1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 #include <linux/string_helpers.h>
38 #include <linux/sort.h>
39 #include <linux/ctype.h>
40 
41 #include "cxgb4.h"
42 #include "t4_regs.h"
43 #include "t4_values.h"
44 #include "t4fw_api.h"
45 #include "cxgb4_debugfs.h"
46 #include "clip_tbl.h"
47 #include "l2t.h"
48 
49 /* generic seq_file support for showing a table of size rows x width. */
50 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
51 {
52 	pos -= tb->skip_first;
53 	return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
54 }
55 
56 static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
57 {
58 	struct seq_tab *tb = seq->private;
59 
60 	if (tb->skip_first && *pos == 0)
61 		return SEQ_START_TOKEN;
62 
63 	return seq_tab_get_idx(tb, *pos);
64 }
65 
66 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
67 {
68 	v = seq_tab_get_idx(seq->private, *pos + 1);
69 	if (v)
70 		++*pos;
71 	return v;
72 }
73 
74 static void seq_tab_stop(struct seq_file *seq, void *v)
75 {
76 }
77 
78 static int seq_tab_show(struct seq_file *seq, void *v)
79 {
80 	const struct seq_tab *tb = seq->private;
81 
82 	return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
83 }
84 
85 static const struct seq_operations seq_tab_ops = {
86 	.start = seq_tab_start,
87 	.next  = seq_tab_next,
88 	.stop  = seq_tab_stop,
89 	.show  = seq_tab_show
90 };
91 
92 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
93 			     unsigned int width, unsigned int have_header,
94 			     int (*show)(struct seq_file *seq, void *v, int i))
95 {
96 	struct seq_tab *p;
97 
98 	p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
99 	if (p) {
100 		p->show = show;
101 		p->rows = rows;
102 		p->width = width;
103 		p->skip_first = have_header != 0;
104 	}
105 	return p;
106 }
107 
108 /* Trim the size of a seq_tab to the supplied number of rows.  The operation is
109  * irreversible.
110  */
111 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
112 {
113 	if (new_rows > p->rows)
114 		return -EINVAL;
115 	p->rows = new_rows;
116 	return 0;
117 }
118 
119 static int cim_la_show(struct seq_file *seq, void *v, int idx)
120 {
121 	if (v == SEQ_START_TOKEN)
122 		seq_puts(seq, "Status   Data      PC     LS0Stat  LS0Addr "
123 			 "            LS0Data\n");
124 	else {
125 		const u32 *p = v;
126 
127 		seq_printf(seq,
128 			   "  %02x  %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
129 			   (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
130 			   p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
131 			   p[6], p[7]);
132 	}
133 	return 0;
134 }
135 
136 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
137 {
138 	if (v == SEQ_START_TOKEN) {
139 		seq_puts(seq, "Status   Data      PC\n");
140 	} else {
141 		const u32 *p = v;
142 
143 		seq_printf(seq, "  %02x   %08x %08x\n", p[5] & 0xff, p[6],
144 			   p[7]);
145 		seq_printf(seq, "  %02x   %02x%06x %02x%06x\n",
146 			   (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
147 			   p[4] & 0xff, p[5] >> 8);
148 		seq_printf(seq, "  %02x   %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
149 			   p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
150 	}
151 	return 0;
152 }
153 
154 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
155 {
156 	if (v == SEQ_START_TOKEN) {
157 		seq_puts(seq, "Status   Inst    Data      PC     LS0Stat  "
158 			 "LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data\n");
159 	} else {
160 		const u32 *p = v;
161 
162 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
163 			   (p[9] >> 16) & 0xff,       /* Status */
164 			   p[9] & 0xffff, p[8] >> 16, /* Inst */
165 			   p[8] & 0xffff, p[7] >> 16, /* Data */
166 			   p[7] & 0xffff, p[6] >> 16, /* PC */
167 			   p[2], p[1], p[0],      /* LS0 Stat, Addr and Data */
168 			   p[5], p[4], p[3]);     /* LS1 Stat, Addr and Data */
169 	}
170 	return 0;
171 }
172 
173 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
174 {
175 	if (v == SEQ_START_TOKEN) {
176 		seq_puts(seq, "Status   Inst    Data      PC\n");
177 	} else {
178 		const u32 *p = v;
179 
180 		seq_printf(seq, "  %02x   %08x %08x %08x\n",
181 			   p[3] & 0xff, p[2], p[1], p[0]);
182 		seq_printf(seq, "  %02x   %02x%06x %02x%06x %02x%06x\n",
183 			   (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
184 			   p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
185 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x\n",
186 			   (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
187 			   p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
188 			   p[6] >> 16);
189 	}
190 	return 0;
191 }
192 
193 static int cim_la_open(struct inode *inode, struct file *file)
194 {
195 	int ret;
196 	unsigned int cfg;
197 	struct seq_tab *p;
198 	struct adapter *adap = inode->i_private;
199 
200 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
201 	if (ret)
202 		return ret;
203 
204 	if (is_t6(adap->params.chip)) {
205 		/* +1 to account for integer division of CIMLA_SIZE/10 */
206 		p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
207 				 10 * sizeof(u32), 1,
208 				 cfg & UPDBGLACAPTPCONLY_F ?
209 					cim_la_show_pc_t6 : cim_la_show_t6);
210 	} else {
211 		p = seq_open_tab(file, adap->params.cim_la_size / 8,
212 				 8 * sizeof(u32), 1,
213 				 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
214 							     cim_la_show);
215 	}
216 	if (!p)
217 		return -ENOMEM;
218 
219 	ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
220 	if (ret)
221 		seq_release_private(inode, file);
222 	return ret;
223 }
224 
225 static const struct file_operations cim_la_fops = {
226 	.owner   = THIS_MODULE,
227 	.open    = cim_la_open,
228 	.read    = seq_read,
229 	.llseek  = seq_lseek,
230 	.release = seq_release_private
231 };
232 
233 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
234 {
235 	const u32 *p = v;
236 
237 	if (v == SEQ_START_TOKEN) {
238 		seq_puts(seq, "Cntl ID DataBE   Addr                 Data\n");
239 	} else if (idx < CIM_PIFLA_SIZE) {
240 		seq_printf(seq, " %02x  %02x  %04x  %08x %08x%08x%08x%08x\n",
241 			   (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
242 			   p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
243 	} else {
244 		if (idx == CIM_PIFLA_SIZE)
245 			seq_puts(seq, "\nCntl ID               Data\n");
246 		seq_printf(seq, " %02x  %02x %08x%08x%08x%08x\n",
247 			   (p[4] >> 6) & 0xff, p[4] & 0x3f,
248 			   p[3], p[2], p[1], p[0]);
249 	}
250 	return 0;
251 }
252 
253 static int cim_pif_la_open(struct inode *inode, struct file *file)
254 {
255 	struct seq_tab *p;
256 	struct adapter *adap = inode->i_private;
257 
258 	p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
259 			 cim_pif_la_show);
260 	if (!p)
261 		return -ENOMEM;
262 
263 	t4_cim_read_pif_la(adap, (u32 *)p->data,
264 			   (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
265 	return 0;
266 }
267 
268 static const struct file_operations cim_pif_la_fops = {
269 	.owner   = THIS_MODULE,
270 	.open    = cim_pif_la_open,
271 	.read    = seq_read,
272 	.llseek  = seq_lseek,
273 	.release = seq_release_private
274 };
275 
276 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
277 {
278 	const u32 *p = v;
279 
280 	if (v == SEQ_START_TOKEN) {
281 		seq_puts(seq, "\n");
282 	} else if (idx < CIM_MALA_SIZE) {
283 		seq_printf(seq, "%02x%08x%08x%08x%08x\n",
284 			   p[4], p[3], p[2], p[1], p[0]);
285 	} else {
286 		if (idx == CIM_MALA_SIZE)
287 			seq_puts(seq,
288 				 "\nCnt ID Tag UE       Data       RDY VLD\n");
289 		seq_printf(seq, "%3u %2u  %x   %u %08x%08x  %u   %u\n",
290 			   (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
291 			   (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
292 			   (p[1] >> 2) | ((p[2] & 3) << 30),
293 			   (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
294 			   p[0] & 1);
295 	}
296 	return 0;
297 }
298 
299 static int cim_ma_la_open(struct inode *inode, struct file *file)
300 {
301 	struct seq_tab *p;
302 	struct adapter *adap = inode->i_private;
303 
304 	p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
305 			 cim_ma_la_show);
306 	if (!p)
307 		return -ENOMEM;
308 
309 	t4_cim_read_ma_la(adap, (u32 *)p->data,
310 			  (u32 *)p->data + 5 * CIM_MALA_SIZE);
311 	return 0;
312 }
313 
314 static const struct file_operations cim_ma_la_fops = {
315 	.owner   = THIS_MODULE,
316 	.open    = cim_ma_la_open,
317 	.read    = seq_read,
318 	.llseek  = seq_lseek,
319 	.release = seq_release_private
320 };
321 
322 static int cim_qcfg_show(struct seq_file *seq, void *v)
323 {
324 	static const char * const qname[] = {
325 		"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
326 		"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
327 		"SGE0-RX", "SGE1-RX"
328 	};
329 
330 	int i;
331 	struct adapter *adap = seq->private;
332 	u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
333 	u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
334 	u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
335 	u16 thres[CIM_NUM_IBQ];
336 	u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
337 	u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
338 	u32 *p = stat;
339 	int cim_num_obq = is_t4(adap->params.chip) ?
340 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
341 
342 	i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
343 			UP_IBQ_0_SHADOW_RDADDR_A,
344 			ARRAY_SIZE(stat), stat);
345 	if (!i) {
346 		if (is_t4(adap->params.chip)) {
347 			i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
348 					ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
349 			wr = obq_wr_t4;
350 		} else {
351 			i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
352 					ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
353 			wr = obq_wr_t5;
354 		}
355 	}
356 	if (i)
357 		return i;
358 
359 	t4_read_cimq_cfg(adap, base, size, thres);
360 
361 	seq_printf(seq,
362 		   "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail\n");
363 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
364 		seq_printf(seq, "%7s %5x %5u %5u %6x  %4x %4u %4u %5u\n",
365 			   qname[i], base[i], size[i], thres[i],
366 			   IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
367 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
368 			   QUEREMFLITS_G(p[2]) * 16);
369 	for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
370 		seq_printf(seq, "%7s %5x %5u %12x  %4x %4u %4u %5u\n",
371 			   qname[i], base[i], size[i],
372 			   QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
373 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
374 			   QUEREMFLITS_G(p[2]) * 16);
375 	return 0;
376 }
377 
378 static int cim_qcfg_open(struct inode *inode, struct file *file)
379 {
380 	return single_open(file, cim_qcfg_show, inode->i_private);
381 }
382 
383 static const struct file_operations cim_qcfg_fops = {
384 	.owner   = THIS_MODULE,
385 	.open    = cim_qcfg_open,
386 	.read    = seq_read,
387 	.llseek  = seq_lseek,
388 	.release = single_release,
389 };
390 
391 static int cimq_show(struct seq_file *seq, void *v, int idx)
392 {
393 	const u32 *p = v;
394 
395 	seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
396 		   p[2], p[3]);
397 	return 0;
398 }
399 
400 static int cim_ibq_open(struct inode *inode, struct file *file)
401 {
402 	int ret;
403 	struct seq_tab *p;
404 	unsigned int qid = (uintptr_t)inode->i_private & 7;
405 	struct adapter *adap = inode->i_private - qid;
406 
407 	p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
408 	if (!p)
409 		return -ENOMEM;
410 
411 	ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
412 	if (ret < 0)
413 		seq_release_private(inode, file);
414 	else
415 		ret = 0;
416 	return ret;
417 }
418 
419 static const struct file_operations cim_ibq_fops = {
420 	.owner   = THIS_MODULE,
421 	.open    = cim_ibq_open,
422 	.read    = seq_read,
423 	.llseek  = seq_lseek,
424 	.release = seq_release_private
425 };
426 
427 static int cim_obq_open(struct inode *inode, struct file *file)
428 {
429 	int ret;
430 	struct seq_tab *p;
431 	unsigned int qid = (uintptr_t)inode->i_private & 7;
432 	struct adapter *adap = inode->i_private - qid;
433 
434 	p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
435 	if (!p)
436 		return -ENOMEM;
437 
438 	ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
439 	if (ret < 0) {
440 		seq_release_private(inode, file);
441 	} else {
442 		seq_tab_trim(p, ret / 4);
443 		ret = 0;
444 	}
445 	return ret;
446 }
447 
448 static const struct file_operations cim_obq_fops = {
449 	.owner   = THIS_MODULE,
450 	.open    = cim_obq_open,
451 	.read    = seq_read,
452 	.llseek  = seq_lseek,
453 	.release = seq_release_private
454 };
455 
456 struct field_desc {
457 	const char *name;
458 	unsigned int start;
459 	unsigned int width;
460 };
461 
462 static void field_desc_show(struct seq_file *seq, u64 v,
463 			    const struct field_desc *p)
464 {
465 	char buf[32];
466 	int line_size = 0;
467 
468 	while (p->name) {
469 		u64 mask = (1ULL << p->width) - 1;
470 		int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
471 				    ((unsigned long long)v >> p->start) & mask);
472 
473 		if (line_size + len >= 79) {
474 			line_size = 8;
475 			seq_puts(seq, "\n        ");
476 		}
477 		seq_printf(seq, "%s ", buf);
478 		line_size += len + 1;
479 		p++;
480 	}
481 	seq_putc(seq, '\n');
482 }
483 
484 static struct field_desc tp_la0[] = {
485 	{ "RcfOpCodeOut", 60, 4 },
486 	{ "State", 56, 4 },
487 	{ "WcfState", 52, 4 },
488 	{ "RcfOpcSrcOut", 50, 2 },
489 	{ "CRxError", 49, 1 },
490 	{ "ERxError", 48, 1 },
491 	{ "SanityFailed", 47, 1 },
492 	{ "SpuriousMsg", 46, 1 },
493 	{ "FlushInputMsg", 45, 1 },
494 	{ "FlushInputCpl", 44, 1 },
495 	{ "RssUpBit", 43, 1 },
496 	{ "RssFilterHit", 42, 1 },
497 	{ "Tid", 32, 10 },
498 	{ "InitTcb", 31, 1 },
499 	{ "LineNumber", 24, 7 },
500 	{ "Emsg", 23, 1 },
501 	{ "EdataOut", 22, 1 },
502 	{ "Cmsg", 21, 1 },
503 	{ "CdataOut", 20, 1 },
504 	{ "EreadPdu", 19, 1 },
505 	{ "CreadPdu", 18, 1 },
506 	{ "TunnelPkt", 17, 1 },
507 	{ "RcfPeerFin", 16, 1 },
508 	{ "RcfReasonOut", 12, 4 },
509 	{ "TxCchannel", 10, 2 },
510 	{ "RcfTxChannel", 8, 2 },
511 	{ "RxEchannel", 6, 2 },
512 	{ "RcfRxChannel", 5, 1 },
513 	{ "RcfDataOutSrdy", 4, 1 },
514 	{ "RxDvld", 3, 1 },
515 	{ "RxOoDvld", 2, 1 },
516 	{ "RxCongestion", 1, 1 },
517 	{ "TxCongestion", 0, 1 },
518 	{ NULL }
519 };
520 
521 static int tp_la_show(struct seq_file *seq, void *v, int idx)
522 {
523 	const u64 *p = v;
524 
525 	field_desc_show(seq, *p, tp_la0);
526 	return 0;
527 }
528 
529 static int tp_la_show2(struct seq_file *seq, void *v, int idx)
530 {
531 	const u64 *p = v;
532 
533 	if (idx)
534 		seq_putc(seq, '\n');
535 	field_desc_show(seq, p[0], tp_la0);
536 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
537 		field_desc_show(seq, p[1], tp_la0);
538 	return 0;
539 }
540 
541 static int tp_la_show3(struct seq_file *seq, void *v, int idx)
542 {
543 	static struct field_desc tp_la1[] = {
544 		{ "CplCmdIn", 56, 8 },
545 		{ "CplCmdOut", 48, 8 },
546 		{ "ESynOut", 47, 1 },
547 		{ "EAckOut", 46, 1 },
548 		{ "EFinOut", 45, 1 },
549 		{ "ERstOut", 44, 1 },
550 		{ "SynIn", 43, 1 },
551 		{ "AckIn", 42, 1 },
552 		{ "FinIn", 41, 1 },
553 		{ "RstIn", 40, 1 },
554 		{ "DataIn", 39, 1 },
555 		{ "DataInVld", 38, 1 },
556 		{ "PadIn", 37, 1 },
557 		{ "RxBufEmpty", 36, 1 },
558 		{ "RxDdp", 35, 1 },
559 		{ "RxFbCongestion", 34, 1 },
560 		{ "TxFbCongestion", 33, 1 },
561 		{ "TxPktSumSrdy", 32, 1 },
562 		{ "RcfUlpType", 28, 4 },
563 		{ "Eread", 27, 1 },
564 		{ "Ebypass", 26, 1 },
565 		{ "Esave", 25, 1 },
566 		{ "Static0", 24, 1 },
567 		{ "Cread", 23, 1 },
568 		{ "Cbypass", 22, 1 },
569 		{ "Csave", 21, 1 },
570 		{ "CPktOut", 20, 1 },
571 		{ "RxPagePoolFull", 18, 2 },
572 		{ "RxLpbkPkt", 17, 1 },
573 		{ "TxLpbkPkt", 16, 1 },
574 		{ "RxVfValid", 15, 1 },
575 		{ "SynLearned", 14, 1 },
576 		{ "SetDelEntry", 13, 1 },
577 		{ "SetInvEntry", 12, 1 },
578 		{ "CpcmdDvld", 11, 1 },
579 		{ "CpcmdSave", 10, 1 },
580 		{ "RxPstructsFull", 8, 2 },
581 		{ "EpcmdDvld", 7, 1 },
582 		{ "EpcmdFlush", 6, 1 },
583 		{ "EpcmdTrimPrefix", 5, 1 },
584 		{ "EpcmdTrimPostfix", 4, 1 },
585 		{ "ERssIp4Pkt", 3, 1 },
586 		{ "ERssIp6Pkt", 2, 1 },
587 		{ "ERssTcpUdpPkt", 1, 1 },
588 		{ "ERssFceFipPkt", 0, 1 },
589 		{ NULL }
590 	};
591 	static struct field_desc tp_la2[] = {
592 		{ "CplCmdIn", 56, 8 },
593 		{ "MpsVfVld", 55, 1 },
594 		{ "MpsPf", 52, 3 },
595 		{ "MpsVf", 44, 8 },
596 		{ "SynIn", 43, 1 },
597 		{ "AckIn", 42, 1 },
598 		{ "FinIn", 41, 1 },
599 		{ "RstIn", 40, 1 },
600 		{ "DataIn", 39, 1 },
601 		{ "DataInVld", 38, 1 },
602 		{ "PadIn", 37, 1 },
603 		{ "RxBufEmpty", 36, 1 },
604 		{ "RxDdp", 35, 1 },
605 		{ "RxFbCongestion", 34, 1 },
606 		{ "TxFbCongestion", 33, 1 },
607 		{ "TxPktSumSrdy", 32, 1 },
608 		{ "RcfUlpType", 28, 4 },
609 		{ "Eread", 27, 1 },
610 		{ "Ebypass", 26, 1 },
611 		{ "Esave", 25, 1 },
612 		{ "Static0", 24, 1 },
613 		{ "Cread", 23, 1 },
614 		{ "Cbypass", 22, 1 },
615 		{ "Csave", 21, 1 },
616 		{ "CPktOut", 20, 1 },
617 		{ "RxPagePoolFull", 18, 2 },
618 		{ "RxLpbkPkt", 17, 1 },
619 		{ "TxLpbkPkt", 16, 1 },
620 		{ "RxVfValid", 15, 1 },
621 		{ "SynLearned", 14, 1 },
622 		{ "SetDelEntry", 13, 1 },
623 		{ "SetInvEntry", 12, 1 },
624 		{ "CpcmdDvld", 11, 1 },
625 		{ "CpcmdSave", 10, 1 },
626 		{ "RxPstructsFull", 8, 2 },
627 		{ "EpcmdDvld", 7, 1 },
628 		{ "EpcmdFlush", 6, 1 },
629 		{ "EpcmdTrimPrefix", 5, 1 },
630 		{ "EpcmdTrimPostfix", 4, 1 },
631 		{ "ERssIp4Pkt", 3, 1 },
632 		{ "ERssIp6Pkt", 2, 1 },
633 		{ "ERssTcpUdpPkt", 1, 1 },
634 		{ "ERssFceFipPkt", 0, 1 },
635 		{ NULL }
636 	};
637 	const u64 *p = v;
638 
639 	if (idx)
640 		seq_putc(seq, '\n');
641 	field_desc_show(seq, p[0], tp_la0);
642 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
643 		field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
644 	return 0;
645 }
646 
647 static int tp_la_open(struct inode *inode, struct file *file)
648 {
649 	struct seq_tab *p;
650 	struct adapter *adap = inode->i_private;
651 
652 	switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
653 	case 2:
654 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
655 				 tp_la_show2);
656 		break;
657 	case 3:
658 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
659 				 tp_la_show3);
660 		break;
661 	default:
662 		p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
663 	}
664 	if (!p)
665 		return -ENOMEM;
666 
667 	t4_tp_read_la(adap, (u64 *)p->data, NULL);
668 	return 0;
669 }
670 
671 static ssize_t tp_la_write(struct file *file, const char __user *buf,
672 			   size_t count, loff_t *pos)
673 {
674 	int err;
675 	char s[32];
676 	unsigned long val;
677 	size_t size = min(sizeof(s) - 1, count);
678 	struct adapter *adap = file_inode(file)->i_private;
679 
680 	if (copy_from_user(s, buf, size))
681 		return -EFAULT;
682 	s[size] = '\0';
683 	err = kstrtoul(s, 0, &val);
684 	if (err)
685 		return err;
686 	if (val > 0xffff)
687 		return -EINVAL;
688 	adap->params.tp.la_mask = val << 16;
689 	t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
690 			 adap->params.tp.la_mask);
691 	return count;
692 }
693 
694 static const struct file_operations tp_la_fops = {
695 	.owner   = THIS_MODULE,
696 	.open    = tp_la_open,
697 	.read    = seq_read,
698 	.llseek  = seq_lseek,
699 	.release = seq_release_private,
700 	.write   = tp_la_write
701 };
702 
703 static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
704 {
705 	const u32 *p = v;
706 
707 	if (v == SEQ_START_TOKEN)
708 		seq_puts(seq, "      Pcmd        Type   Message"
709 			 "                Data\n");
710 	else
711 		seq_printf(seq, "%08x%08x  %4x  %08x  %08x%08x%08x%08x\n",
712 			   p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
713 	return 0;
714 }
715 
716 static int ulprx_la_open(struct inode *inode, struct file *file)
717 {
718 	struct seq_tab *p;
719 	struct adapter *adap = inode->i_private;
720 
721 	p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
722 			 ulprx_la_show);
723 	if (!p)
724 		return -ENOMEM;
725 
726 	t4_ulprx_read_la(adap, (u32 *)p->data);
727 	return 0;
728 }
729 
730 static const struct file_operations ulprx_la_fops = {
731 	.owner   = THIS_MODULE,
732 	.open    = ulprx_la_open,
733 	.read    = seq_read,
734 	.llseek  = seq_lseek,
735 	.release = seq_release_private
736 };
737 
738 /* Show the PM memory stats.  These stats include:
739  *
740  * TX:
741  *   Read: memory read operation
742  *   Write Bypass: cut-through
743  *   Bypass + mem: cut-through and save copy
744  *
745  * RX:
746  *   Read: memory read
747  *   Write Bypass: cut-through
748  *   Flush: payload trim or drop
749  */
750 static int pm_stats_show(struct seq_file *seq, void *v)
751 {
752 	static const char * const tx_pm_stats[] = {
753 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
754 	};
755 	static const char * const rx_pm_stats[] = {
756 		"Read:", "Write bypass:", "Write mem:", "Flush:"
757 	};
758 
759 	int i;
760 	u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS];
761 	u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS];
762 	struct adapter *adap = seq->private;
763 
764 	t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
765 	t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
766 
767 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Tx pcmds", "Tx bytes");
768 	for (i = 0; i < PM_NSTATS - 1; i++)
769 		seq_printf(seq, "%-13s %10u  %20llu\n",
770 			   tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
771 
772 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Rx pcmds", "Rx bytes");
773 	for (i = 0; i < PM_NSTATS - 1; i++)
774 		seq_printf(seq, "%-13s %10u  %20llu\n",
775 			   rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
776 
777 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
778 		/* In T5 the granularity of the total wait is too fine.
779 		 * It is not useful as it reaches the max value too fast.
780 		 * Hence display this Input FIFO wait for T6 onwards.
781 		 */
782 		seq_printf(seq, "%13s %10s  %20s\n",
783 			   " ", "Total wait", "Total Occupancy");
784 		seq_printf(seq, "Tx FIFO wait  %10u  %20llu\n",
785 			   tx_cnt[i], tx_cyc[i]);
786 		seq_printf(seq, "Rx FIFO wait  %10u  %20llu\n",
787 			   rx_cnt[i], rx_cyc[i]);
788 
789 		/* Skip index 6 as there is nothing useful ihere */
790 		i += 2;
791 
792 		/* At index 7, a new stat for read latency (count, total wait)
793 		 * is added.
794 		 */
795 		seq_printf(seq, "%13s %10s  %20s\n",
796 			   " ", "Reads", "Total wait");
797 		seq_printf(seq, "Tx latency    %10u  %20llu\n",
798 			   tx_cnt[i], tx_cyc[i]);
799 		seq_printf(seq, "Rx latency    %10u  %20llu\n",
800 			   rx_cnt[i], rx_cyc[i]);
801 	}
802 	return 0;
803 }
804 
805 static int pm_stats_open(struct inode *inode, struct file *file)
806 {
807 	return single_open(file, pm_stats_show, inode->i_private);
808 }
809 
810 static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
811 			      size_t count, loff_t *pos)
812 {
813 	struct adapter *adap = file_inode(file)->i_private;
814 
815 	t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
816 	t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
817 	return count;
818 }
819 
820 static const struct file_operations pm_stats_debugfs_fops = {
821 	.owner   = THIS_MODULE,
822 	.open    = pm_stats_open,
823 	.read    = seq_read,
824 	.llseek  = seq_lseek,
825 	.release = single_release,
826 	.write   = pm_stats_clear
827 };
828 
829 static int tx_rate_show(struct seq_file *seq, void *v)
830 {
831 	u64 nrate[NCHAN], orate[NCHAN];
832 	struct adapter *adap = seq->private;
833 
834 	t4_get_chan_txrate(adap, nrate, orate);
835 	if (adap->params.arch.nchan == NCHAN) {
836 		seq_puts(seq, "              channel 0   channel 1   "
837 			 "channel 2   channel 3\n");
838 		seq_printf(seq, "NIC B/s:     %10llu  %10llu  %10llu  %10llu\n",
839 			   (unsigned long long)nrate[0],
840 			   (unsigned long long)nrate[1],
841 			   (unsigned long long)nrate[2],
842 			   (unsigned long long)nrate[3]);
843 		seq_printf(seq, "Offload B/s: %10llu  %10llu  %10llu  %10llu\n",
844 			   (unsigned long long)orate[0],
845 			   (unsigned long long)orate[1],
846 			   (unsigned long long)orate[2],
847 			   (unsigned long long)orate[3]);
848 	} else {
849 		seq_puts(seq, "              channel 0   channel 1\n");
850 		seq_printf(seq, "NIC B/s:     %10llu  %10llu\n",
851 			   (unsigned long long)nrate[0],
852 			   (unsigned long long)nrate[1]);
853 		seq_printf(seq, "Offload B/s: %10llu  %10llu\n",
854 			   (unsigned long long)orate[0],
855 			   (unsigned long long)orate[1]);
856 	}
857 	return 0;
858 }
859 
860 DEFINE_SIMPLE_DEBUGFS_FILE(tx_rate);
861 
862 static int cctrl_tbl_show(struct seq_file *seq, void *v)
863 {
864 	static const char * const dec_fac[] = {
865 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
866 		"0.9375" };
867 
868 	int i;
869 	u16 (*incr)[NCCTRL_WIN];
870 	struct adapter *adap = seq->private;
871 
872 	incr = kmalloc(sizeof(*incr) * NMTUS, GFP_KERNEL);
873 	if (!incr)
874 		return -ENOMEM;
875 
876 	t4_read_cong_tbl(adap, incr);
877 
878 	for (i = 0; i < NCCTRL_WIN; ++i) {
879 		seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
880 			   incr[0][i], incr[1][i], incr[2][i], incr[3][i],
881 			   incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
882 		seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
883 			   incr[8][i], incr[9][i], incr[10][i], incr[11][i],
884 			   incr[12][i], incr[13][i], incr[14][i], incr[15][i],
885 			   adap->params.a_wnd[i],
886 			   dec_fac[adap->params.b_wnd[i]]);
887 	}
888 
889 	kfree(incr);
890 	return 0;
891 }
892 
893 DEFINE_SIMPLE_DEBUGFS_FILE(cctrl_tbl);
894 
895 /* Format a value in a unit that differs from the value's native unit by the
896  * given factor.
897  */
898 static char *unit_conv(char *buf, size_t len, unsigned int val,
899 		       unsigned int factor)
900 {
901 	unsigned int rem = val % factor;
902 
903 	if (rem == 0) {
904 		snprintf(buf, len, "%u", val / factor);
905 	} else {
906 		while (rem % 10 == 0)
907 			rem /= 10;
908 		snprintf(buf, len, "%u.%u", val / factor, rem);
909 	}
910 	return buf;
911 }
912 
913 static int clk_show(struct seq_file *seq, void *v)
914 {
915 	char buf[32];
916 	struct adapter *adap = seq->private;
917 	unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk;  /* in ps */
918 	u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
919 	unsigned int tre = TIMERRESOLUTION_G(res);
920 	unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
921 	unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
922 
923 	seq_printf(seq, "Core clock period: %s ns\n",
924 		   unit_conv(buf, sizeof(buf), cclk_ps, 1000));
925 	seq_printf(seq, "TP timer tick: %s us\n",
926 		   unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
927 	seq_printf(seq, "TCP timestamp tick: %s us\n",
928 		   unit_conv(buf, sizeof(buf),
929 			     (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
930 	seq_printf(seq, "DACK tick: %s us\n",
931 		   unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
932 	seq_printf(seq, "DACK timer: %u us\n",
933 		   ((cclk_ps << dack_re) / 1000000) *
934 		   t4_read_reg(adap, TP_DACK_TIMER_A));
935 	seq_printf(seq, "Retransmit min: %llu us\n",
936 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
937 	seq_printf(seq, "Retransmit max: %llu us\n",
938 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
939 	seq_printf(seq, "Persist timer min: %llu us\n",
940 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
941 	seq_printf(seq, "Persist timer max: %llu us\n",
942 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
943 	seq_printf(seq, "Keepalive idle timer: %llu us\n",
944 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
945 	seq_printf(seq, "Keepalive interval: %llu us\n",
946 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
947 	seq_printf(seq, "Initial SRTT: %llu us\n",
948 		   tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
949 	seq_printf(seq, "FINWAIT2 timer: %llu us\n",
950 		   tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
951 
952 	return 0;
953 }
954 
955 DEFINE_SIMPLE_DEBUGFS_FILE(clk);
956 
957 /* Firmware Device Log dump. */
958 static const char * const devlog_level_strings[] = {
959 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
960 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
961 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
962 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
963 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
964 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
965 };
966 
967 static const char * const devlog_facility_strings[] = {
968 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
969 	[FW_DEVLOG_FACILITY_CF]         = "CF",
970 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
971 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
972 	[FW_DEVLOG_FACILITY_RES]	= "RES",
973 	[FW_DEVLOG_FACILITY_HW]		= "HW",
974 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
975 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
976 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
977 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
978 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
979 	[FW_DEVLOG_FACILITY_VI]		= "VI",
980 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
981 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
982 	[FW_DEVLOG_FACILITY_TM]		= "TM",
983 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
984 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
985 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
986 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
987 	[FW_DEVLOG_FACILITY_RI]		= "RI",
988 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
989 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
990 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
991 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE"
992 };
993 
994 /* Information gathered by Device Log Open routine for the display routine.
995  */
996 struct devlog_info {
997 	unsigned int nentries;		/* number of entries in log[] */
998 	unsigned int first;		/* first [temporal] entry in log[] */
999 	struct fw_devlog_e log[0];	/* Firmware Device Log */
1000 };
1001 
1002 /* Dump a Firmaware Device Log entry.
1003  */
1004 static int devlog_show(struct seq_file *seq, void *v)
1005 {
1006 	if (v == SEQ_START_TOKEN)
1007 		seq_printf(seq, "%10s  %15s  %8s  %8s  %s\n",
1008 			   "Seq#", "Tstamp", "Level", "Facility", "Message");
1009 	else {
1010 		struct devlog_info *dinfo = seq->private;
1011 		int fidx = (uintptr_t)v - 2;
1012 		unsigned long index;
1013 		struct fw_devlog_e *e;
1014 
1015 		/* Get a pointer to the log entry to display.  Skip unused log
1016 		 * entries.
1017 		 */
1018 		index = dinfo->first + fidx;
1019 		if (index >= dinfo->nentries)
1020 			index -= dinfo->nentries;
1021 		e = &dinfo->log[index];
1022 		if (e->timestamp == 0)
1023 			return 0;
1024 
1025 		/* Print the message.  This depends on the firmware using
1026 		 * exactly the same formating strings as the kernel so we may
1027 		 * eventually have to put a format interpreter in here ...
1028 		 */
1029 		seq_printf(seq, "%10d  %15llu  %8s  %8s  ",
1030 			   be32_to_cpu(e->seqno),
1031 			   be64_to_cpu(e->timestamp),
1032 			   (e->level < ARRAY_SIZE(devlog_level_strings)
1033 			    ? devlog_level_strings[e->level]
1034 			    : "UNKNOWN"),
1035 			   (e->facility < ARRAY_SIZE(devlog_facility_strings)
1036 			    ? devlog_facility_strings[e->facility]
1037 			    : "UNKNOWN"));
1038 		seq_printf(seq, e->fmt,
1039 			   be32_to_cpu(e->params[0]),
1040 			   be32_to_cpu(e->params[1]),
1041 			   be32_to_cpu(e->params[2]),
1042 			   be32_to_cpu(e->params[3]),
1043 			   be32_to_cpu(e->params[4]),
1044 			   be32_to_cpu(e->params[5]),
1045 			   be32_to_cpu(e->params[6]),
1046 			   be32_to_cpu(e->params[7]));
1047 	}
1048 	return 0;
1049 }
1050 
1051 /* Sequential File Operations for Device Log.
1052  */
1053 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
1054 {
1055 	if (pos > dinfo->nentries)
1056 		return NULL;
1057 
1058 	return (void *)(uintptr_t)(pos + 1);
1059 }
1060 
1061 static void *devlog_start(struct seq_file *seq, loff_t *pos)
1062 {
1063 	struct devlog_info *dinfo = seq->private;
1064 
1065 	return (*pos
1066 		? devlog_get_idx(dinfo, *pos)
1067 		: SEQ_START_TOKEN);
1068 }
1069 
1070 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
1071 {
1072 	struct devlog_info *dinfo = seq->private;
1073 
1074 	(*pos)++;
1075 	return devlog_get_idx(dinfo, *pos);
1076 }
1077 
1078 static void devlog_stop(struct seq_file *seq, void *v)
1079 {
1080 }
1081 
1082 static const struct seq_operations devlog_seq_ops = {
1083 	.start = devlog_start,
1084 	.next  = devlog_next,
1085 	.stop  = devlog_stop,
1086 	.show  = devlog_show
1087 };
1088 
1089 /* Set up for reading the firmware's device log.  We read the entire log here
1090  * and then display it incrementally in devlog_show().
1091  */
1092 static int devlog_open(struct inode *inode, struct file *file)
1093 {
1094 	struct adapter *adap = inode->i_private;
1095 	struct devlog_params *dparams = &adap->params.devlog;
1096 	struct devlog_info *dinfo;
1097 	unsigned int index;
1098 	u32 fseqno;
1099 	int ret;
1100 
1101 	/* If we don't know where the log is we can't do anything.
1102 	 */
1103 	if (dparams->start == 0)
1104 		return -ENXIO;
1105 
1106 	/* Allocate the space to read in the firmware's device log and set up
1107 	 * for the iterated call to our display function.
1108 	 */
1109 	dinfo = __seq_open_private(file, &devlog_seq_ops,
1110 				   sizeof(*dinfo) + dparams->size);
1111 	if (!dinfo)
1112 		return -ENOMEM;
1113 
1114 	/* Record the basic log buffer information and read in the raw log.
1115 	 */
1116 	dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
1117 	dinfo->first = 0;
1118 	spin_lock(&adap->win0_lock);
1119 	ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
1120 			   dparams->start, dparams->size, (__be32 *)dinfo->log,
1121 			   T4_MEMORY_READ);
1122 	spin_unlock(&adap->win0_lock);
1123 	if (ret) {
1124 		seq_release_private(inode, file);
1125 		return ret;
1126 	}
1127 
1128 	/* Find the earliest (lowest Sequence Number) log entry in the
1129 	 * circular Device Log.
1130 	 */
1131 	for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
1132 		struct fw_devlog_e *e = &dinfo->log[index];
1133 		__u32 seqno;
1134 
1135 		if (e->timestamp == 0)
1136 			continue;
1137 
1138 		seqno = be32_to_cpu(e->seqno);
1139 		if (seqno < fseqno) {
1140 			fseqno = seqno;
1141 			dinfo->first = index;
1142 		}
1143 	}
1144 	return 0;
1145 }
1146 
1147 static const struct file_operations devlog_fops = {
1148 	.owner   = THIS_MODULE,
1149 	.open    = devlog_open,
1150 	.read    = seq_read,
1151 	.llseek  = seq_lseek,
1152 	.release = seq_release_private
1153 };
1154 
1155 static int mbox_show(struct seq_file *seq, void *v)
1156 {
1157 	static const char * const owner[] = { "none", "FW", "driver",
1158 					      "unknown", "<unread>" };
1159 
1160 	int i;
1161 	unsigned int mbox = (uintptr_t)seq->private & 7;
1162 	struct adapter *adap = seq->private - mbox;
1163 	void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1164 
1165 	/* For T4 we don't have a shadow copy of the Mailbox Control register.
1166 	 * And since reading that real register causes a side effect of
1167 	 * granting ownership, we're best of simply not reading it at all.
1168 	 */
1169 	if (is_t4(adap->params.chip)) {
1170 		i = 4; /* index of "<unread>" */
1171 	} else {
1172 		unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A;
1173 		void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
1174 
1175 		i = MBOWNER_G(readl(ctrl));
1176 	}
1177 
1178 	seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
1179 
1180 	for (i = 0; i < MBOX_LEN; i += 8)
1181 		seq_printf(seq, "%016llx\n",
1182 			   (unsigned long long)readq(addr + i));
1183 	return 0;
1184 }
1185 
1186 static int mbox_open(struct inode *inode, struct file *file)
1187 {
1188 	return single_open(file, mbox_show, inode->i_private);
1189 }
1190 
1191 static ssize_t mbox_write(struct file *file, const char __user *buf,
1192 			  size_t count, loff_t *pos)
1193 {
1194 	int i;
1195 	char c = '\n', s[256];
1196 	unsigned long long data[8];
1197 	const struct inode *ino;
1198 	unsigned int mbox;
1199 	struct adapter *adap;
1200 	void __iomem *addr;
1201 	void __iomem *ctrl;
1202 
1203 	if (count > sizeof(s) - 1 || !count)
1204 		return -EINVAL;
1205 	if (copy_from_user(s, buf, count))
1206 		return -EFAULT;
1207 	s[count] = '\0';
1208 
1209 	if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
1210 		   &data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
1211 		   &data[7], &c) < 8 || c != '\n')
1212 		return -EINVAL;
1213 
1214 	ino = file_inode(file);
1215 	mbox = (uintptr_t)ino->i_private & 7;
1216 	adap = ino->i_private - mbox;
1217 	addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1218 	ctrl = addr + MBOX_LEN;
1219 
1220 	if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
1221 		return -EBUSY;
1222 
1223 	for (i = 0; i < 8; i++)
1224 		writeq(data[i], addr + 8 * i);
1225 
1226 	writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
1227 	return count;
1228 }
1229 
1230 static const struct file_operations mbox_debugfs_fops = {
1231 	.owner   = THIS_MODULE,
1232 	.open    = mbox_open,
1233 	.read    = seq_read,
1234 	.llseek  = seq_lseek,
1235 	.release = single_release,
1236 	.write   = mbox_write
1237 };
1238 
1239 static int mps_trc_show(struct seq_file *seq, void *v)
1240 {
1241 	int enabled, i;
1242 	struct trace_params tp;
1243 	unsigned int trcidx = (uintptr_t)seq->private & 3;
1244 	struct adapter *adap = seq->private - trcidx;
1245 
1246 	t4_get_trace_filter(adap, &tp, trcidx, &enabled);
1247 	if (!enabled) {
1248 		seq_puts(seq, "tracer is disabled\n");
1249 		return 0;
1250 	}
1251 
1252 	if (tp.skip_ofst * 8 >= TRACE_LEN) {
1253 		dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
1254 		return -EINVAL;
1255 	}
1256 	if (tp.port < 8) {
1257 		i = adap->chan_map[tp.port & 3];
1258 		if (i >= MAX_NPORTS) {
1259 			dev_err(adap->pdev_dev, "tracer %u is assigned "
1260 				"to non-existing port\n", trcidx);
1261 			return -EINVAL;
1262 		}
1263 		seq_printf(seq, "tracer is capturing %s %s, ",
1264 			   adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
1265 	} else
1266 		seq_printf(seq, "tracer is capturing loopback %d, ",
1267 			   tp.port - 8);
1268 	seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
1269 		   tp.min_len);
1270 	seq_printf(seq, "packets captured %smatch filter\n",
1271 		   tp.invert ? "do not " : "");
1272 
1273 	if (tp.skip_ofst) {
1274 		seq_puts(seq, "filter pattern: ");
1275 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1276 			seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1277 		seq_putc(seq, '/');
1278 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1279 			seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1280 		seq_puts(seq, "@0\n");
1281 	}
1282 
1283 	seq_puts(seq, "filter pattern: ");
1284 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1285 		seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1286 	seq_putc(seq, '/');
1287 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1288 		seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1289 	seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
1290 	return 0;
1291 }
1292 
1293 static int mps_trc_open(struct inode *inode, struct file *file)
1294 {
1295 	return single_open(file, mps_trc_show, inode->i_private);
1296 }
1297 
1298 static unsigned int xdigit2int(unsigned char c)
1299 {
1300 	return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
1301 }
1302 
1303 #define TRC_PORT_NONE 0xff
1304 #define TRC_RSS_ENABLE 0x33
1305 #define TRC_RSS_DISABLE 0x13
1306 
1307 /* Set an MPS trace filter.  Syntax is:
1308  *
1309  * disable
1310  *
1311  * to disable tracing, or
1312  *
1313  * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
1314  *
1315  * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
1316  * of the NIC's response qid obtained from sge_qinfo and pattern has the form
1317  *
1318  * <pattern data>[/<pattern mask>][@<anchor>]
1319  *
1320  * Up to 2 filter patterns can be specified.  If 2 are supplied the first one
1321  * must be anchored at 0.  An omited mask is taken as a mask of 1s, an omitted
1322  * anchor is taken as 0.
1323  */
1324 static ssize_t mps_trc_write(struct file *file, const char __user *buf,
1325 			     size_t count, loff_t *pos)
1326 {
1327 	int i, enable, ret;
1328 	u32 *data, *mask;
1329 	struct trace_params tp;
1330 	const struct inode *ino;
1331 	unsigned int trcidx;
1332 	char *s, *p, *word, *end;
1333 	struct adapter *adap;
1334 	u32 j;
1335 
1336 	ino = file_inode(file);
1337 	trcidx = (uintptr_t)ino->i_private & 3;
1338 	adap = ino->i_private - trcidx;
1339 
1340 	/* Don't accept input more than 1K, can't be anything valid except lots
1341 	 * of whitespace.  Well, use less.
1342 	 */
1343 	if (count > 1024)
1344 		return -EFBIG;
1345 	p = s = kzalloc(count + 1, GFP_USER);
1346 	if (!s)
1347 		return -ENOMEM;
1348 	if (copy_from_user(s, buf, count)) {
1349 		count = -EFAULT;
1350 		goto out;
1351 	}
1352 
1353 	if (s[count - 1] == '\n')
1354 		s[count - 1] = '\0';
1355 
1356 	enable = strcmp("disable", s) != 0;
1357 	if (!enable)
1358 		goto apply;
1359 
1360 	/* enable or disable trace multi rss filter */
1361 	if (adap->trace_rss)
1362 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
1363 	else
1364 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
1365 
1366 	memset(&tp, 0, sizeof(tp));
1367 	tp.port = TRC_PORT_NONE;
1368 	i = 0;	/* counts pattern nibbles */
1369 
1370 	while (p) {
1371 		while (isspace(*p))
1372 			p++;
1373 		word = strsep(&p, " ");
1374 		if (!*word)
1375 			break;
1376 
1377 		if (!strncmp(word, "qid=", 4)) {
1378 			end = (char *)word + 4;
1379 			ret = kstrtouint(end, 10, &j);
1380 			if (ret)
1381 				goto out;
1382 			if (!adap->trace_rss) {
1383 				t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
1384 				continue;
1385 			}
1386 
1387 			switch (trcidx) {
1388 			case 0:
1389 				t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
1390 				break;
1391 			case 1:
1392 				t4_write_reg(adap,
1393 					     MPS_TRC_FILTER1_RSS_CONTROL_A, j);
1394 				break;
1395 			case 2:
1396 				t4_write_reg(adap,
1397 					     MPS_TRC_FILTER2_RSS_CONTROL_A, j);
1398 				break;
1399 			case 3:
1400 				t4_write_reg(adap,
1401 					     MPS_TRC_FILTER3_RSS_CONTROL_A, j);
1402 				break;
1403 			}
1404 			continue;
1405 		}
1406 		if (!strncmp(word, "snaplen=", 8)) {
1407 			end = (char *)word + 8;
1408 			ret = kstrtouint(end, 10, &j);
1409 			if (ret || j > 9600) {
1410 inval:				count = -EINVAL;
1411 				goto out;
1412 			}
1413 			tp.snap_len = j;
1414 			continue;
1415 		}
1416 		if (!strncmp(word, "minlen=", 7)) {
1417 			end = (char *)word + 7;
1418 			ret = kstrtouint(end, 10, &j);
1419 			if (ret || j > TFMINPKTSIZE_M)
1420 				goto inval;
1421 			tp.min_len = j;
1422 			continue;
1423 		}
1424 		if (!strcmp(word, "not")) {
1425 			tp.invert = !tp.invert;
1426 			continue;
1427 		}
1428 		if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
1429 			if (word[8] < '0' || word[8] > '3' || word[9])
1430 				goto inval;
1431 			tp.port = word[8] - '0' + 8;
1432 			continue;
1433 		}
1434 		if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
1435 			if (word[2] < '0' || word[2] > '3' || word[3])
1436 				goto inval;
1437 			tp.port = word[2] - '0' + 4;
1438 			if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
1439 				goto inval;
1440 			continue;
1441 		}
1442 		if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
1443 			if (word[2] < '0' || word[2] > '3' || word[3])
1444 				goto inval;
1445 			tp.port = word[2] - '0';
1446 			if (adap->chan_map[tp.port] >= MAX_NPORTS)
1447 				goto inval;
1448 			continue;
1449 		}
1450 		if (!isxdigit(*word))
1451 			goto inval;
1452 
1453 		/* we have found a trace pattern */
1454 		if (i) {                            /* split pattern */
1455 			if (tp.skip_len)            /* too many splits */
1456 				goto inval;
1457 			tp.skip_ofst = i / 16;
1458 		}
1459 
1460 		data = &tp.data[i / 8];
1461 		mask = &tp.mask[i / 8];
1462 		j = i;
1463 
1464 		while (isxdigit(*word)) {
1465 			if (i >= TRACE_LEN * 2) {
1466 				count = -EFBIG;
1467 				goto out;
1468 			}
1469 			*data = (*data << 4) + xdigit2int(*word++);
1470 			if (++i % 8 == 0)
1471 				data++;
1472 		}
1473 		if (*word == '/') {
1474 			word++;
1475 			while (isxdigit(*word)) {
1476 				if (j >= i)         /* mask longer than data */
1477 					goto inval;
1478 				*mask = (*mask << 4) + xdigit2int(*word++);
1479 				if (++j % 8 == 0)
1480 					mask++;
1481 			}
1482 			if (i != j)                 /* mask shorter than data */
1483 				goto inval;
1484 		} else {                            /* no mask, use all 1s */
1485 			for ( ; i - j >= 8; j += 8)
1486 				*mask++ = 0xffffffff;
1487 			if (i % 8)
1488 				*mask = (1 << (i % 8) * 4) - 1;
1489 		}
1490 		if (*word == '@') {
1491 			end = (char *)word + 1;
1492 			ret = kstrtouint(end, 10, &j);
1493 			if (*end && *end != '\n')
1494 				goto inval;
1495 			if (j & 7)          /* doesn't start at multiple of 8 */
1496 				goto inval;
1497 			j /= 8;
1498 			if (j < tp.skip_ofst)     /* overlaps earlier pattern */
1499 				goto inval;
1500 			if (j - tp.skip_ofst > 31)            /* skip too big */
1501 				goto inval;
1502 			tp.skip_len = j - tp.skip_ofst;
1503 		}
1504 		if (i % 8) {
1505 			*data <<= (8 - i % 8) * 4;
1506 			*mask <<= (8 - i % 8) * 4;
1507 			i = (i + 15) & ~15;         /* 8-byte align */
1508 		}
1509 	}
1510 
1511 	if (tp.port == TRC_PORT_NONE)
1512 		goto inval;
1513 
1514 apply:
1515 	i = t4_set_trace_filter(adap, &tp, trcidx, enable);
1516 	if (i)
1517 		count = i;
1518 out:
1519 	kfree(s);
1520 	return count;
1521 }
1522 
1523 static const struct file_operations mps_trc_debugfs_fops = {
1524 	.owner   = THIS_MODULE,
1525 	.open    = mps_trc_open,
1526 	.read    = seq_read,
1527 	.llseek  = seq_lseek,
1528 	.release = single_release,
1529 	.write   = mps_trc_write
1530 };
1531 
1532 static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
1533 			  loff_t *ppos)
1534 {
1535 	loff_t pos = *ppos;
1536 	loff_t avail = file_inode(file)->i_size;
1537 	struct adapter *adap = file->private_data;
1538 
1539 	if (pos < 0)
1540 		return -EINVAL;
1541 	if (pos >= avail)
1542 		return 0;
1543 	if (count > avail - pos)
1544 		count = avail - pos;
1545 
1546 	while (count) {
1547 		size_t len;
1548 		int ret, ofst;
1549 		u8 data[256];
1550 
1551 		ofst = pos & 3;
1552 		len = min(count + ofst, sizeof(data));
1553 		ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
1554 				    (u32 *)data, 1);
1555 		if (ret)
1556 			return ret;
1557 
1558 		len -= ofst;
1559 		if (copy_to_user(buf, data + ofst, len))
1560 			return -EFAULT;
1561 
1562 		buf += len;
1563 		pos += len;
1564 		count -= len;
1565 	}
1566 	count = pos - *ppos;
1567 	*ppos = pos;
1568 	return count;
1569 }
1570 
1571 static const struct file_operations flash_debugfs_fops = {
1572 	.owner   = THIS_MODULE,
1573 	.open    = mem_open,
1574 	.read    = flash_read,
1575 };
1576 
1577 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
1578 {
1579 	*mask = x | y;
1580 	y = (__force u64)cpu_to_be64(y);
1581 	memcpy(addr, (char *)&y + 2, ETH_ALEN);
1582 }
1583 
1584 static int mps_tcam_show(struct seq_file *seq, void *v)
1585 {
1586 	struct adapter *adap = seq->private;
1587 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1588 	if (v == SEQ_START_TOKEN) {
1589 		if (chip_ver > CHELSIO_T5) {
1590 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1591 				 "  VNI   Mask   IVLAN Vld "
1592 				 "DIP_Hit   Lookup  Port "
1593 				 "Vld Ports PF  VF                           "
1594 				 "Replication                                "
1595 				 "    P0 P1 P2 P3  ML\n");
1596 		} else {
1597 			if (adap->params.arch.mps_rplc_size > 128)
1598 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1599 					 "Vld Ports PF  VF                           "
1600 					 "Replication                                "
1601 					 "    P0 P1 P2 P3  ML\n");
1602 			else
1603 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1604 					 "Vld Ports PF  VF              Replication"
1605 					 "	         P0 P1 P2 P3  ML\n");
1606 		}
1607 	} else {
1608 		u64 mask;
1609 		u8 addr[ETH_ALEN];
1610 		bool replicate, dip_hit = false, vlan_vld = false;
1611 		unsigned int idx = (uintptr_t)v - 2;
1612 		u64 tcamy, tcamx, val;
1613 		u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0;
1614 		u32 rplc[8] = {0};
1615 		u8 lookup_type = 0, port_num = 0;
1616 		u16 ivlan = 0;
1617 
1618 		if (chip_ver > CHELSIO_T5) {
1619 			/* CtlCmdType - 0: Read, 1: Write
1620 			 * CtlTcamSel - 0: TCAM0, 1: TCAM1
1621 			 * CtlXYBitSel- 0: Y bit, 1: X bit
1622 			 */
1623 
1624 			/* Read tcamy */
1625 			ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
1626 			if (idx < 256)
1627 				ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
1628 			else
1629 				ctl |= CTLTCAMINDEX_V(idx - 256) |
1630 				       CTLTCAMSEL_V(1);
1631 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1632 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1633 			tcamy = DMACH_G(val) << 32;
1634 			tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1635 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1636 			lookup_type = DATALKPTYPE_G(data2);
1637 			/* 0 - Outer header, 1 - Inner header
1638 			 * [71:48] bit locations are overloaded for
1639 			 * outer vs. inner lookup types.
1640 			 */
1641 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1642 				/* Inner header VNI */
1643 				vniy = ((data2 & DATAVIDH2_F) << 23) |
1644 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1645 				dip_hit = data2 & DATADIPHIT_F;
1646 			} else {
1647 				vlan_vld = data2 & DATAVIDH2_F;
1648 				ivlan = VIDL_G(val);
1649 			}
1650 			port_num = DATAPORTNUM_G(data2);
1651 
1652 			/* Read tcamx. Change the control param */
1653 			ctl |= CTLXYBITSEL_V(1);
1654 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1655 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1656 			tcamx = DMACH_G(val) << 32;
1657 			tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1658 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1659 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1660 				/* Inner header VNI mask */
1661 				vnix = ((data2 & DATAVIDH2_F) << 23) |
1662 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1663 			}
1664 		} else {
1665 			tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
1666 			tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
1667 		}
1668 
1669 		cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
1670 		cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
1671 
1672 		if (tcamx & tcamy) {
1673 			seq_printf(seq, "%3u         -\n", idx);
1674 			goto out;
1675 		}
1676 
1677 		rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
1678 		if (chip_ver > CHELSIO_T5)
1679 			replicate = (cls_lo & T6_REPLICATE_F);
1680 		else
1681 			replicate = (cls_lo & REPLICATE_F);
1682 
1683 		if (replicate) {
1684 			struct fw_ldst_cmd ldst_cmd;
1685 			int ret;
1686 			struct fw_ldst_mps_rplc mps_rplc;
1687 			u32 ldst_addrspc;
1688 
1689 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
1690 			ldst_addrspc =
1691 				FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
1692 			ldst_cmd.op_to_addrspace =
1693 				htonl(FW_CMD_OP_V(FW_LDST_CMD) |
1694 				      FW_CMD_REQUEST_F |
1695 				      FW_CMD_READ_F |
1696 				      ldst_addrspc);
1697 			ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
1698 			ldst_cmd.u.mps.rplc.fid_idx =
1699 				htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
1700 				      FW_LDST_CMD_IDX_V(idx));
1701 			ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
1702 					 sizeof(ldst_cmd), &ldst_cmd);
1703 			if (ret)
1704 				dev_warn(adap->pdev_dev, "Can't read MPS "
1705 					 "replication map for idx %d: %d\n",
1706 					 idx, -ret);
1707 			else {
1708 				mps_rplc = ldst_cmd.u.mps.rplc;
1709 				rplc[0] = ntohl(mps_rplc.rplc31_0);
1710 				rplc[1] = ntohl(mps_rplc.rplc63_32);
1711 				rplc[2] = ntohl(mps_rplc.rplc95_64);
1712 				rplc[3] = ntohl(mps_rplc.rplc127_96);
1713 				if (adap->params.arch.mps_rplc_size > 128) {
1714 					rplc[4] = ntohl(mps_rplc.rplc159_128);
1715 					rplc[5] = ntohl(mps_rplc.rplc191_160);
1716 					rplc[6] = ntohl(mps_rplc.rplc223_192);
1717 					rplc[7] = ntohl(mps_rplc.rplc255_224);
1718 				}
1719 			}
1720 		}
1721 
1722 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
1723 		if (chip_ver > CHELSIO_T5) {
1724 			/* Inner header lookup */
1725 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1726 				seq_printf(seq,
1727 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1728 					   "%012llx %06x %06x    -    -   %3c"
1729 					   "      'I'  %4x   "
1730 					   "%3c   %#x%4u%4d", idx, addr[0],
1731 					   addr[1], addr[2], addr[3],
1732 					   addr[4], addr[5],
1733 					   (unsigned long long)mask,
1734 					   vniy, vnix, dip_hit ? 'Y' : 'N',
1735 					   port_num,
1736 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1737 					   PORTMAP_G(cls_hi),
1738 					   T6_PF_G(cls_lo),
1739 					   (cls_lo & T6_VF_VALID_F) ?
1740 					   T6_VF_G(cls_lo) : -1);
1741 			} else {
1742 				seq_printf(seq,
1743 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1744 					   "%012llx    -       -   ",
1745 					   idx, addr[0], addr[1], addr[2],
1746 					   addr[3], addr[4], addr[5],
1747 					   (unsigned long long)mask);
1748 
1749 				if (vlan_vld)
1750 					seq_printf(seq, "%4u   Y     ", ivlan);
1751 				else
1752 					seq_puts(seq, "  -    N     ");
1753 
1754 				seq_printf(seq,
1755 					   "-      %3c  %4x   %3c   %#x%4u%4d",
1756 					   lookup_type ? 'I' : 'O', port_num,
1757 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1758 					   PORTMAP_G(cls_hi),
1759 					   T6_PF_G(cls_lo),
1760 					   (cls_lo & T6_VF_VALID_F) ?
1761 					   T6_VF_G(cls_lo) : -1);
1762 			}
1763 		} else
1764 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1765 				   "%012llx%3c   %#x%4u%4d",
1766 				   idx, addr[0], addr[1], addr[2], addr[3],
1767 				   addr[4], addr[5], (unsigned long long)mask,
1768 				   (cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
1769 				   PORTMAP_G(cls_hi),
1770 				   PF_G(cls_lo),
1771 				   (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
1772 
1773 		if (replicate) {
1774 			if (adap->params.arch.mps_rplc_size > 128)
1775 				seq_printf(seq, " %08x %08x %08x %08x "
1776 					   "%08x %08x %08x %08x",
1777 					   rplc[7], rplc[6], rplc[5], rplc[4],
1778 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1779 			else
1780 				seq_printf(seq, " %08x %08x %08x %08x",
1781 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1782 		} else {
1783 			if (adap->params.arch.mps_rplc_size > 128)
1784 				seq_printf(seq, "%72c", ' ');
1785 			else
1786 				seq_printf(seq, "%36c", ' ');
1787 		}
1788 
1789 		if (chip_ver > CHELSIO_T5)
1790 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1791 				   T6_SRAM_PRIO0_G(cls_lo),
1792 				   T6_SRAM_PRIO1_G(cls_lo),
1793 				   T6_SRAM_PRIO2_G(cls_lo),
1794 				   T6_SRAM_PRIO3_G(cls_lo),
1795 				   (cls_lo >> T6_MULTILISTEN0_S) & 0xf);
1796 		else
1797 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1798 				   SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
1799 				   SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
1800 				   (cls_lo >> MULTILISTEN0_S) & 0xf);
1801 	}
1802 out:	return 0;
1803 }
1804 
1805 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
1806 {
1807 	struct adapter *adap = seq->private;
1808 	int max_mac_addr = is_t4(adap->params.chip) ?
1809 				NUM_MPS_CLS_SRAM_L_INSTANCES :
1810 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1811 	return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
1812 }
1813 
1814 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
1815 {
1816 	return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
1817 }
1818 
1819 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
1820 {
1821 	++*pos;
1822 	return mps_tcam_get_idx(seq, *pos);
1823 }
1824 
1825 static void mps_tcam_stop(struct seq_file *seq, void *v)
1826 {
1827 }
1828 
1829 static const struct seq_operations mps_tcam_seq_ops = {
1830 	.start = mps_tcam_start,
1831 	.next  = mps_tcam_next,
1832 	.stop  = mps_tcam_stop,
1833 	.show  = mps_tcam_show
1834 };
1835 
1836 static int mps_tcam_open(struct inode *inode, struct file *file)
1837 {
1838 	int res = seq_open(file, &mps_tcam_seq_ops);
1839 
1840 	if (!res) {
1841 		struct seq_file *seq = file->private_data;
1842 
1843 		seq->private = inode->i_private;
1844 	}
1845 	return res;
1846 }
1847 
1848 static const struct file_operations mps_tcam_debugfs_fops = {
1849 	.owner   = THIS_MODULE,
1850 	.open    = mps_tcam_open,
1851 	.read    = seq_read,
1852 	.llseek  = seq_lseek,
1853 	.release = seq_release,
1854 };
1855 
1856 /* Display various sensor information.
1857  */
1858 static int sensors_show(struct seq_file *seq, void *v)
1859 {
1860 	struct adapter *adap = seq->private;
1861 	u32 param[7], val[7];
1862 	int ret;
1863 
1864 	/* Note that if the sensors haven't been initialized and turned on
1865 	 * we'll get values of 0, so treat those as "<unknown>" ...
1866 	 */
1867 	param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1868 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1869 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
1870 	param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1871 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1872 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
1873 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1874 			      param, val);
1875 
1876 	if (ret < 0 || val[0] == 0)
1877 		seq_puts(seq, "Temperature: <unknown>\n");
1878 	else
1879 		seq_printf(seq, "Temperature: %dC\n", val[0]);
1880 
1881 	if (ret < 0 || val[1] == 0)
1882 		seq_puts(seq, "Core VDD:    <unknown>\n");
1883 	else
1884 		seq_printf(seq, "Core VDD:    %dmV\n", val[1]);
1885 
1886 	return 0;
1887 }
1888 
1889 DEFINE_SIMPLE_DEBUGFS_FILE(sensors);
1890 
1891 #if IS_ENABLED(CONFIG_IPV6)
1892 static int clip_tbl_open(struct inode *inode, struct file *file)
1893 {
1894 	return single_open(file, clip_tbl_show, inode->i_private);
1895 }
1896 
1897 static const struct file_operations clip_tbl_debugfs_fops = {
1898 	.owner   = THIS_MODULE,
1899 	.open    = clip_tbl_open,
1900 	.read    = seq_read,
1901 	.llseek  = seq_lseek,
1902 	.release = single_release
1903 };
1904 #endif
1905 
1906 /*RSS Table.
1907  */
1908 
1909 static int rss_show(struct seq_file *seq, void *v, int idx)
1910 {
1911 	u16 *entry = v;
1912 
1913 	seq_printf(seq, "%4d:  %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u\n",
1914 		   idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
1915 		   entry[5], entry[6], entry[7]);
1916 	return 0;
1917 }
1918 
1919 static int rss_open(struct inode *inode, struct file *file)
1920 {
1921 	int ret;
1922 	struct seq_tab *p;
1923 	struct adapter *adap = inode->i_private;
1924 
1925 	p = seq_open_tab(file, RSS_NENTRIES / 8, 8 * sizeof(u16), 0, rss_show);
1926 	if (!p)
1927 		return -ENOMEM;
1928 
1929 	ret = t4_read_rss(adap, (u16 *)p->data);
1930 	if (ret)
1931 		seq_release_private(inode, file);
1932 
1933 	return ret;
1934 }
1935 
1936 static const struct file_operations rss_debugfs_fops = {
1937 	.owner   = THIS_MODULE,
1938 	.open    = rss_open,
1939 	.read    = seq_read,
1940 	.llseek  = seq_lseek,
1941 	.release = seq_release_private
1942 };
1943 
1944 /* RSS Configuration.
1945  */
1946 
1947 /* Small utility function to return the strings "yes" or "no" if the supplied
1948  * argument is non-zero.
1949  */
1950 static const char *yesno(int x)
1951 {
1952 	static const char *yes = "yes";
1953 	static const char *no = "no";
1954 
1955 	return x ? yes : no;
1956 }
1957 
1958 static int rss_config_show(struct seq_file *seq, void *v)
1959 {
1960 	struct adapter *adapter = seq->private;
1961 	static const char * const keymode[] = {
1962 		"global",
1963 		"global and per-VF scramble",
1964 		"per-PF and per-VF scramble",
1965 		"per-VF and per-VF scramble",
1966 	};
1967 	u32 rssconf;
1968 
1969 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
1970 	seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
1971 	seq_printf(seq, "  Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
1972 							TNL4TUPENIPV6_F));
1973 	seq_printf(seq, "  Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
1974 							TNL2TUPENIPV6_F));
1975 	seq_printf(seq, "  Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
1976 							TNL4TUPENIPV4_F));
1977 	seq_printf(seq, "  Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
1978 							TNL2TUPENIPV4_F));
1979 	seq_printf(seq, "  TnlTcpSel:     %3s\n", yesno(rssconf & TNLTCPSEL_F));
1980 	seq_printf(seq, "  TnlIp6Sel:     %3s\n", yesno(rssconf & TNLIP6SEL_F));
1981 	seq_printf(seq, "  TnlVrtSel:     %3s\n", yesno(rssconf & TNLVRTSEL_F));
1982 	seq_printf(seq, "  TnlMapEn:      %3s\n", yesno(rssconf & TNLMAPEN_F));
1983 	seq_printf(seq, "  OfdHashSave:   %3s\n", yesno(rssconf &
1984 							OFDHASHSAVE_F));
1985 	seq_printf(seq, "  OfdVrtSel:     %3s\n", yesno(rssconf & OFDVRTSEL_F));
1986 	seq_printf(seq, "  OfdMapEn:      %3s\n", yesno(rssconf & OFDMAPEN_F));
1987 	seq_printf(seq, "  OfdLkpEn:      %3s\n", yesno(rssconf & OFDLKPEN_F));
1988 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1989 							SYN4TUPENIPV6_F));
1990 	seq_printf(seq, "  Syn2TupEnIpv6: %3s\n", yesno(rssconf &
1991 							SYN2TUPENIPV6_F));
1992 	seq_printf(seq, "  Syn4TupEnIpv4: %3s\n", yesno(rssconf &
1993 							SYN4TUPENIPV4_F));
1994 	seq_printf(seq, "  Syn2TupEnIpv4: %3s\n", yesno(rssconf &
1995 							SYN2TUPENIPV4_F));
1996 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1997 							SYN4TUPENIPV6_F));
1998 	seq_printf(seq, "  SynIp6Sel:     %3s\n", yesno(rssconf & SYNIP6SEL_F));
1999 	seq_printf(seq, "  SynVrt6Sel:    %3s\n", yesno(rssconf & SYNVRTSEL_F));
2000 	seq_printf(seq, "  SynMapEn:      %3s\n", yesno(rssconf & SYNMAPEN_F));
2001 	seq_printf(seq, "  SynLkpEn:      %3s\n", yesno(rssconf & SYNLKPEN_F));
2002 	seq_printf(seq, "  ChnEn:         %3s\n", yesno(rssconf &
2003 							CHANNELENABLE_F));
2004 	seq_printf(seq, "  PrtEn:         %3s\n", yesno(rssconf &
2005 							PORTENABLE_F));
2006 	seq_printf(seq, "  TnlAllLkp:     %3s\n", yesno(rssconf &
2007 							TNLALLLOOKUP_F));
2008 	seq_printf(seq, "  VrtEn:         %3s\n", yesno(rssconf &
2009 							VIRTENABLE_F));
2010 	seq_printf(seq, "  CngEn:         %3s\n", yesno(rssconf &
2011 							CONGESTIONENABLE_F));
2012 	seq_printf(seq, "  HashToeplitz:  %3s\n", yesno(rssconf &
2013 							HASHTOEPLITZ_F));
2014 	seq_printf(seq, "  Udp4En:        %3s\n", yesno(rssconf & UDPENABLE_F));
2015 	seq_printf(seq, "  Disable:       %3s\n", yesno(rssconf & DISABLE_F));
2016 
2017 	seq_puts(seq, "\n");
2018 
2019 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
2020 	seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
2021 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2022 	seq_printf(seq, "  MaskFilter:    %3d\n", MASKFILTER_G(rssconf));
2023 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2024 		seq_printf(seq, "  HashAll:     %3s\n",
2025 			   yesno(rssconf & HASHALL_F));
2026 		seq_printf(seq, "  HashEth:     %3s\n",
2027 			   yesno(rssconf & HASHETH_F));
2028 	}
2029 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2030 
2031 	seq_puts(seq, "\n");
2032 
2033 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
2034 	seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
2035 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2036 	seq_printf(seq, "  RRCplMapEn:    %3s\n", yesno(rssconf &
2037 							RRCPLMAPEN_F));
2038 	seq_printf(seq, "  RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
2039 
2040 	seq_puts(seq, "\n");
2041 
2042 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
2043 	seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
2044 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2045 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2046 
2047 	seq_puts(seq, "\n");
2048 
2049 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
2050 	seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
2051 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2052 		seq_printf(seq, "  KeyWrAddrX:     %3d\n",
2053 			   KEYWRADDRX_G(rssconf));
2054 		seq_printf(seq, "  KeyExtend:      %3s\n",
2055 			   yesno(rssconf & KEYEXTEND_F));
2056 	}
2057 	seq_printf(seq, "  VfRdRg:        %3s\n", yesno(rssconf & VFRDRG_F));
2058 	seq_printf(seq, "  VfRdEn:        %3s\n", yesno(rssconf & VFRDEN_F));
2059 	seq_printf(seq, "  VfPerrEn:      %3s\n", yesno(rssconf & VFPERREN_F));
2060 	seq_printf(seq, "  KeyPerrEn:     %3s\n", yesno(rssconf & KEYPERREN_F));
2061 	seq_printf(seq, "  DisVfVlan:     %3s\n", yesno(rssconf &
2062 							DISABLEVLAN_F));
2063 	seq_printf(seq, "  EnUpSwt:       %3s\n", yesno(rssconf & ENABLEUP0_F));
2064 	seq_printf(seq, "  HashDelay:     %3d\n", HASHDELAY_G(rssconf));
2065 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2066 		seq_printf(seq, "  VfWrAddr:      %3d\n", VFWRADDR_G(rssconf));
2067 	else
2068 		seq_printf(seq, "  VfWrAddr:      %3d\n",
2069 			   T6_VFWRADDR_G(rssconf));
2070 	seq_printf(seq, "  KeyMode:       %s\n", keymode[KEYMODE_G(rssconf)]);
2071 	seq_printf(seq, "  VfWrEn:        %3s\n", yesno(rssconf & VFWREN_F));
2072 	seq_printf(seq, "  KeyWrEn:       %3s\n", yesno(rssconf & KEYWREN_F));
2073 	seq_printf(seq, "  KeyWrAddr:     %3d\n", KEYWRADDR_G(rssconf));
2074 
2075 	seq_puts(seq, "\n");
2076 
2077 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
2078 	seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
2079 	seq_printf(seq, "  ChnCount3:     %3s\n", yesno(rssconf & CHNCOUNT3_F));
2080 	seq_printf(seq, "  ChnCount2:     %3s\n", yesno(rssconf & CHNCOUNT2_F));
2081 	seq_printf(seq, "  ChnCount1:     %3s\n", yesno(rssconf & CHNCOUNT1_F));
2082 	seq_printf(seq, "  ChnCount0:     %3s\n", yesno(rssconf & CHNCOUNT0_F));
2083 	seq_printf(seq, "  ChnUndFlow3:   %3s\n", yesno(rssconf &
2084 							CHNUNDFLOW3_F));
2085 	seq_printf(seq, "  ChnUndFlow2:   %3s\n", yesno(rssconf &
2086 							CHNUNDFLOW2_F));
2087 	seq_printf(seq, "  ChnUndFlow1:   %3s\n", yesno(rssconf &
2088 							CHNUNDFLOW1_F));
2089 	seq_printf(seq, "  ChnUndFlow0:   %3s\n", yesno(rssconf &
2090 							CHNUNDFLOW0_F));
2091 	seq_printf(seq, "  RstChn3:       %3s\n", yesno(rssconf & RSTCHN3_F));
2092 	seq_printf(seq, "  RstChn2:       %3s\n", yesno(rssconf & RSTCHN2_F));
2093 	seq_printf(seq, "  RstChn1:       %3s\n", yesno(rssconf & RSTCHN1_F));
2094 	seq_printf(seq, "  RstChn0:       %3s\n", yesno(rssconf & RSTCHN0_F));
2095 	seq_printf(seq, "  UpdVld:        %3s\n", yesno(rssconf & UPDVLD_F));
2096 	seq_printf(seq, "  Xoff:          %3s\n", yesno(rssconf & XOFF_F));
2097 	seq_printf(seq, "  UpdChn3:       %3s\n", yesno(rssconf & UPDCHN3_F));
2098 	seq_printf(seq, "  UpdChn2:       %3s\n", yesno(rssconf & UPDCHN2_F));
2099 	seq_printf(seq, "  UpdChn1:       %3s\n", yesno(rssconf & UPDCHN1_F));
2100 	seq_printf(seq, "  UpdChn0:       %3s\n", yesno(rssconf & UPDCHN0_F));
2101 	seq_printf(seq, "  Queue:         %3d\n", QUEUE_G(rssconf));
2102 
2103 	return 0;
2104 }
2105 
2106 DEFINE_SIMPLE_DEBUGFS_FILE(rss_config);
2107 
2108 /* RSS Secret Key.
2109  */
2110 
2111 static int rss_key_show(struct seq_file *seq, void *v)
2112 {
2113 	u32 key[10];
2114 
2115 	t4_read_rss_key(seq->private, key);
2116 	seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
2117 		   key[9], key[8], key[7], key[6], key[5], key[4], key[3],
2118 		   key[2], key[1], key[0]);
2119 	return 0;
2120 }
2121 
2122 static int rss_key_open(struct inode *inode, struct file *file)
2123 {
2124 	return single_open(file, rss_key_show, inode->i_private);
2125 }
2126 
2127 static ssize_t rss_key_write(struct file *file, const char __user *buf,
2128 			     size_t count, loff_t *pos)
2129 {
2130 	int i, j;
2131 	u32 key[10];
2132 	char s[100], *p;
2133 	struct adapter *adap = file_inode(file)->i_private;
2134 
2135 	if (count > sizeof(s) - 1)
2136 		return -EINVAL;
2137 	if (copy_from_user(s, buf, count))
2138 		return -EFAULT;
2139 	for (i = count; i > 0 && isspace(s[i - 1]); i--)
2140 		;
2141 	s[i] = '\0';
2142 
2143 	for (p = s, i = 9; i >= 0; i--) {
2144 		key[i] = 0;
2145 		for (j = 0; j < 8; j++, p++) {
2146 			if (!isxdigit(*p))
2147 				return -EINVAL;
2148 			key[i] = (key[i] << 4) | hex2val(*p);
2149 		}
2150 	}
2151 
2152 	t4_write_rss_key(adap, key, -1);
2153 	return count;
2154 }
2155 
2156 static const struct file_operations rss_key_debugfs_fops = {
2157 	.owner   = THIS_MODULE,
2158 	.open    = rss_key_open,
2159 	.read    = seq_read,
2160 	.llseek  = seq_lseek,
2161 	.release = single_release,
2162 	.write   = rss_key_write
2163 };
2164 
2165 /* PF RSS Configuration.
2166  */
2167 
2168 struct rss_pf_conf {
2169 	u32 rss_pf_map;
2170 	u32 rss_pf_mask;
2171 	u32 rss_pf_config;
2172 };
2173 
2174 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
2175 {
2176 	struct rss_pf_conf *pfconf;
2177 
2178 	if (v == SEQ_START_TOKEN) {
2179 		/* use the 0th entry to dump the PF Map Index Size */
2180 		pfconf = seq->private + offsetof(struct seq_tab, data);
2181 		seq_printf(seq, "PF Map Index Size = %d\n\n",
2182 			   LKPIDXSIZE_G(pfconf->rss_pf_map));
2183 
2184 		seq_puts(seq, "     RSS              PF   VF    Hash Tuple Enable         Default\n");
2185 		seq_puts(seq, "     Enable       IPF Mask Mask  IPv6      IPv4      UDP   Queue\n");
2186 		seq_puts(seq, " PF  Map Chn Prt  Map Size Size  Four Two  Four Two  Four  Ch1  Ch0\n");
2187 	} else {
2188 		#define G_PFnLKPIDX(map, n) \
2189 			(((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
2190 		#define G_PFnMSKSIZE(mask, n) \
2191 			(((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
2192 
2193 		pfconf = v;
2194 		seq_printf(seq, "%3d  %3s %3s %3s  %3d  %3d  %3d   %3s %3s   %3s %3s   %3s  %3d  %3d\n",
2195 			   idx,
2196 			   yesno(pfconf->rss_pf_config & MAPENABLE_F),
2197 			   yesno(pfconf->rss_pf_config & CHNENABLE_F),
2198 			   yesno(pfconf->rss_pf_config & PRTENABLE_F),
2199 			   G_PFnLKPIDX(pfconf->rss_pf_map, idx),
2200 			   G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
2201 			   IVFWIDTH_G(pfconf->rss_pf_config),
2202 			   yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
2203 			   yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
2204 			   yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
2205 			   yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
2206 			   yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
2207 			   CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
2208 			   CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
2209 
2210 		#undef G_PFnLKPIDX
2211 		#undef G_PFnMSKSIZE
2212 	}
2213 	return 0;
2214 }
2215 
2216 static int rss_pf_config_open(struct inode *inode, struct file *file)
2217 {
2218 	struct adapter *adapter = inode->i_private;
2219 	struct seq_tab *p;
2220 	u32 rss_pf_map, rss_pf_mask;
2221 	struct rss_pf_conf *pfconf;
2222 	int pf;
2223 
2224 	p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
2225 	if (!p)
2226 		return -ENOMEM;
2227 
2228 	pfconf = (struct rss_pf_conf *)p->data;
2229 	rss_pf_map = t4_read_rss_pf_map(adapter);
2230 	rss_pf_mask = t4_read_rss_pf_mask(adapter);
2231 	for (pf = 0; pf < 8; pf++) {
2232 		pfconf[pf].rss_pf_map = rss_pf_map;
2233 		pfconf[pf].rss_pf_mask = rss_pf_mask;
2234 		t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config);
2235 	}
2236 	return 0;
2237 }
2238 
2239 static const struct file_operations rss_pf_config_debugfs_fops = {
2240 	.owner   = THIS_MODULE,
2241 	.open    = rss_pf_config_open,
2242 	.read    = seq_read,
2243 	.llseek  = seq_lseek,
2244 	.release = seq_release_private
2245 };
2246 
2247 /* VF RSS Configuration.
2248  */
2249 
2250 struct rss_vf_conf {
2251 	u32 rss_vf_vfl;
2252 	u32 rss_vf_vfh;
2253 };
2254 
2255 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
2256 {
2257 	if (v == SEQ_START_TOKEN) {
2258 		seq_puts(seq, "     RSS                     Hash Tuple Enable\n");
2259 		seq_puts(seq, "     Enable   IVF  Dis  Enb  IPv6      IPv4      UDP    Def  Secret Key\n");
2260 		seq_puts(seq, " VF  Chn Prt  Map  VLAN  uP  Four Two  Four Two  Four   Que  Idx       Hash\n");
2261 	} else {
2262 		struct rss_vf_conf *vfconf = v;
2263 
2264 		seq_printf(seq, "%3d  %3s %3s  %3d   %3s %3s   %3s %3s   %3s  %3s   %3s  %4d  %3d %#10x\n",
2265 			   idx,
2266 			   yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
2267 			   yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
2268 			   VFLKPIDX_G(vfconf->rss_vf_vfh),
2269 			   yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
2270 			   yesno(vfconf->rss_vf_vfh & VFUPEN_F),
2271 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2272 			   yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
2273 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2274 			   yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
2275 			   yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
2276 			   DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
2277 			   KEYINDEX_G(vfconf->rss_vf_vfh),
2278 			   vfconf->rss_vf_vfl);
2279 	}
2280 	return 0;
2281 }
2282 
2283 static int rss_vf_config_open(struct inode *inode, struct file *file)
2284 {
2285 	struct adapter *adapter = inode->i_private;
2286 	struct seq_tab *p;
2287 	struct rss_vf_conf *vfconf;
2288 	int vf, vfcount = adapter->params.arch.vfcount;
2289 
2290 	p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
2291 	if (!p)
2292 		return -ENOMEM;
2293 
2294 	vfconf = (struct rss_vf_conf *)p->data;
2295 	for (vf = 0; vf < vfcount; vf++) {
2296 		t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
2297 				      &vfconf[vf].rss_vf_vfh);
2298 	}
2299 	return 0;
2300 }
2301 
2302 static const struct file_operations rss_vf_config_debugfs_fops = {
2303 	.owner   = THIS_MODULE,
2304 	.open    = rss_vf_config_open,
2305 	.read    = seq_read,
2306 	.llseek  = seq_lseek,
2307 	.release = seq_release_private
2308 };
2309 
2310 /**
2311  * ethqset2pinfo - return port_info of an Ethernet Queue Set
2312  * @adap: the adapter
2313  * @qset: Ethernet Queue Set
2314  */
2315 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
2316 {
2317 	int pidx;
2318 
2319 	for_each_port(adap, pidx) {
2320 		struct port_info *pi = adap2pinfo(adap, pidx);
2321 
2322 		if (qset >= pi->first_qset &&
2323 		    qset < pi->first_qset + pi->nqsets)
2324 			return pi;
2325 	}
2326 
2327 	/* should never happen! */
2328 	BUG_ON(1);
2329 	return NULL;
2330 }
2331 
2332 static int sge_qinfo_show(struct seq_file *seq, void *v)
2333 {
2334 	struct adapter *adap = seq->private;
2335 	int eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
2336 	int iscsi_entries = DIV_ROUND_UP(adap->sge.iscsiqsets, 4);
2337 	int iscsit_entries = DIV_ROUND_UP(adap->sge.niscsitq, 4);
2338 	int rdma_entries = DIV_ROUND_UP(adap->sge.rdmaqs, 4);
2339 	int ciq_entries = DIV_ROUND_UP(adap->sge.rdmaciqs, 4);
2340 	int ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
2341 	int i, r = (uintptr_t)v - 1;
2342 	int iscsi_idx = r - eth_entries;
2343 	int iscsit_idx = iscsi_idx - iscsi_entries;
2344 	int rdma_idx = iscsit_idx - iscsit_entries;
2345 	int ciq_idx = rdma_idx - rdma_entries;
2346 	int ctrl_idx =  ciq_idx - ciq_entries;
2347 	int fq_idx =  ctrl_idx - ctrl_entries;
2348 
2349 	if (r)
2350 		seq_putc(seq, '\n');
2351 
2352 #define S3(fmt_spec, s, v) \
2353 do { \
2354 	seq_printf(seq, "%-12s", s); \
2355 	for (i = 0; i < n; ++i) \
2356 		seq_printf(seq, " %16" fmt_spec, v); \
2357 		seq_putc(seq, '\n'); \
2358 } while (0)
2359 #define S(s, v) S3("s", s, v)
2360 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
2361 #define T(s, v) S3("u", s, tx[i].v)
2362 #define TL(s, v) T3("lu", s, v)
2363 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
2364 #define R(s, v) S3("u", s, rx[i].v)
2365 #define RL(s, v) R3("lu", s, v)
2366 
2367 	if (r < eth_entries) {
2368 		int base_qset = r * 4;
2369 		const struct sge_eth_rxq *rx = &adap->sge.ethrxq[base_qset];
2370 		const struct sge_eth_txq *tx = &adap->sge.ethtxq[base_qset];
2371 		int n = min(4, adap->sge.ethqsets - 4 * r);
2372 
2373 		S("QType:", "Ethernet");
2374 		S("Interface:",
2375 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2376 		T("TxQ ID:", q.cntxt_id);
2377 		T("TxQ size:", q.size);
2378 		T("TxQ inuse:", q.in_use);
2379 		T("TxQ CIDX:", q.cidx);
2380 		T("TxQ PIDX:", q.pidx);
2381 #ifdef CONFIG_CHELSIO_T4_DCB
2382 		T("DCB Prio:", dcb_prio);
2383 		S3("u", "DCB PGID:",
2384 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
2385 		    4*(7-tx[i].dcb_prio)) & 0xf);
2386 		S3("u", "DCB PFC:",
2387 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
2388 		    1*(7-tx[i].dcb_prio)) & 0x1);
2389 #endif
2390 		R("RspQ ID:", rspq.abs_id);
2391 		R("RspQ size:", rspq.size);
2392 		R("RspQE size:", rspq.iqe_len);
2393 		R("RspQ CIDX:", rspq.cidx);
2394 		R("RspQ Gen:", rspq.gen);
2395 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2396 		S3("u", "Intr pktcnt:",
2397 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2398 		R("FL ID:", fl.cntxt_id);
2399 		R("FL size:", fl.size - 8);
2400 		R("FL pend:", fl.pend_cred);
2401 		R("FL avail:", fl.avail);
2402 		R("FL PIDX:", fl.pidx);
2403 		R("FL CIDX:", fl.cidx);
2404 		RL("RxPackets:", stats.pkts);
2405 		RL("RxCSO:", stats.rx_cso);
2406 		RL("VLANxtract:", stats.vlan_ex);
2407 		RL("LROmerged:", stats.lro_merged);
2408 		RL("LROpackets:", stats.lro_pkts);
2409 		RL("RxDrops:", stats.rx_drops);
2410 		TL("TSO:", tso);
2411 		TL("TxCSO:", tx_cso);
2412 		TL("VLANins:", vlan_ins);
2413 		TL("TxQFull:", q.stops);
2414 		TL("TxQRestarts:", q.restarts);
2415 		TL("TxMapErr:", mapping_err);
2416 		RL("FLAllocErr:", fl.alloc_failed);
2417 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2418 		RL("FLMapErr:", fl.mapping_err);
2419 		RL("FLLow:", fl.low);
2420 		RL("FLStarving:", fl.starving);
2421 
2422 	} else if (iscsi_idx < iscsi_entries) {
2423 		const struct sge_ofld_rxq *rx =
2424 			&adap->sge.iscsirxq[iscsi_idx * 4];
2425 		const struct sge_ofld_txq *tx =
2426 			&adap->sge.ofldtxq[iscsi_idx * 4];
2427 		int n = min(4, adap->sge.iscsiqsets - 4 * iscsi_idx);
2428 
2429 		S("QType:", "iSCSI");
2430 		T("TxQ ID:", q.cntxt_id);
2431 		T("TxQ size:", q.size);
2432 		T("TxQ inuse:", q.in_use);
2433 		T("TxQ CIDX:", q.cidx);
2434 		T("TxQ PIDX:", q.pidx);
2435 		R("RspQ ID:", rspq.abs_id);
2436 		R("RspQ size:", rspq.size);
2437 		R("RspQE size:", rspq.iqe_len);
2438 		R("RspQ CIDX:", rspq.cidx);
2439 		R("RspQ Gen:", rspq.gen);
2440 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2441 		S3("u", "Intr pktcnt:",
2442 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2443 		R("FL ID:", fl.cntxt_id);
2444 		R("FL size:", fl.size - 8);
2445 		R("FL pend:", fl.pend_cred);
2446 		R("FL avail:", fl.avail);
2447 		R("FL PIDX:", fl.pidx);
2448 		R("FL CIDX:", fl.cidx);
2449 		RL("RxPackets:", stats.pkts);
2450 		RL("RxImmPkts:", stats.imm);
2451 		RL("RxNoMem:", stats.nomem);
2452 		RL("FLAllocErr:", fl.alloc_failed);
2453 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2454 		RL("FLMapErr:", fl.mapping_err);
2455 		RL("FLLow:", fl.low);
2456 		RL("FLStarving:", fl.starving);
2457 
2458 	} else if (iscsit_idx < iscsit_entries) {
2459 		const struct sge_ofld_rxq *rx =
2460 			&adap->sge.iscsitrxq[iscsit_idx * 4];
2461 		int n = min(4, adap->sge.niscsitq - 4 * iscsit_idx);
2462 
2463 		S("QType:", "iSCSIT");
2464 		R("RspQ ID:", rspq.abs_id);
2465 		R("RspQ size:", rspq.size);
2466 		R("RspQE size:", rspq.iqe_len);
2467 		R("RspQ CIDX:", rspq.cidx);
2468 		R("RspQ Gen:", rspq.gen);
2469 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2470 		S3("u", "Intr pktcnt:",
2471 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2472 		R("FL ID:", fl.cntxt_id);
2473 		R("FL size:", fl.size - 8);
2474 		R("FL pend:", fl.pend_cred);
2475 		R("FL avail:", fl.avail);
2476 		R("FL PIDX:", fl.pidx);
2477 		R("FL CIDX:", fl.cidx);
2478 		RL("RxPackets:", stats.pkts);
2479 		RL("RxImmPkts:", stats.imm);
2480 		RL("RxNoMem:", stats.nomem);
2481 		RL("FLAllocErr:", fl.alloc_failed);
2482 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2483 		RL("FLMapErr:", fl.mapping_err);
2484 		RL("FLLow:", fl.low);
2485 		RL("FLStarving:", fl.starving);
2486 
2487 	} else if (rdma_idx < rdma_entries) {
2488 		const struct sge_ofld_rxq *rx =
2489 				&adap->sge.rdmarxq[rdma_idx * 4];
2490 		int n = min(4, adap->sge.rdmaqs - 4 * rdma_idx);
2491 
2492 		S("QType:", "RDMA-CPL");
2493 		S("Interface:",
2494 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2495 		R("RspQ ID:", rspq.abs_id);
2496 		R("RspQ size:", rspq.size);
2497 		R("RspQE size:", rspq.iqe_len);
2498 		R("RspQ CIDX:", rspq.cidx);
2499 		R("RspQ Gen:", rspq.gen);
2500 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2501 		S3("u", "Intr pktcnt:",
2502 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2503 		R("FL ID:", fl.cntxt_id);
2504 		R("FL size:", fl.size - 8);
2505 		R("FL pend:", fl.pend_cred);
2506 		R("FL avail:", fl.avail);
2507 		R("FL PIDX:", fl.pidx);
2508 		R("FL CIDX:", fl.cidx);
2509 		RL("RxPackets:", stats.pkts);
2510 		RL("RxImmPkts:", stats.imm);
2511 		RL("RxNoMem:", stats.nomem);
2512 		RL("FLAllocErr:", fl.alloc_failed);
2513 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2514 		RL("FLMapErr:", fl.mapping_err);
2515 		RL("FLLow:", fl.low);
2516 		RL("FLStarving:", fl.starving);
2517 
2518 	} else if (ciq_idx < ciq_entries) {
2519 		const struct sge_ofld_rxq *rx = &adap->sge.rdmaciq[ciq_idx * 4];
2520 		int n = min(4, adap->sge.rdmaciqs - 4 * ciq_idx);
2521 
2522 		S("QType:", "RDMA-CIQ");
2523 		S("Interface:",
2524 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2525 		R("RspQ ID:", rspq.abs_id);
2526 		R("RspQ size:", rspq.size);
2527 		R("RspQE size:", rspq.iqe_len);
2528 		R("RspQ CIDX:", rspq.cidx);
2529 		R("RspQ Gen:", rspq.gen);
2530 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2531 		S3("u", "Intr pktcnt:",
2532 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2533 		RL("RxAN:", stats.an);
2534 		RL("RxNoMem:", stats.nomem);
2535 
2536 	} else if (ctrl_idx < ctrl_entries) {
2537 		const struct sge_ctrl_txq *tx = &adap->sge.ctrlq[ctrl_idx * 4];
2538 		int n = min(4, adap->params.nports - 4 * ctrl_idx);
2539 
2540 		S("QType:", "Control");
2541 		T("TxQ ID:", q.cntxt_id);
2542 		T("TxQ size:", q.size);
2543 		T("TxQ inuse:", q.in_use);
2544 		T("TxQ CIDX:", q.cidx);
2545 		T("TxQ PIDX:", q.pidx);
2546 		TL("TxQFull:", q.stops);
2547 		TL("TxQRestarts:", q.restarts);
2548 	} else if (fq_idx == 0) {
2549 		const struct sge_rspq *evtq = &adap->sge.fw_evtq;
2550 
2551 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2552 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2553 		seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
2554 		seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
2555 		seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
2556 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2557 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2558 			   qtimer_val(adap, evtq));
2559 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2560 			   adap->sge.counter_val[evtq->pktcnt_idx]);
2561 	}
2562 #undef R
2563 #undef RL
2564 #undef T
2565 #undef TL
2566 #undef S
2567 #undef R3
2568 #undef T3
2569 #undef S3
2570 	return 0;
2571 }
2572 
2573 static int sge_queue_entries(const struct adapter *adap)
2574 {
2575 	return DIV_ROUND_UP(adap->sge.ethqsets, 4) +
2576 	       DIV_ROUND_UP(adap->sge.iscsiqsets, 4) +
2577 	       DIV_ROUND_UP(adap->sge.niscsitq, 4) +
2578 	       DIV_ROUND_UP(adap->sge.rdmaqs, 4) +
2579 	       DIV_ROUND_UP(adap->sge.rdmaciqs, 4) +
2580 	       DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
2581 }
2582 
2583 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2584 {
2585 	int entries = sge_queue_entries(seq->private);
2586 
2587 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2588 }
2589 
2590 static void sge_queue_stop(struct seq_file *seq, void *v)
2591 {
2592 }
2593 
2594 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2595 {
2596 	int entries = sge_queue_entries(seq->private);
2597 
2598 	++*pos;
2599 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2600 }
2601 
2602 static const struct seq_operations sge_qinfo_seq_ops = {
2603 	.start = sge_queue_start,
2604 	.next  = sge_queue_next,
2605 	.stop  = sge_queue_stop,
2606 	.show  = sge_qinfo_show
2607 };
2608 
2609 static int sge_qinfo_open(struct inode *inode, struct file *file)
2610 {
2611 	int res = seq_open(file, &sge_qinfo_seq_ops);
2612 
2613 	if (!res) {
2614 		struct seq_file *seq = file->private_data;
2615 
2616 		seq->private = inode->i_private;
2617 	}
2618 	return res;
2619 }
2620 
2621 static const struct file_operations sge_qinfo_debugfs_fops = {
2622 	.owner   = THIS_MODULE,
2623 	.open    = sge_qinfo_open,
2624 	.read    = seq_read,
2625 	.llseek  = seq_lseek,
2626 	.release = seq_release,
2627 };
2628 
2629 int mem_open(struct inode *inode, struct file *file)
2630 {
2631 	unsigned int mem;
2632 	struct adapter *adap;
2633 
2634 	file->private_data = inode->i_private;
2635 
2636 	mem = (uintptr_t)file->private_data & 0x3;
2637 	adap = file->private_data - mem;
2638 
2639 	(void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
2640 
2641 	return 0;
2642 }
2643 
2644 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2645 			loff_t *ppos)
2646 {
2647 	loff_t pos = *ppos;
2648 	loff_t avail = file_inode(file)->i_size;
2649 	unsigned int mem = (uintptr_t)file->private_data & 3;
2650 	struct adapter *adap = file->private_data - mem;
2651 	__be32 *data;
2652 	int ret;
2653 
2654 	if (pos < 0)
2655 		return -EINVAL;
2656 	if (pos >= avail)
2657 		return 0;
2658 	if (count > avail - pos)
2659 		count = avail - pos;
2660 
2661 	data = t4_alloc_mem(count);
2662 	if (!data)
2663 		return -ENOMEM;
2664 
2665 	spin_lock(&adap->win0_lock);
2666 	ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
2667 	spin_unlock(&adap->win0_lock);
2668 	if (ret) {
2669 		t4_free_mem(data);
2670 		return ret;
2671 	}
2672 	ret = copy_to_user(buf, data, count);
2673 
2674 	t4_free_mem(data);
2675 	if (ret)
2676 		return -EFAULT;
2677 
2678 	*ppos = pos + count;
2679 	return count;
2680 }
2681 static const struct file_operations mem_debugfs_fops = {
2682 	.owner   = THIS_MODULE,
2683 	.open    = simple_open,
2684 	.read    = mem_read,
2685 	.llseek  = default_llseek,
2686 };
2687 
2688 static int tid_info_show(struct seq_file *seq, void *v)
2689 {
2690 	struct adapter *adap = seq->private;
2691 	const struct tid_info *t = &adap->tids;
2692 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2693 
2694 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2695 		unsigned int sb;
2696 
2697 		if (chip <= CHELSIO_T5)
2698 			sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
2699 		else
2700 			sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
2701 
2702 		if (sb) {
2703 			seq_printf(seq, "TID range: 0..%u/%u..%u", sb - 1,
2704 				   adap->tids.hash_base,
2705 				   t->ntids - 1);
2706 			seq_printf(seq, ", in use: %u/%u\n",
2707 				   atomic_read(&t->tids_in_use),
2708 				   atomic_read(&t->hash_tids_in_use));
2709 		} else if (adap->flags & FW_OFLD_CONN) {
2710 			seq_printf(seq, "TID range: %u..%u/%u..%u",
2711 				   t->aftid_base,
2712 				   t->aftid_end,
2713 				   adap->tids.hash_base,
2714 				   t->ntids - 1);
2715 			seq_printf(seq, ", in use: %u/%u\n",
2716 				   atomic_read(&t->tids_in_use),
2717 				   atomic_read(&t->hash_tids_in_use));
2718 		} else {
2719 			seq_printf(seq, "TID range: %u..%u",
2720 				   adap->tids.hash_base,
2721 				   t->ntids - 1);
2722 			seq_printf(seq, ", in use: %u\n",
2723 				   atomic_read(&t->hash_tids_in_use));
2724 		}
2725 	} else if (t->ntids) {
2726 		seq_printf(seq, "TID range: 0..%u", t->ntids - 1);
2727 		seq_printf(seq, ", in use: %u\n",
2728 			   atomic_read(&t->tids_in_use));
2729 	}
2730 
2731 	if (t->nstids)
2732 		seq_printf(seq, "STID range: %u..%u, in use: %u\n",
2733 			   (!t->stid_base &&
2734 			   (chip <= CHELSIO_T5)) ?
2735 			   t->stid_base + 1 : t->stid_base,
2736 			   t->stid_base + t->nstids - 1, t->stids_in_use);
2737 	if (t->natids)
2738 		seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
2739 			   t->natids - 1, t->atids_in_use);
2740 	seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
2741 		   t->ftid_base + t->nftids - 1);
2742 	if (t->nsftids)
2743 		seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
2744 			   t->sftid_base, t->sftid_base + t->nsftids - 2,
2745 			   t->sftids_in_use);
2746 	if (t->ntids)
2747 		seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
2748 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
2749 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
2750 	return 0;
2751 }
2752 
2753 DEFINE_SIMPLE_DEBUGFS_FILE(tid_info);
2754 
2755 static void add_debugfs_mem(struct adapter *adap, const char *name,
2756 			    unsigned int idx, unsigned int size_mb)
2757 {
2758 	debugfs_create_file_size(name, S_IRUSR, adap->debugfs_root,
2759 				 (void *)adap + idx, &mem_debugfs_fops,
2760 				 size_mb << 20);
2761 }
2762 
2763 static int blocked_fl_open(struct inode *inode, struct file *file)
2764 {
2765 	file->private_data = inode->i_private;
2766 	return 0;
2767 }
2768 
2769 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
2770 			       size_t count, loff_t *ppos)
2771 {
2772 	int len;
2773 	const struct adapter *adap = filp->private_data;
2774 	char *buf;
2775 	ssize_t size = (adap->sge.egr_sz + 3) / 4 +
2776 			adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
2777 
2778 	buf = kzalloc(size, GFP_KERNEL);
2779 	if (!buf)
2780 		return -ENOMEM;
2781 
2782 	len = snprintf(buf, size - 1, "%*pb\n",
2783 		       adap->sge.egr_sz, adap->sge.blocked_fl);
2784 	len += sprintf(buf + len, "\n");
2785 	size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
2786 	t4_free_mem(buf);
2787 	return size;
2788 }
2789 
2790 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
2791 				size_t count, loff_t *ppos)
2792 {
2793 	int err;
2794 	unsigned long *t;
2795 	struct adapter *adap = filp->private_data;
2796 
2797 	t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
2798 	if (!t)
2799 		return -ENOMEM;
2800 
2801 	err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
2802 	if (err)
2803 		return err;
2804 
2805 	bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
2806 	t4_free_mem(t);
2807 	return count;
2808 }
2809 
2810 static const struct file_operations blocked_fl_fops = {
2811 	.owner   = THIS_MODULE,
2812 	.open    = blocked_fl_open,
2813 	.read    = blocked_fl_read,
2814 	.write   = blocked_fl_write,
2815 	.llseek  = generic_file_llseek,
2816 };
2817 
2818 struct mem_desc {
2819 	unsigned int base;
2820 	unsigned int limit;
2821 	unsigned int idx;
2822 };
2823 
2824 static int mem_desc_cmp(const void *a, const void *b)
2825 {
2826 	return ((const struct mem_desc *)a)->base -
2827 	       ((const struct mem_desc *)b)->base;
2828 }
2829 
2830 static void mem_region_show(struct seq_file *seq, const char *name,
2831 			    unsigned int from, unsigned int to)
2832 {
2833 	char buf[40];
2834 
2835 	string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
2836 			sizeof(buf));
2837 	seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
2838 }
2839 
2840 static int meminfo_show(struct seq_file *seq, void *v)
2841 {
2842 	static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
2843 					"MC0:", "MC1:"};
2844 	static const char * const region[] = {
2845 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
2846 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
2847 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
2848 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
2849 		"RQUDP region:", "PBL region:", "TXPBL region:",
2850 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
2851 		"On-chip queues:"
2852 	};
2853 
2854 	int i, n;
2855 	u32 lo, hi, used, alloc;
2856 	struct mem_desc avail[4];
2857 	struct mem_desc mem[ARRAY_SIZE(region) + 3];      /* up to 3 holes */
2858 	struct mem_desc *md = mem;
2859 	struct adapter *adap = seq->private;
2860 
2861 	for (i = 0; i < ARRAY_SIZE(mem); i++) {
2862 		mem[i].limit = 0;
2863 		mem[i].idx = i;
2864 	}
2865 
2866 	/* Find and sort the populated memory ranges */
2867 	i = 0;
2868 	lo = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
2869 	if (lo & EDRAM0_ENABLE_F) {
2870 		hi = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2871 		avail[i].base = EDRAM0_BASE_G(hi) << 20;
2872 		avail[i].limit = avail[i].base + (EDRAM0_SIZE_G(hi) << 20);
2873 		avail[i].idx = 0;
2874 		i++;
2875 	}
2876 	if (lo & EDRAM1_ENABLE_F) {
2877 		hi = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2878 		avail[i].base = EDRAM1_BASE_G(hi) << 20;
2879 		avail[i].limit = avail[i].base + (EDRAM1_SIZE_G(hi) << 20);
2880 		avail[i].idx = 1;
2881 		i++;
2882 	}
2883 
2884 	if (is_t5(adap->params.chip)) {
2885 		if (lo & EXT_MEM0_ENABLE_F) {
2886 			hi = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2887 			avail[i].base = EXT_MEM0_BASE_G(hi) << 20;
2888 			avail[i].limit =
2889 				avail[i].base + (EXT_MEM0_SIZE_G(hi) << 20);
2890 			avail[i].idx = 3;
2891 			i++;
2892 		}
2893 		if (lo & EXT_MEM1_ENABLE_F) {
2894 			hi = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2895 			avail[i].base = EXT_MEM1_BASE_G(hi) << 20;
2896 			avail[i].limit =
2897 				avail[i].base + (EXT_MEM1_SIZE_G(hi) << 20);
2898 			avail[i].idx = 4;
2899 			i++;
2900 		}
2901 	} else {
2902 		if (lo & EXT_MEM_ENABLE_F) {
2903 			hi = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
2904 			avail[i].base = EXT_MEM_BASE_G(hi) << 20;
2905 			avail[i].limit =
2906 				avail[i].base + (EXT_MEM_SIZE_G(hi) << 20);
2907 			avail[i].idx = 2;
2908 			i++;
2909 		}
2910 	}
2911 	if (!i)                                    /* no memory available */
2912 		return 0;
2913 	sort(avail, i, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2914 
2915 	(md++)->base = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A);
2916 	(md++)->base = t4_read_reg(adap, SGE_IMSG_CTXT_BADDR_A);
2917 	(md++)->base = t4_read_reg(adap, SGE_FLM_CACHE_BADDR_A);
2918 	(md++)->base = t4_read_reg(adap, TP_CMM_TCB_BASE_A);
2919 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_BASE_A);
2920 	(md++)->base = t4_read_reg(adap, TP_CMM_TIMER_BASE_A);
2921 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_RX_FLST_BASE_A);
2922 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_TX_FLST_BASE_A);
2923 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_PS_FLST_BASE_A);
2924 
2925 	/* the next few have explicit upper bounds */
2926 	md->base = t4_read_reg(adap, TP_PMM_TX_BASE_A);
2927 	md->limit = md->base - 1 +
2928 		    t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A) *
2929 		    PMTXMAXPAGE_G(t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A));
2930 	md++;
2931 
2932 	md->base = t4_read_reg(adap, TP_PMM_RX_BASE_A);
2933 	md->limit = md->base - 1 +
2934 		    t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) *
2935 		    PMRXMAXPAGE_G(t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A));
2936 	md++;
2937 
2938 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2939 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) {
2940 			hi = t4_read_reg(adap, LE_DB_TID_HASHBASE_A) / 4;
2941 			md->base = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2942 		 } else {
2943 			hi = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2944 			md->base = t4_read_reg(adap,
2945 					       LE_DB_HASH_TBL_BASE_ADDR_A);
2946 		}
2947 		md->limit = 0;
2948 	} else {
2949 		md->base = 0;
2950 		md->idx = ARRAY_SIZE(region);  /* hide it */
2951 	}
2952 	md++;
2953 
2954 #define ulp_region(reg) do { \
2955 	md->base = t4_read_reg(adap, ULP_ ## reg ## _LLIMIT_A);\
2956 	(md++)->limit = t4_read_reg(adap, ULP_ ## reg ## _ULIMIT_A); \
2957 } while (0)
2958 
2959 	ulp_region(RX_ISCSI);
2960 	ulp_region(RX_TDDP);
2961 	ulp_region(TX_TPT);
2962 	ulp_region(RX_STAG);
2963 	ulp_region(RX_RQ);
2964 	ulp_region(RX_RQUDP);
2965 	ulp_region(RX_PBL);
2966 	ulp_region(TX_PBL);
2967 #undef ulp_region
2968 	md->base = 0;
2969 	md->idx = ARRAY_SIZE(region);
2970 	if (!is_t4(adap->params.chip)) {
2971 		u32 size = 0;
2972 		u32 sge_ctrl = t4_read_reg(adap, SGE_CONTROL2_A);
2973 		u32 fifo_size = t4_read_reg(adap, SGE_DBVFIFO_SIZE_A);
2974 
2975 		if (is_t5(adap->params.chip)) {
2976 			if (sge_ctrl & VFIFO_ENABLE_F)
2977 				size = DBVFIFO_SIZE_G(fifo_size);
2978 		} else {
2979 			size = T6_DBVFIFO_SIZE_G(fifo_size);
2980 		}
2981 
2982 		if (size) {
2983 			md->base = BASEADDR_G(t4_read_reg(adap,
2984 					SGE_DBVFIFO_BADDR_A));
2985 			md->limit = md->base + (size << 2) - 1;
2986 		}
2987 	}
2988 
2989 	md++;
2990 
2991 	md->base = t4_read_reg(adap, ULP_RX_CTX_BASE_A);
2992 	md->limit = 0;
2993 	md++;
2994 	md->base = t4_read_reg(adap, ULP_TX_ERR_TABLE_BASE_A);
2995 	md->limit = 0;
2996 	md++;
2997 
2998 	md->base = adap->vres.ocq.start;
2999 	if (adap->vres.ocq.size)
3000 		md->limit = md->base + adap->vres.ocq.size - 1;
3001 	else
3002 		md->idx = ARRAY_SIZE(region);  /* hide it */
3003 	md++;
3004 
3005 	/* add any address-space holes, there can be up to 3 */
3006 	for (n = 0; n < i - 1; n++)
3007 		if (avail[n].limit < avail[n + 1].base)
3008 			(md++)->base = avail[n].limit;
3009 	if (avail[n].limit)
3010 		(md++)->base = avail[n].limit;
3011 
3012 	n = md - mem;
3013 	sort(mem, n, sizeof(struct mem_desc), mem_desc_cmp, NULL);
3014 
3015 	for (lo = 0; lo < i; lo++)
3016 		mem_region_show(seq, memory[avail[lo].idx], avail[lo].base,
3017 				avail[lo].limit - 1);
3018 
3019 	seq_putc(seq, '\n');
3020 	for (i = 0; i < n; i++) {
3021 		if (mem[i].idx >= ARRAY_SIZE(region))
3022 			continue;                        /* skip holes */
3023 		if (!mem[i].limit)
3024 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
3025 		mem_region_show(seq, region[mem[i].idx], mem[i].base,
3026 				mem[i].limit);
3027 	}
3028 
3029 	seq_putc(seq, '\n');
3030 	lo = t4_read_reg(adap, CIM_SDRAM_BASE_ADDR_A);
3031 	hi = t4_read_reg(adap, CIM_SDRAM_ADDR_SIZE_A) + lo - 1;
3032 	mem_region_show(seq, "uP RAM:", lo, hi);
3033 
3034 	lo = t4_read_reg(adap, CIM_EXTMEM2_BASE_ADDR_A);
3035 	hi = t4_read_reg(adap, CIM_EXTMEM2_ADDR_SIZE_A) + lo - 1;
3036 	mem_region_show(seq, "uP Extmem2:", lo, hi);
3037 
3038 	lo = t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A);
3039 	seq_printf(seq, "\n%u Rx pages of size %uKiB for %u channels\n",
3040 		   PMRXMAXPAGE_G(lo),
3041 		   t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) >> 10,
3042 		   (lo & PMRXNUMCHN_F) ? 2 : 1);
3043 
3044 	lo = t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A);
3045 	hi = t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A);
3046 	seq_printf(seq, "%u Tx pages of size %u%ciB for %u channels\n",
3047 		   PMTXMAXPAGE_G(lo),
3048 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
3049 		   hi >= (1 << 20) ? 'M' : 'K', 1 << PMTXNUMCHN_G(lo));
3050 	seq_printf(seq, "%u p-structs\n\n",
3051 		   t4_read_reg(adap, TP_CMM_MM_MAX_PSTRUCT_A));
3052 
3053 	for (i = 0; i < 4; i++) {
3054 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
3055 			lo = t4_read_reg(adap, MPS_RX_MAC_BG_PG_CNT0_A + i * 4);
3056 		else
3057 			lo = t4_read_reg(adap, MPS_RX_PG_RSV0_A + i * 4);
3058 		if (is_t5(adap->params.chip)) {
3059 			used = T5_USED_G(lo);
3060 			alloc = T5_ALLOC_G(lo);
3061 		} else {
3062 			used = USED_G(lo);
3063 			alloc = ALLOC_G(lo);
3064 		}
3065 		/* For T6 these are MAC buffer groups */
3066 		seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
3067 			   i, used, alloc);
3068 	}
3069 	for (i = 0; i < adap->params.arch.nchan; i++) {
3070 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
3071 			lo = t4_read_reg(adap,
3072 					 MPS_RX_LPBK_BG_PG_CNT0_A + i * 4);
3073 		else
3074 			lo = t4_read_reg(adap, MPS_RX_PG_RSV4_A + i * 4);
3075 		if (is_t5(adap->params.chip)) {
3076 			used = T5_USED_G(lo);
3077 			alloc = T5_ALLOC_G(lo);
3078 		} else {
3079 			used = USED_G(lo);
3080 			alloc = ALLOC_G(lo);
3081 		}
3082 		/* For T6 these are MAC buffer groups */
3083 		seq_printf(seq,
3084 			   "Loopback %d using %u pages out of %u allocated\n",
3085 			   i, used, alloc);
3086 	}
3087 	return 0;
3088 }
3089 
3090 static int meminfo_open(struct inode *inode, struct file *file)
3091 {
3092 	return single_open(file, meminfo_show, inode->i_private);
3093 }
3094 
3095 static const struct file_operations meminfo_fops = {
3096 	.owner   = THIS_MODULE,
3097 	.open    = meminfo_open,
3098 	.read    = seq_read,
3099 	.llseek  = seq_lseek,
3100 	.release = single_release,
3101 };
3102 /* Add an array of Debug FS files.
3103  */
3104 void add_debugfs_files(struct adapter *adap,
3105 		       struct t4_debugfs_entry *files,
3106 		       unsigned int nfiles)
3107 {
3108 	int i;
3109 
3110 	/* debugfs support is best effort */
3111 	for (i = 0; i < nfiles; i++)
3112 		debugfs_create_file(files[i].name, files[i].mode,
3113 				    adap->debugfs_root,
3114 				    (void *)adap + files[i].data,
3115 				    files[i].ops);
3116 }
3117 
3118 int t4_setup_debugfs(struct adapter *adap)
3119 {
3120 	int i;
3121 	u32 size = 0;
3122 	struct dentry *de;
3123 
3124 	static struct t4_debugfs_entry t4_debugfs_files[] = {
3125 		{ "cim_la", &cim_la_fops, S_IRUSR, 0 },
3126 		{ "cim_pif_la", &cim_pif_la_fops, S_IRUSR, 0 },
3127 		{ "cim_ma_la", &cim_ma_la_fops, S_IRUSR, 0 },
3128 		{ "cim_qcfg", &cim_qcfg_fops, S_IRUSR, 0 },
3129 		{ "clk", &clk_debugfs_fops, S_IRUSR, 0 },
3130 		{ "devlog", &devlog_fops, S_IRUSR, 0 },
3131 		{ "mbox0", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3132 		{ "mbox1", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3133 		{ "mbox2", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3134 		{ "mbox3", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3135 		{ "mbox4", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 4 },
3136 		{ "mbox5", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 5 },
3137 		{ "mbox6", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 6 },
3138 		{ "mbox7", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 7 },
3139 		{ "trace0", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3140 		{ "trace1", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3141 		{ "trace2", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3142 		{ "trace3", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3143 		{ "l2t", &t4_l2t_fops, S_IRUSR, 0},
3144 		{ "mps_tcam", &mps_tcam_debugfs_fops, S_IRUSR, 0 },
3145 		{ "rss", &rss_debugfs_fops, S_IRUSR, 0 },
3146 		{ "rss_config", &rss_config_debugfs_fops, S_IRUSR, 0 },
3147 		{ "rss_key", &rss_key_debugfs_fops, S_IRUSR, 0 },
3148 		{ "rss_pf_config", &rss_pf_config_debugfs_fops, S_IRUSR, 0 },
3149 		{ "rss_vf_config", &rss_vf_config_debugfs_fops, S_IRUSR, 0 },
3150 		{ "sge_qinfo", &sge_qinfo_debugfs_fops, S_IRUSR, 0 },
3151 		{ "ibq_tp0",  &cim_ibq_fops, S_IRUSR, 0 },
3152 		{ "ibq_tp1",  &cim_ibq_fops, S_IRUSR, 1 },
3153 		{ "ibq_ulp",  &cim_ibq_fops, S_IRUSR, 2 },
3154 		{ "ibq_sge0", &cim_ibq_fops, S_IRUSR, 3 },
3155 		{ "ibq_sge1", &cim_ibq_fops, S_IRUSR, 4 },
3156 		{ "ibq_ncsi", &cim_ibq_fops, S_IRUSR, 5 },
3157 		{ "obq_ulp0", &cim_obq_fops, S_IRUSR, 0 },
3158 		{ "obq_ulp1", &cim_obq_fops, S_IRUSR, 1 },
3159 		{ "obq_ulp2", &cim_obq_fops, S_IRUSR, 2 },
3160 		{ "obq_ulp3", &cim_obq_fops, S_IRUSR, 3 },
3161 		{ "obq_sge",  &cim_obq_fops, S_IRUSR, 4 },
3162 		{ "obq_ncsi", &cim_obq_fops, S_IRUSR, 5 },
3163 		{ "tp_la", &tp_la_fops, S_IRUSR, 0 },
3164 		{ "ulprx_la", &ulprx_la_fops, S_IRUSR, 0 },
3165 		{ "sensors", &sensors_debugfs_fops, S_IRUSR, 0 },
3166 		{ "pm_stats", &pm_stats_debugfs_fops, S_IRUSR, 0 },
3167 		{ "tx_rate", &tx_rate_debugfs_fops, S_IRUSR, 0 },
3168 		{ "cctrl", &cctrl_tbl_debugfs_fops, S_IRUSR, 0 },
3169 #if IS_ENABLED(CONFIG_IPV6)
3170 		{ "clip_tbl", &clip_tbl_debugfs_fops, S_IRUSR, 0 },
3171 #endif
3172 		{ "tids", &tid_info_debugfs_fops, S_IRUSR, 0},
3173 		{ "blocked_fl", &blocked_fl_fops, S_IRUSR | S_IWUSR, 0 },
3174 		{ "meminfo", &meminfo_fops, S_IRUSR, 0 },
3175 	};
3176 
3177 	/* Debug FS nodes common to all T5 and later adapters.
3178 	 */
3179 	static struct t4_debugfs_entry t5_debugfs_files[] = {
3180 		{ "obq_sge_rx_q0", &cim_obq_fops, S_IRUSR, 6 },
3181 		{ "obq_sge_rx_q1", &cim_obq_fops, S_IRUSR, 7 },
3182 	};
3183 
3184 	add_debugfs_files(adap,
3185 			  t4_debugfs_files,
3186 			  ARRAY_SIZE(t4_debugfs_files));
3187 	if (!is_t4(adap->params.chip))
3188 		add_debugfs_files(adap,
3189 				  t5_debugfs_files,
3190 				  ARRAY_SIZE(t5_debugfs_files));
3191 
3192 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
3193 	if (i & EDRAM0_ENABLE_F) {
3194 		size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3195 		add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
3196 	}
3197 	if (i & EDRAM1_ENABLE_F) {
3198 		size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3199 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
3200 	}
3201 	if (is_t5(adap->params.chip)) {
3202 		if (i & EXT_MEM0_ENABLE_F) {
3203 			size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3204 			add_debugfs_mem(adap, "mc0", MEM_MC0,
3205 					EXT_MEM0_SIZE_G(size));
3206 		}
3207 		if (i & EXT_MEM1_ENABLE_F) {
3208 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3209 			add_debugfs_mem(adap, "mc1", MEM_MC1,
3210 					EXT_MEM1_SIZE_G(size));
3211 		}
3212 	} else {
3213 		if (i & EXT_MEM_ENABLE_F) {
3214 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
3215 			add_debugfs_mem(adap, "mc", MEM_MC,
3216 					EXT_MEM_SIZE_G(size));
3217 		}
3218 	}
3219 
3220 	de = debugfs_create_file_size("flash", S_IRUSR, adap->debugfs_root, adap,
3221 				      &flash_debugfs_fops, adap->params.sf_size);
3222 	debugfs_create_bool("use_backdoor", S_IWUSR | S_IRUSR,
3223 			    adap->debugfs_root, &adap->use_bd);
3224 	debugfs_create_bool("trace_rss", S_IWUSR | S_IRUSR,
3225 			    adap->debugfs_root, &adap->trace_rss);
3226 
3227 	return 0;
3228 }
3229