0)
2529 		return -EINVAL;
2530 	if (pos >= avail)
2531 		return 0;
2532 	if (count > avail - pos)
2533 		count = avail - pos;
2534 
2535 	data = t4_alloc_mem(count);
2536 	if (!data)
2537 		return -ENOMEM;
2538 
2539 	spin_lock(&adap->win0_lock);
2540 	ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
2541 	spin_unlock(&adap->win0_lock);
2542 	if (ret) {
2543 		t4_free_mem(data);
2544 		return ret;
2545 	}
2546 	ret = copy_to_user(buf, data, count);
2547 
2548 	t4_free_mem(data);
2549 	if (ret)
2550 		return -EFAULT;
2551 
2552 	*ppos = pos + count;
2553 	return count;
2554 }
2555 static const struct file_operations mem_debugfs_fops = {
2556 	.owner   = THIS_MODULE,
2557 	.open    = simple_open,
2558 	.read    = mem_read,
2559 	.llseek  = default_llseek,
2560 };
2561 
2562 static int tid_info_show(struct seq_file *seq, void *v)
2563 {
2564 	struct adapter *adap = seq->private;
2565 	const struct tid_info *t = &adap->tids;
2566 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2567 
2568 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2569 		unsigned int sb;
2570 
2571 		if (chip <= CHELSIO_T5)
2572 			sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
2573 		else
2574 			sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
2575 
2576 		if (sb) {
2577 			seq_printf(seq, "TID range: 0..%u/%u..%u", sb - 1,
2578 				   adap->tids.hash_base,
2579 				   t->ntids - 1);
2580 			seq_printf(seq, ", in use: %u/%u\n",
2581 				   atomic_read(&t->tids_in_use),
2582 				   atomic_read(&t->hash_tids_in_use));
2583 		} else if (adap->flags & FW_OFLD_CONN) {
2584 			seq_printf(seq, "TID range: %u..%u/%u..%u",
2585 				   t->aftid_base,
2586 				   t->aftid_end,
2587 				   adap->tids.hash_base,
2588 				   t->ntids - 1);
2589 			seq_printf(seq, ", in use: %u/%u\n",
2590 				   atomic_read(&t->tids_in_use),
2591 				   atomic_read(&t->hash_tids_in_use));
2592 		} else {
2593 			seq_printf(seq, "TID range: %u..%u",
2594 				   adap->tids.hash_base,
2595 				   t->ntids - 1);
2596 			seq_printf(seq, ", in use: %u\n",
2597 				   atomic_read(&t->hash_tids_in_use));
2598 		}
2599 	} else if (t->ntids) {
2600 		seq_printf(seq, "TID range: 0..%u", t->ntids - 1);
2601 		seq_printf(seq, ", in use: %u\n",
2602 			   atomic_read(&t->tids_in_use));
2603 	}
2604 
2605 	if (t->nstids)
2606 		seq_printf(seq, "STID range: %u..%u, in use: %u\n",
2607 			   (!t->stid_base &&
2608 			   (chip <= CHELSIO_T5)) ?
2609 			   t->stid_base + 1 : t->stid_base,
2610 			   t->stid_base + t->nstids - 1, t->stids_in_use);
2611 	if (t->natids)
2612 		seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
2613 			   t->natids - 1, t->atids_in_use);
2614 	seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
2615 		   t->ftid_base + t->nftids - 1);
2616 	if (t->nsftids)
2617 		seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
2618 			   t->sftid_base, t->sftid_base + t->nsftids - 2,
2619 			   t->sftids_in_use);
2620 	if (t->ntids)
2621 		seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
2622 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
2623 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
2624 	return 0;
2625 }
2626 
2627 DEFINE_SIMPLE_DEBUGFS_FILE(tid_info);
2628 
2629 static void add_debugfs_mem(struct adapter *adap, const char *name,
2630 			    unsigned int idx, unsigned int size_mb)
2631 {
2632 	debugfs_create_file_size(name, S_IRUSR, adap->debugfs_root,
2633 				 (void *)adap + idx, &mem_debugfs_fops,
2634 				 size_mb << 20);
2635 }
2636 
2637 static int blocked_fl_open(struct inode *inode, struct file *file)
2638 {
2639 	file->private_data = inode->i_private;
2640 	return 0;
2641 }
2642 
2643 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
2644 			       size_t count, loff_t *ppos)
2645 {
2646 	int len;
2647 	const struct adapter *adap = filp->private_data;
2648 	char *buf;
2649 	ssize_t size = (adap->sge.egr_sz + 3) / 4 +
2650 			adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
2651 
2652 	buf = kzalloc(size, GFP_KERNEL);
2653 	if (!buf)
2654 		return -ENOMEM;
2655 
2656 	len = snprintf(buf, size - 1, "%*pb\n",
2657 		       adap->sge.egr_sz, adap->sge.blocked_fl);
2658 	len += sprintf(buf + len, "\n");
2659 	size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
2660 	t4_free_mem(buf);
2661 	return size;
2662 }
2663 
2664 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
2665 				size_t count, loff_t *ppos)
2666 {
2667 	int err;
2668 	unsigned long *t;
2669 	struct adapter *adap = filp->private_data;
2670 
2671 	t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
2672 	if (!t)
2673 		return -ENOMEM;
2674 
2675 	err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
2676 	if (err)
2677 		return err;
2678 
2679 	bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
2680 	t4_free_mem(t);
2681 	return count;
2682 }
2683 
2684 static const struct file_operations blocked_fl_fops = {
2685 	.owner   = THIS_MODULE,
2686 	.open    = blocked_fl_open,
2687 	.read    = blocked_fl_read,
2688 	.write   = blocked_fl_write,
2689 	.llseek  = generic_file_llseek,
2690 };
2691 
2692 struct mem_desc {
2693 	unsigned int base;
2694 	unsigned int limit;
2695 	unsigned int idx;
2696 };
2697 
2698 static int mem_desc_cmp(const void *a, const void *b)
2699 {
2700 	return ((const struct mem_desc *)a)->base -
2701 	       ((const struct mem_desc *)b)->base;
2702 }
2703 
2704 static void mem_region_show(struct seq_file *seq, const char *name,
2705 			    unsigned int from, unsigned int to)
2706 {
2707 	char buf[40];
2708 
2709 	string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
2710 			sizeof(buf));
2711 	seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
2712 }
2713 
2714 static int meminfo_show(struct seq_file *seq, void *v)
2715 {
2716 	static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
2717 					"MC0:", "MC1:"};
2718 	static const char * const region[] = {
2719 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
2720 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
2721 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
2722 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
2723 		"RQUDP region:", "PBL region:", "TXPBL region:",
2724 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
2725 		"On-chip queues:"
2726 	};
2727 
2728 	int i, n;
2729 	u32 lo, hi, used, alloc;
2730 	struct mem_desc avail[4];
2731 	struct mem_desc mem[ARRAY_SIZE(region) + 3];      /* up to 3 holes */
2732 	struct mem_desc *md = mem;
2733 	struct adapter *adap = seq->private;
2734 
2735 	for (i = 0; i < ARRAY_SIZE(mem); i++) {
2736 		mem[i].limit = 0;
2737 		mem[i].idx = i;
2738 	}
2739 
2740 	/* Find and sort the populated memory ranges */
2741 	i = 0;
2742 	lo = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
2743 	if (lo & EDRAM0_ENABLE_F) {
2744 		hi = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2745 		avail[i].base = EDRAM0_BASE_G(hi) << 20;
2746 		avail[i].limit = avail[i].base + (EDRAM0_SIZE_G(hi) << 20);
2747 		avail[i].idx = 0;
2748 		i++;
2749 	}
2750 	if (lo & EDRAM1_ENABLE_F) {
2751 		hi = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2752 		avail[i].base = EDRAM1_BASE_G(hi) << 20;
2753 		avail[i].limit = avail[i].base + (EDRAM1_SIZE_G(hi) << 20);
2754 		avail[i].idx = 1;
2755 		i++;
2756 	}
2757 
2758 	if (is_t5(adap->params.chip)) {
2759 		if (lo & EXT_MEM0_ENABLE_F) {
2760 			hi = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2761 			avail[i].base = EXT_MEM0_BASE_G(hi) << 20;
2762 			avail[i].limit =
2763 				avail[i].base + (EXT_MEM0_SIZE_G(hi) << 20);
2764 			avail[i].idx = 3;
2765 			i++;
2766 		}
2767 		if (lo & EXT_MEM1_ENABLE_F) {
2768 			hi = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2769 			avail[i].base = EXT_MEM1_BASE_G(hi) << 20;
2770 			avail[i].limit =
2771 				avail[i].base + (EXT_MEM1_SIZE_G(hi) << 20);
2772 			avail[i].idx = 4;
2773 			i++;
2774 		}
2775 	} else {
2776 		if (lo & EXT_MEM_ENABLE_F) {
2777 			hi = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
2778 			avail[i].base = EXT_MEM_BASE_G(hi) << 20;
2779 			avail[i].limit =
2780 				avail[i].base + (EXT_MEM_SIZE_G(hi) << 20);
2781 			avail[i].idx = 2;
2782 			i++;
2783 		}
2784 	}
2785 	if (!i)                                    /* no memory available */
2786 		return 0;
2787 	sort(avail, i, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2788 
2789 	(md++)->base = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A);
2790 	(md++)->base = t4_read_reg(adap, SGE_IMSG_CTXT_BADDR_A);
2791 	(md++)->base = t4_read_reg(adap, SGE_FLM_CACHE_BADDR_A);
2792 	(md++)->base = t4_read_reg(adap, TP_CMM_TCB_BASE_A);
2793 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_BASE_A);
2794 	(md++)->base = t4_read_reg(adap, TP_CMM_TIMER_BASE_A);
2795 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_RX_FLST_BASE_A);
2796 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_TX_FLST_BASE_A);
2797 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_PS_FLST_BASE_A);
2798 
2799 	/* the next few have explicit upper bounds */
2800 	md->base = t4_read_reg(adap, TP_PMM_TX_BASE_A);
2801 	md->limit = md->base - 1 +
2802 		    t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A) *
2803 		    PMTXMAXPAGE_G(t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A));
2804 	md++;
2805 
2806 	md->base = t4_read_reg(adap, TP_PMM_RX_BASE_A);
2807 	md->limit = md->base - 1 +
2808 		    t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) *
2809 		    PMRXMAXPAGE_G(t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A));
2810 	md++;
2811 
2812 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2813 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) {
2814 			hi = t4_read_reg(adap, LE_DB_TID_HASHBASE_A) / 4;
2815 			md->base = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2816 		 } else {
2817 			hi = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2818 			md->base = t4_read_reg(adap,
2819 					       LE_DB_HASH_TBL_BASE_ADDR_A);
2820 		}
2821 		md->limit = 0;
2822 	} else {
2823 		md->base = 0;
2824 		md->idx = ARRAY_SIZE(region);  /* hide it */
2825 	}
2826 	md++;
2827 
2828 #define ulp_region(reg) do { \
2829 	md->base = t4_read_reg(adap, ULP_ ## reg ## _LLIMIT_A);\
2830 	(md++)->limit = t4_read_reg(adap, ULP_ ## reg ## _ULIMIT_A); \
2831 } while (0)
2832 
2833 	ulp_region(RX_ISCSI);
2834 	ulp_region(RX_TDDP);
2835 	ulp_region(TX_TPT);
2836 	ulp_region(RX_STAG);
2837 	ulp_region(RX_RQ);
2838 	ulp_region(RX_RQUDP);
2839 	ulp_region(RX_PBL);
2840 	ulp_region(TX_PBL);
2841 #undef ulp_region
2842 	md->base = 0;
2843 	md->idx = ARRAY_SIZE(region);
2844 	if (!is_t4(adap->params.chip)) {
2845 		u32 size = 0;
2846 		u32 sge_ctrl = t4_read_reg(adap, SGE_CONTROL2_A);
2847 		u32 fifo_size = t4_read_reg(adap, SGE_DBVFIFO_SIZE_A);
2848 
2849 		if (is_t5(adap->params.chip)) {
2850 			if (sge_ctrl & VFIFO_ENABLE_F)
2851 				size = DBVFIFO_SIZE_G(fifo_size);
2852 		} else {
2853 			size = T6_DBVFIFO_SIZE_G(fifo_size);
2854 		}
2855 
2856 		if (size) {
2857 			md->base = BASEADDR_G(t4_read_reg(adap,
2858 					SGE_DBVFIFO_BADDR_A));
2859 			md->limit = md->base + (size << 2) - 1;
2860 		}
2861 	}
2862 
2863 	md++;
2864 
2865 	md->base = t4_read_reg(adap, ULP_RX_CTX_BASE_A);
2866 	md->limit = 0;
2867 	md++;
2868 	md->base = t4_read_reg(adap, ULP_TX_ERR_TABLE_BASE_A);
2869 	md->limit = 0;
2870 	md++;
2871 
2872 	md->base = adap->vres.ocq.start;
2873 	if (adap->vres.ocq.size)
2874 		md->limit = md->base + adap->vres.ocq.size - 1;
2875 	else
2876 		md->idx = ARRAY_SIZE(region);  /* hide it */
2877 	md++;
2878 
2879 	/* add any address-space holes, there can be up to 3 */
2880 	for (n = 0; n < i - 1; n++)
2881 		if (avail[n].limit < avail[n + 1].base)
2882 			(md++)->base = avail[n].limit;
2883 	if (avail[n].limit)
2884 		(md++)->base = avail[n].limit;
2885 
2886 	n = md - mem;
2887 	sort(mem, n, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2888 
2889 	for (lo = 0; lo < i; lo++)
2890 		mem_region_show(seq, memory[avail[lo].idx], avail[lo].base,
2891 				avail[lo].limit - 1);
2892 
2893 	seq_putc(seq, '\n');
2894 	for (i = 0; i < n; i++) {
2895 		if (mem[i].idx >= ARRAY_SIZE(region))
2896 			continue;                        /* skip holes */
2897 		if (!mem[i].limit)
2898 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
2899 		mem_region_show(seq, region[mem[i].idx], mem[i].base,
2900 				mem[i].limit);
2901 	}
2902 
2903 	seq_putc(seq, '\n');
2904 	lo = t4_read_reg(adap, CIM_SDRAM_BASE_ADDR_A);
2905 	hi = t4_read_reg(adap, CIM_SDRAM_ADDR_SIZE_A) + lo - 1;
2906 	mem_region_show(seq, "uP RAM:", lo, hi);
2907 
2908 	lo = t4_read_reg(adap, CIM_EXTMEM2_BASE_ADDR_A);
2909 	hi = t4_read_reg(adap, CIM_EXTMEM2_ADDR_SIZE_A) + lo - 1;
2910 	mem_region_show(seq, "uP Extmem2:", lo, hi);
2911 
2912 	lo = t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A);
2913 	seq_printf(seq, "\n%u Rx pages of size %uKiB for %u channels\n",
2914 		   PMRXMAXPAGE_G(lo),
2915 		   t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) >> 10,
2916 		   (lo & PMRXNUMCHN_F) ? 2 : 1);
2917 
2918 	lo = t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A);
2919 	hi = t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A);
2920 	seq_printf(seq, "%u Tx pages of size %u%ciB for %u channels\n",
2921 		   PMTXMAXPAGE_G(lo),
2922 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
2923 		   hi >= (1 << 20) ? 'M' : 'K', 1 << PMTXNUMCHN_G(lo));
2924 	seq_printf(seq, "%u p-structs\n\n",
2925 		   t4_read_reg(adap, TP_CMM_MM_MAX_PSTRUCT_A));
2926 
2927 	for (i = 0; i < 4; i++) {
2928 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
2929 			lo = t4_read_reg(adap, MPS_RX_MAC_BG_PG_CNT0_A + i * 4);
2930 		else
2931 			lo = t4_read_reg(adap, MPS_RX_PG_RSV0_A + i * 4);
2932 		if (is_t5(adap->params.chip)) {
2933 			used = T5_USED_G(lo);
2934 			alloc = T5_ALLOC_G(lo);
2935 		} else {
2936 			used = USED_G(lo);
2937 			alloc = ALLOC_G(lo);
2938 		}
2939 		/* For T6 these are MAC buffer groups */
2940 		seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
2941 			   i, used, alloc);
2942 	}
2943 	for (i = 0; i < adap->params.arch.nchan; i++) {
2944 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
2945 			lo = t4_read_reg(adap,
2946 					 MPS_RX_LPBK_BG_PG_CNT0_A + i * 4);
2947 		else
2948 			lo = t4_read_reg(adap, MPS_RX_PG_RSV4_A + i * 4);
2949 		if (is_t5(adap->params.chip)) {
2950 			used = T5_USED_G(lo);
2951 			alloc = T5_ALLOC_G(lo);
2952 		} else {
2953 			used = USED_G(lo);
2954 			alloc = ALLOC_G(lo);
2955 		}
2956 		/* For T6 these are MAC buffer groups */
2957 		seq_printf(seq,
2958 			   "Loopback %d using %u pages out of %u allocated\n",
2959 			   i, used, alloc);
2960 	}
2961 	return 0;
2962 }
2963 
2964 static int meminfo_open(struct inode *inode, struct file *file)
2965 {
2966 	return single_open(file, meminfo_show, inode->i_private);
2967 }
2968 
2969 static const struct file_operations meminfo_fops = {
2970 	.owner   = THIS_MODULE,
2971 	.open    = meminfo_open,
2972 	.read    = seq_read,
2973 	.llseek  = seq_lseek,
2974 	.release = single_release,
2975 };
2976 /* Add an array of Debug FS files.
2977  */
2978 void add_debugfs_files(struct adapter *adap,
2979 		       struct t4_debugfs_entry *files,
2980 		       unsigned int nfiles)
2981 {
2982 	int i;
2983 
2984 	/* debugfs support is best effort */
2985 	for (i = 0; i < nfiles; i++)
2986 		debugfs_create_file(files[i].name, files[i].mode,
2987 				    adap->debugfs_root,
2988 				    (void *)adap + files[i].data,
2989 				    files[i].ops);
2990 }
2991 
2992 int t4_setup_debugfs(struct adapter *adap)
2993 {
2994 	int i;
2995 	u32 size = 0;
2996 	struct dentry *de;
2997 
2998 	static struct t4_debugfs_entry t4_debugfs_files[] = {
2999 		{ "cim_la", &cim_la_fops, S_IRUSR, 0 },
3000 		{ "cim_pif_la", &cim_pif_la_fops, S_IRUSR, 0 },
3001 		{ "cim_ma_la", &cim_ma_la_fops, S_IRUSR, 0 },
3002 		{ "cim_qcfg", &cim_qcfg_fops, S_IRUSR, 0 },
3003 		{ "clk", &clk_debugfs_fops, S_IRUSR, 0 },
3004 		{ "devlog", &devlog_fops, S_IRUSR, 0 },
3005 		{ "mbox0", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3006 		{ "mbox1", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3007 		{ "mbox2", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3008 		{ "mbox3", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3009 		{ "mbox4", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 4 },
3010 		{ "mbox5", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 5 },
3011 		{ "mbox6", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 6 },
3012 		{ "mbox7", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 7 },
3013 		{ "trace0", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3014 		{ "trace1", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3015 		{ "trace2", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3016 		{ "trace3", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3017 		{ "l2t", &t4_l2t_fops, S_IRUSR, 0},
3018 		{ "mps_tcam", &mps_tcam_debugfs_fops, S_IRUSR, 0 },
3019 		{ "rss", &rss_debugfs_fops, S_IRUSR, 0 },
3020 		{ "rss_config", &rss_config_debugfs_fops, S_IRUSR, 0 },
3021 		{ "rss_key", &rss_key_debugfs_fops, S_IRUSR, 0 },
3022 		{ "rss_pf_config", &rss_pf_config_debugfs_fops, S_IRUSR, 0 },
3023 		{ "rss_vf_config", &rss_vf_config_debugfs_fops, S_IRUSR, 0 },
3024 		{ "sge_qinfo", &sge_qinfo_debugfs_fops, S_IRUSR, 0 },
3025 		{ "ibq_tp0",  &cim_ibq_fops, S_IRUSR, 0 },
3026 		{ "ibq_tp1",  &cim_ibq_fops, S_IRUSR, 1 },
3027 		{ "ibq_ulp",  &cim_ibq_fops, S_IRUSR, 2 },
3028 		{ "ibq_sge0", &cim_ibq_fops, S_IRUSR, 3 },
3029 		{ "ibq_sge1", &cim_ibq_fops, S_IRUSR, 4 },
3030 		{ "ibq_ncsi", &cim_ibq_fops, S_IRUSR, 5 },
3031 		{ "obq_ulp0", &cim_obq_fops, S_IRUSR, 0 },
3032 		{ "obq_ulp1", &cim_obq_fops, S_IRUSR, 1 },
3033 		{ "obq_ulp2", &cim_obq_fops, S_IRUSR, 2 },
3034 		{ "obq_ulp3", &cim_obq_fops, S_IRUSR, 3 },
3035 		{ "obq_sge",  &cim_obq_fops, S_IRUSR, 4 },
3036 		{ "obq_ncsi", &cim_obq_fops, S_IRUSR, 5 },
3037 		{ "tp_la", &tp_la_fops, S_IRUSR, 0 },
3038 		{ "ulprx_la", &ulprx_la_fops, S_IRUSR, 0 },
3039 		{ "sensors", &sensors_debugfs_fops, S_IRUSR, 0 },
3040 		{ "pm_stats", &pm_stats_debugfs_fops, S_IRUSR, 0 },
3041 		{ "tx_rate", &tx_rate_debugfs_fops, S_IRUSR, 0 },
3042 		{ "cctrl", &cctrl_tbl_debugfs_fops, S_IRUSR, 0 },
3043 #if IS_ENABLED(CONFIG_IPV6)
3044 		{ "clip_tbl", &clip_tbl_debugfs_fops, S_IRUSR, 0 },
3045 #endif
3046 		{ "tids", &tid_info_debugfs_fops, S_IRUSR, 0},
3047 		{ "blocked_fl", &blocked_fl_fops, S_IRUSR | S_IWUSR, 0 },
3048 		{ "meminfo", &meminfo_fops, S_IRUSR, 0 },
3049 	};
3050 
3051 	/* Debug FS nodes common to all T5 and later adapters.
3052 	 */
3053 	static struct t4_debugfs_entry t5_debugfs_files[] = {
3054 		{ "obq_sge_rx_q0", &cim_obq_fops, S_IRUSR, 6 },
3055 		{ "obq_sge_rx_q1", &cim_obq_fops, S_IRUSR, 7 },
3056 	};
3057 
3058 	add_debugfs_files(adap,
3059 			  t4_debugfs_files,
3060 			  ARRAY_SIZE(t4_debugfs_files));
3061 	if (!is_t4(adap->params.chip))
3062 		add_debugfs_files(adap,
3063 				  t5_debugfs_files,
3064 				  ARRAY_SIZE(t5_debugfs_files));
3065 
3066 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
3067 	if (i & EDRAM0_ENABLE_F) {
3068 		size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3069 		add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
3070 	}
3071 	if (i & EDRAM1_ENABLE_F) {
3072 		size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3073 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
3074 	}
3075 	if (is_t5(adap->params.chip)) {
3076 		if (i & EXT_MEM0_ENABLE_F) {
3077 			size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3078 			add_debugfs_mem(adap, "mc0", MEM_MC0,
3079 					EXT_MEM0_SIZE_G(size));
3080 		}
3081 		if (i & EXT_MEM1_ENABLE_F) {
3082 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3083 			add_debugfs_mem(adap, "mc1", MEM_MC1,
3084 					EXT_MEM1_SIZE_G(size));
3085 		}
3086 	} else {
3087 		if (i & EXT_MEM_ENABLE_F) {
3088 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
3089 			add_debugfs_mem(adap, "mc", MEM_MC,
3090 					EXT_MEM_SIZE_G(size));
3091 		}
3092 	}
3093 
3094 	de = debugfs_create_file_size("flash", S_IRUSR, adap->debugfs_root, adap,
3095 				      &flash_debugfs_fops, adap->params.sf_size);
3096 	debugfs_create_bool("use_backdoor", S_IWUSR | S_IRUSR,
3097 			    adap->debugfs_root, &adap->use_bd);
3098 	debugfs_create_bool("trace_rss", S_IWUSR | S_IRUSR,
3099 			    adap->debugfs_root, &adap->trace_rss);
3100 
3101 	return 0;
3102 }
3103