1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/seq_file.h> 36 #include <linux/debugfs.h> 37 #include <linux/string_helpers.h> 38 #include <linux/sort.h> 39 #include <linux/ctype.h> 40 41 #include "cxgb4.h" 42 #include "t4_regs.h" 43 #include "t4_values.h" 44 #include "t4fw_api.h" 45 #include "cxgb4_debugfs.h" 46 #include "clip_tbl.h" 47 #include "l2t.h" 48 #include "cudbg_if.h" 49 #include "cudbg_lib_common.h" 50 #include "cudbg_entity.h" 51 #include "cudbg_lib.h" 52 53 /* generic seq_file support for showing a table of size rows x width. */ 54 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos) 55 { 56 pos -= tb->skip_first; 57 return pos >= tb->rows ? NULL : &tb->data[pos * tb->width]; 58 } 59 60 static void *seq_tab_start(struct seq_file *seq, loff_t *pos) 61 { 62 struct seq_tab *tb = seq->private; 63 64 if (tb->skip_first && *pos == 0) 65 return SEQ_START_TOKEN; 66 67 return seq_tab_get_idx(tb, *pos); 68 } 69 70 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos) 71 { 72 v = seq_tab_get_idx(seq->private, *pos + 1); 73 if (v) 74 ++*pos; 75 return v; 76 } 77 78 static void seq_tab_stop(struct seq_file *seq, void *v) 79 { 80 } 81 82 static int seq_tab_show(struct seq_file *seq, void *v) 83 { 84 const struct seq_tab *tb = seq->private; 85 86 return tb->show(seq, v, ((char *)v - tb->data) / tb->width); 87 } 88 89 static const struct seq_operations seq_tab_ops = { 90 .start = seq_tab_start, 91 .next = seq_tab_next, 92 .stop = seq_tab_stop, 93 .show = seq_tab_show 94 }; 95 96 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows, 97 unsigned int width, unsigned int have_header, 98 int (*show)(struct seq_file *seq, void *v, int i)) 99 { 100 struct seq_tab *p; 101 102 p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width); 103 if (p) { 104 p->show = show; 105 p->rows = rows; 106 p->width = width; 107 p->skip_first = have_header != 0; 108 } 109 return p; 110 } 111 112 /* Trim the size of a seq_tab to the supplied number of rows. The operation is 113 * irreversible. 114 */ 115 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows) 116 { 117 if (new_rows > p->rows) 118 return -EINVAL; 119 p->rows = new_rows; 120 return 0; 121 } 122 123 static int cim_la_show(struct seq_file *seq, void *v, int idx) 124 { 125 if (v == SEQ_START_TOKEN) 126 seq_puts(seq, "Status Data PC LS0Stat LS0Addr " 127 " LS0Data\n"); 128 else { 129 const u32 *p = v; 130 131 seq_printf(seq, 132 " %02x %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n", 133 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 134 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 135 p[6], p[7]); 136 } 137 return 0; 138 } 139 140 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx) 141 { 142 if (v == SEQ_START_TOKEN) { 143 seq_puts(seq, "Status Data PC\n"); 144 } else { 145 const u32 *p = v; 146 147 seq_printf(seq, " %02x %08x %08x\n", p[5] & 0xff, p[6], 148 p[7]); 149 seq_printf(seq, " %02x %02x%06x %02x%06x\n", 150 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 151 p[4] & 0xff, p[5] >> 8); 152 seq_printf(seq, " %02x %x%07x %x%07x\n", (p[0] >> 4) & 0xff, 153 p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4); 154 } 155 return 0; 156 } 157 158 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx) 159 { 160 if (v == SEQ_START_TOKEN) { 161 seq_puts(seq, "Status Inst Data PC LS0Stat " 162 "LS0Addr LS0Data LS1Stat LS1Addr LS1Data\n"); 163 } else { 164 const u32 *p = v; 165 166 seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n", 167 (p[9] >> 16) & 0xff, /* Status */ 168 p[9] & 0xffff, p[8] >> 16, /* Inst */ 169 p[8] & 0xffff, p[7] >> 16, /* Data */ 170 p[7] & 0xffff, p[6] >> 16, /* PC */ 171 p[2], p[1], p[0], /* LS0 Stat, Addr and Data */ 172 p[5], p[4], p[3]); /* LS1 Stat, Addr and Data */ 173 } 174 return 0; 175 } 176 177 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx) 178 { 179 if (v == SEQ_START_TOKEN) { 180 seq_puts(seq, "Status Inst Data PC\n"); 181 } else { 182 const u32 *p = v; 183 184 seq_printf(seq, " %02x %08x %08x %08x\n", 185 p[3] & 0xff, p[2], p[1], p[0]); 186 seq_printf(seq, " %02x %02x%06x %02x%06x %02x%06x\n", 187 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 188 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 189 seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x\n", 190 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 191 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 192 p[6] >> 16); 193 } 194 return 0; 195 } 196 197 static int cim_la_open(struct inode *inode, struct file *file) 198 { 199 int ret; 200 unsigned int cfg; 201 struct seq_tab *p; 202 struct adapter *adap = inode->i_private; 203 204 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 205 if (ret) 206 return ret; 207 208 if (is_t6(adap->params.chip)) { 209 /* +1 to account for integer division of CIMLA_SIZE/10 */ 210 p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1, 211 10 * sizeof(u32), 1, 212 cfg & UPDBGLACAPTPCONLY_F ? 213 cim_la_show_pc_t6 : cim_la_show_t6); 214 } else { 215 p = seq_open_tab(file, adap->params.cim_la_size / 8, 216 8 * sizeof(u32), 1, 217 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 : 218 cim_la_show); 219 } 220 if (!p) 221 return -ENOMEM; 222 223 ret = t4_cim_read_la(adap, (u32 *)p->data, NULL); 224 if (ret) 225 seq_release_private(inode, file); 226 return ret; 227 } 228 229 static const struct file_operations cim_la_fops = { 230 .owner = THIS_MODULE, 231 .open = cim_la_open, 232 .read = seq_read, 233 .llseek = seq_lseek, 234 .release = seq_release_private 235 }; 236 237 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx) 238 { 239 const u32 *p = v; 240 241 if (v == SEQ_START_TOKEN) { 242 seq_puts(seq, "Cntl ID DataBE Addr Data\n"); 243 } else if (idx < CIM_PIFLA_SIZE) { 244 seq_printf(seq, " %02x %02x %04x %08x %08x%08x%08x%08x\n", 245 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, 246 p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]); 247 } else { 248 if (idx == CIM_PIFLA_SIZE) 249 seq_puts(seq, "\nCntl ID Data\n"); 250 seq_printf(seq, " %02x %02x %08x%08x%08x%08x\n", 251 (p[4] >> 6) & 0xff, p[4] & 0x3f, 252 p[3], p[2], p[1], p[0]); 253 } 254 return 0; 255 } 256 257 static int cim_pif_la_open(struct inode *inode, struct file *file) 258 { 259 struct seq_tab *p; 260 struct adapter *adap = inode->i_private; 261 262 p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1, 263 cim_pif_la_show); 264 if (!p) 265 return -ENOMEM; 266 267 t4_cim_read_pif_la(adap, (u32 *)p->data, 268 (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL); 269 return 0; 270 } 271 272 static const struct file_operations cim_pif_la_fops = { 273 .owner = THIS_MODULE, 274 .open = cim_pif_la_open, 275 .read = seq_read, 276 .llseek = seq_lseek, 277 .release = seq_release_private 278 }; 279 280 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx) 281 { 282 const u32 *p = v; 283 284 if (v == SEQ_START_TOKEN) { 285 seq_puts(seq, "\n"); 286 } else if (idx < CIM_MALA_SIZE) { 287 seq_printf(seq, "%02x%08x%08x%08x%08x\n", 288 p[4], p[3], p[2], p[1], p[0]); 289 } else { 290 if (idx == CIM_MALA_SIZE) 291 seq_puts(seq, 292 "\nCnt ID Tag UE Data RDY VLD\n"); 293 seq_printf(seq, "%3u %2u %x %u %08x%08x %u %u\n", 294 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 295 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 296 (p[1] >> 2) | ((p[2] & 3) << 30), 297 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 298 p[0] & 1); 299 } 300 return 0; 301 } 302 303 static int cim_ma_la_open(struct inode *inode, struct file *file) 304 { 305 struct seq_tab *p; 306 struct adapter *adap = inode->i_private; 307 308 p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1, 309 cim_ma_la_show); 310 if (!p) 311 return -ENOMEM; 312 313 t4_cim_read_ma_la(adap, (u32 *)p->data, 314 (u32 *)p->data + 5 * CIM_MALA_SIZE); 315 return 0; 316 } 317 318 static const struct file_operations cim_ma_la_fops = { 319 .owner = THIS_MODULE, 320 .open = cim_ma_la_open, 321 .read = seq_read, 322 .llseek = seq_lseek, 323 .release = seq_release_private 324 }; 325 326 static int cim_qcfg_show(struct seq_file *seq, void *v) 327 { 328 static const char * const qname[] = { 329 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", 330 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", 331 "SGE0-RX", "SGE1-RX" 332 }; 333 334 int i; 335 struct adapter *adap = seq->private; 336 u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 337 u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 338 u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))]; 339 u16 thres[CIM_NUM_IBQ]; 340 u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr; 341 u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5]; 342 u32 *p = stat; 343 int cim_num_obq = is_t4(adap->params.chip) ? 344 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 345 346 i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A : 347 UP_IBQ_0_SHADOW_RDADDR_A, 348 ARRAY_SIZE(stat), stat); 349 if (!i) { 350 if (is_t4(adap->params.chip)) { 351 i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A, 352 ARRAY_SIZE(obq_wr_t4), obq_wr_t4); 353 wr = obq_wr_t4; 354 } else { 355 i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A, 356 ARRAY_SIZE(obq_wr_t5), obq_wr_t5); 357 wr = obq_wr_t5; 358 } 359 } 360 if (i) 361 return i; 362 363 t4_read_cimq_cfg(adap, base, size, thres); 364 365 seq_printf(seq, 366 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail\n"); 367 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 368 seq_printf(seq, "%7s %5x %5u %5u %6x %4x %4u %4u %5u\n", 369 qname[i], base[i], size[i], thres[i], 370 IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]), 371 QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]), 372 QUEREMFLITS_G(p[2]) * 16); 373 for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2) 374 seq_printf(seq, "%7s %5x %5u %12x %4x %4u %4u %5u\n", 375 qname[i], base[i], size[i], 376 QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i], 377 QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]), 378 QUEREMFLITS_G(p[2]) * 16); 379 return 0; 380 } 381 382 static int cim_qcfg_open(struct inode *inode, struct file *file) 383 { 384 return single_open(file, cim_qcfg_show, inode->i_private); 385 } 386 387 static const struct file_operations cim_qcfg_fops = { 388 .owner = THIS_MODULE, 389 .open = cim_qcfg_open, 390 .read = seq_read, 391 .llseek = seq_lseek, 392 .release = single_release, 393 }; 394 395 static int cimq_show(struct seq_file *seq, void *v, int idx) 396 { 397 const u32 *p = v; 398 399 seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1], 400 p[2], p[3]); 401 return 0; 402 } 403 404 static int cim_ibq_open(struct inode *inode, struct file *file) 405 { 406 int ret; 407 struct seq_tab *p; 408 unsigned int qid = (uintptr_t)inode->i_private & 7; 409 struct adapter *adap = inode->i_private - qid; 410 411 p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show); 412 if (!p) 413 return -ENOMEM; 414 415 ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4); 416 if (ret < 0) 417 seq_release_private(inode, file); 418 else 419 ret = 0; 420 return ret; 421 } 422 423 static const struct file_operations cim_ibq_fops = { 424 .owner = THIS_MODULE, 425 .open = cim_ibq_open, 426 .read = seq_read, 427 .llseek = seq_lseek, 428 .release = seq_release_private 429 }; 430 431 static int cim_obq_open(struct inode *inode, struct file *file) 432 { 433 int ret; 434 struct seq_tab *p; 435 unsigned int qid = (uintptr_t)inode->i_private & 7; 436 struct adapter *adap = inode->i_private - qid; 437 438 p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show); 439 if (!p) 440 return -ENOMEM; 441 442 ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4); 443 if (ret < 0) { 444 seq_release_private(inode, file); 445 } else { 446 seq_tab_trim(p, ret / 4); 447 ret = 0; 448 } 449 return ret; 450 } 451 452 static const struct file_operations cim_obq_fops = { 453 .owner = THIS_MODULE, 454 .open = cim_obq_open, 455 .read = seq_read, 456 .llseek = seq_lseek, 457 .release = seq_release_private 458 }; 459 460 struct field_desc { 461 const char *name; 462 unsigned int start; 463 unsigned int width; 464 }; 465 466 static void field_desc_show(struct seq_file *seq, u64 v, 467 const struct field_desc *p) 468 { 469 char buf[32]; 470 int line_size = 0; 471 472 while (p->name) { 473 u64 mask = (1ULL << p->width) - 1; 474 int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name, 475 ((unsigned long long)v >> p->start) & mask); 476 477 if (line_size + len >= 79) { 478 line_size = 8; 479 seq_puts(seq, "\n "); 480 } 481 seq_printf(seq, "%s ", buf); 482 line_size += len + 1; 483 p++; 484 } 485 seq_putc(seq, '\n'); 486 } 487 488 static struct field_desc tp_la0[] = { 489 { "RcfOpCodeOut", 60, 4 }, 490 { "State", 56, 4 }, 491 { "WcfState", 52, 4 }, 492 { "RcfOpcSrcOut", 50, 2 }, 493 { "CRxError", 49, 1 }, 494 { "ERxError", 48, 1 }, 495 { "SanityFailed", 47, 1 }, 496 { "SpuriousMsg", 46, 1 }, 497 { "FlushInputMsg", 45, 1 }, 498 { "FlushInputCpl", 44, 1 }, 499 { "RssUpBit", 43, 1 }, 500 { "RssFilterHit", 42, 1 }, 501 { "Tid", 32, 10 }, 502 { "InitTcb", 31, 1 }, 503 { "LineNumber", 24, 7 }, 504 { "Emsg", 23, 1 }, 505 { "EdataOut", 22, 1 }, 506 { "Cmsg", 21, 1 }, 507 { "CdataOut", 20, 1 }, 508 { "EreadPdu", 19, 1 }, 509 { "CreadPdu", 18, 1 }, 510 { "TunnelPkt", 17, 1 }, 511 { "RcfPeerFin", 16, 1 }, 512 { "RcfReasonOut", 12, 4 }, 513 { "TxCchannel", 10, 2 }, 514 { "RcfTxChannel", 8, 2 }, 515 { "RxEchannel", 6, 2 }, 516 { "RcfRxChannel", 5, 1 }, 517 { "RcfDataOutSrdy", 4, 1 }, 518 { "RxDvld", 3, 1 }, 519 { "RxOoDvld", 2, 1 }, 520 { "RxCongestion", 1, 1 }, 521 { "TxCongestion", 0, 1 }, 522 { NULL } 523 }; 524 525 static int tp_la_show(struct seq_file *seq, void *v, int idx) 526 { 527 const u64 *p = v; 528 529 field_desc_show(seq, *p, tp_la0); 530 return 0; 531 } 532 533 static int tp_la_show2(struct seq_file *seq, void *v, int idx) 534 { 535 const u64 *p = v; 536 537 if (idx) 538 seq_putc(seq, '\n'); 539 field_desc_show(seq, p[0], tp_la0); 540 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 541 field_desc_show(seq, p[1], tp_la0); 542 return 0; 543 } 544 545 static int tp_la_show3(struct seq_file *seq, void *v, int idx) 546 { 547 static struct field_desc tp_la1[] = { 548 { "CplCmdIn", 56, 8 }, 549 { "CplCmdOut", 48, 8 }, 550 { "ESynOut", 47, 1 }, 551 { "EAckOut", 46, 1 }, 552 { "EFinOut", 45, 1 }, 553 { "ERstOut", 44, 1 }, 554 { "SynIn", 43, 1 }, 555 { "AckIn", 42, 1 }, 556 { "FinIn", 41, 1 }, 557 { "RstIn", 40, 1 }, 558 { "DataIn", 39, 1 }, 559 { "DataInVld", 38, 1 }, 560 { "PadIn", 37, 1 }, 561 { "RxBufEmpty", 36, 1 }, 562 { "RxDdp", 35, 1 }, 563 { "RxFbCongestion", 34, 1 }, 564 { "TxFbCongestion", 33, 1 }, 565 { "TxPktSumSrdy", 32, 1 }, 566 { "RcfUlpType", 28, 4 }, 567 { "Eread", 27, 1 }, 568 { "Ebypass", 26, 1 }, 569 { "Esave", 25, 1 }, 570 { "Static0", 24, 1 }, 571 { "Cread", 23, 1 }, 572 { "Cbypass", 22, 1 }, 573 { "Csave", 21, 1 }, 574 { "CPktOut", 20, 1 }, 575 { "RxPagePoolFull", 18, 2 }, 576 { "RxLpbkPkt", 17, 1 }, 577 { "TxLpbkPkt", 16, 1 }, 578 { "RxVfValid", 15, 1 }, 579 { "SynLearned", 14, 1 }, 580 { "SetDelEntry", 13, 1 }, 581 { "SetInvEntry", 12, 1 }, 582 { "CpcmdDvld", 11, 1 }, 583 { "CpcmdSave", 10, 1 }, 584 { "RxPstructsFull", 8, 2 }, 585 { "EpcmdDvld", 7, 1 }, 586 { "EpcmdFlush", 6, 1 }, 587 { "EpcmdTrimPrefix", 5, 1 }, 588 { "EpcmdTrimPostfix", 4, 1 }, 589 { "ERssIp4Pkt", 3, 1 }, 590 { "ERssIp6Pkt", 2, 1 }, 591 { "ERssTcpUdpPkt", 1, 1 }, 592 { "ERssFceFipPkt", 0, 1 }, 593 { NULL } 594 }; 595 static struct field_desc tp_la2[] = { 596 { "CplCmdIn", 56, 8 }, 597 { "MpsVfVld", 55, 1 }, 598 { "MpsPf", 52, 3 }, 599 { "MpsVf", 44, 8 }, 600 { "SynIn", 43, 1 }, 601 { "AckIn", 42, 1 }, 602 { "FinIn", 41, 1 }, 603 { "RstIn", 40, 1 }, 604 { "DataIn", 39, 1 }, 605 { "DataInVld", 38, 1 }, 606 { "PadIn", 37, 1 }, 607 { "RxBufEmpty", 36, 1 }, 608 { "RxDdp", 35, 1 }, 609 { "RxFbCongestion", 34, 1 }, 610 { "TxFbCongestion", 33, 1 }, 611 { "TxPktSumSrdy", 32, 1 }, 612 { "RcfUlpType", 28, 4 }, 613 { "Eread", 27, 1 }, 614 { "Ebypass", 26, 1 }, 615 { "Esave", 25, 1 }, 616 { "Static0", 24, 1 }, 617 { "Cread", 23, 1 }, 618 { "Cbypass", 22, 1 }, 619 { "Csave", 21, 1 }, 620 { "CPktOut", 20, 1 }, 621 { "RxPagePoolFull", 18, 2 }, 622 { "RxLpbkPkt", 17, 1 }, 623 { "TxLpbkPkt", 16, 1 }, 624 { "RxVfValid", 15, 1 }, 625 { "SynLearned", 14, 1 }, 626 { "SetDelEntry", 13, 1 }, 627 { "SetInvEntry", 12, 1 }, 628 { "CpcmdDvld", 11, 1 }, 629 { "CpcmdSave", 10, 1 }, 630 { "RxPstructsFull", 8, 2 }, 631 { "EpcmdDvld", 7, 1 }, 632 { "EpcmdFlush", 6, 1 }, 633 { "EpcmdTrimPrefix", 5, 1 }, 634 { "EpcmdTrimPostfix", 4, 1 }, 635 { "ERssIp4Pkt", 3, 1 }, 636 { "ERssIp6Pkt", 2, 1 }, 637 { "ERssTcpUdpPkt", 1, 1 }, 638 { "ERssFceFipPkt", 0, 1 }, 639 { NULL } 640 }; 641 const u64 *p = v; 642 643 if (idx) 644 seq_putc(seq, '\n'); 645 field_desc_show(seq, p[0], tp_la0); 646 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 647 field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1); 648 return 0; 649 } 650 651 static int tp_la_open(struct inode *inode, struct file *file) 652 { 653 struct seq_tab *p; 654 struct adapter *adap = inode->i_private; 655 656 switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) { 657 case 2: 658 p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0, 659 tp_la_show2); 660 break; 661 case 3: 662 p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0, 663 tp_la_show3); 664 break; 665 default: 666 p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show); 667 } 668 if (!p) 669 return -ENOMEM; 670 671 t4_tp_read_la(adap, (u64 *)p->data, NULL); 672 return 0; 673 } 674 675 static ssize_t tp_la_write(struct file *file, const char __user *buf, 676 size_t count, loff_t *pos) 677 { 678 int err; 679 char s[32]; 680 unsigned long val; 681 size_t size = min(sizeof(s) - 1, count); 682 struct adapter *adap = file_inode(file)->i_private; 683 684 if (copy_from_user(s, buf, size)) 685 return -EFAULT; 686 s[size] = '\0'; 687 err = kstrtoul(s, 0, &val); 688 if (err) 689 return err; 690 if (val > 0xffff) 691 return -EINVAL; 692 adap->params.tp.la_mask = val << 16; 693 t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U, 694 adap->params.tp.la_mask); 695 return count; 696 } 697 698 static const struct file_operations tp_la_fops = { 699 .owner = THIS_MODULE, 700 .open = tp_la_open, 701 .read = seq_read, 702 .llseek = seq_lseek, 703 .release = seq_release_private, 704 .write = tp_la_write 705 }; 706 707 static int ulprx_la_show(struct seq_file *seq, void *v, int idx) 708 { 709 const u32 *p = v; 710 711 if (v == SEQ_START_TOKEN) 712 seq_puts(seq, " Pcmd Type Message" 713 " Data\n"); 714 else 715 seq_printf(seq, "%08x%08x %4x %08x %08x%08x%08x%08x\n", 716 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 717 return 0; 718 } 719 720 static int ulprx_la_open(struct inode *inode, struct file *file) 721 { 722 struct seq_tab *p; 723 struct adapter *adap = inode->i_private; 724 725 p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1, 726 ulprx_la_show); 727 if (!p) 728 return -ENOMEM; 729 730 t4_ulprx_read_la(adap, (u32 *)p->data); 731 return 0; 732 } 733 734 static const struct file_operations ulprx_la_fops = { 735 .owner = THIS_MODULE, 736 .open = ulprx_la_open, 737 .read = seq_read, 738 .llseek = seq_lseek, 739 .release = seq_release_private 740 }; 741 742 /* Show the PM memory stats. These stats include: 743 * 744 * TX: 745 * Read: memory read operation 746 * Write Bypass: cut-through 747 * Bypass + mem: cut-through and save copy 748 * 749 * RX: 750 * Read: memory read 751 * Write Bypass: cut-through 752 * Flush: payload trim or drop 753 */ 754 static int pm_stats_show(struct seq_file *seq, void *v) 755 { 756 static const char * const tx_pm_stats[] = { 757 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:" 758 }; 759 static const char * const rx_pm_stats[] = { 760 "Read:", "Write bypass:", "Write mem:", "Flush:" 761 }; 762 763 int i; 764 u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS]; 765 u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS]; 766 struct adapter *adap = seq->private; 767 768 t4_pmtx_get_stats(adap, tx_cnt, tx_cyc); 769 t4_pmrx_get_stats(adap, rx_cnt, rx_cyc); 770 771 seq_printf(seq, "%13s %10s %20s\n", " ", "Tx pcmds", "Tx bytes"); 772 for (i = 0; i < PM_NSTATS - 1; i++) 773 seq_printf(seq, "%-13s %10u %20llu\n", 774 tx_pm_stats[i], tx_cnt[i], tx_cyc[i]); 775 776 seq_printf(seq, "%13s %10s %20s\n", " ", "Rx pcmds", "Rx bytes"); 777 for (i = 0; i < PM_NSTATS - 1; i++) 778 seq_printf(seq, "%-13s %10u %20llu\n", 779 rx_pm_stats[i], rx_cnt[i], rx_cyc[i]); 780 781 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 782 /* In T5 the granularity of the total wait is too fine. 783 * It is not useful as it reaches the max value too fast. 784 * Hence display this Input FIFO wait for T6 onwards. 785 */ 786 seq_printf(seq, "%13s %10s %20s\n", 787 " ", "Total wait", "Total Occupancy"); 788 seq_printf(seq, "Tx FIFO wait %10u %20llu\n", 789 tx_cnt[i], tx_cyc[i]); 790 seq_printf(seq, "Rx FIFO wait %10u %20llu\n", 791 rx_cnt[i], rx_cyc[i]); 792 793 /* Skip index 6 as there is nothing useful ihere */ 794 i += 2; 795 796 /* At index 7, a new stat for read latency (count, total wait) 797 * is added. 798 */ 799 seq_printf(seq, "%13s %10s %20s\n", 800 " ", "Reads", "Total wait"); 801 seq_printf(seq, "Tx latency %10u %20llu\n", 802 tx_cnt[i], tx_cyc[i]); 803 seq_printf(seq, "Rx latency %10u %20llu\n", 804 rx_cnt[i], rx_cyc[i]); 805 } 806 return 0; 807 } 808 809 static int pm_stats_open(struct inode *inode, struct file *file) 810 { 811 return single_open(file, pm_stats_show, inode->i_private); 812 } 813 814 static ssize_t pm_stats_clear(struct file *file, const char __user *buf, 815 size_t count, loff_t *pos) 816 { 817 struct adapter *adap = file_inode(file)->i_private; 818 819 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0); 820 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0); 821 return count; 822 } 823 824 static const struct file_operations pm_stats_debugfs_fops = { 825 .owner = THIS_MODULE, 826 .open = pm_stats_open, 827 .read = seq_read, 828 .llseek = seq_lseek, 829 .release = single_release, 830 .write = pm_stats_clear 831 }; 832 833 static int tx_rate_show(struct seq_file *seq, void *v) 834 { 835 u64 nrate[NCHAN], orate[NCHAN]; 836 struct adapter *adap = seq->private; 837 838 t4_get_chan_txrate(adap, nrate, orate); 839 if (adap->params.arch.nchan == NCHAN) { 840 seq_puts(seq, " channel 0 channel 1 " 841 "channel 2 channel 3\n"); 842 seq_printf(seq, "NIC B/s: %10llu %10llu %10llu %10llu\n", 843 (unsigned long long)nrate[0], 844 (unsigned long long)nrate[1], 845 (unsigned long long)nrate[2], 846 (unsigned long long)nrate[3]); 847 seq_printf(seq, "Offload B/s: %10llu %10llu %10llu %10llu\n", 848 (unsigned long long)orate[0], 849 (unsigned long long)orate[1], 850 (unsigned long long)orate[2], 851 (unsigned long long)orate[3]); 852 } else { 853 seq_puts(seq, " channel 0 channel 1\n"); 854 seq_printf(seq, "NIC B/s: %10llu %10llu\n", 855 (unsigned long long)nrate[0], 856 (unsigned long long)nrate[1]); 857 seq_printf(seq, "Offload B/s: %10llu %10llu\n", 858 (unsigned long long)orate[0], 859 (unsigned long long)orate[1]); 860 } 861 return 0; 862 } 863 864 DEFINE_SIMPLE_DEBUGFS_FILE(tx_rate); 865 866 static int cctrl_tbl_show(struct seq_file *seq, void *v) 867 { 868 static const char * const dec_fac[] = { 869 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 870 "0.9375" }; 871 872 int i; 873 u16 (*incr)[NCCTRL_WIN]; 874 struct adapter *adap = seq->private; 875 876 incr = kmalloc_array(NMTUS, sizeof(*incr), GFP_KERNEL); 877 if (!incr) 878 return -ENOMEM; 879 880 t4_read_cong_tbl(adap, incr); 881 882 for (i = 0; i < NCCTRL_WIN; ++i) { 883 seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 884 incr[0][i], incr[1][i], incr[2][i], incr[3][i], 885 incr[4][i], incr[5][i], incr[6][i], incr[7][i]); 886 seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 887 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 888 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 889 adap->params.a_wnd[i], 890 dec_fac[adap->params.b_wnd[i]]); 891 } 892 893 kfree(incr); 894 return 0; 895 } 896 897 DEFINE_SIMPLE_DEBUGFS_FILE(cctrl_tbl); 898 899 /* Format a value in a unit that differs from the value's native unit by the 900 * given factor. 901 */ 902 static char *unit_conv(char *buf, size_t len, unsigned int val, 903 unsigned int factor) 904 { 905 unsigned int rem = val % factor; 906 907 if (rem == 0) { 908 snprintf(buf, len, "%u", val / factor); 909 } else { 910 while (rem % 10 == 0) 911 rem /= 10; 912 snprintf(buf, len, "%u.%u", val / factor, rem); 913 } 914 return buf; 915 } 916 917 static int clk_show(struct seq_file *seq, void *v) 918 { 919 char buf[32]; 920 struct adapter *adap = seq->private; 921 unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk; /* in ps */ 922 u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 923 unsigned int tre = TIMERRESOLUTION_G(res); 924 unsigned int dack_re = DELAYEDACKRESOLUTION_G(res); 925 unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */ 926 927 seq_printf(seq, "Core clock period: %s ns\n", 928 unit_conv(buf, sizeof(buf), cclk_ps, 1000)); 929 seq_printf(seq, "TP timer tick: %s us\n", 930 unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000)); 931 seq_printf(seq, "TCP timestamp tick: %s us\n", 932 unit_conv(buf, sizeof(buf), 933 (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000)); 934 seq_printf(seq, "DACK tick: %s us\n", 935 unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000)); 936 seq_printf(seq, "DACK timer: %u us\n", 937 ((cclk_ps << dack_re) / 1000000) * 938 t4_read_reg(adap, TP_DACK_TIMER_A)); 939 seq_printf(seq, "Retransmit min: %llu us\n", 940 tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A)); 941 seq_printf(seq, "Retransmit max: %llu us\n", 942 tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A)); 943 seq_printf(seq, "Persist timer min: %llu us\n", 944 tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A)); 945 seq_printf(seq, "Persist timer max: %llu us\n", 946 tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A)); 947 seq_printf(seq, "Keepalive idle timer: %llu us\n", 948 tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A)); 949 seq_printf(seq, "Keepalive interval: %llu us\n", 950 tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A)); 951 seq_printf(seq, "Initial SRTT: %llu us\n", 952 tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A))); 953 seq_printf(seq, "FINWAIT2 timer: %llu us\n", 954 tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A)); 955 956 return 0; 957 } 958 959 DEFINE_SIMPLE_DEBUGFS_FILE(clk); 960 961 /* Firmware Device Log dump. */ 962 static const char * const devlog_level_strings[] = { 963 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 964 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 965 [FW_DEVLOG_LEVEL_ERR] = "ERR", 966 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 967 [FW_DEVLOG_LEVEL_INFO] = "INFO", 968 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 969 }; 970 971 static const char * const devlog_facility_strings[] = { 972 [FW_DEVLOG_FACILITY_CORE] = "CORE", 973 [FW_DEVLOG_FACILITY_CF] = "CF", 974 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 975 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 976 [FW_DEVLOG_FACILITY_RES] = "RES", 977 [FW_DEVLOG_FACILITY_HW] = "HW", 978 [FW_DEVLOG_FACILITY_FLR] = "FLR", 979 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 980 [FW_DEVLOG_FACILITY_PHY] = "PHY", 981 [FW_DEVLOG_FACILITY_MAC] = "MAC", 982 [FW_DEVLOG_FACILITY_PORT] = "PORT", 983 [FW_DEVLOG_FACILITY_VI] = "VI", 984 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 985 [FW_DEVLOG_FACILITY_ACL] = "ACL", 986 [FW_DEVLOG_FACILITY_TM] = "TM", 987 [FW_DEVLOG_FACILITY_QFC] = "QFC", 988 [FW_DEVLOG_FACILITY_DCB] = "DCB", 989 [FW_DEVLOG_FACILITY_ETH] = "ETH", 990 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 991 [FW_DEVLOG_FACILITY_RI] = "RI", 992 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 993 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 994 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 995 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE" 996 }; 997 998 /* Information gathered by Device Log Open routine for the display routine. 999 */ 1000 struct devlog_info { 1001 unsigned int nentries; /* number of entries in log[] */ 1002 unsigned int first; /* first [temporal] entry in log[] */ 1003 struct fw_devlog_e log[0]; /* Firmware Device Log */ 1004 }; 1005 1006 /* Dump a Firmaware Device Log entry. 1007 */ 1008 static int devlog_show(struct seq_file *seq, void *v) 1009 { 1010 if (v == SEQ_START_TOKEN) 1011 seq_printf(seq, "%10s %15s %8s %8s %s\n", 1012 "Seq#", "Tstamp", "Level", "Facility", "Message"); 1013 else { 1014 struct devlog_info *dinfo = seq->private; 1015 int fidx = (uintptr_t)v - 2; 1016 unsigned long index; 1017 struct fw_devlog_e *e; 1018 1019 /* Get a pointer to the log entry to display. Skip unused log 1020 * entries. 1021 */ 1022 index = dinfo->first + fidx; 1023 if (index >= dinfo->nentries) 1024 index -= dinfo->nentries; 1025 e = &dinfo->log[index]; 1026 if (e->timestamp == 0) 1027 return 0; 1028 1029 /* Print the message. This depends on the firmware using 1030 * exactly the same formating strings as the kernel so we may 1031 * eventually have to put a format interpreter in here ... 1032 */ 1033 seq_printf(seq, "%10d %15llu %8s %8s ", 1034 be32_to_cpu(e->seqno), 1035 be64_to_cpu(e->timestamp), 1036 (e->level < ARRAY_SIZE(devlog_level_strings) 1037 ? devlog_level_strings[e->level] 1038 : "UNKNOWN"), 1039 (e->facility < ARRAY_SIZE(devlog_facility_strings) 1040 ? devlog_facility_strings[e->facility] 1041 : "UNKNOWN")); 1042 seq_printf(seq, e->fmt, 1043 be32_to_cpu(e->params[0]), 1044 be32_to_cpu(e->params[1]), 1045 be32_to_cpu(e->params[2]), 1046 be32_to_cpu(e->params[3]), 1047 be32_to_cpu(e->params[4]), 1048 be32_to_cpu(e->params[5]), 1049 be32_to_cpu(e->params[6]), 1050 be32_to_cpu(e->params[7])); 1051 } 1052 return 0; 1053 } 1054 1055 /* Sequential File Operations for Device Log. 1056 */ 1057 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos) 1058 { 1059 if (pos > dinfo->nentries) 1060 return NULL; 1061 1062 return (void *)(uintptr_t)(pos + 1); 1063 } 1064 1065 static void *devlog_start(struct seq_file *seq, loff_t *pos) 1066 { 1067 struct devlog_info *dinfo = seq->private; 1068 1069 return (*pos 1070 ? devlog_get_idx(dinfo, *pos) 1071 : SEQ_START_TOKEN); 1072 } 1073 1074 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos) 1075 { 1076 struct devlog_info *dinfo = seq->private; 1077 1078 (*pos)++; 1079 return devlog_get_idx(dinfo, *pos); 1080 } 1081 1082 static void devlog_stop(struct seq_file *seq, void *v) 1083 { 1084 } 1085 1086 static const struct seq_operations devlog_seq_ops = { 1087 .start = devlog_start, 1088 .next = devlog_next, 1089 .stop = devlog_stop, 1090 .show = devlog_show 1091 }; 1092 1093 /* Set up for reading the firmware's device log. We read the entire log here 1094 * and then display it incrementally in devlog_show(). 1095 */ 1096 static int devlog_open(struct inode *inode, struct file *file) 1097 { 1098 struct adapter *adap = inode->i_private; 1099 struct devlog_params *dparams = &adap->params.devlog; 1100 struct devlog_info *dinfo; 1101 unsigned int index; 1102 u32 fseqno; 1103 int ret; 1104 1105 /* If we don't know where the log is we can't do anything. 1106 */ 1107 if (dparams->start == 0) 1108 return -ENXIO; 1109 1110 /* Allocate the space to read in the firmware's device log and set up 1111 * for the iterated call to our display function. 1112 */ 1113 dinfo = __seq_open_private(file, &devlog_seq_ops, 1114 sizeof(*dinfo) + dparams->size); 1115 if (!dinfo) 1116 return -ENOMEM; 1117 1118 /* Record the basic log buffer information and read in the raw log. 1119 */ 1120 dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e)); 1121 dinfo->first = 0; 1122 spin_lock(&adap->win0_lock); 1123 ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype, 1124 dparams->start, dparams->size, (__be32 *)dinfo->log, 1125 T4_MEMORY_READ); 1126 spin_unlock(&adap->win0_lock); 1127 if (ret) { 1128 seq_release_private(inode, file); 1129 return ret; 1130 } 1131 1132 /* Find the earliest (lowest Sequence Number) log entry in the 1133 * circular Device Log. 1134 */ 1135 for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) { 1136 struct fw_devlog_e *e = &dinfo->log[index]; 1137 __u32 seqno; 1138 1139 if (e->timestamp == 0) 1140 continue; 1141 1142 seqno = be32_to_cpu(e->seqno); 1143 if (seqno < fseqno) { 1144 fseqno = seqno; 1145 dinfo->first = index; 1146 } 1147 } 1148 return 0; 1149 } 1150 1151 static const struct file_operations devlog_fops = { 1152 .owner = THIS_MODULE, 1153 .open = devlog_open, 1154 .read = seq_read, 1155 .llseek = seq_lseek, 1156 .release = seq_release_private 1157 }; 1158 1159 /* Show Firmware Mailbox Command/Reply Log 1160 * 1161 * Note that we don't do any locking when dumping the Firmware Mailbox Log so 1162 * it's possible that we can catch things during a log update and therefore 1163 * see partially corrupted log entries. But it's probably Good Enough(tm). 1164 * If we ever decide that we want to make sure that we're dumping a coherent 1165 * log, we'd need to perform locking in the mailbox logging and in 1166 * mboxlog_open() where we'd need to grab the entire mailbox log in one go 1167 * like we do for the Firmware Device Log. 1168 */ 1169 static int mboxlog_show(struct seq_file *seq, void *v) 1170 { 1171 struct adapter *adapter = seq->private; 1172 struct mbox_cmd_log *log = adapter->mbox_log; 1173 struct mbox_cmd *entry; 1174 int entry_idx, i; 1175 1176 if (v == SEQ_START_TOKEN) { 1177 seq_printf(seq, 1178 "%10s %15s %5s %5s %s\n", 1179 "Seq#", "Tstamp", "Atime", "Etime", 1180 "Command/Reply"); 1181 return 0; 1182 } 1183 1184 entry_idx = log->cursor + ((uintptr_t)v - 2); 1185 if (entry_idx >= log->size) 1186 entry_idx -= log->size; 1187 entry = mbox_cmd_log_entry(log, entry_idx); 1188 1189 /* skip over unused entries */ 1190 if (entry->timestamp == 0) 1191 return 0; 1192 1193 seq_printf(seq, "%10u %15llu %5d %5d", 1194 entry->seqno, entry->timestamp, 1195 entry->access, entry->execute); 1196 for (i = 0; i < MBOX_LEN / 8; i++) { 1197 u64 flit = entry->cmd[i]; 1198 u32 hi = (u32)(flit >> 32); 1199 u32 lo = (u32)flit; 1200 1201 seq_printf(seq, " %08x %08x", hi, lo); 1202 } 1203 seq_puts(seq, "\n"); 1204 return 0; 1205 } 1206 1207 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos) 1208 { 1209 struct adapter *adapter = seq->private; 1210 struct mbox_cmd_log *log = adapter->mbox_log; 1211 1212 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL); 1213 } 1214 1215 static void *mboxlog_start(struct seq_file *seq, loff_t *pos) 1216 { 1217 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN; 1218 } 1219 1220 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos) 1221 { 1222 ++*pos; 1223 return mboxlog_get_idx(seq, *pos); 1224 } 1225 1226 static void mboxlog_stop(struct seq_file *seq, void *v) 1227 { 1228 } 1229 1230 static const struct seq_operations mboxlog_seq_ops = { 1231 .start = mboxlog_start, 1232 .next = mboxlog_next, 1233 .stop = mboxlog_stop, 1234 .show = mboxlog_show 1235 }; 1236 1237 static int mboxlog_open(struct inode *inode, struct file *file) 1238 { 1239 int res = seq_open(file, &mboxlog_seq_ops); 1240 1241 if (!res) { 1242 struct seq_file *seq = file->private_data; 1243 1244 seq->private = inode->i_private; 1245 } 1246 return res; 1247 } 1248 1249 static const struct file_operations mboxlog_fops = { 1250 .owner = THIS_MODULE, 1251 .open = mboxlog_open, 1252 .read = seq_read, 1253 .llseek = seq_lseek, 1254 .release = seq_release, 1255 }; 1256 1257 static int mbox_show(struct seq_file *seq, void *v) 1258 { 1259 static const char * const owner[] = { "none", "FW", "driver", 1260 "unknown", "<unread>" }; 1261 1262 int i; 1263 unsigned int mbox = (uintptr_t)seq->private & 7; 1264 struct adapter *adap = seq->private - mbox; 1265 void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 1266 1267 /* For T4 we don't have a shadow copy of the Mailbox Control register. 1268 * And since reading that real register causes a side effect of 1269 * granting ownership, we're best of simply not reading it at all. 1270 */ 1271 if (is_t4(adap->params.chip)) { 1272 i = 4; /* index of "<unread>" */ 1273 } else { 1274 unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A; 1275 void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg); 1276 1277 i = MBOWNER_G(readl(ctrl)); 1278 } 1279 1280 seq_printf(seq, "mailbox owned by %s\n\n", owner[i]); 1281 1282 for (i = 0; i < MBOX_LEN; i += 8) 1283 seq_printf(seq, "%016llx\n", 1284 (unsigned long long)readq(addr + i)); 1285 return 0; 1286 } 1287 1288 static int mbox_open(struct inode *inode, struct file *file) 1289 { 1290 return single_open(file, mbox_show, inode->i_private); 1291 } 1292 1293 static ssize_t mbox_write(struct file *file, const char __user *buf, 1294 size_t count, loff_t *pos) 1295 { 1296 int i; 1297 char c = '\n', s[256]; 1298 unsigned long long data[8]; 1299 const struct inode *ino; 1300 unsigned int mbox; 1301 struct adapter *adap; 1302 void __iomem *addr; 1303 void __iomem *ctrl; 1304 1305 if (count > sizeof(s) - 1 || !count) 1306 return -EINVAL; 1307 if (copy_from_user(s, buf, count)) 1308 return -EFAULT; 1309 s[count] = '\0'; 1310 1311 if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0], 1312 &data[1], &data[2], &data[3], &data[4], &data[5], &data[6], 1313 &data[7], &c) < 8 || c != '\n') 1314 return -EINVAL; 1315 1316 ino = file_inode(file); 1317 mbox = (uintptr_t)ino->i_private & 7; 1318 adap = ino->i_private - mbox; 1319 addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 1320 ctrl = addr + MBOX_LEN; 1321 1322 if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL) 1323 return -EBUSY; 1324 1325 for (i = 0; i < 8; i++) 1326 writeq(data[i], addr + 8 * i); 1327 1328 writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl); 1329 return count; 1330 } 1331 1332 static const struct file_operations mbox_debugfs_fops = { 1333 .owner = THIS_MODULE, 1334 .open = mbox_open, 1335 .read = seq_read, 1336 .llseek = seq_lseek, 1337 .release = single_release, 1338 .write = mbox_write 1339 }; 1340 1341 static int mps_trc_show(struct seq_file *seq, void *v) 1342 { 1343 int enabled, i; 1344 struct trace_params tp; 1345 unsigned int trcidx = (uintptr_t)seq->private & 3; 1346 struct adapter *adap = seq->private - trcidx; 1347 1348 t4_get_trace_filter(adap, &tp, trcidx, &enabled); 1349 if (!enabled) { 1350 seq_puts(seq, "tracer is disabled\n"); 1351 return 0; 1352 } 1353 1354 if (tp.skip_ofst * 8 >= TRACE_LEN) { 1355 dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n"); 1356 return -EINVAL; 1357 } 1358 if (tp.port < 8) { 1359 i = adap->chan_map[tp.port & 3]; 1360 if (i >= MAX_NPORTS) { 1361 dev_err(adap->pdev_dev, "tracer %u is assigned " 1362 "to non-existing port\n", trcidx); 1363 return -EINVAL; 1364 } 1365 seq_printf(seq, "tracer is capturing %s %s, ", 1366 adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx"); 1367 } else 1368 seq_printf(seq, "tracer is capturing loopback %d, ", 1369 tp.port - 8); 1370 seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len, 1371 tp.min_len); 1372 seq_printf(seq, "packets captured %smatch filter\n", 1373 tp.invert ? "do not " : ""); 1374 1375 if (tp.skip_ofst) { 1376 seq_puts(seq, "filter pattern: "); 1377 for (i = 0; i < tp.skip_ofst * 2; i += 2) 1378 seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]); 1379 seq_putc(seq, '/'); 1380 for (i = 0; i < tp.skip_ofst * 2; i += 2) 1381 seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]); 1382 seq_puts(seq, "@0\n"); 1383 } 1384 1385 seq_puts(seq, "filter pattern: "); 1386 for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2) 1387 seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]); 1388 seq_putc(seq, '/'); 1389 for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2) 1390 seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]); 1391 seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8); 1392 return 0; 1393 } 1394 1395 static int mps_trc_open(struct inode *inode, struct file *file) 1396 { 1397 return single_open(file, mps_trc_show, inode->i_private); 1398 } 1399 1400 static unsigned int xdigit2int(unsigned char c) 1401 { 1402 return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10; 1403 } 1404 1405 #define TRC_PORT_NONE 0xff 1406 #define TRC_RSS_ENABLE 0x33 1407 #define TRC_RSS_DISABLE 0x13 1408 1409 /* Set an MPS trace filter. Syntax is: 1410 * 1411 * disable 1412 * 1413 * to disable tracing, or 1414 * 1415 * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]... 1416 * 1417 * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one 1418 * of the NIC's response qid obtained from sge_qinfo and pattern has the form 1419 * 1420 * <pattern data>[/<pattern mask>][@<anchor>] 1421 * 1422 * Up to 2 filter patterns can be specified. If 2 are supplied the first one 1423 * must be anchored at 0. An omitted mask is taken as a mask of 1s, an omitted 1424 * anchor is taken as 0. 1425 */ 1426 static ssize_t mps_trc_write(struct file *file, const char __user *buf, 1427 size_t count, loff_t *pos) 1428 { 1429 int i, enable, ret; 1430 u32 *data, *mask; 1431 struct trace_params tp; 1432 const struct inode *ino; 1433 unsigned int trcidx; 1434 char *s, *p, *word, *end; 1435 struct adapter *adap; 1436 u32 j; 1437 1438 ino = file_inode(file); 1439 trcidx = (uintptr_t)ino->i_private & 3; 1440 adap = ino->i_private - trcidx; 1441 1442 /* Don't accept input more than 1K, can't be anything valid except lots 1443 * of whitespace. Well, use less. 1444 */ 1445 if (count > 1024) 1446 return -EFBIG; 1447 p = s = kzalloc(count + 1, GFP_USER); 1448 if (!s) 1449 return -ENOMEM; 1450 if (copy_from_user(s, buf, count)) { 1451 count = -EFAULT; 1452 goto out; 1453 } 1454 1455 if (s[count - 1] == '\n') 1456 s[count - 1] = '\0'; 1457 1458 enable = strcmp("disable", s) != 0; 1459 if (!enable) 1460 goto apply; 1461 1462 /* enable or disable trace multi rss filter */ 1463 if (adap->trace_rss) 1464 t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE); 1465 else 1466 t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE); 1467 1468 memset(&tp, 0, sizeof(tp)); 1469 tp.port = TRC_PORT_NONE; 1470 i = 0; /* counts pattern nibbles */ 1471 1472 while (p) { 1473 while (isspace(*p)) 1474 p++; 1475 word = strsep(&p, " "); 1476 if (!*word) 1477 break; 1478 1479 if (!strncmp(word, "qid=", 4)) { 1480 end = (char *)word + 4; 1481 ret = kstrtouint(end, 10, &j); 1482 if (ret) 1483 goto out; 1484 if (!adap->trace_rss) { 1485 t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j); 1486 continue; 1487 } 1488 1489 switch (trcidx) { 1490 case 0: 1491 t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j); 1492 break; 1493 case 1: 1494 t4_write_reg(adap, 1495 MPS_TRC_FILTER1_RSS_CONTROL_A, j); 1496 break; 1497 case 2: 1498 t4_write_reg(adap, 1499 MPS_TRC_FILTER2_RSS_CONTROL_A, j); 1500 break; 1501 case 3: 1502 t4_write_reg(adap, 1503 MPS_TRC_FILTER3_RSS_CONTROL_A, j); 1504 break; 1505 } 1506 continue; 1507 } 1508 if (!strncmp(word, "snaplen=", 8)) { 1509 end = (char *)word + 8; 1510 ret = kstrtouint(end, 10, &j); 1511 if (ret || j > 9600) { 1512 inval: count = -EINVAL; 1513 goto out; 1514 } 1515 tp.snap_len = j; 1516 continue; 1517 } 1518 if (!strncmp(word, "minlen=", 7)) { 1519 end = (char *)word + 7; 1520 ret = kstrtouint(end, 10, &j); 1521 if (ret || j > TFMINPKTSIZE_M) 1522 goto inval; 1523 tp.min_len = j; 1524 continue; 1525 } 1526 if (!strcmp(word, "not")) { 1527 tp.invert = !tp.invert; 1528 continue; 1529 } 1530 if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) { 1531 if (word[8] < '0' || word[8] > '3' || word[9]) 1532 goto inval; 1533 tp.port = word[8] - '0' + 8; 1534 continue; 1535 } 1536 if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) { 1537 if (word[2] < '0' || word[2] > '3' || word[3]) 1538 goto inval; 1539 tp.port = word[2] - '0' + 4; 1540 if (adap->chan_map[tp.port & 3] >= MAX_NPORTS) 1541 goto inval; 1542 continue; 1543 } 1544 if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) { 1545 if (word[2] < '0' || word[2] > '3' || word[3]) 1546 goto inval; 1547 tp.port = word[2] - '0'; 1548 if (adap->chan_map[tp.port] >= MAX_NPORTS) 1549 goto inval; 1550 continue; 1551 } 1552 if (!isxdigit(*word)) 1553 goto inval; 1554 1555 /* we have found a trace pattern */ 1556 if (i) { /* split pattern */ 1557 if (tp.skip_len) /* too many splits */ 1558 goto inval; 1559 tp.skip_ofst = i / 16; 1560 } 1561 1562 data = &tp.data[i / 8]; 1563 mask = &tp.mask[i / 8]; 1564 j = i; 1565 1566 while (isxdigit(*word)) { 1567 if (i >= TRACE_LEN * 2) { 1568 count = -EFBIG; 1569 goto out; 1570 } 1571 *data = (*data << 4) + xdigit2int(*word++); 1572 if (++i % 8 == 0) 1573 data++; 1574 } 1575 if (*word == '/') { 1576 word++; 1577 while (isxdigit(*word)) { 1578 if (j >= i) /* mask longer than data */ 1579 goto inval; 1580 *mask = (*mask << 4) + xdigit2int(*word++); 1581 if (++j % 8 == 0) 1582 mask++; 1583 } 1584 if (i != j) /* mask shorter than data */ 1585 goto inval; 1586 } else { /* no mask, use all 1s */ 1587 for ( ; i - j >= 8; j += 8) 1588 *mask++ = 0xffffffff; 1589 if (i % 8) 1590 *mask = (1 << (i % 8) * 4) - 1; 1591 } 1592 if (*word == '@') { 1593 end = (char *)word + 1; 1594 ret = kstrtouint(end, 10, &j); 1595 if (*end && *end != '\n') 1596 goto inval; 1597 if (j & 7) /* doesn't start at multiple of 8 */ 1598 goto inval; 1599 j /= 8; 1600 if (j < tp.skip_ofst) /* overlaps earlier pattern */ 1601 goto inval; 1602 if (j - tp.skip_ofst > 31) /* skip too big */ 1603 goto inval; 1604 tp.skip_len = j - tp.skip_ofst; 1605 } 1606 if (i % 8) { 1607 *data <<= (8 - i % 8) * 4; 1608 *mask <<= (8 - i % 8) * 4; 1609 i = (i + 15) & ~15; /* 8-byte align */ 1610 } 1611 } 1612 1613 if (tp.port == TRC_PORT_NONE) 1614 goto inval; 1615 1616 apply: 1617 i = t4_set_trace_filter(adap, &tp, trcidx, enable); 1618 if (i) 1619 count = i; 1620 out: 1621 kfree(s); 1622 return count; 1623 } 1624 1625 static const struct file_operations mps_trc_debugfs_fops = { 1626 .owner = THIS_MODULE, 1627 .open = mps_trc_open, 1628 .read = seq_read, 1629 .llseek = seq_lseek, 1630 .release = single_release, 1631 .write = mps_trc_write 1632 }; 1633 1634 static ssize_t flash_read(struct file *file, char __user *buf, size_t count, 1635 loff_t *ppos) 1636 { 1637 loff_t pos = *ppos; 1638 loff_t avail = file_inode(file)->i_size; 1639 struct adapter *adap = file->private_data; 1640 1641 if (pos < 0) 1642 return -EINVAL; 1643 if (pos >= avail) 1644 return 0; 1645 if (count > avail - pos) 1646 count = avail - pos; 1647 1648 while (count) { 1649 size_t len; 1650 int ret, ofst; 1651 u8 data[256]; 1652 1653 ofst = pos & 3; 1654 len = min(count + ofst, sizeof(data)); 1655 ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4, 1656 (u32 *)data, 1); 1657 if (ret) 1658 return ret; 1659 1660 len -= ofst; 1661 if (copy_to_user(buf, data + ofst, len)) 1662 return -EFAULT; 1663 1664 buf += len; 1665 pos += len; 1666 count -= len; 1667 } 1668 count = pos - *ppos; 1669 *ppos = pos; 1670 return count; 1671 } 1672 1673 static const struct file_operations flash_debugfs_fops = { 1674 .owner = THIS_MODULE, 1675 .open = mem_open, 1676 .read = flash_read, 1677 .llseek = default_llseek, 1678 }; 1679 1680 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask) 1681 { 1682 *mask = x | y; 1683 y = (__force u64)cpu_to_be64(y); 1684 memcpy(addr, (char *)&y + 2, ETH_ALEN); 1685 } 1686 1687 static int mps_tcam_show(struct seq_file *seq, void *v) 1688 { 1689 struct adapter *adap = seq->private; 1690 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1691 if (v == SEQ_START_TOKEN) { 1692 if (chip_ver > CHELSIO_T5) { 1693 seq_puts(seq, "Idx Ethernet address Mask " 1694 " VNI Mask IVLAN Vld " 1695 "DIP_Hit Lookup Port " 1696 "Vld Ports PF VF " 1697 "Replication " 1698 " P0 P1 P2 P3 ML\n"); 1699 } else { 1700 if (adap->params.arch.mps_rplc_size > 128) 1701 seq_puts(seq, "Idx Ethernet address Mask " 1702 "Vld Ports PF VF " 1703 "Replication " 1704 " P0 P1 P2 P3 ML\n"); 1705 else 1706 seq_puts(seq, "Idx Ethernet address Mask " 1707 "Vld Ports PF VF Replication" 1708 " P0 P1 P2 P3 ML\n"); 1709 } 1710 } else { 1711 u64 mask; 1712 u8 addr[ETH_ALEN]; 1713 bool replicate, dip_hit = false, vlan_vld = false; 1714 unsigned int idx = (uintptr_t)v - 2; 1715 u64 tcamy, tcamx, val; 1716 u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0; 1717 u32 rplc[8] = {0}; 1718 u8 lookup_type = 0, port_num = 0; 1719 u16 ivlan = 0; 1720 1721 if (chip_ver > CHELSIO_T5) { 1722 /* CtlCmdType - 0: Read, 1: Write 1723 * CtlTcamSel - 0: TCAM0, 1: TCAM1 1724 * CtlXYBitSel- 0: Y bit, 1: X bit 1725 */ 1726 1727 /* Read tcamy */ 1728 ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0); 1729 if (idx < 256) 1730 ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0); 1731 else 1732 ctl |= CTLTCAMINDEX_V(idx - 256) | 1733 CTLTCAMSEL_V(1); 1734 t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); 1735 val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A); 1736 tcamy = DMACH_G(val) << 32; 1737 tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A); 1738 data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A); 1739 lookup_type = DATALKPTYPE_G(data2); 1740 /* 0 - Outer header, 1 - Inner header 1741 * [71:48] bit locations are overloaded for 1742 * outer vs. inner lookup types. 1743 */ 1744 if (lookup_type && (lookup_type != DATALKPTYPE_M)) { 1745 /* Inner header VNI */ 1746 vniy = (data2 & DATAVIDH2_F) | 1747 (DATAVIDH1_G(data2) << 16) | VIDL_G(val); 1748 dip_hit = data2 & DATADIPHIT_F; 1749 } else { 1750 vlan_vld = data2 & DATAVIDH2_F; 1751 ivlan = VIDL_G(val); 1752 } 1753 port_num = DATAPORTNUM_G(data2); 1754 1755 /* Read tcamx. Change the control param */ 1756 vnix = 0; 1757 ctl |= CTLXYBITSEL_V(1); 1758 t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); 1759 val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A); 1760 tcamx = DMACH_G(val) << 32; 1761 tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A); 1762 data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A); 1763 if (lookup_type && (lookup_type != DATALKPTYPE_M)) { 1764 /* Inner header VNI mask */ 1765 vnix = (data2 & DATAVIDH2_F) | 1766 (DATAVIDH1_G(data2) << 16) | VIDL_G(val); 1767 } 1768 } else { 1769 tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx)); 1770 tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx)); 1771 } 1772 1773 cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx)); 1774 cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx)); 1775 1776 if (tcamx & tcamy) { 1777 seq_printf(seq, "%3u -\n", idx); 1778 goto out; 1779 } 1780 1781 rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0; 1782 if (chip_ver > CHELSIO_T5) 1783 replicate = (cls_lo & T6_REPLICATE_F); 1784 else 1785 replicate = (cls_lo & REPLICATE_F); 1786 1787 if (replicate) { 1788 struct fw_ldst_cmd ldst_cmd; 1789 int ret; 1790 struct fw_ldst_mps_rplc mps_rplc; 1791 u32 ldst_addrspc; 1792 1793 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 1794 ldst_addrspc = 1795 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS); 1796 ldst_cmd.op_to_addrspace = 1797 htonl(FW_CMD_OP_V(FW_LDST_CMD) | 1798 FW_CMD_REQUEST_F | 1799 FW_CMD_READ_F | 1800 ldst_addrspc); 1801 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd)); 1802 ldst_cmd.u.mps.rplc.fid_idx = 1803 htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) | 1804 FW_LDST_CMD_IDX_V(idx)); 1805 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, 1806 sizeof(ldst_cmd), &ldst_cmd); 1807 if (ret) 1808 dev_warn(adap->pdev_dev, "Can't read MPS " 1809 "replication map for idx %d: %d\n", 1810 idx, -ret); 1811 else { 1812 mps_rplc = ldst_cmd.u.mps.rplc; 1813 rplc[0] = ntohl(mps_rplc.rplc31_0); 1814 rplc[1] = ntohl(mps_rplc.rplc63_32); 1815 rplc[2] = ntohl(mps_rplc.rplc95_64); 1816 rplc[3] = ntohl(mps_rplc.rplc127_96); 1817 if (adap->params.arch.mps_rplc_size > 128) { 1818 rplc[4] = ntohl(mps_rplc.rplc159_128); 1819 rplc[5] = ntohl(mps_rplc.rplc191_160); 1820 rplc[6] = ntohl(mps_rplc.rplc223_192); 1821 rplc[7] = ntohl(mps_rplc.rplc255_224); 1822 } 1823 } 1824 } 1825 1826 tcamxy2valmask(tcamx, tcamy, addr, &mask); 1827 if (chip_ver > CHELSIO_T5) { 1828 /* Inner header lookup */ 1829 if (lookup_type && (lookup_type != DATALKPTYPE_M)) { 1830 seq_printf(seq, 1831 "%3u %02x:%02x:%02x:%02x:%02x:%02x " 1832 "%012llx %06x %06x - - %3c" 1833 " 'I' %4x " 1834 "%3c %#x%4u%4d", idx, addr[0], 1835 addr[1], addr[2], addr[3], 1836 addr[4], addr[5], 1837 (unsigned long long)mask, 1838 vniy, (vnix | vniy), 1839 dip_hit ? 'Y' : 'N', 1840 port_num, 1841 (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N', 1842 PORTMAP_G(cls_hi), 1843 T6_PF_G(cls_lo), 1844 (cls_lo & T6_VF_VALID_F) ? 1845 T6_VF_G(cls_lo) : -1); 1846 } else { 1847 seq_printf(seq, 1848 "%3u %02x:%02x:%02x:%02x:%02x:%02x " 1849 "%012llx - - ", 1850 idx, addr[0], addr[1], addr[2], 1851 addr[3], addr[4], addr[5], 1852 (unsigned long long)mask); 1853 1854 if (vlan_vld) 1855 seq_printf(seq, "%4u Y ", ivlan); 1856 else 1857 seq_puts(seq, " - N "); 1858 1859 seq_printf(seq, 1860 "- %3c %4x %3c %#x%4u%4d", 1861 lookup_type ? 'I' : 'O', port_num, 1862 (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N', 1863 PORTMAP_G(cls_hi), 1864 T6_PF_G(cls_lo), 1865 (cls_lo & T6_VF_VALID_F) ? 1866 T6_VF_G(cls_lo) : -1); 1867 } 1868 } else 1869 seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x " 1870 "%012llx%3c %#x%4u%4d", 1871 idx, addr[0], addr[1], addr[2], addr[3], 1872 addr[4], addr[5], (unsigned long long)mask, 1873 (cls_lo & SRAM_VLD_F) ? 'Y' : 'N', 1874 PORTMAP_G(cls_hi), 1875 PF_G(cls_lo), 1876 (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1); 1877 1878 if (replicate) { 1879 if (adap->params.arch.mps_rplc_size > 128) 1880 seq_printf(seq, " %08x %08x %08x %08x " 1881 "%08x %08x %08x %08x", 1882 rplc[7], rplc[6], rplc[5], rplc[4], 1883 rplc[3], rplc[2], rplc[1], rplc[0]); 1884 else 1885 seq_printf(seq, " %08x %08x %08x %08x", 1886 rplc[3], rplc[2], rplc[1], rplc[0]); 1887 } else { 1888 if (adap->params.arch.mps_rplc_size > 128) 1889 seq_printf(seq, "%72c", ' '); 1890 else 1891 seq_printf(seq, "%36c", ' '); 1892 } 1893 1894 if (chip_ver > CHELSIO_T5) 1895 seq_printf(seq, "%4u%3u%3u%3u %#x\n", 1896 T6_SRAM_PRIO0_G(cls_lo), 1897 T6_SRAM_PRIO1_G(cls_lo), 1898 T6_SRAM_PRIO2_G(cls_lo), 1899 T6_SRAM_PRIO3_G(cls_lo), 1900 (cls_lo >> T6_MULTILISTEN0_S) & 0xf); 1901 else 1902 seq_printf(seq, "%4u%3u%3u%3u %#x\n", 1903 SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo), 1904 SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo), 1905 (cls_lo >> MULTILISTEN0_S) & 0xf); 1906 } 1907 out: return 0; 1908 } 1909 1910 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos) 1911 { 1912 struct adapter *adap = seq->private; 1913 int max_mac_addr = is_t4(adap->params.chip) ? 1914 NUM_MPS_CLS_SRAM_L_INSTANCES : 1915 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 1916 return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL); 1917 } 1918 1919 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos) 1920 { 1921 return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN; 1922 } 1923 1924 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos) 1925 { 1926 ++*pos; 1927 return mps_tcam_get_idx(seq, *pos); 1928 } 1929 1930 static void mps_tcam_stop(struct seq_file *seq, void *v) 1931 { 1932 } 1933 1934 static const struct seq_operations mps_tcam_seq_ops = { 1935 .start = mps_tcam_start, 1936 .next = mps_tcam_next, 1937 .stop = mps_tcam_stop, 1938 .show = mps_tcam_show 1939 }; 1940 1941 static int mps_tcam_open(struct inode *inode, struct file *file) 1942 { 1943 int res = seq_open(file, &mps_tcam_seq_ops); 1944 1945 if (!res) { 1946 struct seq_file *seq = file->private_data; 1947 1948 seq->private = inode->i_private; 1949 } 1950 return res; 1951 } 1952 1953 static const struct file_operations mps_tcam_debugfs_fops = { 1954 .owner = THIS_MODULE, 1955 .open = mps_tcam_open, 1956 .read = seq_read, 1957 .llseek = seq_lseek, 1958 .release = seq_release, 1959 }; 1960 1961 /* Display various sensor information. 1962 */ 1963 static int sensors_show(struct seq_file *seq, void *v) 1964 { 1965 struct adapter *adap = seq->private; 1966 u32 param[7], val[7]; 1967 int ret; 1968 1969 /* Note that if the sensors haven't been initialized and turned on 1970 * we'll get values of 0, so treat those as "<unknown>" ... 1971 */ 1972 param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 1973 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) | 1974 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP)); 1975 param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 1976 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) | 1977 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD)); 1978 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 1979 param, val); 1980 1981 if (ret < 0 || val[0] == 0) 1982 seq_puts(seq, "Temperature: <unknown>\n"); 1983 else 1984 seq_printf(seq, "Temperature: %dC\n", val[0]); 1985 1986 if (ret < 0 || val[1] == 0) 1987 seq_puts(seq, "Core VDD: <unknown>\n"); 1988 else 1989 seq_printf(seq, "Core VDD: %dmV\n", val[1]); 1990 1991 return 0; 1992 } 1993 1994 DEFINE_SIMPLE_DEBUGFS_FILE(sensors); 1995 1996 #if IS_ENABLED(CONFIG_IPV6) 1997 static int clip_tbl_open(struct inode *inode, struct file *file) 1998 { 1999 return single_open(file, clip_tbl_show, inode->i_private); 2000 } 2001 2002 static const struct file_operations clip_tbl_debugfs_fops = { 2003 .owner = THIS_MODULE, 2004 .open = clip_tbl_open, 2005 .read = seq_read, 2006 .llseek = seq_lseek, 2007 .release = single_release 2008 }; 2009 #endif 2010 2011 /*RSS Table. 2012 */ 2013 2014 static int rss_show(struct seq_file *seq, void *v, int idx) 2015 { 2016 u16 *entry = v; 2017 2018 seq_printf(seq, "%4d: %4u %4u %4u %4u %4u %4u %4u %4u\n", 2019 idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4], 2020 entry[5], entry[6], entry[7]); 2021 return 0; 2022 } 2023 2024 static int rss_open(struct inode *inode, struct file *file) 2025 { 2026 struct adapter *adap = inode->i_private; 2027 int ret, nentries; 2028 struct seq_tab *p; 2029 2030 nentries = t4_chip_rss_size(adap); 2031 p = seq_open_tab(file, nentries / 8, 8 * sizeof(u16), 0, rss_show); 2032 if (!p) 2033 return -ENOMEM; 2034 2035 ret = t4_read_rss(adap, (u16 *)p->data); 2036 if (ret) 2037 seq_release_private(inode, file); 2038 2039 return ret; 2040 } 2041 2042 static const struct file_operations rss_debugfs_fops = { 2043 .owner = THIS_MODULE, 2044 .open = rss_open, 2045 .read = seq_read, 2046 .llseek = seq_lseek, 2047 .release = seq_release_private 2048 }; 2049 2050 /* RSS Configuration. 2051 */ 2052 2053 /* Small utility function to return the strings "yes" or "no" if the supplied 2054 * argument is non-zero. 2055 */ 2056 static const char *yesno(int x) 2057 { 2058 static const char *yes = "yes"; 2059 static const char *no = "no"; 2060 2061 return x ? yes : no; 2062 } 2063 2064 static int rss_config_show(struct seq_file *seq, void *v) 2065 { 2066 struct adapter *adapter = seq->private; 2067 static const char * const keymode[] = { 2068 "global", 2069 "global and per-VF scramble", 2070 "per-PF and per-VF scramble", 2071 "per-VF and per-VF scramble", 2072 }; 2073 u32 rssconf; 2074 2075 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A); 2076 seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf); 2077 seq_printf(seq, " Tnl4TupEnIpv6: %3s\n", yesno(rssconf & 2078 TNL4TUPENIPV6_F)); 2079 seq_printf(seq, " Tnl2TupEnIpv6: %3s\n", yesno(rssconf & 2080 TNL2TUPENIPV6_F)); 2081 seq_printf(seq, " Tnl4TupEnIpv4: %3s\n", yesno(rssconf & 2082 TNL4TUPENIPV4_F)); 2083 seq_printf(seq, " Tnl2TupEnIpv4: %3s\n", yesno(rssconf & 2084 TNL2TUPENIPV4_F)); 2085 seq_printf(seq, " TnlTcpSel: %3s\n", yesno(rssconf & TNLTCPSEL_F)); 2086 seq_printf(seq, " TnlIp6Sel: %3s\n", yesno(rssconf & TNLIP6SEL_F)); 2087 seq_printf(seq, " TnlVrtSel: %3s\n", yesno(rssconf & TNLVRTSEL_F)); 2088 seq_printf(seq, " TnlMapEn: %3s\n", yesno(rssconf & TNLMAPEN_F)); 2089 seq_printf(seq, " OfdHashSave: %3s\n", yesno(rssconf & 2090 OFDHASHSAVE_F)); 2091 seq_printf(seq, " OfdVrtSel: %3s\n", yesno(rssconf & OFDVRTSEL_F)); 2092 seq_printf(seq, " OfdMapEn: %3s\n", yesno(rssconf & OFDMAPEN_F)); 2093 seq_printf(seq, " OfdLkpEn: %3s\n", yesno(rssconf & OFDLKPEN_F)); 2094 seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf & 2095 SYN4TUPENIPV6_F)); 2096 seq_printf(seq, " Syn2TupEnIpv6: %3s\n", yesno(rssconf & 2097 SYN2TUPENIPV6_F)); 2098 seq_printf(seq, " Syn4TupEnIpv4: %3s\n", yesno(rssconf & 2099 SYN4TUPENIPV4_F)); 2100 seq_printf(seq, " Syn2TupEnIpv4: %3s\n", yesno(rssconf & 2101 SYN2TUPENIPV4_F)); 2102 seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf & 2103 SYN4TUPENIPV6_F)); 2104 seq_printf(seq, " SynIp6Sel: %3s\n", yesno(rssconf & SYNIP6SEL_F)); 2105 seq_printf(seq, " SynVrt6Sel: %3s\n", yesno(rssconf & SYNVRTSEL_F)); 2106 seq_printf(seq, " SynMapEn: %3s\n", yesno(rssconf & SYNMAPEN_F)); 2107 seq_printf(seq, " SynLkpEn: %3s\n", yesno(rssconf & SYNLKPEN_F)); 2108 seq_printf(seq, " ChnEn: %3s\n", yesno(rssconf & 2109 CHANNELENABLE_F)); 2110 seq_printf(seq, " PrtEn: %3s\n", yesno(rssconf & 2111 PORTENABLE_F)); 2112 seq_printf(seq, " TnlAllLkp: %3s\n", yesno(rssconf & 2113 TNLALLLOOKUP_F)); 2114 seq_printf(seq, " VrtEn: %3s\n", yesno(rssconf & 2115 VIRTENABLE_F)); 2116 seq_printf(seq, " CngEn: %3s\n", yesno(rssconf & 2117 CONGESTIONENABLE_F)); 2118 seq_printf(seq, " HashToeplitz: %3s\n", yesno(rssconf & 2119 HASHTOEPLITZ_F)); 2120 seq_printf(seq, " Udp4En: %3s\n", yesno(rssconf & UDPENABLE_F)); 2121 seq_printf(seq, " Disable: %3s\n", yesno(rssconf & DISABLE_F)); 2122 2123 seq_puts(seq, "\n"); 2124 2125 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A); 2126 seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf); 2127 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); 2128 seq_printf(seq, " MaskFilter: %3d\n", MASKFILTER_G(rssconf)); 2129 if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) { 2130 seq_printf(seq, " HashAll: %3s\n", 2131 yesno(rssconf & HASHALL_F)); 2132 seq_printf(seq, " HashEth: %3s\n", 2133 yesno(rssconf & HASHETH_F)); 2134 } 2135 seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F)); 2136 2137 seq_puts(seq, "\n"); 2138 2139 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A); 2140 seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf); 2141 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); 2142 seq_printf(seq, " RRCplMapEn: %3s\n", yesno(rssconf & 2143 RRCPLMAPEN_F)); 2144 seq_printf(seq, " RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf)); 2145 2146 seq_puts(seq, "\n"); 2147 2148 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A); 2149 seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf); 2150 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf)); 2151 seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F)); 2152 2153 seq_puts(seq, "\n"); 2154 2155 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 2156 seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf); 2157 if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) { 2158 seq_printf(seq, " KeyWrAddrX: %3d\n", 2159 KEYWRADDRX_G(rssconf)); 2160 seq_printf(seq, " KeyExtend: %3s\n", 2161 yesno(rssconf & KEYEXTEND_F)); 2162 } 2163 seq_printf(seq, " VfRdRg: %3s\n", yesno(rssconf & VFRDRG_F)); 2164 seq_printf(seq, " VfRdEn: %3s\n", yesno(rssconf & VFRDEN_F)); 2165 seq_printf(seq, " VfPerrEn: %3s\n", yesno(rssconf & VFPERREN_F)); 2166 seq_printf(seq, " KeyPerrEn: %3s\n", yesno(rssconf & KEYPERREN_F)); 2167 seq_printf(seq, " DisVfVlan: %3s\n", yesno(rssconf & 2168 DISABLEVLAN_F)); 2169 seq_printf(seq, " EnUpSwt: %3s\n", yesno(rssconf & ENABLEUP0_F)); 2170 seq_printf(seq, " HashDelay: %3d\n", HASHDELAY_G(rssconf)); 2171 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 2172 seq_printf(seq, " VfWrAddr: %3d\n", VFWRADDR_G(rssconf)); 2173 else 2174 seq_printf(seq, " VfWrAddr: %3d\n", 2175 T6_VFWRADDR_G(rssconf)); 2176 seq_printf(seq, " KeyMode: %s\n", keymode[KEYMODE_G(rssconf)]); 2177 seq_printf(seq, " VfWrEn: %3s\n", yesno(rssconf & VFWREN_F)); 2178 seq_printf(seq, " KeyWrEn: %3s\n", yesno(rssconf & KEYWREN_F)); 2179 seq_printf(seq, " KeyWrAddr: %3d\n", KEYWRADDR_G(rssconf)); 2180 2181 seq_puts(seq, "\n"); 2182 2183 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A); 2184 seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf); 2185 seq_printf(seq, " ChnCount3: %3s\n", yesno(rssconf & CHNCOUNT3_F)); 2186 seq_printf(seq, " ChnCount2: %3s\n", yesno(rssconf & CHNCOUNT2_F)); 2187 seq_printf(seq, " ChnCount1: %3s\n", yesno(rssconf & CHNCOUNT1_F)); 2188 seq_printf(seq, " ChnCount0: %3s\n", yesno(rssconf & CHNCOUNT0_F)); 2189 seq_printf(seq, " ChnUndFlow3: %3s\n", yesno(rssconf & 2190 CHNUNDFLOW3_F)); 2191 seq_printf(seq, " ChnUndFlow2: %3s\n", yesno(rssconf & 2192 CHNUNDFLOW2_F)); 2193 seq_printf(seq, " ChnUndFlow1: %3s\n", yesno(rssconf & 2194 CHNUNDFLOW1_F)); 2195 seq_printf(seq, " ChnUndFlow0: %3s\n", yesno(rssconf & 2196 CHNUNDFLOW0_F)); 2197 seq_printf(seq, " RstChn3: %3s\n", yesno(rssconf & RSTCHN3_F)); 2198 seq_printf(seq, " RstChn2: %3s\n", yesno(rssconf & RSTCHN2_F)); 2199 seq_printf(seq, " RstChn1: %3s\n", yesno(rssconf & RSTCHN1_F)); 2200 seq_printf(seq, " RstChn0: %3s\n", yesno(rssconf & RSTCHN0_F)); 2201 seq_printf(seq, " UpdVld: %3s\n", yesno(rssconf & UPDVLD_F)); 2202 seq_printf(seq, " Xoff: %3s\n", yesno(rssconf & XOFF_F)); 2203 seq_printf(seq, " UpdChn3: %3s\n", yesno(rssconf & UPDCHN3_F)); 2204 seq_printf(seq, " UpdChn2: %3s\n", yesno(rssconf & UPDCHN2_F)); 2205 seq_printf(seq, " UpdChn1: %3s\n", yesno(rssconf & UPDCHN1_F)); 2206 seq_printf(seq, " UpdChn0: %3s\n", yesno(rssconf & UPDCHN0_F)); 2207 seq_printf(seq, " Queue: %3d\n", QUEUE_G(rssconf)); 2208 2209 return 0; 2210 } 2211 2212 DEFINE_SIMPLE_DEBUGFS_FILE(rss_config); 2213 2214 /* RSS Secret Key. 2215 */ 2216 2217 static int rss_key_show(struct seq_file *seq, void *v) 2218 { 2219 u32 key[10]; 2220 2221 t4_read_rss_key(seq->private, key, true); 2222 seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 2223 key[9], key[8], key[7], key[6], key[5], key[4], key[3], 2224 key[2], key[1], key[0]); 2225 return 0; 2226 } 2227 2228 static int rss_key_open(struct inode *inode, struct file *file) 2229 { 2230 return single_open(file, rss_key_show, inode->i_private); 2231 } 2232 2233 static ssize_t rss_key_write(struct file *file, const char __user *buf, 2234 size_t count, loff_t *pos) 2235 { 2236 int i, j; 2237 u32 key[10]; 2238 char s[100], *p; 2239 struct adapter *adap = file_inode(file)->i_private; 2240 2241 if (count > sizeof(s) - 1) 2242 return -EINVAL; 2243 if (copy_from_user(s, buf, count)) 2244 return -EFAULT; 2245 for (i = count; i > 0 && isspace(s[i - 1]); i--) 2246 ; 2247 s[i] = '\0'; 2248 2249 for (p = s, i = 9; i >= 0; i--) { 2250 key[i] = 0; 2251 for (j = 0; j < 8; j++, p++) { 2252 if (!isxdigit(*p)) 2253 return -EINVAL; 2254 key[i] = (key[i] << 4) | hex2val(*p); 2255 } 2256 } 2257 2258 t4_write_rss_key(adap, key, -1, true); 2259 return count; 2260 } 2261 2262 static const struct file_operations rss_key_debugfs_fops = { 2263 .owner = THIS_MODULE, 2264 .open = rss_key_open, 2265 .read = seq_read, 2266 .llseek = seq_lseek, 2267 .release = single_release, 2268 .write = rss_key_write 2269 }; 2270 2271 /* PF RSS Configuration. 2272 */ 2273 2274 struct rss_pf_conf { 2275 u32 rss_pf_map; 2276 u32 rss_pf_mask; 2277 u32 rss_pf_config; 2278 }; 2279 2280 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx) 2281 { 2282 struct rss_pf_conf *pfconf; 2283 2284 if (v == SEQ_START_TOKEN) { 2285 /* use the 0th entry to dump the PF Map Index Size */ 2286 pfconf = seq->private + offsetof(struct seq_tab, data); 2287 seq_printf(seq, "PF Map Index Size = %d\n\n", 2288 LKPIDXSIZE_G(pfconf->rss_pf_map)); 2289 2290 seq_puts(seq, " RSS PF VF Hash Tuple Enable Default\n"); 2291 seq_puts(seq, " Enable IPF Mask Mask IPv6 IPv4 UDP Queue\n"); 2292 seq_puts(seq, " PF Map Chn Prt Map Size Size Four Two Four Two Four Ch1 Ch0\n"); 2293 } else { 2294 #define G_PFnLKPIDX(map, n) \ 2295 (((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M) 2296 #define G_PFnMSKSIZE(mask, n) \ 2297 (((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M) 2298 2299 pfconf = v; 2300 seq_printf(seq, "%3d %3s %3s %3s %3d %3d %3d %3s %3s %3s %3s %3s %3d %3d\n", 2301 idx, 2302 yesno(pfconf->rss_pf_config & MAPENABLE_F), 2303 yesno(pfconf->rss_pf_config & CHNENABLE_F), 2304 yesno(pfconf->rss_pf_config & PRTENABLE_F), 2305 G_PFnLKPIDX(pfconf->rss_pf_map, idx), 2306 G_PFnMSKSIZE(pfconf->rss_pf_mask, idx), 2307 IVFWIDTH_G(pfconf->rss_pf_config), 2308 yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F), 2309 yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F), 2310 yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F), 2311 yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F), 2312 yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F), 2313 CH1DEFAULTQUEUE_G(pfconf->rss_pf_config), 2314 CH0DEFAULTQUEUE_G(pfconf->rss_pf_config)); 2315 2316 #undef G_PFnLKPIDX 2317 #undef G_PFnMSKSIZE 2318 } 2319 return 0; 2320 } 2321 2322 static int rss_pf_config_open(struct inode *inode, struct file *file) 2323 { 2324 struct adapter *adapter = inode->i_private; 2325 struct seq_tab *p; 2326 u32 rss_pf_map, rss_pf_mask; 2327 struct rss_pf_conf *pfconf; 2328 int pf; 2329 2330 p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show); 2331 if (!p) 2332 return -ENOMEM; 2333 2334 pfconf = (struct rss_pf_conf *)p->data; 2335 rss_pf_map = t4_read_rss_pf_map(adapter, true); 2336 rss_pf_mask = t4_read_rss_pf_mask(adapter, true); 2337 for (pf = 0; pf < 8; pf++) { 2338 pfconf[pf].rss_pf_map = rss_pf_map; 2339 pfconf[pf].rss_pf_mask = rss_pf_mask; 2340 t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config, 2341 true); 2342 } 2343 return 0; 2344 } 2345 2346 static const struct file_operations rss_pf_config_debugfs_fops = { 2347 .owner = THIS_MODULE, 2348 .open = rss_pf_config_open, 2349 .read = seq_read, 2350 .llseek = seq_lseek, 2351 .release = seq_release_private 2352 }; 2353 2354 /* VF RSS Configuration. 2355 */ 2356 2357 struct rss_vf_conf { 2358 u32 rss_vf_vfl; 2359 u32 rss_vf_vfh; 2360 }; 2361 2362 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx) 2363 { 2364 if (v == SEQ_START_TOKEN) { 2365 seq_puts(seq, " RSS Hash Tuple Enable\n"); 2366 seq_puts(seq, " Enable IVF Dis Enb IPv6 IPv4 UDP Def Secret Key\n"); 2367 seq_puts(seq, " VF Chn Prt Map VLAN uP Four Two Four Two Four Que Idx Hash\n"); 2368 } else { 2369 struct rss_vf_conf *vfconf = v; 2370 2371 seq_printf(seq, "%3d %3s %3s %3d %3s %3s %3s %3s %3s %3s %3s %4d %3d %#10x\n", 2372 idx, 2373 yesno(vfconf->rss_vf_vfh & VFCHNEN_F), 2374 yesno(vfconf->rss_vf_vfh & VFPRTEN_F), 2375 VFLKPIDX_G(vfconf->rss_vf_vfh), 2376 yesno(vfconf->rss_vf_vfh & VFVLNEX_F), 2377 yesno(vfconf->rss_vf_vfh & VFUPEN_F), 2378 yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F), 2379 yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F), 2380 yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F), 2381 yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F), 2382 yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F), 2383 DEFAULTQUEUE_G(vfconf->rss_vf_vfh), 2384 KEYINDEX_G(vfconf->rss_vf_vfh), 2385 vfconf->rss_vf_vfl); 2386 } 2387 return 0; 2388 } 2389 2390 static int rss_vf_config_open(struct inode *inode, struct file *file) 2391 { 2392 struct adapter *adapter = inode->i_private; 2393 struct seq_tab *p; 2394 struct rss_vf_conf *vfconf; 2395 int vf, vfcount = adapter->params.arch.vfcount; 2396 2397 p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show); 2398 if (!p) 2399 return -ENOMEM; 2400 2401 vfconf = (struct rss_vf_conf *)p->data; 2402 for (vf = 0; vf < vfcount; vf++) { 2403 t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl, 2404 &vfconf[vf].rss_vf_vfh, true); 2405 } 2406 return 0; 2407 } 2408 2409 static const struct file_operations rss_vf_config_debugfs_fops = { 2410 .owner = THIS_MODULE, 2411 .open = rss_vf_config_open, 2412 .read = seq_read, 2413 .llseek = seq_lseek, 2414 .release = seq_release_private 2415 }; 2416 2417 #ifdef CONFIG_CHELSIO_T4_DCB 2418 extern char *dcb_ver_array[]; 2419 2420 /* Data Center Briging information for each port. 2421 */ 2422 static int dcb_info_show(struct seq_file *seq, void *v) 2423 { 2424 struct adapter *adap = seq->private; 2425 2426 if (v == SEQ_START_TOKEN) { 2427 seq_puts(seq, "Data Center Bridging Information\n"); 2428 } else { 2429 int port = (uintptr_t)v - 2; 2430 struct net_device *dev = adap->port[port]; 2431 struct port_info *pi = netdev2pinfo(dev); 2432 struct port_dcb_info *dcb = &pi->dcb; 2433 2434 seq_puts(seq, "\n"); 2435 seq_printf(seq, "Port: %d (DCB negotiated: %s)\n", 2436 port, 2437 cxgb4_dcb_enabled(dev) ? "yes" : "no"); 2438 2439 if (cxgb4_dcb_enabled(dev)) 2440 seq_printf(seq, "[ DCBx Version %s ]\n", 2441 dcb_ver_array[dcb->dcb_version]); 2442 2443 if (dcb->msgs) { 2444 int i; 2445 2446 seq_puts(seq, "\n Index\t\t\t :\t"); 2447 for (i = 0; i < 8; i++) 2448 seq_printf(seq, " %3d", i); 2449 seq_puts(seq, "\n\n"); 2450 } 2451 2452 if (dcb->msgs & CXGB4_DCB_FW_PGID) { 2453 int prio, pgid; 2454 2455 seq_puts(seq, " Priority Group IDs\t :\t"); 2456 for (prio = 0; prio < 8; prio++) { 2457 pgid = (dcb->pgid >> 4 * (7 - prio)) & 0xf; 2458 seq_printf(seq, " %3d", pgid); 2459 } 2460 seq_puts(seq, "\n"); 2461 } 2462 2463 if (dcb->msgs & CXGB4_DCB_FW_PGRATE) { 2464 int pg; 2465 2466 seq_puts(seq, " Priority Group BW(%)\t :\t"); 2467 for (pg = 0; pg < 8; pg++) 2468 seq_printf(seq, " %3d", dcb->pgrate[pg]); 2469 seq_puts(seq, "\n"); 2470 2471 if (dcb->dcb_version == FW_PORT_DCB_VER_IEEE) { 2472 seq_puts(seq, " TSA Algorithm\t\t :\t"); 2473 for (pg = 0; pg < 8; pg++) 2474 seq_printf(seq, " %3d", dcb->tsa[pg]); 2475 seq_puts(seq, "\n"); 2476 } 2477 2478 seq_printf(seq, " Max PG Traffic Classes [%3d ]\n", 2479 dcb->pg_num_tcs_supported); 2480 2481 seq_puts(seq, "\n"); 2482 } 2483 2484 if (dcb->msgs & CXGB4_DCB_FW_PRIORATE) { 2485 int prio; 2486 2487 seq_puts(seq, " Priority Rate\t:\t"); 2488 for (prio = 0; prio < 8; prio++) 2489 seq_printf(seq, " %3d", dcb->priorate[prio]); 2490 seq_puts(seq, "\n"); 2491 } 2492 2493 if (dcb->msgs & CXGB4_DCB_FW_PFC) { 2494 int prio; 2495 2496 seq_puts(seq, " Priority Flow Control :\t"); 2497 for (prio = 0; prio < 8; prio++) { 2498 int pfcen = (dcb->pfcen >> 1 * (7 - prio)) 2499 & 0x1; 2500 seq_printf(seq, " %3d", pfcen); 2501 } 2502 seq_puts(seq, "\n"); 2503 2504 seq_printf(seq, " Max PFC Traffic Classes [%3d ]\n", 2505 dcb->pfc_num_tcs_supported); 2506 2507 seq_puts(seq, "\n"); 2508 } 2509 2510 if (dcb->msgs & CXGB4_DCB_FW_APP_ID) { 2511 int app, napps; 2512 2513 seq_puts(seq, " Application Information:\n"); 2514 seq_puts(seq, " App Priority Selection Protocol\n"); 2515 seq_puts(seq, " Index Map Field ID\n"); 2516 for (app = 0, napps = 0; 2517 app < CXGB4_MAX_DCBX_APP_SUPPORTED; app++) { 2518 struct app_priority *ap; 2519 static const char * const sel_names[] = { 2520 "Ethertype", 2521 "Socket TCP", 2522 "Socket UDP", 2523 "Socket All", 2524 }; 2525 const char *sel_name; 2526 2527 ap = &dcb->app_priority[app]; 2528 /* skip empty slots */ 2529 if (ap->protocolid == 0) 2530 continue; 2531 napps++; 2532 2533 if (ap->sel_field < ARRAY_SIZE(sel_names)) 2534 sel_name = sel_names[ap->sel_field]; 2535 else 2536 sel_name = "UNKNOWN"; 2537 2538 seq_printf(seq, " %3d %#04x %-10s (%d) %#06x (%d)\n", 2539 app, 2540 ap->user_prio_map, 2541 sel_name, ap->sel_field, 2542 ap->protocolid, ap->protocolid); 2543 } 2544 if (napps == 0) 2545 seq_puts(seq, " --- None ---\n"); 2546 } 2547 } 2548 return 0; 2549 } 2550 2551 static inline void *dcb_info_get_idx(struct adapter *adap, loff_t pos) 2552 { 2553 return (pos <= adap->params.nports 2554 ? (void *)((uintptr_t)pos + 1) 2555 : NULL); 2556 } 2557 2558 static void *dcb_info_start(struct seq_file *seq, loff_t *pos) 2559 { 2560 struct adapter *adap = seq->private; 2561 2562 return (*pos 2563 ? dcb_info_get_idx(adap, *pos) 2564 : SEQ_START_TOKEN); 2565 } 2566 2567 static void dcb_info_stop(struct seq_file *seq, void *v) 2568 { 2569 } 2570 2571 static void *dcb_info_next(struct seq_file *seq, void *v, loff_t *pos) 2572 { 2573 struct adapter *adap = seq->private; 2574 2575 (*pos)++; 2576 return dcb_info_get_idx(adap, *pos); 2577 } 2578 2579 static const struct seq_operations dcb_info_seq_ops = { 2580 .start = dcb_info_start, 2581 .next = dcb_info_next, 2582 .stop = dcb_info_stop, 2583 .show = dcb_info_show 2584 }; 2585 2586 static int dcb_info_open(struct inode *inode, struct file *file) 2587 { 2588 int res = seq_open(file, &dcb_info_seq_ops); 2589 2590 if (!res) { 2591 struct seq_file *seq = file->private_data; 2592 2593 seq->private = inode->i_private; 2594 } 2595 return res; 2596 } 2597 2598 static const struct file_operations dcb_info_debugfs_fops = { 2599 .owner = THIS_MODULE, 2600 .open = dcb_info_open, 2601 .read = seq_read, 2602 .llseek = seq_lseek, 2603 .release = seq_release, 2604 }; 2605 #endif /* CONFIG_CHELSIO_T4_DCB */ 2606 2607 static int resources_show(struct seq_file *seq, void *v) 2608 { 2609 struct adapter *adapter = seq->private; 2610 struct pf_resources *pfres = &adapter->params.pfres; 2611 2612 #define S(desc, fmt, var) \ 2613 seq_printf(seq, "%-60s " fmt "\n", \ 2614 desc " (" #var "):", pfres->var) 2615 2616 S("Virtual Interfaces", "%d", nvi); 2617 S("Egress Queues", "%d", neq); 2618 S("Ethernet Control", "%d", nethctrl); 2619 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); 2620 S("Ingress Queues", "%d", niq); 2621 S("Traffic Class", "%d", tc); 2622 S("Port Access Rights Mask", "%#x", pmask); 2623 S("MAC Address Filters", "%d", nexactf); 2624 S("Firmware Command Read Capabilities", "%#x", r_caps); 2625 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); 2626 2627 #undef S 2628 2629 return 0; 2630 } 2631 2632 static int resources_open(struct inode *inode, struct file *file) 2633 { 2634 return single_open(file, resources_show, inode->i_private); 2635 } 2636 2637 static const struct file_operations resources_debugfs_fops = { 2638 .owner = THIS_MODULE, 2639 .open = resources_open, 2640 .read = seq_read, 2641 .llseek = seq_lseek, 2642 .release = seq_release, 2643 }; 2644 2645 /** 2646 * ethqset2pinfo - return port_info of an Ethernet Queue Set 2647 * @adap: the adapter 2648 * @qset: Ethernet Queue Set 2649 */ 2650 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset) 2651 { 2652 int pidx; 2653 2654 for_each_port(adap, pidx) { 2655 struct port_info *pi = adap2pinfo(adap, pidx); 2656 2657 if (qset >= pi->first_qset && 2658 qset < pi->first_qset + pi->nqsets) 2659 return pi; 2660 } 2661 2662 /* should never happen! */ 2663 BUG_ON(1); 2664 return NULL; 2665 } 2666 2667 static int sge_qinfo_uld_txq_entries(const struct adapter *adap, int uld) 2668 { 2669 const struct sge_uld_txq_info *utxq_info = adap->sge.uld_txq_info[uld]; 2670 2671 if (!utxq_info) 2672 return 0; 2673 2674 return DIV_ROUND_UP(utxq_info->ntxq, 4); 2675 } 2676 2677 static int sge_qinfo_uld_rspq_entries(const struct adapter *adap, int uld, 2678 bool ciq) 2679 { 2680 const struct sge_uld_rxq_info *urxq_info = adap->sge.uld_rxq_info[uld]; 2681 2682 if (!urxq_info) 2683 return 0; 2684 2685 return ciq ? DIV_ROUND_UP(urxq_info->nciq, 4) : 2686 DIV_ROUND_UP(urxq_info->nrxq, 4); 2687 } 2688 2689 static int sge_qinfo_uld_rxq_entries(const struct adapter *adap, int uld) 2690 { 2691 return sge_qinfo_uld_rspq_entries(adap, uld, false); 2692 } 2693 2694 static int sge_qinfo_uld_ciq_entries(const struct adapter *adap, int uld) 2695 { 2696 return sge_qinfo_uld_rspq_entries(adap, uld, true); 2697 } 2698 2699 static int sge_qinfo_show(struct seq_file *seq, void *v) 2700 { 2701 int uld_rxq_entries[CXGB4_ULD_MAX] = { 0 }; 2702 int uld_ciq_entries[CXGB4_ULD_MAX] = { 0 }; 2703 int uld_txq_entries[CXGB4_TX_MAX] = { 0 }; 2704 const struct sge_uld_txq_info *utxq_info; 2705 const struct sge_uld_rxq_info *urxq_info; 2706 struct adapter *adap = seq->private; 2707 int i, n, r = (uintptr_t)v - 1; 2708 int eth_entries, ctrl_entries; 2709 struct sge *s = &adap->sge; 2710 2711 eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4); 2712 ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4); 2713 2714 mutex_lock(&uld_mutex); 2715 if (s->uld_txq_info) 2716 for (i = 0; i < ARRAY_SIZE(uld_txq_entries); i++) 2717 uld_txq_entries[i] = sge_qinfo_uld_txq_entries(adap, i); 2718 2719 if (s->uld_rxq_info) { 2720 for (i = 0; i < ARRAY_SIZE(uld_rxq_entries); i++) { 2721 uld_rxq_entries[i] = sge_qinfo_uld_rxq_entries(adap, i); 2722 uld_ciq_entries[i] = sge_qinfo_uld_ciq_entries(adap, i); 2723 } 2724 } 2725 2726 if (r) 2727 seq_putc(seq, '\n'); 2728 2729 #define S3(fmt_spec, s, v) \ 2730 do { \ 2731 seq_printf(seq, "%-12s", s); \ 2732 for (i = 0; i < n; ++i) \ 2733 seq_printf(seq, " %16" fmt_spec, v); \ 2734 seq_putc(seq, '\n'); \ 2735 } while (0) 2736 #define S(s, v) S3("s", s, v) 2737 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v) 2738 #define T(s, v) S3("u", s, tx[i].v) 2739 #define TL(s, v) T3("lu", s, v) 2740 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v) 2741 #define R(s, v) S3("u", s, rx[i].v) 2742 #define RL(s, v) R3("lu", s, v) 2743 2744 if (r < eth_entries) { 2745 int base_qset = r * 4; 2746 const struct sge_eth_rxq *rx = &s->ethrxq[base_qset]; 2747 const struct sge_eth_txq *tx = &s->ethtxq[base_qset]; 2748 2749 n = min(4, s->ethqsets - 4 * r); 2750 2751 S("QType:", "Ethernet"); 2752 S("Interface:", 2753 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2754 T("TxQ ID:", q.cntxt_id); 2755 T("TxQ size:", q.size); 2756 T("TxQ inuse:", q.in_use); 2757 T("TxQ CIDX:", q.cidx); 2758 T("TxQ PIDX:", q.pidx); 2759 #ifdef CONFIG_CHELSIO_T4_DCB 2760 T("DCB Prio:", dcb_prio); 2761 S3("u", "DCB PGID:", 2762 (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >> 2763 4*(7-tx[i].dcb_prio)) & 0xf); 2764 S3("u", "DCB PFC:", 2765 (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >> 2766 1*(7-tx[i].dcb_prio)) & 0x1); 2767 #endif 2768 R("RspQ ID:", rspq.abs_id); 2769 R("RspQ size:", rspq.size); 2770 R("RspQE size:", rspq.iqe_len); 2771 R("RspQ CIDX:", rspq.cidx); 2772 R("RspQ Gen:", rspq.gen); 2773 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2774 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2775 R("FL ID:", fl.cntxt_id); 2776 R("FL size:", fl.size - 8); 2777 R("FL pend:", fl.pend_cred); 2778 R("FL avail:", fl.avail); 2779 R("FL PIDX:", fl.pidx); 2780 R("FL CIDX:", fl.cidx); 2781 RL("RxPackets:", stats.pkts); 2782 RL("RxCSO:", stats.rx_cso); 2783 RL("VLANxtract:", stats.vlan_ex); 2784 RL("LROmerged:", stats.lro_merged); 2785 RL("LROpackets:", stats.lro_pkts); 2786 RL("RxDrops:", stats.rx_drops); 2787 RL("RxBadPkts:", stats.bad_rx_pkts); 2788 TL("TSO:", tso); 2789 TL("TxCSO:", tx_cso); 2790 TL("VLANins:", vlan_ins); 2791 TL("TxQFull:", q.stops); 2792 TL("TxQRestarts:", q.restarts); 2793 TL("TxMapErr:", mapping_err); 2794 RL("FLAllocErr:", fl.alloc_failed); 2795 RL("FLLrgAlcErr:", fl.large_alloc_failed); 2796 RL("FLMapErr:", fl.mapping_err); 2797 RL("FLLow:", fl.low); 2798 RL("FLStarving:", fl.starving); 2799 2800 goto unlock; 2801 } 2802 2803 r -= eth_entries; 2804 if (r < uld_txq_entries[CXGB4_TX_OFLD]) { 2805 const struct sge_uld_txq *tx; 2806 2807 utxq_info = s->uld_txq_info[CXGB4_TX_OFLD]; 2808 tx = &utxq_info->uldtxq[r * 4]; 2809 n = min(4, utxq_info->ntxq - 4 * r); 2810 2811 S("QType:", "OFLD-TXQ"); 2812 T("TxQ ID:", q.cntxt_id); 2813 T("TxQ size:", q.size); 2814 T("TxQ inuse:", q.in_use); 2815 T("TxQ CIDX:", q.cidx); 2816 T("TxQ PIDX:", q.pidx); 2817 2818 goto unlock; 2819 } 2820 2821 r -= uld_txq_entries[CXGB4_TX_OFLD]; 2822 if (r < uld_rxq_entries[CXGB4_ULD_RDMA]) { 2823 const struct sge_ofld_rxq *rx; 2824 2825 urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 2826 rx = &urxq_info->uldrxq[r * 4]; 2827 n = min(4, urxq_info->nrxq - 4 * r); 2828 2829 S("QType:", "RDMA-CPL"); 2830 S("Interface:", 2831 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2832 R("RspQ ID:", rspq.abs_id); 2833 R("RspQ size:", rspq.size); 2834 R("RspQE size:", rspq.iqe_len); 2835 R("RspQ CIDX:", rspq.cidx); 2836 R("RspQ Gen:", rspq.gen); 2837 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2838 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2839 R("FL ID:", fl.cntxt_id); 2840 R("FL size:", fl.size - 8); 2841 R("FL pend:", fl.pend_cred); 2842 R("FL avail:", fl.avail); 2843 R("FL PIDX:", fl.pidx); 2844 R("FL CIDX:", fl.cidx); 2845 2846 goto unlock; 2847 } 2848 2849 r -= uld_rxq_entries[CXGB4_ULD_RDMA]; 2850 if (r < uld_ciq_entries[CXGB4_ULD_RDMA]) { 2851 const struct sge_ofld_rxq *rx; 2852 int ciq_idx = 0; 2853 2854 urxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 2855 ciq_idx = urxq_info->nrxq + (r * 4); 2856 rx = &urxq_info->uldrxq[ciq_idx]; 2857 n = min(4, urxq_info->nciq - 4 * r); 2858 2859 S("QType:", "RDMA-CIQ"); 2860 S("Interface:", 2861 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A"); 2862 R("RspQ ID:", rspq.abs_id); 2863 R("RspQ size:", rspq.size); 2864 R("RspQE size:", rspq.iqe_len); 2865 R("RspQ CIDX:", rspq.cidx); 2866 R("RspQ Gen:", rspq.gen); 2867 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2868 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2869 2870 goto unlock; 2871 } 2872 2873 r -= uld_ciq_entries[CXGB4_ULD_RDMA]; 2874 if (r < uld_rxq_entries[CXGB4_ULD_ISCSI]) { 2875 const struct sge_ofld_rxq *rx; 2876 2877 urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSI]; 2878 rx = &urxq_info->uldrxq[r * 4]; 2879 n = min(4, urxq_info->nrxq - 4 * r); 2880 2881 S("QType:", "iSCSI"); 2882 R("RspQ ID:", rspq.abs_id); 2883 R("RspQ size:", rspq.size); 2884 R("RspQE size:", rspq.iqe_len); 2885 R("RspQ CIDX:", rspq.cidx); 2886 R("RspQ Gen:", rspq.gen); 2887 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2888 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2889 R("FL ID:", fl.cntxt_id); 2890 R("FL size:", fl.size - 8); 2891 R("FL pend:", fl.pend_cred); 2892 R("FL avail:", fl.avail); 2893 R("FL PIDX:", fl.pidx); 2894 R("FL CIDX:", fl.cidx); 2895 2896 goto unlock; 2897 } 2898 2899 r -= uld_rxq_entries[CXGB4_ULD_ISCSI]; 2900 if (r < uld_rxq_entries[CXGB4_ULD_ISCSIT]) { 2901 const struct sge_ofld_rxq *rx; 2902 2903 urxq_info = s->uld_rxq_info[CXGB4_ULD_ISCSIT]; 2904 rx = &urxq_info->uldrxq[r * 4]; 2905 n = min(4, urxq_info->nrxq - 4 * r); 2906 2907 S("QType:", "iSCSIT"); 2908 R("RspQ ID:", rspq.abs_id); 2909 R("RspQ size:", rspq.size); 2910 R("RspQE size:", rspq.iqe_len); 2911 R("RspQ CIDX:", rspq.cidx); 2912 R("RspQ Gen:", rspq.gen); 2913 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2914 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2915 R("FL ID:", fl.cntxt_id); 2916 R("FL size:", fl.size - 8); 2917 R("FL pend:", fl.pend_cred); 2918 R("FL avail:", fl.avail); 2919 R("FL PIDX:", fl.pidx); 2920 R("FL CIDX:", fl.cidx); 2921 2922 goto unlock; 2923 } 2924 2925 r -= uld_rxq_entries[CXGB4_ULD_ISCSIT]; 2926 if (r < uld_rxq_entries[CXGB4_ULD_TLS]) { 2927 const struct sge_ofld_rxq *rx; 2928 2929 urxq_info = s->uld_rxq_info[CXGB4_ULD_TLS]; 2930 rx = &urxq_info->uldrxq[r * 4]; 2931 n = min(4, urxq_info->nrxq - 4 * r); 2932 2933 S("QType:", "TLS"); 2934 R("RspQ ID:", rspq.abs_id); 2935 R("RspQ size:", rspq.size); 2936 R("RspQE size:", rspq.iqe_len); 2937 R("RspQ CIDX:", rspq.cidx); 2938 R("RspQ Gen:", rspq.gen); 2939 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2940 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2941 R("FL ID:", fl.cntxt_id); 2942 R("FL size:", fl.size - 8); 2943 R("FL pend:", fl.pend_cred); 2944 R("FL avail:", fl.avail); 2945 R("FL PIDX:", fl.pidx); 2946 R("FL CIDX:", fl.cidx); 2947 2948 goto unlock; 2949 } 2950 2951 r -= uld_rxq_entries[CXGB4_ULD_TLS]; 2952 if (r < uld_txq_entries[CXGB4_TX_CRYPTO]) { 2953 const struct sge_ofld_rxq *rx; 2954 const struct sge_uld_txq *tx; 2955 2956 utxq_info = s->uld_txq_info[CXGB4_TX_CRYPTO]; 2957 urxq_info = s->uld_rxq_info[CXGB4_ULD_CRYPTO]; 2958 tx = &utxq_info->uldtxq[r * 4]; 2959 rx = &urxq_info->uldrxq[r * 4]; 2960 n = min(4, utxq_info->ntxq - 4 * r); 2961 2962 S("QType:", "Crypto"); 2963 T("TxQ ID:", q.cntxt_id); 2964 T("TxQ size:", q.size); 2965 T("TxQ inuse:", q.in_use); 2966 T("TxQ CIDX:", q.cidx); 2967 T("TxQ PIDX:", q.pidx); 2968 R("RspQ ID:", rspq.abs_id); 2969 R("RspQ size:", rspq.size); 2970 R("RspQE size:", rspq.iqe_len); 2971 R("RspQ CIDX:", rspq.cidx); 2972 R("RspQ Gen:", rspq.gen); 2973 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq)); 2974 S3("u", "Intr pktcnt:", s->counter_val[rx[i].rspq.pktcnt_idx]); 2975 R("FL ID:", fl.cntxt_id); 2976 R("FL size:", fl.size - 8); 2977 R("FL pend:", fl.pend_cred); 2978 R("FL avail:", fl.avail); 2979 R("FL PIDX:", fl.pidx); 2980 R("FL CIDX:", fl.cidx); 2981 2982 goto unlock; 2983 } 2984 2985 r -= uld_txq_entries[CXGB4_TX_CRYPTO]; 2986 if (r < ctrl_entries) { 2987 const struct sge_ctrl_txq *tx = &s->ctrlq[r * 4]; 2988 2989 n = min(4, adap->params.nports - 4 * r); 2990 2991 S("QType:", "Control"); 2992 T("TxQ ID:", q.cntxt_id); 2993 T("TxQ size:", q.size); 2994 T("TxQ inuse:", q.in_use); 2995 T("TxQ CIDX:", q.cidx); 2996 T("TxQ PIDX:", q.pidx); 2997 TL("TxQFull:", q.stops); 2998 TL("TxQRestarts:", q.restarts); 2999 3000 goto unlock; 3001 } 3002 3003 r -= ctrl_entries; 3004 if (r < 1) { 3005 const struct sge_rspq *evtq = &s->fw_evtq; 3006 3007 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); 3008 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); 3009 seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size); 3010 seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len); 3011 seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx); 3012 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); 3013 seq_printf(seq, "%-12s %16u\n", "Intr delay:", 3014 qtimer_val(adap, evtq)); 3015 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", 3016 s->counter_val[evtq->pktcnt_idx]); 3017 3018 goto unlock; 3019 } 3020 3021 unlock: 3022 mutex_unlock(&uld_mutex); 3023 #undef R 3024 #undef RL 3025 #undef T 3026 #undef TL 3027 #undef S 3028 #undef R3 3029 #undef T3 3030 #undef S3 3031 return 0; 3032 } 3033 3034 static int sge_queue_entries(const struct adapter *adap) 3035 { 3036 int tot_uld_entries = 0; 3037 int i; 3038 3039 mutex_lock(&uld_mutex); 3040 for (i = 0; i < CXGB4_TX_MAX; i++) 3041 tot_uld_entries += sge_qinfo_uld_txq_entries(adap, i); 3042 3043 for (i = 0; i < CXGB4_ULD_MAX; i++) { 3044 tot_uld_entries += sge_qinfo_uld_rxq_entries(adap, i); 3045 tot_uld_entries += sge_qinfo_uld_ciq_entries(adap, i); 3046 } 3047 mutex_unlock(&uld_mutex); 3048 3049 return DIV_ROUND_UP(adap->sge.ethqsets, 4) + 3050 tot_uld_entries + 3051 DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1; 3052 } 3053 3054 static void *sge_queue_start(struct seq_file *seq, loff_t *pos) 3055 { 3056 int entries = sge_queue_entries(seq->private); 3057 3058 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 3059 } 3060 3061 static void sge_queue_stop(struct seq_file *seq, void *v) 3062 { 3063 } 3064 3065 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) 3066 { 3067 int entries = sge_queue_entries(seq->private); 3068 3069 ++*pos; 3070 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; 3071 } 3072 3073 static const struct seq_operations sge_qinfo_seq_ops = { 3074 .start = sge_queue_start, 3075 .next = sge_queue_next, 3076 .stop = sge_queue_stop, 3077 .show = sge_qinfo_show 3078 }; 3079 3080 static int sge_qinfo_open(struct inode *inode, struct file *file) 3081 { 3082 int res = seq_open(file, &sge_qinfo_seq_ops); 3083 3084 if (!res) { 3085 struct seq_file *seq = file->private_data; 3086 3087 seq->private = inode->i_private; 3088 } 3089 return res; 3090 } 3091 3092 static const struct file_operations sge_qinfo_debugfs_fops = { 3093 .owner = THIS_MODULE, 3094 .open = sge_qinfo_open, 3095 .read = seq_read, 3096 .llseek = seq_lseek, 3097 .release = seq_release, 3098 }; 3099 3100 int mem_open(struct inode *inode, struct file *file) 3101 { 3102 unsigned int mem; 3103 struct adapter *adap; 3104 3105 file->private_data = inode->i_private; 3106 3107 mem = (uintptr_t)file->private_data & 0x7; 3108 adap = file->private_data - mem; 3109 3110 (void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH); 3111 3112 return 0; 3113 } 3114 3115 static ssize_t mem_read(struct file *file, char __user *buf, size_t count, 3116 loff_t *ppos) 3117 { 3118 loff_t pos = *ppos; 3119 loff_t avail = file_inode(file)->i_size; 3120 unsigned int mem = (uintptr_t)file->private_data & 0x7; 3121 struct adapter *adap = file->private_data - mem; 3122 __be32 *data; 3123 int ret; 3124 3125 if (pos < 0) 3126 return -EINVAL; 3127 if (pos >= avail) 3128 return 0; 3129 if (count > avail - pos) 3130 count = avail - pos; 3131 3132 data = kvzalloc(count, GFP_KERNEL); 3133 if (!data) 3134 return -ENOMEM; 3135 3136 spin_lock(&adap->win0_lock); 3137 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ); 3138 spin_unlock(&adap->win0_lock); 3139 if (ret) { 3140 kvfree(data); 3141 return ret; 3142 } 3143 ret = copy_to_user(buf, data, count); 3144 3145 kvfree(data); 3146 if (ret) 3147 return -EFAULT; 3148 3149 *ppos = pos + count; 3150 return count; 3151 } 3152 static const struct file_operations mem_debugfs_fops = { 3153 .owner = THIS_MODULE, 3154 .open = simple_open, 3155 .read = mem_read, 3156 .llseek = default_llseek, 3157 }; 3158 3159 static int tid_info_show(struct seq_file *seq, void *v) 3160 { 3161 unsigned int tid_start = 0; 3162 struct adapter *adap = seq->private; 3163 const struct tid_info *t = &adap->tids; 3164 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 3165 3166 if (chip > CHELSIO_T5) 3167 tid_start = t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 3168 3169 if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) { 3170 unsigned int sb; 3171 seq_printf(seq, "Connections in use: %u\n", 3172 atomic_read(&t->conns_in_use)); 3173 3174 if (chip <= CHELSIO_T5) 3175 sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4; 3176 else 3177 sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A); 3178 3179 if (sb) { 3180 seq_printf(seq, "TID range: %u..%u/%u..%u", tid_start, 3181 sb - 1, adap->tids.hash_base, 3182 t->ntids - 1); 3183 seq_printf(seq, ", in use: %u/%u\n", 3184 atomic_read(&t->tids_in_use), 3185 atomic_read(&t->hash_tids_in_use)); 3186 } else if (adap->flags & FW_OFLD_CONN) { 3187 seq_printf(seq, "TID range: %u..%u/%u..%u", 3188 t->aftid_base, 3189 t->aftid_end, 3190 adap->tids.hash_base, 3191 t->ntids - 1); 3192 seq_printf(seq, ", in use: %u/%u\n", 3193 atomic_read(&t->tids_in_use), 3194 atomic_read(&t->hash_tids_in_use)); 3195 } else { 3196 seq_printf(seq, "TID range: %u..%u", 3197 adap->tids.hash_base, 3198 t->ntids - 1); 3199 seq_printf(seq, ", in use: %u\n", 3200 atomic_read(&t->hash_tids_in_use)); 3201 } 3202 } else if (t->ntids) { 3203 seq_printf(seq, "Connections in use: %u\n", 3204 atomic_read(&t->conns_in_use)); 3205 3206 seq_printf(seq, "TID range: %u..%u", tid_start, 3207 tid_start + t->ntids - 1); 3208 seq_printf(seq, ", in use: %u\n", 3209 atomic_read(&t->tids_in_use)); 3210 } 3211 3212 if (t->nstids) 3213 seq_printf(seq, "STID range: %u..%u, in use-IPv4/IPv6: %u/%u\n", 3214 (!t->stid_base && 3215 (chip <= CHELSIO_T5)) ? 3216 t->stid_base + 1 : t->stid_base, 3217 t->stid_base + t->nstids - 1, 3218 t->stids_in_use - t->v6_stids_in_use, 3219 t->v6_stids_in_use); 3220 3221 if (t->natids) 3222 seq_printf(seq, "ATID range: 0..%u, in use: %u\n", 3223 t->natids - 1, t->atids_in_use); 3224 seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base, 3225 t->ftid_base + t->nftids - 1); 3226 if (t->nsftids) 3227 seq_printf(seq, "SFTID range: %u..%u in use: %u\n", 3228 t->sftid_base, t->sftid_base + t->nsftids - 2, 3229 t->sftids_in_use); 3230 if (t->ntids) 3231 seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n", 3232 t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A), 3233 t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A)); 3234 return 0; 3235 } 3236 3237 DEFINE_SIMPLE_DEBUGFS_FILE(tid_info); 3238 3239 static void add_debugfs_mem(struct adapter *adap, const char *name, 3240 unsigned int idx, unsigned int size_mb) 3241 { 3242 debugfs_create_file_size(name, 0400, adap->debugfs_root, 3243 (void *)adap + idx, &mem_debugfs_fops, 3244 size_mb << 20); 3245 } 3246 3247 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf, 3248 size_t count, loff_t *ppos) 3249 { 3250 int len; 3251 const struct adapter *adap = filp->private_data; 3252 char *buf; 3253 ssize_t size = (adap->sge.egr_sz + 3) / 4 + 3254 adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */ 3255 3256 buf = kzalloc(size, GFP_KERNEL); 3257 if (!buf) 3258 return -ENOMEM; 3259 3260 len = snprintf(buf, size - 1, "%*pb\n", 3261 adap->sge.egr_sz, adap->sge.blocked_fl); 3262 len += sprintf(buf + len, "\n"); 3263 size = simple_read_from_buffer(ubuf, count, ppos, buf, len); 3264 kvfree(buf); 3265 return size; 3266 } 3267 3268 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf, 3269 size_t count, loff_t *ppos) 3270 { 3271 int err; 3272 unsigned long *t; 3273 struct adapter *adap = filp->private_data; 3274 3275 t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL); 3276 if (!t) 3277 return -ENOMEM; 3278 3279 err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz); 3280 if (err) 3281 return err; 3282 3283 bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz); 3284 kvfree(t); 3285 return count; 3286 } 3287 3288 static const struct file_operations blocked_fl_fops = { 3289 .owner = THIS_MODULE, 3290 .open = simple_open, 3291 .read = blocked_fl_read, 3292 .write = blocked_fl_write, 3293 .llseek = generic_file_llseek, 3294 }; 3295 3296 static void mem_region_show(struct seq_file *seq, const char *name, 3297 unsigned int from, unsigned int to) 3298 { 3299 char buf[40]; 3300 3301 string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf, 3302 sizeof(buf)); 3303 seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf); 3304 } 3305 3306 static int meminfo_show(struct seq_file *seq, void *v) 3307 { 3308 static const char * const memory[] = { "EDC0:", "EDC1:", "MC:", 3309 "MC0:", "MC1:", "HMA:"}; 3310 struct adapter *adap = seq->private; 3311 struct cudbg_meminfo meminfo; 3312 int i, rc; 3313 3314 memset(&meminfo, 0, sizeof(struct cudbg_meminfo)); 3315 rc = cudbg_fill_meminfo(adap, &meminfo); 3316 if (rc) 3317 return -ENXIO; 3318 3319 for (i = 0; i < meminfo.avail_c; i++) 3320 mem_region_show(seq, memory[meminfo.avail[i].idx], 3321 meminfo.avail[i].base, 3322 meminfo.avail[i].limit - 1); 3323 3324 seq_putc(seq, '\n'); 3325 for (i = 0; i < meminfo.mem_c; i++) { 3326 if (meminfo.mem[i].idx >= ARRAY_SIZE(cudbg_region)) 3327 continue; /* skip holes */ 3328 if (!meminfo.mem[i].limit) 3329 meminfo.mem[i].limit = 3330 i < meminfo.mem_c - 1 ? 3331 meminfo.mem[i + 1].base - 1 : ~0; 3332 mem_region_show(seq, cudbg_region[meminfo.mem[i].idx], 3333 meminfo.mem[i].base, meminfo.mem[i].limit); 3334 } 3335 3336 seq_putc(seq, '\n'); 3337 mem_region_show(seq, "uP RAM:", meminfo.up_ram_lo, meminfo.up_ram_hi); 3338 mem_region_show(seq, "uP Extmem2:", meminfo.up_extmem2_lo, 3339 meminfo.up_extmem2_hi); 3340 3341 seq_printf(seq, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 3342 meminfo.rx_pages_data[0], meminfo.free_rx_cnt, 3343 meminfo.rx_pages_data[1], meminfo.rx_pages_data[2]); 3344 3345 seq_printf(seq, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 3346 meminfo.tx_pages_data[0], meminfo.free_tx_cnt, 3347 meminfo.tx_pages_data[1], meminfo.tx_pages_data[2], 3348 meminfo.tx_pages_data[3]); 3349 3350 seq_printf(seq, "%u p-structs (%u free)\n\n", 3351 meminfo.p_structs, meminfo.p_structs_free_cnt); 3352 3353 for (i = 0; i < 4; i++) 3354 /* For T6 these are MAC buffer groups */ 3355 seq_printf(seq, "Port %d using %u pages out of %u allocated\n", 3356 i, meminfo.port_used[i], meminfo.port_alloc[i]); 3357 3358 for (i = 0; i < adap->params.arch.nchan; i++) 3359 /* For T6 these are MAC buffer groups */ 3360 seq_printf(seq, 3361 "Loopback %d using %u pages out of %u allocated\n", 3362 i, meminfo.loopback_used[i], 3363 meminfo.loopback_alloc[i]); 3364 3365 return 0; 3366 } 3367 3368 static int meminfo_open(struct inode *inode, struct file *file) 3369 { 3370 return single_open(file, meminfo_show, inode->i_private); 3371 } 3372 3373 static const struct file_operations meminfo_fops = { 3374 .owner = THIS_MODULE, 3375 .open = meminfo_open, 3376 .read = seq_read, 3377 .llseek = seq_lseek, 3378 .release = single_release, 3379 }; 3380 3381 static int chcr_show(struct seq_file *seq, void *v) 3382 { 3383 struct adapter *adap = seq->private; 3384 3385 seq_puts(seq, "Chelsio Crypto Accelerator Stats \n"); 3386 seq_printf(seq, "Cipher Ops: %10u \n", 3387 atomic_read(&adap->chcr_stats.cipher_rqst)); 3388 seq_printf(seq, "Digest Ops: %10u \n", 3389 atomic_read(&adap->chcr_stats.digest_rqst)); 3390 seq_printf(seq, "Aead Ops: %10u \n", 3391 atomic_read(&adap->chcr_stats.aead_rqst)); 3392 seq_printf(seq, "Completion: %10u \n", 3393 atomic_read(&adap->chcr_stats.complete)); 3394 seq_printf(seq, "Error: %10u \n", 3395 atomic_read(&adap->chcr_stats.error)); 3396 seq_printf(seq, "Fallback: %10u \n", 3397 atomic_read(&adap->chcr_stats.fallback)); 3398 seq_printf(seq, "IPSec PDU: %10u\n", 3399 atomic_read(&adap->chcr_stats.ipsec_cnt)); 3400 return 0; 3401 } 3402 3403 3404 static int chcr_stats_open(struct inode *inode, struct file *file) 3405 { 3406 return single_open(file, chcr_show, inode->i_private); 3407 } 3408 3409 static const struct file_operations chcr_stats_debugfs_fops = { 3410 .owner = THIS_MODULE, 3411 .open = chcr_stats_open, 3412 .read = seq_read, 3413 .llseek = seq_lseek, 3414 .release = single_release, 3415 }; 3416 3417 #define PRINT_ADAP_STATS(string, value) \ 3418 seq_printf(seq, "%-25s %-20llu\n", (string), \ 3419 (unsigned long long)(value)) 3420 3421 #define PRINT_CH_STATS(string, value) \ 3422 do { \ 3423 seq_printf(seq, "%-25s ", (string)); \ 3424 for (i = 0; i < adap->params.arch.nchan; i++) \ 3425 seq_printf(seq, "%-20llu ", \ 3426 (unsigned long long)stats.value[i]); \ 3427 seq_printf(seq, "\n"); \ 3428 } while (0) 3429 3430 #define PRINT_CH_STATS2(string, value) \ 3431 do { \ 3432 seq_printf(seq, "%-25s ", (string)); \ 3433 for (i = 0; i < adap->params.arch.nchan; i++) \ 3434 seq_printf(seq, "%-20llu ", \ 3435 (unsigned long long)stats[i].value); \ 3436 seq_printf(seq, "\n"); \ 3437 } while (0) 3438 3439 static void show_tcp_stats(struct seq_file *seq) 3440 { 3441 struct adapter *adap = seq->private; 3442 struct tp_tcp_stats v4, v6; 3443 3444 spin_lock(&adap->stats_lock); 3445 t4_tp_get_tcp_stats(adap, &v4, &v6, false); 3446 spin_unlock(&adap->stats_lock); 3447 3448 PRINT_ADAP_STATS("tcp_ipv4_out_rsts:", v4.tcp_out_rsts); 3449 PRINT_ADAP_STATS("tcp_ipv4_in_segs:", v4.tcp_in_segs); 3450 PRINT_ADAP_STATS("tcp_ipv4_out_segs:", v4.tcp_out_segs); 3451 PRINT_ADAP_STATS("tcp_ipv4_retrans_segs:", v4.tcp_retrans_segs); 3452 PRINT_ADAP_STATS("tcp_ipv6_out_rsts:", v6.tcp_out_rsts); 3453 PRINT_ADAP_STATS("tcp_ipv6_in_segs:", v6.tcp_in_segs); 3454 PRINT_ADAP_STATS("tcp_ipv6_out_segs:", v6.tcp_out_segs); 3455 PRINT_ADAP_STATS("tcp_ipv6_retrans_segs:", v6.tcp_retrans_segs); 3456 } 3457 3458 static void show_ddp_stats(struct seq_file *seq) 3459 { 3460 struct adapter *adap = seq->private; 3461 struct tp_usm_stats stats; 3462 3463 spin_lock(&adap->stats_lock); 3464 t4_get_usm_stats(adap, &stats, false); 3465 spin_unlock(&adap->stats_lock); 3466 3467 PRINT_ADAP_STATS("usm_ddp_frames:", stats.frames); 3468 PRINT_ADAP_STATS("usm_ddp_octets:", stats.octets); 3469 PRINT_ADAP_STATS("usm_ddp_drops:", stats.drops); 3470 } 3471 3472 static void show_rdma_stats(struct seq_file *seq) 3473 { 3474 struct adapter *adap = seq->private; 3475 struct tp_rdma_stats stats; 3476 3477 spin_lock(&adap->stats_lock); 3478 t4_tp_get_rdma_stats(adap, &stats, false); 3479 spin_unlock(&adap->stats_lock); 3480 3481 PRINT_ADAP_STATS("rdma_no_rqe_mod_defer:", stats.rqe_dfr_mod); 3482 PRINT_ADAP_STATS("rdma_no_rqe_pkt_defer:", stats.rqe_dfr_pkt); 3483 } 3484 3485 static void show_tp_err_adapter_stats(struct seq_file *seq) 3486 { 3487 struct adapter *adap = seq->private; 3488 struct tp_err_stats stats; 3489 3490 spin_lock(&adap->stats_lock); 3491 t4_tp_get_err_stats(adap, &stats, false); 3492 spin_unlock(&adap->stats_lock); 3493 3494 PRINT_ADAP_STATS("tp_err_ofld_no_neigh:", stats.ofld_no_neigh); 3495 PRINT_ADAP_STATS("tp_err_ofld_cong_defer:", stats.ofld_cong_defer); 3496 } 3497 3498 static void show_cpl_stats(struct seq_file *seq) 3499 { 3500 struct adapter *adap = seq->private; 3501 struct tp_cpl_stats stats; 3502 u8 i; 3503 3504 spin_lock(&adap->stats_lock); 3505 t4_tp_get_cpl_stats(adap, &stats, false); 3506 spin_unlock(&adap->stats_lock); 3507 3508 PRINT_CH_STATS("tp_cpl_requests:", req); 3509 PRINT_CH_STATS("tp_cpl_responses:", rsp); 3510 } 3511 3512 static void show_tp_err_channel_stats(struct seq_file *seq) 3513 { 3514 struct adapter *adap = seq->private; 3515 struct tp_err_stats stats; 3516 u8 i; 3517 3518 spin_lock(&adap->stats_lock); 3519 t4_tp_get_err_stats(adap, &stats, false); 3520 spin_unlock(&adap->stats_lock); 3521 3522 PRINT_CH_STATS("tp_mac_in_errs:", mac_in_errs); 3523 PRINT_CH_STATS("tp_hdr_in_errs:", hdr_in_errs); 3524 PRINT_CH_STATS("tp_tcp_in_errs:", tcp_in_errs); 3525 PRINT_CH_STATS("tp_tcp6_in_errs:", tcp6_in_errs); 3526 PRINT_CH_STATS("tp_tnl_cong_drops:", tnl_cong_drops); 3527 PRINT_CH_STATS("tp_tnl_tx_drops:", tnl_tx_drops); 3528 PRINT_CH_STATS("tp_ofld_vlan_drops:", ofld_vlan_drops); 3529 PRINT_CH_STATS("tp_ofld_chan_drops:", ofld_chan_drops); 3530 } 3531 3532 static void show_fcoe_stats(struct seq_file *seq) 3533 { 3534 struct adapter *adap = seq->private; 3535 struct tp_fcoe_stats stats[NCHAN]; 3536 u8 i; 3537 3538 spin_lock(&adap->stats_lock); 3539 for (i = 0; i < adap->params.arch.nchan; i++) 3540 t4_get_fcoe_stats(adap, i, &stats[i], false); 3541 spin_unlock(&adap->stats_lock); 3542 3543 PRINT_CH_STATS2("fcoe_octets_ddp", octets_ddp); 3544 PRINT_CH_STATS2("fcoe_frames_ddp", frames_ddp); 3545 PRINT_CH_STATS2("fcoe_frames_drop", frames_drop); 3546 } 3547 3548 #undef PRINT_CH_STATS2 3549 #undef PRINT_CH_STATS 3550 #undef PRINT_ADAP_STATS 3551 3552 static int tp_stats_show(struct seq_file *seq, void *v) 3553 { 3554 struct adapter *adap = seq->private; 3555 3556 seq_puts(seq, "\n--------Adapter Stats--------\n"); 3557 show_tcp_stats(seq); 3558 show_ddp_stats(seq); 3559 show_rdma_stats(seq); 3560 show_tp_err_adapter_stats(seq); 3561 3562 seq_puts(seq, "\n-------- Channel Stats --------\n"); 3563 if (adap->params.arch.nchan == NCHAN) 3564 seq_printf(seq, "%-25s %-20s %-20s %-20s %-20s\n", 3565 " ", "channel 0", "channel 1", 3566 "channel 2", "channel 3"); 3567 else 3568 seq_printf(seq, "%-25s %-20s %-20s\n", 3569 " ", "channel 0", "channel 1"); 3570 show_cpl_stats(seq); 3571 show_tp_err_channel_stats(seq); 3572 show_fcoe_stats(seq); 3573 3574 return 0; 3575 } 3576 3577 DEFINE_SIMPLE_DEBUGFS_FILE(tp_stats); 3578 3579 /* Add an array of Debug FS files. 3580 */ 3581 void add_debugfs_files(struct adapter *adap, 3582 struct t4_debugfs_entry *files, 3583 unsigned int nfiles) 3584 { 3585 int i; 3586 3587 /* debugfs support is best effort */ 3588 for (i = 0; i < nfiles; i++) 3589 debugfs_create_file(files[i].name, files[i].mode, 3590 adap->debugfs_root, 3591 (void *)adap + files[i].data, 3592 files[i].ops); 3593 } 3594 3595 int t4_setup_debugfs(struct adapter *adap) 3596 { 3597 int i; 3598 u32 size = 0; 3599 struct dentry *de; 3600 3601 static struct t4_debugfs_entry t4_debugfs_files[] = { 3602 { "cim_la", &cim_la_fops, 0400, 0 }, 3603 { "cim_pif_la", &cim_pif_la_fops, 0400, 0 }, 3604 { "cim_ma_la", &cim_ma_la_fops, 0400, 0 }, 3605 { "cim_qcfg", &cim_qcfg_fops, 0400, 0 }, 3606 { "clk", &clk_debugfs_fops, 0400, 0 }, 3607 { "devlog", &devlog_fops, 0400, 0 }, 3608 { "mboxlog", &mboxlog_fops, 0400, 0 }, 3609 { "mbox0", &mbox_debugfs_fops, 0600, 0 }, 3610 { "mbox1", &mbox_debugfs_fops, 0600, 1 }, 3611 { "mbox2", &mbox_debugfs_fops, 0600, 2 }, 3612 { "mbox3", &mbox_debugfs_fops, 0600, 3 }, 3613 { "mbox4", &mbox_debugfs_fops, 0600, 4 }, 3614 { "mbox5", &mbox_debugfs_fops, 0600, 5 }, 3615 { "mbox6", &mbox_debugfs_fops, 0600, 6 }, 3616 { "mbox7", &mbox_debugfs_fops, 0600, 7 }, 3617 { "trace0", &mps_trc_debugfs_fops, 0600, 0 }, 3618 { "trace1", &mps_trc_debugfs_fops, 0600, 1 }, 3619 { "trace2", &mps_trc_debugfs_fops, 0600, 2 }, 3620 { "trace3", &mps_trc_debugfs_fops, 0600, 3 }, 3621 { "l2t", &t4_l2t_fops, 0400, 0}, 3622 { "mps_tcam", &mps_tcam_debugfs_fops, 0400, 0 }, 3623 { "rss", &rss_debugfs_fops, 0400, 0 }, 3624 { "rss_config", &rss_config_debugfs_fops, 0400, 0 }, 3625 { "rss_key", &rss_key_debugfs_fops, 0400, 0 }, 3626 { "rss_pf_config", &rss_pf_config_debugfs_fops, 0400, 0 }, 3627 { "rss_vf_config", &rss_vf_config_debugfs_fops, 0400, 0 }, 3628 { "resources", &resources_debugfs_fops, 0400, 0 }, 3629 #ifdef CONFIG_CHELSIO_T4_DCB 3630 { "dcb_info", &dcb_info_debugfs_fops, 0400, 0 }, 3631 #endif 3632 { "sge_qinfo", &sge_qinfo_debugfs_fops, 0400, 0 }, 3633 { "ibq_tp0", &cim_ibq_fops, 0400, 0 }, 3634 { "ibq_tp1", &cim_ibq_fops, 0400, 1 }, 3635 { "ibq_ulp", &cim_ibq_fops, 0400, 2 }, 3636 { "ibq_sge0", &cim_ibq_fops, 0400, 3 }, 3637 { "ibq_sge1", &cim_ibq_fops, 0400, 4 }, 3638 { "ibq_ncsi", &cim_ibq_fops, 0400, 5 }, 3639 { "obq_ulp0", &cim_obq_fops, 0400, 0 }, 3640 { "obq_ulp1", &cim_obq_fops, 0400, 1 }, 3641 { "obq_ulp2", &cim_obq_fops, 0400, 2 }, 3642 { "obq_ulp3", &cim_obq_fops, 0400, 3 }, 3643 { "obq_sge", &cim_obq_fops, 0400, 4 }, 3644 { "obq_ncsi", &cim_obq_fops, 0400, 5 }, 3645 { "tp_la", &tp_la_fops, 0400, 0 }, 3646 { "ulprx_la", &ulprx_la_fops, 0400, 0 }, 3647 { "sensors", &sensors_debugfs_fops, 0400, 0 }, 3648 { "pm_stats", &pm_stats_debugfs_fops, 0400, 0 }, 3649 { "tx_rate", &tx_rate_debugfs_fops, 0400, 0 }, 3650 { "cctrl", &cctrl_tbl_debugfs_fops, 0400, 0 }, 3651 #if IS_ENABLED(CONFIG_IPV6) 3652 { "clip_tbl", &clip_tbl_debugfs_fops, 0400, 0 }, 3653 #endif 3654 { "tids", &tid_info_debugfs_fops, 0400, 0}, 3655 { "blocked_fl", &blocked_fl_fops, 0600, 0 }, 3656 { "meminfo", &meminfo_fops, 0400, 0 }, 3657 { "crypto", &chcr_stats_debugfs_fops, 0400, 0 }, 3658 { "tp_stats", &tp_stats_debugfs_fops, 0400, 0 }, 3659 }; 3660 3661 /* Debug FS nodes common to all T5 and later adapters. 3662 */ 3663 static struct t4_debugfs_entry t5_debugfs_files[] = { 3664 { "obq_sge_rx_q0", &cim_obq_fops, 0400, 6 }, 3665 { "obq_sge_rx_q1", &cim_obq_fops, 0400, 7 }, 3666 }; 3667 3668 add_debugfs_files(adap, 3669 t4_debugfs_files, 3670 ARRAY_SIZE(t4_debugfs_files)); 3671 if (!is_t4(adap->params.chip)) 3672 add_debugfs_files(adap, 3673 t5_debugfs_files, 3674 ARRAY_SIZE(t5_debugfs_files)); 3675 3676 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A); 3677 if (i & EDRAM0_ENABLE_F) { 3678 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 3679 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size)); 3680 } 3681 if (i & EDRAM1_ENABLE_F) { 3682 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 3683 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size)); 3684 } 3685 if (is_t5(adap->params.chip)) { 3686 if (i & EXT_MEM0_ENABLE_F) { 3687 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 3688 add_debugfs_mem(adap, "mc0", MEM_MC0, 3689 EXT_MEM0_SIZE_G(size)); 3690 } 3691 if (i & EXT_MEM1_ENABLE_F) { 3692 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 3693 add_debugfs_mem(adap, "mc1", MEM_MC1, 3694 EXT_MEM1_SIZE_G(size)); 3695 } 3696 } else { 3697 if (i & EXT_MEM_ENABLE_F) { 3698 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A); 3699 add_debugfs_mem(adap, "mc", MEM_MC, 3700 EXT_MEM_SIZE_G(size)); 3701 } 3702 3703 if (i & HMA_MUX_F) { 3704 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 3705 add_debugfs_mem(adap, "hma", MEM_HMA, 3706 EXT_MEM1_SIZE_G(size)); 3707 } 3708 } 3709 3710 de = debugfs_create_file_size("flash", 0400, adap->debugfs_root, adap, 3711 &flash_debugfs_fops, adap->params.sf_size); 3712 debugfs_create_bool("use_backdoor", 0600, 3713 adap->debugfs_root, &adap->use_bd); 3714 debugfs_create_bool("trace_rss", 0600, 3715 adap->debugfs_root, &adap->trace_rss); 3716 3717 return 0; 3718 } 3719