1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 #include <linux/string_helpers.h>
38 #include <linux/sort.h>
39 #include <linux/ctype.h>
40 
41 #include "cxgb4.h"
42 #include "t4_regs.h"
43 #include "t4_values.h"
44 #include "t4fw_api.h"
45 #include "cxgb4_debugfs.h"
46 #include "clip_tbl.h"
47 #include "l2t.h"
48 
49 /* generic seq_file support for showing a table of size rows x width. */
50 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
51 {
52 	pos -= tb->skip_first;
53 	return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
54 }
55 
56 static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
57 {
58 	struct seq_tab *tb = seq->private;
59 
60 	if (tb->skip_first && *pos == 0)
61 		return SEQ_START_TOKEN;
62 
63 	return seq_tab_get_idx(tb, *pos);
64 }
65 
66 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
67 {
68 	v = seq_tab_get_idx(seq->private, *pos + 1);
69 	if (v)
70 		++*pos;
71 	return v;
72 }
73 
74 static void seq_tab_stop(struct seq_file *seq, void *v)
75 {
76 }
77 
78 static int seq_tab_show(struct seq_file *seq, void *v)
79 {
80 	const struct seq_tab *tb = seq->private;
81 
82 	return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
83 }
84 
85 static const struct seq_operations seq_tab_ops = {
86 	.start = seq_tab_start,
87 	.next  = seq_tab_next,
88 	.stop  = seq_tab_stop,
89 	.show  = seq_tab_show
90 };
91 
92 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
93 			     unsigned int width, unsigned int have_header,
94 			     int (*show)(struct seq_file *seq, void *v, int i))
95 {
96 	struct seq_tab *p;
97 
98 	p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
99 	if (p) {
100 		p->show = show;
101 		p->rows = rows;
102 		p->width = width;
103 		p->skip_first = have_header != 0;
104 	}
105 	return p;
106 }
107 
108 /* Trim the size of a seq_tab to the supplied number of rows.  The operation is
109  * irreversible.
110  */
111 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
112 {
113 	if (new_rows > p->rows)
114 		return -EINVAL;
115 	p->rows = new_rows;
116 	return 0;
117 }
118 
119 static int cim_la_show(struct seq_file *seq, void *v, int idx)
120 {
121 	if (v == SEQ_START_TOKEN)
122 		seq_puts(seq, "Status   Data      PC     LS0Stat  LS0Addr "
123 			 "            LS0Data\n");
124 	else {
125 		const u32 *p = v;
126 
127 		seq_printf(seq,
128 			   "  %02x  %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
129 			   (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
130 			   p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
131 			   p[6], p[7]);
132 	}
133 	return 0;
134 }
135 
136 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
137 {
138 	if (v == SEQ_START_TOKEN) {
139 		seq_puts(seq, "Status   Data      PC\n");
140 	} else {
141 		const u32 *p = v;
142 
143 		seq_printf(seq, "  %02x   %08x %08x\n", p[5] & 0xff, p[6],
144 			   p[7]);
145 		seq_printf(seq, "  %02x   %02x%06x %02x%06x\n",
146 			   (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
147 			   p[4] & 0xff, p[5] >> 8);
148 		seq_printf(seq, "  %02x   %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
149 			   p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
150 	}
151 	return 0;
152 }
153 
154 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
155 {
156 	if (v == SEQ_START_TOKEN) {
157 		seq_puts(seq, "Status   Inst    Data      PC     LS0Stat  "
158 			 "LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data\n");
159 	} else {
160 		const u32 *p = v;
161 
162 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
163 			   (p[9] >> 16) & 0xff,       /* Status */
164 			   p[9] & 0xffff, p[8] >> 16, /* Inst */
165 			   p[8] & 0xffff, p[7] >> 16, /* Data */
166 			   p[7] & 0xffff, p[6] >> 16, /* PC */
167 			   p[2], p[1], p[0],      /* LS0 Stat, Addr and Data */
168 			   p[5], p[4], p[3]);     /* LS1 Stat, Addr and Data */
169 	}
170 	return 0;
171 }
172 
173 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
174 {
175 	if (v == SEQ_START_TOKEN) {
176 		seq_puts(seq, "Status   Inst    Data      PC\n");
177 	} else {
178 		const u32 *p = v;
179 
180 		seq_printf(seq, "  %02x   %08x %08x %08x\n",
181 			   p[3] & 0xff, p[2], p[1], p[0]);
182 		seq_printf(seq, "  %02x   %02x%06x %02x%06x %02x%06x\n",
183 			   (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
184 			   p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
185 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x\n",
186 			   (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
187 			   p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
188 			   p[6] >> 16);
189 	}
190 	return 0;
191 }
192 
193 static int cim_la_open(struct inode *inode, struct file *file)
194 {
195 	int ret;
196 	unsigned int cfg;
197 	struct seq_tab *p;
198 	struct adapter *adap = inode->i_private;
199 
200 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
201 	if (ret)
202 		return ret;
203 
204 	if (is_t6(adap->params.chip)) {
205 		/* +1 to account for integer division of CIMLA_SIZE/10 */
206 		p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
207 				 10 * sizeof(u32), 1,
208 				 cfg & UPDBGLACAPTPCONLY_F ?
209 					cim_la_show_pc_t6 : cim_la_show_t6);
210 	} else {
211 		p = seq_open_tab(file, adap->params.cim_la_size / 8,
212 				 8 * sizeof(u32), 1,
213 				 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
214 							     cim_la_show);
215 	}
216 	if (!p)
217 		return -ENOMEM;
218 
219 	ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
220 	if (ret)
221 		seq_release_private(inode, file);
222 	return ret;
223 }
224 
225 static const struct file_operations cim_la_fops = {
226 	.owner   = THIS_MODULE,
227 	.open    = cim_la_open,
228 	.read    = seq_read,
229 	.llseek  = seq_lseek,
230 	.release = seq_release_private
231 };
232 
233 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
234 {
235 	const u32 *p = v;
236 
237 	if (v == SEQ_START_TOKEN) {
238 		seq_puts(seq, "Cntl ID DataBE   Addr                 Data\n");
239 	} else if (idx < CIM_PIFLA_SIZE) {
240 		seq_printf(seq, " %02x  %02x  %04x  %08x %08x%08x%08x%08x\n",
241 			   (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
242 			   p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
243 	} else {
244 		if (idx == CIM_PIFLA_SIZE)
245 			seq_puts(seq, "\nCntl ID               Data\n");
246 		seq_printf(seq, " %02x  %02x %08x%08x%08x%08x\n",
247 			   (p[4] >> 6) & 0xff, p[4] & 0x3f,
248 			   p[3], p[2], p[1], p[0]);
249 	}
250 	return 0;
251 }
252 
253 static int cim_pif_la_open(struct inode *inode, struct file *file)
254 {
255 	struct seq_tab *p;
256 	struct adapter *adap = inode->i_private;
257 
258 	p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
259 			 cim_pif_la_show);
260 	if (!p)
261 		return -ENOMEM;
262 
263 	t4_cim_read_pif_la(adap, (u32 *)p->data,
264 			   (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
265 	return 0;
266 }
267 
268 static const struct file_operations cim_pif_la_fops = {
269 	.owner   = THIS_MODULE,
270 	.open    = cim_pif_la_open,
271 	.read    = seq_read,
272 	.llseek  = seq_lseek,
273 	.release = seq_release_private
274 };
275 
276 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
277 {
278 	const u32 *p = v;
279 
280 	if (v == SEQ_START_TOKEN) {
281 		seq_puts(seq, "\n");
282 	} else if (idx < CIM_MALA_SIZE) {
283 		seq_printf(seq, "%02x%08x%08x%08x%08x\n",
284 			   p[4], p[3], p[2], p[1], p[0]);
285 	} else {
286 		if (idx == CIM_MALA_SIZE)
287 			seq_puts(seq,
288 				 "\nCnt ID Tag UE       Data       RDY VLD\n");
289 		seq_printf(seq, "%3u %2u  %x   %u %08x%08x  %u   %u\n",
290 			   (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
291 			   (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
292 			   (p[1] >> 2) | ((p[2] & 3) << 30),
293 			   (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
294 			   p[0] & 1);
295 	}
296 	return 0;
297 }
298 
299 static int cim_ma_la_open(struct inode *inode, struct file *file)
300 {
301 	struct seq_tab *p;
302 	struct adapter *adap = inode->i_private;
303 
304 	p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
305 			 cim_ma_la_show);
306 	if (!p)
307 		return -ENOMEM;
308 
309 	t4_cim_read_ma_la(adap, (u32 *)p->data,
310 			  (u32 *)p->data + 5 * CIM_MALA_SIZE);
311 	return 0;
312 }
313 
314 static const struct file_operations cim_ma_la_fops = {
315 	.owner   = THIS_MODULE,
316 	.open    = cim_ma_la_open,
317 	.read    = seq_read,
318 	.llseek  = seq_lseek,
319 	.release = seq_release_private
320 };
321 
322 static int cim_qcfg_show(struct seq_file *seq, void *v)
323 {
324 	static const char * const qname[] = {
325 		"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
326 		"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
327 		"SGE0-RX", "SGE1-RX"
328 	};
329 
330 	int i;
331 	struct adapter *adap = seq->private;
332 	u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
333 	u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
334 	u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
335 	u16 thres[CIM_NUM_IBQ];
336 	u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
337 	u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
338 	u32 *p = stat;
339 	int cim_num_obq = is_t4(adap->params.chip) ?
340 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
341 
342 	i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
343 			UP_IBQ_0_SHADOW_RDADDR_A,
344 			ARRAY_SIZE(stat), stat);
345 	if (!i) {
346 		if (is_t4(adap->params.chip)) {
347 			i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
348 					ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
349 			wr = obq_wr_t4;
350 		} else {
351 			i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
352 					ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
353 			wr = obq_wr_t5;
354 		}
355 	}
356 	if (i)
357 		return i;
358 
359 	t4_read_cimq_cfg(adap, base, size, thres);
360 
361 	seq_printf(seq,
362 		   "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail\n");
363 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
364 		seq_printf(seq, "%7s %5x %5u %5u %6x  %4x %4u %4u %5u\n",
365 			   qname[i], base[i], size[i], thres[i],
366 			   IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
367 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
368 			   QUEREMFLITS_G(p[2]) * 16);
369 	for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
370 		seq_printf(seq, "%7s %5x %5u %12x  %4x %4u %4u %5u\n",
371 			   qname[i], base[i], size[i],
372 			   QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
373 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
374 			   QUEREMFLITS_G(p[2]) * 16);
375 	return 0;
376 }
377 
378 static int cim_qcfg_open(struct inode *inode, struct file *file)
379 {
380 	return single_open(file, cim_qcfg_show, inode->i_private);
381 }
382 
383 static const struct file_operations cim_qcfg_fops = {
384 	.owner   = THIS_MODULE,
385 	.open    = cim_qcfg_open,
386 	.read    = seq_read,
387 	.llseek  = seq_lseek,
388 	.release = single_release,
389 };
390 
391 static int cimq_show(struct seq_file *seq, void *v, int idx)
392 {
393 	const u32 *p = v;
394 
395 	seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
396 		   p[2], p[3]);
397 	return 0;
398 }
399 
400 static int cim_ibq_open(struct inode *inode, struct file *file)
401 {
402 	int ret;
403 	struct seq_tab *p;
404 	unsigned int qid = (uintptr_t)inode->i_private & 7;
405 	struct adapter *adap = inode->i_private - qid;
406 
407 	p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
408 	if (!p)
409 		return -ENOMEM;
410 
411 	ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
412 	if (ret < 0)
413 		seq_release_private(inode, file);
414 	else
415 		ret = 0;
416 	return ret;
417 }
418 
419 static const struct file_operations cim_ibq_fops = {
420 	.owner   = THIS_MODULE,
421 	.open    = cim_ibq_open,
422 	.read    = seq_read,
423 	.llseek  = seq_lseek,
424 	.release = seq_release_private
425 };
426 
427 static int cim_obq_open(struct inode *inode, struct file *file)
428 {
429 	int ret;
430 	struct seq_tab *p;
431 	unsigned int qid = (uintptr_t)inode->i_private & 7;
432 	struct adapter *adap = inode->i_private - qid;
433 
434 	p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
435 	if (!p)
436 		return -ENOMEM;
437 
438 	ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
439 	if (ret < 0) {
440 		seq_release_private(inode, file);
441 	} else {
442 		seq_tab_trim(p, ret / 4);
443 		ret = 0;
444 	}
445 	return ret;
446 }
447 
448 static const struct file_operations cim_obq_fops = {
449 	.owner   = THIS_MODULE,
450 	.open    = cim_obq_open,
451 	.read    = seq_read,
452 	.llseek  = seq_lseek,
453 	.release = seq_release_private
454 };
455 
456 struct field_desc {
457 	const char *name;
458 	unsigned int start;
459 	unsigned int width;
460 };
461 
462 static void field_desc_show(struct seq_file *seq, u64 v,
463 			    const struct field_desc *p)
464 {
465 	char buf[32];
466 	int line_size = 0;
467 
468 	while (p->name) {
469 		u64 mask = (1ULL << p->width) - 1;
470 		int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
471 				    ((unsigned long long)v >> p->start) & mask);
472 
473 		if (line_size + len >= 79) {
474 			line_size = 8;
475 			seq_puts(seq, "\n        ");
476 		}
477 		seq_printf(seq, "%s ", buf);
478 		line_size += len + 1;
479 		p++;
480 	}
481 	seq_putc(seq, '\n');
482 }
483 
484 static struct field_desc tp_la0[] = {
485 	{ "RcfOpCodeOut", 60, 4 },
486 	{ "State", 56, 4 },
487 	{ "WcfState", 52, 4 },
488 	{ "RcfOpcSrcOut", 50, 2 },
489 	{ "CRxError", 49, 1 },
490 	{ "ERxError", 48, 1 },
491 	{ "SanityFailed", 47, 1 },
492 	{ "SpuriousMsg", 46, 1 },
493 	{ "FlushInputMsg", 45, 1 },
494 	{ "FlushInputCpl", 44, 1 },
495 	{ "RssUpBit", 43, 1 },
496 	{ "RssFilterHit", 42, 1 },
497 	{ "Tid", 32, 10 },
498 	{ "InitTcb", 31, 1 },
499 	{ "LineNumber", 24, 7 },
500 	{ "Emsg", 23, 1 },
501 	{ "EdataOut", 22, 1 },
502 	{ "Cmsg", 21, 1 },
503 	{ "CdataOut", 20, 1 },
504 	{ "EreadPdu", 19, 1 },
505 	{ "CreadPdu", 18, 1 },
506 	{ "TunnelPkt", 17, 1 },
507 	{ "RcfPeerFin", 16, 1 },
508 	{ "RcfReasonOut", 12, 4 },
509 	{ "TxCchannel", 10, 2 },
510 	{ "RcfTxChannel", 8, 2 },
511 	{ "RxEchannel", 6, 2 },
512 	{ "RcfRxChannel", 5, 1 },
513 	{ "RcfDataOutSrdy", 4, 1 },
514 	{ "RxDvld", 3, 1 },
515 	{ "RxOoDvld", 2, 1 },
516 	{ "RxCongestion", 1, 1 },
517 	{ "TxCongestion", 0, 1 },
518 	{ NULL }
519 };
520 
521 static int tp_la_show(struct seq_file *seq, void *v, int idx)
522 {
523 	const u64 *p = v;
524 
525 	field_desc_show(seq, *p, tp_la0);
526 	return 0;
527 }
528 
529 static int tp_la_show2(struct seq_file *seq, void *v, int idx)
530 {
531 	const u64 *p = v;
532 
533 	if (idx)
534 		seq_putc(seq, '\n');
535 	field_desc_show(seq, p[0], tp_la0);
536 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
537 		field_desc_show(seq, p[1], tp_la0);
538 	return 0;
539 }
540 
541 static int tp_la_show3(struct seq_file *seq, void *v, int idx)
542 {
543 	static struct field_desc tp_la1[] = {
544 		{ "CplCmdIn", 56, 8 },
545 		{ "CplCmdOut", 48, 8 },
546 		{ "ESynOut", 47, 1 },
547 		{ "EAckOut", 46, 1 },
548 		{ "EFinOut", 45, 1 },
549 		{ "ERstOut", 44, 1 },
550 		{ "SynIn", 43, 1 },
551 		{ "AckIn", 42, 1 },
552 		{ "FinIn", 41, 1 },
553 		{ "RstIn", 40, 1 },
554 		{ "DataIn", 39, 1 },
555 		{ "DataInVld", 38, 1 },
556 		{ "PadIn", 37, 1 },
557 		{ "RxBufEmpty", 36, 1 },
558 		{ "RxDdp", 35, 1 },
559 		{ "RxFbCongestion", 34, 1 },
560 		{ "TxFbCongestion", 33, 1 },
561 		{ "TxPktSumSrdy", 32, 1 },
562 		{ "RcfUlpType", 28, 4 },
563 		{ "Eread", 27, 1 },
564 		{ "Ebypass", 26, 1 },
565 		{ "Esave", 25, 1 },
566 		{ "Static0", 24, 1 },
567 		{ "Cread", 23, 1 },
568 		{ "Cbypass", 22, 1 },
569 		{ "Csave", 21, 1 },
570 		{ "CPktOut", 20, 1 },
571 		{ "RxPagePoolFull", 18, 2 },
572 		{ "RxLpbkPkt", 17, 1 },
573 		{ "TxLpbkPkt", 16, 1 },
574 		{ "RxVfValid", 15, 1 },
575 		{ "SynLearned", 14, 1 },
576 		{ "SetDelEntry", 13, 1 },
577 		{ "SetInvEntry", 12, 1 },
578 		{ "CpcmdDvld", 11, 1 },
579 		{ "CpcmdSave", 10, 1 },
580 		{ "RxPstructsFull", 8, 2 },
581 		{ "EpcmdDvld", 7, 1 },
582 		{ "EpcmdFlush", 6, 1 },
583 		{ "EpcmdTrimPrefix", 5, 1 },
584 		{ "EpcmdTrimPostfix", 4, 1 },
585 		{ "ERssIp4Pkt", 3, 1 },
586 		{ "ERssIp6Pkt", 2, 1 },
587 		{ "ERssTcpUdpPkt", 1, 1 },
588 		{ "ERssFceFipPkt", 0, 1 },
589 		{ NULL }
590 	};
591 	static struct field_desc tp_la2[] = {
592 		{ "CplCmdIn", 56, 8 },
593 		{ "MpsVfVld", 55, 1 },
594 		{ "MpsPf", 52, 3 },
595 		{ "MpsVf", 44, 8 },
596 		{ "SynIn", 43, 1 },
597 		{ "AckIn", 42, 1 },
598 		{ "FinIn", 41, 1 },
599 		{ "RstIn", 40, 1 },
600 		{ "DataIn", 39, 1 },
601 		{ "DataInVld", 38, 1 },
602 		{ "PadIn", 37, 1 },
603 		{ "RxBufEmpty", 36, 1 },
604 		{ "RxDdp", 35, 1 },
605 		{ "RxFbCongestion", 34, 1 },
606 		{ "TxFbCongestion", 33, 1 },
607 		{ "TxPktSumSrdy", 32, 1 },
608 		{ "RcfUlpType", 28, 4 },
609 		{ "Eread", 27, 1 },
610 		{ "Ebypass", 26, 1 },
611 		{ "Esave", 25, 1 },
612 		{ "Static0", 24, 1 },
613 		{ "Cread", 23, 1 },
614 		{ "Cbypass", 22, 1 },
615 		{ "Csave", 21, 1 },
616 		{ "CPktOut", 20, 1 },
617 		{ "RxPagePoolFull", 18, 2 },
618 		{ "RxLpbkPkt", 17, 1 },
619 		{ "TxLpbkPkt", 16, 1 },
620 		{ "RxVfValid", 15, 1 },
621 		{ "SynLearned", 14, 1 },
622 		{ "SetDelEntry", 13, 1 },
623 		{ "SetInvEntry", 12, 1 },
624 		{ "CpcmdDvld", 11, 1 },
625 		{ "CpcmdSave", 10, 1 },
626 		{ "RxPstructsFull", 8, 2 },
627 		{ "EpcmdDvld", 7, 1 },
628 		{ "EpcmdFlush", 6, 1 },
629 		{ "EpcmdTrimPrefix", 5, 1 },
630 		{ "EpcmdTrimPostfix", 4, 1 },
631 		{ "ERssIp4Pkt", 3, 1 },
632 		{ "ERssIp6Pkt", 2, 1 },
633 		{ "ERssTcpUdpPkt", 1, 1 },
634 		{ "ERssFceFipPkt", 0, 1 },
635 		{ NULL }
636 	};
637 	const u64 *p = v;
638 
639 	if (idx)
640 		seq_putc(seq, '\n');
641 	field_desc_show(seq, p[0], tp_la0);
642 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
643 		field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
644 	return 0;
645 }
646 
647 static int tp_la_open(struct inode *inode, struct file *file)
648 {
649 	struct seq_tab *p;
650 	struct adapter *adap = inode->i_private;
651 
652 	switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
653 	case 2:
654 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
655 				 tp_la_show2);
656 		break;
657 	case 3:
658 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
659 				 tp_la_show3);
660 		break;
661 	default:
662 		p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
663 	}
664 	if (!p)
665 		return -ENOMEM;
666 
667 	t4_tp_read_la(adap, (u64 *)p->data, NULL);
668 	return 0;
669 }
670 
671 static ssize_t tp_la_write(struct file *file, const char __user *buf,
672 			   size_t count, loff_t *pos)
673 {
674 	int err;
675 	char s[32];
676 	unsigned long val;
677 	size_t size = min(sizeof(s) - 1, count);
678 	struct adapter *adap = file_inode(file)->i_private;
679 
680 	if (copy_from_user(s, buf, size))
681 		return -EFAULT;
682 	s[size] = '\0';
683 	err = kstrtoul(s, 0, &val);
684 	if (err)
685 		return err;
686 	if (val > 0xffff)
687 		return -EINVAL;
688 	adap->params.tp.la_mask = val << 16;
689 	t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
690 			 adap->params.tp.la_mask);
691 	return count;
692 }
693 
694 static const struct file_operations tp_la_fops = {
695 	.owner   = THIS_MODULE,
696 	.open    = tp_la_open,
697 	.read    = seq_read,
698 	.llseek  = seq_lseek,
699 	.release = seq_release_private,
700 	.write   = tp_la_write
701 };
702 
703 static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
704 {
705 	const u32 *p = v;
706 
707 	if (v == SEQ_START_TOKEN)
708 		seq_puts(seq, "      Pcmd        Type   Message"
709 			 "                Data\n");
710 	else
711 		seq_printf(seq, "%08x%08x  %4x  %08x  %08x%08x%08x%08x\n",
712 			   p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
713 	return 0;
714 }
715 
716 static int ulprx_la_open(struct inode *inode, struct file *file)
717 {
718 	struct seq_tab *p;
719 	struct adapter *adap = inode->i_private;
720 
721 	p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
722 			 ulprx_la_show);
723 	if (!p)
724 		return -ENOMEM;
725 
726 	t4_ulprx_read_la(adap, (u32 *)p->data);
727 	return 0;
728 }
729 
730 static const struct file_operations ulprx_la_fops = {
731 	.owner   = THIS_MODULE,
732 	.open    = ulprx_la_open,
733 	.read    = seq_read,
734 	.llseek  = seq_lseek,
735 	.release = seq_release_private
736 };
737 
738 /* Show the PM memory stats.  These stats include:
739  *
740  * TX:
741  *   Read: memory read operation
742  *   Write Bypass: cut-through
743  *   Bypass + mem: cut-through and save copy
744  *
745  * RX:
746  *   Read: memory read
747  *   Write Bypass: cut-through
748  *   Flush: payload trim or drop
749  */
750 static int pm_stats_show(struct seq_file *seq, void *v)
751 {
752 	static const char * const tx_pm_stats[] = {
753 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
754 	};
755 	static const char * const rx_pm_stats[] = {
756 		"Read:", "Write bypass:", "Write mem:", "Flush:"
757 	};
758 
759 	int i;
760 	u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS];
761 	u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS];
762 	struct adapter *adap = seq->private;
763 
764 	t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
765 	t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
766 
767 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Tx pcmds", "Tx bytes");
768 	for (i = 0; i < PM_NSTATS - 1; i++)
769 		seq_printf(seq, "%-13s %10u  %20llu\n",
770 			   tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
771 
772 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Rx pcmds", "Rx bytes");
773 	for (i = 0; i < PM_NSTATS - 1; i++)
774 		seq_printf(seq, "%-13s %10u  %20llu\n",
775 			   rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
776 
777 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
778 		/* In T5 the granularity of the total wait is too fine.
779 		 * It is not useful as it reaches the max value too fast.
780 		 * Hence display this Input FIFO wait for T6 onwards.
781 		 */
782 		seq_printf(seq, "%13s %10s  %20s\n",
783 			   " ", "Total wait", "Total Occupancy");
784 		seq_printf(seq, "Tx FIFO wait  %10u  %20llu\n",
785 			   tx_cnt[i], tx_cyc[i]);
786 		seq_printf(seq, "Rx FIFO wait  %10u  %20llu\n",
787 			   rx_cnt[i], rx_cyc[i]);
788 
789 		/* Skip index 6 as there is nothing useful ihere */
790 		i += 2;
791 
792 		/* At index 7, a new stat for read latency (count, total wait)
793 		 * is added.
794 		 */
795 		seq_printf(seq, "%13s %10s  %20s\n",
796 			   " ", "Reads", "Total wait");
797 		seq_printf(seq, "Tx latency    %10u  %20llu\n",
798 			   tx_cnt[i], tx_cyc[i]);
799 		seq_printf(seq, "Rx latency    %10u  %20llu\n",
800 			   rx_cnt[i], rx_cyc[i]);
801 	}
802 	return 0;
803 }
804 
805 static int pm_stats_open(struct inode *inode, struct file *file)
806 {
807 	return single_open(file, pm_stats_show, inode->i_private);
808 }
809 
810 static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
811 			      size_t count, loff_t *pos)
812 {
813 	struct adapter *adap = file_inode(file)->i_private;
814 
815 	t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
816 	t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
817 	return count;
818 }
819 
820 static const struct file_operations pm_stats_debugfs_fops = {
821 	.owner   = THIS_MODULE,
822 	.open    = pm_stats_open,
823 	.read    = seq_read,
824 	.llseek  = seq_lseek,
825 	.release = single_release,
826 	.write   = pm_stats_clear
827 };
828 
829 static int tx_rate_show(struct seq_file *seq, void *v)
830 {
831 	u64 nrate[NCHAN], orate[NCHAN];
832 	struct adapter *adap = seq->private;
833 
834 	t4_get_chan_txrate(adap, nrate, orate);
835 	if (adap->params.arch.nchan == NCHAN) {
836 		seq_puts(seq, "              channel 0   channel 1   "
837 			 "channel 2   channel 3\n");
838 		seq_printf(seq, "NIC B/s:     %10llu  %10llu  %10llu  %10llu\n",
839 			   (unsigned long long)nrate[0],
840 			   (unsigned long long)nrate[1],
841 			   (unsigned long long)nrate[2],
842 			   (unsigned long long)nrate[3]);
843 		seq_printf(seq, "Offload B/s: %10llu  %10llu  %10llu  %10llu\n",
844 			   (unsigned long long)orate[0],
845 			   (unsigned long long)orate[1],
846 			   (unsigned long long)orate[2],
847 			   (unsigned long long)orate[3]);
848 	} else {
849 		seq_puts(seq, "              channel 0   channel 1\n");
850 		seq_printf(seq, "NIC B/s:     %10llu  %10llu\n",
851 			   (unsigned long long)nrate[0],
852 			   (unsigned long long)nrate[1]);
853 		seq_printf(seq, "Offload B/s: %10llu  %10llu\n",
854 			   (unsigned long long)orate[0],
855 			   (unsigned long long)orate[1]);
856 	}
857 	return 0;
858 }
859 
860 DEFINE_SIMPLE_DEBUGFS_FILE(tx_rate);
861 
862 static int cctrl_tbl_show(struct seq_file *seq, void *v)
863 {
864 	static const char * const dec_fac[] = {
865 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
866 		"0.9375" };
867 
868 	int i;
869 	u16 (*incr)[NCCTRL_WIN];
870 	struct adapter *adap = seq->private;
871 
872 	incr = kmalloc(sizeof(*incr) * NMTUS, GFP_KERNEL);
873 	if (!incr)
874 		return -ENOMEM;
875 
876 	t4_read_cong_tbl(adap, incr);
877 
878 	for (i = 0; i < NCCTRL_WIN; ++i) {
879 		seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
880 			   incr[0][i], incr[1][i], incr[2][i], incr[3][i],
881 			   incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
882 		seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
883 			   incr[8][i], incr[9][i], incr[10][i], incr[11][i],
884 			   incr[12][i], incr[13][i], incr[14][i], incr[15][i],
885 			   adap->params.a_wnd[i],
886 			   dec_fac[adap->params.b_wnd[i]]);
887 	}
888 
889 	kfree(incr);
890 	return 0;
891 }
892 
893 DEFINE_SIMPLE_DEBUGFS_FILE(cctrl_tbl);
894 
895 /* Format a value in a unit that differs from the value's native unit by the
896  * given factor.
897  */
898 static char *unit_conv(char *buf, size_t len, unsigned int val,
899 		       unsigned int factor)
900 {
901 	unsigned int rem = val % factor;
902 
903 	if (rem == 0) {
904 		snprintf(buf, len, "%u", val / factor);
905 	} else {
906 		while (rem % 10 == 0)
907 			rem /= 10;
908 		snprintf(buf, len, "%u.%u", val / factor, rem);
909 	}
910 	return buf;
911 }
912 
913 static int clk_show(struct seq_file *seq, void *v)
914 {
915 	char buf[32];
916 	struct adapter *adap = seq->private;
917 	unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk;  /* in ps */
918 	u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
919 	unsigned int tre = TIMERRESOLUTION_G(res);
920 	unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
921 	unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
922 
923 	seq_printf(seq, "Core clock period: %s ns\n",
924 		   unit_conv(buf, sizeof(buf), cclk_ps, 1000));
925 	seq_printf(seq, "TP timer tick: %s us\n",
926 		   unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
927 	seq_printf(seq, "TCP timestamp tick: %s us\n",
928 		   unit_conv(buf, sizeof(buf),
929 			     (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
930 	seq_printf(seq, "DACK tick: %s us\n",
931 		   unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
932 	seq_printf(seq, "DACK timer: %u us\n",
933 		   ((cclk_ps << dack_re) / 1000000) *
934 		   t4_read_reg(adap, TP_DACK_TIMER_A));
935 	seq_printf(seq, "Retransmit min: %llu us\n",
936 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
937 	seq_printf(seq, "Retransmit max: %llu us\n",
938 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
939 	seq_printf(seq, "Persist timer min: %llu us\n",
940 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
941 	seq_printf(seq, "Persist timer max: %llu us\n",
942 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
943 	seq_printf(seq, "Keepalive idle timer: %llu us\n",
944 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
945 	seq_printf(seq, "Keepalive interval: %llu us\n",
946 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
947 	seq_printf(seq, "Initial SRTT: %llu us\n",
948 		   tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
949 	seq_printf(seq, "FINWAIT2 timer: %llu us\n",
950 		   tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
951 
952 	return 0;
953 }
954 
955 DEFINE_SIMPLE_DEBUGFS_FILE(clk);
956 
957 /* Firmware Device Log dump. */
958 static const char * const devlog_level_strings[] = {
959 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
960 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
961 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
962 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
963 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
964 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
965 };
966 
967 static const char * const devlog_facility_strings[] = {
968 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
969 	[FW_DEVLOG_FACILITY_CF]         = "CF",
970 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
971 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
972 	[FW_DEVLOG_FACILITY_RES]	= "RES",
973 	[FW_DEVLOG_FACILITY_HW]		= "HW",
974 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
975 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
976 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
977 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
978 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
979 	[FW_DEVLOG_FACILITY_VI]		= "VI",
980 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
981 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
982 	[FW_DEVLOG_FACILITY_TM]		= "TM",
983 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
984 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
985 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
986 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
987 	[FW_DEVLOG_FACILITY_RI]		= "RI",
988 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
989 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
990 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
991 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE"
992 };
993 
994 /* Information gathered by Device Log Open routine for the display routine.
995  */
996 struct devlog_info {
997 	unsigned int nentries;		/* number of entries in log[] */
998 	unsigned int first;		/* first [temporal] entry in log[] */
999 	struct fw_devlog_e log[0];	/* Firmware Device Log */
1000 };
1001 
1002 /* Dump a Firmaware Device Log entry.
1003  */
1004 static int devlog_show(struct seq_file *seq, void *v)
1005 {
1006 	if (v == SEQ_START_TOKEN)
1007 		seq_printf(seq, "%10s  %15s  %8s  %8s  %s\n",
1008 			   "Seq#", "Tstamp", "Level", "Facility", "Message");
1009 	else {
1010 		struct devlog_info *dinfo = seq->private;
1011 		int fidx = (uintptr_t)v - 2;
1012 		unsigned long index;
1013 		struct fw_devlog_e *e;
1014 
1015 		/* Get a pointer to the log entry to display.  Skip unused log
1016 		 * entries.
1017 		 */
1018 		index = dinfo->first + fidx;
1019 		if (index >= dinfo->nentries)
1020 			index -= dinfo->nentries;
1021 		e = &dinfo->log[index];
1022 		if (e->timestamp == 0)
1023 			return 0;
1024 
1025 		/* Print the message.  This depends on the firmware using
1026 		 * exactly the same formating strings as the kernel so we may
1027 		 * eventually have to put a format interpreter in here ...
1028 		 */
1029 		seq_printf(seq, "%10d  %15llu  %8s  %8s  ",
1030 			   be32_to_cpu(e->seqno),
1031 			   be64_to_cpu(e->timestamp),
1032 			   (e->level < ARRAY_SIZE(devlog_level_strings)
1033 			    ? devlog_level_strings[e->level]
1034 			    : "UNKNOWN"),
1035 			   (e->facility < ARRAY_SIZE(devlog_facility_strings)
1036 			    ? devlog_facility_strings[e->facility]
1037 			    : "UNKNOWN"));
1038 		seq_printf(seq, e->fmt,
1039 			   be32_to_cpu(e->params[0]),
1040 			   be32_to_cpu(e->params[1]),
1041 			   be32_to_cpu(e->params[2]),
1042 			   be32_to_cpu(e->params[3]),
1043 			   be32_to_cpu(e->params[4]),
1044 			   be32_to_cpu(e->params[5]),
1045 			   be32_to_cpu(e->params[6]),
1046 			   be32_to_cpu(e->params[7]));
1047 	}
1048 	return 0;
1049 }
1050 
1051 /* Sequential File Operations for Device Log.
1052  */
1053 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
1054 {
1055 	if (pos > dinfo->nentries)
1056 		return NULL;
1057 
1058 	return (void *)(uintptr_t)(pos + 1);
1059 }
1060 
1061 static void *devlog_start(struct seq_file *seq, loff_t *pos)
1062 {
1063 	struct devlog_info *dinfo = seq->private;
1064 
1065 	return (*pos
1066 		? devlog_get_idx(dinfo, *pos)
1067 		: SEQ_START_TOKEN);
1068 }
1069 
1070 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
1071 {
1072 	struct devlog_info *dinfo = seq->private;
1073 
1074 	(*pos)++;
1075 	return devlog_get_idx(dinfo, *pos);
1076 }
1077 
1078 static void devlog_stop(struct seq_file *seq, void *v)
1079 {
1080 }
1081 
1082 static const struct seq_operations devlog_seq_ops = {
1083 	.start = devlog_start,
1084 	.next  = devlog_next,
1085 	.stop  = devlog_stop,
1086 	.show  = devlog_show
1087 };
1088 
1089 /* Set up for reading the firmware's device log.  We read the entire log here
1090  * and then display it incrementally in devlog_show().
1091  */
1092 static int devlog_open(struct inode *inode, struct file *file)
1093 {
1094 	struct adapter *adap = inode->i_private;
1095 	struct devlog_params *dparams = &adap->params.devlog;
1096 	struct devlog_info *dinfo;
1097 	unsigned int index;
1098 	u32 fseqno;
1099 	int ret;
1100 
1101 	/* If we don't know where the log is we can't do anything.
1102 	 */
1103 	if (dparams->start == 0)
1104 		return -ENXIO;
1105 
1106 	/* Allocate the space to read in the firmware's device log and set up
1107 	 * for the iterated call to our display function.
1108 	 */
1109 	dinfo = __seq_open_private(file, &devlog_seq_ops,
1110 				   sizeof(*dinfo) + dparams->size);
1111 	if (!dinfo)
1112 		return -ENOMEM;
1113 
1114 	/* Record the basic log buffer information and read in the raw log.
1115 	 */
1116 	dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
1117 	dinfo->first = 0;
1118 	spin_lock(&adap->win0_lock);
1119 	ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
1120 			   dparams->start, dparams->size, (__be32 *)dinfo->log,
1121 			   T4_MEMORY_READ);
1122 	spin_unlock(&adap->win0_lock);
1123 	if (ret) {
1124 		seq_release_private(inode, file);
1125 		return ret;
1126 	}
1127 
1128 	/* Find the earliest (lowest Sequence Number) log entry in the
1129 	 * circular Device Log.
1130 	 */
1131 	for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
1132 		struct fw_devlog_e *e = &dinfo->log[index];
1133 		__u32 seqno;
1134 
1135 		if (e->timestamp == 0)
1136 			continue;
1137 
1138 		seqno = be32_to_cpu(e->seqno);
1139 		if (seqno < fseqno) {
1140 			fseqno = seqno;
1141 			dinfo->first = index;
1142 		}
1143 	}
1144 	return 0;
1145 }
1146 
1147 static const struct file_operations devlog_fops = {
1148 	.owner   = THIS_MODULE,
1149 	.open    = devlog_open,
1150 	.read    = seq_read,
1151 	.llseek  = seq_lseek,
1152 	.release = seq_release_private
1153 };
1154 
1155 /* Show Firmware Mailbox Command/Reply Log
1156  *
1157  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1158  * it's possible that we can catch things during a log update and therefore
1159  * see partially corrupted log entries.  But it's probably Good Enough(tm).
1160  * If we ever decide that we want to make sure that we're dumping a coherent
1161  * log, we'd need to perform locking in the mailbox logging and in
1162  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1163  * like we do for the Firmware Device Log.
1164  */
1165 static int mboxlog_show(struct seq_file *seq, void *v)
1166 {
1167 	struct adapter *adapter = seq->private;
1168 	struct mbox_cmd_log *log = adapter->mbox_log;
1169 	struct mbox_cmd *entry;
1170 	int entry_idx, i;
1171 
1172 	if (v == SEQ_START_TOKEN) {
1173 		seq_printf(seq,
1174 			   "%10s  %15s  %5s  %5s  %s\n",
1175 			   "Seq#", "Tstamp", "Atime", "Etime",
1176 			   "Command/Reply");
1177 		return 0;
1178 	}
1179 
1180 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1181 	if (entry_idx >= log->size)
1182 		entry_idx -= log->size;
1183 	entry = mbox_cmd_log_entry(log, entry_idx);
1184 
1185 	/* skip over unused entries */
1186 	if (entry->timestamp == 0)
1187 		return 0;
1188 
1189 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1190 		   entry->seqno, entry->timestamp,
1191 		   entry->access, entry->execute);
1192 	for (i = 0; i < MBOX_LEN / 8; i++) {
1193 		u64 flit = entry->cmd[i];
1194 		u32 hi = (u32)(flit >> 32);
1195 		u32 lo = (u32)flit;
1196 
1197 		seq_printf(seq, "  %08x %08x", hi, lo);
1198 	}
1199 	seq_puts(seq, "\n");
1200 	return 0;
1201 }
1202 
1203 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1204 {
1205 	struct adapter *adapter = seq->private;
1206 	struct mbox_cmd_log *log = adapter->mbox_log;
1207 
1208 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1209 }
1210 
1211 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1212 {
1213 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1214 }
1215 
1216 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1217 {
1218 	++*pos;
1219 	return mboxlog_get_idx(seq, *pos);
1220 }
1221 
1222 static void mboxlog_stop(struct seq_file *seq, void *v)
1223 {
1224 }
1225 
1226 static const struct seq_operations mboxlog_seq_ops = {
1227 	.start = mboxlog_start,
1228 	.next  = mboxlog_next,
1229 	.stop  = mboxlog_stop,
1230 	.show  = mboxlog_show
1231 };
1232 
1233 static int mboxlog_open(struct inode *inode, struct file *file)
1234 {
1235 	int res = seq_open(file, &mboxlog_seq_ops);
1236 
1237 	if (!res) {
1238 		struct seq_file *seq = file->private_data;
1239 
1240 		seq->private = inode->i_private;
1241 	}
1242 	return res;
1243 }
1244 
1245 static const struct file_operations mboxlog_fops = {
1246 	.owner   = THIS_MODULE,
1247 	.open    = mboxlog_open,
1248 	.read    = seq_read,
1249 	.llseek  = seq_lseek,
1250 	.release = seq_release,
1251 };
1252 
1253 static int mbox_show(struct seq_file *seq, void *v)
1254 {
1255 	static const char * const owner[] = { "none", "FW", "driver",
1256 					      "unknown", "<unread>" };
1257 
1258 	int i;
1259 	unsigned int mbox = (uintptr_t)seq->private & 7;
1260 	struct adapter *adap = seq->private - mbox;
1261 	void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1262 
1263 	/* For T4 we don't have a shadow copy of the Mailbox Control register.
1264 	 * And since reading that real register causes a side effect of
1265 	 * granting ownership, we're best of simply not reading it at all.
1266 	 */
1267 	if (is_t4(adap->params.chip)) {
1268 		i = 4; /* index of "<unread>" */
1269 	} else {
1270 		unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A;
1271 		void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
1272 
1273 		i = MBOWNER_G(readl(ctrl));
1274 	}
1275 
1276 	seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
1277 
1278 	for (i = 0; i < MBOX_LEN; i += 8)
1279 		seq_printf(seq, "%016llx\n",
1280 			   (unsigned long long)readq(addr + i));
1281 	return 0;
1282 }
1283 
1284 static int mbox_open(struct inode *inode, struct file *file)
1285 {
1286 	return single_open(file, mbox_show, inode->i_private);
1287 }
1288 
1289 static ssize_t mbox_write(struct file *file, const char __user *buf,
1290 			  size_t count, loff_t *pos)
1291 {
1292 	int i;
1293 	char c = '\n', s[256];
1294 	unsigned long long data[8];
1295 	const struct inode *ino;
1296 	unsigned int mbox;
1297 	struct adapter *adap;
1298 	void __iomem *addr;
1299 	void __iomem *ctrl;
1300 
1301 	if (count > sizeof(s) - 1 || !count)
1302 		return -EINVAL;
1303 	if (copy_from_user(s, buf, count))
1304 		return -EFAULT;
1305 	s[count] = '\0';
1306 
1307 	if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
1308 		   &data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
1309 		   &data[7], &c) < 8 || c != '\n')
1310 		return -EINVAL;
1311 
1312 	ino = file_inode(file);
1313 	mbox = (uintptr_t)ino->i_private & 7;
1314 	adap = ino->i_private - mbox;
1315 	addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1316 	ctrl = addr + MBOX_LEN;
1317 
1318 	if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
1319 		return -EBUSY;
1320 
1321 	for (i = 0; i < 8; i++)
1322 		writeq(data[i], addr + 8 * i);
1323 
1324 	writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
1325 	return count;
1326 }
1327 
1328 static const struct file_operations mbox_debugfs_fops = {
1329 	.owner   = THIS_MODULE,
1330 	.open    = mbox_open,
1331 	.read    = seq_read,
1332 	.llseek  = seq_lseek,
1333 	.release = single_release,
1334 	.write   = mbox_write
1335 };
1336 
1337 static int mps_trc_show(struct seq_file *seq, void *v)
1338 {
1339 	int enabled, i;
1340 	struct trace_params tp;
1341 	unsigned int trcidx = (uintptr_t)seq->private & 3;
1342 	struct adapter *adap = seq->private - trcidx;
1343 
1344 	t4_get_trace_filter(adap, &tp, trcidx, &enabled);
1345 	if (!enabled) {
1346 		seq_puts(seq, "tracer is disabled\n");
1347 		return 0;
1348 	}
1349 
1350 	if (tp.skip_ofst * 8 >= TRACE_LEN) {
1351 		dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
1352 		return -EINVAL;
1353 	}
1354 	if (tp.port < 8) {
1355 		i = adap->chan_map[tp.port & 3];
1356 		if (i >= MAX_NPORTS) {
1357 			dev_err(adap->pdev_dev, "tracer %u is assigned "
1358 				"to non-existing port\n", trcidx);
1359 			return -EINVAL;
1360 		}
1361 		seq_printf(seq, "tracer is capturing %s %s, ",
1362 			   adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
1363 	} else
1364 		seq_printf(seq, "tracer is capturing loopback %d, ",
1365 			   tp.port - 8);
1366 	seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
1367 		   tp.min_len);
1368 	seq_printf(seq, "packets captured %smatch filter\n",
1369 		   tp.invert ? "do not " : "");
1370 
1371 	if (tp.skip_ofst) {
1372 		seq_puts(seq, "filter pattern: ");
1373 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1374 			seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1375 		seq_putc(seq, '/');
1376 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1377 			seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1378 		seq_puts(seq, "@0\n");
1379 	}
1380 
1381 	seq_puts(seq, "filter pattern: ");
1382 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1383 		seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1384 	seq_putc(seq, '/');
1385 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1386 		seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1387 	seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
1388 	return 0;
1389 }
1390 
1391 static int mps_trc_open(struct inode *inode, struct file *file)
1392 {
1393 	return single_open(file, mps_trc_show, inode->i_private);
1394 }
1395 
1396 static unsigned int xdigit2int(unsigned char c)
1397 {
1398 	return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
1399 }
1400 
1401 #define TRC_PORT_NONE 0xff
1402 #define TRC_RSS_ENABLE 0x33
1403 #define TRC_RSS_DISABLE 0x13
1404 
1405 /* Set an MPS trace filter.  Syntax is:
1406  *
1407  * disable
1408  *
1409  * to disable tracing, or
1410  *
1411  * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
1412  *
1413  * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
1414  * of the NIC's response qid obtained from sge_qinfo and pattern has the form
1415  *
1416  * <pattern data>[/<pattern mask>][@<anchor>]
1417  *
1418  * Up to 2 filter patterns can be specified.  If 2 are supplied the first one
1419  * must be anchored at 0.  An omitted mask is taken as a mask of 1s, an omitted
1420  * anchor is taken as 0.
1421  */
1422 static ssize_t mps_trc_write(struct file *file, const char __user *buf,
1423 			     size_t count, loff_t *pos)
1424 {
1425 	int i, enable, ret;
1426 	u32 *data, *mask;
1427 	struct trace_params tp;
1428 	const struct inode *ino;
1429 	unsigned int trcidx;
1430 	char *s, *p, *word, *end;
1431 	struct adapter *adap;
1432 	u32 j;
1433 
1434 	ino = file_inode(file);
1435 	trcidx = (uintptr_t)ino->i_private & 3;
1436 	adap = ino->i_private - trcidx;
1437 
1438 	/* Don't accept input more than 1K, can't be anything valid except lots
1439 	 * of whitespace.  Well, use less.
1440 	 */
1441 	if (count > 1024)
1442 		return -EFBIG;
1443 	p = s = kzalloc(count + 1, GFP_USER);
1444 	if (!s)
1445 		return -ENOMEM;
1446 	if (copy_from_user(s, buf, count)) {
1447 		count = -EFAULT;
1448 		goto out;
1449 	}
1450 
1451 	if (s[count - 1] == '\n')
1452 		s[count - 1] = '\0';
1453 
1454 	enable = strcmp("disable", s) != 0;
1455 	if (!enable)
1456 		goto apply;
1457 
1458 	/* enable or disable trace multi rss filter */
1459 	if (adap->trace_rss)
1460 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
1461 	else
1462 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
1463 
1464 	memset(&tp, 0, sizeof(tp));
1465 	tp.port = TRC_PORT_NONE;
1466 	i = 0;	/* counts pattern nibbles */
1467 
1468 	while (p) {
1469 		while (isspace(*p))
1470 			p++;
1471 		word = strsep(&p, " ");
1472 		if (!*word)
1473 			break;
1474 
1475 		if (!strncmp(word, "qid=", 4)) {
1476 			end = (char *)word + 4;
1477 			ret = kstrtouint(end, 10, &j);
1478 			if (ret)
1479 				goto out;
1480 			if (!adap->trace_rss) {
1481 				t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
1482 				continue;
1483 			}
1484 
1485 			switch (trcidx) {
1486 			case 0:
1487 				t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
1488 				break;
1489 			case 1:
1490 				t4_write_reg(adap,
1491 					     MPS_TRC_FILTER1_RSS_CONTROL_A, j);
1492 				break;
1493 			case 2:
1494 				t4_write_reg(adap,
1495 					     MPS_TRC_FILTER2_RSS_CONTROL_A, j);
1496 				break;
1497 			case 3:
1498 				t4_write_reg(adap,
1499 					     MPS_TRC_FILTER3_RSS_CONTROL_A, j);
1500 				break;
1501 			}
1502 			continue;
1503 		}
1504 		if (!strncmp(word, "snaplen=", 8)) {
1505 			end = (char *)word + 8;
1506 			ret = kstrtouint(end, 10, &j);
1507 			if (ret || j > 9600) {
1508 inval:				count = -EINVAL;
1509 				goto out;
1510 			}
1511 			tp.snap_len = j;
1512 			continue;
1513 		}
1514 		if (!strncmp(word, "minlen=", 7)) {
1515 			end = (char *)word + 7;
1516 			ret = kstrtouint(end, 10, &j);
1517 			if (ret || j > TFMINPKTSIZE_M)
1518 				goto inval;
1519 			tp.min_len = j;
1520 			continue;
1521 		}
1522 		if (!strcmp(word, "not")) {
1523 			tp.invert = !tp.invert;
1524 			continue;
1525 		}
1526 		if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
1527 			if (word[8] < '0' || word[8] > '3' || word[9])
1528 				goto inval;
1529 			tp.port = word[8] - '0' + 8;
1530 			continue;
1531 		}
1532 		if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
1533 			if (word[2] < '0' || word[2] > '3' || word[3])
1534 				goto inval;
1535 			tp.port = word[2] - '0' + 4;
1536 			if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
1537 				goto inval;
1538 			continue;
1539 		}
1540 		if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
1541 			if (word[2] < '0' || word[2] > '3' || word[3])
1542 				goto inval;
1543 			tp.port = word[2] - '0';
1544 			if (adap->chan_map[tp.port] >= MAX_NPORTS)
1545 				goto inval;
1546 			continue;
1547 		}
1548 		if (!isxdigit(*word))
1549 			goto inval;
1550 
1551 		/* we have found a trace pattern */
1552 		if (i) {                            /* split pattern */
1553 			if (tp.skip_len)            /* too many splits */
1554 				goto inval;
1555 			tp.skip_ofst = i / 16;
1556 		}
1557 
1558 		data = &tp.data[i / 8];
1559 		mask = &tp.mask[i / 8];
1560 		j = i;
1561 
1562 		while (isxdigit(*word)) {
1563 			if (i >= TRACE_LEN * 2) {
1564 				count = -EFBIG;
1565 				goto out;
1566 			}
1567 			*data = (*data << 4) + xdigit2int(*word++);
1568 			if (++i % 8 == 0)
1569 				data++;
1570 		}
1571 		if (*word == '/') {
1572 			word++;
1573 			while (isxdigit(*word)) {
1574 				if (j >= i)         /* mask longer than data */
1575 					goto inval;
1576 				*mask = (*mask << 4) + xdigit2int(*word++);
1577 				if (++j % 8 == 0)
1578 					mask++;
1579 			}
1580 			if (i != j)                 /* mask shorter than data */
1581 				goto inval;
1582 		} else {                            /* no mask, use all 1s */
1583 			for ( ; i - j >= 8; j += 8)
1584 				*mask++ = 0xffffffff;
1585 			if (i % 8)
1586 				*mask = (1 << (i % 8) * 4) - 1;
1587 		}
1588 		if (*word == '@') {
1589 			end = (char *)word + 1;
1590 			ret = kstrtouint(end, 10, &j);
1591 			if (*end && *end != '\n')
1592 				goto inval;
1593 			if (j & 7)          /* doesn't start at multiple of 8 */
1594 				goto inval;
1595 			j /= 8;
1596 			if (j < tp.skip_ofst)     /* overlaps earlier pattern */
1597 				goto inval;
1598 			if (j - tp.skip_ofst > 31)            /* skip too big */
1599 				goto inval;
1600 			tp.skip_len = j - tp.skip_ofst;
1601 		}
1602 		if (i % 8) {
1603 			*data <<= (8 - i % 8) * 4;
1604 			*mask <<= (8 - i % 8) * 4;
1605 			i = (i + 15) & ~15;         /* 8-byte align */
1606 		}
1607 	}
1608 
1609 	if (tp.port == TRC_PORT_NONE)
1610 		goto inval;
1611 
1612 apply:
1613 	i = t4_set_trace_filter(adap, &tp, trcidx, enable);
1614 	if (i)
1615 		count = i;
1616 out:
1617 	kfree(s);
1618 	return count;
1619 }
1620 
1621 static const struct file_operations mps_trc_debugfs_fops = {
1622 	.owner   = THIS_MODULE,
1623 	.open    = mps_trc_open,
1624 	.read    = seq_read,
1625 	.llseek  = seq_lseek,
1626 	.release = single_release,
1627 	.write   = mps_trc_write
1628 };
1629 
1630 static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
1631 			  loff_t *ppos)
1632 {
1633 	loff_t pos = *ppos;
1634 	loff_t avail = file_inode(file)->i_size;
1635 	struct adapter *adap = file->private_data;
1636 
1637 	if (pos < 0)
1638 		return -EINVAL;
1639 	if (pos >= avail)
1640 		return 0;
1641 	if (count > avail - pos)
1642 		count = avail - pos;
1643 
1644 	while (count) {
1645 		size_t len;
1646 		int ret, ofst;
1647 		u8 data[256];
1648 
1649 		ofst = pos & 3;
1650 		len = min(count + ofst, sizeof(data));
1651 		ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
1652 				    (u32 *)data, 1);
1653 		if (ret)
1654 			return ret;
1655 
1656 		len -= ofst;
1657 		if (copy_to_user(buf, data + ofst, len))
1658 			return -EFAULT;
1659 
1660 		buf += len;
1661 		pos += len;
1662 		count -= len;
1663 	}
1664 	count = pos - *ppos;
1665 	*ppos = pos;
1666 	return count;
1667 }
1668 
1669 static const struct file_operations flash_debugfs_fops = {
1670 	.owner   = THIS_MODULE,
1671 	.open    = mem_open,
1672 	.read    = flash_read,
1673 	.llseek  = default_llseek,
1674 };
1675 
1676 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
1677 {
1678 	*mask = x | y;
1679 	y = (__force u64)cpu_to_be64(y);
1680 	memcpy(addr, (char *)&y + 2, ETH_ALEN);
1681 }
1682 
1683 static int mps_tcam_show(struct seq_file *seq, void *v)
1684 {
1685 	struct adapter *adap = seq->private;
1686 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1687 	if (v == SEQ_START_TOKEN) {
1688 		if (chip_ver > CHELSIO_T5) {
1689 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1690 				 "  VNI   Mask   IVLAN Vld "
1691 				 "DIP_Hit   Lookup  Port "
1692 				 "Vld Ports PF  VF                           "
1693 				 "Replication                                "
1694 				 "    P0 P1 P2 P3  ML\n");
1695 		} else {
1696 			if (adap->params.arch.mps_rplc_size > 128)
1697 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1698 					 "Vld Ports PF  VF                           "
1699 					 "Replication                                "
1700 					 "    P0 P1 P2 P3  ML\n");
1701 			else
1702 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1703 					 "Vld Ports PF  VF              Replication"
1704 					 "	         P0 P1 P2 P3  ML\n");
1705 		}
1706 	} else {
1707 		u64 mask;
1708 		u8 addr[ETH_ALEN];
1709 		bool replicate, dip_hit = false, vlan_vld = false;
1710 		unsigned int idx = (uintptr_t)v - 2;
1711 		u64 tcamy, tcamx, val;
1712 		u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0;
1713 		u32 rplc[8] = {0};
1714 		u8 lookup_type = 0, port_num = 0;
1715 		u16 ivlan = 0;
1716 
1717 		if (chip_ver > CHELSIO_T5) {
1718 			/* CtlCmdType - 0: Read, 1: Write
1719 			 * CtlTcamSel - 0: TCAM0, 1: TCAM1
1720 			 * CtlXYBitSel- 0: Y bit, 1: X bit
1721 			 */
1722 
1723 			/* Read tcamy */
1724 			ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
1725 			if (idx < 256)
1726 				ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
1727 			else
1728 				ctl |= CTLTCAMINDEX_V(idx - 256) |
1729 				       CTLTCAMSEL_V(1);
1730 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1731 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1732 			tcamy = DMACH_G(val) << 32;
1733 			tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1734 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1735 			lookup_type = DATALKPTYPE_G(data2);
1736 			/* 0 - Outer header, 1 - Inner header
1737 			 * [71:48] bit locations are overloaded for
1738 			 * outer vs. inner lookup types.
1739 			 */
1740 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1741 				/* Inner header VNI */
1742 				vniy = ((data2 & DATAVIDH2_F) << 23) |
1743 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1744 				dip_hit = data2 & DATADIPHIT_F;
1745 			} else {
1746 				vlan_vld = data2 & DATAVIDH2_F;
1747 				ivlan = VIDL_G(val);
1748 			}
1749 			port_num = DATAPORTNUM_G(data2);
1750 
1751 			/* Read tcamx. Change the control param */
1752 			ctl |= CTLXYBITSEL_V(1);
1753 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1754 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1755 			tcamx = DMACH_G(val) << 32;
1756 			tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1757 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1758 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1759 				/* Inner header VNI mask */
1760 				vnix = ((data2 & DATAVIDH2_F) << 23) |
1761 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1762 			}
1763 		} else {
1764 			tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
1765 			tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
1766 		}
1767 
1768 		cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
1769 		cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
1770 
1771 		if (tcamx & tcamy) {
1772 			seq_printf(seq, "%3u         -\n", idx);
1773 			goto out;
1774 		}
1775 
1776 		rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
1777 		if (chip_ver > CHELSIO_T5)
1778 			replicate = (cls_lo & T6_REPLICATE_F);
1779 		else
1780 			replicate = (cls_lo & REPLICATE_F);
1781 
1782 		if (replicate) {
1783 			struct fw_ldst_cmd ldst_cmd;
1784 			int ret;
1785 			struct fw_ldst_mps_rplc mps_rplc;
1786 			u32 ldst_addrspc;
1787 
1788 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
1789 			ldst_addrspc =
1790 				FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
1791 			ldst_cmd.op_to_addrspace =
1792 				htonl(FW_CMD_OP_V(FW_LDST_CMD) |
1793 				      FW_CMD_REQUEST_F |
1794 				      FW_CMD_READ_F |
1795 				      ldst_addrspc);
1796 			ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
1797 			ldst_cmd.u.mps.rplc.fid_idx =
1798 				htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
1799 				      FW_LDST_CMD_IDX_V(idx));
1800 			ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
1801 					 sizeof(ldst_cmd), &ldst_cmd);
1802 			if (ret)
1803 				dev_warn(adap->pdev_dev, "Can't read MPS "
1804 					 "replication map for idx %d: %d\n",
1805 					 idx, -ret);
1806 			else {
1807 				mps_rplc = ldst_cmd.u.mps.rplc;
1808 				rplc[0] = ntohl(mps_rplc.rplc31_0);
1809 				rplc[1] = ntohl(mps_rplc.rplc63_32);
1810 				rplc[2] = ntohl(mps_rplc.rplc95_64);
1811 				rplc[3] = ntohl(mps_rplc.rplc127_96);
1812 				if (adap->params.arch.mps_rplc_size > 128) {
1813 					rplc[4] = ntohl(mps_rplc.rplc159_128);
1814 					rplc[5] = ntohl(mps_rplc.rplc191_160);
1815 					rplc[6] = ntohl(mps_rplc.rplc223_192);
1816 					rplc[7] = ntohl(mps_rplc.rplc255_224);
1817 				}
1818 			}
1819 		}
1820 
1821 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
1822 		if (chip_ver > CHELSIO_T5) {
1823 			/* Inner header lookup */
1824 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1825 				seq_printf(seq,
1826 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1827 					   "%012llx %06x %06x    -    -   %3c"
1828 					   "      'I'  %4x   "
1829 					   "%3c   %#x%4u%4d", idx, addr[0],
1830 					   addr[1], addr[2], addr[3],
1831 					   addr[4], addr[5],
1832 					   (unsigned long long)mask,
1833 					   vniy, vnix, dip_hit ? 'Y' : 'N',
1834 					   port_num,
1835 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1836 					   PORTMAP_G(cls_hi),
1837 					   T6_PF_G(cls_lo),
1838 					   (cls_lo & T6_VF_VALID_F) ?
1839 					   T6_VF_G(cls_lo) : -1);
1840 			} else {
1841 				seq_printf(seq,
1842 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1843 					   "%012llx    -       -   ",
1844 					   idx, addr[0], addr[1], addr[2],
1845 					   addr[3], addr[4], addr[5],
1846 					   (unsigned long long)mask);
1847 
1848 				if (vlan_vld)
1849 					seq_printf(seq, "%4u   Y     ", ivlan);
1850 				else
1851 					seq_puts(seq, "  -    N     ");
1852 
1853 				seq_printf(seq,
1854 					   "-      %3c  %4x   %3c   %#x%4u%4d",
1855 					   lookup_type ? 'I' : 'O', port_num,
1856 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1857 					   PORTMAP_G(cls_hi),
1858 					   T6_PF_G(cls_lo),
1859 					   (cls_lo & T6_VF_VALID_F) ?
1860 					   T6_VF_G(cls_lo) : -1);
1861 			}
1862 		} else
1863 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1864 				   "%012llx%3c   %#x%4u%4d",
1865 				   idx, addr[0], addr[1], addr[2], addr[3],
1866 				   addr[4], addr[5], (unsigned long long)mask,
1867 				   (cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
1868 				   PORTMAP_G(cls_hi),
1869 				   PF_G(cls_lo),
1870 				   (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
1871 
1872 		if (replicate) {
1873 			if (adap->params.arch.mps_rplc_size > 128)
1874 				seq_printf(seq, " %08x %08x %08x %08x "
1875 					   "%08x %08x %08x %08x",
1876 					   rplc[7], rplc[6], rplc[5], rplc[4],
1877 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1878 			else
1879 				seq_printf(seq, " %08x %08x %08x %08x",
1880 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1881 		} else {
1882 			if (adap->params.arch.mps_rplc_size > 128)
1883 				seq_printf(seq, "%72c", ' ');
1884 			else
1885 				seq_printf(seq, "%36c", ' ');
1886 		}
1887 
1888 		if (chip_ver > CHELSIO_T5)
1889 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1890 				   T6_SRAM_PRIO0_G(cls_lo),
1891 				   T6_SRAM_PRIO1_G(cls_lo),
1892 				   T6_SRAM_PRIO2_G(cls_lo),
1893 				   T6_SRAM_PRIO3_G(cls_lo),
1894 				   (cls_lo >> T6_MULTILISTEN0_S) & 0xf);
1895 		else
1896 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1897 				   SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
1898 				   SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
1899 				   (cls_lo >> MULTILISTEN0_S) & 0xf);
1900 	}
1901 out:	return 0;
1902 }
1903 
1904 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
1905 {
1906 	struct adapter *adap = seq->private;
1907 	int max_mac_addr = is_t4(adap->params.chip) ?
1908 				NUM_MPS_CLS_SRAM_L_INSTANCES :
1909 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1910 	return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
1911 }
1912 
1913 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
1914 {
1915 	return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
1916 }
1917 
1918 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
1919 {
1920 	++*pos;
1921 	return mps_tcam_get_idx(seq, *pos);
1922 }
1923 
1924 static void mps_tcam_stop(struct seq_file *seq, void *v)
1925 {
1926 }
1927 
1928 static const struct seq_operations mps_tcam_seq_ops = {
1929 	.start = mps_tcam_start,
1930 	.next  = mps_tcam_next,
1931 	.stop  = mps_tcam_stop,
1932 	.show  = mps_tcam_show
1933 };
1934 
1935 static int mps_tcam_open(struct inode *inode, struct file *file)
1936 {
1937 	int res = seq_open(file, &mps_tcam_seq_ops);
1938 
1939 	if (!res) {
1940 		struct seq_file *seq = file->private_data;
1941 
1942 		seq->private = inode->i_private;
1943 	}
1944 	return res;
1945 }
1946 
1947 static const struct file_operations mps_tcam_debugfs_fops = {
1948 	.owner   = THIS_MODULE,
1949 	.open    = mps_tcam_open,
1950 	.read    = seq_read,
1951 	.llseek  = seq_lseek,
1952 	.release = seq_release,
1953 };
1954 
1955 /* Display various sensor information.
1956  */
1957 static int sensors_show(struct seq_file *seq, void *v)
1958 {
1959 	struct adapter *adap = seq->private;
1960 	u32 param[7], val[7];
1961 	int ret;
1962 
1963 	/* Note that if the sensors haven't been initialized and turned on
1964 	 * we'll get values of 0, so treat those as "<unknown>" ...
1965 	 */
1966 	param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1967 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1968 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
1969 	param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1970 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1971 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
1972 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1973 			      param, val);
1974 
1975 	if (ret < 0 || val[0] == 0)
1976 		seq_puts(seq, "Temperature: <unknown>\n");
1977 	else
1978 		seq_printf(seq, "Temperature: %dC\n", val[0]);
1979 
1980 	if (ret < 0 || val[1] == 0)
1981 		seq_puts(seq, "Core VDD:    <unknown>\n");
1982 	else
1983 		seq_printf(seq, "Core VDD:    %dmV\n", val[1]);
1984 
1985 	return 0;
1986 }
1987 
1988 DEFINE_SIMPLE_DEBUGFS_FILE(sensors);
1989 
1990 #if IS_ENABLED(CONFIG_IPV6)
1991 static int clip_tbl_open(struct inode *inode, struct file *file)
1992 {
1993 	return single_open(file, clip_tbl_show, inode->i_private);
1994 }
1995 
1996 static const struct file_operations clip_tbl_debugfs_fops = {
1997 	.owner   = THIS_MODULE,
1998 	.open    = clip_tbl_open,
1999 	.read    = seq_read,
2000 	.llseek  = seq_lseek,
2001 	.release = single_release
2002 };
2003 #endif
2004 
2005 /*RSS Table.
2006  */
2007 
2008 static int rss_show(struct seq_file *seq, void *v, int idx)
2009 {
2010 	u16 *entry = v;
2011 
2012 	seq_printf(seq, "%4d:  %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u\n",
2013 		   idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
2014 		   entry[5], entry[6], entry[7]);
2015 	return 0;
2016 }
2017 
2018 static int rss_open(struct inode *inode, struct file *file)
2019 {
2020 	int ret;
2021 	struct seq_tab *p;
2022 	struct adapter *adap = inode->i_private;
2023 
2024 	p = seq_open_tab(file, RSS_NENTRIES / 8, 8 * sizeof(u16), 0, rss_show);
2025 	if (!p)
2026 		return -ENOMEM;
2027 
2028 	ret = t4_read_rss(adap, (u16 *)p->data);
2029 	if (ret)
2030 		seq_release_private(inode, file);
2031 
2032 	return ret;
2033 }
2034 
2035 static const struct file_operations rss_debugfs_fops = {
2036 	.owner   = THIS_MODULE,
2037 	.open    = rss_open,
2038 	.read    = seq_read,
2039 	.llseek  = seq_lseek,
2040 	.release = seq_release_private
2041 };
2042 
2043 /* RSS Configuration.
2044  */
2045 
2046 /* Small utility function to return the strings "yes" or "no" if the supplied
2047  * argument is non-zero.
2048  */
2049 static const char *yesno(int x)
2050 {
2051 	static const char *yes = "yes";
2052 	static const char *no = "no";
2053 
2054 	return x ? yes : no;
2055 }
2056 
2057 static int rss_config_show(struct seq_file *seq, void *v)
2058 {
2059 	struct adapter *adapter = seq->private;
2060 	static const char * const keymode[] = {
2061 		"global",
2062 		"global and per-VF scramble",
2063 		"per-PF and per-VF scramble",
2064 		"per-VF and per-VF scramble",
2065 	};
2066 	u32 rssconf;
2067 
2068 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
2069 	seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
2070 	seq_printf(seq, "  Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
2071 							TNL4TUPENIPV6_F));
2072 	seq_printf(seq, "  Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
2073 							TNL2TUPENIPV6_F));
2074 	seq_printf(seq, "  Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
2075 							TNL4TUPENIPV4_F));
2076 	seq_printf(seq, "  Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
2077 							TNL2TUPENIPV4_F));
2078 	seq_printf(seq, "  TnlTcpSel:     %3s\n", yesno(rssconf & TNLTCPSEL_F));
2079 	seq_printf(seq, "  TnlIp6Sel:     %3s\n", yesno(rssconf & TNLIP6SEL_F));
2080 	seq_printf(seq, "  TnlVrtSel:     %3s\n", yesno(rssconf & TNLVRTSEL_F));
2081 	seq_printf(seq, "  TnlMapEn:      %3s\n", yesno(rssconf & TNLMAPEN_F));
2082 	seq_printf(seq, "  OfdHashSave:   %3s\n", yesno(rssconf &
2083 							OFDHASHSAVE_F));
2084 	seq_printf(seq, "  OfdVrtSel:     %3s\n", yesno(rssconf & OFDVRTSEL_F));
2085 	seq_printf(seq, "  OfdMapEn:      %3s\n", yesno(rssconf & OFDMAPEN_F));
2086 	seq_printf(seq, "  OfdLkpEn:      %3s\n", yesno(rssconf & OFDLKPEN_F));
2087 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
2088 							SYN4TUPENIPV6_F));
2089 	seq_printf(seq, "  Syn2TupEnIpv6: %3s\n", yesno(rssconf &
2090 							SYN2TUPENIPV6_F));
2091 	seq_printf(seq, "  Syn4TupEnIpv4: %3s\n", yesno(rssconf &
2092 							SYN4TUPENIPV4_F));
2093 	seq_printf(seq, "  Syn2TupEnIpv4: %3s\n", yesno(rssconf &
2094 							SYN2TUPENIPV4_F));
2095 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
2096 							SYN4TUPENIPV6_F));
2097 	seq_printf(seq, "  SynIp6Sel:     %3s\n", yesno(rssconf & SYNIP6SEL_F));
2098 	seq_printf(seq, "  SynVrt6Sel:    %3s\n", yesno(rssconf & SYNVRTSEL_F));
2099 	seq_printf(seq, "  SynMapEn:      %3s\n", yesno(rssconf & SYNMAPEN_F));
2100 	seq_printf(seq, "  SynLkpEn:      %3s\n", yesno(rssconf & SYNLKPEN_F));
2101 	seq_printf(seq, "  ChnEn:         %3s\n", yesno(rssconf &
2102 							CHANNELENABLE_F));
2103 	seq_printf(seq, "  PrtEn:         %3s\n", yesno(rssconf &
2104 							PORTENABLE_F));
2105 	seq_printf(seq, "  TnlAllLkp:     %3s\n", yesno(rssconf &
2106 							TNLALLLOOKUP_F));
2107 	seq_printf(seq, "  VrtEn:         %3s\n", yesno(rssconf &
2108 							VIRTENABLE_F));
2109 	seq_printf(seq, "  CngEn:         %3s\n", yesno(rssconf &
2110 							CONGESTIONENABLE_F));
2111 	seq_printf(seq, "  HashToeplitz:  %3s\n", yesno(rssconf &
2112 							HASHTOEPLITZ_F));
2113 	seq_printf(seq, "  Udp4En:        %3s\n", yesno(rssconf & UDPENABLE_F));
2114 	seq_printf(seq, "  Disable:       %3s\n", yesno(rssconf & DISABLE_F));
2115 
2116 	seq_puts(seq, "\n");
2117 
2118 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
2119 	seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
2120 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2121 	seq_printf(seq, "  MaskFilter:    %3d\n", MASKFILTER_G(rssconf));
2122 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2123 		seq_printf(seq, "  HashAll:     %3s\n",
2124 			   yesno(rssconf & HASHALL_F));
2125 		seq_printf(seq, "  HashEth:     %3s\n",
2126 			   yesno(rssconf & HASHETH_F));
2127 	}
2128 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2129 
2130 	seq_puts(seq, "\n");
2131 
2132 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
2133 	seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
2134 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2135 	seq_printf(seq, "  RRCplMapEn:    %3s\n", yesno(rssconf &
2136 							RRCPLMAPEN_F));
2137 	seq_printf(seq, "  RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
2138 
2139 	seq_puts(seq, "\n");
2140 
2141 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
2142 	seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
2143 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2144 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2145 
2146 	seq_puts(seq, "\n");
2147 
2148 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
2149 	seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
2150 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2151 		seq_printf(seq, "  KeyWrAddrX:     %3d\n",
2152 			   KEYWRADDRX_G(rssconf));
2153 		seq_printf(seq, "  KeyExtend:      %3s\n",
2154 			   yesno(rssconf & KEYEXTEND_F));
2155 	}
2156 	seq_printf(seq, "  VfRdRg:        %3s\n", yesno(rssconf & VFRDRG_F));
2157 	seq_printf(seq, "  VfRdEn:        %3s\n", yesno(rssconf & VFRDEN_F));
2158 	seq_printf(seq, "  VfPerrEn:      %3s\n", yesno(rssconf & VFPERREN_F));
2159 	seq_printf(seq, "  KeyPerrEn:     %3s\n", yesno(rssconf & KEYPERREN_F));
2160 	seq_printf(seq, "  DisVfVlan:     %3s\n", yesno(rssconf &
2161 							DISABLEVLAN_F));
2162 	seq_printf(seq, "  EnUpSwt:       %3s\n", yesno(rssconf & ENABLEUP0_F));
2163 	seq_printf(seq, "  HashDelay:     %3d\n", HASHDELAY_G(rssconf));
2164 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2165 		seq_printf(seq, "  VfWrAddr:      %3d\n", VFWRADDR_G(rssconf));
2166 	else
2167 		seq_printf(seq, "  VfWrAddr:      %3d\n",
2168 			   T6_VFWRADDR_G(rssconf));
2169 	seq_printf(seq, "  KeyMode:       %s\n", keymode[KEYMODE_G(rssconf)]);
2170 	seq_printf(seq, "  VfWrEn:        %3s\n", yesno(rssconf & VFWREN_F));
2171 	seq_printf(seq, "  KeyWrEn:       %3s\n", yesno(rssconf & KEYWREN_F));
2172 	seq_printf(seq, "  KeyWrAddr:     %3d\n", KEYWRADDR_G(rssconf));
2173 
2174 	seq_puts(seq, "\n");
2175 
2176 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
2177 	seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
2178 	seq_printf(seq, "  ChnCount3:     %3s\n", yesno(rssconf & CHNCOUNT3_F));
2179 	seq_printf(seq, "  ChnCount2:     %3s\n", yesno(rssconf & CHNCOUNT2_F));
2180 	seq_printf(seq, "  ChnCount1:     %3s\n", yesno(rssconf & CHNCOUNT1_F));
2181 	seq_printf(seq, "  ChnCount0:     %3s\n", yesno(rssconf & CHNCOUNT0_F));
2182 	seq_printf(seq, "  ChnUndFlow3:   %3s\n", yesno(rssconf &
2183 							CHNUNDFLOW3_F));
2184 	seq_printf(seq, "  ChnUndFlow2:   %3s\n", yesno(rssconf &
2185 							CHNUNDFLOW2_F));
2186 	seq_printf(seq, "  ChnUndFlow1:   %3s\n", yesno(rssconf &
2187 							CHNUNDFLOW1_F));
2188 	seq_printf(seq, "  ChnUndFlow0:   %3s\n", yesno(rssconf &
2189 							CHNUNDFLOW0_F));
2190 	seq_printf(seq, "  RstChn3:       %3s\n", yesno(rssconf & RSTCHN3_F));
2191 	seq_printf(seq, "  RstChn2:       %3s\n", yesno(rssconf & RSTCHN2_F));
2192 	seq_printf(seq, "  RstChn1:       %3s\n", yesno(rssconf & RSTCHN1_F));
2193 	seq_printf(seq, "  RstChn0:       %3s\n", yesno(rssconf & RSTCHN0_F));
2194 	seq_printf(seq, "  UpdVld:        %3s\n", yesno(rssconf & UPDVLD_F));
2195 	seq_printf(seq, "  Xoff:          %3s\n", yesno(rssconf & XOFF_F));
2196 	seq_printf(seq, "  UpdChn3:       %3s\n", yesno(rssconf & UPDCHN3_F));
2197 	seq_printf(seq, "  UpdChn2:       %3s\n", yesno(rssconf & UPDCHN2_F));
2198 	seq_printf(seq, "  UpdChn1:       %3s\n", yesno(rssconf & UPDCHN1_F));
2199 	seq_printf(seq, "  UpdChn0:       %3s\n", yesno(rssconf & UPDCHN0_F));
2200 	seq_printf(seq, "  Queue:         %3d\n", QUEUE_G(rssconf));
2201 
2202 	return 0;
2203 }
2204 
2205 DEFINE_SIMPLE_DEBUGFS_FILE(rss_config);
2206 
2207 /* RSS Secret Key.
2208  */
2209 
2210 static int rss_key_show(struct seq_file *seq, void *v)
2211 {
2212 	u32 key[10];
2213 
2214 	t4_read_rss_key(seq->private, key, true);
2215 	seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
2216 		   key[9], key[8], key[7], key[6], key[5], key[4], key[3],
2217 		   key[2], key[1], key[0]);
2218 	return 0;
2219 }
2220 
2221 static int rss_key_open(struct inode *inode, struct file *file)
2222 {
2223 	return single_open(file, rss_key_show, inode->i_private);
2224 }
2225 
2226 static ssize_t rss_key_write(struct file *file, const char __user *buf,
2227 			     size_t count, loff_t *pos)
2228 {
2229 	int i, j;
2230 	u32 key[10];
2231 	char s[100], *p;
2232 	struct adapter *adap = file_inode(file)->i_private;
2233 
2234 	if (count > sizeof(s) - 1)
2235 		return -EINVAL;
2236 	if (copy_from_user(s, buf, count))
2237 		return -EFAULT;
2238 	for (i = count; i > 0 && isspace(s[i - 1]); i--)
2239 		;
2240 	s[i] = '\0';
2241 
2242 	for (p = s, i = 9; i >= 0; i--) {
2243 		key[i] = 0;
2244 		for (j = 0; j < 8; j++, p++) {
2245 			if (!isxdigit(*p))
2246 				return -EINVAL;
2247 			key[i] = (key[i] << 4) | hex2val(*p);
2248 		}
2249 	}
2250 
2251 	t4_write_rss_key(adap, key, -1, true);
2252 	return count;
2253 }
2254 
2255 static const struct file_operations rss_key_debugfs_fops = {
2256 	.owner   = THIS_MODULE,
2257 	.open    = rss_key_open,
2258 	.read    = seq_read,
2259 	.llseek  = seq_lseek,
2260 	.release = single_release,
2261 	.write   = rss_key_write
2262 };
2263 
2264 /* PF RSS Configuration.
2265  */
2266 
2267 struct rss_pf_conf {
2268 	u32 rss_pf_map;
2269 	u32 rss_pf_mask;
2270 	u32 rss_pf_config;
2271 };
2272 
2273 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
2274 {
2275 	struct rss_pf_conf *pfconf;
2276 
2277 	if (v == SEQ_START_TOKEN) {
2278 		/* use the 0th entry to dump the PF Map Index Size */
2279 		pfconf = seq->private + offsetof(struct seq_tab, data);
2280 		seq_printf(seq, "PF Map Index Size = %d\n\n",
2281 			   LKPIDXSIZE_G(pfconf->rss_pf_map));
2282 
2283 		seq_puts(seq, "     RSS              PF   VF    Hash Tuple Enable         Default\n");
2284 		seq_puts(seq, "     Enable       IPF Mask Mask  IPv6      IPv4      UDP   Queue\n");
2285 		seq_puts(seq, " PF  Map Chn Prt  Map Size Size  Four Two  Four Two  Four  Ch1  Ch0\n");
2286 	} else {
2287 		#define G_PFnLKPIDX(map, n) \
2288 			(((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
2289 		#define G_PFnMSKSIZE(mask, n) \
2290 			(((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
2291 
2292 		pfconf = v;
2293 		seq_printf(seq, "%3d  %3s %3s %3s  %3d  %3d  %3d   %3s %3s   %3s %3s   %3s  %3d  %3d\n",
2294 			   idx,
2295 			   yesno(pfconf->rss_pf_config & MAPENABLE_F),
2296 			   yesno(pfconf->rss_pf_config & CHNENABLE_F),
2297 			   yesno(pfconf->rss_pf_config & PRTENABLE_F),
2298 			   G_PFnLKPIDX(pfconf->rss_pf_map, idx),
2299 			   G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
2300 			   IVFWIDTH_G(pfconf->rss_pf_config),
2301 			   yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
2302 			   yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
2303 			   yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
2304 			   yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
2305 			   yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
2306 			   CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
2307 			   CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
2308 
2309 		#undef G_PFnLKPIDX
2310 		#undef G_PFnMSKSIZE
2311 	}
2312 	return 0;
2313 }
2314 
2315 static int rss_pf_config_open(struct inode *inode, struct file *file)
2316 {
2317 	struct adapter *adapter = inode->i_private;
2318 	struct seq_tab *p;
2319 	u32 rss_pf_map, rss_pf_mask;
2320 	struct rss_pf_conf *pfconf;
2321 	int pf;
2322 
2323 	p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
2324 	if (!p)
2325 		return -ENOMEM;
2326 
2327 	pfconf = (struct rss_pf_conf *)p->data;
2328 	rss_pf_map = t4_read_rss_pf_map(adapter, true);
2329 	rss_pf_mask = t4_read_rss_pf_mask(adapter, true);
2330 	for (pf = 0; pf < 8; pf++) {
2331 		pfconf[pf].rss_pf_map = rss_pf_map;
2332 		pfconf[pf].rss_pf_mask = rss_pf_mask;
2333 		t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config,
2334 				      true);
2335 	}
2336 	return 0;
2337 }
2338 
2339 static const struct file_operations rss_pf_config_debugfs_fops = {
2340 	.owner   = THIS_MODULE,
2341 	.open    = rss_pf_config_open,
2342 	.read    = seq_read,
2343 	.llseek  = seq_lseek,
2344 	.release = seq_release_private
2345 };
2346 
2347 /* VF RSS Configuration.
2348  */
2349 
2350 struct rss_vf_conf {
2351 	u32 rss_vf_vfl;
2352 	u32 rss_vf_vfh;
2353 };
2354 
2355 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
2356 {
2357 	if (v == SEQ_START_TOKEN) {
2358 		seq_puts(seq, "     RSS                     Hash Tuple Enable\n");
2359 		seq_puts(seq, "     Enable   IVF  Dis  Enb  IPv6      IPv4      UDP    Def  Secret Key\n");
2360 		seq_puts(seq, " VF  Chn Prt  Map  VLAN  uP  Four Two  Four Two  Four   Que  Idx       Hash\n");
2361 	} else {
2362 		struct rss_vf_conf *vfconf = v;
2363 
2364 		seq_printf(seq, "%3d  %3s %3s  %3d   %3s %3s   %3s %3s   %3s  %3s   %3s  %4d  %3d %#10x\n",
2365 			   idx,
2366 			   yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
2367 			   yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
2368 			   VFLKPIDX_G(vfconf->rss_vf_vfh),
2369 			   yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
2370 			   yesno(vfconf->rss_vf_vfh & VFUPEN_F),
2371 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2372 			   yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
2373 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2374 			   yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
2375 			   yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
2376 			   DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
2377 			   KEYINDEX_G(vfconf->rss_vf_vfh),
2378 			   vfconf->rss_vf_vfl);
2379 	}
2380 	return 0;
2381 }
2382 
2383 static int rss_vf_config_open(struct inode *inode, struct file *file)
2384 {
2385 	struct adapter *adapter = inode->i_private;
2386 	struct seq_tab *p;
2387 	struct rss_vf_conf *vfconf;
2388 	int vf, vfcount = adapter->params.arch.vfcount;
2389 
2390 	p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
2391 	if (!p)
2392 		return -ENOMEM;
2393 
2394 	vfconf = (struct rss_vf_conf *)p->data;
2395 	for (vf = 0; vf < vfcount; vf++) {
2396 		t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
2397 				      &vfconf[vf].rss_vf_vfh, true);
2398 	}
2399 	return 0;
2400 }
2401 
2402 static const struct file_operations rss_vf_config_debugfs_fops = {
2403 	.owner   = THIS_MODULE,
2404 	.open    = rss_vf_config_open,
2405 	.read    = seq_read,
2406 	.llseek  = seq_lseek,
2407 	.release = seq_release_private
2408 };
2409 
2410 /**
2411  * ethqset2pinfo - return port_info of an Ethernet Queue Set
2412  * @adap: the adapter
2413  * @qset: Ethernet Queue Set
2414  */
2415 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
2416 {
2417 	int pidx;
2418 
2419 	for_each_port(adap, pidx) {
2420 		struct port_info *pi = adap2pinfo(adap, pidx);
2421 
2422 		if (qset >= pi->first_qset &&
2423 		    qset < pi->first_qset + pi->nqsets)
2424 			return pi;
2425 	}
2426 
2427 	/* should never happen! */
2428 	BUG_ON(1);
2429 	return NULL;
2430 }
2431 
2432 static int sge_qinfo_show(struct seq_file *seq, void *v)
2433 {
2434 	struct adapter *adap = seq->private;
2435 	int eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
2436 	int ofld_entries = DIV_ROUND_UP(adap->sge.ofldqsets, 4);
2437 	int ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
2438 	int i, r = (uintptr_t)v - 1;
2439 	int ofld_idx = r - eth_entries;
2440 	int ctrl_idx =  ofld_idx - ofld_entries;
2441 	int fq_idx =  ctrl_idx - ctrl_entries;
2442 
2443 	if (r)
2444 		seq_putc(seq, '\n');
2445 
2446 #define S3(fmt_spec, s, v) \
2447 do { \
2448 	seq_printf(seq, "%-12s", s); \
2449 	for (i = 0; i < n; ++i) \
2450 		seq_printf(seq, " %16" fmt_spec, v); \
2451 		seq_putc(seq, '\n'); \
2452 } while (0)
2453 #define S(s, v) S3("s", s, v)
2454 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
2455 #define T(s, v) S3("u", s, tx[i].v)
2456 #define TL(s, v) T3("lu", s, v)
2457 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
2458 #define R(s, v) S3("u", s, rx[i].v)
2459 #define RL(s, v) R3("lu", s, v)
2460 
2461 	if (r < eth_entries) {
2462 		int base_qset = r * 4;
2463 		const struct sge_eth_rxq *rx = &adap->sge.ethrxq[base_qset];
2464 		const struct sge_eth_txq *tx = &adap->sge.ethtxq[base_qset];
2465 		int n = min(4, adap->sge.ethqsets - 4 * r);
2466 
2467 		S("QType:", "Ethernet");
2468 		S("Interface:",
2469 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2470 		T("TxQ ID:", q.cntxt_id);
2471 		T("TxQ size:", q.size);
2472 		T("TxQ inuse:", q.in_use);
2473 		T("TxQ CIDX:", q.cidx);
2474 		T("TxQ PIDX:", q.pidx);
2475 #ifdef CONFIG_CHELSIO_T4_DCB
2476 		T("DCB Prio:", dcb_prio);
2477 		S3("u", "DCB PGID:",
2478 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
2479 		    4*(7-tx[i].dcb_prio)) & 0xf);
2480 		S3("u", "DCB PFC:",
2481 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
2482 		    1*(7-tx[i].dcb_prio)) & 0x1);
2483 #endif
2484 		R("RspQ ID:", rspq.abs_id);
2485 		R("RspQ size:", rspq.size);
2486 		R("RspQE size:", rspq.iqe_len);
2487 		R("RspQ CIDX:", rspq.cidx);
2488 		R("RspQ Gen:", rspq.gen);
2489 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2490 		S3("u", "Intr pktcnt:",
2491 		   adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2492 		R("FL ID:", fl.cntxt_id);
2493 		R("FL size:", fl.size - 8);
2494 		R("FL pend:", fl.pend_cred);
2495 		R("FL avail:", fl.avail);
2496 		R("FL PIDX:", fl.pidx);
2497 		R("FL CIDX:", fl.cidx);
2498 		RL("RxPackets:", stats.pkts);
2499 		RL("RxCSO:", stats.rx_cso);
2500 		RL("VLANxtract:", stats.vlan_ex);
2501 		RL("LROmerged:", stats.lro_merged);
2502 		RL("LROpackets:", stats.lro_pkts);
2503 		RL("RxDrops:", stats.rx_drops);
2504 		TL("TSO:", tso);
2505 		TL("TxCSO:", tx_cso);
2506 		TL("VLANins:", vlan_ins);
2507 		TL("TxQFull:", q.stops);
2508 		TL("TxQRestarts:", q.restarts);
2509 		TL("TxMapErr:", mapping_err);
2510 		RL("FLAllocErr:", fl.alloc_failed);
2511 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2512 		RL("FLMapErr:", fl.mapping_err);
2513 		RL("FLLow:", fl.low);
2514 		RL("FLStarving:", fl.starving);
2515 
2516 	} else if (ctrl_idx < ctrl_entries) {
2517 		const struct sge_ctrl_txq *tx = &adap->sge.ctrlq[ctrl_idx * 4];
2518 		int n = min(4, adap->params.nports - 4 * ctrl_idx);
2519 
2520 		S("QType:", "Control");
2521 		T("TxQ ID:", q.cntxt_id);
2522 		T("TxQ size:", q.size);
2523 		T("TxQ inuse:", q.in_use);
2524 		T("TxQ CIDX:", q.cidx);
2525 		T("TxQ PIDX:", q.pidx);
2526 		TL("TxQFull:", q.stops);
2527 		TL("TxQRestarts:", q.restarts);
2528 	} else if (fq_idx == 0) {
2529 		const struct sge_rspq *evtq = &adap->sge.fw_evtq;
2530 
2531 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2532 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2533 		seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
2534 		seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
2535 		seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
2536 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2537 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2538 			   qtimer_val(adap, evtq));
2539 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2540 			   adap->sge.counter_val[evtq->pktcnt_idx]);
2541 	}
2542 #undef R
2543 #undef RL
2544 #undef T
2545 #undef TL
2546 #undef S
2547 #undef R3
2548 #undef T3
2549 #undef S3
2550 	return 0;
2551 }
2552 
2553 static int sge_queue_entries(const struct adapter *adap)
2554 {
2555 	return DIV_ROUND_UP(adap->sge.ethqsets, 4) +
2556 	       DIV_ROUND_UP(adap->sge.ofldqsets, 4) +
2557 	       DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
2558 }
2559 
2560 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2561 {
2562 	int entries = sge_queue_entries(seq->private);
2563 
2564 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2565 }
2566 
2567 static void sge_queue_stop(struct seq_file *seq, void *v)
2568 {
2569 }
2570 
2571 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2572 {
2573 	int entries = sge_queue_entries(seq->private);
2574 
2575 	++*pos;
2576 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2577 }
2578 
2579 static const struct seq_operations sge_qinfo_seq_ops = {
2580 	.start = sge_queue_start,
2581 	.next  = sge_queue_next,
2582 	.stop  = sge_queue_stop,
2583 	.show  = sge_qinfo_show
2584 };
2585 
2586 static int sge_qinfo_open(struct inode *inode, struct file *file)
2587 {
2588 	int res = seq_open(file, &sge_qinfo_seq_ops);
2589 
2590 	if (!res) {
2591 		struct seq_file *seq = file->private_data;
2592 
2593 		seq->private = inode->i_private;
2594 	}
2595 	return res;
2596 }
2597 
2598 static const struct file_operations sge_qinfo_debugfs_fops = {
2599 	.owner   = THIS_MODULE,
2600 	.open    = sge_qinfo_open,
2601 	.read    = seq_read,
2602 	.llseek  = seq_lseek,
2603 	.release = seq_release,
2604 };
2605 
2606 int mem_open(struct inode *inode, struct file *file)
2607 {
2608 	unsigned int mem;
2609 	struct adapter *adap;
2610 
2611 	file->private_data = inode->i_private;
2612 
2613 	mem = (uintptr_t)file->private_data & 0x3;
2614 	adap = file->private_data - mem;
2615 
2616 	(void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
2617 
2618 	return 0;
2619 }
2620 
2621 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2622 			loff_t *ppos)
2623 {
2624 	loff_t pos = *ppos;
2625 	loff_t avail = file_inode(file)->i_size;
2626 	unsigned int mem = (uintptr_t)file->private_data & 3;
2627 	struct adapter *adap = file->private_data - mem;
2628 	__be32 *data;
2629 	int ret;
2630 
2631 	if (pos < 0)
2632 		return -EINVAL;
2633 	if (pos >= avail)
2634 		return 0;
2635 	if (count > avail - pos)
2636 		count = avail - pos;
2637 
2638 	data = kvzalloc(count, GFP_KERNEL);
2639 	if (!data)
2640 		return -ENOMEM;
2641 
2642 	spin_lock(&adap->win0_lock);
2643 	ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
2644 	spin_unlock(&adap->win0_lock);
2645 	if (ret) {
2646 		kvfree(data);
2647 		return ret;
2648 	}
2649 	ret = copy_to_user(buf, data, count);
2650 
2651 	kvfree(data);
2652 	if (ret)
2653 		return -EFAULT;
2654 
2655 	*ppos = pos + count;
2656 	return count;
2657 }
2658 static const struct file_operations mem_debugfs_fops = {
2659 	.owner   = THIS_MODULE,
2660 	.open    = simple_open,
2661 	.read    = mem_read,
2662 	.llseek  = default_llseek,
2663 };
2664 
2665 static int tid_info_show(struct seq_file *seq, void *v)
2666 {
2667 	struct adapter *adap = seq->private;
2668 	const struct tid_info *t = &adap->tids;
2669 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2670 
2671 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2672 		unsigned int sb;
2673 		seq_printf(seq, "Connections in use: %u\n",
2674 			   atomic_read(&t->conns_in_use));
2675 
2676 		if (chip <= CHELSIO_T5)
2677 			sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
2678 		else
2679 			sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
2680 
2681 		if (sb) {
2682 			seq_printf(seq, "TID range: 0..%u/%u..%u", sb - 1,
2683 				   adap->tids.hash_base,
2684 				   t->ntids - 1);
2685 			seq_printf(seq, ", in use: %u/%u\n",
2686 				   atomic_read(&t->tids_in_use),
2687 				   atomic_read(&t->hash_tids_in_use));
2688 		} else if (adap->flags & FW_OFLD_CONN) {
2689 			seq_printf(seq, "TID range: %u..%u/%u..%u",
2690 				   t->aftid_base,
2691 				   t->aftid_end,
2692 				   adap->tids.hash_base,
2693 				   t->ntids - 1);
2694 			seq_printf(seq, ", in use: %u/%u\n",
2695 				   atomic_read(&t->tids_in_use),
2696 				   atomic_read(&t->hash_tids_in_use));
2697 		} else {
2698 			seq_printf(seq, "TID range: %u..%u",
2699 				   adap->tids.hash_base,
2700 				   t->ntids - 1);
2701 			seq_printf(seq, ", in use: %u\n",
2702 				   atomic_read(&t->hash_tids_in_use));
2703 		}
2704 	} else if (t->ntids) {
2705 		seq_printf(seq, "Connections in use: %u\n",
2706 			   atomic_read(&t->conns_in_use));
2707 
2708 		seq_printf(seq, "TID range: 0..%u", t->ntids - 1);
2709 		seq_printf(seq, ", in use: %u\n",
2710 			   atomic_read(&t->tids_in_use));
2711 	}
2712 
2713 	if (t->nstids)
2714 		seq_printf(seq, "STID range: %u..%u, in use-IPv4/IPv6: %u/%u\n",
2715 			   (!t->stid_base &&
2716 			   (chip <= CHELSIO_T5)) ?
2717 			   t->stid_base + 1 : t->stid_base,
2718 			   t->stid_base + t->nstids - 1,
2719 			   t->stids_in_use - t->v6_stids_in_use,
2720 			   t->v6_stids_in_use);
2721 
2722 	if (t->natids)
2723 		seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
2724 			   t->natids - 1, t->atids_in_use);
2725 	seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
2726 		   t->ftid_base + t->nftids - 1);
2727 	if (t->nsftids)
2728 		seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
2729 			   t->sftid_base, t->sftid_base + t->nsftids - 2,
2730 			   t->sftids_in_use);
2731 	if (t->ntids)
2732 		seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
2733 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
2734 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
2735 	return 0;
2736 }
2737 
2738 DEFINE_SIMPLE_DEBUGFS_FILE(tid_info);
2739 
2740 static void add_debugfs_mem(struct adapter *adap, const char *name,
2741 			    unsigned int idx, unsigned int size_mb)
2742 {
2743 	debugfs_create_file_size(name, S_IRUSR, adap->debugfs_root,
2744 				 (void *)adap + idx, &mem_debugfs_fops,
2745 				 size_mb << 20);
2746 }
2747 
2748 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
2749 			       size_t count, loff_t *ppos)
2750 {
2751 	int len;
2752 	const struct adapter *adap = filp->private_data;
2753 	char *buf;
2754 	ssize_t size = (adap->sge.egr_sz + 3) / 4 +
2755 			adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
2756 
2757 	buf = kzalloc(size, GFP_KERNEL);
2758 	if (!buf)
2759 		return -ENOMEM;
2760 
2761 	len = snprintf(buf, size - 1, "%*pb\n",
2762 		       adap->sge.egr_sz, adap->sge.blocked_fl);
2763 	len += sprintf(buf + len, "\n");
2764 	size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
2765 	kvfree(buf);
2766 	return size;
2767 }
2768 
2769 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
2770 				size_t count, loff_t *ppos)
2771 {
2772 	int err;
2773 	unsigned long *t;
2774 	struct adapter *adap = filp->private_data;
2775 
2776 	t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
2777 	if (!t)
2778 		return -ENOMEM;
2779 
2780 	err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
2781 	if (err)
2782 		return err;
2783 
2784 	bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
2785 	kvfree(t);
2786 	return count;
2787 }
2788 
2789 static const struct file_operations blocked_fl_fops = {
2790 	.owner   = THIS_MODULE,
2791 	.open    = simple_open,
2792 	.read    = blocked_fl_read,
2793 	.write   = blocked_fl_write,
2794 	.llseek  = generic_file_llseek,
2795 };
2796 
2797 struct mem_desc {
2798 	unsigned int base;
2799 	unsigned int limit;
2800 	unsigned int idx;
2801 };
2802 
2803 static int mem_desc_cmp(const void *a, const void *b)
2804 {
2805 	return ((const struct mem_desc *)a)->base -
2806 	       ((const struct mem_desc *)b)->base;
2807 }
2808 
2809 static void mem_region_show(struct seq_file *seq, const char *name,
2810 			    unsigned int from, unsigned int to)
2811 {
2812 	char buf[40];
2813 
2814 	string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
2815 			sizeof(buf));
2816 	seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
2817 }
2818 
2819 static int meminfo_show(struct seq_file *seq, void *v)
2820 {
2821 	static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
2822 					"MC0:", "MC1:"};
2823 	static const char * const region[] = {
2824 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
2825 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
2826 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
2827 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
2828 		"RQUDP region:", "PBL region:", "TXPBL region:",
2829 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
2830 		"On-chip queues:"
2831 	};
2832 
2833 	int i, n;
2834 	u32 lo, hi, used, alloc;
2835 	struct mem_desc avail[4];
2836 	struct mem_desc mem[ARRAY_SIZE(region) + 3];      /* up to 3 holes */
2837 	struct mem_desc *md = mem;
2838 	struct adapter *adap = seq->private;
2839 
2840 	for (i = 0; i < ARRAY_SIZE(mem); i++) {
2841 		mem[i].limit = 0;
2842 		mem[i].idx = i;
2843 	}
2844 
2845 	/* Find and sort the populated memory ranges */
2846 	i = 0;
2847 	lo = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
2848 	if (lo & EDRAM0_ENABLE_F) {
2849 		hi = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2850 		avail[i].base = EDRAM0_BASE_G(hi) << 20;
2851 		avail[i].limit = avail[i].base + (EDRAM0_SIZE_G(hi) << 20);
2852 		avail[i].idx = 0;
2853 		i++;
2854 	}
2855 	if (lo & EDRAM1_ENABLE_F) {
2856 		hi = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2857 		avail[i].base = EDRAM1_BASE_G(hi) << 20;
2858 		avail[i].limit = avail[i].base + (EDRAM1_SIZE_G(hi) << 20);
2859 		avail[i].idx = 1;
2860 		i++;
2861 	}
2862 
2863 	if (is_t5(adap->params.chip)) {
2864 		if (lo & EXT_MEM0_ENABLE_F) {
2865 			hi = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2866 			avail[i].base = EXT_MEM0_BASE_G(hi) << 20;
2867 			avail[i].limit =
2868 				avail[i].base + (EXT_MEM0_SIZE_G(hi) << 20);
2869 			avail[i].idx = 3;
2870 			i++;
2871 		}
2872 		if (lo & EXT_MEM1_ENABLE_F) {
2873 			hi = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2874 			avail[i].base = EXT_MEM1_BASE_G(hi) << 20;
2875 			avail[i].limit =
2876 				avail[i].base + (EXT_MEM1_SIZE_G(hi) << 20);
2877 			avail[i].idx = 4;
2878 			i++;
2879 		}
2880 	} else {
2881 		if (lo & EXT_MEM_ENABLE_F) {
2882 			hi = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
2883 			avail[i].base = EXT_MEM_BASE_G(hi) << 20;
2884 			avail[i].limit =
2885 				avail[i].base + (EXT_MEM_SIZE_G(hi) << 20);
2886 			avail[i].idx = 2;
2887 			i++;
2888 		}
2889 	}
2890 	if (!i)                                    /* no memory available */
2891 		return 0;
2892 	sort(avail, i, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2893 
2894 	(md++)->base = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A);
2895 	(md++)->base = t4_read_reg(adap, SGE_IMSG_CTXT_BADDR_A);
2896 	(md++)->base = t4_read_reg(adap, SGE_FLM_CACHE_BADDR_A);
2897 	(md++)->base = t4_read_reg(adap, TP_CMM_TCB_BASE_A);
2898 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_BASE_A);
2899 	(md++)->base = t4_read_reg(adap, TP_CMM_TIMER_BASE_A);
2900 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_RX_FLST_BASE_A);
2901 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_TX_FLST_BASE_A);
2902 	(md++)->base = t4_read_reg(adap, TP_CMM_MM_PS_FLST_BASE_A);
2903 
2904 	/* the next few have explicit upper bounds */
2905 	md->base = t4_read_reg(adap, TP_PMM_TX_BASE_A);
2906 	md->limit = md->base - 1 +
2907 		    t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A) *
2908 		    PMTXMAXPAGE_G(t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A));
2909 	md++;
2910 
2911 	md->base = t4_read_reg(adap, TP_PMM_RX_BASE_A);
2912 	md->limit = md->base - 1 +
2913 		    t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) *
2914 		    PMRXMAXPAGE_G(t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A));
2915 	md++;
2916 
2917 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2918 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) {
2919 			hi = t4_read_reg(adap, LE_DB_TID_HASHBASE_A) / 4;
2920 			md->base = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2921 		 } else {
2922 			hi = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2923 			md->base = t4_read_reg(adap,
2924 					       LE_DB_HASH_TBL_BASE_ADDR_A);
2925 		}
2926 		md->limit = 0;
2927 	} else {
2928 		md->base = 0;
2929 		md->idx = ARRAY_SIZE(region);  /* hide it */
2930 	}
2931 	md++;
2932 
2933 #define ulp_region(reg) do { \
2934 	md->base = t4_read_reg(adap, ULP_ ## reg ## _LLIMIT_A);\
2935 	(md++)->limit = t4_read_reg(adap, ULP_ ## reg ## _ULIMIT_A); \
2936 } while (0)
2937 
2938 	ulp_region(RX_ISCSI);
2939 	ulp_region(RX_TDDP);
2940 	ulp_region(TX_TPT);
2941 	ulp_region(RX_STAG);
2942 	ulp_region(RX_RQ);
2943 	ulp_region(RX_RQUDP);
2944 	ulp_region(RX_PBL);
2945 	ulp_region(TX_PBL);
2946 #undef ulp_region
2947 	md->base = 0;
2948 	md->idx = ARRAY_SIZE(region);
2949 	if (!is_t4(adap->params.chip)) {
2950 		u32 size = 0;
2951 		u32 sge_ctrl = t4_read_reg(adap, SGE_CONTROL2_A);
2952 		u32 fifo_size = t4_read_reg(adap, SGE_DBVFIFO_SIZE_A);
2953 
2954 		if (is_t5(adap->params.chip)) {
2955 			if (sge_ctrl & VFIFO_ENABLE_F)
2956 				size = DBVFIFO_SIZE_G(fifo_size);
2957 		} else {
2958 			size = T6_DBVFIFO_SIZE_G(fifo_size);
2959 		}
2960 
2961 		if (size) {
2962 			md->base = BASEADDR_G(t4_read_reg(adap,
2963 					SGE_DBVFIFO_BADDR_A));
2964 			md->limit = md->base + (size << 2) - 1;
2965 		}
2966 	}
2967 
2968 	md++;
2969 
2970 	md->base = t4_read_reg(adap, ULP_RX_CTX_BASE_A);
2971 	md->limit = 0;
2972 	md++;
2973 	md->base = t4_read_reg(adap, ULP_TX_ERR_TABLE_BASE_A);
2974 	md->limit = 0;
2975 	md++;
2976 
2977 	md->base = adap->vres.ocq.start;
2978 	if (adap->vres.ocq.size)
2979 		md->limit = md->base + adap->vres.ocq.size - 1;
2980 	else
2981 		md->idx = ARRAY_SIZE(region);  /* hide it */
2982 	md++;
2983 
2984 	/* add any address-space holes, there can be up to 3 */
2985 	for (n = 0; n < i - 1; n++)
2986 		if (avail[n].limit < avail[n + 1].base)
2987 			(md++)->base = avail[n].limit;
2988 	if (avail[n].limit)
2989 		(md++)->base = avail[n].limit;
2990 
2991 	n = md - mem;
2992 	sort(mem, n, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2993 
2994 	for (lo = 0; lo < i; lo++)
2995 		mem_region_show(seq, memory[avail[lo].idx], avail[lo].base,
2996 				avail[lo].limit - 1);
2997 
2998 	seq_putc(seq, '\n');
2999 	for (i = 0; i < n; i++) {
3000 		if (mem[i].idx >= ARRAY_SIZE(region))
3001 			continue;                        /* skip holes */
3002 		if (!mem[i].limit)
3003 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
3004 		mem_region_show(seq, region[mem[i].idx], mem[i].base,
3005 				mem[i].limit);
3006 	}
3007 
3008 	seq_putc(seq, '\n');
3009 	lo = t4_read_reg(adap, CIM_SDRAM_BASE_ADDR_A);
3010 	hi = t4_read_reg(adap, CIM_SDRAM_ADDR_SIZE_A) + lo - 1;
3011 	mem_region_show(seq, "uP RAM:", lo, hi);
3012 
3013 	lo = t4_read_reg(adap, CIM_EXTMEM2_BASE_ADDR_A);
3014 	hi = t4_read_reg(adap, CIM_EXTMEM2_ADDR_SIZE_A) + lo - 1;
3015 	mem_region_show(seq, "uP Extmem2:", lo, hi);
3016 
3017 	lo = t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A);
3018 	seq_printf(seq, "\n%u Rx pages of size %uKiB for %u channels\n",
3019 		   PMRXMAXPAGE_G(lo),
3020 		   t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) >> 10,
3021 		   (lo & PMRXNUMCHN_F) ? 2 : 1);
3022 
3023 	lo = t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A);
3024 	hi = t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A);
3025 	seq_printf(seq, "%u Tx pages of size %u%ciB for %u channels\n",
3026 		   PMTXMAXPAGE_G(lo),
3027 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
3028 		   hi >= (1 << 20) ? 'M' : 'K', 1 << PMTXNUMCHN_G(lo));
3029 	seq_printf(seq, "%u p-structs\n\n",
3030 		   t4_read_reg(adap, TP_CMM_MM_MAX_PSTRUCT_A));
3031 
3032 	for (i = 0; i < 4; i++) {
3033 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
3034 			lo = t4_read_reg(adap, MPS_RX_MAC_BG_PG_CNT0_A + i * 4);
3035 		else
3036 			lo = t4_read_reg(adap, MPS_RX_PG_RSV0_A + i * 4);
3037 		if (is_t5(adap->params.chip)) {
3038 			used = T5_USED_G(lo);
3039 			alloc = T5_ALLOC_G(lo);
3040 		} else {
3041 			used = USED_G(lo);
3042 			alloc = ALLOC_G(lo);
3043 		}
3044 		/* For T6 these are MAC buffer groups */
3045 		seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
3046 			   i, used, alloc);
3047 	}
3048 	for (i = 0; i < adap->params.arch.nchan; i++) {
3049 		if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
3050 			lo = t4_read_reg(adap,
3051 					 MPS_RX_LPBK_BG_PG_CNT0_A + i * 4);
3052 		else
3053 			lo = t4_read_reg(adap, MPS_RX_PG_RSV4_A + i * 4);
3054 		if (is_t5(adap->params.chip)) {
3055 			used = T5_USED_G(lo);
3056 			alloc = T5_ALLOC_G(lo);
3057 		} else {
3058 			used = USED_G(lo);
3059 			alloc = ALLOC_G(lo);
3060 		}
3061 		/* For T6 these are MAC buffer groups */
3062 		seq_printf(seq,
3063 			   "Loopback %d using %u pages out of %u allocated\n",
3064 			   i, used, alloc);
3065 	}
3066 	return 0;
3067 }
3068 
3069 static int meminfo_open(struct inode *inode, struct file *file)
3070 {
3071 	return single_open(file, meminfo_show, inode->i_private);
3072 }
3073 
3074 static const struct file_operations meminfo_fops = {
3075 	.owner   = THIS_MODULE,
3076 	.open    = meminfo_open,
3077 	.read    = seq_read,
3078 	.llseek  = seq_lseek,
3079 	.release = single_release,
3080 };
3081 
3082 static int chcr_show(struct seq_file *seq, void *v)
3083 {
3084 	struct adapter *adap = seq->private;
3085 
3086 	seq_puts(seq, "Chelsio Crypto Accelerator Stats \n");
3087 	seq_printf(seq, "Cipher Ops: %10u \n",
3088 		   atomic_read(&adap->chcr_stats.cipher_rqst));
3089 	seq_printf(seq, "Digest Ops: %10u \n",
3090 		   atomic_read(&adap->chcr_stats.digest_rqst));
3091 	seq_printf(seq, "Aead Ops: %10u \n",
3092 		   atomic_read(&adap->chcr_stats.aead_rqst));
3093 	seq_printf(seq, "Completion: %10u \n",
3094 		   atomic_read(&adap->chcr_stats.complete));
3095 	seq_printf(seq, "Error: %10u \n",
3096 		   atomic_read(&adap->chcr_stats.error));
3097 	seq_printf(seq, "Fallback: %10u \n",
3098 		   atomic_read(&adap->chcr_stats.fallback));
3099 	return 0;
3100 }
3101 
3102 
3103 static int chcr_stats_open(struct inode *inode, struct file *file)
3104 {
3105         return single_open(file, chcr_show, inode->i_private);
3106 }
3107 
3108 static const struct file_operations chcr_stats_debugfs_fops = {
3109         .owner   = THIS_MODULE,
3110         .open    = chcr_stats_open,
3111         .read    = seq_read,
3112         .llseek  = seq_lseek,
3113         .release = single_release,
3114 };
3115 /* Add an array of Debug FS files.
3116  */
3117 void add_debugfs_files(struct adapter *adap,
3118 		       struct t4_debugfs_entry *files,
3119 		       unsigned int nfiles)
3120 {
3121 	int i;
3122 
3123 	/* debugfs support is best effort */
3124 	for (i = 0; i < nfiles; i++)
3125 		debugfs_create_file(files[i].name, files[i].mode,
3126 				    adap->debugfs_root,
3127 				    (void *)adap + files[i].data,
3128 				    files[i].ops);
3129 }
3130 
3131 int t4_setup_debugfs(struct adapter *adap)
3132 {
3133 	int i;
3134 	u32 size = 0;
3135 	struct dentry *de;
3136 
3137 	static struct t4_debugfs_entry t4_debugfs_files[] = {
3138 		{ "cim_la", &cim_la_fops, S_IRUSR, 0 },
3139 		{ "cim_pif_la", &cim_pif_la_fops, S_IRUSR, 0 },
3140 		{ "cim_ma_la", &cim_ma_la_fops, S_IRUSR, 0 },
3141 		{ "cim_qcfg", &cim_qcfg_fops, S_IRUSR, 0 },
3142 		{ "clk", &clk_debugfs_fops, S_IRUSR, 0 },
3143 		{ "devlog", &devlog_fops, S_IRUSR, 0 },
3144 		{ "mboxlog", &mboxlog_fops, S_IRUSR, 0 },
3145 		{ "mbox0", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3146 		{ "mbox1", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3147 		{ "mbox2", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3148 		{ "mbox3", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3149 		{ "mbox4", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 4 },
3150 		{ "mbox5", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 5 },
3151 		{ "mbox6", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 6 },
3152 		{ "mbox7", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 7 },
3153 		{ "trace0", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3154 		{ "trace1", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3155 		{ "trace2", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3156 		{ "trace3", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3157 		{ "l2t", &t4_l2t_fops, S_IRUSR, 0},
3158 		{ "mps_tcam", &mps_tcam_debugfs_fops, S_IRUSR, 0 },
3159 		{ "rss", &rss_debugfs_fops, S_IRUSR, 0 },
3160 		{ "rss_config", &rss_config_debugfs_fops, S_IRUSR, 0 },
3161 		{ "rss_key", &rss_key_debugfs_fops, S_IRUSR, 0 },
3162 		{ "rss_pf_config", &rss_pf_config_debugfs_fops, S_IRUSR, 0 },
3163 		{ "rss_vf_config", &rss_vf_config_debugfs_fops, S_IRUSR, 0 },
3164 		{ "sge_qinfo", &sge_qinfo_debugfs_fops, S_IRUSR, 0 },
3165 		{ "ibq_tp0",  &cim_ibq_fops, S_IRUSR, 0 },
3166 		{ "ibq_tp1",  &cim_ibq_fops, S_IRUSR, 1 },
3167 		{ "ibq_ulp",  &cim_ibq_fops, S_IRUSR, 2 },
3168 		{ "ibq_sge0", &cim_ibq_fops, S_IRUSR, 3 },
3169 		{ "ibq_sge1", &cim_ibq_fops, S_IRUSR, 4 },
3170 		{ "ibq_ncsi", &cim_ibq_fops, S_IRUSR, 5 },
3171 		{ "obq_ulp0", &cim_obq_fops, S_IRUSR, 0 },
3172 		{ "obq_ulp1", &cim_obq_fops, S_IRUSR, 1 },
3173 		{ "obq_ulp2", &cim_obq_fops, S_IRUSR, 2 },
3174 		{ "obq_ulp3", &cim_obq_fops, S_IRUSR, 3 },
3175 		{ "obq_sge",  &cim_obq_fops, S_IRUSR, 4 },
3176 		{ "obq_ncsi", &cim_obq_fops, S_IRUSR, 5 },
3177 		{ "tp_la", &tp_la_fops, S_IRUSR, 0 },
3178 		{ "ulprx_la", &ulprx_la_fops, S_IRUSR, 0 },
3179 		{ "sensors", &sensors_debugfs_fops, S_IRUSR, 0 },
3180 		{ "pm_stats", &pm_stats_debugfs_fops, S_IRUSR, 0 },
3181 		{ "tx_rate", &tx_rate_debugfs_fops, S_IRUSR, 0 },
3182 		{ "cctrl", &cctrl_tbl_debugfs_fops, S_IRUSR, 0 },
3183 #if IS_ENABLED(CONFIG_IPV6)
3184 		{ "clip_tbl", &clip_tbl_debugfs_fops, S_IRUSR, 0 },
3185 #endif
3186 		{ "tids", &tid_info_debugfs_fops, S_IRUSR, 0},
3187 		{ "blocked_fl", &blocked_fl_fops, S_IRUSR | S_IWUSR, 0 },
3188 		{ "meminfo", &meminfo_fops, S_IRUSR, 0 },
3189 		{ "crypto", &chcr_stats_debugfs_fops, S_IRUSR, 0 },
3190 	};
3191 
3192 	/* Debug FS nodes common to all T5 and later adapters.
3193 	 */
3194 	static struct t4_debugfs_entry t5_debugfs_files[] = {
3195 		{ "obq_sge_rx_q0", &cim_obq_fops, S_IRUSR, 6 },
3196 		{ "obq_sge_rx_q1", &cim_obq_fops, S_IRUSR, 7 },
3197 	};
3198 
3199 	add_debugfs_files(adap,
3200 			  t4_debugfs_files,
3201 			  ARRAY_SIZE(t4_debugfs_files));
3202 	if (!is_t4(adap->params.chip))
3203 		add_debugfs_files(adap,
3204 				  t5_debugfs_files,
3205 				  ARRAY_SIZE(t5_debugfs_files));
3206 
3207 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
3208 	if (i & EDRAM0_ENABLE_F) {
3209 		size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3210 		add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
3211 	}
3212 	if (i & EDRAM1_ENABLE_F) {
3213 		size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3214 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
3215 	}
3216 	if (is_t5(adap->params.chip)) {
3217 		if (i & EXT_MEM0_ENABLE_F) {
3218 			size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3219 			add_debugfs_mem(adap, "mc0", MEM_MC0,
3220 					EXT_MEM0_SIZE_G(size));
3221 		}
3222 		if (i & EXT_MEM1_ENABLE_F) {
3223 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3224 			add_debugfs_mem(adap, "mc1", MEM_MC1,
3225 					EXT_MEM1_SIZE_G(size));
3226 		}
3227 	} else {
3228 		if (i & EXT_MEM_ENABLE_F) {
3229 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
3230 			add_debugfs_mem(adap, "mc", MEM_MC,
3231 					EXT_MEM_SIZE_G(size));
3232 		}
3233 	}
3234 
3235 	de = debugfs_create_file_size("flash", S_IRUSR, adap->debugfs_root, adap,
3236 				      &flash_debugfs_fops, adap->params.sf_size);
3237 	debugfs_create_bool("use_backdoor", S_IWUSR | S_IRUSR,
3238 			    adap->debugfs_root, &adap->use_bd);
3239 	debugfs_create_bool("trace_rss", S_IWUSR | S_IRUSR,
3240 			    adap->debugfs_root, &adap->trace_rss);
3241 
3242 	return 0;
3243 }
3244