1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 #include <linux/string_helpers.h>
38 #include <linux/sort.h>
39 #include <linux/ctype.h>
40 
41 #include "cxgb4.h"
42 #include "t4_regs.h"
43 #include "t4_values.h"
44 #include "t4fw_api.h"
45 #include "cxgb4_debugfs.h"
46 #include "clip_tbl.h"
47 #include "l2t.h"
48 #include "cudbg_if.h"
49 #include "cudbg_lib_common.h"
50 #include "cudbg_entity.h"
51 #include "cudbg_lib.h"
52 
53 /* generic seq_file support for showing a table of size rows x width. */
54 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
55 {
56 	pos -= tb->skip_first;
57 	return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
58 }
59 
60 static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
61 {
62 	struct seq_tab *tb = seq->private;
63 
64 	if (tb->skip_first && *pos == 0)
65 		return SEQ_START_TOKEN;
66 
67 	return seq_tab_get_idx(tb, *pos);
68 }
69 
70 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
71 {
72 	v = seq_tab_get_idx(seq->private, *pos + 1);
73 	++(*pos);
74 	return v;
75 }
76 
77 static void seq_tab_stop(struct seq_file *seq, void *v)
78 {
79 }
80 
81 static int seq_tab_show(struct seq_file *seq, void *v)
82 {
83 	const struct seq_tab *tb = seq->private;
84 
85 	return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
86 }
87 
88 static const struct seq_operations seq_tab_ops = {
89 	.start = seq_tab_start,
90 	.next  = seq_tab_next,
91 	.stop  = seq_tab_stop,
92 	.show  = seq_tab_show
93 };
94 
95 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
96 			     unsigned int width, unsigned int have_header,
97 			     int (*show)(struct seq_file *seq, void *v, int i))
98 {
99 	struct seq_tab *p;
100 
101 	p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
102 	if (p) {
103 		p->show = show;
104 		p->rows = rows;
105 		p->width = width;
106 		p->skip_first = have_header != 0;
107 	}
108 	return p;
109 }
110 
111 /* Trim the size of a seq_tab to the supplied number of rows.  The operation is
112  * irreversible.
113  */
114 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
115 {
116 	if (new_rows > p->rows)
117 		return -EINVAL;
118 	p->rows = new_rows;
119 	return 0;
120 }
121 
122 static int cim_la_show(struct seq_file *seq, void *v, int idx)
123 {
124 	if (v == SEQ_START_TOKEN)
125 		seq_puts(seq, "Status   Data      PC     LS0Stat  LS0Addr "
126 			 "            LS0Data\n");
127 	else {
128 		const u32 *p = v;
129 
130 		seq_printf(seq,
131 			   "  %02x  %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
132 			   (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
133 			   p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
134 			   p[6], p[7]);
135 	}
136 	return 0;
137 }
138 
139 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
140 {
141 	if (v == SEQ_START_TOKEN) {
142 		seq_puts(seq, "Status   Data      PC\n");
143 	} else {
144 		const u32 *p = v;
145 
146 		seq_printf(seq, "  %02x   %08x %08x\n", p[5] & 0xff, p[6],
147 			   p[7]);
148 		seq_printf(seq, "  %02x   %02x%06x %02x%06x\n",
149 			   (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
150 			   p[4] & 0xff, p[5] >> 8);
151 		seq_printf(seq, "  %02x   %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
152 			   p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
153 	}
154 	return 0;
155 }
156 
157 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
158 {
159 	if (v == SEQ_START_TOKEN) {
160 		seq_puts(seq, "Status   Inst    Data      PC     LS0Stat  "
161 			 "LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data\n");
162 	} else {
163 		const u32 *p = v;
164 
165 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
166 			   (p[9] >> 16) & 0xff,       /* Status */
167 			   p[9] & 0xffff, p[8] >> 16, /* Inst */
168 			   p[8] & 0xffff, p[7] >> 16, /* Data */
169 			   p[7] & 0xffff, p[6] >> 16, /* PC */
170 			   p[2], p[1], p[0],      /* LS0 Stat, Addr and Data */
171 			   p[5], p[4], p[3]);     /* LS1 Stat, Addr and Data */
172 	}
173 	return 0;
174 }
175 
176 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
177 {
178 	if (v == SEQ_START_TOKEN) {
179 		seq_puts(seq, "Status   Inst    Data      PC\n");
180 	} else {
181 		const u32 *p = v;
182 
183 		seq_printf(seq, "  %02x   %08x %08x %08x\n",
184 			   p[3] & 0xff, p[2], p[1], p[0]);
185 		seq_printf(seq, "  %02x   %02x%06x %02x%06x %02x%06x\n",
186 			   (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
187 			   p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
188 		seq_printf(seq, "  %02x   %04x%04x %04x%04x %04x%04x\n",
189 			   (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
190 			   p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
191 			   p[6] >> 16);
192 	}
193 	return 0;
194 }
195 
196 static int cim_la_open(struct inode *inode, struct file *file)
197 {
198 	int ret;
199 	unsigned int cfg;
200 	struct seq_tab *p;
201 	struct adapter *adap = inode->i_private;
202 
203 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
204 	if (ret)
205 		return ret;
206 
207 	if (is_t6(adap->params.chip)) {
208 		/* +1 to account for integer division of CIMLA_SIZE/10 */
209 		p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
210 				 10 * sizeof(u32), 1,
211 				 cfg & UPDBGLACAPTPCONLY_F ?
212 					cim_la_show_pc_t6 : cim_la_show_t6);
213 	} else {
214 		p = seq_open_tab(file, adap->params.cim_la_size / 8,
215 				 8 * sizeof(u32), 1,
216 				 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
217 							     cim_la_show);
218 	}
219 	if (!p)
220 		return -ENOMEM;
221 
222 	ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
223 	if (ret)
224 		seq_release_private(inode, file);
225 	return ret;
226 }
227 
228 static const struct file_operations cim_la_fops = {
229 	.owner   = THIS_MODULE,
230 	.open    = cim_la_open,
231 	.read    = seq_read,
232 	.llseek  = seq_lseek,
233 	.release = seq_release_private
234 };
235 
236 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
237 {
238 	const u32 *p = v;
239 
240 	if (v == SEQ_START_TOKEN) {
241 		seq_puts(seq, "Cntl ID DataBE   Addr                 Data\n");
242 	} else if (idx < CIM_PIFLA_SIZE) {
243 		seq_printf(seq, " %02x  %02x  %04x  %08x %08x%08x%08x%08x\n",
244 			   (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
245 			   p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
246 	} else {
247 		if (idx == CIM_PIFLA_SIZE)
248 			seq_puts(seq, "\nCntl ID               Data\n");
249 		seq_printf(seq, " %02x  %02x %08x%08x%08x%08x\n",
250 			   (p[4] >> 6) & 0xff, p[4] & 0x3f,
251 			   p[3], p[2], p[1], p[0]);
252 	}
253 	return 0;
254 }
255 
256 static int cim_pif_la_open(struct inode *inode, struct file *file)
257 {
258 	struct seq_tab *p;
259 	struct adapter *adap = inode->i_private;
260 
261 	p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
262 			 cim_pif_la_show);
263 	if (!p)
264 		return -ENOMEM;
265 
266 	t4_cim_read_pif_la(adap, (u32 *)p->data,
267 			   (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
268 	return 0;
269 }
270 
271 static const struct file_operations cim_pif_la_fops = {
272 	.owner   = THIS_MODULE,
273 	.open    = cim_pif_la_open,
274 	.read    = seq_read,
275 	.llseek  = seq_lseek,
276 	.release = seq_release_private
277 };
278 
279 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
280 {
281 	const u32 *p = v;
282 
283 	if (v == SEQ_START_TOKEN) {
284 		seq_puts(seq, "\n");
285 	} else if (idx < CIM_MALA_SIZE) {
286 		seq_printf(seq, "%02x%08x%08x%08x%08x\n",
287 			   p[4], p[3], p[2], p[1], p[0]);
288 	} else {
289 		if (idx == CIM_MALA_SIZE)
290 			seq_puts(seq,
291 				 "\nCnt ID Tag UE       Data       RDY VLD\n");
292 		seq_printf(seq, "%3u %2u  %x   %u %08x%08x  %u   %u\n",
293 			   (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
294 			   (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
295 			   (p[1] >> 2) | ((p[2] & 3) << 30),
296 			   (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
297 			   p[0] & 1);
298 	}
299 	return 0;
300 }
301 
302 static int cim_ma_la_open(struct inode *inode, struct file *file)
303 {
304 	struct seq_tab *p;
305 	struct adapter *adap = inode->i_private;
306 
307 	p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
308 			 cim_ma_la_show);
309 	if (!p)
310 		return -ENOMEM;
311 
312 	t4_cim_read_ma_la(adap, (u32 *)p->data,
313 			  (u32 *)p->data + 5 * CIM_MALA_SIZE);
314 	return 0;
315 }
316 
317 static const struct file_operations cim_ma_la_fops = {
318 	.owner   = THIS_MODULE,
319 	.open    = cim_ma_la_open,
320 	.read    = seq_read,
321 	.llseek  = seq_lseek,
322 	.release = seq_release_private
323 };
324 
325 static int cim_qcfg_show(struct seq_file *seq, void *v)
326 {
327 	static const char * const qname[] = {
328 		"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
329 		"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
330 		"SGE0-RX", "SGE1-RX"
331 	};
332 
333 	int i;
334 	struct adapter *adap = seq->private;
335 	u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
336 	u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
337 	u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
338 	u16 thres[CIM_NUM_IBQ];
339 	u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
340 	u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
341 	u32 *p = stat;
342 	int cim_num_obq = is_t4(adap->params.chip) ?
343 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
344 
345 	i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
346 			UP_IBQ_0_SHADOW_RDADDR_A,
347 			ARRAY_SIZE(stat), stat);
348 	if (!i) {
349 		if (is_t4(adap->params.chip)) {
350 			i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
351 					ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
352 			wr = obq_wr_t4;
353 		} else {
354 			i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
355 					ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
356 			wr = obq_wr_t5;
357 		}
358 	}
359 	if (i)
360 		return i;
361 
362 	t4_read_cimq_cfg(adap, base, size, thres);
363 
364 	seq_printf(seq,
365 		   "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail\n");
366 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
367 		seq_printf(seq, "%7s %5x %5u %5u %6x  %4x %4u %4u %5u\n",
368 			   qname[i], base[i], size[i], thres[i],
369 			   IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
370 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
371 			   QUEREMFLITS_G(p[2]) * 16);
372 	for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
373 		seq_printf(seq, "%7s %5x %5u %12x  %4x %4u %4u %5u\n",
374 			   qname[i], base[i], size[i],
375 			   QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
376 			   QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
377 			   QUEREMFLITS_G(p[2]) * 16);
378 	return 0;
379 }
380 DEFINE_SHOW_ATTRIBUTE(cim_qcfg);
381 
382 static int cimq_show(struct seq_file *seq, void *v, int idx)
383 {
384 	const u32 *p = v;
385 
386 	seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
387 		   p[2], p[3]);
388 	return 0;
389 }
390 
391 static int cim_ibq_open(struct inode *inode, struct file *file)
392 {
393 	int ret;
394 	struct seq_tab *p;
395 	unsigned int qid = (uintptr_t)inode->i_private & 7;
396 	struct adapter *adap = inode->i_private - qid;
397 
398 	p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
399 	if (!p)
400 		return -ENOMEM;
401 
402 	ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
403 	if (ret < 0)
404 		seq_release_private(inode, file);
405 	else
406 		ret = 0;
407 	return ret;
408 }
409 
410 static const struct file_operations cim_ibq_fops = {
411 	.owner   = THIS_MODULE,
412 	.open    = cim_ibq_open,
413 	.read    = seq_read,
414 	.llseek  = seq_lseek,
415 	.release = seq_release_private
416 };
417 
418 static int cim_obq_open(struct inode *inode, struct file *file)
419 {
420 	int ret;
421 	struct seq_tab *p;
422 	unsigned int qid = (uintptr_t)inode->i_private & 7;
423 	struct adapter *adap = inode->i_private - qid;
424 
425 	p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
426 	if (!p)
427 		return -ENOMEM;
428 
429 	ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
430 	if (ret < 0) {
431 		seq_release_private(inode, file);
432 	} else {
433 		seq_tab_trim(p, ret / 4);
434 		ret = 0;
435 	}
436 	return ret;
437 }
438 
439 static const struct file_operations cim_obq_fops = {
440 	.owner   = THIS_MODULE,
441 	.open    = cim_obq_open,
442 	.read    = seq_read,
443 	.llseek  = seq_lseek,
444 	.release = seq_release_private
445 };
446 
447 struct field_desc {
448 	const char *name;
449 	unsigned int start;
450 	unsigned int width;
451 };
452 
453 static void field_desc_show(struct seq_file *seq, u64 v,
454 			    const struct field_desc *p)
455 {
456 	char buf[32];
457 	int line_size = 0;
458 
459 	while (p->name) {
460 		u64 mask = (1ULL << p->width) - 1;
461 		int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
462 				    ((unsigned long long)v >> p->start) & mask);
463 
464 		if (line_size + len >= 79) {
465 			line_size = 8;
466 			seq_puts(seq, "\n        ");
467 		}
468 		seq_printf(seq, "%s ", buf);
469 		line_size += len + 1;
470 		p++;
471 	}
472 	seq_putc(seq, '\n');
473 }
474 
475 static struct field_desc tp_la0[] = {
476 	{ "RcfOpCodeOut", 60, 4 },
477 	{ "State", 56, 4 },
478 	{ "WcfState", 52, 4 },
479 	{ "RcfOpcSrcOut", 50, 2 },
480 	{ "CRxError", 49, 1 },
481 	{ "ERxError", 48, 1 },
482 	{ "SanityFailed", 47, 1 },
483 	{ "SpuriousMsg", 46, 1 },
484 	{ "FlushInputMsg", 45, 1 },
485 	{ "FlushInputCpl", 44, 1 },
486 	{ "RssUpBit", 43, 1 },
487 	{ "RssFilterHit", 42, 1 },
488 	{ "Tid", 32, 10 },
489 	{ "InitTcb", 31, 1 },
490 	{ "LineNumber", 24, 7 },
491 	{ "Emsg", 23, 1 },
492 	{ "EdataOut", 22, 1 },
493 	{ "Cmsg", 21, 1 },
494 	{ "CdataOut", 20, 1 },
495 	{ "EreadPdu", 19, 1 },
496 	{ "CreadPdu", 18, 1 },
497 	{ "TunnelPkt", 17, 1 },
498 	{ "RcfPeerFin", 16, 1 },
499 	{ "RcfReasonOut", 12, 4 },
500 	{ "TxCchannel", 10, 2 },
501 	{ "RcfTxChannel", 8, 2 },
502 	{ "RxEchannel", 6, 2 },
503 	{ "RcfRxChannel", 5, 1 },
504 	{ "RcfDataOutSrdy", 4, 1 },
505 	{ "RxDvld", 3, 1 },
506 	{ "RxOoDvld", 2, 1 },
507 	{ "RxCongestion", 1, 1 },
508 	{ "TxCongestion", 0, 1 },
509 	{ NULL }
510 };
511 
512 static int tp_la_show(struct seq_file *seq, void *v, int idx)
513 {
514 	const u64 *p = v;
515 
516 	field_desc_show(seq, *p, tp_la0);
517 	return 0;
518 }
519 
520 static int tp_la_show2(struct seq_file *seq, void *v, int idx)
521 {
522 	const u64 *p = v;
523 
524 	if (idx)
525 		seq_putc(seq, '\n');
526 	field_desc_show(seq, p[0], tp_la0);
527 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
528 		field_desc_show(seq, p[1], tp_la0);
529 	return 0;
530 }
531 
532 static int tp_la_show3(struct seq_file *seq, void *v, int idx)
533 {
534 	static struct field_desc tp_la1[] = {
535 		{ "CplCmdIn", 56, 8 },
536 		{ "CplCmdOut", 48, 8 },
537 		{ "ESynOut", 47, 1 },
538 		{ "EAckOut", 46, 1 },
539 		{ "EFinOut", 45, 1 },
540 		{ "ERstOut", 44, 1 },
541 		{ "SynIn", 43, 1 },
542 		{ "AckIn", 42, 1 },
543 		{ "FinIn", 41, 1 },
544 		{ "RstIn", 40, 1 },
545 		{ "DataIn", 39, 1 },
546 		{ "DataInVld", 38, 1 },
547 		{ "PadIn", 37, 1 },
548 		{ "RxBufEmpty", 36, 1 },
549 		{ "RxDdp", 35, 1 },
550 		{ "RxFbCongestion", 34, 1 },
551 		{ "TxFbCongestion", 33, 1 },
552 		{ "TxPktSumSrdy", 32, 1 },
553 		{ "RcfUlpType", 28, 4 },
554 		{ "Eread", 27, 1 },
555 		{ "Ebypass", 26, 1 },
556 		{ "Esave", 25, 1 },
557 		{ "Static0", 24, 1 },
558 		{ "Cread", 23, 1 },
559 		{ "Cbypass", 22, 1 },
560 		{ "Csave", 21, 1 },
561 		{ "CPktOut", 20, 1 },
562 		{ "RxPagePoolFull", 18, 2 },
563 		{ "RxLpbkPkt", 17, 1 },
564 		{ "TxLpbkPkt", 16, 1 },
565 		{ "RxVfValid", 15, 1 },
566 		{ "SynLearned", 14, 1 },
567 		{ "SetDelEntry", 13, 1 },
568 		{ "SetInvEntry", 12, 1 },
569 		{ "CpcmdDvld", 11, 1 },
570 		{ "CpcmdSave", 10, 1 },
571 		{ "RxPstructsFull", 8, 2 },
572 		{ "EpcmdDvld", 7, 1 },
573 		{ "EpcmdFlush", 6, 1 },
574 		{ "EpcmdTrimPrefix", 5, 1 },
575 		{ "EpcmdTrimPostfix", 4, 1 },
576 		{ "ERssIp4Pkt", 3, 1 },
577 		{ "ERssIp6Pkt", 2, 1 },
578 		{ "ERssTcpUdpPkt", 1, 1 },
579 		{ "ERssFceFipPkt", 0, 1 },
580 		{ NULL }
581 	};
582 	static struct field_desc tp_la2[] = {
583 		{ "CplCmdIn", 56, 8 },
584 		{ "MpsVfVld", 55, 1 },
585 		{ "MpsPf", 52, 3 },
586 		{ "MpsVf", 44, 8 },
587 		{ "SynIn", 43, 1 },
588 		{ "AckIn", 42, 1 },
589 		{ "FinIn", 41, 1 },
590 		{ "RstIn", 40, 1 },
591 		{ "DataIn", 39, 1 },
592 		{ "DataInVld", 38, 1 },
593 		{ "PadIn", 37, 1 },
594 		{ "RxBufEmpty", 36, 1 },
595 		{ "RxDdp", 35, 1 },
596 		{ "RxFbCongestion", 34, 1 },
597 		{ "TxFbCongestion", 33, 1 },
598 		{ "TxPktSumSrdy", 32, 1 },
599 		{ "RcfUlpType", 28, 4 },
600 		{ "Eread", 27, 1 },
601 		{ "Ebypass", 26, 1 },
602 		{ "Esave", 25, 1 },
603 		{ "Static0", 24, 1 },
604 		{ "Cread", 23, 1 },
605 		{ "Cbypass", 22, 1 },
606 		{ "Csave", 21, 1 },
607 		{ "CPktOut", 20, 1 },
608 		{ "RxPagePoolFull", 18, 2 },
609 		{ "RxLpbkPkt", 17, 1 },
610 		{ "TxLpbkPkt", 16, 1 },
611 		{ "RxVfValid", 15, 1 },
612 		{ "SynLearned", 14, 1 },
613 		{ "SetDelEntry", 13, 1 },
614 		{ "SetInvEntry", 12, 1 },
615 		{ "CpcmdDvld", 11, 1 },
616 		{ "CpcmdSave", 10, 1 },
617 		{ "RxPstructsFull", 8, 2 },
618 		{ "EpcmdDvld", 7, 1 },
619 		{ "EpcmdFlush", 6, 1 },
620 		{ "EpcmdTrimPrefix", 5, 1 },
621 		{ "EpcmdTrimPostfix", 4, 1 },
622 		{ "ERssIp4Pkt", 3, 1 },
623 		{ "ERssIp6Pkt", 2, 1 },
624 		{ "ERssTcpUdpPkt", 1, 1 },
625 		{ "ERssFceFipPkt", 0, 1 },
626 		{ NULL }
627 	};
628 	const u64 *p = v;
629 
630 	if (idx)
631 		seq_putc(seq, '\n');
632 	field_desc_show(seq, p[0], tp_la0);
633 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
634 		field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
635 	return 0;
636 }
637 
638 static int tp_la_open(struct inode *inode, struct file *file)
639 {
640 	struct seq_tab *p;
641 	struct adapter *adap = inode->i_private;
642 
643 	switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
644 	case 2:
645 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
646 				 tp_la_show2);
647 		break;
648 	case 3:
649 		p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
650 				 tp_la_show3);
651 		break;
652 	default:
653 		p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
654 	}
655 	if (!p)
656 		return -ENOMEM;
657 
658 	t4_tp_read_la(adap, (u64 *)p->data, NULL);
659 	return 0;
660 }
661 
662 static ssize_t tp_la_write(struct file *file, const char __user *buf,
663 			   size_t count, loff_t *pos)
664 {
665 	int err;
666 	char s[32];
667 	unsigned long val;
668 	size_t size = min(sizeof(s) - 1, count);
669 	struct adapter *adap = file_inode(file)->i_private;
670 
671 	if (copy_from_user(s, buf, size))
672 		return -EFAULT;
673 	s[size] = '\0';
674 	err = kstrtoul(s, 0, &val);
675 	if (err)
676 		return err;
677 	if (val > 0xffff)
678 		return -EINVAL;
679 	adap->params.tp.la_mask = val << 16;
680 	t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
681 			 adap->params.tp.la_mask);
682 	return count;
683 }
684 
685 static const struct file_operations tp_la_fops = {
686 	.owner   = THIS_MODULE,
687 	.open    = tp_la_open,
688 	.read    = seq_read,
689 	.llseek  = seq_lseek,
690 	.release = seq_release_private,
691 	.write   = tp_la_write
692 };
693 
694 static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
695 {
696 	const u32 *p = v;
697 
698 	if (v == SEQ_START_TOKEN)
699 		seq_puts(seq, "      Pcmd        Type   Message"
700 			 "                Data\n");
701 	else
702 		seq_printf(seq, "%08x%08x  %4x  %08x  %08x%08x%08x%08x\n",
703 			   p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
704 	return 0;
705 }
706 
707 static int ulprx_la_open(struct inode *inode, struct file *file)
708 {
709 	struct seq_tab *p;
710 	struct adapter *adap = inode->i_private;
711 
712 	p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
713 			 ulprx_la_show);
714 	if (!p)
715 		return -ENOMEM;
716 
717 	t4_ulprx_read_la(adap, (u32 *)p->data);
718 	return 0;
719 }
720 
721 static const struct file_operations ulprx_la_fops = {
722 	.owner   = THIS_MODULE,
723 	.open    = ulprx_la_open,
724 	.read    = seq_read,
725 	.llseek  = seq_lseek,
726 	.release = seq_release_private
727 };
728 
729 /* Show the PM memory stats.  These stats include:
730  *
731  * TX:
732  *   Read: memory read operation
733  *   Write Bypass: cut-through
734  *   Bypass + mem: cut-through and save copy
735  *
736  * RX:
737  *   Read: memory read
738  *   Write Bypass: cut-through
739  *   Flush: payload trim or drop
740  */
741 static int pm_stats_show(struct seq_file *seq, void *v)
742 {
743 	static const char * const tx_pm_stats[] = {
744 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
745 	};
746 	static const char * const rx_pm_stats[] = {
747 		"Read:", "Write bypass:", "Write mem:", "Flush:"
748 	};
749 
750 	int i;
751 	u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS];
752 	u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS];
753 	struct adapter *adap = seq->private;
754 
755 	t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
756 	t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
757 
758 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Tx pcmds", "Tx bytes");
759 	for (i = 0; i < PM_NSTATS - 1; i++)
760 		seq_printf(seq, "%-13s %10u  %20llu\n",
761 			   tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
762 
763 	seq_printf(seq, "%13s %10s  %20s\n", " ", "Rx pcmds", "Rx bytes");
764 	for (i = 0; i < PM_NSTATS - 1; i++)
765 		seq_printf(seq, "%-13s %10u  %20llu\n",
766 			   rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
767 
768 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
769 		/* In T5 the granularity of the total wait is too fine.
770 		 * It is not useful as it reaches the max value too fast.
771 		 * Hence display this Input FIFO wait for T6 onwards.
772 		 */
773 		seq_printf(seq, "%13s %10s  %20s\n",
774 			   " ", "Total wait", "Total Occupancy");
775 		seq_printf(seq, "Tx FIFO wait  %10u  %20llu\n",
776 			   tx_cnt[i], tx_cyc[i]);
777 		seq_printf(seq, "Rx FIFO wait  %10u  %20llu\n",
778 			   rx_cnt[i], rx_cyc[i]);
779 
780 		/* Skip index 6 as there is nothing useful ihere */
781 		i += 2;
782 
783 		/* At index 7, a new stat for read latency (count, total wait)
784 		 * is added.
785 		 */
786 		seq_printf(seq, "%13s %10s  %20s\n",
787 			   " ", "Reads", "Total wait");
788 		seq_printf(seq, "Tx latency    %10u  %20llu\n",
789 			   tx_cnt[i], tx_cyc[i]);
790 		seq_printf(seq, "Rx latency    %10u  %20llu\n",
791 			   rx_cnt[i], rx_cyc[i]);
792 	}
793 	return 0;
794 }
795 
796 static int pm_stats_open(struct inode *inode, struct file *file)
797 {
798 	return single_open(file, pm_stats_show, inode->i_private);
799 }
800 
801 static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
802 			      size_t count, loff_t *pos)
803 {
804 	struct adapter *adap = file_inode(file)->i_private;
805 
806 	t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
807 	t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
808 	return count;
809 }
810 
811 static const struct file_operations pm_stats_debugfs_fops = {
812 	.owner   = THIS_MODULE,
813 	.open    = pm_stats_open,
814 	.read    = seq_read,
815 	.llseek  = seq_lseek,
816 	.release = single_release,
817 	.write   = pm_stats_clear
818 };
819 
820 static int tx_rate_show(struct seq_file *seq, void *v)
821 {
822 	u64 nrate[NCHAN], orate[NCHAN];
823 	struct adapter *adap = seq->private;
824 
825 	t4_get_chan_txrate(adap, nrate, orate);
826 	if (adap->params.arch.nchan == NCHAN) {
827 		seq_puts(seq, "              channel 0   channel 1   "
828 			 "channel 2   channel 3\n");
829 		seq_printf(seq, "NIC B/s:     %10llu  %10llu  %10llu  %10llu\n",
830 			   (unsigned long long)nrate[0],
831 			   (unsigned long long)nrate[1],
832 			   (unsigned long long)nrate[2],
833 			   (unsigned long long)nrate[3]);
834 		seq_printf(seq, "Offload B/s: %10llu  %10llu  %10llu  %10llu\n",
835 			   (unsigned long long)orate[0],
836 			   (unsigned long long)orate[1],
837 			   (unsigned long long)orate[2],
838 			   (unsigned long long)orate[3]);
839 	} else {
840 		seq_puts(seq, "              channel 0   channel 1\n");
841 		seq_printf(seq, "NIC B/s:     %10llu  %10llu\n",
842 			   (unsigned long long)nrate[0],
843 			   (unsigned long long)nrate[1]);
844 		seq_printf(seq, "Offload B/s: %10llu  %10llu\n",
845 			   (unsigned long long)orate[0],
846 			   (unsigned long long)orate[1]);
847 	}
848 	return 0;
849 }
850 DEFINE_SHOW_ATTRIBUTE(tx_rate);
851 
852 static int cctrl_tbl_show(struct seq_file *seq, void *v)
853 {
854 	static const char * const dec_fac[] = {
855 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
856 		"0.9375" };
857 
858 	int i;
859 	u16 (*incr)[NCCTRL_WIN];
860 	struct adapter *adap = seq->private;
861 
862 	incr = kmalloc_array(NMTUS, sizeof(*incr), GFP_KERNEL);
863 	if (!incr)
864 		return -ENOMEM;
865 
866 	t4_read_cong_tbl(adap, incr);
867 
868 	for (i = 0; i < NCCTRL_WIN; ++i) {
869 		seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
870 			   incr[0][i], incr[1][i], incr[2][i], incr[3][i],
871 			   incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
872 		seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
873 			   incr[8][i], incr[9][i], incr[10][i], incr[11][i],
874 			   incr[12][i], incr[13][i], incr[14][i], incr[15][i],
875 			   adap->params.a_wnd[i],
876 			   dec_fac[adap->params.b_wnd[i]]);
877 	}
878 
879 	kfree(incr);
880 	return 0;
881 }
882 DEFINE_SHOW_ATTRIBUTE(cctrl_tbl);
883 
884 /* Format a value in a unit that differs from the value's native unit by the
885  * given factor.
886  */
887 static char *unit_conv(char *buf, size_t len, unsigned int val,
888 		       unsigned int factor)
889 {
890 	unsigned int rem = val % factor;
891 
892 	if (rem == 0) {
893 		snprintf(buf, len, "%u", val / factor);
894 	} else {
895 		while (rem % 10 == 0)
896 			rem /= 10;
897 		snprintf(buf, len, "%u.%u", val / factor, rem);
898 	}
899 	return buf;
900 }
901 
902 static int clk_show(struct seq_file *seq, void *v)
903 {
904 	char buf[32];
905 	struct adapter *adap = seq->private;
906 	unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk;  /* in ps */
907 	u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
908 	unsigned int tre = TIMERRESOLUTION_G(res);
909 	unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
910 	unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
911 
912 	seq_printf(seq, "Core clock period: %s ns\n",
913 		   unit_conv(buf, sizeof(buf), cclk_ps, 1000));
914 	seq_printf(seq, "TP timer tick: %s us\n",
915 		   unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
916 	seq_printf(seq, "TCP timestamp tick: %s us\n",
917 		   unit_conv(buf, sizeof(buf),
918 			     (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
919 	seq_printf(seq, "DACK tick: %s us\n",
920 		   unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
921 	seq_printf(seq, "DACK timer: %u us\n",
922 		   ((cclk_ps << dack_re) / 1000000) *
923 		   t4_read_reg(adap, TP_DACK_TIMER_A));
924 	seq_printf(seq, "Retransmit min: %llu us\n",
925 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
926 	seq_printf(seq, "Retransmit max: %llu us\n",
927 		   tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
928 	seq_printf(seq, "Persist timer min: %llu us\n",
929 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
930 	seq_printf(seq, "Persist timer max: %llu us\n",
931 		   tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
932 	seq_printf(seq, "Keepalive idle timer: %llu us\n",
933 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
934 	seq_printf(seq, "Keepalive interval: %llu us\n",
935 		   tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
936 	seq_printf(seq, "Initial SRTT: %llu us\n",
937 		   tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
938 	seq_printf(seq, "FINWAIT2 timer: %llu us\n",
939 		   tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
940 
941 	return 0;
942 }
943 DEFINE_SHOW_ATTRIBUTE(clk);
944 
945 /* Firmware Device Log dump. */
946 static const char * const devlog_level_strings[] = {
947 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
948 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
949 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
950 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
951 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
952 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
953 };
954 
955 static const char * const devlog_facility_strings[] = {
956 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
957 	[FW_DEVLOG_FACILITY_CF]         = "CF",
958 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
959 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
960 	[FW_DEVLOG_FACILITY_RES]	= "RES",
961 	[FW_DEVLOG_FACILITY_HW]		= "HW",
962 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
963 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
964 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
965 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
966 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
967 	[FW_DEVLOG_FACILITY_VI]		= "VI",
968 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
969 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
970 	[FW_DEVLOG_FACILITY_TM]		= "TM",
971 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
972 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
973 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
974 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
975 	[FW_DEVLOG_FACILITY_RI]		= "RI",
976 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
977 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
978 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
979 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE"
980 };
981 
982 /* Information gathered by Device Log Open routine for the display routine.
983  */
984 struct devlog_info {
985 	unsigned int nentries;		/* number of entries in log[] */
986 	unsigned int first;		/* first [temporal] entry in log[] */
987 	struct fw_devlog_e log[];	/* Firmware Device Log */
988 };
989 
990 /* Dump a Firmaware Device Log entry.
991  */
992 static int devlog_show(struct seq_file *seq, void *v)
993 {
994 	if (v == SEQ_START_TOKEN)
995 		seq_printf(seq, "%10s  %15s  %8s  %8s  %s\n",
996 			   "Seq#", "Tstamp", "Level", "Facility", "Message");
997 	else {
998 		struct devlog_info *dinfo = seq->private;
999 		int fidx = (uintptr_t)v - 2;
1000 		unsigned long index;
1001 		struct fw_devlog_e *e;
1002 
1003 		/* Get a pointer to the log entry to display.  Skip unused log
1004 		 * entries.
1005 		 */
1006 		index = dinfo->first + fidx;
1007 		if (index >= dinfo->nentries)
1008 			index -= dinfo->nentries;
1009 		e = &dinfo->log[index];
1010 		if (e->timestamp == 0)
1011 			return 0;
1012 
1013 		/* Print the message.  This depends on the firmware using
1014 		 * exactly the same formating strings as the kernel so we may
1015 		 * eventually have to put a format interpreter in here ...
1016 		 */
1017 		seq_printf(seq, "%10d  %15llu  %8s  %8s  ",
1018 			   be32_to_cpu(e->seqno),
1019 			   be64_to_cpu(e->timestamp),
1020 			   (e->level < ARRAY_SIZE(devlog_level_strings)
1021 			    ? devlog_level_strings[e->level]
1022 			    : "UNKNOWN"),
1023 			   (e->facility < ARRAY_SIZE(devlog_facility_strings)
1024 			    ? devlog_facility_strings[e->facility]
1025 			    : "UNKNOWN"));
1026 		seq_printf(seq, e->fmt,
1027 			   be32_to_cpu(e->params[0]),
1028 			   be32_to_cpu(e->params[1]),
1029 			   be32_to_cpu(e->params[2]),
1030 			   be32_to_cpu(e->params[3]),
1031 			   be32_to_cpu(e->params[4]),
1032 			   be32_to_cpu(e->params[5]),
1033 			   be32_to_cpu(e->params[6]),
1034 			   be32_to_cpu(e->params[7]));
1035 	}
1036 	return 0;
1037 }
1038 
1039 /* Sequential File Operations for Device Log.
1040  */
1041 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
1042 {
1043 	if (pos > dinfo->nentries)
1044 		return NULL;
1045 
1046 	return (void *)(uintptr_t)(pos + 1);
1047 }
1048 
1049 static void *devlog_start(struct seq_file *seq, loff_t *pos)
1050 {
1051 	struct devlog_info *dinfo = seq->private;
1052 
1053 	return (*pos
1054 		? devlog_get_idx(dinfo, *pos)
1055 		: SEQ_START_TOKEN);
1056 }
1057 
1058 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
1059 {
1060 	struct devlog_info *dinfo = seq->private;
1061 
1062 	(*pos)++;
1063 	return devlog_get_idx(dinfo, *pos);
1064 }
1065 
1066 static void devlog_stop(struct seq_file *seq, void *v)
1067 {
1068 }
1069 
1070 static const struct seq_operations devlog_seq_ops = {
1071 	.start = devlog_start,
1072 	.next  = devlog_next,
1073 	.stop  = devlog_stop,
1074 	.show  = devlog_show
1075 };
1076 
1077 /* Set up for reading the firmware's device log.  We read the entire log here
1078  * and then display it incrementally in devlog_show().
1079  */
1080 static int devlog_open(struct inode *inode, struct file *file)
1081 {
1082 	struct adapter *adap = inode->i_private;
1083 	struct devlog_params *dparams = &adap->params.devlog;
1084 	struct devlog_info *dinfo;
1085 	unsigned int index;
1086 	u32 fseqno;
1087 	int ret;
1088 
1089 	/* If we don't know where the log is we can't do anything.
1090 	 */
1091 	if (dparams->start == 0)
1092 		return -ENXIO;
1093 
1094 	/* Allocate the space to read in the firmware's device log and set up
1095 	 * for the iterated call to our display function.
1096 	 */
1097 	dinfo = __seq_open_private(file, &devlog_seq_ops,
1098 				   sizeof(*dinfo) + dparams->size);
1099 	if (!dinfo)
1100 		return -ENOMEM;
1101 
1102 	/* Record the basic log buffer information and read in the raw log.
1103 	 */
1104 	dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
1105 	dinfo->first = 0;
1106 	spin_lock(&adap->win0_lock);
1107 	ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
1108 			   dparams->start, dparams->size, (__be32 *)dinfo->log,
1109 			   T4_MEMORY_READ);
1110 	spin_unlock(&adap->win0_lock);
1111 	if (ret) {
1112 		seq_release_private(inode, file);
1113 		return ret;
1114 	}
1115 
1116 	/* Find the earliest (lowest Sequence Number) log entry in the
1117 	 * circular Device Log.
1118 	 */
1119 	for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
1120 		struct fw_devlog_e *e = &dinfo->log[index];
1121 		__u32 seqno;
1122 
1123 		if (e->timestamp == 0)
1124 			continue;
1125 
1126 		seqno = be32_to_cpu(e->seqno);
1127 		if (seqno < fseqno) {
1128 			fseqno = seqno;
1129 			dinfo->first = index;
1130 		}
1131 	}
1132 	return 0;
1133 }
1134 
1135 static const struct file_operations devlog_fops = {
1136 	.owner   = THIS_MODULE,
1137 	.open    = devlog_open,
1138 	.read    = seq_read,
1139 	.llseek  = seq_lseek,
1140 	.release = seq_release_private
1141 };
1142 
1143 /* Show Firmware Mailbox Command/Reply Log
1144  *
1145  * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1146  * it's possible that we can catch things during a log update and therefore
1147  * see partially corrupted log entries.  But it's probably Good Enough(tm).
1148  * If we ever decide that we want to make sure that we're dumping a coherent
1149  * log, we'd need to perform locking in the mailbox logging and in
1150  * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1151  * like we do for the Firmware Device Log.
1152  */
1153 static int mboxlog_show(struct seq_file *seq, void *v)
1154 {
1155 	struct adapter *adapter = seq->private;
1156 	struct mbox_cmd_log *log = adapter->mbox_log;
1157 	struct mbox_cmd *entry;
1158 	int entry_idx, i;
1159 
1160 	if (v == SEQ_START_TOKEN) {
1161 		seq_printf(seq,
1162 			   "%10s  %15s  %5s  %5s  %s\n",
1163 			   "Seq#", "Tstamp", "Atime", "Etime",
1164 			   "Command/Reply");
1165 		return 0;
1166 	}
1167 
1168 	entry_idx = log->cursor + ((uintptr_t)v - 2);
1169 	if (entry_idx >= log->size)
1170 		entry_idx -= log->size;
1171 	entry = mbox_cmd_log_entry(log, entry_idx);
1172 
1173 	/* skip over unused entries */
1174 	if (entry->timestamp == 0)
1175 		return 0;
1176 
1177 	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1178 		   entry->seqno, entry->timestamp,
1179 		   entry->access, entry->execute);
1180 	for (i = 0; i < MBOX_LEN / 8; i++) {
1181 		u64 flit = entry->cmd[i];
1182 		u32 hi = (u32)(flit >> 32);
1183 		u32 lo = (u32)flit;
1184 
1185 		seq_printf(seq, "  %08x %08x", hi, lo);
1186 	}
1187 	seq_puts(seq, "\n");
1188 	return 0;
1189 }
1190 
1191 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1192 {
1193 	struct adapter *adapter = seq->private;
1194 	struct mbox_cmd_log *log = adapter->mbox_log;
1195 
1196 	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1197 }
1198 
1199 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1200 {
1201 	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1202 }
1203 
1204 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1205 {
1206 	++*pos;
1207 	return mboxlog_get_idx(seq, *pos);
1208 }
1209 
1210 static void mboxlog_stop(struct seq_file *seq, void *v)
1211 {
1212 }
1213 
1214 static const struct seq_operations mboxlog_seq_ops = {
1215 	.start = mboxlog_start,
1216 	.next  = mboxlog_next,
1217 	.stop  = mboxlog_stop,
1218 	.show  = mboxlog_show
1219 };
1220 
1221 static int mboxlog_open(struct inode *inode, struct file *file)
1222 {
1223 	int res = seq_open(file, &mboxlog_seq_ops);
1224 
1225 	if (!res) {
1226 		struct seq_file *seq = file->private_data;
1227 
1228 		seq->private = inode->i_private;
1229 	}
1230 	return res;
1231 }
1232 
1233 static const struct file_operations mboxlog_fops = {
1234 	.owner   = THIS_MODULE,
1235 	.open    = mboxlog_open,
1236 	.read    = seq_read,
1237 	.llseek  = seq_lseek,
1238 	.release = seq_release,
1239 };
1240 
1241 static int mbox_show(struct seq_file *seq, void *v)
1242 {
1243 	static const char * const owner[] = { "none", "FW", "driver",
1244 					      "unknown", "<unread>" };
1245 
1246 	int i;
1247 	unsigned int mbox = (uintptr_t)seq->private & 7;
1248 	struct adapter *adap = seq->private - mbox;
1249 	void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1250 
1251 	/* For T4 we don't have a shadow copy of the Mailbox Control register.
1252 	 * And since reading that real register causes a side effect of
1253 	 * granting ownership, we're best of simply not reading it at all.
1254 	 */
1255 	if (is_t4(adap->params.chip)) {
1256 		i = 4; /* index of "<unread>" */
1257 	} else {
1258 		unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A;
1259 		void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
1260 
1261 		i = MBOWNER_G(readl(ctrl));
1262 	}
1263 
1264 	seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
1265 
1266 	for (i = 0; i < MBOX_LEN; i += 8)
1267 		seq_printf(seq, "%016llx\n",
1268 			   (unsigned long long)readq(addr + i));
1269 	return 0;
1270 }
1271 
1272 static int mbox_open(struct inode *inode, struct file *file)
1273 {
1274 	return single_open(file, mbox_show, inode->i_private);
1275 }
1276 
1277 static ssize_t mbox_write(struct file *file, const char __user *buf,
1278 			  size_t count, loff_t *pos)
1279 {
1280 	int i;
1281 	char c = '\n', s[256];
1282 	unsigned long long data[8];
1283 	const struct inode *ino;
1284 	unsigned int mbox;
1285 	struct adapter *adap;
1286 	void __iomem *addr;
1287 	void __iomem *ctrl;
1288 
1289 	if (count > sizeof(s) - 1 || !count)
1290 		return -EINVAL;
1291 	if (copy_from_user(s, buf, count))
1292 		return -EFAULT;
1293 	s[count] = '\0';
1294 
1295 	if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
1296 		   &data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
1297 		   &data[7], &c) < 8 || c != '\n')
1298 		return -EINVAL;
1299 
1300 	ino = file_inode(file);
1301 	mbox = (uintptr_t)ino->i_private & 7;
1302 	adap = ino->i_private - mbox;
1303 	addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1304 	ctrl = addr + MBOX_LEN;
1305 
1306 	if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
1307 		return -EBUSY;
1308 
1309 	for (i = 0; i < 8; i++)
1310 		writeq(data[i], addr + 8 * i);
1311 
1312 	writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
1313 	return count;
1314 }
1315 
1316 static const struct file_operations mbox_debugfs_fops = {
1317 	.owner   = THIS_MODULE,
1318 	.open    = mbox_open,
1319 	.read    = seq_read,
1320 	.llseek  = seq_lseek,
1321 	.release = single_release,
1322 	.write   = mbox_write
1323 };
1324 
1325 static int mps_trc_show(struct seq_file *seq, void *v)
1326 {
1327 	int enabled, i;
1328 	struct trace_params tp;
1329 	unsigned int trcidx = (uintptr_t)seq->private & 3;
1330 	struct adapter *adap = seq->private - trcidx;
1331 
1332 	t4_get_trace_filter(adap, &tp, trcidx, &enabled);
1333 	if (!enabled) {
1334 		seq_puts(seq, "tracer is disabled\n");
1335 		return 0;
1336 	}
1337 
1338 	if (tp.skip_ofst * 8 >= TRACE_LEN) {
1339 		dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
1340 		return -EINVAL;
1341 	}
1342 	if (tp.port < 8) {
1343 		i = adap->chan_map[tp.port & 3];
1344 		if (i >= MAX_NPORTS) {
1345 			dev_err(adap->pdev_dev, "tracer %u is assigned "
1346 				"to non-existing port\n", trcidx);
1347 			return -EINVAL;
1348 		}
1349 		seq_printf(seq, "tracer is capturing %s %s, ",
1350 			   adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
1351 	} else
1352 		seq_printf(seq, "tracer is capturing loopback %d, ",
1353 			   tp.port - 8);
1354 	seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
1355 		   tp.min_len);
1356 	seq_printf(seq, "packets captured %smatch filter\n",
1357 		   tp.invert ? "do not " : "");
1358 
1359 	if (tp.skip_ofst) {
1360 		seq_puts(seq, "filter pattern: ");
1361 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1362 			seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1363 		seq_putc(seq, '/');
1364 		for (i = 0; i < tp.skip_ofst * 2; i += 2)
1365 			seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1366 		seq_puts(seq, "@0\n");
1367 	}
1368 
1369 	seq_puts(seq, "filter pattern: ");
1370 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1371 		seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1372 	seq_putc(seq, '/');
1373 	for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1374 		seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1375 	seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
1376 	return 0;
1377 }
1378 
1379 static int mps_trc_open(struct inode *inode, struct file *file)
1380 {
1381 	return single_open(file, mps_trc_show, inode->i_private);
1382 }
1383 
1384 static unsigned int xdigit2int(unsigned char c)
1385 {
1386 	return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
1387 }
1388 
1389 #define TRC_PORT_NONE 0xff
1390 #define TRC_RSS_ENABLE 0x33
1391 #define TRC_RSS_DISABLE 0x13
1392 
1393 /* Set an MPS trace filter.  Syntax is:
1394  *
1395  * disable
1396  *
1397  * to disable tracing, or
1398  *
1399  * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
1400  *
1401  * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
1402  * of the NIC's response qid obtained from sge_qinfo and pattern has the form
1403  *
1404  * <pattern data>[/<pattern mask>][@<anchor>]
1405  *
1406  * Up to 2 filter patterns can be specified.  If 2 are supplied the first one
1407  * must be anchored at 0.  An omitted mask is taken as a mask of 1s, an omitted
1408  * anchor is taken as 0.
1409  */
1410 static ssize_t mps_trc_write(struct file *file, const char __user *buf,
1411 			     size_t count, loff_t *pos)
1412 {
1413 	int i, enable, ret;
1414 	u32 *data, *mask;
1415 	struct trace_params tp;
1416 	const struct inode *ino;
1417 	unsigned int trcidx;
1418 	char *s, *p, *word, *end;
1419 	struct adapter *adap;
1420 	u32 j;
1421 
1422 	ino = file_inode(file);
1423 	trcidx = (uintptr_t)ino->i_private & 3;
1424 	adap = ino->i_private - trcidx;
1425 
1426 	/* Don't accept input more than 1K, can't be anything valid except lots
1427 	 * of whitespace.  Well, use less.
1428 	 */
1429 	if (count > 1024)
1430 		return -EFBIG;
1431 	p = s = kzalloc(count + 1, GFP_USER);
1432 	if (!s)
1433 		return -ENOMEM;
1434 	if (copy_from_user(s, buf, count)) {
1435 		count = -EFAULT;
1436 		goto out;
1437 	}
1438 
1439 	if (s[count - 1] == '\n')
1440 		s[count - 1] = '\0';
1441 
1442 	enable = strcmp("disable", s) != 0;
1443 	if (!enable)
1444 		goto apply;
1445 
1446 	/* enable or disable trace multi rss filter */
1447 	if (adap->trace_rss)
1448 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
1449 	else
1450 		t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
1451 
1452 	memset(&tp, 0, sizeof(tp));
1453 	tp.port = TRC_PORT_NONE;
1454 	i = 0;	/* counts pattern nibbles */
1455 
1456 	while (p) {
1457 		while (isspace(*p))
1458 			p++;
1459 		word = strsep(&p, " ");
1460 		if (!*word)
1461 			break;
1462 
1463 		if (!strncmp(word, "qid=", 4)) {
1464 			end = (char *)word + 4;
1465 			ret = kstrtouint(end, 10, &j);
1466 			if (ret)
1467 				goto out;
1468 			if (!adap->trace_rss) {
1469 				t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
1470 				continue;
1471 			}
1472 
1473 			switch (trcidx) {
1474 			case 0:
1475 				t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
1476 				break;
1477 			case 1:
1478 				t4_write_reg(adap,
1479 					     MPS_TRC_FILTER1_RSS_CONTROL_A, j);
1480 				break;
1481 			case 2:
1482 				t4_write_reg(adap,
1483 					     MPS_TRC_FILTER2_RSS_CONTROL_A, j);
1484 				break;
1485 			case 3:
1486 				t4_write_reg(adap,
1487 					     MPS_TRC_FILTER3_RSS_CONTROL_A, j);
1488 				break;
1489 			}
1490 			continue;
1491 		}
1492 		if (!strncmp(word, "snaplen=", 8)) {
1493 			end = (char *)word + 8;
1494 			ret = kstrtouint(end, 10, &j);
1495 			if (ret || j > 9600) {
1496 inval:				count = -EINVAL;
1497 				goto out;
1498 			}
1499 			tp.snap_len = j;
1500 			continue;
1501 		}
1502 		if (!strncmp(word, "minlen=", 7)) {
1503 			end = (char *)word + 7;
1504 			ret = kstrtouint(end, 10, &j);
1505 			if (ret || j > TFMINPKTSIZE_M)
1506 				goto inval;
1507 			tp.min_len = j;
1508 			continue;
1509 		}
1510 		if (!strcmp(word, "not")) {
1511 			tp.invert = !tp.invert;
1512 			continue;
1513 		}
1514 		if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
1515 			if (word[8] < '0' || word[8] > '3' || word[9])
1516 				goto inval;
1517 			tp.port = word[8] - '0' + 8;
1518 			continue;
1519 		}
1520 		if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
1521 			if (word[2] < '0' || word[2] > '3' || word[3])
1522 				goto inval;
1523 			tp.port = word[2] - '0' + 4;
1524 			if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
1525 				goto inval;
1526 			continue;
1527 		}
1528 		if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
1529 			if (word[2] < '0' || word[2] > '3' || word[3])
1530 				goto inval;
1531 			tp.port = word[2] - '0';
1532 			if (adap->chan_map[tp.port] >= MAX_NPORTS)
1533 				goto inval;
1534 			continue;
1535 		}
1536 		if (!isxdigit(*word))
1537 			goto inval;
1538 
1539 		/* we have found a trace pattern */
1540 		if (i) {                            /* split pattern */
1541 			if (tp.skip_len)            /* too many splits */
1542 				goto inval;
1543 			tp.skip_ofst = i / 16;
1544 		}
1545 
1546 		data = &tp.data[i / 8];
1547 		mask = &tp.mask[i / 8];
1548 		j = i;
1549 
1550 		while (isxdigit(*word)) {
1551 			if (i >= TRACE_LEN * 2) {
1552 				count = -EFBIG;
1553 				goto out;
1554 			}
1555 			*data = (*data << 4) + xdigit2int(*word++);
1556 			if (++i % 8 == 0)
1557 				data++;
1558 		}
1559 		if (*word == '/') {
1560 			word++;
1561 			while (isxdigit(*word)) {
1562 				if (j >= i)         /* mask longer than data */
1563 					goto inval;
1564 				*mask = (*mask << 4) + xdigit2int(*word++);
1565 				if (++j % 8 == 0)
1566 					mask++;
1567 			}
1568 			if (i != j)                 /* mask shorter than data */
1569 				goto inval;
1570 		} else {                            /* no mask, use all 1s */
1571 			for ( ; i - j >= 8; j += 8)
1572 				*mask++ = 0xffffffff;
1573 			if (i % 8)
1574 				*mask = (1 << (i % 8) * 4) - 1;
1575 		}
1576 		if (*word == '@') {
1577 			end = (char *)word + 1;
1578 			ret = kstrtouint(end, 10, &j);
1579 			if (*end && *end != '\n')
1580 				goto inval;
1581 			if (j & 7)          /* doesn't start at multiple of 8 */
1582 				goto inval;
1583 			j /= 8;
1584 			if (j < tp.skip_ofst)     /* overlaps earlier pattern */
1585 				goto inval;
1586 			if (j - tp.skip_ofst > 31)            /* skip too big */
1587 				goto inval;
1588 			tp.skip_len = j - tp.skip_ofst;
1589 		}
1590 		if (i % 8) {
1591 			*data <<= (8 - i % 8) * 4;
1592 			*mask <<= (8 - i % 8) * 4;
1593 			i = (i + 15) & ~15;         /* 8-byte align */
1594 		}
1595 	}
1596 
1597 	if (tp.port == TRC_PORT_NONE)
1598 		goto inval;
1599 
1600 apply:
1601 	i = t4_set_trace_filter(adap, &tp, trcidx, enable);
1602 	if (i)
1603 		count = i;
1604 out:
1605 	kfree(s);
1606 	return count;
1607 }
1608 
1609 static const struct file_operations mps_trc_debugfs_fops = {
1610 	.owner   = THIS_MODULE,
1611 	.open    = mps_trc_open,
1612 	.read    = seq_read,
1613 	.llseek  = seq_lseek,
1614 	.release = single_release,
1615 	.write   = mps_trc_write
1616 };
1617 
1618 static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
1619 			  loff_t *ppos)
1620 {
1621 	loff_t pos = *ppos;
1622 	loff_t avail = file_inode(file)->i_size;
1623 	struct adapter *adap = file->private_data;
1624 
1625 	if (pos < 0)
1626 		return -EINVAL;
1627 	if (pos >= avail)
1628 		return 0;
1629 	if (count > avail - pos)
1630 		count = avail - pos;
1631 
1632 	while (count) {
1633 		size_t len;
1634 		int ret, ofst;
1635 		u8 data[256];
1636 
1637 		ofst = pos & 3;
1638 		len = min(count + ofst, sizeof(data));
1639 		ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
1640 				    (u32 *)data, 1);
1641 		if (ret)
1642 			return ret;
1643 
1644 		len -= ofst;
1645 		if (copy_to_user(buf, data + ofst, len))
1646 			return -EFAULT;
1647 
1648 		buf += len;
1649 		pos += len;
1650 		count -= len;
1651 	}
1652 	count = pos - *ppos;
1653 	*ppos = pos;
1654 	return count;
1655 }
1656 
1657 static const struct file_operations flash_debugfs_fops = {
1658 	.owner   = THIS_MODULE,
1659 	.open    = mem_open,
1660 	.read    = flash_read,
1661 	.llseek  = default_llseek,
1662 };
1663 
1664 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
1665 {
1666 	*mask = x | y;
1667 	y = (__force u64)cpu_to_be64(y);
1668 	memcpy(addr, (char *)&y + 2, ETH_ALEN);
1669 }
1670 
1671 static int mps_tcam_show(struct seq_file *seq, void *v)
1672 {
1673 	struct adapter *adap = seq->private;
1674 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1675 	if (v == SEQ_START_TOKEN) {
1676 		if (chip_ver > CHELSIO_T5) {
1677 			seq_puts(seq, "Idx  Ethernet address     Mask     "
1678 				 "  VNI   Mask   IVLAN Vld "
1679 				 "DIP_Hit   Lookup  Port "
1680 				 "Vld Ports PF  VF                           "
1681 				 "Replication                                "
1682 				 "    P0 P1 P2 P3  ML\n");
1683 		} else {
1684 			if (adap->params.arch.mps_rplc_size > 128)
1685 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1686 					 "Vld Ports PF  VF                           "
1687 					 "Replication                                "
1688 					 "    P0 P1 P2 P3  ML\n");
1689 			else
1690 				seq_puts(seq, "Idx  Ethernet address     Mask     "
1691 					 "Vld Ports PF  VF              Replication"
1692 					 "	         P0 P1 P2 P3  ML\n");
1693 		}
1694 	} else {
1695 		u64 mask;
1696 		u8 addr[ETH_ALEN];
1697 		bool replicate, dip_hit = false, vlan_vld = false;
1698 		unsigned int idx = (uintptr_t)v - 2;
1699 		u64 tcamy, tcamx, val;
1700 		u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0;
1701 		u32 rplc[8] = {0};
1702 		u8 lookup_type = 0, port_num = 0;
1703 		u16 ivlan = 0;
1704 
1705 		if (chip_ver > CHELSIO_T5) {
1706 			/* CtlCmdType - 0: Read, 1: Write
1707 			 * CtlTcamSel - 0: TCAM0, 1: TCAM1
1708 			 * CtlXYBitSel- 0: Y bit, 1: X bit
1709 			 */
1710 
1711 			/* Read tcamy */
1712 			ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
1713 			if (idx < 256)
1714 				ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
1715 			else
1716 				ctl |= CTLTCAMINDEX_V(idx - 256) |
1717 				       CTLTCAMSEL_V(1);
1718 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1719 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1720 			tcamy = DMACH_G(val) << 32;
1721 			tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1722 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1723 			lookup_type = DATALKPTYPE_G(data2);
1724 			/* 0 - Outer header, 1 - Inner header
1725 			 * [71:48] bit locations are overloaded for
1726 			 * outer vs. inner lookup types.
1727 			 */
1728 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1729 				/* Inner header VNI */
1730 				vniy = (data2 & DATAVIDH2_F) |
1731 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1732 				dip_hit = data2 & DATADIPHIT_F;
1733 			} else {
1734 				vlan_vld = data2 & DATAVIDH2_F;
1735 				ivlan = VIDL_G(val);
1736 			}
1737 			port_num = DATAPORTNUM_G(data2);
1738 
1739 			/* Read tcamx. Change the control param */
1740 			vnix = 0;
1741 			ctl |= CTLXYBITSEL_V(1);
1742 			t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1743 			val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1744 			tcamx = DMACH_G(val) << 32;
1745 			tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1746 			data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1747 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1748 				/* Inner header VNI mask */
1749 				vnix = (data2 & DATAVIDH2_F) |
1750 				       (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1751 			}
1752 		} else {
1753 			tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
1754 			tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
1755 		}
1756 
1757 		cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
1758 		cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
1759 
1760 		if (tcamx & tcamy) {
1761 			seq_printf(seq, "%3u         -\n", idx);
1762 			goto out;
1763 		}
1764 
1765 		rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
1766 		if (chip_ver > CHELSIO_T5)
1767 			replicate = (cls_lo & T6_REPLICATE_F);
1768 		else
1769 			replicate = (cls_lo & REPLICATE_F);
1770 
1771 		if (replicate) {
1772 			struct fw_ldst_cmd ldst_cmd;
1773 			int ret;
1774 			struct fw_ldst_mps_rplc mps_rplc;
1775 			u32 ldst_addrspc;
1776 
1777 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
1778 			ldst_addrspc =
1779 				FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
1780 			ldst_cmd.op_to_addrspace =
1781 				htonl(FW_CMD_OP_V(FW_LDST_CMD) |
1782 				      FW_CMD_REQUEST_F |
1783 				      FW_CMD_READ_F |
1784 				      ldst_addrspc);
1785 			ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
1786 			ldst_cmd.u.mps.rplc.fid_idx =
1787 				htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
1788 				      FW_LDST_CMD_IDX_V(idx));
1789 			ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
1790 					 sizeof(ldst_cmd), &ldst_cmd);
1791 			if (ret)
1792 				dev_warn(adap->pdev_dev, "Can't read MPS "
1793 					 "replication map for idx %d: %d\n",
1794 					 idx, -ret);
1795 			else {
1796 				mps_rplc = ldst_cmd.u.mps.rplc;
1797 				rplc[0] = ntohl(mps_rplc.rplc31_0);
1798 				rplc[1] = ntohl(mps_rplc.rplc63_32);
1799 				rplc[2] = ntohl(mps_rplc.rplc95_64);
1800 				rplc[3] = ntohl(mps_rplc.rplc127_96);
1801 				if (adap->params.arch.mps_rplc_size > 128) {
1802 					rplc[4] = ntohl(mps_rplc.rplc159_128);
1803 					rplc[5] = ntohl(mps_rplc.rplc191_160);
1804 					rplc[6] = ntohl(mps_rplc.rplc223_192);
1805 					rplc[7] = ntohl(mps_rplc.rplc255_224);
1806 				}
1807 			}
1808 		}
1809 
1810 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
1811 		if (chip_ver > CHELSIO_T5) {
1812 			/* Inner header lookup */
1813 			if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1814 				seq_printf(seq,
1815 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1816 					   "%012llx %06x %06x    -    -   %3c"
1817 					   "      'I'  %4x   "
1818 					   "%3c   %#x%4u%4d", idx, addr[0],
1819 					   addr[1], addr[2], addr[3],
1820 					   addr[4], addr[5],
1821 					   (unsigned long long)mask,
1822 					   vniy, (vnix | vniy),
1823 					   dip_hit ? 'Y' : 'N',
1824 					   port_num,
1825 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1826 					   PORTMAP_G(cls_hi),
1827 					   T6_PF_G(cls_lo),
1828 					   (cls_lo & T6_VF_VALID_F) ?
1829 					   T6_VF_G(cls_lo) : -1);
1830 			} else {
1831 				seq_printf(seq,
1832 					   "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1833 					   "%012llx    -       -   ",
1834 					   idx, addr[0], addr[1], addr[2],
1835 					   addr[3], addr[4], addr[5],
1836 					   (unsigned long long)mask);
1837 
1838 				if (vlan_vld)
1839 					seq_printf(seq, "%4u   Y     ", ivlan);
1840 				else
1841 					seq_puts(seq, "  -    N     ");
1842 
1843 				seq_printf(seq,
1844 					   "-      %3c  %4x   %3c   %#x%4u%4d",
1845 					   lookup_type ? 'I' : 'O', port_num,
1846 					   (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1847 					   PORTMAP_G(cls_hi),
1848 					   T6_PF_G(cls_lo),
1849 					   (cls_lo & T6_VF_VALID_F) ?
1850 					   T6_VF_G(cls_lo) : -1);
1851 			}
1852 		} else
1853 			seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1854 				   "%012llx%3c   %#x%4u%4d",
1855 				   idx, addr[0], addr[1], addr[2], addr[3],
1856 				   addr[4], addr[5], (unsigned long long)mask,
1857 				   (cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
1858 				   PORTMAP_G(cls_hi),
1859 				   PF_G(cls_lo),
1860 				   (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
1861 
1862 		if (replicate) {
1863 			if (adap->params.arch.mps_rplc_size > 128)
1864 				seq_printf(seq, " %08x %08x %08x %08x "
1865 					   "%08x %08x %08x %08x",
1866 					   rplc[7], rplc[6], rplc[5], rplc[4],
1867 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1868 			else
1869 				seq_printf(seq, " %08x %08x %08x %08x",
1870 					   rplc[3], rplc[2], rplc[1], rplc[0]);
1871 		} else {
1872 			if (adap->params.arch.mps_rplc_size > 128)
1873 				seq_printf(seq, "%72c", ' ');
1874 			else
1875 				seq_printf(seq, "%36c", ' ');
1876 		}
1877 
1878 		if (chip_ver > CHELSIO_T5)
1879 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1880 				   T6_SRAM_PRIO0_G(cls_lo),
1881 				   T6_SRAM_PRIO1_G(cls_lo),
1882 				   T6_SRAM_PRIO2_G(cls_lo),
1883 				   T6_SRAM_PRIO3_G(cls_lo),
1884 				   (cls_lo >> T6_MULTILISTEN0_S) & 0xf);
1885 		else
1886 			seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1887 				   SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
1888 				   SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
1889 				   (cls_lo >> MULTILISTEN0_S) & 0xf);
1890 	}
1891 out:	return 0;
1892 }
1893 
1894 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
1895 {
1896 	struct adapter *adap = seq->private;
1897 	int max_mac_addr = is_t4(adap->params.chip) ?
1898 				NUM_MPS_CLS_SRAM_L_INSTANCES :
1899 				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1900 	return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
1901 }
1902 
1903 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
1904 {
1905 	return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
1906 }
1907 
1908 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
1909 {
1910 	++*pos;
1911 	return mps_tcam_get_idx(seq, *pos);
1912 }
1913 
1914 static void mps_tcam_stop(struct seq_file *seq, void *v)
1915 {
1916 }
1917 
1918 static const struct seq_operations mps_tcam_seq_ops = {
1919 	.start = mps_tcam_start,
1920 	.next  = mps_tcam_next,
1921 	.stop  = mps_tcam_stop,
1922 	.show  = mps_tcam_show
1923 };
1924 
1925 static int mps_tcam_open(struct inode *inode, struct file *file)
1926 {
1927 	int res = seq_open(file, &mps_tcam_seq_ops);
1928 
1929 	if (!res) {
1930 		struct seq_file *seq = file->private_data;
1931 
1932 		seq->private = inode->i_private;
1933 	}
1934 	return res;
1935 }
1936 
1937 static const struct file_operations mps_tcam_debugfs_fops = {
1938 	.owner   = THIS_MODULE,
1939 	.open    = mps_tcam_open,
1940 	.read    = seq_read,
1941 	.llseek  = seq_lseek,
1942 	.release = seq_release,
1943 };
1944 
1945 /* Display various sensor information.
1946  */
1947 static int sensors_show(struct seq_file *seq, void *v)
1948 {
1949 	struct adapter *adap = seq->private;
1950 	u32 param[7], val[7];
1951 	int ret;
1952 
1953 	/* Note that if the sensors haven't been initialized and turned on
1954 	 * we'll get values of 0, so treat those as "<unknown>" ...
1955 	 */
1956 	param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1957 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1958 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
1959 	param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1960 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1961 		    FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
1962 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1963 			      param, val);
1964 
1965 	if (ret < 0 || val[0] == 0)
1966 		seq_puts(seq, "Temperature: <unknown>\n");
1967 	else
1968 		seq_printf(seq, "Temperature: %dC\n", val[0]);
1969 
1970 	if (ret < 0 || val[1] == 0)
1971 		seq_puts(seq, "Core VDD:    <unknown>\n");
1972 	else
1973 		seq_printf(seq, "Core VDD:    %dmV\n", val[1]);
1974 
1975 	return 0;
1976 }
1977 DEFINE_SHOW_ATTRIBUTE(sensors);
1978 
1979 #if IS_ENABLED(CONFIG_IPV6)
1980 DEFINE_SHOW_ATTRIBUTE(clip_tbl);
1981 #endif
1982 
1983 /*RSS Table.
1984  */
1985 
1986 static int rss_show(struct seq_file *seq, void *v, int idx)
1987 {
1988 	u16 *entry = v;
1989 
1990 	seq_printf(seq, "%4d:  %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u\n",
1991 		   idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
1992 		   entry[5], entry[6], entry[7]);
1993 	return 0;
1994 }
1995 
1996 static int rss_open(struct inode *inode, struct file *file)
1997 {
1998 	struct adapter *adap = inode->i_private;
1999 	int ret, nentries;
2000 	struct seq_tab *p;
2001 
2002 	nentries = t4_chip_rss_size(adap);
2003 	p = seq_open_tab(file, nentries / 8, 8 * sizeof(u16), 0, rss_show);
2004 	if (!p)
2005 		return -ENOMEM;
2006 
2007 	ret = t4_read_rss(adap, (u16 *)p->data);
2008 	if (ret)
2009 		seq_release_private(inode, file);
2010 
2011 	return ret;
2012 }
2013 
2014 static const struct file_operations rss_debugfs_fops = {
2015 	.owner   = THIS_MODULE,
2016 	.open    = rss_open,
2017 	.read    = seq_read,
2018 	.llseek  = seq_lseek,
2019 	.release = seq_release_private
2020 };
2021 
2022 /* RSS Configuration.
2023  */
2024 
2025 /* Small utility function to return the strings "yes" or "no" if the supplied
2026  * argument is non-zero.
2027  */
2028 static const char *yesno(int x)
2029 {
2030 	static const char *yes = "yes";
2031 	static const char *no = "no";
2032 
2033 	return x ? yes : no;
2034 }
2035 
2036 static int rss_config_show(struct seq_file *seq, void *v)
2037 {
2038 	struct adapter *adapter = seq->private;
2039 	static const char * const keymode[] = {
2040 		"global",
2041 		"global and per-VF scramble",
2042 		"per-PF and per-VF scramble",
2043 		"per-VF and per-VF scramble",
2044 	};
2045 	u32 rssconf;
2046 
2047 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
2048 	seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
2049 	seq_printf(seq, "  Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
2050 							TNL4TUPENIPV6_F));
2051 	seq_printf(seq, "  Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
2052 							TNL2TUPENIPV6_F));
2053 	seq_printf(seq, "  Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
2054 							TNL4TUPENIPV4_F));
2055 	seq_printf(seq, "  Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
2056 							TNL2TUPENIPV4_F));
2057 	seq_printf(seq, "  TnlTcpSel:     %3s\n", yesno(rssconf & TNLTCPSEL_F));
2058 	seq_printf(seq, "  TnlIp6Sel:     %3s\n", yesno(rssconf & TNLIP6SEL_F));
2059 	seq_printf(seq, "  TnlVrtSel:     %3s\n", yesno(rssconf & TNLVRTSEL_F));
2060 	seq_printf(seq, "  TnlMapEn:      %3s\n", yesno(rssconf & TNLMAPEN_F));
2061 	seq_printf(seq, "  OfdHashSave:   %3s\n", yesno(rssconf &
2062 							OFDHASHSAVE_F));
2063 	seq_printf(seq, "  OfdVrtSel:     %3s\n", yesno(rssconf & OFDVRTSEL_F));
2064 	seq_printf(seq, "  OfdMapEn:      %3s\n", yesno(rssconf & OFDMAPEN_F));
2065 	seq_printf(seq, "  OfdLkpEn:      %3s\n", yesno(rssconf & OFDLKPEN_F));
2066 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
2067 							SYN4TUPENIPV6_F));
2068 	seq_printf(seq, "  Syn2TupEnIpv6: %3s\n", yesno(rssconf &
2069 							SYN2TUPENIPV6_F));
2070 	seq_printf(seq, "  Syn4TupEnIpv4: %3s\n", yesno(rssconf &
2071 							SYN4TUPENIPV4_F));
2072 	seq_printf(seq, "  Syn2TupEnIpv4: %3s\n", yesno(rssconf &
2073 							SYN2TUPENIPV4_F));
2074 	seq_printf(seq, "  Syn4TupEnIpv6: %3s\n", yesno(rssconf &
2075 							SYN4TUPENIPV6_F));
2076 	seq_printf(seq, "  SynIp6Sel:     %3s\n", yesno(rssconf & SYNIP6SEL_F));
2077 	seq_printf(seq, "  SynVrt6Sel:    %3s\n", yesno(rssconf & SYNVRTSEL_F));
2078 	seq_printf(seq, "  SynMapEn:      %3s\n", yesno(rssconf & SYNMAPEN_F));
2079 	seq_printf(seq, "  SynLkpEn:      %3s\n", yesno(rssconf & SYNLKPEN_F));
2080 	seq_printf(seq, "  ChnEn:         %3s\n", yesno(rssconf &
2081 							CHANNELENABLE_F));
2082 	seq_printf(seq, "  PrtEn:         %3s\n", yesno(rssconf &
2083 							PORTENABLE_F));
2084 	seq_printf(seq, "  TnlAllLkp:     %3s\n", yesno(rssconf &
2085 							TNLALLLOOKUP_F));
2086 	seq_printf(seq, "  VrtEn:         %3s\n", yesno(rssconf &
2087 							VIRTENABLE_F));
2088 	seq_printf(seq, "  CngEn:         %3s\n", yesno(rssconf &
2089 							CONGESTIONENABLE_F));
2090 	seq_printf(seq, "  HashToeplitz:  %3s\n", yesno(rssconf &
2091 							HASHTOEPLITZ_F));
2092 	seq_printf(seq, "  Udp4En:        %3s\n", yesno(rssconf & UDPENABLE_F));
2093 	seq_printf(seq, "  Disable:       %3s\n", yesno(rssconf & DISABLE_F));
2094 
2095 	seq_puts(seq, "\n");
2096 
2097 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
2098 	seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
2099 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2100 	seq_printf(seq, "  MaskFilter:    %3d\n", MASKFILTER_G(rssconf));
2101 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2102 		seq_printf(seq, "  HashAll:     %3s\n",
2103 			   yesno(rssconf & HASHALL_F));
2104 		seq_printf(seq, "  HashEth:     %3s\n",
2105 			   yesno(rssconf & HASHETH_F));
2106 	}
2107 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2108 
2109 	seq_puts(seq, "\n");
2110 
2111 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
2112 	seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
2113 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2114 	seq_printf(seq, "  RRCplMapEn:    %3s\n", yesno(rssconf &
2115 							RRCPLMAPEN_F));
2116 	seq_printf(seq, "  RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
2117 
2118 	seq_puts(seq, "\n");
2119 
2120 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
2121 	seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
2122 	seq_printf(seq, "  MaskSize:      %3d\n", MASKSIZE_G(rssconf));
2123 	seq_printf(seq, "  UseWireCh:     %3s\n", yesno(rssconf & USEWIRECH_F));
2124 
2125 	seq_puts(seq, "\n");
2126 
2127 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
2128 	seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
2129 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2130 		seq_printf(seq, "  KeyWrAddrX:     %3d\n",
2131 			   KEYWRADDRX_G(rssconf));
2132 		seq_printf(seq, "  KeyExtend:      %3s\n",
2133 			   yesno(rssconf & KEYEXTEND_F));
2134 	}
2135 	seq_printf(seq, "  VfRdRg:        %3s\n", yesno(rssconf & VFRDRG_F));
2136 	seq_printf(seq, "  VfRdEn:        %3s\n", yesno(rssconf & VFRDEN_F));
2137 	seq_printf(seq, "  VfPerrEn:      %3s\n", yesno(rssconf & VFPERREN_F));
2138 	seq_printf(seq, "  KeyPerrEn:     %3s\n", yesno(rssconf & KEYPERREN_F));
2139 	seq_printf(seq, "  DisVfVlan:     %3s\n", yesno(rssconf &
2140 							DISABLEVLAN_F));
2141 	seq_printf(seq, "  EnUpSwt:       %3s\n", yesno(rssconf & ENABLEUP0_F));
2142 	seq_printf(seq, "  HashDelay:     %3d\n", HASHDELAY_G(rssconf));
2143 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2144 		seq_printf(seq, "  VfWrAddr:      %3d\n", VFWRADDR_G(rssconf));
2145 	else
2146 		seq_printf(seq, "  VfWrAddr:      %3d\n",
2147 			   T6_VFWRADDR_G(rssconf));
2148 	seq_printf(seq, "  KeyMode:       %s\n", keymode[KEYMODE_G(rssconf)]);
2149 	seq_printf(seq, "  VfWrEn:        %3s\n", yesno(rssconf & VFWREN_F));
2150 	seq_printf(seq, "  KeyWrEn:       %3s\n", yesno(rssconf & KEYWREN_F));
2151 	seq_printf(seq, "  KeyWrAddr:     %3d\n", KEYWRADDR_G(rssconf));
2152 
2153 	seq_puts(seq, "\n");
2154 
2155 	rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
2156 	seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
2157 	seq_printf(seq, "  ChnCount3:     %3s\n", yesno(rssconf & CHNCOUNT3_F));
2158 	seq_printf(seq, "  ChnCount2:     %3s\n", yesno(rssconf & CHNCOUNT2_F));
2159 	seq_printf(seq, "  ChnCount1:     %3s\n", yesno(rssconf & CHNCOUNT1_F));
2160 	seq_printf(seq, "  ChnCount0:     %3s\n", yesno(rssconf & CHNCOUNT0_F));
2161 	seq_printf(seq, "  ChnUndFlow3:   %3s\n", yesno(rssconf &
2162 							CHNUNDFLOW3_F));
2163 	seq_printf(seq, "  ChnUndFlow2:   %3s\n", yesno(rssconf &
2164 							CHNUNDFLOW2_F));
2165 	seq_printf(seq, "  ChnUndFlow1:   %3s\n", yesno(rssconf &
2166 							CHNUNDFLOW1_F));
2167 	seq_printf(seq, "  ChnUndFlow0:   %3s\n", yesno(rssconf &
2168 							CHNUNDFLOW0_F));
2169 	seq_printf(seq, "  RstChn3:       %3s\n", yesno(rssconf & RSTCHN3_F));
2170 	seq_printf(seq, "  RstChn2:       %3s\n", yesno(rssconf & RSTCHN2_F));
2171 	seq_printf(seq, "  RstChn1:       %3s\n", yesno(rssconf & RSTCHN1_F));
2172 	seq_printf(seq, "  RstChn0:       %3s\n", yesno(rssconf & RSTCHN0_F));
2173 	seq_printf(seq, "  UpdVld:        %3s\n", yesno(rssconf & UPDVLD_F));
2174 	seq_printf(seq, "  Xoff:          %3s\n", yesno(rssconf & XOFF_F));
2175 	seq_printf(seq, "  UpdChn3:       %3s\n", yesno(rssconf & UPDCHN3_F));
2176 	seq_printf(seq, "  UpdChn2:       %3s\n", yesno(rssconf & UPDCHN2_F));
2177 	seq_printf(seq, "  UpdChn1:       %3s\n", yesno(rssconf & UPDCHN1_F));
2178 	seq_printf(seq, "  UpdChn0:       %3s\n", yesno(rssconf & UPDCHN0_F));
2179 	seq_printf(seq, "  Queue:         %3d\n", QUEUE_G(rssconf));
2180 
2181 	return 0;
2182 }
2183 DEFINE_SHOW_ATTRIBUTE(rss_config);
2184 
2185 /* RSS Secret Key.
2186  */
2187 
2188 static int rss_key_show(struct seq_file *seq, void *v)
2189 {
2190 	u32 key[10];
2191 
2192 	t4_read_rss_key(seq->private, key, true);
2193 	seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
2194 		   key[9], key[8], key[7], key[6], key[5], key[4], key[3],
2195 		   key[2], key[1], key[0]);
2196 	return 0;
2197 }
2198 
2199 static int rss_key_open(struct inode *inode, struct file *file)
2200 {
2201 	return single_open(file, rss_key_show, inode->i_private);
2202 }
2203 
2204 static ssize_t rss_key_write(struct file *file, const char __user *buf,
2205 			     size_t count, loff_t *pos)
2206 {
2207 	int i, j;
2208 	u32 key[10];
2209 	char s[100], *p;
2210 	struct adapter *adap = file_inode(file)->i_private;
2211 
2212 	if (count > sizeof(s) - 1)
2213 		return -EINVAL;
2214 	if (copy_from_user(s, buf, count))
2215 		return -EFAULT;
2216 	for (i = count; i > 0 && isspace(s[i - 1]); i--)
2217 		;
2218 	s[i] = '\0';
2219 
2220 	for (p = s, i = 9; i >= 0; i--) {
2221 		key[i] = 0;
2222 		for (j = 0; j < 8; j++, p++) {
2223 			if (!isxdigit(*p))
2224 				return -EINVAL;
2225 			key[i] = (key[i] << 4) | hex2val(*p);
2226 		}
2227 	}
2228 
2229 	t4_write_rss_key(adap, key, -1, true);
2230 	return count;
2231 }
2232 
2233 static const struct file_operations rss_key_debugfs_fops = {
2234 	.owner   = THIS_MODULE,
2235 	.open    = rss_key_open,
2236 	.read    = seq_read,
2237 	.llseek  = seq_lseek,
2238 	.release = single_release,
2239 	.write   = rss_key_write
2240 };
2241 
2242 /* PF RSS Configuration.
2243  */
2244 
2245 struct rss_pf_conf {
2246 	u32 rss_pf_map;
2247 	u32 rss_pf_mask;
2248 	u32 rss_pf_config;
2249 };
2250 
2251 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
2252 {
2253 	struct rss_pf_conf *pfconf;
2254 
2255 	if (v == SEQ_START_TOKEN) {
2256 		/* use the 0th entry to dump the PF Map Index Size */
2257 		pfconf = seq->private + offsetof(struct seq_tab, data);
2258 		seq_printf(seq, "PF Map Index Size = %d\n\n",
2259 			   LKPIDXSIZE_G(pfconf->rss_pf_map));
2260 
2261 		seq_puts(seq, "     RSS              PF   VF    Hash Tuple Enable         Default\n");
2262 		seq_puts(seq, "     Enable       IPF Mask Mask  IPv6      IPv4      UDP   Queue\n");
2263 		seq_puts(seq, " PF  Map Chn Prt  Map Size Size  Four Two  Four Two  Four  Ch1  Ch0\n");
2264 	} else {
2265 		#define G_PFnLKPIDX(map, n) \
2266 			(((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
2267 		#define G_PFnMSKSIZE(mask, n) \
2268 			(((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
2269 
2270 		pfconf = v;
2271 		seq_printf(seq, "%3d  %3s %3s %3s  %3d  %3d  %3d   %3s %3s   %3s %3s   %3s  %3d  %3d\n",
2272 			   idx,
2273 			   yesno(pfconf->rss_pf_config & MAPENABLE_F),
2274 			   yesno(pfconf->rss_pf_config & CHNENABLE_F),
2275 			   yesno(pfconf->rss_pf_config & PRTENABLE_F),
2276 			   G_PFnLKPIDX(pfconf->rss_pf_map, idx),
2277 			   G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
2278 			   IVFWIDTH_G(pfconf->rss_pf_config),
2279 			   yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
2280 			   yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
2281 			   yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
2282 			   yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
2283 			   yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
2284 			   CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
2285 			   CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
2286 
2287 		#undef G_PFnLKPIDX
2288 		#undef G_PFnMSKSIZE
2289 	}
2290 	return 0;
2291 }
2292 
2293 static int rss_pf_config_open(struct inode *inode, struct file *file)
2294 {
2295 	struct adapter *adapter = inode->i_private;
2296 	struct seq_tab *p;
2297 	u32 rss_pf_map, rss_pf_mask;
2298 	struct rss_pf_conf *pfconf;
2299 	int pf;
2300 
2301 	p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
2302 	if (!p)
2303 		return -ENOMEM;
2304 
2305 	pfconf = (struct rss_pf_conf *)p->data;
2306 	rss_pf_map = t4_read_rss_pf_map(adapter, true);
2307 	rss_pf_mask = t4_read_rss_pf_mask(adapter, true);
2308 	for (pf = 0; pf < 8; pf++) {
2309 		pfconf[pf].rss_pf_map = rss_pf_map;
2310 		pfconf[pf].rss_pf_mask = rss_pf_mask;
2311 		t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config,
2312 				      true);
2313 	}
2314 	return 0;
2315 }
2316 
2317 static const struct file_operations rss_pf_config_debugfs_fops = {
2318 	.owner   = THIS_MODULE,
2319 	.open    = rss_pf_config_open,
2320 	.read    = seq_read,
2321 	.llseek  = seq_lseek,
2322 	.release = seq_release_private
2323 };
2324 
2325 /* VF RSS Configuration.
2326  */
2327 
2328 struct rss_vf_conf {
2329 	u32 rss_vf_vfl;
2330 	u32 rss_vf_vfh;
2331 };
2332 
2333 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
2334 {
2335 	if (v == SEQ_START_TOKEN) {
2336 		seq_puts(seq, "     RSS                     Hash Tuple Enable\n");
2337 		seq_puts(seq, "     Enable   IVF  Dis  Enb  IPv6      IPv4      UDP    Def  Secret Key\n");
2338 		seq_puts(seq, " VF  Chn Prt  Map  VLAN  uP  Four Two  Four Two  Four   Que  Idx       Hash\n");
2339 	} else {
2340 		struct rss_vf_conf *vfconf = v;
2341 
2342 		seq_printf(seq, "%3d  %3s %3s  %3d   %3s %3s   %3s %3s   %3s  %3s   %3s  %4d  %3d %#10x\n",
2343 			   idx,
2344 			   yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
2345 			   yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
2346 			   VFLKPIDX_G(vfconf->rss_vf_vfh),
2347 			   yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
2348 			   yesno(vfconf->rss_vf_vfh & VFUPEN_F),
2349 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2350 			   yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
2351 			   yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2352 			   yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
2353 			   yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
2354 			   DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
2355 			   KEYINDEX_G(vfconf->rss_vf_vfh),
2356 			   vfconf->rss_vf_vfl);
2357 	}
2358 	return 0;
2359 }
2360 
2361 static int rss_vf_config_open(struct inode *inode, struct file *file)
2362 {
2363 	struct adapter *adapter = inode->i_private;
2364 	struct seq_tab *p;
2365 	struct rss_vf_conf *vfconf;
2366 	int vf, vfcount = adapter->params.arch.vfcount;
2367 
2368 	p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
2369 	if (!p)
2370 		return -ENOMEM;
2371 
2372 	vfconf = (struct rss_vf_conf *)p->data;
2373 	for (vf = 0; vf < vfcount; vf++) {
2374 		t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
2375 				      &vfconf[vf].rss_vf_vfh, true);
2376 	}
2377 	return 0;
2378 }
2379 
2380 static const struct file_operations rss_vf_config_debugfs_fops = {
2381 	.owner   = THIS_MODULE,
2382 	.open    = rss_vf_config_open,
2383 	.read    = seq_read,
2384 	.llseek  = seq_lseek,
2385 	.release = seq_release_private
2386 };
2387 
2388 #ifdef CONFIG_CHELSIO_T4_DCB
2389 extern char *dcb_ver_array[];
2390 
2391 /* Data Center Briging information for each port.
2392  */
2393 static int dcb_info_show(struct seq_file *seq, void *v)
2394 {
2395 	struct adapter *adap = seq->private;
2396 
2397 	if (v == SEQ_START_TOKEN) {
2398 		seq_puts(seq, "Data Center Bridging Information\n");
2399 	} else {
2400 		int port = (uintptr_t)v - 2;
2401 		struct net_device *dev = adap->port[port];
2402 		struct port_info *pi = netdev2pinfo(dev);
2403 		struct port_dcb_info *dcb = &pi->dcb;
2404 
2405 		seq_puts(seq, "\n");
2406 		seq_printf(seq, "Port: %d (DCB negotiated: %s)\n",
2407 			   port,
2408 			   cxgb4_dcb_enabled(dev) ? "yes" : "no");
2409 
2410 		if (cxgb4_dcb_enabled(dev))
2411 			seq_printf(seq, "[ DCBx Version %s ]\n",
2412 				   dcb_ver_array[dcb->dcb_version]);
2413 
2414 		if (dcb->msgs) {
2415 			int i;
2416 
2417 			seq_puts(seq, "\n  Index\t\t\t  :\t");
2418 			for (i = 0; i < 8; i++)
2419 				seq_printf(seq, " %3d", i);
2420 			seq_puts(seq, "\n\n");
2421 		}
2422 
2423 		if (dcb->msgs & CXGB4_DCB_FW_PGID) {
2424 			int prio, pgid;
2425 
2426 			seq_puts(seq, "  Priority Group IDs\t  :\t");
2427 			for (prio = 0; prio < 8; prio++) {
2428 				pgid = (dcb->pgid >> 4 * (7 - prio)) & 0xf;
2429 				seq_printf(seq, " %3d", pgid);
2430 			}
2431 			seq_puts(seq, "\n");
2432 		}
2433 
2434 		if (dcb->msgs & CXGB4_DCB_FW_PGRATE) {
2435 			int pg;
2436 
2437 			seq_puts(seq, "  Priority Group BW(%)\t  :\t");
2438 			for (pg = 0; pg < 8; pg++)
2439 				seq_printf(seq, " %3d", dcb->pgrate[pg]);
2440 			seq_puts(seq, "\n");
2441 
2442 			if (dcb->dcb_version == FW_PORT_DCB_VER_IEEE) {
2443 				seq_puts(seq, "  TSA Algorithm\t\t  :\t");
2444 				for (pg = 0; pg < 8; pg++)
2445 					seq_printf(seq, " %3d", dcb->tsa[pg]);
2446 				seq_puts(seq, "\n");
2447 			}
2448 
2449 			seq_printf(seq, "  Max PG Traffic Classes  [%3d  ]\n",
2450 				   dcb->pg_num_tcs_supported);
2451 
2452 			seq_puts(seq, "\n");
2453 		}
2454 
2455 		if (dcb->msgs & CXGB4_DCB_FW_PRIORATE) {
2456 			int prio;
2457 
2458 			seq_puts(seq, "  Priority Rate\t:\t");
2459 			for (prio = 0; prio < 8; prio++)
2460 				seq_printf(seq, " %3d", dcb->priorate[prio]);
2461 			seq_puts(seq, "\n");
2462 		}
2463 
2464 		if (dcb->msgs & CXGB4_DCB_FW_PFC) {
2465 			int prio;
2466 
2467 			seq_puts(seq, "  Priority Flow Control   :\t");
2468 			for (prio = 0; prio < 8; prio++) {
2469 				int pfcen = (dcb->pfcen >> 1 * (7 - prio))
2470 					    & 0x1;
2471 				seq_printf(seq, " %3d", pfcen);
2472 			}
2473 			seq_puts(seq, "\n");
2474 
2475 			seq_printf(seq, "  Max PFC Traffic Classes [%3d  ]\n",
2476 				   dcb->pfc_num_tcs_supported);
2477 
2478 			seq_puts(seq, "\n");
2479 		}
2480 
2481 		if (dcb->msgs & CXGB4_DCB_FW_APP_ID) {
2482 			int app, napps;
2483 
2484 			seq_puts(seq, "  Application Information:\n");
2485 			seq_puts(seq, "  App    Priority    Selection         Protocol\n");
2486 			seq_puts(seq, "  Index  Map         Field             ID\n");
2487 			for (app = 0, napps = 0;
2488 			     app < CXGB4_MAX_DCBX_APP_SUPPORTED; app++) {
2489 				struct app_priority *ap;
2490 				static const char * const sel_names[] = {
2491 					"Ethertype",
2492 					"Socket TCP",
2493 					"Socket UDP",
2494 					"Socket All",
2495 				};
2496 				const char *sel_name;
2497 
2498 				ap = &dcb->app_priority[app];
2499 				/* skip empty slots */
2500 				if (ap->protocolid == 0)
2501 					continue;
2502 				napps++;
2503 
2504 				if (ap->sel_field < ARRAY_SIZE(sel_names))
2505 					sel_name = sel_names[ap->sel_field];
2506 				else
2507 					sel_name = "UNKNOWN";
2508 
2509 				seq_printf(seq, "  %3d    %#04x        %-10s (%d)    %#06x (%d)\n",
2510 					   app,
2511 					   ap->user_prio_map,
2512 					   sel_name, ap->sel_field,
2513 					   ap->protocolid, ap->protocolid);
2514 			}
2515 			if (napps == 0)
2516 				seq_puts(seq, "    --- None ---\n");
2517 		}
2518 	}
2519 	return 0;
2520 }
2521 
2522 static inline void *dcb_info_get_idx(struct adapter *adap, loff_t pos)
2523 {
2524 	return (pos <= adap->params.nports
2525 		? (void *)((uintptr_t)pos + 1)
2526 		: NULL);
2527 }
2528 
2529 static void *dcb_info_start(struct seq_file *seq, loff_t *pos)
2530 {
2531 	struct adapter *adap = seq->private;
2532 
2533 	return (*pos
2534 		? dcb_info_get_idx(adap, *pos)
2535 		: SEQ_START_TOKEN);
2536 }
2537 
2538 static void dcb_info_stop(struct seq_file *seq, void *v)
2539 {
2540 }
2541 
2542 static void *dcb_info_next(struct seq_file *seq, void *v, loff_t *pos)
2543 {
2544 	struct adapter *adap = seq->private;
2545 
2546 	(*pos)++;
2547 	return dcb_info_get_idx(adap, *pos);
2548 }
2549 
2550 static const struct seq_operations dcb_info_seq_ops = {
2551 	.start = dcb_info_start,
2552 	.next  = dcb_info_next,
2553 	.stop  = dcb_info_stop,
2554 	.show  = dcb_info_show
2555 };
2556 
2557 static int dcb_info_open(struct inode *inode, struct file *file)
2558 {
2559 	int res = seq_open(file, &dcb_info_seq_ops);
2560 
2561 	if (!res) {
2562 		struct seq_file *seq = file->private_data;
2563 
2564 		seq->private = inode->i_private;
2565 	}
2566 	return res;
2567 }
2568 
2569 static const struct file_operations dcb_info_debugfs_fops = {
2570 	.owner   = THIS_MODULE,
2571 	.open    = dcb_info_open,
2572 	.read    = seq_read,
2573 	.llseek  = seq_lseek,
2574 	.release = seq_release,
2575 };
2576 #endif /* CONFIG_CHELSIO_T4_DCB */
2577 
2578 static int resources_show(struct seq_file *seq, void *v)
2579 {
2580 	struct adapter *adapter = seq->private;
2581 	struct pf_resources *pfres = &adapter->params.pfres;
2582 
2583 	#define S(desc, fmt, var) \
2584 		seq_printf(seq, "%-60s " fmt "\n", \
2585 			   desc " (" #var "):", pfres->var)
2586 
2587 	S("Virtual Interfaces", "%d", nvi);
2588 	S("Egress Queues", "%d", neq);
2589 	S("Ethernet Control", "%d", nethctrl);
2590 	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2591 	S("Ingress Queues", "%d", niq);
2592 	S("Traffic Class", "%d", tc);
2593 	S("Port Access Rights Mask", "%#x", pmask);
2594 	S("MAC Address Filters", "%d", nexactf);
2595 	S("Firmware Command Read Capabilities", "%#x", r_caps);
2596 	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2597 
2598 	#undef S
2599 
2600 	return 0;
2601 }
2602 DEFINE_SHOW_ATTRIBUTE(resources);
2603 
2604 /**
2605  * ethqset2pinfo - return port_info of an Ethernet Queue Set
2606  * @adap: the adapter
2607  * @qset: Ethernet Queue Set
2608  */
2609 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
2610 {
2611 	int pidx;
2612 
2613 	for_each_port(adap, pidx) {
2614 		struct port_info *pi = adap2pinfo(adap, pidx);
2615 
2616 		if (qset >= pi->first_qset &&
2617 		    qset < pi->first_qset + pi->nqsets)
2618 			return pi;
2619 	}
2620 
2621 	/* should never happen! */
2622 	BUG();
2623 	return NULL;
2624 }
2625 
2626 static int sge_qinfo_uld_txq_entries(const struct adapter *adap, int uld)
2627 {
2628 	const struct sge_uld_txq_info *utxq_info = adap->sge.uld_txq_info[uld];
2629 
2630 	if (!utxq_info)
2631 		return 0;
2632 
2633 	return DIV_ROUND_UP(utxq_info->ntxq, 4);
2634 }
2635 
2636 static int sge_qinfo_uld_rspq_entries(const struct adapter *adap, int uld,
2637 				      bool ciq)
2638 {
2639 	const struct sge_uld_rxq_info *urxq_info = adap->sge.uld_rxq_info[uld];
2640 
2641 	if (!urxq_info)
2642 		return 0;
2643 
2644 	return ciq ? DIV_ROUND_UP(urxq_info->nciq, 4) :
2645 		     DIV_ROUND_UP(urxq_info->nrxq, 4);
2646 }
2647 
2648 static int sge_qinfo_uld_rxq_entries(const struct adapter *adap, int uld)
2649 {
2650 	return sge_qinfo_uld_rspq_entries(adap, uld, false);
2651 }
2652 
2653 static int sge_qinfo_uld_ciq_entries(const struct adapter *adap, int uld)
2654 {
2655 	return sge_qinfo_uld_rspq_entries(adap, uld, true);
2656 }
2657 
2658 static int sge_qinfo_show(struct seq_file *seq, void *v)
2659 {
2660 	int eth_entries, ctrl_entries, eo_entries = 0;
2661 	int uld_rxq_entries[CXGB4_ULD_MAX] = { 0 };
2662 	int uld_ciq_entries[CXGB4_ULD_MAX] = { 0 };
2663 	int uld_txq_entries[CXGB4_TX_MAX] = { 0 };
2664 	const struct sge_uld_txq_info *utxq_info;
2665 	const struct sge_uld_rxq_info *urxq_info;
2666 	struct adapter *adap = seq->private;
2667 	int i, n, r = (uintptr_t)v - 1;
2668 	struct sge *s = &adap->sge;
2669 
2670 	eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
2671 	ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
2672 	if (adap->sge.eohw_txq)
2673 		eo_entries = DIV_ROUND_UP(adap->sge.eoqsets, 4);
2674 
2675 	mutex_lock(&uld_mutex);
2676 	if (s->uld_txq_info)
2677 		for (i = 0; i < ARRAY_SIZE(uld_txq_entries); i++)
2678 			uld_txq_entries[i] = sge_qinfo_uld_txq_entries(adap, i);
2679 
2680 	if (s->uld_rxq_info) {
2681 		for (i = 0; i < ARRAY_SIZE(uld_rxq_entries); i++) {
2682 			uld_rxq_entries[i] = sge_qinfo_uld_rxq_entries(adap, i);
2683 			uld_ciq_entries[i] = sge_qinfo_uld_ciq_entries(adap, i);
2684 		}
2685 	}
2686 
2687 	if (r)
2688 		seq_putc(seq, '\n');
2689 
2690 #define S3(fmt_spec, s, v) \
2691 do { \
2692 	seq_printf(seq, "%-12s", s); \
2693 	for (i = 0; i < n; ++i) \
2694 		seq_printf(seq, " %16" fmt_spec, v); \
2695 		seq_putc(seq, '\n'); \
2696 } while (0)
2697 #define S(s, v) S3("s", s, v)
2698 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
2699 #define T(s, v) S3("u", s, tx[i].v)
2700 #define TL(s, v) T3("lu", s, v)
2701 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
2702 #define R(s, v) S3("u", s, rx[i].v)
2703 #define RL(s, v) R3("lu", s, v)
2704 
2705 	if (r < eth_entries) {
2706 		int base_qset = r * 4;
2707 		const struct sge_eth_rxq *rx = &s->ethrxq[base_qset];
2708 		const struct sge_eth_txq *tx = &s->ethtxq[base_qset];
2709 
2710 		n = min(4, s->ethqsets - 4 * r);
2711 
2712 		S("QType:", "Ethernet");
2713 		S("Interface:",
2714 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2715 		T("TxQ ID:", q.cntxt_id);
2716 		T("TxQ size:", q.size);
2717 		T("TxQ inuse:", q.in_use);
2718 		T("TxQ CIDX:", q.cidx);
2719 		T("TxQ PIDX:", q.pidx);
2720 #ifdef CONFIG_CHELSIO_T4_DCB
2721 		T("DCB Prio:", dcb_prio);
2722 		S3("u", "DCB PGID:",
2723 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
2724 		    4*(7-tx[i].dcb_prio)) & 0xf);
2725 		S3("u", "DCB PFC:",
2726 		   (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
2727 		    1*(7-tx[i].dcb_prio)) & 0x1);
2728 #endif
2729 		R("RspQ ID:", rspq.abs_id);
2730 		R("RspQ size:", rspq.size);
2731 		R("RspQE size:", rspq.iqe_len);
2732 		R("RspQ CIDX:", rspq.cidx);
2733 		R("RspQ Gen:", rspq.gen);
2734 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2735 		S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
2736 		R("FL ID:", fl.cntxt_id);
2737 		R("FL size:", fl.size - 8);
2738 		R("FL pend:", fl.pend_cred);
2739 		R("FL avail:", fl.avail);
2740 		R("FL PIDX:", fl.pidx);
2741 		R("FL CIDX:", fl.cidx);
2742 		RL("RxPackets:", stats.pkts);
2743 		RL("RxCSO:", stats.rx_cso);
2744 		RL("VLANxtract:", stats.vlan_ex);
2745 		RL("LROmerged:", stats.lro_merged);
2746 		RL("LROpackets:", stats.lro_pkts);
2747 		RL("RxDrops:", stats.rx_drops);
2748 		RL("RxBadPkts:", stats.bad_rx_pkts);
2749 		TL("TSO:", tso);
2750 		TL("USO:", uso);
2751 		TL("TxCSO:", tx_cso);
2752 		TL("VLANins:", vlan_ins);
2753 		TL("TxQFull:", q.stops);
2754 		TL("TxQRestarts:", q.restarts);
2755 		TL("TxMapErr:", mapping_err);
2756 		RL("FLAllocErr:", fl.alloc_failed);
2757 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2758 		RL("FLMapErr:", fl.mapping_err);
2759 		RL("FLLow:", fl.low);
2760 		RL("FLStarving:", fl.starving);
2761 
2762 		goto unlock;
2763 	}
2764 
2765 	r -= eth_entries;
2766 	if (r < eo_entries) {
2767 		int base_qset = r * 4;
2768 		const struct sge_ofld_rxq *rx = &s->eohw_rxq[base_qset];
2769 		const struct sge_eohw_txq *tx = &s->eohw_txq[base_qset];
2770 
2771 		n = min(4, s->eoqsets - 4 * r);
2772 
2773 		S("QType:", "ETHOFLD");
2774 		S("Interface:",
2775 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2776 		T("TxQ ID:", q.cntxt_id);
2777 		T("TxQ size:", q.size);
2778 		T("TxQ inuse:", q.in_use);
2779 		T("TxQ CIDX:", q.cidx);
2780 		T("TxQ PIDX:", q.pidx);
2781 		R("RspQ ID:", rspq.abs_id);
2782 		R("RspQ size:", rspq.size);
2783 		R("RspQE size:", rspq.iqe_len);
2784 		R("RspQ CIDX:", rspq.cidx);
2785 		R("RspQ Gen:", rspq.gen);
2786 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2787 		S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]);
2788 		R("FL ID:", fl.cntxt_id);
2789 		S3("u", "FL size:", rx->fl.size ? rx->fl.size - 8 : 0);
2790 		R("FL pend:", fl.pend_cred);
2791 		R("FL avail:", fl.avail);
2792 		R("FL PIDX:", fl.pidx);
2793 		R("FL CIDX:", fl.cidx);
2794 		RL("RxPackets:", stats.pkts);
2795 		RL("RxImm:", stats.imm);
2796 		RL("RxAN", stats.an);
2797 		RL("RxNoMem", stats.nomem);
2798 		TL("TSO:", tso);
2799 		TL("USO:", uso);
2800 		TL("TxCSO:", tx_cso);
2801 		TL("VLANins:", vlan_ins);
2802 		TL("TxQFull:", q.stops);
2803 		TL("TxQRestarts:", q.restarts);
2804 		TL("TxMapErr:", mapping_err);
2805 		RL("FLAllocErr:", fl.alloc_failed);
2806 		RL("FLLrgAlcErr:", fl.large_alloc_failed);
2807 		RL("FLMapErr:", fl.mapping_err);
2808 		RL("FLLow:", fl.low);
2809 		RL("FLStarving:", fl.starving);
2810 
2811 		goto unlock;
2812 	}
2813 
2814 	r -= eo_entries;
2815 	if (r < uld_txq_entries[CXGB4_TX_OFLD]) {
2816 		const struct sge_uld_txq *tx;
2817 
2818 		utxq_info = s->uld_txq_info[CXGB4_TX_OFLD];
2819 		tx = &utxq_info->uldtxq[r * 4];
2820 		n = min(4, utxq_info->ntxq - 4 * r);
2821 
2822 		S("QType:", "OFLD-TXQ");
2823 		T("TxQ ID:", q.cntxt_id);
2824 		T("TxQ size:", q.size);
2825 		T("TxQ inuse:", q.in_use);
2826 		T("TxQ CIDX:", q.cidx);
2827 		T("TxQ PIDX:", q.pidx);
2828 
2829 		goto unlock;
2830 	}
2831 
2832 	r -= uld_txq_entries[CXGB4_TX_OFLD];
2833 	if (r < uld_rxq_entries[CXGB4_ULD_RDMA]) {
2834 		const struct sge_ofld_rxq *rx;
2835 
2836 		urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
2837 		rx = &urxq_info->uldrxq[r * 4];
2838 		n = min(4, urxq_info->nrxq - 4 * r);
2839 
2840 		S("QType:", "RDMA-CPL");
2841 		S("Interface:",
2842 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2843 		R("RspQ ID:", rspq.abs_id);
2844 		R("RspQ size:", rspq.size);
2845 		R("RspQE size:", rspq.iqe_len);
2846 		R("RspQ CIDX:", rspq.cidx);
2847 		R("RspQ Gen:", rspq.gen);
2848 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2849 		S3("u", "Intr pktcnt:",	s->counter_val[rx[i].rspq.pktcnt_idx]);
2850 		R("FL ID:", fl.cntxt_id);
2851 		R("FL size:", fl.size - 8);
2852 		R("FL pend:", fl.pend_cred);
2853 		R("FL avail:", fl.avail);
2854 		R("FL PIDX:", fl.pidx);
2855 		R("FL CIDX:", fl.cidx);
2856 
2857 		goto unlock;
2858 	}
2859 
2860 	r -= uld_rxq_entries[CXGB4_ULD_RDMA];
2861 	if (r < uld_ciq_entries[CXGB4_ULD_RDMA]) {
2862 		const struct sge_ofld_rxq *rx;
2863 		int ciq_idx = 0;
2864 
2865 		urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
2866 		ciq_idx = urxq_info->nrxq + (r * 4);
2867 		rx = &urxq_info->uldrxq[ciq_idx];
2868 		n = min(4, urxq_info->nciq - 4 * r);
2869 
2870 		S("QType:", "RDMA-CIQ");
2871 		S("Interface:",
2872 		  rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2873 		R("RspQ ID:", rspq.abs_id);
2874 		R("RspQ size:", rspq.size);
2875 		R("RspQE size:", rspq.iqe_len);
2876 		R("RspQ CIDX:", rspq.cidx);
2877 		R("RspQ Gen:", rspq.gen);
2878 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2879 		S3("u", "Intr pktcnt:",	s->counter_val[rx[i].rspq.pktcnt_idx]);
2880 
2881 		goto unlock;
2882 	}
2883 
2884 	r -= uld_ciq_entries[CXGB4_ULD_RDMA];
2885 	if (r < uld_rxq_entries[CXGB4_ULD_ISCSI]) {
2886 		const struct sge_ofld_rxq *rx;
2887 
2888 		urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSI];
2889 		rx = &urxq_info->uldrxq[r * 4];
2890 		n = min(4, urxq_info->nrxq - 4 * r);
2891 
2892 		S("QType:", "iSCSI");
2893 		R("RspQ ID:", rspq.abs_id);
2894 		R("RspQ size:", rspq.size);
2895 		R("RspQE size:", rspq.iqe_len);
2896 		R("RspQ CIDX:", rspq.cidx);
2897 		R("RspQ Gen:", rspq.gen);
2898 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2899 		S3("u", "Intr pktcnt:",	s->counter_val[rx[i].rspq.pktcnt_idx]);
2900 		R("FL ID:", fl.cntxt_id);
2901 		R("FL size:", fl.size - 8);
2902 		R("FL pend:", fl.pend_cred);
2903 		R("FL avail:", fl.avail);
2904 		R("FL PIDX:", fl.pidx);
2905 		R("FL CIDX:", fl.cidx);
2906 
2907 		goto unlock;
2908 	}
2909 
2910 	r -= uld_rxq_entries[CXGB4_ULD_ISCSI];
2911 	if (r < uld_rxq_entries[CXGB4_ULD_ISCSIT]) {
2912 		const struct sge_ofld_rxq *rx;
2913 
2914 		urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSIT];
2915 		rx = &urxq_info->uldrxq[r * 4];
2916 		n = min(4, urxq_info->nrxq - 4 * r);
2917 
2918 		S("QType:", "iSCSIT");
2919 		R("RspQ ID:", rspq.abs_id);
2920 		R("RspQ size:", rspq.size);
2921 		R("RspQE size:", rspq.iqe_len);
2922 		R("RspQ CIDX:", rspq.cidx);
2923 		R("RspQ Gen:", rspq.gen);
2924 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2925 		S3("u", "Intr pktcnt:",	s->counter_val[rx[i].rspq.pktcnt_idx]);
2926 		R("FL ID:", fl.cntxt_id);
2927 		R("FL size:", fl.size - 8);
2928 		R("FL pend:", fl.pend_cred);
2929 		R("FL avail:", fl.avail);
2930 		R("FL PIDX:", fl.pidx);
2931 		R("FL CIDX:", fl.cidx);
2932 
2933 		goto unlock;
2934 	}
2935 
2936 	r -= uld_rxq_entries[CXGB4_ULD_ISCSIT];
2937 	if (r < uld_rxq_entries[CXGB4_ULD_TLS]) {
2938 		const struct sge_ofld_rxq *rx;
2939 
2940 		urxq_info = s->uld_rxq_info[CXGB4_ULD_TLS];
2941 		rx = &urxq_info->uldrxq[r * 4];
2942 		n = min(4, urxq_info->nrxq - 4 * r);
2943 
2944 		S("QType:", "TLS");
2945 		R("RspQ ID:", rspq.abs_id);
2946 		R("RspQ size:", rspq.size);
2947 		R("RspQE size:", rspq.iqe_len);
2948 		R("RspQ CIDX:", rspq.cidx);
2949 		R("RspQ Gen:", rspq.gen);
2950 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2951 		S3("u", "Intr pktcnt:",	s->counter_val[rx[i].rspq.pktcnt_idx]);
2952 		R("FL ID:", fl.cntxt_id);
2953 		R("FL size:", fl.size - 8);
2954 		R("FL pend:", fl.pend_cred);
2955 		R("FL avail:", fl.avail);
2956 		R("FL PIDX:", fl.pidx);
2957 		R("FL CIDX:", fl.cidx);
2958 
2959 		goto unlock;
2960 	}
2961 
2962 	r -= uld_rxq_entries[CXGB4_ULD_TLS];
2963 	if (r < uld_txq_entries[CXGB4_TX_CRYPTO]) {
2964 		const struct sge_ofld_rxq *rx;
2965 		const struct sge_uld_txq *tx;
2966 
2967 		utxq_info = s->uld_txq_info[CXGB4_TX_CRYPTO];
2968 		urxq_info = s->uld_rxq_info[CXGB4_ULD_CRYPTO];
2969 		tx = &utxq_info->uldtxq[r * 4];
2970 		rx = &urxq_info->uldrxq[r * 4];
2971 		n = min(4, utxq_info->ntxq - 4 * r);
2972 
2973 		S("QType:", "Crypto");
2974 		T("TxQ ID:", q.cntxt_id);
2975 		T("TxQ size:", q.size);
2976 		T("TxQ inuse:", q.in_use);
2977 		T("TxQ CIDX:", q.cidx);
2978 		T("TxQ PIDX:", q.pidx);
2979 		R("RspQ ID:", rspq.abs_id);
2980 		R("RspQ size:", rspq.size);
2981 		R("RspQE size:", rspq.iqe_len);
2982 		R("RspQ CIDX:", rspq.cidx);
2983 		R("RspQ Gen:", rspq.gen);
2984 		S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2985 		S3("u", "Intr pktcnt:",	s->counter_val[rx[i].rspq.pktcnt_idx]);
2986 		R("FL ID:", fl.cntxt_id);
2987 		R("FL size:", fl.size - 8);
2988 		R("FL pend:", fl.pend_cred);
2989 		R("FL avail:", fl.avail);
2990 		R("FL PIDX:", fl.pidx);
2991 		R("FL CIDX:", fl.cidx);
2992 
2993 		goto unlock;
2994 	}
2995 
2996 	r -= uld_txq_entries[CXGB4_TX_CRYPTO];
2997 	if (r < ctrl_entries) {
2998 		const struct sge_ctrl_txq *tx = &s->ctrlq[r * 4];
2999 
3000 		n = min(4, adap->params.nports - 4 * r);
3001 
3002 		S("QType:", "Control");
3003 		T("TxQ ID:", q.cntxt_id);
3004 		T("TxQ size:", q.size);
3005 		T("TxQ inuse:", q.in_use);
3006 		T("TxQ CIDX:", q.cidx);
3007 		T("TxQ PIDX:", q.pidx);
3008 		TL("TxQFull:", q.stops);
3009 		TL("TxQRestarts:", q.restarts);
3010 
3011 		goto unlock;
3012 	}
3013 
3014 	r -= ctrl_entries;
3015 	if (r < 1) {
3016 		const struct sge_rspq *evtq = &s->fw_evtq;
3017 
3018 		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
3019 		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
3020 		seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
3021 		seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
3022 		seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
3023 		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
3024 		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
3025 			   qtimer_val(adap, evtq));
3026 		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
3027 			   s->counter_val[evtq->pktcnt_idx]);
3028 
3029 		goto unlock;
3030 	}
3031 
3032 unlock:
3033 	mutex_unlock(&uld_mutex);
3034 #undef R
3035 #undef RL
3036 #undef T
3037 #undef TL
3038 #undef S
3039 #undef R3
3040 #undef T3
3041 #undef S3
3042 	return 0;
3043 }
3044 
3045 static int sge_queue_entries(const struct adapter *adap)
3046 {
3047 	int tot_uld_entries = 0;
3048 	int i;
3049 
3050 	if (!is_uld(adap))
3051 		goto lld_only;
3052 
3053 	mutex_lock(&uld_mutex);
3054 	for (i = 0; i < CXGB4_TX_MAX; i++)
3055 		tot_uld_entries += sge_qinfo_uld_txq_entries(adap, i);
3056 
3057 	for (i = 0; i < CXGB4_ULD_MAX; i++) {
3058 		tot_uld_entries += sge_qinfo_uld_rxq_entries(adap, i);
3059 		tot_uld_entries += sge_qinfo_uld_ciq_entries(adap, i);
3060 	}
3061 	mutex_unlock(&uld_mutex);
3062 
3063 lld_only:
3064 	return DIV_ROUND_UP(adap->sge.ethqsets, 4) +
3065 	       (adap->sge.eohw_txq ? DIV_ROUND_UP(adap->sge.eoqsets, 4) : 0) +
3066 	       tot_uld_entries +
3067 	       DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
3068 }
3069 
3070 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
3071 {
3072 	int entries = sge_queue_entries(seq->private);
3073 
3074 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
3075 }
3076 
3077 static void sge_queue_stop(struct seq_file *seq, void *v)
3078 {
3079 }
3080 
3081 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
3082 {
3083 	int entries = sge_queue_entries(seq->private);
3084 
3085 	++*pos;
3086 	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
3087 }
3088 
3089 static const struct seq_operations sge_qinfo_seq_ops = {
3090 	.start = sge_queue_start,
3091 	.next  = sge_queue_next,
3092 	.stop  = sge_queue_stop,
3093 	.show  = sge_qinfo_show
3094 };
3095 
3096 static int sge_qinfo_open(struct inode *inode, struct file *file)
3097 {
3098 	int res = seq_open(file, &sge_qinfo_seq_ops);
3099 
3100 	if (!res) {
3101 		struct seq_file *seq = file->private_data;
3102 
3103 		seq->private = inode->i_private;
3104 	}
3105 	return res;
3106 }
3107 
3108 static const struct file_operations sge_qinfo_debugfs_fops = {
3109 	.owner   = THIS_MODULE,
3110 	.open    = sge_qinfo_open,
3111 	.read    = seq_read,
3112 	.llseek  = seq_lseek,
3113 	.release = seq_release,
3114 };
3115 
3116 int mem_open(struct inode *inode, struct file *file)
3117 {
3118 	unsigned int mem;
3119 	struct adapter *adap;
3120 
3121 	file->private_data = inode->i_private;
3122 
3123 	mem = (uintptr_t)file->private_data & 0x7;
3124 	adap = file->private_data - mem;
3125 
3126 	(void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
3127 
3128 	return 0;
3129 }
3130 
3131 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3132 			loff_t *ppos)
3133 {
3134 	loff_t pos = *ppos;
3135 	loff_t avail = file_inode(file)->i_size;
3136 	unsigned int mem = (uintptr_t)file->private_data & 0x7;
3137 	struct adapter *adap = file->private_data - mem;
3138 	__be32 *data;
3139 	int ret;
3140 
3141 	if (pos < 0)
3142 		return -EINVAL;
3143 	if (pos >= avail)
3144 		return 0;
3145 	if (count > avail - pos)
3146 		count = avail - pos;
3147 
3148 	data = kvzalloc(count, GFP_KERNEL);
3149 	if (!data)
3150 		return -ENOMEM;
3151 
3152 	spin_lock(&adap->win0_lock);
3153 	ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3154 	spin_unlock(&adap->win0_lock);
3155 	if (ret) {
3156 		kvfree(data);
3157 		return ret;
3158 	}
3159 	ret = copy_to_user(buf, data, count);
3160 
3161 	kvfree(data);
3162 	if (ret)
3163 		return -EFAULT;
3164 
3165 	*ppos = pos + count;
3166 	return count;
3167 }
3168 static const struct file_operations mem_debugfs_fops = {
3169 	.owner   = THIS_MODULE,
3170 	.open    = simple_open,
3171 	.read    = mem_read,
3172 	.llseek  = default_llseek,
3173 };
3174 
3175 static int tid_info_show(struct seq_file *seq, void *v)
3176 {
3177 	struct adapter *adap = seq->private;
3178 	const struct tid_info *t;
3179 	enum chip_type chip;
3180 
3181 	t = &adap->tids;
3182 	chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3183 	if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
3184 		unsigned int sb;
3185 		seq_printf(seq, "Connections in use: %u\n",
3186 			   atomic_read(&t->conns_in_use));
3187 
3188 		if (chip <= CHELSIO_T5)
3189 			sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
3190 		else
3191 			sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
3192 
3193 		if (sb) {
3194 			seq_printf(seq, "TID range: %u..%u/%u..%u", t->tid_base,
3195 				   sb - 1, adap->tids.hash_base,
3196 				   t->tid_base + t->ntids - 1);
3197 			seq_printf(seq, ", in use: %u/%u\n",
3198 				   atomic_read(&t->tids_in_use),
3199 				   atomic_read(&t->hash_tids_in_use));
3200 		} else if (adap->flags & CXGB4_FW_OFLD_CONN) {
3201 			seq_printf(seq, "TID range: %u..%u/%u..%u",
3202 				   t->aftid_base,
3203 				   t->aftid_end,
3204 				   adap->tids.hash_base,
3205 				   t->tid_base + t->ntids - 1);
3206 			seq_printf(seq, ", in use: %u/%u\n",
3207 				   atomic_read(&t->tids_in_use),
3208 				   atomic_read(&t->hash_tids_in_use));
3209 		} else {
3210 			seq_printf(seq, "TID range: %u..%u",
3211 				   adap->tids.hash_base,
3212 				   t->tid_base + t->ntids - 1);
3213 			seq_printf(seq, ", in use: %u\n",
3214 				   atomic_read(&t->hash_tids_in_use));
3215 		}
3216 	} else if (t->ntids) {
3217 		seq_printf(seq, "Connections in use: %u\n",
3218 			   atomic_read(&t->conns_in_use));
3219 
3220 		seq_printf(seq, "TID range: %u..%u", t->tid_base,
3221 			   t->tid_base + t->ntids - 1);
3222 		seq_printf(seq, ", in use: %u\n",
3223 			   atomic_read(&t->tids_in_use));
3224 	}
3225 
3226 	if (t->nstids)
3227 		seq_printf(seq, "STID range: %u..%u, in use-IPv4/IPv6: %u/%u\n",
3228 			   (!t->stid_base &&
3229 			   (chip <= CHELSIO_T5)) ?
3230 			   t->stid_base + 1 : t->stid_base,
3231 			   t->stid_base + t->nstids - 1,
3232 			   t->stids_in_use - t->v6_stids_in_use,
3233 			   t->v6_stids_in_use);
3234 
3235 	if (t->natids)
3236 		seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
3237 			   t->natids - 1, t->atids_in_use);
3238 	seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
3239 		   t->ftid_base + t->nftids - 1);
3240 	if (t->nsftids)
3241 		seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
3242 			   t->sftid_base, t->sftid_base + t->nsftids - 2,
3243 			   t->sftids_in_use);
3244 	if (t->nhpftids)
3245 		seq_printf(seq, "HPFTID range: %u..%u\n", t->hpftid_base,
3246 			   t->hpftid_base + t->nhpftids - 1);
3247 	if (t->ntids)
3248 		seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
3249 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
3250 			   t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
3251 	return 0;
3252 }
3253 DEFINE_SHOW_ATTRIBUTE(tid_info);
3254 
3255 static void add_debugfs_mem(struct adapter *adap, const char *name,
3256 			    unsigned int idx, unsigned int size_mb)
3257 {
3258 	debugfs_create_file_size(name, 0400, adap->debugfs_root,
3259 				 (void *)adap + idx, &mem_debugfs_fops,
3260 				 size_mb << 20);
3261 }
3262 
3263 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
3264 			       size_t count, loff_t *ppos)
3265 {
3266 	int len;
3267 	const struct adapter *adap = filp->private_data;
3268 	char *buf;
3269 	ssize_t size = (adap->sge.egr_sz + 3) / 4 +
3270 			adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
3271 
3272 	buf = kzalloc(size, GFP_KERNEL);
3273 	if (!buf)
3274 		return -ENOMEM;
3275 
3276 	len = snprintf(buf, size - 1, "%*pb\n",
3277 		       adap->sge.egr_sz, adap->sge.blocked_fl);
3278 	len += sprintf(buf + len, "\n");
3279 	size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
3280 	kvfree(buf);
3281 	return size;
3282 }
3283 
3284 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
3285 				size_t count, loff_t *ppos)
3286 {
3287 	int err;
3288 	unsigned long *t;
3289 	struct adapter *adap = filp->private_data;
3290 
3291 	t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
3292 	if (!t)
3293 		return -ENOMEM;
3294 
3295 	err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
3296 	if (err) {
3297 		kvfree(t);
3298 		return err;
3299 	}
3300 
3301 	bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
3302 	kvfree(t);
3303 	return count;
3304 }
3305 
3306 static const struct file_operations blocked_fl_fops = {
3307 	.owner   = THIS_MODULE,
3308 	.open    = simple_open,
3309 	.read    = blocked_fl_read,
3310 	.write   = blocked_fl_write,
3311 	.llseek  = generic_file_llseek,
3312 };
3313 
3314 static void mem_region_show(struct seq_file *seq, const char *name,
3315 			    unsigned int from, unsigned int to)
3316 {
3317 	char buf[40];
3318 
3319 	string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
3320 			sizeof(buf));
3321 	seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
3322 }
3323 
3324 static int meminfo_show(struct seq_file *seq, void *v)
3325 {
3326 	static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
3327 					       "MC0:", "MC1:", "HMA:"};
3328 	struct adapter *adap = seq->private;
3329 	struct cudbg_meminfo meminfo;
3330 	int i, rc;
3331 
3332 	memset(&meminfo, 0, sizeof(struct cudbg_meminfo));
3333 	rc = cudbg_fill_meminfo(adap, &meminfo);
3334 	if (rc)
3335 		return -ENXIO;
3336 
3337 	for (i = 0; i < meminfo.avail_c; i++)
3338 		mem_region_show(seq, memory[meminfo.avail[i].idx],
3339 				meminfo.avail[i].base,
3340 				meminfo.avail[i].limit - 1);
3341 
3342 	seq_putc(seq, '\n');
3343 	for (i = 0; i < meminfo.mem_c; i++) {
3344 		if (meminfo.mem[i].idx >= ARRAY_SIZE(cudbg_region))
3345 			continue;                        /* skip holes */
3346 		if (!meminfo.mem[i].limit)
3347 			meminfo.mem[i].limit =
3348 				i < meminfo.mem_c - 1 ?
3349 				meminfo.mem[i + 1].base - 1 : ~0;
3350 		mem_region_show(seq, cudbg_region[meminfo.mem[i].idx],
3351 				meminfo.mem[i].base, meminfo.mem[i].limit);
3352 	}
3353 
3354 	seq_putc(seq, '\n');
3355 	mem_region_show(seq, "uP RAM:", meminfo.up_ram_lo, meminfo.up_ram_hi);
3356 	mem_region_show(seq, "uP Extmem2:", meminfo.up_extmem2_lo,
3357 			meminfo.up_extmem2_hi);
3358 
3359 	seq_printf(seq, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
3360 		   meminfo.rx_pages_data[0], meminfo.free_rx_cnt,
3361 		   meminfo.rx_pages_data[1], meminfo.rx_pages_data[2]);
3362 
3363 	seq_printf(seq, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
3364 		   meminfo.tx_pages_data[0], meminfo.free_tx_cnt,
3365 		   meminfo.tx_pages_data[1], meminfo.tx_pages_data[2],
3366 		   meminfo.tx_pages_data[3]);
3367 
3368 	seq_printf(seq, "%u p-structs (%u free)\n\n",
3369 		   meminfo.p_structs, meminfo.p_structs_free_cnt);
3370 
3371 	for (i = 0; i < 4; i++)
3372 		/* For T6 these are MAC buffer groups */
3373 		seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
3374 			   i, meminfo.port_used[i], meminfo.port_alloc[i]);
3375 
3376 	for (i = 0; i < adap->params.arch.nchan; i++)
3377 		/* For T6 these are MAC buffer groups */
3378 		seq_printf(seq,
3379 			   "Loopback %d using %u pages out of %u allocated\n",
3380 			   i, meminfo.loopback_used[i],
3381 			   meminfo.loopback_alloc[i]);
3382 
3383 	return 0;
3384 }
3385 DEFINE_SHOW_ATTRIBUTE(meminfo);
3386 
3387 static int chcr_stats_show(struct seq_file *seq, void *v)
3388 {
3389 	struct adapter *adap = seq->private;
3390 
3391 	seq_puts(seq, "Chelsio Crypto Accelerator Stats \n");
3392 	seq_printf(seq, "Cipher Ops: %10u \n",
3393 		   atomic_read(&adap->chcr_stats.cipher_rqst));
3394 	seq_printf(seq, "Digest Ops: %10u \n",
3395 		   atomic_read(&adap->chcr_stats.digest_rqst));
3396 	seq_printf(seq, "Aead Ops: %10u \n",
3397 		   atomic_read(&adap->chcr_stats.aead_rqst));
3398 	seq_printf(seq, "Completion: %10u \n",
3399 		   atomic_read(&adap->chcr_stats.complete));
3400 	seq_printf(seq, "Error: %10u \n",
3401 		   atomic_read(&adap->chcr_stats.error));
3402 	seq_printf(seq, "Fallback: %10u \n",
3403 		   atomic_read(&adap->chcr_stats.fallback));
3404 	seq_printf(seq, "IPSec PDU: %10u\n",
3405 		   atomic_read(&adap->chcr_stats.ipsec_cnt));
3406 	seq_printf(seq, "TLS PDU Tx: %10u\n",
3407 		   atomic_read(&adap->chcr_stats.tls_pdu_tx));
3408 	seq_printf(seq, "TLS PDU Rx: %10u\n",
3409 		   atomic_read(&adap->chcr_stats.tls_pdu_rx));
3410 	seq_printf(seq, "TLS Keys (DDR) Count: %10u\n",
3411 		   atomic_read(&adap->chcr_stats.tls_key));
3412 #ifdef CONFIG_CHELSIO_TLS_DEVICE
3413 	seq_puts(seq, "\nChelsio KTLS Crypto Accelerator Stats\n");
3414 	seq_printf(seq, "Tx HW offload contexts added:     %20llu\n",
3415 		   atomic64_read(&adap->chcr_stats.ktls_tx_ctx));
3416 	seq_printf(seq, "Tx connection created:            %20llu\n",
3417 		   atomic64_read(&adap->chcr_stats.ktls_tx_connection_open));
3418 	seq_printf(seq, "Tx connection failed:             %20llu\n",
3419 		   atomic64_read(&adap->chcr_stats.ktls_tx_connection_fail));
3420 	seq_printf(seq, "Tx connection closed:             %20llu\n",
3421 		   atomic64_read(&adap->chcr_stats.ktls_tx_connection_close));
3422 	seq_printf(seq, "Packets passed for encryption :   %20llu\n",
3423 		   atomic64_read(&adap->chcr_stats.ktls_tx_encrypted_packets));
3424 	seq_printf(seq, "Bytes passed for encryption :     %20llu\n",
3425 		   atomic64_read(&adap->chcr_stats.ktls_tx_encrypted_bytes));
3426 	seq_printf(seq, "Tx records send:                  %20llu\n",
3427 		   atomic64_read(&adap->chcr_stats.ktls_tx_send_records));
3428 	seq_printf(seq, "Tx partial start of records:      %20llu\n",
3429 		   atomic64_read(&adap->chcr_stats.ktls_tx_start_pkts));
3430 	seq_printf(seq, "Tx partial middle of records:     %20llu\n",
3431 		   atomic64_read(&adap->chcr_stats.ktls_tx_middle_pkts));
3432 	seq_printf(seq, "Tx partial end of record:         %20llu\n",
3433 		   atomic64_read(&adap->chcr_stats.ktls_tx_end_pkts));
3434 	seq_printf(seq, "Tx complete records:              %20llu\n",
3435 		   atomic64_read(&adap->chcr_stats.ktls_tx_complete_pkts));
3436 	seq_printf(seq, "TX trim pkts :                    %20llu\n",
3437 		   atomic64_read(&adap->chcr_stats.ktls_tx_trimmed_pkts));
3438 	seq_printf(seq, "Tx out of order packets:          %20llu\n",
3439 		   atomic64_read(&adap->chcr_stats.ktls_tx_ooo));
3440 	seq_printf(seq, "Tx drop pkts before HW offload:   %20llu\n",
3441 		   atomic64_read(&adap->chcr_stats.ktls_tx_skip_no_sync_data));
3442 	seq_printf(seq, "Tx drop not synced packets:       %20llu\n",
3443 		   atomic64_read(&adap->chcr_stats.ktls_tx_drop_no_sync_data));
3444 	seq_printf(seq, "Tx drop bypass req:               %20llu\n",
3445 		   atomic64_read(&adap->chcr_stats.ktls_tx_drop_bypass_req));
3446 #endif
3447 
3448 	return 0;
3449 }
3450 DEFINE_SHOW_ATTRIBUTE(chcr_stats);
3451 
3452 #define PRINT_ADAP_STATS(string, value) \
3453 	seq_printf(seq, "%-25s %-20llu\n", (string), \
3454 		   (unsigned long long)(value))
3455 
3456 #define PRINT_CH_STATS(string, value) \
3457 do { \
3458 	seq_printf(seq, "%-25s ", (string)); \
3459 	for (i = 0; i < adap->params.arch.nchan; i++) \
3460 		seq_printf(seq, "%-20llu ", \
3461 			   (unsigned long long)stats.value[i]); \
3462 	seq_printf(seq, "\n"); \
3463 } while (0)
3464 
3465 #define PRINT_CH_STATS2(string, value) \
3466 do { \
3467 	seq_printf(seq, "%-25s ", (string)); \
3468 	for (i = 0; i < adap->params.arch.nchan; i++) \
3469 		seq_printf(seq, "%-20llu ", \
3470 			   (unsigned long long)stats[i].value); \
3471 	seq_printf(seq, "\n"); \
3472 } while (0)
3473 
3474 static void show_tcp_stats(struct seq_file *seq)
3475 {
3476 	struct adapter *adap = seq->private;
3477 	struct tp_tcp_stats v4, v6;
3478 
3479 	spin_lock(&adap->stats_lock);
3480 	t4_tp_get_tcp_stats(adap, &v4, &v6, false);
3481 	spin_unlock(&adap->stats_lock);
3482 
3483 	PRINT_ADAP_STATS("tcp_ipv4_out_rsts:", v4.tcp_out_rsts);
3484 	PRINT_ADAP_STATS("tcp_ipv4_in_segs:", v4.tcp_in_segs);
3485 	PRINT_ADAP_STATS("tcp_ipv4_out_segs:", v4.tcp_out_segs);
3486 	PRINT_ADAP_STATS("tcp_ipv4_retrans_segs:", v4.tcp_retrans_segs);
3487 	PRINT_ADAP_STATS("tcp_ipv6_out_rsts:", v6.tcp_out_rsts);
3488 	PRINT_ADAP_STATS("tcp_ipv6_in_segs:", v6.tcp_in_segs);
3489 	PRINT_ADAP_STATS("tcp_ipv6_out_segs:", v6.tcp_out_segs);
3490 	PRINT_ADAP_STATS("tcp_ipv6_retrans_segs:", v6.tcp_retrans_segs);
3491 }
3492 
3493 static void show_ddp_stats(struct seq_file *seq)
3494 {
3495 	struct adapter *adap = seq->private;
3496 	struct tp_usm_stats stats;
3497 
3498 	spin_lock(&adap->stats_lock);
3499 	t4_get_usm_stats(adap, &stats, false);
3500 	spin_unlock(&adap->stats_lock);
3501 
3502 	PRINT_ADAP_STATS("usm_ddp_frames:", stats.frames);
3503 	PRINT_ADAP_STATS("usm_ddp_octets:", stats.octets);
3504 	PRINT_ADAP_STATS("usm_ddp_drops:", stats.drops);
3505 }
3506 
3507 static void show_rdma_stats(struct seq_file *seq)
3508 {
3509 	struct adapter *adap = seq->private;
3510 	struct tp_rdma_stats stats;
3511 
3512 	spin_lock(&adap->stats_lock);
3513 	t4_tp_get_rdma_stats(adap, &stats, false);
3514 	spin_unlock(&adap->stats_lock);
3515 
3516 	PRINT_ADAP_STATS("rdma_no_rqe_mod_defer:", stats.rqe_dfr_mod);
3517 	PRINT_ADAP_STATS("rdma_no_rqe_pkt_defer:", stats.rqe_dfr_pkt);
3518 }
3519 
3520 static void show_tp_err_adapter_stats(struct seq_file *seq)
3521 {
3522 	struct adapter *adap = seq->private;
3523 	struct tp_err_stats stats;
3524 
3525 	spin_lock(&adap->stats_lock);
3526 	t4_tp_get_err_stats(adap, &stats, false);
3527 	spin_unlock(&adap->stats_lock);
3528 
3529 	PRINT_ADAP_STATS("tp_err_ofld_no_neigh:", stats.ofld_no_neigh);
3530 	PRINT_ADAP_STATS("tp_err_ofld_cong_defer:", stats.ofld_cong_defer);
3531 }
3532 
3533 static void show_cpl_stats(struct seq_file *seq)
3534 {
3535 	struct adapter *adap = seq->private;
3536 	struct tp_cpl_stats stats;
3537 	u8 i;
3538 
3539 	spin_lock(&adap->stats_lock);
3540 	t4_tp_get_cpl_stats(adap, &stats, false);
3541 	spin_unlock(&adap->stats_lock);
3542 
3543 	PRINT_CH_STATS("tp_cpl_requests:", req);
3544 	PRINT_CH_STATS("tp_cpl_responses:", rsp);
3545 }
3546 
3547 static void show_tp_err_channel_stats(struct seq_file *seq)
3548 {
3549 	struct adapter *adap = seq->private;
3550 	struct tp_err_stats stats;
3551 	u8 i;
3552 
3553 	spin_lock(&adap->stats_lock);
3554 	t4_tp_get_err_stats(adap, &stats, false);
3555 	spin_unlock(&adap->stats_lock);
3556 
3557 	PRINT_CH_STATS("tp_mac_in_errs:", mac_in_errs);
3558 	PRINT_CH_STATS("tp_hdr_in_errs:", hdr_in_errs);
3559 	PRINT_CH_STATS("tp_tcp_in_errs:", tcp_in_errs);
3560 	PRINT_CH_STATS("tp_tcp6_in_errs:", tcp6_in_errs);
3561 	PRINT_CH_STATS("tp_tnl_cong_drops:", tnl_cong_drops);
3562 	PRINT_CH_STATS("tp_tnl_tx_drops:", tnl_tx_drops);
3563 	PRINT_CH_STATS("tp_ofld_vlan_drops:", ofld_vlan_drops);
3564 	PRINT_CH_STATS("tp_ofld_chan_drops:", ofld_chan_drops);
3565 }
3566 
3567 static void show_fcoe_stats(struct seq_file *seq)
3568 {
3569 	struct adapter *adap = seq->private;
3570 	struct tp_fcoe_stats stats[NCHAN];
3571 	u8 i;
3572 
3573 	spin_lock(&adap->stats_lock);
3574 	for (i = 0; i < adap->params.arch.nchan; i++)
3575 		t4_get_fcoe_stats(adap, i, &stats[i], false);
3576 	spin_unlock(&adap->stats_lock);
3577 
3578 	PRINT_CH_STATS2("fcoe_octets_ddp", octets_ddp);
3579 	PRINT_CH_STATS2("fcoe_frames_ddp", frames_ddp);
3580 	PRINT_CH_STATS2("fcoe_frames_drop", frames_drop);
3581 }
3582 
3583 #undef PRINT_CH_STATS2
3584 #undef PRINT_CH_STATS
3585 #undef PRINT_ADAP_STATS
3586 
3587 static int tp_stats_show(struct seq_file *seq, void *v)
3588 {
3589 	struct adapter *adap = seq->private;
3590 
3591 	seq_puts(seq, "\n--------Adapter Stats--------\n");
3592 	show_tcp_stats(seq);
3593 	show_ddp_stats(seq);
3594 	show_rdma_stats(seq);
3595 	show_tp_err_adapter_stats(seq);
3596 
3597 	seq_puts(seq, "\n-------- Channel Stats --------\n");
3598 	if (adap->params.arch.nchan == NCHAN)
3599 		seq_printf(seq, "%-25s %-20s %-20s %-20s %-20s\n",
3600 			   " ", "channel 0", "channel 1",
3601 			   "channel 2", "channel 3");
3602 	else
3603 		seq_printf(seq, "%-25s %-20s %-20s\n",
3604 			   " ", "channel 0", "channel 1");
3605 	show_cpl_stats(seq);
3606 	show_tp_err_channel_stats(seq);
3607 	show_fcoe_stats(seq);
3608 
3609 	return 0;
3610 }
3611 DEFINE_SHOW_ATTRIBUTE(tp_stats);
3612 
3613 /* Add an array of Debug FS files.
3614  */
3615 void add_debugfs_files(struct adapter *adap,
3616 		       struct t4_debugfs_entry *files,
3617 		       unsigned int nfiles)
3618 {
3619 	int i;
3620 
3621 	/* debugfs support is best effort */
3622 	for (i = 0; i < nfiles; i++)
3623 		debugfs_create_file(files[i].name, files[i].mode,
3624 				    adap->debugfs_root,
3625 				    (void *)adap + files[i].data,
3626 				    files[i].ops);
3627 }
3628 
3629 int t4_setup_debugfs(struct adapter *adap)
3630 {
3631 	int i;
3632 	u32 size = 0;
3633 
3634 	static struct t4_debugfs_entry t4_debugfs_files[] = {
3635 		{ "cim_la", &cim_la_fops, 0400, 0 },
3636 		{ "cim_pif_la", &cim_pif_la_fops, 0400, 0 },
3637 		{ "cim_ma_la", &cim_ma_la_fops, 0400, 0 },
3638 		{ "cim_qcfg", &cim_qcfg_fops, 0400, 0 },
3639 		{ "clk", &clk_fops, 0400, 0 },
3640 		{ "devlog", &devlog_fops, 0400, 0 },
3641 		{ "mboxlog", &mboxlog_fops, 0400, 0 },
3642 		{ "mbox0", &mbox_debugfs_fops, 0600, 0 },
3643 		{ "mbox1", &mbox_debugfs_fops, 0600, 1 },
3644 		{ "mbox2", &mbox_debugfs_fops, 0600, 2 },
3645 		{ "mbox3", &mbox_debugfs_fops, 0600, 3 },
3646 		{ "mbox4", &mbox_debugfs_fops, 0600, 4 },
3647 		{ "mbox5", &mbox_debugfs_fops, 0600, 5 },
3648 		{ "mbox6", &mbox_debugfs_fops, 0600, 6 },
3649 		{ "mbox7", &mbox_debugfs_fops, 0600, 7 },
3650 		{ "trace0", &mps_trc_debugfs_fops, 0600, 0 },
3651 		{ "trace1", &mps_trc_debugfs_fops, 0600, 1 },
3652 		{ "trace2", &mps_trc_debugfs_fops, 0600, 2 },
3653 		{ "trace3", &mps_trc_debugfs_fops, 0600, 3 },
3654 		{ "l2t", &t4_l2t_fops, 0400, 0},
3655 		{ "mps_tcam", &mps_tcam_debugfs_fops, 0400, 0 },
3656 		{ "rss", &rss_debugfs_fops, 0400, 0 },
3657 		{ "rss_config", &rss_config_fops, 0400, 0 },
3658 		{ "rss_key", &rss_key_debugfs_fops, 0400, 0 },
3659 		{ "rss_pf_config", &rss_pf_config_debugfs_fops, 0400, 0 },
3660 		{ "rss_vf_config", &rss_vf_config_debugfs_fops, 0400, 0 },
3661 		{ "resources", &resources_fops, 0400, 0 },
3662 #ifdef CONFIG_CHELSIO_T4_DCB
3663 		{ "dcb_info", &dcb_info_debugfs_fops, 0400, 0 },
3664 #endif
3665 		{ "sge_qinfo", &sge_qinfo_debugfs_fops, 0400, 0 },
3666 		{ "ibq_tp0",  &cim_ibq_fops, 0400, 0 },
3667 		{ "ibq_tp1",  &cim_ibq_fops, 0400, 1 },
3668 		{ "ibq_ulp",  &cim_ibq_fops, 0400, 2 },
3669 		{ "ibq_sge0", &cim_ibq_fops, 0400, 3 },
3670 		{ "ibq_sge1", &cim_ibq_fops, 0400, 4 },
3671 		{ "ibq_ncsi", &cim_ibq_fops, 0400, 5 },
3672 		{ "obq_ulp0", &cim_obq_fops, 0400, 0 },
3673 		{ "obq_ulp1", &cim_obq_fops, 0400, 1 },
3674 		{ "obq_ulp2", &cim_obq_fops, 0400, 2 },
3675 		{ "obq_ulp3", &cim_obq_fops, 0400, 3 },
3676 		{ "obq_sge",  &cim_obq_fops, 0400, 4 },
3677 		{ "obq_ncsi", &cim_obq_fops, 0400, 5 },
3678 		{ "tp_la", &tp_la_fops, 0400, 0 },
3679 		{ "ulprx_la", &ulprx_la_fops, 0400, 0 },
3680 		{ "sensors", &sensors_fops, 0400, 0 },
3681 		{ "pm_stats", &pm_stats_debugfs_fops, 0400, 0 },
3682 		{ "tx_rate", &tx_rate_fops, 0400, 0 },
3683 		{ "cctrl", &cctrl_tbl_fops, 0400, 0 },
3684 #if IS_ENABLED(CONFIG_IPV6)
3685 		{ "clip_tbl", &clip_tbl_fops, 0400, 0 },
3686 #endif
3687 		{ "tids", &tid_info_fops, 0400, 0},
3688 		{ "blocked_fl", &blocked_fl_fops, 0600, 0 },
3689 		{ "meminfo", &meminfo_fops, 0400, 0 },
3690 		{ "crypto", &chcr_stats_fops, 0400, 0 },
3691 		{ "tp_stats", &tp_stats_fops, 0400, 0 },
3692 	};
3693 
3694 	/* Debug FS nodes common to all T5 and later adapters.
3695 	 */
3696 	static struct t4_debugfs_entry t5_debugfs_files[] = {
3697 		{ "obq_sge_rx_q0", &cim_obq_fops, 0400, 6 },
3698 		{ "obq_sge_rx_q1", &cim_obq_fops, 0400, 7 },
3699 	};
3700 
3701 	add_debugfs_files(adap,
3702 			  t4_debugfs_files,
3703 			  ARRAY_SIZE(t4_debugfs_files));
3704 	if (!is_t4(adap->params.chip))
3705 		add_debugfs_files(adap,
3706 				  t5_debugfs_files,
3707 				  ARRAY_SIZE(t5_debugfs_files));
3708 
3709 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
3710 	if (i & EDRAM0_ENABLE_F) {
3711 		size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3712 		add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
3713 	}
3714 	if (i & EDRAM1_ENABLE_F) {
3715 		size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3716 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
3717 	}
3718 	if (is_t5(adap->params.chip)) {
3719 		if (i & EXT_MEM0_ENABLE_F) {
3720 			size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3721 			add_debugfs_mem(adap, "mc0", MEM_MC0,
3722 					EXT_MEM0_SIZE_G(size));
3723 		}
3724 		if (i & EXT_MEM1_ENABLE_F) {
3725 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3726 			add_debugfs_mem(adap, "mc1", MEM_MC1,
3727 					EXT_MEM1_SIZE_G(size));
3728 		}
3729 	} else {
3730 		if (i & EXT_MEM_ENABLE_F) {
3731 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
3732 			add_debugfs_mem(adap, "mc", MEM_MC,
3733 					EXT_MEM_SIZE_G(size));
3734 		}
3735 
3736 		if (i & HMA_MUX_F) {
3737 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3738 			add_debugfs_mem(adap, "hma", MEM_HMA,
3739 					EXT_MEM1_SIZE_G(size));
3740 		}
3741 	}
3742 
3743 	debugfs_create_file_size("flash", 0400, adap->debugfs_root, adap,
3744 				 &flash_debugfs_fops, adap->params.sf_size);
3745 	debugfs_create_bool("use_backdoor", 0600,
3746 			    adap->debugfs_root, &adap->use_bd);
3747 	debugfs_create_bool("trace_rss", 0600,
3748 			    adap->debugfs_root, &adap->trace_rss);
3749 
3750 	return 0;
3751 }
3752