1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include "common.h" 33 #include "regs.h" 34 #include "sge_defs.h" 35 #include "firmware_exports.h" 36 37 static void t3_port_intr_clear(struct adapter *adapter, int idx); 38 39 /** 40 * t3_wait_op_done_val - wait until an operation is completed 41 * @adapter: the adapter performing the operation 42 * @reg: the register to check for completion 43 * @mask: a single-bit field within @reg that indicates completion 44 * @polarity: the value of the field when the operation is completed 45 * @attempts: number of check iterations 46 * @delay: delay in usecs between iterations 47 * @valp: where to store the value of the register at completion time 48 * 49 * Wait until an operation is completed by checking a bit in a register 50 * up to @attempts times. If @valp is not NULL the value of the register 51 * at the time it indicated completion is stored there. Returns 0 if the 52 * operation completes and -EAGAIN otherwise. 53 */ 54 55 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 56 int polarity, int attempts, int delay, u32 *valp) 57 { 58 while (1) { 59 u32 val = t3_read_reg(adapter, reg); 60 61 if (!!(val & mask) == polarity) { 62 if (valp) 63 *valp = val; 64 return 0; 65 } 66 if (--attempts == 0) 67 return -EAGAIN; 68 if (delay) 69 udelay(delay); 70 } 71 } 72 73 /** 74 * t3_write_regs - write a bunch of registers 75 * @adapter: the adapter to program 76 * @p: an array of register address/register value pairs 77 * @n: the number of address/value pairs 78 * @offset: register address offset 79 * 80 * Takes an array of register address/register value pairs and writes each 81 * value to the corresponding register. Register addresses are adjusted 82 * by the supplied offset. 83 */ 84 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, 85 int n, unsigned int offset) 86 { 87 while (n--) { 88 t3_write_reg(adapter, p->reg_addr + offset, p->val); 89 p++; 90 } 91 } 92 93 /** 94 * t3_set_reg_field - set a register field to a value 95 * @adapter: the adapter to program 96 * @addr: the register address 97 * @mask: specifies the portion of the register to modify 98 * @val: the new value for the register field 99 * 100 * Sets a register field specified by the supplied mask to the 101 * given value. 102 */ 103 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 104 u32 val) 105 { 106 u32 v = t3_read_reg(adapter, addr) & ~mask; 107 108 t3_write_reg(adapter, addr, v | val); 109 t3_read_reg(adapter, addr); /* flush */ 110 } 111 112 /** 113 * t3_read_indirect - read indirectly addressed registers 114 * @adap: the adapter 115 * @addr_reg: register holding the indirect address 116 * @data_reg: register holding the value of the indirect register 117 * @vals: where the read register values are stored 118 * @start_idx: index of first indirect register to read 119 * @nregs: how many indirect registers to read 120 * 121 * Reads registers that are accessed indirectly through an address/data 122 * register pair. 123 */ 124 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg, 125 unsigned int data_reg, u32 *vals, 126 unsigned int nregs, unsigned int start_idx) 127 { 128 while (nregs--) { 129 t3_write_reg(adap, addr_reg, start_idx); 130 *vals++ = t3_read_reg(adap, data_reg); 131 start_idx++; 132 } 133 } 134 135 /** 136 * t3_mc7_bd_read - read from MC7 through backdoor accesses 137 * @mc7: identifies MC7 to read from 138 * @start: index of first 64-bit word to read 139 * @n: number of 64-bit words to read 140 * @buf: where to store the read result 141 * 142 * Read n 64-bit words from MC7 starting at word start, using backdoor 143 * accesses. 144 */ 145 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, 146 u64 *buf) 147 { 148 static const int shift[] = { 0, 0, 16, 24 }; 149 static const int step[] = { 0, 32, 16, 8 }; 150 151 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ 152 struct adapter *adap = mc7->adapter; 153 154 if (start >= size64 || start + n > size64) 155 return -EINVAL; 156 157 start *= (8 << mc7->width); 158 while (n--) { 159 int i; 160 u64 val64 = 0; 161 162 for (i = (1 << mc7->width) - 1; i >= 0; --i) { 163 int attempts = 10; 164 u32 val; 165 166 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start); 167 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); 168 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); 169 while ((val & F_BUSY) && attempts--) 170 val = t3_read_reg(adap, 171 mc7->offset + A_MC7_BD_OP); 172 if (val & F_BUSY) 173 return -EIO; 174 175 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); 176 if (mc7->width == 0) { 177 val64 = t3_read_reg(adap, 178 mc7->offset + 179 A_MC7_BD_DATA0); 180 val64 |= (u64) val << 32; 181 } else { 182 if (mc7->width > 1) 183 val >>= shift[mc7->width]; 184 val64 |= (u64) val << (step[mc7->width] * i); 185 } 186 start += 8; 187 } 188 *buf++ = val64; 189 } 190 return 0; 191 } 192 193 /* 194 * Initialize MI1. 195 */ 196 static void mi1_init(struct adapter *adap, const struct adapter_info *ai) 197 { 198 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; 199 u32 val = F_PREEN | V_CLKDIV(clkdiv); 200 201 t3_write_reg(adap, A_MI1_CFG, val); 202 } 203 204 #define MDIO_ATTEMPTS 20 205 206 /* 207 * MI1 read/write operations for clause 22 PHYs. 208 */ 209 static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr, 210 u16 reg_addr) 211 { 212 struct port_info *pi = netdev_priv(dev); 213 struct adapter *adapter = pi->adapter; 214 int ret; 215 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); 216 217 mutex_lock(&adapter->mdio_lock); 218 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1)); 219 t3_write_reg(adapter, A_MI1_ADDR, addr); 220 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); 221 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 222 if (!ret) 223 ret = t3_read_reg(adapter, A_MI1_DATA); 224 mutex_unlock(&adapter->mdio_lock); 225 return ret; 226 } 227 228 static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr, 229 u16 reg_addr, u16 val) 230 { 231 struct port_info *pi = netdev_priv(dev); 232 struct adapter *adapter = pi->adapter; 233 int ret; 234 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); 235 236 mutex_lock(&adapter->mdio_lock); 237 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1)); 238 t3_write_reg(adapter, A_MI1_ADDR, addr); 239 t3_write_reg(adapter, A_MI1_DATA, val); 240 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); 241 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 242 mutex_unlock(&adapter->mdio_lock); 243 return ret; 244 } 245 246 static const struct mdio_ops mi1_mdio_ops = { 247 .read = t3_mi1_read, 248 .write = t3_mi1_write, 249 .mode_support = MDIO_SUPPORTS_C22 250 }; 251 252 /* 253 * Performs the address cycle for clause 45 PHYs. 254 * Must be called with the MDIO_LOCK held. 255 */ 256 static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr, 257 int reg_addr) 258 { 259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); 260 261 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0); 262 t3_write_reg(adapter, A_MI1_ADDR, addr); 263 t3_write_reg(adapter, A_MI1_DATA, reg_addr); 264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); 265 return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 266 MDIO_ATTEMPTS, 10); 267 } 268 269 /* 270 * MI1 read/write operations for indirect-addressed PHYs. 271 */ 272 static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr, 273 u16 reg_addr) 274 { 275 struct port_info *pi = netdev_priv(dev); 276 struct adapter *adapter = pi->adapter; 277 int ret; 278 279 mutex_lock(&adapter->mdio_lock); 280 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr); 281 if (!ret) { 282 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); 283 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 284 MDIO_ATTEMPTS, 10); 285 if (!ret) 286 ret = t3_read_reg(adapter, A_MI1_DATA); 287 } 288 mutex_unlock(&adapter->mdio_lock); 289 return ret; 290 } 291 292 static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr, 293 u16 reg_addr, u16 val) 294 { 295 struct port_info *pi = netdev_priv(dev); 296 struct adapter *adapter = pi->adapter; 297 int ret; 298 299 mutex_lock(&adapter->mdio_lock); 300 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr); 301 if (!ret) { 302 t3_write_reg(adapter, A_MI1_DATA, val); 303 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); 304 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 305 MDIO_ATTEMPTS, 10); 306 } 307 mutex_unlock(&adapter->mdio_lock); 308 return ret; 309 } 310 311 static const struct mdio_ops mi1_mdio_ext_ops = { 312 .read = mi1_ext_read, 313 .write = mi1_ext_write, 314 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22 315 }; 316 317 /** 318 * t3_mdio_change_bits - modify the value of a PHY register 319 * @phy: the PHY to operate on 320 * @mmd: the device address 321 * @reg: the register address 322 * @clear: what part of the register value to mask off 323 * @set: what part of the register value to set 324 * 325 * Changes the value of a PHY register by applying a mask to its current 326 * value and ORing the result with a new value. 327 */ 328 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, 329 unsigned int set) 330 { 331 int ret; 332 unsigned int val; 333 334 ret = t3_mdio_read(phy, mmd, reg, &val); 335 if (!ret) { 336 val &= ~clear; 337 ret = t3_mdio_write(phy, mmd, reg, val | set); 338 } 339 return ret; 340 } 341 342 /** 343 * t3_phy_reset - reset a PHY block 344 * @phy: the PHY to operate on 345 * @mmd: the device address of the PHY block to reset 346 * @wait: how long to wait for the reset to complete in 1ms increments 347 * 348 * Resets a PHY block and optionally waits for the reset to complete. 349 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset 350 * for 10G PHYs. 351 */ 352 int t3_phy_reset(struct cphy *phy, int mmd, int wait) 353 { 354 int err; 355 unsigned int ctl; 356 357 err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER, 358 MDIO_CTRL1_RESET); 359 if (err || !wait) 360 return err; 361 362 do { 363 err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl); 364 if (err) 365 return err; 366 ctl &= MDIO_CTRL1_RESET; 367 if (ctl) 368 msleep(1); 369 } while (ctl && --wait); 370 371 return ctl ? -1 : 0; 372 } 373 374 /** 375 * t3_phy_advertise - set the PHY advertisement registers for autoneg 376 * @phy: the PHY to operate on 377 * @advert: bitmap of capabilities the PHY should advertise 378 * 379 * Sets a 10/100/1000 PHY's advertisement registers to advertise the 380 * requested capabilities. 381 */ 382 int t3_phy_advertise(struct cphy *phy, unsigned int advert) 383 { 384 int err; 385 unsigned int val = 0; 386 387 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val); 388 if (err) 389 return err; 390 391 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 392 if (advert & ADVERTISED_1000baseT_Half) 393 val |= ADVERTISE_1000HALF; 394 if (advert & ADVERTISED_1000baseT_Full) 395 val |= ADVERTISE_1000FULL; 396 397 err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val); 398 if (err) 399 return err; 400 401 val = 1; 402 if (advert & ADVERTISED_10baseT_Half) 403 val |= ADVERTISE_10HALF; 404 if (advert & ADVERTISED_10baseT_Full) 405 val |= ADVERTISE_10FULL; 406 if (advert & ADVERTISED_100baseT_Half) 407 val |= ADVERTISE_100HALF; 408 if (advert & ADVERTISED_100baseT_Full) 409 val |= ADVERTISE_100FULL; 410 if (advert & ADVERTISED_Pause) 411 val |= ADVERTISE_PAUSE_CAP; 412 if (advert & ADVERTISED_Asym_Pause) 413 val |= ADVERTISE_PAUSE_ASYM; 414 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val); 415 } 416 417 /** 418 * t3_phy_advertise_fiber - set fiber PHY advertisement register 419 * @phy: the PHY to operate on 420 * @advert: bitmap of capabilities the PHY should advertise 421 * 422 * Sets a fiber PHY's advertisement register to advertise the 423 * requested capabilities. 424 */ 425 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert) 426 { 427 unsigned int val = 0; 428 429 if (advert & ADVERTISED_1000baseT_Half) 430 val |= ADVERTISE_1000XHALF; 431 if (advert & ADVERTISED_1000baseT_Full) 432 val |= ADVERTISE_1000XFULL; 433 if (advert & ADVERTISED_Pause) 434 val |= ADVERTISE_1000XPAUSE; 435 if (advert & ADVERTISED_Asym_Pause) 436 val |= ADVERTISE_1000XPSE_ASYM; 437 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val); 438 } 439 440 /** 441 * t3_set_phy_speed_duplex - force PHY speed and duplex 442 * @phy: the PHY to operate on 443 * @speed: requested PHY speed 444 * @duplex: requested PHY duplex 445 * 446 * Force a 10/100/1000 PHY's speed and duplex. This also disables 447 * auto-negotiation except for GigE, where auto-negotiation is mandatory. 448 */ 449 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) 450 { 451 int err; 452 unsigned int ctl; 453 454 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl); 455 if (err) 456 return err; 457 458 if (speed >= 0) { 459 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); 460 if (speed == SPEED_100) 461 ctl |= BMCR_SPEED100; 462 else if (speed == SPEED_1000) 463 ctl |= BMCR_SPEED1000; 464 } 465 if (duplex >= 0) { 466 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); 467 if (duplex == DUPLEX_FULL) 468 ctl |= BMCR_FULLDPLX; 469 } 470 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ 471 ctl |= BMCR_ANENABLE; 472 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl); 473 } 474 475 int t3_phy_lasi_intr_enable(struct cphy *phy) 476 { 477 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 478 MDIO_PMA_LASI_LSALARM); 479 } 480 481 int t3_phy_lasi_intr_disable(struct cphy *phy) 482 { 483 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0); 484 } 485 486 int t3_phy_lasi_intr_clear(struct cphy *phy) 487 { 488 u32 val; 489 490 return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val); 491 } 492 493 int t3_phy_lasi_intr_handler(struct cphy *phy) 494 { 495 unsigned int status; 496 int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, 497 &status); 498 499 if (err) 500 return err; 501 return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0; 502 } 503 504 static const struct adapter_info t3_adap_info[] = { 505 {1, 1, 0, 506 F_GPIO2_OEN | F_GPIO4_OEN | 507 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0, 508 &mi1_mdio_ops, "Chelsio PE9000"}, 509 {1, 1, 0, 510 F_GPIO2_OEN | F_GPIO4_OEN | 511 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0, 512 &mi1_mdio_ops, "Chelsio T302"}, 513 {1, 0, 0, 514 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | 515 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 516 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 517 &mi1_mdio_ext_ops, "Chelsio T310"}, 518 {1, 1, 0, 519 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | 520 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | 521 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 522 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 523 &mi1_mdio_ext_ops, "Chelsio T320"}, 524 {}, 525 {}, 526 {1, 0, 0, 527 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN | 528 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 529 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 530 &mi1_mdio_ext_ops, "Chelsio T310" }, 531 {1, 0, 0, 532 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | 533 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL, 534 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 535 &mi1_mdio_ext_ops, "Chelsio N320E-G2" }, 536 }; 537 538 /* 539 * Return the adapter_info structure with a given index. Out-of-range indices 540 * return NULL. 541 */ 542 const struct adapter_info *t3_get_adapter_info(unsigned int id) 543 { 544 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; 545 } 546 547 struct port_type_info { 548 int (*phy_prep)(struct cphy *phy, struct adapter *adapter, 549 int phy_addr, const struct mdio_ops *ops); 550 }; 551 552 static const struct port_type_info port_types[] = { 553 { NULL }, 554 { t3_ael1002_phy_prep }, 555 { t3_vsc8211_phy_prep }, 556 { NULL}, 557 { t3_xaui_direct_phy_prep }, 558 { t3_ael2005_phy_prep }, 559 { t3_qt2045_phy_prep }, 560 { t3_ael1006_phy_prep }, 561 { NULL }, 562 { t3_aq100x_phy_prep }, 563 { t3_ael2020_phy_prep }, 564 }; 565 566 #define VPD_ENTRY(name, len) \ 567 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] 568 569 /* 570 * Partial EEPROM Vital Product Data structure. Includes only the ID and 571 * VPD-R sections. 572 */ 573 struct t3_vpd { 574 u8 id_tag; 575 u8 id_len[2]; 576 u8 id_data[16]; 577 u8 vpdr_tag; 578 u8 vpdr_len[2]; 579 VPD_ENTRY(pn, 16); /* part number */ 580 VPD_ENTRY(ec, 16); /* EC level */ 581 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */ 582 VPD_ENTRY(na, 12); /* MAC address base */ 583 VPD_ENTRY(cclk, 6); /* core clock */ 584 VPD_ENTRY(mclk, 6); /* mem clock */ 585 VPD_ENTRY(uclk, 6); /* uP clk */ 586 VPD_ENTRY(mdc, 6); /* MDIO clk */ 587 VPD_ENTRY(mt, 2); /* mem timing */ 588 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ 589 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ 590 VPD_ENTRY(port0, 2); /* PHY0 complex */ 591 VPD_ENTRY(port1, 2); /* PHY1 complex */ 592 VPD_ENTRY(port2, 2); /* PHY2 complex */ 593 VPD_ENTRY(port3, 2); /* PHY3 complex */ 594 VPD_ENTRY(rv, 1); /* csum */ 595 u32 pad; /* for multiple-of-4 sizing and alignment */ 596 }; 597 598 #define EEPROM_MAX_POLL 40 599 #define EEPROM_STAT_ADDR 0x4000 600 #define VPD_BASE 0xc00 601 602 /** 603 * t3_seeprom_read - read a VPD EEPROM location 604 * @adapter: adapter to read 605 * @addr: EEPROM address 606 * @data: where to store the read data 607 * 608 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI 609 * VPD ROM capability. A zero is written to the flag bit when the 610 * address is written to the control register. The hardware device will 611 * set the flag to 1 when 4 bytes have been read into the data register. 612 */ 613 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data) 614 { 615 u16 val; 616 int attempts = EEPROM_MAX_POLL; 617 u32 v; 618 unsigned int base = adapter->params.pci.vpd_cap_addr; 619 620 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) 621 return -EINVAL; 622 623 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr); 624 do { 625 udelay(10); 626 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); 627 } while (!(val & PCI_VPD_ADDR_F) && --attempts); 628 629 if (!(val & PCI_VPD_ADDR_F)) { 630 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); 631 return -EIO; 632 } 633 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v); 634 *data = cpu_to_le32(v); 635 return 0; 636 } 637 638 /** 639 * t3_seeprom_write - write a VPD EEPROM location 640 * @adapter: adapter to write 641 * @addr: EEPROM address 642 * @data: value to write 643 * 644 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI 645 * VPD ROM capability. 646 */ 647 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data) 648 { 649 u16 val; 650 int attempts = EEPROM_MAX_POLL; 651 unsigned int base = adapter->params.pci.vpd_cap_addr; 652 653 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) 654 return -EINVAL; 655 656 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA, 657 le32_to_cpu(data)); 658 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR, 659 addr | PCI_VPD_ADDR_F); 660 do { 661 msleep(1); 662 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); 663 } while ((val & PCI_VPD_ADDR_F) && --attempts); 664 665 if (val & PCI_VPD_ADDR_F) { 666 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); 667 return -EIO; 668 } 669 return 0; 670 } 671 672 /** 673 * t3_seeprom_wp - enable/disable EEPROM write protection 674 * @adapter: the adapter 675 * @enable: 1 to enable write protection, 0 to disable it 676 * 677 * Enables or disables write protection on the serial EEPROM. 678 */ 679 int t3_seeprom_wp(struct adapter *adapter, int enable) 680 { 681 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 682 } 683 684 static int vpdstrtouint(char *s, u8 len, unsigned int base, unsigned int *val) 685 { 686 char tok[256]; 687 688 memcpy(tok, s, len); 689 tok[len] = 0; 690 return kstrtouint(strim(tok), base, val); 691 } 692 693 static int vpdstrtou16(char *s, u8 len, unsigned int base, u16 *val) 694 { 695 char tok[256]; 696 697 memcpy(tok, s, len); 698 tok[len] = 0; 699 return kstrtou16(strim(tok), base, val); 700 } 701 702 /** 703 * get_vpd_params - read VPD parameters from VPD EEPROM 704 * @adapter: adapter to read 705 * @p: where to store the parameters 706 * 707 * Reads card parameters stored in VPD EEPROM. 708 */ 709 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) 710 { 711 int i, addr, ret; 712 struct t3_vpd vpd; 713 714 /* 715 * Card information is normally at VPD_BASE but some early cards had 716 * it at 0. 717 */ 718 ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd); 719 if (ret) 720 return ret; 721 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; 722 723 for (i = 0; i < sizeof(vpd); i += 4) { 724 ret = t3_seeprom_read(adapter, addr + i, 725 (__le32 *)((u8 *)&vpd + i)); 726 if (ret) 727 return ret; 728 } 729 730 ret = vpdstrtouint(vpd.cclk_data, vpd.cclk_len, 10, &p->cclk); 731 if (ret) 732 return ret; 733 ret = vpdstrtouint(vpd.mclk_data, vpd.mclk_len, 10, &p->mclk); 734 if (ret) 735 return ret; 736 ret = vpdstrtouint(vpd.uclk_data, vpd.uclk_len, 10, &p->uclk); 737 if (ret) 738 return ret; 739 ret = vpdstrtouint(vpd.mdc_data, vpd.mdc_len, 10, &p->mdc); 740 if (ret) 741 return ret; 742 ret = vpdstrtouint(vpd.mt_data, vpd.mt_len, 10, &p->mem_timing); 743 if (ret) 744 return ret; 745 memcpy(p->sn, vpd.sn_data, SERNUM_LEN); 746 747 /* Old eeproms didn't have port information */ 748 if (adapter->params.rev == 0 && !vpd.port0_data[0]) { 749 p->port_type[0] = uses_xaui(adapter) ? 1 : 2; 750 p->port_type[1] = uses_xaui(adapter) ? 6 : 2; 751 } else { 752 p->port_type[0] = hex_to_bin(vpd.port0_data[0]); 753 p->port_type[1] = hex_to_bin(vpd.port1_data[0]); 754 ret = vpdstrtou16(vpd.xaui0cfg_data, vpd.xaui0cfg_len, 16, 755 &p->xauicfg[0]); 756 if (ret) 757 return ret; 758 ret = vpdstrtou16(vpd.xaui1cfg_data, vpd.xaui1cfg_len, 16, 759 &p->xauicfg[1]); 760 if (ret) 761 return ret; 762 } 763 764 ret = hex2bin(p->eth_base, vpd.na_data, 6); 765 if (ret < 0) 766 return -EINVAL; 767 return 0; 768 } 769 770 /* serial flash and firmware constants */ 771 enum { 772 SF_ATTEMPTS = 5, /* max retries for SF1 operations */ 773 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ 774 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ 775 776 /* flash command opcodes */ 777 SF_PROG_PAGE = 2, /* program page */ 778 SF_WR_DISABLE = 4, /* disable writes */ 779 SF_RD_STATUS = 5, /* read status register */ 780 SF_WR_ENABLE = 6, /* enable writes */ 781 SF_RD_DATA_FAST = 0xb, /* read flash */ 782 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 783 784 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ 785 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */ 786 FW_MIN_SIZE = 8 /* at least version and csum */ 787 }; 788 789 /** 790 * sf1_read - read data from the serial flash 791 * @adapter: the adapter 792 * @byte_cnt: number of bytes to read 793 * @cont: whether another operation will be chained 794 * @valp: where to store the read data 795 * 796 * Reads up to 4 bytes of data from the serial flash. The location of 797 * the read needs to be specified prior to calling this by issuing the 798 * appropriate commands to the serial flash. 799 */ 800 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 801 u32 *valp) 802 { 803 int ret; 804 805 if (!byte_cnt || byte_cnt > 4) 806 return -EINVAL; 807 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) 808 return -EBUSY; 809 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 810 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); 811 if (!ret) 812 *valp = t3_read_reg(adapter, A_SF_DATA); 813 return ret; 814 } 815 816 /** 817 * sf1_write - write data to the serial flash 818 * @adapter: the adapter 819 * @byte_cnt: number of bytes to write 820 * @cont: whether another operation will be chained 821 * @val: value to write 822 * 823 * Writes up to 4 bytes of data to the serial flash. The location of 824 * the write needs to be specified prior to calling this by issuing the 825 * appropriate commands to the serial flash. 826 */ 827 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 828 u32 val) 829 { 830 if (!byte_cnt || byte_cnt > 4) 831 return -EINVAL; 832 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) 833 return -EBUSY; 834 t3_write_reg(adapter, A_SF_DATA, val); 835 t3_write_reg(adapter, A_SF_OP, 836 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 837 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); 838 } 839 840 /** 841 * flash_wait_op - wait for a flash operation to complete 842 * @adapter: the adapter 843 * @attempts: max number of polls of the status register 844 * @delay: delay between polls in ms 845 * 846 * Wait for a flash operation to complete by polling the status register. 847 */ 848 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 849 { 850 int ret; 851 u32 status; 852 853 while (1) { 854 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || 855 (ret = sf1_read(adapter, 1, 0, &status)) != 0) 856 return ret; 857 if (!(status & 1)) 858 return 0; 859 if (--attempts == 0) 860 return -EAGAIN; 861 if (delay) 862 msleep(delay); 863 } 864 } 865 866 /** 867 * t3_read_flash - read words from serial flash 868 * @adapter: the adapter 869 * @addr: the start address for the read 870 * @nwords: how many 32-bit words to read 871 * @data: where to store the read data 872 * @byte_oriented: whether to store data as bytes or as words 873 * 874 * Read the specified number of 32-bit words from the serial flash. 875 * If @byte_oriented is set the read data is stored as a byte array 876 * (i.e., big-endian), otherwise as 32-bit words in the platform's 877 * natural endianness. 878 */ 879 static int t3_read_flash(struct adapter *adapter, unsigned int addr, 880 unsigned int nwords, u32 *data, int byte_oriented) 881 { 882 int ret; 883 884 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) 885 return -EINVAL; 886 887 addr = swab32(addr) | SF_RD_DATA_FAST; 888 889 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || 890 (ret = sf1_read(adapter, 1, 1, data)) != 0) 891 return ret; 892 893 for (; nwords; nwords--, data++) { 894 ret = sf1_read(adapter, 4, nwords > 1, data); 895 if (ret) 896 return ret; 897 if (byte_oriented) 898 *data = htonl(*data); 899 } 900 return 0; 901 } 902 903 /** 904 * t3_write_flash - write up to a page of data to the serial flash 905 * @adapter: the adapter 906 * @addr: the start address to write 907 * @n: length of data to write 908 * @data: the data to write 909 * 910 * Writes up to a page of data (256 bytes) to the serial flash starting 911 * at the given address. 912 */ 913 static int t3_write_flash(struct adapter *adapter, unsigned int addr, 914 unsigned int n, const u8 *data) 915 { 916 int ret; 917 u32 buf[64]; 918 unsigned int i, c, left, val, offset = addr & 0xff; 919 920 if (addr + n > SF_SIZE || offset + n > 256) 921 return -EINVAL; 922 923 val = swab32(addr) | SF_PROG_PAGE; 924 925 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || 926 (ret = sf1_write(adapter, 4, 1, val)) != 0) 927 return ret; 928 929 for (left = n; left; left -= c) { 930 c = min(left, 4U); 931 for (val = 0, i = 0; i < c; ++i) 932 val = (val << 8) + *data++; 933 934 ret = sf1_write(adapter, c, c != left, val); 935 if (ret) 936 return ret; 937 } 938 if ((ret = flash_wait_op(adapter, 5, 1)) != 0) 939 return ret; 940 941 /* Read the page to verify the write succeeded */ 942 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 943 if (ret) 944 return ret; 945 946 if (memcmp(data - n, (u8 *) buf + offset, n)) 947 return -EIO; 948 return 0; 949 } 950 951 /** 952 * t3_get_tp_version - read the tp sram version 953 * @adapter: the adapter 954 * @vers: where to place the version 955 * 956 * Reads the protocol sram version from sram. 957 */ 958 int t3_get_tp_version(struct adapter *adapter, u32 *vers) 959 { 960 int ret; 961 962 /* Get version loaded in SRAM */ 963 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0); 964 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0, 965 1, 1, 5, 1); 966 if (ret) 967 return ret; 968 969 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1); 970 971 return 0; 972 } 973 974 /** 975 * t3_check_tpsram_version - read the tp sram version 976 * @adapter: the adapter 977 * 978 * Reads the protocol sram version from flash. 979 */ 980 int t3_check_tpsram_version(struct adapter *adapter) 981 { 982 int ret; 983 u32 vers; 984 unsigned int major, minor; 985 986 if (adapter->params.rev == T3_REV_A) 987 return 0; 988 989 990 ret = t3_get_tp_version(adapter, &vers); 991 if (ret) 992 return ret; 993 994 major = G_TP_VERSION_MAJOR(vers); 995 minor = G_TP_VERSION_MINOR(vers); 996 997 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR) 998 return 0; 999 else { 1000 CH_ERR(adapter, "found wrong TP version (%u.%u), " 1001 "driver compiled for version %d.%d\n", major, minor, 1002 TP_VERSION_MAJOR, TP_VERSION_MINOR); 1003 } 1004 return -EINVAL; 1005 } 1006 1007 /** 1008 * t3_check_tpsram - check if provided protocol SRAM 1009 * is compatible with this driver 1010 * @adapter: the adapter 1011 * @tp_sram: the firmware image to write 1012 * @size: image size 1013 * 1014 * Checks if an adapter's tp sram is compatible with the driver. 1015 * Returns 0 if the versions are compatible, a negative error otherwise. 1016 */ 1017 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram, 1018 unsigned int size) 1019 { 1020 u32 csum; 1021 unsigned int i; 1022 const __be32 *p = (const __be32 *)tp_sram; 1023 1024 /* Verify checksum */ 1025 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1026 csum += ntohl(p[i]); 1027 if (csum != 0xffffffff) { 1028 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n", 1029 csum); 1030 return -EINVAL; 1031 } 1032 1033 return 0; 1034 } 1035 1036 enum fw_version_type { 1037 FW_VERSION_N3, 1038 FW_VERSION_T3 1039 }; 1040 1041 /** 1042 * t3_get_fw_version - read the firmware version 1043 * @adapter: the adapter 1044 * @vers: where to place the version 1045 * 1046 * Reads the FW version from flash. 1047 */ 1048 int t3_get_fw_version(struct adapter *adapter, u32 *vers) 1049 { 1050 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); 1051 } 1052 1053 /** 1054 * t3_check_fw_version - check if the FW is compatible with this driver 1055 * @adapter: the adapter 1056 * 1057 * Checks if an adapter's FW is compatible with the driver. Returns 0 1058 * if the versions are compatible, a negative error otherwise. 1059 */ 1060 int t3_check_fw_version(struct adapter *adapter) 1061 { 1062 int ret; 1063 u32 vers; 1064 unsigned int type, major, minor; 1065 1066 ret = t3_get_fw_version(adapter, &vers); 1067 if (ret) 1068 return ret; 1069 1070 type = G_FW_VERSION_TYPE(vers); 1071 major = G_FW_VERSION_MAJOR(vers); 1072 minor = G_FW_VERSION_MINOR(vers); 1073 1074 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR && 1075 minor == FW_VERSION_MINOR) 1076 return 0; 1077 else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR) 1078 CH_WARN(adapter, "found old FW minor version(%u.%u), " 1079 "driver compiled for version %u.%u\n", major, minor, 1080 FW_VERSION_MAJOR, FW_VERSION_MINOR); 1081 else { 1082 CH_WARN(adapter, "found newer FW version(%u.%u), " 1083 "driver compiled for version %u.%u\n", major, minor, 1084 FW_VERSION_MAJOR, FW_VERSION_MINOR); 1085 return 0; 1086 } 1087 return -EINVAL; 1088 } 1089 1090 /** 1091 * t3_flash_erase_sectors - erase a range of flash sectors 1092 * @adapter: the adapter 1093 * @start: the first sector to erase 1094 * @end: the last sector to erase 1095 * 1096 * Erases the sectors in the given range. 1097 */ 1098 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end) 1099 { 1100 while (start <= end) { 1101 int ret; 1102 1103 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || 1104 (ret = sf1_write(adapter, 4, 0, 1105 SF_ERASE_SECTOR | (start << 8))) != 0 || 1106 (ret = flash_wait_op(adapter, 5, 500)) != 0) 1107 return ret; 1108 start++; 1109 } 1110 return 0; 1111 } 1112 1113 /** 1114 * t3_load_fw - download firmware 1115 * @adapter: the adapter 1116 * @fw_data: the firmware image to write 1117 * @size: image size 1118 * 1119 * Write the supplied firmware image to the card's serial flash. 1120 * The FW image has the following sections: @size - 8 bytes of code and 1121 * data, followed by 4 bytes of FW version, followed by the 32-bit 1122 * 1's complement checksum of the whole image. 1123 */ 1124 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size) 1125 { 1126 u32 csum; 1127 unsigned int i; 1128 const __be32 *p = (const __be32 *)fw_data; 1129 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; 1130 1131 if ((size & 3) || size < FW_MIN_SIZE) 1132 return -EINVAL; 1133 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR) 1134 return -EFBIG; 1135 1136 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1137 csum += ntohl(p[i]); 1138 if (csum != 0xffffffff) { 1139 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1140 csum); 1141 return -EINVAL; 1142 } 1143 1144 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); 1145 if (ret) 1146 goto out; 1147 1148 size -= 8; /* trim off version and checksum */ 1149 for (addr = FW_FLASH_BOOT_ADDR; size;) { 1150 unsigned int chunk_size = min(size, 256U); 1151 1152 ret = t3_write_flash(adapter, addr, chunk_size, fw_data); 1153 if (ret) 1154 goto out; 1155 1156 addr += chunk_size; 1157 fw_data += chunk_size; 1158 size -= chunk_size; 1159 } 1160 1161 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data); 1162 out: 1163 if (ret) 1164 CH_ERR(adapter, "firmware download failed, error %d\n", ret); 1165 return ret; 1166 } 1167 1168 #define CIM_CTL_BASE 0x2000 1169 1170 /** 1171 * t3_cim_ctl_blk_read - read a block from CIM control region 1172 * 1173 * @adap: the adapter 1174 * @addr: the start address within the CIM control region 1175 * @n: number of words to read 1176 * @valp: where to store the result 1177 * 1178 * Reads a block of 4-byte words from the CIM control region. 1179 */ 1180 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, 1181 unsigned int n, unsigned int *valp) 1182 { 1183 int ret = 0; 1184 1185 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 1186 return -EBUSY; 1187 1188 for ( ; !ret && n--; addr += 4) { 1189 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); 1190 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 1191 0, 5, 2); 1192 if (!ret) 1193 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); 1194 } 1195 return ret; 1196 } 1197 1198 static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg, 1199 u32 *rx_hash_high, u32 *rx_hash_low) 1200 { 1201 /* stop Rx unicast traffic */ 1202 t3_mac_disable_exact_filters(mac); 1203 1204 /* stop broadcast, multicast, promiscuous mode traffic */ 1205 *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG); 1206 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG, 1207 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES, 1208 F_DISBCAST); 1209 1210 *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH); 1211 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0); 1212 1213 *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW); 1214 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0); 1215 1216 /* Leave time to drain max RX fifo */ 1217 msleep(1); 1218 } 1219 1220 static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg, 1221 u32 rx_hash_high, u32 rx_hash_low) 1222 { 1223 t3_mac_enable_exact_filters(mac); 1224 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG, 1225 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES, 1226 rx_cfg); 1227 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high); 1228 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low); 1229 } 1230 1231 /** 1232 * t3_link_changed - handle interface link changes 1233 * @adapter: the adapter 1234 * @port_id: the port index that changed link state 1235 * 1236 * Called when a port's link settings change to propagate the new values 1237 * to the associated PHY and MAC. After performing the common tasks it 1238 * invokes an OS-specific handler. 1239 */ 1240 void t3_link_changed(struct adapter *adapter, int port_id) 1241 { 1242 int link_ok, speed, duplex, fc; 1243 struct port_info *pi = adap2pinfo(adapter, port_id); 1244 struct cphy *phy = &pi->phy; 1245 struct cmac *mac = &pi->mac; 1246 struct link_config *lc = &pi->link_config; 1247 1248 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); 1249 1250 if (!lc->link_ok && link_ok) { 1251 u32 rx_cfg, rx_hash_high, rx_hash_low; 1252 u32 status; 1253 1254 t3_xgm_intr_enable(adapter, port_id); 1255 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low); 1256 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0); 1257 t3_mac_enable(mac, MAC_DIRECTION_RX); 1258 1259 status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset); 1260 if (status & F_LINKFAULTCHANGE) { 1261 mac->stats.link_faults++; 1262 pi->link_fault = 1; 1263 } 1264 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low); 1265 } 1266 1267 if (lc->requested_fc & PAUSE_AUTONEG) 1268 fc &= lc->requested_fc; 1269 else 1270 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1271 1272 if (link_ok == lc->link_ok && speed == lc->speed && 1273 duplex == lc->duplex && fc == lc->fc) 1274 return; /* nothing changed */ 1275 1276 if (link_ok != lc->link_ok && adapter->params.rev > 0 && 1277 uses_xaui(adapter)) { 1278 if (link_ok) 1279 t3b_pcs_reset(mac); 1280 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 1281 link_ok ? F_TXACTENABLE | F_RXEN : 0); 1282 } 1283 lc->link_ok = link_ok; 1284 lc->speed = speed < 0 ? SPEED_INVALID : speed; 1285 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; 1286 1287 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { 1288 /* Set MAC speed, duplex, and flow control to match PHY. */ 1289 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); 1290 lc->fc = fc; 1291 } 1292 1293 t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault, 1294 speed, duplex, fc); 1295 } 1296 1297 void t3_link_fault(struct adapter *adapter, int port_id) 1298 { 1299 struct port_info *pi = adap2pinfo(adapter, port_id); 1300 struct cmac *mac = &pi->mac; 1301 struct cphy *phy = &pi->phy; 1302 struct link_config *lc = &pi->link_config; 1303 int link_ok, speed, duplex, fc, link_fault; 1304 u32 rx_cfg, rx_hash_high, rx_hash_low; 1305 1306 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low); 1307 1308 if (adapter->params.rev > 0 && uses_xaui(adapter)) 1309 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0); 1310 1311 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0); 1312 t3_mac_enable(mac, MAC_DIRECTION_RX); 1313 1314 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low); 1315 1316 link_fault = t3_read_reg(adapter, 1317 A_XGM_INT_STATUS + mac->offset); 1318 link_fault &= F_LINKFAULTCHANGE; 1319 1320 link_ok = lc->link_ok; 1321 speed = lc->speed; 1322 duplex = lc->duplex; 1323 fc = lc->fc; 1324 1325 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); 1326 1327 if (link_fault) { 1328 lc->link_ok = 0; 1329 lc->speed = SPEED_INVALID; 1330 lc->duplex = DUPLEX_INVALID; 1331 1332 t3_os_link_fault(adapter, port_id, 0); 1333 1334 /* Account link faults only when the phy reports a link up */ 1335 if (link_ok) 1336 mac->stats.link_faults++; 1337 } else { 1338 if (link_ok) 1339 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 1340 F_TXACTENABLE | F_RXEN); 1341 1342 pi->link_fault = 0; 1343 lc->link_ok = (unsigned char)link_ok; 1344 lc->speed = speed < 0 ? SPEED_INVALID : speed; 1345 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; 1346 t3_os_link_fault(adapter, port_id, link_ok); 1347 } 1348 } 1349 1350 /** 1351 * t3_link_start - apply link configuration to MAC/PHY 1352 * @phy: the PHY to setup 1353 * @mac: the MAC to setup 1354 * @lc: the requested link configuration 1355 * 1356 * Set up a port's MAC and PHY according to a desired link configuration. 1357 * - If the PHY can auto-negotiate first decide what to advertise, then 1358 * enable/disable auto-negotiation as desired, and reset. 1359 * - If the PHY does not auto-negotiate just reset it. 1360 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 1361 * otherwise do it later based on the outcome of auto-negotiation. 1362 */ 1363 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) 1364 { 1365 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1366 1367 lc->link_ok = 0; 1368 if (lc->supported & SUPPORTED_Autoneg) { 1369 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); 1370 if (fc) { 1371 lc->advertising |= ADVERTISED_Asym_Pause; 1372 if (fc & PAUSE_RX) 1373 lc->advertising |= ADVERTISED_Pause; 1374 } 1375 phy->ops->advertise(phy, lc->advertising); 1376 1377 if (lc->autoneg == AUTONEG_DISABLE) { 1378 lc->speed = lc->requested_speed; 1379 lc->duplex = lc->requested_duplex; 1380 lc->fc = (unsigned char)fc; 1381 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, 1382 fc); 1383 /* Also disables autoneg */ 1384 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); 1385 } else 1386 phy->ops->autoneg_enable(phy); 1387 } else { 1388 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); 1389 lc->fc = (unsigned char)fc; 1390 phy->ops->reset(phy, 0); 1391 } 1392 return 0; 1393 } 1394 1395 /** 1396 * t3_set_vlan_accel - control HW VLAN extraction 1397 * @adapter: the adapter 1398 * @ports: bitmap of adapter ports to operate on 1399 * @on: enable (1) or disable (0) HW VLAN extraction 1400 * 1401 * Enables or disables HW extraction of VLAN tags for the given port. 1402 */ 1403 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on) 1404 { 1405 t3_set_reg_field(adapter, A_TP_OUT_CONFIG, 1406 ports << S_VLANEXTRACTIONENABLE, 1407 on ? (ports << S_VLANEXTRACTIONENABLE) : 0); 1408 } 1409 1410 struct intr_info { 1411 unsigned int mask; /* bits to check in interrupt status */ 1412 const char *msg; /* message to print or NULL */ 1413 short stat_idx; /* stat counter to increment or -1 */ 1414 unsigned short fatal; /* whether the condition reported is fatal */ 1415 }; 1416 1417 /** 1418 * t3_handle_intr_status - table driven interrupt handler 1419 * @adapter: the adapter that generated the interrupt 1420 * @reg: the interrupt status register to process 1421 * @mask: a mask to apply to the interrupt status 1422 * @acts: table of interrupt actions 1423 * @stats: statistics counters tracking interrupt occurrences 1424 * 1425 * A table driven interrupt handler that applies a set of masks to an 1426 * interrupt status word and performs the corresponding actions if the 1427 * interrupts described by the mask have occurred. The actions include 1428 * optionally printing a warning or alert message, and optionally 1429 * incrementing a stat counter. The table is terminated by an entry 1430 * specifying mask 0. Returns the number of fatal interrupt conditions. 1431 */ 1432 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg, 1433 unsigned int mask, 1434 const struct intr_info *acts, 1435 unsigned long *stats) 1436 { 1437 int fatal = 0; 1438 unsigned int status = t3_read_reg(adapter, reg) & mask; 1439 1440 for (; acts->mask; ++acts) { 1441 if (!(status & acts->mask)) 1442 continue; 1443 if (acts->fatal) { 1444 fatal++; 1445 CH_ALERT(adapter, "%s (0x%x)\n", 1446 acts->msg, status & acts->mask); 1447 status &= ~acts->mask; 1448 } else if (acts->msg) 1449 CH_WARN(adapter, "%s (0x%x)\n", 1450 acts->msg, status & acts->mask); 1451 if (acts->stat_idx >= 0) 1452 stats[acts->stat_idx]++; 1453 } 1454 if (status) /* clear processed interrupts */ 1455 t3_write_reg(adapter, reg, status); 1456 return fatal; 1457 } 1458 1459 #define SGE_INTR_MASK (F_RSPQDISABLED | \ 1460 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \ 1461 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 1462 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 1463 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 1464 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 1465 F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \ 1466 F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \ 1467 F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \ 1468 F_LOPIODRBDROPERR) 1469 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ 1470 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ 1471 F_NFASRCHFAIL) 1472 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) 1473 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ 1474 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ 1475 F_TXFIFO_UNDERRUN) 1476 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ 1477 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ 1478 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ 1479 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ 1480 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ 1481 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) 1482 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ 1483 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ 1484 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ 1485 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \ 1486 F_TXPARERR | V_BISTERR(M_BISTERR)) 1487 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \ 1488 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \ 1489 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0) 1490 #define ULPTX_INTR_MASK 0xfc 1491 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \ 1492 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ 1493 F_ZERO_SWITCH_ERROR) 1494 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ 1495 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ 1496 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ 1497 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \ 1498 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \ 1499 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \ 1500 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \ 1501 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR) 1502 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ 1503 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ 1504 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) 1505 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ 1506 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ 1507 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) 1508 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ 1509 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ 1510 V_RXTPPARERRENB(M_RXTPPARERRENB) | \ 1511 V_MCAPARERRENB(M_MCAPARERRENB)) 1512 #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE) 1513 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ 1514 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ 1515 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ 1516 F_MPS0 | F_CPL_SWITCH) 1517 /* 1518 * Interrupt handler for the PCIX1 module. 1519 */ 1520 static void pci_intr_handler(struct adapter *adapter) 1521 { 1522 static const struct intr_info pcix1_intr_info[] = { 1523 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1}, 1524 {F_SIGTARABT, "PCI signaled target abort", -1, 1}, 1525 {F_RCVTARABT, "PCI received target abort", -1, 1}, 1526 {F_RCVMSTABT, "PCI received master abort", -1, 1}, 1527 {F_SIGSYSERR, "PCI signaled system error", -1, 1}, 1528 {F_DETPARERR, "PCI detected parity error", -1, 1}, 1529 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1}, 1530 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1}, 1531 {F_RCVSPLCMPERR, "PCI received split completion error", -1, 1532 1}, 1533 {F_DETCORECCERR, "PCI correctable ECC error", 1534 STAT_PCI_CORR_ECC, 0}, 1535 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1}, 1536 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, 1537 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, 1538 1}, 1539 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, 1540 1}, 1541 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, 1542 1}, 1543 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " 1544 "error", -1, 1}, 1545 {0} 1546 }; 1547 1548 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, 1549 pcix1_intr_info, adapter->irq_stats)) 1550 t3_fatal_err(adapter); 1551 } 1552 1553 /* 1554 * Interrupt handler for the PCIE module. 1555 */ 1556 static void pcie_intr_handler(struct adapter *adapter) 1557 { 1558 static const struct intr_info pcie_intr_info[] = { 1559 {F_PEXERR, "PCI PEX error", -1, 1}, 1560 {F_UNXSPLCPLERRR, 1561 "PCI unexpected split completion DMA read error", -1, 1}, 1562 {F_UNXSPLCPLERRC, 1563 "PCI unexpected split completion DMA command error", -1, 1}, 1564 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, 1565 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1}, 1566 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1}, 1567 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1}, 1568 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), 1569 "PCI MSI-X table/PBA parity error", -1, 1}, 1570 {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1}, 1571 {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1}, 1572 {F_RXPARERR, "PCI Rx parity error", -1, 1}, 1573 {F_TXPARERR, "PCI Tx parity error", -1, 1}, 1574 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1}, 1575 {0} 1576 }; 1577 1578 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR) 1579 CH_ALERT(adapter, "PEX error code 0x%x\n", 1580 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 1581 1582 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, 1583 pcie_intr_info, adapter->irq_stats)) 1584 t3_fatal_err(adapter); 1585 } 1586 1587 /* 1588 * TP interrupt handler. 1589 */ 1590 static void tp_intr_handler(struct adapter *adapter) 1591 { 1592 static const struct intr_info tp_intr_info[] = { 1593 {0xffffff, "TP parity error", -1, 1}, 1594 {0x1000000, "TP out of Rx pages", -1, 1}, 1595 {0x2000000, "TP out of Tx pages", -1, 1}, 1596 {0} 1597 }; 1598 1599 static const struct intr_info tp_intr_info_t3c[] = { 1600 {0x1fffffff, "TP parity error", -1, 1}, 1601 {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1}, 1602 {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1}, 1603 {0} 1604 }; 1605 1606 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, 1607 adapter->params.rev < T3_REV_C ? 1608 tp_intr_info : tp_intr_info_t3c, NULL)) 1609 t3_fatal_err(adapter); 1610 } 1611 1612 /* 1613 * CIM interrupt handler. 1614 */ 1615 static void cim_intr_handler(struct adapter *adapter) 1616 { 1617 static const struct intr_info cim_intr_info[] = { 1618 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1}, 1619 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1}, 1620 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1}, 1621 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1}, 1622 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1}, 1623 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1}, 1624 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1}, 1625 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1}, 1626 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1}, 1627 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1}, 1628 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1}, 1629 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1}, 1630 {F_DRAMPARERR, "CIM DRAM parity error", -1, 1}, 1631 {F_ICACHEPARERR, "CIM icache parity error", -1, 1}, 1632 {F_DCACHEPARERR, "CIM dcache parity error", -1, 1}, 1633 {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1}, 1634 {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1}, 1635 {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1}, 1636 {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1}, 1637 {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1}, 1638 {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1}, 1639 {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1}, 1640 {F_ITAGPARERR, "CIM itag parity error", -1, 1}, 1641 {F_DTAGPARERR, "CIM dtag parity error", -1, 1}, 1642 {0} 1643 }; 1644 1645 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff, 1646 cim_intr_info, NULL)) 1647 t3_fatal_err(adapter); 1648 } 1649 1650 /* 1651 * ULP RX interrupt handler. 1652 */ 1653 static void ulprx_intr_handler(struct adapter *adapter) 1654 { 1655 static const struct intr_info ulprx_intr_info[] = { 1656 {F_PARERRDATA, "ULP RX data parity error", -1, 1}, 1657 {F_PARERRPCMD, "ULP RX command parity error", -1, 1}, 1658 {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1}, 1659 {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1}, 1660 {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1}, 1661 {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1}, 1662 {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1}, 1663 {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1}, 1664 {0} 1665 }; 1666 1667 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, 1668 ulprx_intr_info, NULL)) 1669 t3_fatal_err(adapter); 1670 } 1671 1672 /* 1673 * ULP TX interrupt handler. 1674 */ 1675 static void ulptx_intr_handler(struct adapter *adapter) 1676 { 1677 static const struct intr_info ulptx_intr_info[] = { 1678 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", 1679 STAT_ULP_CH0_PBL_OOB, 0}, 1680 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", 1681 STAT_ULP_CH1_PBL_OOB, 0}, 1682 {0xfc, "ULP TX parity error", -1, 1}, 1683 {0} 1684 }; 1685 1686 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, 1687 ulptx_intr_info, adapter->irq_stats)) 1688 t3_fatal_err(adapter); 1689 } 1690 1691 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ 1692 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ 1693 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ 1694 F_ICSPI1_TX_FRAMING_ERROR) 1695 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ 1696 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ 1697 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ 1698 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) 1699 1700 /* 1701 * PM TX interrupt handler. 1702 */ 1703 static void pmtx_intr_handler(struct adapter *adapter) 1704 { 1705 static const struct intr_info pmtx_intr_info[] = { 1706 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1}, 1707 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1}, 1708 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1}, 1709 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), 1710 "PMTX ispi parity error", -1, 1}, 1711 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), 1712 "PMTX ospi parity error", -1, 1}, 1713 {0} 1714 }; 1715 1716 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, 1717 pmtx_intr_info, NULL)) 1718 t3_fatal_err(adapter); 1719 } 1720 1721 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ 1722 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ 1723 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ 1724 F_IESPI1_TX_FRAMING_ERROR) 1725 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ 1726 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ 1727 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ 1728 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) 1729 1730 /* 1731 * PM RX interrupt handler. 1732 */ 1733 static void pmrx_intr_handler(struct adapter *adapter) 1734 { 1735 static const struct intr_info pmrx_intr_info[] = { 1736 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1}, 1737 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1}, 1738 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1}, 1739 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), 1740 "PMRX ispi parity error", -1, 1}, 1741 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), 1742 "PMRX ospi parity error", -1, 1}, 1743 {0} 1744 }; 1745 1746 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, 1747 pmrx_intr_info, NULL)) 1748 t3_fatal_err(adapter); 1749 } 1750 1751 /* 1752 * CPL switch interrupt handler. 1753 */ 1754 static void cplsw_intr_handler(struct adapter *adapter) 1755 { 1756 static const struct intr_info cplsw_intr_info[] = { 1757 {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1}, 1758 {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1}, 1759 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1}, 1760 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1}, 1761 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1}, 1762 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1}, 1763 {0} 1764 }; 1765 1766 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, 1767 cplsw_intr_info, NULL)) 1768 t3_fatal_err(adapter); 1769 } 1770 1771 /* 1772 * MPS interrupt handler. 1773 */ 1774 static void mps_intr_handler(struct adapter *adapter) 1775 { 1776 static const struct intr_info mps_intr_info[] = { 1777 {0x1ff, "MPS parity error", -1, 1}, 1778 {0} 1779 }; 1780 1781 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, 1782 mps_intr_info, NULL)) 1783 t3_fatal_err(adapter); 1784 } 1785 1786 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) 1787 1788 /* 1789 * MC7 interrupt handler. 1790 */ 1791 static void mc7_intr_handler(struct mc7 *mc7) 1792 { 1793 struct adapter *adapter = mc7->adapter; 1794 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); 1795 1796 if (cause & F_CE) { 1797 mc7->stats.corr_err++; 1798 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " 1799 "data 0x%x 0x%x 0x%x\n", mc7->name, 1800 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), 1801 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), 1802 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), 1803 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); 1804 } 1805 1806 if (cause & F_UE) { 1807 mc7->stats.uncorr_err++; 1808 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " 1809 "data 0x%x 0x%x 0x%x\n", mc7->name, 1810 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), 1811 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), 1812 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), 1813 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); 1814 } 1815 1816 if (G_PE(cause)) { 1817 mc7->stats.parity_err++; 1818 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", 1819 mc7->name, G_PE(cause)); 1820 } 1821 1822 if (cause & F_AE) { 1823 u32 addr = 0; 1824 1825 if (adapter->params.rev > 0) 1826 addr = t3_read_reg(adapter, 1827 mc7->offset + A_MC7_ERR_ADDR); 1828 mc7->stats.addr_err++; 1829 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", 1830 mc7->name, addr); 1831 } 1832 1833 if (cause & MC7_INTR_FATAL) 1834 t3_fatal_err(adapter); 1835 1836 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); 1837 } 1838 1839 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ 1840 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) 1841 /* 1842 * XGMAC interrupt handler. 1843 */ 1844 static int mac_intr_handler(struct adapter *adap, unsigned int idx) 1845 { 1846 struct cmac *mac = &adap2pinfo(adap, idx)->mac; 1847 /* 1848 * We mask out interrupt causes for which we're not taking interrupts. 1849 * This allows us to use polling logic to monitor some of the other 1850 * conditions when taking interrupts would impose too much load on the 1851 * system. 1852 */ 1853 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) & 1854 ~F_RXFIFO_OVERFLOW; 1855 1856 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { 1857 mac->stats.tx_fifo_parity_err++; 1858 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); 1859 } 1860 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { 1861 mac->stats.rx_fifo_parity_err++; 1862 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); 1863 } 1864 if (cause & F_TXFIFO_UNDERRUN) 1865 mac->stats.tx_fifo_urun++; 1866 if (cause & F_RXFIFO_OVERFLOW) 1867 mac->stats.rx_fifo_ovfl++; 1868 if (cause & V_SERDES_LOS(M_SERDES_LOS)) 1869 mac->stats.serdes_signal_loss++; 1870 if (cause & F_XAUIPCSCTCERR) 1871 mac->stats.xaui_pcs_ctc_err++; 1872 if (cause & F_XAUIPCSALIGNCHANGE) 1873 mac->stats.xaui_pcs_align_change++; 1874 if (cause & F_XGM_INT) { 1875 t3_set_reg_field(adap, 1876 A_XGM_INT_ENABLE + mac->offset, 1877 F_XGM_INT, 0); 1878 mac->stats.link_faults++; 1879 1880 t3_os_link_fault_handler(adap, idx); 1881 } 1882 1883 if (cause & XGM_INTR_FATAL) 1884 t3_fatal_err(adap); 1885 1886 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); 1887 return cause != 0; 1888 } 1889 1890 /* 1891 * Interrupt handler for PHY events. 1892 */ 1893 int t3_phy_intr_handler(struct adapter *adapter) 1894 { 1895 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); 1896 1897 for_each_port(adapter, i) { 1898 struct port_info *p = adap2pinfo(adapter, i); 1899 1900 if (!(p->phy.caps & SUPPORTED_IRQ)) 1901 continue; 1902 1903 if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) { 1904 int phy_cause = p->phy.ops->intr_handler(&p->phy); 1905 1906 if (phy_cause & cphy_cause_link_change) 1907 t3_link_changed(adapter, i); 1908 if (phy_cause & cphy_cause_fifo_error) 1909 p->phy.fifo_errors++; 1910 if (phy_cause & cphy_cause_module_change) 1911 t3_os_phymod_changed(adapter, i); 1912 } 1913 } 1914 1915 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); 1916 return 0; 1917 } 1918 1919 /* 1920 * T3 slow path (non-data) interrupt handler. 1921 */ 1922 int t3_slow_intr_handler(struct adapter *adapter) 1923 { 1924 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); 1925 1926 cause &= adapter->slow_intr_mask; 1927 if (!cause) 1928 return 0; 1929 if (cause & F_PCIM0) { 1930 if (is_pcie(adapter)) 1931 pcie_intr_handler(adapter); 1932 else 1933 pci_intr_handler(adapter); 1934 } 1935 if (cause & F_SGE3) 1936 t3_sge_err_intr_handler(adapter); 1937 if (cause & F_MC7_PMRX) 1938 mc7_intr_handler(&adapter->pmrx); 1939 if (cause & F_MC7_PMTX) 1940 mc7_intr_handler(&adapter->pmtx); 1941 if (cause & F_MC7_CM) 1942 mc7_intr_handler(&adapter->cm); 1943 if (cause & F_CIM) 1944 cim_intr_handler(adapter); 1945 if (cause & F_TP1) 1946 tp_intr_handler(adapter); 1947 if (cause & F_ULP2_RX) 1948 ulprx_intr_handler(adapter); 1949 if (cause & F_ULP2_TX) 1950 ulptx_intr_handler(adapter); 1951 if (cause & F_PM1_RX) 1952 pmrx_intr_handler(adapter); 1953 if (cause & F_PM1_TX) 1954 pmtx_intr_handler(adapter); 1955 if (cause & F_CPL_SWITCH) 1956 cplsw_intr_handler(adapter); 1957 if (cause & F_MPS0) 1958 mps_intr_handler(adapter); 1959 if (cause & F_MC5A) 1960 t3_mc5_intr_handler(&adapter->mc5); 1961 if (cause & F_XGMAC0_0) 1962 mac_intr_handler(adapter, 0); 1963 if (cause & F_XGMAC0_1) 1964 mac_intr_handler(adapter, 1); 1965 if (cause & F_T3DBG) 1966 t3_os_ext_intr_handler(adapter); 1967 1968 /* Clear the interrupts just processed. */ 1969 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); 1970 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ 1971 return 1; 1972 } 1973 1974 static unsigned int calc_gpio_intr(struct adapter *adap) 1975 { 1976 unsigned int i, gpi_intr = 0; 1977 1978 for_each_port(adap, i) 1979 if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) && 1980 adapter_info(adap)->gpio_intr[i]) 1981 gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i]; 1982 return gpi_intr; 1983 } 1984 1985 /** 1986 * t3_intr_enable - enable interrupts 1987 * @adapter: the adapter whose interrupts should be enabled 1988 * 1989 * Enable interrupts by setting the interrupt enable registers of the 1990 * various HW modules and then enabling the top-level interrupt 1991 * concentrator. 1992 */ 1993 void t3_intr_enable(struct adapter *adapter) 1994 { 1995 static const struct addr_val_pair intr_en_avp[] = { 1996 {A_SG_INT_ENABLE, SGE_INTR_MASK}, 1997 {A_MC7_INT_ENABLE, MC7_INTR_MASK}, 1998 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, 1999 MC7_INTR_MASK}, 2000 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, 2001 MC7_INTR_MASK}, 2002 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK}, 2003 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK}, 2004 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK}, 2005 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK}, 2006 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK}, 2007 {A_MPS_INT_ENABLE, MPS_INTR_MASK}, 2008 }; 2009 2010 adapter->slow_intr_mask = PL_INTR_MASK; 2011 2012 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); 2013 t3_write_reg(adapter, A_TP_INT_ENABLE, 2014 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff); 2015 2016 if (adapter->params.rev > 0) { 2017 t3_write_reg(adapter, A_CPL_INTR_ENABLE, 2018 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); 2019 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, 2020 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | 2021 F_PBL_BOUND_ERR_CH1); 2022 } else { 2023 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); 2024 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); 2025 } 2026 2027 t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter)); 2028 2029 if (is_pcie(adapter)) 2030 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); 2031 else 2032 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); 2033 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); 2034 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ 2035 } 2036 2037 /** 2038 * t3_intr_disable - disable a card's interrupts 2039 * @adapter: the adapter whose interrupts should be disabled 2040 * 2041 * Disable interrupts. We only disable the top-level interrupt 2042 * concentrator and the SGE data interrupts. 2043 */ 2044 void t3_intr_disable(struct adapter *adapter) 2045 { 2046 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); 2047 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ 2048 adapter->slow_intr_mask = 0; 2049 } 2050 2051 /** 2052 * t3_intr_clear - clear all interrupts 2053 * @adapter: the adapter whose interrupts should be cleared 2054 * 2055 * Clears all interrupts. 2056 */ 2057 void t3_intr_clear(struct adapter *adapter) 2058 { 2059 static const unsigned int cause_reg_addr[] = { 2060 A_SG_INT_CAUSE, 2061 A_SG_RSPQ_FL_STATUS, 2062 A_PCIX_INT_CAUSE, 2063 A_MC7_INT_CAUSE, 2064 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, 2065 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, 2066 A_CIM_HOST_INT_CAUSE, 2067 A_TP_INT_CAUSE, 2068 A_MC5_DB_INT_CAUSE, 2069 A_ULPRX_INT_CAUSE, 2070 A_ULPTX_INT_CAUSE, 2071 A_CPL_INTR_CAUSE, 2072 A_PM1_TX_INT_CAUSE, 2073 A_PM1_RX_INT_CAUSE, 2074 A_MPS_INT_CAUSE, 2075 A_T3DBG_INT_CAUSE, 2076 }; 2077 unsigned int i; 2078 2079 /* Clear PHY and MAC interrupts for each port. */ 2080 for_each_port(adapter, i) 2081 t3_port_intr_clear(adapter, i); 2082 2083 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) 2084 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); 2085 2086 if (is_pcie(adapter)) 2087 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff); 2088 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); 2089 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ 2090 } 2091 2092 void t3_xgm_intr_enable(struct adapter *adapter, int idx) 2093 { 2094 struct port_info *pi = adap2pinfo(adapter, idx); 2095 2096 t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset, 2097 XGM_EXTRA_INTR_MASK); 2098 } 2099 2100 void t3_xgm_intr_disable(struct adapter *adapter, int idx) 2101 { 2102 struct port_info *pi = adap2pinfo(adapter, idx); 2103 2104 t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset, 2105 0x7ff); 2106 } 2107 2108 /** 2109 * t3_port_intr_enable - enable port-specific interrupts 2110 * @adapter: associated adapter 2111 * @idx: index of port whose interrupts should be enabled 2112 * 2113 * Enable port-specific (i.e., MAC and PHY) interrupts for the given 2114 * adapter port. 2115 */ 2116 void t3_port_intr_enable(struct adapter *adapter, int idx) 2117 { 2118 struct cphy *phy = &adap2pinfo(adapter, idx)->phy; 2119 2120 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK); 2121 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ 2122 phy->ops->intr_enable(phy); 2123 } 2124 2125 /** 2126 * t3_port_intr_disable - disable port-specific interrupts 2127 * @adapter: associated adapter 2128 * @idx: index of port whose interrupts should be disabled 2129 * 2130 * Disable port-specific (i.e., MAC and PHY) interrupts for the given 2131 * adapter port. 2132 */ 2133 void t3_port_intr_disable(struct adapter *adapter, int idx) 2134 { 2135 struct cphy *phy = &adap2pinfo(adapter, idx)->phy; 2136 2137 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0); 2138 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ 2139 phy->ops->intr_disable(phy); 2140 } 2141 2142 /** 2143 * t3_port_intr_clear - clear port-specific interrupts 2144 * @adapter: associated adapter 2145 * @idx: index of port whose interrupts to clear 2146 * 2147 * Clear port-specific (i.e., MAC and PHY) interrupts for the given 2148 * adapter port. 2149 */ 2150 static void t3_port_intr_clear(struct adapter *adapter, int idx) 2151 { 2152 struct cphy *phy = &adap2pinfo(adapter, idx)->phy; 2153 2154 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff); 2155 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */ 2156 phy->ops->intr_clear(phy); 2157 } 2158 2159 #define SG_CONTEXT_CMD_ATTEMPTS 100 2160 2161 /** 2162 * t3_sge_write_context - write an SGE context 2163 * @adapter: the adapter 2164 * @id: the context id 2165 * @type: the context type 2166 * 2167 * Program an SGE context with the values already loaded in the 2168 * CONTEXT_DATA? registers. 2169 */ 2170 static int t3_sge_write_context(struct adapter *adapter, unsigned int id, 2171 unsigned int type) 2172 { 2173 if (type == F_RESPONSEQ) { 2174 /* 2175 * Can't write the Response Queue Context bits for 2176 * Interrupt Armed or the Reserve bits after the chip 2177 * has been initialized out of reset. Writing to these 2178 * bits can confuse the hardware. 2179 */ 2180 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); 2181 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); 2182 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff); 2183 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); 2184 } else { 2185 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); 2186 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); 2187 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); 2188 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); 2189 } 2190 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2191 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); 2192 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2193 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2194 } 2195 2196 /** 2197 * clear_sge_ctxt - completely clear an SGE context 2198 * @adap: the adapter 2199 * @id: the context id 2200 * @type: the context type 2201 * 2202 * Completely clear an SGE context. Used predominantly at post-reset 2203 * initialization. Note in particular that we don't skip writing to any 2204 * "sensitive bits" in the contexts the way that t3_sge_write_context() 2205 * does ... 2206 */ 2207 static int clear_sge_ctxt(struct adapter *adap, unsigned int id, 2208 unsigned int type) 2209 { 2210 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0); 2211 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0); 2212 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0); 2213 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0); 2214 t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff); 2215 t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff); 2216 t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff); 2217 t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff); 2218 t3_write_reg(adap, A_SG_CONTEXT_CMD, 2219 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); 2220 return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2221 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2222 } 2223 2224 /** 2225 * t3_sge_init_ecntxt - initialize an SGE egress context 2226 * @adapter: the adapter to configure 2227 * @id: the context id 2228 * @gts_enable: whether to enable GTS for the context 2229 * @type: the egress context type 2230 * @respq: associated response queue 2231 * @base_addr: base address of queue 2232 * @size: number of queue entries 2233 * @token: uP token 2234 * @gen: initial generation value for the context 2235 * @cidx: consumer pointer 2236 * 2237 * Initialize an SGE egress context and make it ready for use. If the 2238 * platform allows concurrent context operations, the caller is 2239 * responsible for appropriate locking. 2240 */ 2241 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, 2242 enum sge_context_type type, int respq, u64 base_addr, 2243 unsigned int size, unsigned int token, int gen, 2244 unsigned int cidx) 2245 { 2246 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; 2247 2248 if (base_addr & 0xfff) /* must be 4K aligned */ 2249 return -EINVAL; 2250 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2251 return -EBUSY; 2252 2253 base_addr >>= 12; 2254 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | 2255 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); 2256 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | 2257 V_EC_BASE_LO(base_addr & 0xffff)); 2258 base_addr >>= 16; 2259 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr); 2260 base_addr >>= 32; 2261 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, 2262 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) | 2263 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | 2264 F_EC_VALID); 2265 return t3_sge_write_context(adapter, id, F_EGRESS); 2266 } 2267 2268 /** 2269 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context 2270 * @adapter: the adapter to configure 2271 * @id: the context id 2272 * @gts_enable: whether to enable GTS for the context 2273 * @base_addr: base address of queue 2274 * @size: number of queue entries 2275 * @bsize: size of each buffer for this queue 2276 * @cong_thres: threshold to signal congestion to upstream producers 2277 * @gen: initial generation value for the context 2278 * @cidx: consumer pointer 2279 * 2280 * Initialize an SGE free list context and make it ready for use. The 2281 * caller is responsible for ensuring only one context operation occurs 2282 * at a time. 2283 */ 2284 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, 2285 int gts_enable, u64 base_addr, unsigned int size, 2286 unsigned int bsize, unsigned int cong_thres, int gen, 2287 unsigned int cidx) 2288 { 2289 if (base_addr & 0xfff) /* must be 4K aligned */ 2290 return -EINVAL; 2291 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2292 return -EBUSY; 2293 2294 base_addr >>= 12; 2295 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr); 2296 base_addr >>= 32; 2297 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, 2298 V_FL_BASE_HI((u32) base_addr) | 2299 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); 2300 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | 2301 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | 2302 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); 2303 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, 2304 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | 2305 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); 2306 return t3_sge_write_context(adapter, id, F_FREELIST); 2307 } 2308 2309 /** 2310 * t3_sge_init_rspcntxt - initialize an SGE response queue context 2311 * @adapter: the adapter to configure 2312 * @id: the context id 2313 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ 2314 * @base_addr: base address of queue 2315 * @size: number of queue entries 2316 * @fl_thres: threshold for selecting the normal or jumbo free list 2317 * @gen: initial generation value for the context 2318 * @cidx: consumer pointer 2319 * 2320 * Initialize an SGE response queue context and make it ready for use. 2321 * The caller is responsible for ensuring only one context operation 2322 * occurs at a time. 2323 */ 2324 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, 2325 int irq_vec_idx, u64 base_addr, unsigned int size, 2326 unsigned int fl_thres, int gen, unsigned int cidx) 2327 { 2328 unsigned int intr = 0; 2329 2330 if (base_addr & 0xfff) /* must be 4K aligned */ 2331 return -EINVAL; 2332 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2333 return -EBUSY; 2334 2335 base_addr >>= 12; 2336 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | 2337 V_CQ_INDEX(cidx)); 2338 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); 2339 base_addr >>= 32; 2340 if (irq_vec_idx >= 0) 2341 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN; 2342 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 2343 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen)); 2344 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); 2345 return t3_sge_write_context(adapter, id, F_RESPONSEQ); 2346 } 2347 2348 /** 2349 * t3_sge_init_cqcntxt - initialize an SGE completion queue context 2350 * @adapter: the adapter to configure 2351 * @id: the context id 2352 * @base_addr: base address of queue 2353 * @size: number of queue entries 2354 * @rspq: response queue for async notifications 2355 * @ovfl_mode: CQ overflow mode 2356 * @credits: completion queue credits 2357 * @credit_thres: the credit threshold 2358 * 2359 * Initialize an SGE completion queue context and make it ready for use. 2360 * The caller is responsible for ensuring only one context operation 2361 * occurs at a time. 2362 */ 2363 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, 2364 unsigned int size, int rspq, int ovfl_mode, 2365 unsigned int credits, unsigned int credit_thres) 2366 { 2367 if (base_addr & 0xfff) /* must be 4K aligned */ 2368 return -EINVAL; 2369 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2370 return -EBUSY; 2371 2372 base_addr >>= 12; 2373 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); 2374 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); 2375 base_addr >>= 32; 2376 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 2377 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) | 2378 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) | 2379 V_CQ_ERR(ovfl_mode)); 2380 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | 2381 V_CQ_CREDIT_THRES(credit_thres)); 2382 return t3_sge_write_context(adapter, id, F_CQ); 2383 } 2384 2385 /** 2386 * t3_sge_enable_ecntxt - enable/disable an SGE egress context 2387 * @adapter: the adapter 2388 * @id: the egress context id 2389 * @enable: enable (1) or disable (0) the context 2390 * 2391 * Enable or disable an SGE egress context. The caller is responsible for 2392 * ensuring only one context operation occurs at a time. 2393 */ 2394 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable) 2395 { 2396 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2397 return -EBUSY; 2398 2399 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); 2400 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2401 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2402 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); 2403 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); 2404 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2405 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); 2406 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2407 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2408 } 2409 2410 /** 2411 * t3_sge_disable_fl - disable an SGE free-buffer list 2412 * @adapter: the adapter 2413 * @id: the free list context id 2414 * 2415 * Disable an SGE free-buffer list. The caller is responsible for 2416 * ensuring only one context operation occurs at a time. 2417 */ 2418 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id) 2419 { 2420 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2421 return -EBUSY; 2422 2423 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); 2424 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2425 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); 2426 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2427 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); 2428 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2429 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); 2430 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2431 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2432 } 2433 2434 /** 2435 * t3_sge_disable_rspcntxt - disable an SGE response queue 2436 * @adapter: the adapter 2437 * @id: the response queue context id 2438 * 2439 * Disable an SGE response queue. The caller is responsible for 2440 * ensuring only one context operation occurs at a time. 2441 */ 2442 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id) 2443 { 2444 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2445 return -EBUSY; 2446 2447 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); 2448 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2449 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2450 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2451 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); 2452 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2453 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); 2454 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2455 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2456 } 2457 2458 /** 2459 * t3_sge_disable_cqcntxt - disable an SGE completion queue 2460 * @adapter: the adapter 2461 * @id: the completion queue context id 2462 * 2463 * Disable an SGE completion queue. The caller is responsible for 2464 * ensuring only one context operation occurs at a time. 2465 */ 2466 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id) 2467 { 2468 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2469 return -EBUSY; 2470 2471 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); 2472 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2473 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2474 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2475 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); 2476 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2477 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); 2478 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2479 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2480 } 2481 2482 /** 2483 * t3_sge_cqcntxt_op - perform an operation on a completion queue context 2484 * @adapter: the adapter 2485 * @id: the context id 2486 * @op: the operation to perform 2487 * @credits: credit value to write 2488 * 2489 * Perform the selected operation on an SGE completion queue context. 2490 * The caller is responsible for ensuring only one context operation 2491 * occurs at a time. 2492 */ 2493 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, 2494 unsigned int credits) 2495 { 2496 u32 val; 2497 2498 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2499 return -EBUSY; 2500 2501 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); 2502 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | 2503 V_CONTEXT(id) | F_CQ); 2504 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2505 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val)) 2506 return -EIO; 2507 2508 if (op >= 2 && op < 7) { 2509 if (adapter->params.rev > 0) 2510 return G_CQ_INDEX(val); 2511 2512 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2513 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); 2514 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, 2515 F_CONTEXT_CMD_BUSY, 0, 2516 SG_CONTEXT_CMD_ATTEMPTS, 1)) 2517 return -EIO; 2518 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); 2519 } 2520 return 0; 2521 } 2522 2523 /** 2524 * t3_config_rss - configure Rx packet steering 2525 * @adapter: the adapter 2526 * @rss_config: RSS settings (written to TP_RSS_CONFIG) 2527 * @cpus: values for the CPU lookup table (0xff terminated) 2528 * @rspq: values for the response queue lookup table (0xffff terminated) 2529 * 2530 * Programs the receive packet steering logic. @cpus and @rspq provide 2531 * the values for the CPU and response queue lookup tables. If they 2532 * provide fewer values than the size of the tables the supplied values 2533 * are used repeatedly until the tables are fully populated. 2534 */ 2535 void t3_config_rss(struct adapter *adapter, unsigned int rss_config, 2536 const u8 * cpus, const u16 *rspq) 2537 { 2538 int i, j, cpu_idx = 0, q_idx = 0; 2539 2540 if (cpus) 2541 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 2542 u32 val = i << 16; 2543 2544 for (j = 0; j < 2; ++j) { 2545 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); 2546 if (cpus[cpu_idx] == 0xff) 2547 cpu_idx = 0; 2548 } 2549 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); 2550 } 2551 2552 if (rspq) 2553 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 2554 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, 2555 (i << 16) | rspq[q_idx++]); 2556 if (rspq[q_idx] == 0xffff) 2557 q_idx = 0; 2558 } 2559 2560 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); 2561 } 2562 2563 /** 2564 * t3_tp_set_offload_mode - put TP in NIC/offload mode 2565 * @adap: the adapter 2566 * @enable: 1 to select offload mode, 0 for regular NIC 2567 * 2568 * Switches TP to NIC/offload mode. 2569 */ 2570 void t3_tp_set_offload_mode(struct adapter *adap, int enable) 2571 { 2572 if (is_offload(adap) || !enable) 2573 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, 2574 V_NICMODE(!enable)); 2575 } 2576 2577 /** 2578 * pm_num_pages - calculate the number of pages of the payload memory 2579 * @mem_size: the size of the payload memory 2580 * @pg_size: the size of each payload memory page 2581 * 2582 * Calculate the number of pages, each of the given size, that fit in a 2583 * memory of the specified size, respecting the HW requirement that the 2584 * number of pages must be a multiple of 24. 2585 */ 2586 static inline unsigned int pm_num_pages(unsigned int mem_size, 2587 unsigned int pg_size) 2588 { 2589 unsigned int n = mem_size / pg_size; 2590 2591 return n - n % 24; 2592 } 2593 2594 #define mem_region(adap, start, size, reg) \ 2595 t3_write_reg((adap), A_ ## reg, (start)); \ 2596 start += size 2597 2598 /** 2599 * partition_mem - partition memory and configure TP memory settings 2600 * @adap: the adapter 2601 * @p: the TP parameters 2602 * 2603 * Partitions context and payload memory and configures TP's memory 2604 * registers. 2605 */ 2606 static void partition_mem(struct adapter *adap, const struct tp_params *p) 2607 { 2608 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); 2609 unsigned int timers = 0, timers_shift = 22; 2610 2611 if (adap->params.rev > 0) { 2612 if (tids <= 16 * 1024) { 2613 timers = 1; 2614 timers_shift = 16; 2615 } else if (tids <= 64 * 1024) { 2616 timers = 2; 2617 timers_shift = 18; 2618 } else if (tids <= 256 * 1024) { 2619 timers = 3; 2620 timers_shift = 20; 2621 } 2622 } 2623 2624 t3_write_reg(adap, A_TP_PMM_SIZE, 2625 p->chan_rx_size | (p->chan_tx_size >> 16)); 2626 2627 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); 2628 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); 2629 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); 2630 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), 2631 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); 2632 2633 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); 2634 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); 2635 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); 2636 2637 pstructs = p->rx_num_pgs + p->tx_num_pgs; 2638 /* Add a bit of headroom and make multiple of 24 */ 2639 pstructs += 48; 2640 pstructs -= pstructs % 24; 2641 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); 2642 2643 m = tids * TCB_SIZE; 2644 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); 2645 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); 2646 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); 2647 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); 2648 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); 2649 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); 2650 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); 2651 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); 2652 2653 m = (m + 4095) & ~0xfff; 2654 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); 2655 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); 2656 2657 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; 2658 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 2659 adap->params.mc5.nfilters - adap->params.mc5.nroutes; 2660 if (tids < m) 2661 adap->params.mc5.nservers += m - tids; 2662 } 2663 2664 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr, 2665 u32 val) 2666 { 2667 t3_write_reg(adap, A_TP_PIO_ADDR, addr); 2668 t3_write_reg(adap, A_TP_PIO_DATA, val); 2669 } 2670 2671 static void tp_config(struct adapter *adap, const struct tp_params *p) 2672 { 2673 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | 2674 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | 2675 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); 2676 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | 2677 F_MTUENABLE | V_WINDOWSCALEMODE(1) | 2678 V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); 2679 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | 2680 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | 2681 V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) | 2682 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); 2683 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO, 2684 F_IPV6ENABLE | F_NICMODE); 2685 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); 2686 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); 2687 t3_set_reg_field(adap, A_TP_PARA_REG6, 0, 2688 adap->params.rev > 0 ? F_ENABLEESND : 2689 F_T3A_ENABLEESND); 2690 2691 t3_set_reg_field(adap, A_TP_PC_CONFIG, 2692 F_ENABLEEPCMDAFULL, 2693 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK | 2694 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE); 2695 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 2696 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN | 2697 F_ENABLEARPMISS | F_DISBLEDAPARBIT0); 2698 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080); 2699 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000); 2700 2701 if (adap->params.rev > 0) { 2702 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); 2703 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO, 2704 F_TXPACEAUTO); 2705 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); 2706 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT); 2707 } else 2708 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); 2709 2710 if (adap->params.rev == T3_REV_C) 2711 t3_set_reg_field(adap, A_TP_PC_CONFIG, 2712 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA), 2713 V_TABLELATENCYDELTA(4)); 2714 2715 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0); 2716 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0); 2717 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0); 2718 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000); 2719 } 2720 2721 /* Desired TP timer resolution in usec */ 2722 #define TP_TMR_RES 50 2723 2724 /* TCP timer values in ms */ 2725 #define TP_DACK_TIMER 50 2726 #define TP_RTO_MIN 250 2727 2728 /** 2729 * tp_set_timers - set TP timing parameters 2730 * @adap: the adapter to set 2731 * @core_clk: the core clock frequency in Hz 2732 * 2733 * Set TP's timing parameters, such as the various timer resolutions and 2734 * the TCP timer values. 2735 */ 2736 static void tp_set_timers(struct adapter *adap, unsigned int core_clk) 2737 { 2738 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1; 2739 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */ 2740 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ 2741 unsigned int tps = core_clk >> tre; 2742 2743 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | 2744 V_DELAYEDACKRESOLUTION(dack_re) | 2745 V_TIMESTAMPRESOLUTION(tstamp_re)); 2746 t3_write_reg(adap, A_TP_DACK_TIMER, 2747 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); 2748 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); 2749 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); 2750 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); 2751 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); 2752 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | 2753 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | 2754 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | 2755 V_KEEPALIVEMAX(9)); 2756 2757 #define SECONDS * tps 2758 2759 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS); 2760 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); 2761 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); 2762 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); 2763 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); 2764 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); 2765 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); 2766 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); 2767 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); 2768 2769 #undef SECONDS 2770 } 2771 2772 /** 2773 * t3_tp_set_coalescing_size - set receive coalescing size 2774 * @adap: the adapter 2775 * @size: the receive coalescing size 2776 * @psh: whether a set PSH bit should deliver coalesced data 2777 * 2778 * Set the receive coalescing size and PSH bit handling. 2779 */ 2780 static int t3_tp_set_coalescing_size(struct adapter *adap, 2781 unsigned int size, int psh) 2782 { 2783 u32 val; 2784 2785 if (size > MAX_RX_COALESCING_LEN) 2786 return -EINVAL; 2787 2788 val = t3_read_reg(adap, A_TP_PARA_REG3); 2789 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); 2790 2791 if (size) { 2792 val |= F_RXCOALESCEENABLE; 2793 if (psh) 2794 val |= F_RXCOALESCEPSHEN; 2795 size = min(MAX_RX_COALESCING_LEN, size); 2796 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | 2797 V_MAXRXDATA(MAX_RX_COALESCING_LEN)); 2798 } 2799 t3_write_reg(adap, A_TP_PARA_REG3, val); 2800 return 0; 2801 } 2802 2803 /** 2804 * t3_tp_set_max_rxsize - set the max receive size 2805 * @adap: the adapter 2806 * @size: the max receive size 2807 * 2808 * Set TP's max receive size. This is the limit that applies when 2809 * receive coalescing is disabled. 2810 */ 2811 static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size) 2812 { 2813 t3_write_reg(adap, A_TP_PARA_REG7, 2814 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); 2815 } 2816 2817 static void init_mtus(unsigned short mtus[]) 2818 { 2819 /* 2820 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so 2821 * it can accommodate max size TCP/IP headers when SACK and timestamps 2822 * are enabled and still have at least 8 bytes of payload. 2823 */ 2824 mtus[0] = 88; 2825 mtus[1] = 88; 2826 mtus[2] = 256; 2827 mtus[3] = 512; 2828 mtus[4] = 576; 2829 mtus[5] = 1024; 2830 mtus[6] = 1280; 2831 mtus[7] = 1492; 2832 mtus[8] = 1500; 2833 mtus[9] = 2002; 2834 mtus[10] = 2048; 2835 mtus[11] = 4096; 2836 mtus[12] = 4352; 2837 mtus[13] = 8192; 2838 mtus[14] = 9000; 2839 mtus[15] = 9600; 2840 } 2841 2842 /* 2843 * Initial congestion control parameters. 2844 */ 2845 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 2846 { 2847 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 2848 a[9] = 2; 2849 a[10] = 3; 2850 a[11] = 4; 2851 a[12] = 5; 2852 a[13] = 6; 2853 a[14] = 7; 2854 a[15] = 8; 2855 a[16] = 9; 2856 a[17] = 10; 2857 a[18] = 14; 2858 a[19] = 17; 2859 a[20] = 21; 2860 a[21] = 25; 2861 a[22] = 30; 2862 a[23] = 35; 2863 a[24] = 45; 2864 a[25] = 60; 2865 a[26] = 80; 2866 a[27] = 100; 2867 a[28] = 200; 2868 a[29] = 300; 2869 a[30] = 400; 2870 a[31] = 500; 2871 2872 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 2873 b[9] = b[10] = 1; 2874 b[11] = b[12] = 2; 2875 b[13] = b[14] = b[15] = b[16] = 3; 2876 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 2877 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 2878 b[28] = b[29] = 6; 2879 b[30] = b[31] = 7; 2880 } 2881 2882 /* The minimum additive increment value for the congestion control table */ 2883 #define CC_MIN_INCR 2U 2884 2885 /** 2886 * t3_load_mtus - write the MTU and congestion control HW tables 2887 * @adap: the adapter 2888 * @mtus: the unrestricted values for the MTU table 2889 * @alpha: the values for the congestion control alpha parameter 2890 * @beta: the values for the congestion control beta parameter 2891 * @mtu_cap: the maximum permitted effective MTU 2892 * 2893 * Write the MTU table with the supplied MTUs capping each at &mtu_cap. 2894 * Update the high-speed congestion control table with the supplied alpha, 2895 * beta, and MTUs. 2896 */ 2897 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], 2898 unsigned short alpha[NCCTRL_WIN], 2899 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) 2900 { 2901 static const unsigned int avg_pkts[NCCTRL_WIN] = { 2902 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 2903 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 2904 28672, 40960, 57344, 81920, 114688, 163840, 229376 2905 }; 2906 2907 unsigned int i, w; 2908 2909 for (i = 0; i < NMTUS; ++i) { 2910 unsigned int mtu = min(mtus[i], mtu_cap); 2911 unsigned int log2 = fls(mtu); 2912 2913 if (!(mtu & ((1 << log2) >> 2))) /* round */ 2914 log2--; 2915 t3_write_reg(adap, A_TP_MTU_TABLE, 2916 (i << 24) | (log2 << 16) | mtu); 2917 2918 for (w = 0; w < NCCTRL_WIN; ++w) { 2919 unsigned int inc; 2920 2921 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 2922 CC_MIN_INCR); 2923 2924 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 2925 (w << 16) | (beta[w] << 13) | inc); 2926 } 2927 } 2928 } 2929 2930 /** 2931 * t3_tp_get_mib_stats - read TP's MIB counters 2932 * @adap: the adapter 2933 * @tps: holds the returned counter values 2934 * 2935 * Returns the values of TP's MIB counters. 2936 */ 2937 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps) 2938 { 2939 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps, 2940 sizeof(*tps) / sizeof(u32), 0); 2941 } 2942 2943 #define ulp_region(adap, name, start, len) \ 2944 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ 2945 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ 2946 (start) + (len) - 1); \ 2947 start += len 2948 2949 #define ulptx_region(adap, name, start, len) \ 2950 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ 2951 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ 2952 (start) + (len) - 1) 2953 2954 static void ulp_config(struct adapter *adap, const struct tp_params *p) 2955 { 2956 unsigned int m = p->chan_rx_size; 2957 2958 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); 2959 ulp_region(adap, TDDP, m, p->chan_rx_size / 8); 2960 ulptx_region(adap, TPT, m, p->chan_rx_size / 4); 2961 ulp_region(adap, STAG, m, p->chan_rx_size / 4); 2962 ulp_region(adap, RQ, m, p->chan_rx_size / 4); 2963 ulptx_region(adap, PBL, m, p->chan_rx_size / 4); 2964 ulp_region(adap, PBL, m, p->chan_rx_size / 4); 2965 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); 2966 } 2967 2968 /** 2969 * t3_set_proto_sram - set the contents of the protocol sram 2970 * @adap: the adapter 2971 * @data: the protocol image 2972 * 2973 * Write the contents of the protocol SRAM. 2974 */ 2975 int t3_set_proto_sram(struct adapter *adap, const u8 *data) 2976 { 2977 int i; 2978 const __be32 *buf = (const __be32 *)data; 2979 2980 for (i = 0; i < PROTO_SRAM_LINES; i++) { 2981 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++)); 2982 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++)); 2983 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++)); 2984 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++)); 2985 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++)); 2986 2987 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31); 2988 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1)) 2989 return -EIO; 2990 } 2991 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0); 2992 2993 return 0; 2994 } 2995 2996 void t3_config_trace_filter(struct adapter *adapter, 2997 const struct trace_params *tp, int filter_index, 2998 int invert, int enable) 2999 { 3000 u32 addr, key[4], mask[4]; 3001 3002 key[0] = tp->sport | (tp->sip << 16); 3003 key[1] = (tp->sip >> 16) | (tp->dport << 16); 3004 key[2] = tp->dip; 3005 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); 3006 3007 mask[0] = tp->sport_mask | (tp->sip_mask << 16); 3008 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); 3009 mask[2] = tp->dip_mask; 3010 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); 3011 3012 if (invert) 3013 key[3] |= (1 << 29); 3014 if (enable) 3015 key[3] |= (1 << 28); 3016 3017 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; 3018 tp_wr_indirect(adapter, addr++, key[0]); 3019 tp_wr_indirect(adapter, addr++, mask[0]); 3020 tp_wr_indirect(adapter, addr++, key[1]); 3021 tp_wr_indirect(adapter, addr++, mask[1]); 3022 tp_wr_indirect(adapter, addr++, key[2]); 3023 tp_wr_indirect(adapter, addr++, mask[2]); 3024 tp_wr_indirect(adapter, addr++, key[3]); 3025 tp_wr_indirect(adapter, addr, mask[3]); 3026 t3_read_reg(adapter, A_TP_PIO_DATA); 3027 } 3028 3029 /** 3030 * t3_config_sched - configure a HW traffic scheduler 3031 * @adap: the adapter 3032 * @kbps: target rate in Kbps 3033 * @sched: the scheduler index 3034 * 3035 * Configure a HW scheduler for the target rate 3036 */ 3037 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched) 3038 { 3039 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 3040 unsigned int clk = adap->params.vpd.cclk * 1000; 3041 unsigned int selected_cpt = 0, selected_bpt = 0; 3042 3043 if (kbps > 0) { 3044 kbps *= 125; /* -> bytes */ 3045 for (cpt = 1; cpt <= 255; cpt++) { 3046 tps = clk / cpt; 3047 bpt = (kbps + tps / 2) / tps; 3048 if (bpt > 0 && bpt <= 255) { 3049 v = bpt * tps; 3050 delta = v >= kbps ? v - kbps : kbps - v; 3051 if (delta <= mindelta) { 3052 mindelta = delta; 3053 selected_cpt = cpt; 3054 selected_bpt = bpt; 3055 } 3056 } else if (selected_cpt) 3057 break; 3058 } 3059 if (!selected_cpt) 3060 return -EINVAL; 3061 } 3062 t3_write_reg(adap, A_TP_TM_PIO_ADDR, 3063 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 3064 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 3065 if (sched & 1) 3066 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 3067 else 3068 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 3069 t3_write_reg(adap, A_TP_TM_PIO_DATA, v); 3070 return 0; 3071 } 3072 3073 static int tp_init(struct adapter *adap, const struct tp_params *p) 3074 { 3075 int busy = 0; 3076 3077 tp_config(adap, p); 3078 t3_set_vlan_accel(adap, 3, 0); 3079 3080 if (is_offload(adap)) { 3081 tp_set_timers(adap, adap->params.vpd.cclk * 1000); 3082 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); 3083 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, 3084 0, 1000, 5); 3085 if (busy) 3086 CH_ERR(adap, "TP initialization timed out\n"); 3087 } 3088 3089 if (!busy) 3090 t3_write_reg(adap, A_TP_RESET, F_TPRESET); 3091 return busy; 3092 } 3093 3094 /* 3095 * Perform the bits of HW initialization that are dependent on the Tx 3096 * channels being used. 3097 */ 3098 static void chan_init_hw(struct adapter *adap, unsigned int chan_map) 3099 { 3100 int i; 3101 3102 if (chan_map != 3) { /* one channel */ 3103 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); 3104 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); 3105 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT | 3106 (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE : 3107 F_TPTXPORT1EN | F_PORT1ACTIVE)); 3108 t3_write_reg(adap, A_PM1_TX_CFG, 3109 chan_map == 1 ? 0xffffffff : 0); 3110 } else { /* two channels */ 3111 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); 3112 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); 3113 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, 3114 V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); 3115 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | 3116 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | 3117 F_ENFORCEPKT); 3118 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); 3119 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); 3120 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 3121 V_TX_MOD_QUEUE_REQ_MAP(0xaa)); 3122 for (i = 0; i < 16; i++) 3123 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, 3124 (i << 16) | 0x1010); 3125 } 3126 } 3127 3128 static int calibrate_xgm(struct adapter *adapter) 3129 { 3130 if (uses_xaui(adapter)) { 3131 unsigned int v, i; 3132 3133 for (i = 0; i < 5; ++i) { 3134 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); 3135 t3_read_reg(adapter, A_XGM_XAUI_IMP); 3136 msleep(1); 3137 v = t3_read_reg(adapter, A_XGM_XAUI_IMP); 3138 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { 3139 t3_write_reg(adapter, A_XGM_XAUI_IMP, 3140 V_XAUIIMP(G_CALIMP(v) >> 2)); 3141 return 0; 3142 } 3143 } 3144 CH_ERR(adapter, "MAC calibration failed\n"); 3145 return -1; 3146 } else { 3147 t3_write_reg(adapter, A_XGM_RGMII_IMP, 3148 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); 3149 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, 3150 F_XGM_IMPSETUPDATE); 3151 } 3152 return 0; 3153 } 3154 3155 static void calibrate_xgm_t3b(struct adapter *adapter) 3156 { 3157 if (!uses_xaui(adapter)) { 3158 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | 3159 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); 3160 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); 3161 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, 3162 F_XGM_IMPSETUPDATE); 3163 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, 3164 0); 3165 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); 3166 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); 3167 } 3168 } 3169 3170 struct mc7_timing_params { 3171 unsigned char ActToPreDly; 3172 unsigned char ActToRdWrDly; 3173 unsigned char PreCyc; 3174 unsigned char RefCyc[5]; 3175 unsigned char BkCyc; 3176 unsigned char WrToRdDly; 3177 unsigned char RdToWrDly; 3178 }; 3179 3180 /* 3181 * Write a value to a register and check that the write completed. These 3182 * writes normally complete in a cycle or two, so one read should suffice. 3183 * The very first read exists to flush the posted write to the device. 3184 */ 3185 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val) 3186 { 3187 t3_write_reg(adapter, addr, val); 3188 t3_read_reg(adapter, addr); /* flush */ 3189 if (!(t3_read_reg(adapter, addr) & F_BUSY)) 3190 return 0; 3191 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); 3192 return -EIO; 3193 } 3194 3195 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) 3196 { 3197 static const unsigned int mc7_mode[] = { 3198 0x632, 0x642, 0x652, 0x432, 0x442 3199 }; 3200 static const struct mc7_timing_params mc7_timings[] = { 3201 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4}, 3202 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4}, 3203 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4}, 3204 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4}, 3205 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4} 3206 }; 3207 3208 u32 val; 3209 unsigned int width, density, slow, attempts; 3210 struct adapter *adapter = mc7->adapter; 3211 const struct mc7_timing_params *p = &mc7_timings[mem_type]; 3212 3213 if (!mc7->size) 3214 return 0; 3215 3216 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); 3217 slow = val & F_SLOW; 3218 width = G_WIDTH(val); 3219 density = G_DEN(val); 3220 3221 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); 3222 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ 3223 msleep(1); 3224 3225 if (!slow) { 3226 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); 3227 t3_read_reg(adapter, mc7->offset + A_MC7_CAL); 3228 msleep(1); 3229 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & 3230 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { 3231 CH_ERR(adapter, "%s MC7 calibration timed out\n", 3232 mc7->name); 3233 goto out_fail; 3234 } 3235 } 3236 3237 t3_write_reg(adapter, mc7->offset + A_MC7_PARM, 3238 V_ACTTOPREDLY(p->ActToPreDly) | 3239 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | 3240 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | 3241 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); 3242 3243 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, 3244 val | F_CLKEN | F_TERM150); 3245 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ 3246 3247 if (!slow) 3248 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, 3249 F_DLLENB); 3250 udelay(1); 3251 3252 val = slow ? 3 : 6; 3253 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || 3254 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || 3255 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || 3256 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) 3257 goto out_fail; 3258 3259 if (!slow) { 3260 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); 3261 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0); 3262 udelay(5); 3263 } 3264 3265 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || 3266 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || 3267 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || 3268 wrreg_wait(adapter, mc7->offset + A_MC7_MODE, 3269 mc7_mode[mem_type]) || 3270 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || 3271 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) 3272 goto out_fail; 3273 3274 /* clock value is in KHz */ 3275 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ 3276 mc7_clock /= 1000000; /* KHz->MHz, ns->us */ 3277 3278 t3_write_reg(adapter, mc7->offset + A_MC7_REF, 3279 F_PERREFEN | V_PREREFDIV(mc7_clock)); 3280 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ 3281 3282 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN); 3283 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); 3284 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); 3285 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, 3286 (mc7->size << width) - 1); 3287 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); 3288 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ 3289 3290 attempts = 50; 3291 do { 3292 msleep(250); 3293 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); 3294 } while ((val & F_BUSY) && --attempts); 3295 if (val & F_BUSY) { 3296 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); 3297 goto out_fail; 3298 } 3299 3300 /* Enable normal memory accesses. */ 3301 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); 3302 return 0; 3303 3304 out_fail: 3305 return -1; 3306 } 3307 3308 static void config_pcie(struct adapter *adap) 3309 { 3310 static const u16 ack_lat[4][6] = { 3311 {237, 416, 559, 1071, 2095, 4143}, 3312 {128, 217, 289, 545, 1057, 2081}, 3313 {73, 118, 154, 282, 538, 1050}, 3314 {67, 107, 86, 150, 278, 534} 3315 }; 3316 static const u16 rpl_tmr[4][6] = { 3317 {711, 1248, 1677, 3213, 6285, 12429}, 3318 {384, 651, 867, 1635, 3171, 6243}, 3319 {219, 354, 462, 846, 1614, 3150}, 3320 {201, 321, 258, 450, 834, 1602} 3321 }; 3322 3323 u16 val, devid; 3324 unsigned int log2_width, pldsize; 3325 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; 3326 3327 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, &val); 3328 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; 3329 3330 pci_read_config_word(adap->pdev, 0x2, &devid); 3331 if (devid == 0x37) { 3332 pcie_capability_write_word(adap->pdev, PCI_EXP_DEVCTL, 3333 val & ~PCI_EXP_DEVCTL_READRQ & 3334 ~PCI_EXP_DEVCTL_PAYLOAD); 3335 pldsize = 0; 3336 } 3337 3338 pcie_capability_read_word(adap->pdev, PCI_EXP_LNKCTL, &val); 3339 3340 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); 3341 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : 3342 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); 3343 log2_width = fls(adap->params.pci.width) - 1; 3344 acklat = ack_lat[log2_width][pldsize]; 3345 if (val & PCI_EXP_LNKCTL_ASPM_L0S) /* check LOsEnable */ 3346 acklat += fst_trn_tx * 4; 3347 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; 3348 3349 if (adap->params.rev == 0) 3350 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, 3351 V_T3A_ACKLAT(M_T3A_ACKLAT), 3352 V_T3A_ACKLAT(acklat)); 3353 else 3354 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), 3355 V_ACKLAT(acklat)); 3356 3357 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), 3358 V_REPLAYLMT(rpllmt)); 3359 3360 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); 3361 t3_set_reg_field(adap, A_PCIE_CFG, 0, 3362 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST | 3363 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN); 3364 } 3365 3366 /* 3367 * Initialize and configure T3 HW modules. This performs the 3368 * initialization steps that need to be done once after a card is reset. 3369 * MAC and PHY initialization is handled separarely whenever a port is enabled. 3370 * 3371 * fw_params are passed to FW and their value is platform dependent. Only the 3372 * top 8 bits are available for use, the rest must be 0. 3373 */ 3374 int t3_init_hw(struct adapter *adapter, u32 fw_params) 3375 { 3376 int err = -EIO, attempts, i; 3377 const struct vpd_params *vpd = &adapter->params.vpd; 3378 3379 if (adapter->params.rev > 0) 3380 calibrate_xgm_t3b(adapter); 3381 else if (calibrate_xgm(adapter)) 3382 goto out_err; 3383 3384 if (vpd->mclk) { 3385 partition_mem(adapter, &adapter->params.tp); 3386 3387 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || 3388 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || 3389 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || 3390 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, 3391 adapter->params.mc5.nfilters, 3392 adapter->params.mc5.nroutes)) 3393 goto out_err; 3394 3395 for (i = 0; i < 32; i++) 3396 if (clear_sge_ctxt(adapter, i, F_CQ)) 3397 goto out_err; 3398 } 3399 3400 if (tp_init(adapter, &adapter->params.tp)) 3401 goto out_err; 3402 3403 t3_tp_set_coalescing_size(adapter, 3404 min(adapter->params.sge.max_pkt_size, 3405 MAX_RX_COALESCING_LEN), 1); 3406 t3_tp_set_max_rxsize(adapter, 3407 min(adapter->params.sge.max_pkt_size, 16384U)); 3408 ulp_config(adapter, &adapter->params.tp); 3409 3410 if (is_pcie(adapter)) 3411 config_pcie(adapter); 3412 else 3413 t3_set_reg_field(adapter, A_PCIX_CFG, 0, 3414 F_DMASTOPEN | F_CLIDECEN); 3415 3416 if (adapter->params.rev == T3_REV_C) 3417 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0, 3418 F_CFG_CQE_SOP_MASK); 3419 3420 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff); 3421 t3_write_reg(adapter, A_PM1_RX_MODE, 0); 3422 t3_write_reg(adapter, A_PM1_TX_MODE, 0); 3423 chan_init_hw(adapter, adapter->params.chan_map); 3424 t3_sge_init(adapter, &adapter->params.sge); 3425 t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN); 3426 3427 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter)); 3428 3429 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); 3430 t3_write_reg(adapter, A_CIM_BOOT_CFG, 3431 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); 3432 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ 3433 3434 attempts = 100; 3435 do { /* wait for uP to initialize */ 3436 msleep(20); 3437 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); 3438 if (!attempts) { 3439 CH_ERR(adapter, "uP initialization timed out\n"); 3440 goto out_err; 3441 } 3442 3443 err = 0; 3444 out_err: 3445 return err; 3446 } 3447 3448 /** 3449 * get_pci_mode - determine a card's PCI mode 3450 * @adapter: the adapter 3451 * @p: where to store the PCI settings 3452 * 3453 * Determines a card's PCI mode and associated parameters, such as speed 3454 * and width. 3455 */ 3456 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 3457 { 3458 static unsigned short speed_map[] = { 33, 66, 100, 133 }; 3459 u32 pci_mode; 3460 3461 if (pci_is_pcie(adapter->pdev)) { 3462 u16 val; 3463 3464 p->variant = PCI_VARIANT_PCIE; 3465 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 3466 p->width = (val >> 4) & 0x3f; 3467 return; 3468 } 3469 3470 pci_mode = t3_read_reg(adapter, A_PCIX_MODE); 3471 p->speed = speed_map[G_PCLKRANGE(pci_mode)]; 3472 p->width = (pci_mode & F_64BIT) ? 64 : 32; 3473 pci_mode = G_PCIXINITPAT(pci_mode); 3474 if (pci_mode == 0) 3475 p->variant = PCI_VARIANT_PCI; 3476 else if (pci_mode < 4) 3477 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; 3478 else if (pci_mode < 8) 3479 p->variant = PCI_VARIANT_PCIX_MODE1_ECC; 3480 else 3481 p->variant = PCI_VARIANT_PCIX_266_MODE2; 3482 } 3483 3484 /** 3485 * init_link_config - initialize a link's SW state 3486 * @lc: structure holding the link state 3487 * @caps: information about the current card 3488 * 3489 * Initializes the SW state maintained for each link, including the link's 3490 * capabilities and default speed/duplex/flow-control/autonegotiation 3491 * settings. 3492 */ 3493 static void init_link_config(struct link_config *lc, unsigned int caps) 3494 { 3495 lc->supported = caps; 3496 lc->requested_speed = lc->speed = SPEED_INVALID; 3497 lc->requested_duplex = lc->duplex = DUPLEX_INVALID; 3498 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 3499 if (lc->supported & SUPPORTED_Autoneg) { 3500 lc->advertising = lc->supported; 3501 lc->autoneg = AUTONEG_ENABLE; 3502 lc->requested_fc |= PAUSE_AUTONEG; 3503 } else { 3504 lc->advertising = 0; 3505 lc->autoneg = AUTONEG_DISABLE; 3506 } 3507 } 3508 3509 /** 3510 * mc7_calc_size - calculate MC7 memory size 3511 * @cfg: the MC7 configuration 3512 * 3513 * Calculates the size of an MC7 memory in bytes from the value of its 3514 * configuration register. 3515 */ 3516 static unsigned int mc7_calc_size(u32 cfg) 3517 { 3518 unsigned int width = G_WIDTH(cfg); 3519 unsigned int banks = !!(cfg & F_BKS) + 1; 3520 unsigned int org = !!(cfg & F_ORG) + 1; 3521 unsigned int density = G_DEN(cfg); 3522 unsigned int MBs = ((256 << density) * banks) / (org << width); 3523 3524 return MBs << 20; 3525 } 3526 3527 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7, 3528 unsigned int base_addr, const char *name) 3529 { 3530 u32 cfg; 3531 3532 mc7->adapter = adapter; 3533 mc7->name = name; 3534 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; 3535 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); 3536 mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg); 3537 mc7->width = G_WIDTH(cfg); 3538 } 3539 3540 static void mac_prep(struct cmac *mac, struct adapter *adapter, int index) 3541 { 3542 u16 devid; 3543 3544 mac->adapter = adapter; 3545 pci_read_config_word(adapter->pdev, 0x2, &devid); 3546 3547 if (devid == 0x37 && !adapter->params.vpd.xauicfg[1]) 3548 index = 0; 3549 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; 3550 mac->nucast = 1; 3551 3552 if (adapter->params.rev == 0 && uses_xaui(adapter)) { 3553 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, 3554 is_10G(adapter) ? 0x2901c04 : 0x2301c04); 3555 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, 3556 F_ENRGMII, 0); 3557 } 3558 } 3559 3560 static void early_hw_init(struct adapter *adapter, 3561 const struct adapter_info *ai) 3562 { 3563 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2); 3564 3565 mi1_init(adapter, ai); 3566 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ 3567 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); 3568 t3_write_reg(adapter, A_T3DBG_GPIO_EN, 3569 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); 3570 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0); 3571 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff)); 3572 3573 if (adapter->params.rev == 0 || !uses_xaui(adapter)) 3574 val |= F_ENRGMII; 3575 3576 /* Enable MAC clocks so we can access the registers */ 3577 t3_write_reg(adapter, A_XGM_PORT_CFG, val); 3578 t3_read_reg(adapter, A_XGM_PORT_CFG); 3579 3580 val |= F_CLKDIVRESET_; 3581 t3_write_reg(adapter, A_XGM_PORT_CFG, val); 3582 t3_read_reg(adapter, A_XGM_PORT_CFG); 3583 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); 3584 t3_read_reg(adapter, A_XGM_PORT_CFG); 3585 } 3586 3587 /* 3588 * Reset the adapter. 3589 * Older PCIe cards lose their config space during reset, PCI-X 3590 * ones don't. 3591 */ 3592 int t3_reset_adapter(struct adapter *adapter) 3593 { 3594 int i, save_and_restore_pcie = 3595 adapter->params.rev < T3_REV_B2 && is_pcie(adapter); 3596 uint16_t devid = 0; 3597 3598 if (save_and_restore_pcie) 3599 pci_save_state(adapter->pdev); 3600 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); 3601 3602 /* 3603 * Delay. Give Some time to device to reset fully. 3604 * XXX The delay time should be modified. 3605 */ 3606 for (i = 0; i < 10; i++) { 3607 msleep(50); 3608 pci_read_config_word(adapter->pdev, 0x00, &devid); 3609 if (devid == 0x1425) 3610 break; 3611 } 3612 3613 if (devid != 0x1425) 3614 return -1; 3615 3616 if (save_and_restore_pcie) 3617 pci_restore_state(adapter->pdev); 3618 return 0; 3619 } 3620 3621 static int init_parity(struct adapter *adap) 3622 { 3623 int i, err, addr; 3624 3625 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 3626 return -EBUSY; 3627 3628 for (err = i = 0; !err && i < 16; i++) 3629 err = clear_sge_ctxt(adap, i, F_EGRESS); 3630 for (i = 0xfff0; !err && i <= 0xffff; i++) 3631 err = clear_sge_ctxt(adap, i, F_EGRESS); 3632 for (i = 0; !err && i < SGE_QSETS; i++) 3633 err = clear_sge_ctxt(adap, i, F_RESPONSEQ); 3634 if (err) 3635 return err; 3636 3637 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0); 3638 for (i = 0; i < 4; i++) 3639 for (addr = 0; addr <= M_IBQDBGADDR; addr++) { 3640 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN | 3641 F_IBQDBGWR | V_IBQDBGQID(i) | 3642 V_IBQDBGADDR(addr)); 3643 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, 3644 F_IBQDBGBUSY, 0, 2, 1); 3645 if (err) 3646 return err; 3647 } 3648 return 0; 3649 } 3650 3651 /* 3652 * Initialize adapter SW state for the various HW modules, set initial values 3653 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO 3654 * interface. 3655 */ 3656 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai, 3657 int reset) 3658 { 3659 int ret; 3660 unsigned int i, j = -1; 3661 3662 get_pci_mode(adapter, &adapter->params.pci); 3663 3664 adapter->params.info = ai; 3665 adapter->params.nports = ai->nports0 + ai->nports1; 3666 adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1); 3667 adapter->params.rev = t3_read_reg(adapter, A_PL_REV); 3668 /* 3669 * We used to only run the "adapter check task" once a second if 3670 * we had PHYs which didn't support interrupts (we would check 3671 * their link status once a second). Now we check other conditions 3672 * in that routine which could potentially impose a very high 3673 * interrupt load on the system. As such, we now always scan the 3674 * adapter state once a second ... 3675 */ 3676 adapter->params.linkpoll_period = 10; 3677 adapter->params.stats_update_period = is_10G(adapter) ? 3678 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); 3679 adapter->params.pci.vpd_cap_addr = 3680 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD); 3681 ret = get_vpd_params(adapter, &adapter->params.vpd); 3682 if (ret < 0) 3683 return ret; 3684 3685 if (reset && t3_reset_adapter(adapter)) 3686 return -1; 3687 3688 t3_sge_prep(adapter, &adapter->params.sge); 3689 3690 if (adapter->params.vpd.mclk) { 3691 struct tp_params *p = &adapter->params.tp; 3692 3693 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); 3694 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); 3695 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); 3696 3697 p->nchan = adapter->params.chan_map == 3 ? 2 : 1; 3698 p->pmrx_size = t3_mc7_size(&adapter->pmrx); 3699 p->pmtx_size = t3_mc7_size(&adapter->pmtx); 3700 p->cm_size = t3_mc7_size(&adapter->cm); 3701 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ 3702 p->chan_tx_size = p->pmtx_size / p->nchan; 3703 p->rx_pg_size = 64 * 1024; 3704 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; 3705 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); 3706 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); 3707 p->ntimer_qs = p->cm_size >= (128 << 20) || 3708 adapter->params.rev > 0 ? 12 : 6; 3709 } 3710 3711 adapter->params.offload = t3_mc7_size(&adapter->pmrx) && 3712 t3_mc7_size(&adapter->pmtx) && 3713 t3_mc7_size(&adapter->cm); 3714 3715 if (is_offload(adapter)) { 3716 adapter->params.mc5.nservers = DEFAULT_NSERVERS; 3717 adapter->params.mc5.nfilters = adapter->params.rev > 0 ? 3718 DEFAULT_NFILTERS : 0; 3719 adapter->params.mc5.nroutes = 0; 3720 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); 3721 3722 init_mtus(adapter->params.mtus); 3723 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 3724 } 3725 3726 early_hw_init(adapter, ai); 3727 ret = init_parity(adapter); 3728 if (ret) 3729 return ret; 3730 3731 for_each_port(adapter, i) { 3732 u8 hw_addr[6]; 3733 const struct port_type_info *pti; 3734 struct port_info *p = adap2pinfo(adapter, i); 3735 3736 while (!adapter->params.vpd.port_type[++j]) 3737 ; 3738 3739 pti = &port_types[adapter->params.vpd.port_type[j]]; 3740 if (!pti->phy_prep) { 3741 CH_ALERT(adapter, "Invalid port type index %d\n", 3742 adapter->params.vpd.port_type[j]); 3743 return -EINVAL; 3744 } 3745 3746 p->phy.mdio.dev = adapter->port[i]; 3747 ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j, 3748 ai->mdio_ops); 3749 if (ret) 3750 return ret; 3751 mac_prep(&p->mac, adapter, j); 3752 3753 /* 3754 * The VPD EEPROM stores the base Ethernet address for the 3755 * card. A port's address is derived from the base by adding 3756 * the port's index to the base's low octet. 3757 */ 3758 memcpy(hw_addr, adapter->params.vpd.eth_base, 5); 3759 hw_addr[5] = adapter->params.vpd.eth_base[5] + i; 3760 3761 memcpy(adapter->port[i]->dev_addr, hw_addr, 3762 ETH_ALEN); 3763 init_link_config(&p->link_config, p->phy.caps); 3764 p->phy.ops->power_down(&p->phy, 1); 3765 3766 /* 3767 * If the PHY doesn't support interrupts for link status 3768 * changes, schedule a scan of the adapter links at least 3769 * once a second. 3770 */ 3771 if (!(p->phy.caps & SUPPORTED_IRQ) && 3772 adapter->params.linkpoll_period > 10) 3773 adapter->params.linkpoll_period = 10; 3774 } 3775 3776 return 0; 3777 } 3778 3779 void t3_led_ready(struct adapter *adapter) 3780 { 3781 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 3782 F_GPIO0_OUT_VAL); 3783 } 3784 3785 int t3_replay_prep_adapter(struct adapter *adapter) 3786 { 3787 const struct adapter_info *ai = adapter->params.info; 3788 unsigned int i, j = -1; 3789 int ret; 3790 3791 early_hw_init(adapter, ai); 3792 ret = init_parity(adapter); 3793 if (ret) 3794 return ret; 3795 3796 for_each_port(adapter, i) { 3797 const struct port_type_info *pti; 3798 struct port_info *p = adap2pinfo(adapter, i); 3799 3800 while (!adapter->params.vpd.port_type[++j]) 3801 ; 3802 3803 pti = &port_types[adapter->params.vpd.port_type[j]]; 3804 ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL); 3805 if (ret) 3806 return ret; 3807 p->phy.ops->power_down(&p->phy, 1); 3808 } 3809 3810 return 0; 3811 } 3812 3813