1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include "common.h" 33 #include "regs.h" 34 #include "sge_defs.h" 35 #include "firmware_exports.h" 36 37 static void t3_port_intr_clear(struct adapter *adapter, int idx); 38 39 /** 40 * t3_wait_op_done_val - wait until an operation is completed 41 * @adapter: the adapter performing the operation 42 * @reg: the register to check for completion 43 * @mask: a single-bit field within @reg that indicates completion 44 * @polarity: the value of the field when the operation is completed 45 * @attempts: number of check iterations 46 * @delay: delay in usecs between iterations 47 * @valp: where to store the value of the register at completion time 48 * 49 * Wait until an operation is completed by checking a bit in a register 50 * up to @attempts times. If @valp is not NULL the value of the register 51 * at the time it indicated completion is stored there. Returns 0 if the 52 * operation completes and -EAGAIN otherwise. 53 */ 54 55 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 56 int polarity, int attempts, int delay, u32 *valp) 57 { 58 while (1) { 59 u32 val = t3_read_reg(adapter, reg); 60 61 if (!!(val & mask) == polarity) { 62 if (valp) 63 *valp = val; 64 return 0; 65 } 66 if (--attempts == 0) 67 return -EAGAIN; 68 if (delay) 69 udelay(delay); 70 } 71 } 72 73 /** 74 * t3_write_regs - write a bunch of registers 75 * @adapter: the adapter to program 76 * @p: an array of register address/register value pairs 77 * @n: the number of address/value pairs 78 * @offset: register address offset 79 * 80 * Takes an array of register address/register value pairs and writes each 81 * value to the corresponding register. Register addresses are adjusted 82 * by the supplied offset. 83 */ 84 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, 85 int n, unsigned int offset) 86 { 87 while (n--) { 88 t3_write_reg(adapter, p->reg_addr + offset, p->val); 89 p++; 90 } 91 } 92 93 /** 94 * t3_set_reg_field - set a register field to a value 95 * @adapter: the adapter to program 96 * @addr: the register address 97 * @mask: specifies the portion of the register to modify 98 * @val: the new value for the register field 99 * 100 * Sets a register field specified by the supplied mask to the 101 * given value. 102 */ 103 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 104 u32 val) 105 { 106 u32 v = t3_read_reg(adapter, addr) & ~mask; 107 108 t3_write_reg(adapter, addr, v | val); 109 t3_read_reg(adapter, addr); /* flush */ 110 } 111 112 /** 113 * t3_read_indirect - read indirectly addressed registers 114 * @adap: the adapter 115 * @addr_reg: register holding the indirect address 116 * @data_reg: register holding the value of the indirect register 117 * @vals: where the read register values are stored 118 * @start_idx: index of first indirect register to read 119 * @nregs: how many indirect registers to read 120 * 121 * Reads registers that are accessed indirectly through an address/data 122 * register pair. 123 */ 124 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg, 125 unsigned int data_reg, u32 *vals, 126 unsigned int nregs, unsigned int start_idx) 127 { 128 while (nregs--) { 129 t3_write_reg(adap, addr_reg, start_idx); 130 *vals++ = t3_read_reg(adap, data_reg); 131 start_idx++; 132 } 133 } 134 135 /** 136 * t3_mc7_bd_read - read from MC7 through backdoor accesses 137 * @mc7: identifies MC7 to read from 138 * @start: index of first 64-bit word to read 139 * @n: number of 64-bit words to read 140 * @buf: where to store the read result 141 * 142 * Read n 64-bit words from MC7 starting at word start, using backdoor 143 * accesses. 144 */ 145 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, 146 u64 *buf) 147 { 148 static const int shift[] = { 0, 0, 16, 24 }; 149 static const int step[] = { 0, 32, 16, 8 }; 150 151 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ 152 struct adapter *adap = mc7->adapter; 153 154 if (start >= size64 || start + n > size64) 155 return -EINVAL; 156 157 start *= (8 << mc7->width); 158 while (n--) { 159 int i; 160 u64 val64 = 0; 161 162 for (i = (1 << mc7->width) - 1; i >= 0; --i) { 163 int attempts = 10; 164 u32 val; 165 166 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start); 167 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); 168 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); 169 while ((val & F_BUSY) && attempts--) 170 val = t3_read_reg(adap, 171 mc7->offset + A_MC7_BD_OP); 172 if (val & F_BUSY) 173 return -EIO; 174 175 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); 176 if (mc7->width == 0) { 177 val64 = t3_read_reg(adap, 178 mc7->offset + 179 A_MC7_BD_DATA0); 180 val64 |= (u64) val << 32; 181 } else { 182 if (mc7->width > 1) 183 val >>= shift[mc7->width]; 184 val64 |= (u64) val << (step[mc7->width] * i); 185 } 186 start += 8; 187 } 188 *buf++ = val64; 189 } 190 return 0; 191 } 192 193 /* 194 * Initialize MI1. 195 */ 196 static void mi1_init(struct adapter *adap, const struct adapter_info *ai) 197 { 198 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; 199 u32 val = F_PREEN | V_CLKDIV(clkdiv); 200 201 t3_write_reg(adap, A_MI1_CFG, val); 202 } 203 204 #define MDIO_ATTEMPTS 20 205 206 /* 207 * MI1 read/write operations for clause 22 PHYs. 208 */ 209 static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr, 210 u16 reg_addr) 211 { 212 struct port_info *pi = netdev_priv(dev); 213 struct adapter *adapter = pi->adapter; 214 int ret; 215 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); 216 217 mutex_lock(&adapter->mdio_lock); 218 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1)); 219 t3_write_reg(adapter, A_MI1_ADDR, addr); 220 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); 221 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 222 if (!ret) 223 ret = t3_read_reg(adapter, A_MI1_DATA); 224 mutex_unlock(&adapter->mdio_lock); 225 return ret; 226 } 227 228 static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr, 229 u16 reg_addr, u16 val) 230 { 231 struct port_info *pi = netdev_priv(dev); 232 struct adapter *adapter = pi->adapter; 233 int ret; 234 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); 235 236 mutex_lock(&adapter->mdio_lock); 237 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1)); 238 t3_write_reg(adapter, A_MI1_ADDR, addr); 239 t3_write_reg(adapter, A_MI1_DATA, val); 240 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); 241 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10); 242 mutex_unlock(&adapter->mdio_lock); 243 return ret; 244 } 245 246 static const struct mdio_ops mi1_mdio_ops = { 247 .read = t3_mi1_read, 248 .write = t3_mi1_write, 249 .mode_support = MDIO_SUPPORTS_C22 250 }; 251 252 /* 253 * Performs the address cycle for clause 45 PHYs. 254 * Must be called with the MDIO_LOCK held. 255 */ 256 static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr, 257 int reg_addr) 258 { 259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); 260 261 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0); 262 t3_write_reg(adapter, A_MI1_ADDR, addr); 263 t3_write_reg(adapter, A_MI1_DATA, reg_addr); 264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); 265 return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 266 MDIO_ATTEMPTS, 10); 267 } 268 269 /* 270 * MI1 read/write operations for indirect-addressed PHYs. 271 */ 272 static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr, 273 u16 reg_addr) 274 { 275 struct port_info *pi = netdev_priv(dev); 276 struct adapter *adapter = pi->adapter; 277 int ret; 278 279 mutex_lock(&adapter->mdio_lock); 280 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr); 281 if (!ret) { 282 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); 283 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 284 MDIO_ATTEMPTS, 10); 285 if (!ret) 286 ret = t3_read_reg(adapter, A_MI1_DATA); 287 } 288 mutex_unlock(&adapter->mdio_lock); 289 return ret; 290 } 291 292 static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr, 293 u16 reg_addr, u16 val) 294 { 295 struct port_info *pi = netdev_priv(dev); 296 struct adapter *adapter = pi->adapter; 297 int ret; 298 299 mutex_lock(&adapter->mdio_lock); 300 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr); 301 if (!ret) { 302 t3_write_reg(adapter, A_MI1_DATA, val); 303 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); 304 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, 305 MDIO_ATTEMPTS, 10); 306 } 307 mutex_unlock(&adapter->mdio_lock); 308 return ret; 309 } 310 311 static const struct mdio_ops mi1_mdio_ext_ops = { 312 .read = mi1_ext_read, 313 .write = mi1_ext_write, 314 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22 315 }; 316 317 /** 318 * t3_mdio_change_bits - modify the value of a PHY register 319 * @phy: the PHY to operate on 320 * @mmd: the device address 321 * @reg: the register address 322 * @clear: what part of the register value to mask off 323 * @set: what part of the register value to set 324 * 325 * Changes the value of a PHY register by applying a mask to its current 326 * value and ORing the result with a new value. 327 */ 328 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, 329 unsigned int set) 330 { 331 int ret; 332 unsigned int val; 333 334 ret = t3_mdio_read(phy, mmd, reg, &val); 335 if (!ret) { 336 val &= ~clear; 337 ret = t3_mdio_write(phy, mmd, reg, val | set); 338 } 339 return ret; 340 } 341 342 /** 343 * t3_phy_reset - reset a PHY block 344 * @phy: the PHY to operate on 345 * @mmd: the device address of the PHY block to reset 346 * @wait: how long to wait for the reset to complete in 1ms increments 347 * 348 * Resets a PHY block and optionally waits for the reset to complete. 349 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset 350 * for 10G PHYs. 351 */ 352 int t3_phy_reset(struct cphy *phy, int mmd, int wait) 353 { 354 int err; 355 unsigned int ctl; 356 357 err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER, 358 MDIO_CTRL1_RESET); 359 if (err || !wait) 360 return err; 361 362 do { 363 err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl); 364 if (err) 365 return err; 366 ctl &= MDIO_CTRL1_RESET; 367 if (ctl) 368 msleep(1); 369 } while (ctl && --wait); 370 371 return ctl ? -1 : 0; 372 } 373 374 /** 375 * t3_phy_advertise - set the PHY advertisement registers for autoneg 376 * @phy: the PHY to operate on 377 * @advert: bitmap of capabilities the PHY should advertise 378 * 379 * Sets a 10/100/1000 PHY's advertisement registers to advertise the 380 * requested capabilities. 381 */ 382 int t3_phy_advertise(struct cphy *phy, unsigned int advert) 383 { 384 int err; 385 unsigned int val = 0; 386 387 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val); 388 if (err) 389 return err; 390 391 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 392 if (advert & ADVERTISED_1000baseT_Half) 393 val |= ADVERTISE_1000HALF; 394 if (advert & ADVERTISED_1000baseT_Full) 395 val |= ADVERTISE_1000FULL; 396 397 err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val); 398 if (err) 399 return err; 400 401 val = 1; 402 if (advert & ADVERTISED_10baseT_Half) 403 val |= ADVERTISE_10HALF; 404 if (advert & ADVERTISED_10baseT_Full) 405 val |= ADVERTISE_10FULL; 406 if (advert & ADVERTISED_100baseT_Half) 407 val |= ADVERTISE_100HALF; 408 if (advert & ADVERTISED_100baseT_Full) 409 val |= ADVERTISE_100FULL; 410 if (advert & ADVERTISED_Pause) 411 val |= ADVERTISE_PAUSE_CAP; 412 if (advert & ADVERTISED_Asym_Pause) 413 val |= ADVERTISE_PAUSE_ASYM; 414 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val); 415 } 416 417 /** 418 * t3_phy_advertise_fiber - set fiber PHY advertisement register 419 * @phy: the PHY to operate on 420 * @advert: bitmap of capabilities the PHY should advertise 421 * 422 * Sets a fiber PHY's advertisement register to advertise the 423 * requested capabilities. 424 */ 425 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert) 426 { 427 unsigned int val = 0; 428 429 if (advert & ADVERTISED_1000baseT_Half) 430 val |= ADVERTISE_1000XHALF; 431 if (advert & ADVERTISED_1000baseT_Full) 432 val |= ADVERTISE_1000XFULL; 433 if (advert & ADVERTISED_Pause) 434 val |= ADVERTISE_1000XPAUSE; 435 if (advert & ADVERTISED_Asym_Pause) 436 val |= ADVERTISE_1000XPSE_ASYM; 437 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val); 438 } 439 440 /** 441 * t3_set_phy_speed_duplex - force PHY speed and duplex 442 * @phy: the PHY to operate on 443 * @speed: requested PHY speed 444 * @duplex: requested PHY duplex 445 * 446 * Force a 10/100/1000 PHY's speed and duplex. This also disables 447 * auto-negotiation except for GigE, where auto-negotiation is mandatory. 448 */ 449 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) 450 { 451 int err; 452 unsigned int ctl; 453 454 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl); 455 if (err) 456 return err; 457 458 if (speed >= 0) { 459 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); 460 if (speed == SPEED_100) 461 ctl |= BMCR_SPEED100; 462 else if (speed == SPEED_1000) 463 ctl |= BMCR_SPEED1000; 464 } 465 if (duplex >= 0) { 466 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); 467 if (duplex == DUPLEX_FULL) 468 ctl |= BMCR_FULLDPLX; 469 } 470 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ 471 ctl |= BMCR_ANENABLE; 472 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl); 473 } 474 475 int t3_phy_lasi_intr_enable(struct cphy *phy) 476 { 477 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 478 MDIO_PMA_LASI_LSALARM); 479 } 480 481 int t3_phy_lasi_intr_disable(struct cphy *phy) 482 { 483 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0); 484 } 485 486 int t3_phy_lasi_intr_clear(struct cphy *phy) 487 { 488 u32 val; 489 490 return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val); 491 } 492 493 int t3_phy_lasi_intr_handler(struct cphy *phy) 494 { 495 unsigned int status; 496 int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, 497 &status); 498 499 if (err) 500 return err; 501 return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0; 502 } 503 504 static const struct adapter_info t3_adap_info[] = { 505 {1, 1, 0, 506 F_GPIO2_OEN | F_GPIO4_OEN | 507 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0, 508 &mi1_mdio_ops, "Chelsio PE9000"}, 509 {1, 1, 0, 510 F_GPIO2_OEN | F_GPIO4_OEN | 511 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0, 512 &mi1_mdio_ops, "Chelsio T302"}, 513 {1, 0, 0, 514 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | 515 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 516 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 517 &mi1_mdio_ext_ops, "Chelsio T310"}, 518 {1, 1, 0, 519 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | 520 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | 521 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 522 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 523 &mi1_mdio_ext_ops, "Chelsio T320"}, 524 {}, 525 {}, 526 {1, 0, 0, 527 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN | 528 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 529 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 530 &mi1_mdio_ext_ops, "Chelsio T310" }, 531 {1, 0, 0, 532 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | 533 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL, 534 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI, 535 &mi1_mdio_ext_ops, "Chelsio N320E-G2" }, 536 }; 537 538 /* 539 * Return the adapter_info structure with a given index. Out-of-range indices 540 * return NULL. 541 */ 542 const struct adapter_info *t3_get_adapter_info(unsigned int id) 543 { 544 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; 545 } 546 547 struct port_type_info { 548 int (*phy_prep)(struct cphy *phy, struct adapter *adapter, 549 int phy_addr, const struct mdio_ops *ops); 550 }; 551 552 static const struct port_type_info port_types[] = { 553 { NULL }, 554 { t3_ael1002_phy_prep }, 555 { t3_vsc8211_phy_prep }, 556 { NULL}, 557 { t3_xaui_direct_phy_prep }, 558 { t3_ael2005_phy_prep }, 559 { t3_qt2045_phy_prep }, 560 { t3_ael1006_phy_prep }, 561 { NULL }, 562 { t3_aq100x_phy_prep }, 563 { t3_ael2020_phy_prep }, 564 }; 565 566 #define VPD_ENTRY(name, len) \ 567 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] 568 569 /* 570 * Partial EEPROM Vital Product Data structure. Includes only the ID and 571 * VPD-R sections. 572 */ 573 struct t3_vpd { 574 u8 id_tag; 575 u8 id_len[2]; 576 u8 id_data[16]; 577 u8 vpdr_tag; 578 u8 vpdr_len[2]; 579 VPD_ENTRY(pn, 16); /* part number */ 580 VPD_ENTRY(ec, 16); /* EC level */ 581 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */ 582 VPD_ENTRY(na, 12); /* MAC address base */ 583 VPD_ENTRY(cclk, 6); /* core clock */ 584 VPD_ENTRY(mclk, 6); /* mem clock */ 585 VPD_ENTRY(uclk, 6); /* uP clk */ 586 VPD_ENTRY(mdc, 6); /* MDIO clk */ 587 VPD_ENTRY(mt, 2); /* mem timing */ 588 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ 589 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ 590 VPD_ENTRY(port0, 2); /* PHY0 complex */ 591 VPD_ENTRY(port1, 2); /* PHY1 complex */ 592 VPD_ENTRY(port2, 2); /* PHY2 complex */ 593 VPD_ENTRY(port3, 2); /* PHY3 complex */ 594 VPD_ENTRY(rv, 1); /* csum */ 595 u32 pad; /* for multiple-of-4 sizing and alignment */ 596 }; 597 598 #define EEPROM_MAX_POLL 40 599 #define EEPROM_STAT_ADDR 0x4000 600 #define VPD_BASE 0xc00 601 602 /** 603 * t3_seeprom_read - read a VPD EEPROM location 604 * @adapter: adapter to read 605 * @addr: EEPROM address 606 * @data: where to store the read data 607 * 608 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI 609 * VPD ROM capability. A zero is written to the flag bit when the 610 * address is written to the control register. The hardware device will 611 * set the flag to 1 when 4 bytes have been read into the data register. 612 */ 613 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data) 614 { 615 u16 val; 616 int attempts = EEPROM_MAX_POLL; 617 u32 v; 618 unsigned int base = adapter->params.pci.vpd_cap_addr; 619 620 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) 621 return -EINVAL; 622 623 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr); 624 do { 625 udelay(10); 626 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); 627 } while (!(val & PCI_VPD_ADDR_F) && --attempts); 628 629 if (!(val & PCI_VPD_ADDR_F)) { 630 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); 631 return -EIO; 632 } 633 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v); 634 *data = cpu_to_le32(v); 635 return 0; 636 } 637 638 /** 639 * t3_seeprom_write - write a VPD EEPROM location 640 * @adapter: adapter to write 641 * @addr: EEPROM address 642 * @data: value to write 643 * 644 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI 645 * VPD ROM capability. 646 */ 647 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data) 648 { 649 u16 val; 650 int attempts = EEPROM_MAX_POLL; 651 unsigned int base = adapter->params.pci.vpd_cap_addr; 652 653 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) 654 return -EINVAL; 655 656 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA, 657 le32_to_cpu(data)); 658 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR, 659 addr | PCI_VPD_ADDR_F); 660 do { 661 msleep(1); 662 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); 663 } while ((val & PCI_VPD_ADDR_F) && --attempts); 664 665 if (val & PCI_VPD_ADDR_F) { 666 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); 667 return -EIO; 668 } 669 return 0; 670 } 671 672 /** 673 * t3_seeprom_wp - enable/disable EEPROM write protection 674 * @adapter: the adapter 675 * @enable: 1 to enable write protection, 0 to disable it 676 * 677 * Enables or disables write protection on the serial EEPROM. 678 */ 679 int t3_seeprom_wp(struct adapter *adapter, int enable) 680 { 681 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 682 } 683 684 /** 685 * get_vpd_params - read VPD parameters from VPD EEPROM 686 * @adapter: adapter to read 687 * @p: where to store the parameters 688 * 689 * Reads card parameters stored in VPD EEPROM. 690 */ 691 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) 692 { 693 int i, addr, ret; 694 struct t3_vpd vpd; 695 696 /* 697 * Card information is normally at VPD_BASE but some early cards had 698 * it at 0. 699 */ 700 ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd); 701 if (ret) 702 return ret; 703 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; 704 705 for (i = 0; i < sizeof(vpd); i += 4) { 706 ret = t3_seeprom_read(adapter, addr + i, 707 (__le32 *)((u8 *)&vpd + i)); 708 if (ret) 709 return ret; 710 } 711 712 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10); 713 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10); 714 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10); 715 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10); 716 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10); 717 memcpy(p->sn, vpd.sn_data, SERNUM_LEN); 718 719 /* Old eeproms didn't have port information */ 720 if (adapter->params.rev == 0 && !vpd.port0_data[0]) { 721 p->port_type[0] = uses_xaui(adapter) ? 1 : 2; 722 p->port_type[1] = uses_xaui(adapter) ? 6 : 2; 723 } else { 724 p->port_type[0] = hex_to_bin(vpd.port0_data[0]); 725 p->port_type[1] = hex_to_bin(vpd.port1_data[0]); 726 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16); 727 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16); 728 } 729 730 ret = hex2bin(p->eth_base, vpd.na_data, 6); 731 if (ret < 0) 732 return -EINVAL; 733 return 0; 734 } 735 736 /* serial flash and firmware constants */ 737 enum { 738 SF_ATTEMPTS = 5, /* max retries for SF1 operations */ 739 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ 740 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ 741 742 /* flash command opcodes */ 743 SF_PROG_PAGE = 2, /* program page */ 744 SF_WR_DISABLE = 4, /* disable writes */ 745 SF_RD_STATUS = 5, /* read status register */ 746 SF_WR_ENABLE = 6, /* enable writes */ 747 SF_RD_DATA_FAST = 0xb, /* read flash */ 748 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 749 750 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ 751 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */ 752 FW_MIN_SIZE = 8 /* at least version and csum */ 753 }; 754 755 /** 756 * sf1_read - read data from the serial flash 757 * @adapter: the adapter 758 * @byte_cnt: number of bytes to read 759 * @cont: whether another operation will be chained 760 * @valp: where to store the read data 761 * 762 * Reads up to 4 bytes of data from the serial flash. The location of 763 * the read needs to be specified prior to calling this by issuing the 764 * appropriate commands to the serial flash. 765 */ 766 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 767 u32 *valp) 768 { 769 int ret; 770 771 if (!byte_cnt || byte_cnt > 4) 772 return -EINVAL; 773 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) 774 return -EBUSY; 775 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 776 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); 777 if (!ret) 778 *valp = t3_read_reg(adapter, A_SF_DATA); 779 return ret; 780 } 781 782 /** 783 * sf1_write - write data to the serial flash 784 * @adapter: the adapter 785 * @byte_cnt: number of bytes to write 786 * @cont: whether another operation will be chained 787 * @val: value to write 788 * 789 * Writes up to 4 bytes of data to the serial flash. The location of 790 * the write needs to be specified prior to calling this by issuing the 791 * appropriate commands to the serial flash. 792 */ 793 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 794 u32 val) 795 { 796 if (!byte_cnt || byte_cnt > 4) 797 return -EINVAL; 798 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) 799 return -EBUSY; 800 t3_write_reg(adapter, A_SF_DATA, val); 801 t3_write_reg(adapter, A_SF_OP, 802 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 803 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); 804 } 805 806 /** 807 * flash_wait_op - wait for a flash operation to complete 808 * @adapter: the adapter 809 * @attempts: max number of polls of the status register 810 * @delay: delay between polls in ms 811 * 812 * Wait for a flash operation to complete by polling the status register. 813 */ 814 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 815 { 816 int ret; 817 u32 status; 818 819 while (1) { 820 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || 821 (ret = sf1_read(adapter, 1, 0, &status)) != 0) 822 return ret; 823 if (!(status & 1)) 824 return 0; 825 if (--attempts == 0) 826 return -EAGAIN; 827 if (delay) 828 msleep(delay); 829 } 830 } 831 832 /** 833 * t3_read_flash - read words from serial flash 834 * @adapter: the adapter 835 * @addr: the start address for the read 836 * @nwords: how many 32-bit words to read 837 * @data: where to store the read data 838 * @byte_oriented: whether to store data as bytes or as words 839 * 840 * Read the specified number of 32-bit words from the serial flash. 841 * If @byte_oriented is set the read data is stored as a byte array 842 * (i.e., big-endian), otherwise as 32-bit words in the platform's 843 * natural endianness. 844 */ 845 static int t3_read_flash(struct adapter *adapter, unsigned int addr, 846 unsigned int nwords, u32 *data, int byte_oriented) 847 { 848 int ret; 849 850 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) 851 return -EINVAL; 852 853 addr = swab32(addr) | SF_RD_DATA_FAST; 854 855 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || 856 (ret = sf1_read(adapter, 1, 1, data)) != 0) 857 return ret; 858 859 for (; nwords; nwords--, data++) { 860 ret = sf1_read(adapter, 4, nwords > 1, data); 861 if (ret) 862 return ret; 863 if (byte_oriented) 864 *data = htonl(*data); 865 } 866 return 0; 867 } 868 869 /** 870 * t3_write_flash - write up to a page of data to the serial flash 871 * @adapter: the adapter 872 * @addr: the start address to write 873 * @n: length of data to write 874 * @data: the data to write 875 * 876 * Writes up to a page of data (256 bytes) to the serial flash starting 877 * at the given address. 878 */ 879 static int t3_write_flash(struct adapter *adapter, unsigned int addr, 880 unsigned int n, const u8 *data) 881 { 882 int ret; 883 u32 buf[64]; 884 unsigned int i, c, left, val, offset = addr & 0xff; 885 886 if (addr + n > SF_SIZE || offset + n > 256) 887 return -EINVAL; 888 889 val = swab32(addr) | SF_PROG_PAGE; 890 891 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || 892 (ret = sf1_write(adapter, 4, 1, val)) != 0) 893 return ret; 894 895 for (left = n; left; left -= c) { 896 c = min(left, 4U); 897 for (val = 0, i = 0; i < c; ++i) 898 val = (val << 8) + *data++; 899 900 ret = sf1_write(adapter, c, c != left, val); 901 if (ret) 902 return ret; 903 } 904 if ((ret = flash_wait_op(adapter, 5, 1)) != 0) 905 return ret; 906 907 /* Read the page to verify the write succeeded */ 908 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 909 if (ret) 910 return ret; 911 912 if (memcmp(data - n, (u8 *) buf + offset, n)) 913 return -EIO; 914 return 0; 915 } 916 917 /** 918 * t3_get_tp_version - read the tp sram version 919 * @adapter: the adapter 920 * @vers: where to place the version 921 * 922 * Reads the protocol sram version from sram. 923 */ 924 int t3_get_tp_version(struct adapter *adapter, u32 *vers) 925 { 926 int ret; 927 928 /* Get version loaded in SRAM */ 929 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0); 930 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0, 931 1, 1, 5, 1); 932 if (ret) 933 return ret; 934 935 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1); 936 937 return 0; 938 } 939 940 /** 941 * t3_check_tpsram_version - read the tp sram version 942 * @adapter: the adapter 943 * 944 * Reads the protocol sram version from flash. 945 */ 946 int t3_check_tpsram_version(struct adapter *adapter) 947 { 948 int ret; 949 u32 vers; 950 unsigned int major, minor; 951 952 if (adapter->params.rev == T3_REV_A) 953 return 0; 954 955 956 ret = t3_get_tp_version(adapter, &vers); 957 if (ret) 958 return ret; 959 960 major = G_TP_VERSION_MAJOR(vers); 961 minor = G_TP_VERSION_MINOR(vers); 962 963 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR) 964 return 0; 965 else { 966 CH_ERR(adapter, "found wrong TP version (%u.%u), " 967 "driver compiled for version %d.%d\n", major, minor, 968 TP_VERSION_MAJOR, TP_VERSION_MINOR); 969 } 970 return -EINVAL; 971 } 972 973 /** 974 * t3_check_tpsram - check if provided protocol SRAM 975 * is compatible with this driver 976 * @adapter: the adapter 977 * @tp_sram: the firmware image to write 978 * @size: image size 979 * 980 * Checks if an adapter's tp sram is compatible with the driver. 981 * Returns 0 if the versions are compatible, a negative error otherwise. 982 */ 983 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram, 984 unsigned int size) 985 { 986 u32 csum; 987 unsigned int i; 988 const __be32 *p = (const __be32 *)tp_sram; 989 990 /* Verify checksum */ 991 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 992 csum += ntohl(p[i]); 993 if (csum != 0xffffffff) { 994 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n", 995 csum); 996 return -EINVAL; 997 } 998 999 return 0; 1000 } 1001 1002 enum fw_version_type { 1003 FW_VERSION_N3, 1004 FW_VERSION_T3 1005 }; 1006 1007 /** 1008 * t3_get_fw_version - read the firmware version 1009 * @adapter: the adapter 1010 * @vers: where to place the version 1011 * 1012 * Reads the FW version from flash. 1013 */ 1014 int t3_get_fw_version(struct adapter *adapter, u32 *vers) 1015 { 1016 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); 1017 } 1018 1019 /** 1020 * t3_check_fw_version - check if the FW is compatible with this driver 1021 * @adapter: the adapter 1022 * 1023 * Checks if an adapter's FW is compatible with the driver. Returns 0 1024 * if the versions are compatible, a negative error otherwise. 1025 */ 1026 int t3_check_fw_version(struct adapter *adapter) 1027 { 1028 int ret; 1029 u32 vers; 1030 unsigned int type, major, minor; 1031 1032 ret = t3_get_fw_version(adapter, &vers); 1033 if (ret) 1034 return ret; 1035 1036 type = G_FW_VERSION_TYPE(vers); 1037 major = G_FW_VERSION_MAJOR(vers); 1038 minor = G_FW_VERSION_MINOR(vers); 1039 1040 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR && 1041 minor == FW_VERSION_MINOR) 1042 return 0; 1043 else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR) 1044 CH_WARN(adapter, "found old FW minor version(%u.%u), " 1045 "driver compiled for version %u.%u\n", major, minor, 1046 FW_VERSION_MAJOR, FW_VERSION_MINOR); 1047 else { 1048 CH_WARN(adapter, "found newer FW version(%u.%u), " 1049 "driver compiled for version %u.%u\n", major, minor, 1050 FW_VERSION_MAJOR, FW_VERSION_MINOR); 1051 return 0; 1052 } 1053 return -EINVAL; 1054 } 1055 1056 /** 1057 * t3_flash_erase_sectors - erase a range of flash sectors 1058 * @adapter: the adapter 1059 * @start: the first sector to erase 1060 * @end: the last sector to erase 1061 * 1062 * Erases the sectors in the given range. 1063 */ 1064 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end) 1065 { 1066 while (start <= end) { 1067 int ret; 1068 1069 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || 1070 (ret = sf1_write(adapter, 4, 0, 1071 SF_ERASE_SECTOR | (start << 8))) != 0 || 1072 (ret = flash_wait_op(adapter, 5, 500)) != 0) 1073 return ret; 1074 start++; 1075 } 1076 return 0; 1077 } 1078 1079 /** 1080 * t3_load_fw - download firmware 1081 * @adapter: the adapter 1082 * @fw_data: the firmware image to write 1083 * @size: image size 1084 * 1085 * Write the supplied firmware image to the card's serial flash. 1086 * The FW image has the following sections: @size - 8 bytes of code and 1087 * data, followed by 4 bytes of FW version, followed by the 32-bit 1088 * 1's complement checksum of the whole image. 1089 */ 1090 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size) 1091 { 1092 u32 csum; 1093 unsigned int i; 1094 const __be32 *p = (const __be32 *)fw_data; 1095 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; 1096 1097 if ((size & 3) || size < FW_MIN_SIZE) 1098 return -EINVAL; 1099 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR) 1100 return -EFBIG; 1101 1102 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1103 csum += ntohl(p[i]); 1104 if (csum != 0xffffffff) { 1105 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1106 csum); 1107 return -EINVAL; 1108 } 1109 1110 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); 1111 if (ret) 1112 goto out; 1113 1114 size -= 8; /* trim off version and checksum */ 1115 for (addr = FW_FLASH_BOOT_ADDR; size;) { 1116 unsigned int chunk_size = min(size, 256U); 1117 1118 ret = t3_write_flash(adapter, addr, chunk_size, fw_data); 1119 if (ret) 1120 goto out; 1121 1122 addr += chunk_size; 1123 fw_data += chunk_size; 1124 size -= chunk_size; 1125 } 1126 1127 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data); 1128 out: 1129 if (ret) 1130 CH_ERR(adapter, "firmware download failed, error %d\n", ret); 1131 return ret; 1132 } 1133 1134 #define CIM_CTL_BASE 0x2000 1135 1136 /** 1137 * t3_cim_ctl_blk_read - read a block from CIM control region 1138 * 1139 * @adap: the adapter 1140 * @addr: the start address within the CIM control region 1141 * @n: number of words to read 1142 * @valp: where to store the result 1143 * 1144 * Reads a block of 4-byte words from the CIM control region. 1145 */ 1146 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, 1147 unsigned int n, unsigned int *valp) 1148 { 1149 int ret = 0; 1150 1151 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 1152 return -EBUSY; 1153 1154 for ( ; !ret && n--; addr += 4) { 1155 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); 1156 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 1157 0, 5, 2); 1158 if (!ret) 1159 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); 1160 } 1161 return ret; 1162 } 1163 1164 static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg, 1165 u32 *rx_hash_high, u32 *rx_hash_low) 1166 { 1167 /* stop Rx unicast traffic */ 1168 t3_mac_disable_exact_filters(mac); 1169 1170 /* stop broadcast, multicast, promiscuous mode traffic */ 1171 *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG); 1172 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG, 1173 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES, 1174 F_DISBCAST); 1175 1176 *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH); 1177 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0); 1178 1179 *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW); 1180 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0); 1181 1182 /* Leave time to drain max RX fifo */ 1183 msleep(1); 1184 } 1185 1186 static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg, 1187 u32 rx_hash_high, u32 rx_hash_low) 1188 { 1189 t3_mac_enable_exact_filters(mac); 1190 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG, 1191 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES, 1192 rx_cfg); 1193 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high); 1194 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low); 1195 } 1196 1197 /** 1198 * t3_link_changed - handle interface link changes 1199 * @adapter: the adapter 1200 * @port_id: the port index that changed link state 1201 * 1202 * Called when a port's link settings change to propagate the new values 1203 * to the associated PHY and MAC. After performing the common tasks it 1204 * invokes an OS-specific handler. 1205 */ 1206 void t3_link_changed(struct adapter *adapter, int port_id) 1207 { 1208 int link_ok, speed, duplex, fc; 1209 struct port_info *pi = adap2pinfo(adapter, port_id); 1210 struct cphy *phy = &pi->phy; 1211 struct cmac *mac = &pi->mac; 1212 struct link_config *lc = &pi->link_config; 1213 1214 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); 1215 1216 if (!lc->link_ok && link_ok) { 1217 u32 rx_cfg, rx_hash_high, rx_hash_low; 1218 u32 status; 1219 1220 t3_xgm_intr_enable(adapter, port_id); 1221 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low); 1222 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0); 1223 t3_mac_enable(mac, MAC_DIRECTION_RX); 1224 1225 status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset); 1226 if (status & F_LINKFAULTCHANGE) { 1227 mac->stats.link_faults++; 1228 pi->link_fault = 1; 1229 } 1230 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low); 1231 } 1232 1233 if (lc->requested_fc & PAUSE_AUTONEG) 1234 fc &= lc->requested_fc; 1235 else 1236 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1237 1238 if (link_ok == lc->link_ok && speed == lc->speed && 1239 duplex == lc->duplex && fc == lc->fc) 1240 return; /* nothing changed */ 1241 1242 if (link_ok != lc->link_ok && adapter->params.rev > 0 && 1243 uses_xaui(adapter)) { 1244 if (link_ok) 1245 t3b_pcs_reset(mac); 1246 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 1247 link_ok ? F_TXACTENABLE | F_RXEN : 0); 1248 } 1249 lc->link_ok = link_ok; 1250 lc->speed = speed < 0 ? SPEED_INVALID : speed; 1251 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; 1252 1253 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { 1254 /* Set MAC speed, duplex, and flow control to match PHY. */ 1255 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); 1256 lc->fc = fc; 1257 } 1258 1259 t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault, 1260 speed, duplex, fc); 1261 } 1262 1263 void t3_link_fault(struct adapter *adapter, int port_id) 1264 { 1265 struct port_info *pi = adap2pinfo(adapter, port_id); 1266 struct cmac *mac = &pi->mac; 1267 struct cphy *phy = &pi->phy; 1268 struct link_config *lc = &pi->link_config; 1269 int link_ok, speed, duplex, fc, link_fault; 1270 u32 rx_cfg, rx_hash_high, rx_hash_low; 1271 1272 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low); 1273 1274 if (adapter->params.rev > 0 && uses_xaui(adapter)) 1275 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0); 1276 1277 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0); 1278 t3_mac_enable(mac, MAC_DIRECTION_RX); 1279 1280 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low); 1281 1282 link_fault = t3_read_reg(adapter, 1283 A_XGM_INT_STATUS + mac->offset); 1284 link_fault &= F_LINKFAULTCHANGE; 1285 1286 link_ok = lc->link_ok; 1287 speed = lc->speed; 1288 duplex = lc->duplex; 1289 fc = lc->fc; 1290 1291 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); 1292 1293 if (link_fault) { 1294 lc->link_ok = 0; 1295 lc->speed = SPEED_INVALID; 1296 lc->duplex = DUPLEX_INVALID; 1297 1298 t3_os_link_fault(adapter, port_id, 0); 1299 1300 /* Account link faults only when the phy reports a link up */ 1301 if (link_ok) 1302 mac->stats.link_faults++; 1303 } else { 1304 if (link_ok) 1305 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 1306 F_TXACTENABLE | F_RXEN); 1307 1308 pi->link_fault = 0; 1309 lc->link_ok = (unsigned char)link_ok; 1310 lc->speed = speed < 0 ? SPEED_INVALID : speed; 1311 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; 1312 t3_os_link_fault(adapter, port_id, link_ok); 1313 } 1314 } 1315 1316 /** 1317 * t3_link_start - apply link configuration to MAC/PHY 1318 * @phy: the PHY to setup 1319 * @mac: the MAC to setup 1320 * @lc: the requested link configuration 1321 * 1322 * Set up a port's MAC and PHY according to a desired link configuration. 1323 * - If the PHY can auto-negotiate first decide what to advertise, then 1324 * enable/disable auto-negotiation as desired, and reset. 1325 * - If the PHY does not auto-negotiate just reset it. 1326 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 1327 * otherwise do it later based on the outcome of auto-negotiation. 1328 */ 1329 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) 1330 { 1331 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1332 1333 lc->link_ok = 0; 1334 if (lc->supported & SUPPORTED_Autoneg) { 1335 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); 1336 if (fc) { 1337 lc->advertising |= ADVERTISED_Asym_Pause; 1338 if (fc & PAUSE_RX) 1339 lc->advertising |= ADVERTISED_Pause; 1340 } 1341 phy->ops->advertise(phy, lc->advertising); 1342 1343 if (lc->autoneg == AUTONEG_DISABLE) { 1344 lc->speed = lc->requested_speed; 1345 lc->duplex = lc->requested_duplex; 1346 lc->fc = (unsigned char)fc; 1347 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, 1348 fc); 1349 /* Also disables autoneg */ 1350 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); 1351 } else 1352 phy->ops->autoneg_enable(phy); 1353 } else { 1354 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); 1355 lc->fc = (unsigned char)fc; 1356 phy->ops->reset(phy, 0); 1357 } 1358 return 0; 1359 } 1360 1361 /** 1362 * t3_set_vlan_accel - control HW VLAN extraction 1363 * @adapter: the adapter 1364 * @ports: bitmap of adapter ports to operate on 1365 * @on: enable (1) or disable (0) HW VLAN extraction 1366 * 1367 * Enables or disables HW extraction of VLAN tags for the given port. 1368 */ 1369 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on) 1370 { 1371 t3_set_reg_field(adapter, A_TP_OUT_CONFIG, 1372 ports << S_VLANEXTRACTIONENABLE, 1373 on ? (ports << S_VLANEXTRACTIONENABLE) : 0); 1374 } 1375 1376 struct intr_info { 1377 unsigned int mask; /* bits to check in interrupt status */ 1378 const char *msg; /* message to print or NULL */ 1379 short stat_idx; /* stat counter to increment or -1 */ 1380 unsigned short fatal; /* whether the condition reported is fatal */ 1381 }; 1382 1383 /** 1384 * t3_handle_intr_status - table driven interrupt handler 1385 * @adapter: the adapter that generated the interrupt 1386 * @reg: the interrupt status register to process 1387 * @mask: a mask to apply to the interrupt status 1388 * @acts: table of interrupt actions 1389 * @stats: statistics counters tracking interrupt occurrences 1390 * 1391 * A table driven interrupt handler that applies a set of masks to an 1392 * interrupt status word and performs the corresponding actions if the 1393 * interrupts described by the mask have occurred. The actions include 1394 * optionally printing a warning or alert message, and optionally 1395 * incrementing a stat counter. The table is terminated by an entry 1396 * specifying mask 0. Returns the number of fatal interrupt conditions. 1397 */ 1398 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg, 1399 unsigned int mask, 1400 const struct intr_info *acts, 1401 unsigned long *stats) 1402 { 1403 int fatal = 0; 1404 unsigned int status = t3_read_reg(adapter, reg) & mask; 1405 1406 for (; acts->mask; ++acts) { 1407 if (!(status & acts->mask)) 1408 continue; 1409 if (acts->fatal) { 1410 fatal++; 1411 CH_ALERT(adapter, "%s (0x%x)\n", 1412 acts->msg, status & acts->mask); 1413 status &= ~acts->mask; 1414 } else if (acts->msg) 1415 CH_WARN(adapter, "%s (0x%x)\n", 1416 acts->msg, status & acts->mask); 1417 if (acts->stat_idx >= 0) 1418 stats[acts->stat_idx]++; 1419 } 1420 if (status) /* clear processed interrupts */ 1421 t3_write_reg(adapter, reg, status); 1422 return fatal; 1423 } 1424 1425 #define SGE_INTR_MASK (F_RSPQDISABLED | \ 1426 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \ 1427 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 1428 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 1429 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 1430 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 1431 F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \ 1432 F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \ 1433 F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \ 1434 F_LOPIODRBDROPERR) 1435 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ 1436 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ 1437 F_NFASRCHFAIL) 1438 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) 1439 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ 1440 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ 1441 F_TXFIFO_UNDERRUN) 1442 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ 1443 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ 1444 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ 1445 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ 1446 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ 1447 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) 1448 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ 1449 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ 1450 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ 1451 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \ 1452 F_TXPARERR | V_BISTERR(M_BISTERR)) 1453 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \ 1454 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \ 1455 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0) 1456 #define ULPTX_INTR_MASK 0xfc 1457 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \ 1458 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ 1459 F_ZERO_SWITCH_ERROR) 1460 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ 1461 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ 1462 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ 1463 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \ 1464 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \ 1465 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \ 1466 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \ 1467 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR) 1468 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ 1469 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ 1470 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) 1471 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ 1472 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ 1473 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) 1474 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ 1475 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ 1476 V_RXTPPARERRENB(M_RXTPPARERRENB) | \ 1477 V_MCAPARERRENB(M_MCAPARERRENB)) 1478 #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE) 1479 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ 1480 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ 1481 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ 1482 F_MPS0 | F_CPL_SWITCH) 1483 /* 1484 * Interrupt handler for the PCIX1 module. 1485 */ 1486 static void pci_intr_handler(struct adapter *adapter) 1487 { 1488 static const struct intr_info pcix1_intr_info[] = { 1489 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1}, 1490 {F_SIGTARABT, "PCI signaled target abort", -1, 1}, 1491 {F_RCVTARABT, "PCI received target abort", -1, 1}, 1492 {F_RCVMSTABT, "PCI received master abort", -1, 1}, 1493 {F_SIGSYSERR, "PCI signaled system error", -1, 1}, 1494 {F_DETPARERR, "PCI detected parity error", -1, 1}, 1495 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1}, 1496 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1}, 1497 {F_RCVSPLCMPERR, "PCI received split completion error", -1, 1498 1}, 1499 {F_DETCORECCERR, "PCI correctable ECC error", 1500 STAT_PCI_CORR_ECC, 0}, 1501 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1}, 1502 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, 1503 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, 1504 1}, 1505 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, 1506 1}, 1507 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, 1508 1}, 1509 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " 1510 "error", -1, 1}, 1511 {0} 1512 }; 1513 1514 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, 1515 pcix1_intr_info, adapter->irq_stats)) 1516 t3_fatal_err(adapter); 1517 } 1518 1519 /* 1520 * Interrupt handler for the PCIE module. 1521 */ 1522 static void pcie_intr_handler(struct adapter *adapter) 1523 { 1524 static const struct intr_info pcie_intr_info[] = { 1525 {F_PEXERR, "PCI PEX error", -1, 1}, 1526 {F_UNXSPLCPLERRR, 1527 "PCI unexpected split completion DMA read error", -1, 1}, 1528 {F_UNXSPLCPLERRC, 1529 "PCI unexpected split completion DMA command error", -1, 1}, 1530 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, 1531 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1}, 1532 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1}, 1533 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1}, 1534 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), 1535 "PCI MSI-X table/PBA parity error", -1, 1}, 1536 {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1}, 1537 {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1}, 1538 {F_RXPARERR, "PCI Rx parity error", -1, 1}, 1539 {F_TXPARERR, "PCI Tx parity error", -1, 1}, 1540 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1}, 1541 {0} 1542 }; 1543 1544 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR) 1545 CH_ALERT(adapter, "PEX error code 0x%x\n", 1546 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 1547 1548 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, 1549 pcie_intr_info, adapter->irq_stats)) 1550 t3_fatal_err(adapter); 1551 } 1552 1553 /* 1554 * TP interrupt handler. 1555 */ 1556 static void tp_intr_handler(struct adapter *adapter) 1557 { 1558 static const struct intr_info tp_intr_info[] = { 1559 {0xffffff, "TP parity error", -1, 1}, 1560 {0x1000000, "TP out of Rx pages", -1, 1}, 1561 {0x2000000, "TP out of Tx pages", -1, 1}, 1562 {0} 1563 }; 1564 1565 static const struct intr_info tp_intr_info_t3c[] = { 1566 {0x1fffffff, "TP parity error", -1, 1}, 1567 {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1}, 1568 {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1}, 1569 {0} 1570 }; 1571 1572 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, 1573 adapter->params.rev < T3_REV_C ? 1574 tp_intr_info : tp_intr_info_t3c, NULL)) 1575 t3_fatal_err(adapter); 1576 } 1577 1578 /* 1579 * CIM interrupt handler. 1580 */ 1581 static void cim_intr_handler(struct adapter *adapter) 1582 { 1583 static const struct intr_info cim_intr_info[] = { 1584 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1}, 1585 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1}, 1586 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1}, 1587 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1}, 1588 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1}, 1589 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1}, 1590 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1}, 1591 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1}, 1592 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1}, 1593 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1}, 1594 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1}, 1595 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1}, 1596 {F_DRAMPARERR, "CIM DRAM parity error", -1, 1}, 1597 {F_ICACHEPARERR, "CIM icache parity error", -1, 1}, 1598 {F_DCACHEPARERR, "CIM dcache parity error", -1, 1}, 1599 {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1}, 1600 {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1}, 1601 {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1}, 1602 {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1}, 1603 {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1}, 1604 {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1}, 1605 {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1}, 1606 {F_ITAGPARERR, "CIM itag parity error", -1, 1}, 1607 {F_DTAGPARERR, "CIM dtag parity error", -1, 1}, 1608 {0} 1609 }; 1610 1611 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff, 1612 cim_intr_info, NULL)) 1613 t3_fatal_err(adapter); 1614 } 1615 1616 /* 1617 * ULP RX interrupt handler. 1618 */ 1619 static void ulprx_intr_handler(struct adapter *adapter) 1620 { 1621 static const struct intr_info ulprx_intr_info[] = { 1622 {F_PARERRDATA, "ULP RX data parity error", -1, 1}, 1623 {F_PARERRPCMD, "ULP RX command parity error", -1, 1}, 1624 {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1}, 1625 {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1}, 1626 {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1}, 1627 {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1}, 1628 {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1}, 1629 {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1}, 1630 {0} 1631 }; 1632 1633 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, 1634 ulprx_intr_info, NULL)) 1635 t3_fatal_err(adapter); 1636 } 1637 1638 /* 1639 * ULP TX interrupt handler. 1640 */ 1641 static void ulptx_intr_handler(struct adapter *adapter) 1642 { 1643 static const struct intr_info ulptx_intr_info[] = { 1644 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", 1645 STAT_ULP_CH0_PBL_OOB, 0}, 1646 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", 1647 STAT_ULP_CH1_PBL_OOB, 0}, 1648 {0xfc, "ULP TX parity error", -1, 1}, 1649 {0} 1650 }; 1651 1652 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, 1653 ulptx_intr_info, adapter->irq_stats)) 1654 t3_fatal_err(adapter); 1655 } 1656 1657 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ 1658 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ 1659 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ 1660 F_ICSPI1_TX_FRAMING_ERROR) 1661 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ 1662 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ 1663 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ 1664 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) 1665 1666 /* 1667 * PM TX interrupt handler. 1668 */ 1669 static void pmtx_intr_handler(struct adapter *adapter) 1670 { 1671 static const struct intr_info pmtx_intr_info[] = { 1672 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1}, 1673 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1}, 1674 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1}, 1675 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), 1676 "PMTX ispi parity error", -1, 1}, 1677 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), 1678 "PMTX ospi parity error", -1, 1}, 1679 {0} 1680 }; 1681 1682 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, 1683 pmtx_intr_info, NULL)) 1684 t3_fatal_err(adapter); 1685 } 1686 1687 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ 1688 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ 1689 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ 1690 F_IESPI1_TX_FRAMING_ERROR) 1691 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ 1692 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ 1693 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ 1694 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) 1695 1696 /* 1697 * PM RX interrupt handler. 1698 */ 1699 static void pmrx_intr_handler(struct adapter *adapter) 1700 { 1701 static const struct intr_info pmrx_intr_info[] = { 1702 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1}, 1703 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1}, 1704 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1}, 1705 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), 1706 "PMRX ispi parity error", -1, 1}, 1707 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), 1708 "PMRX ospi parity error", -1, 1}, 1709 {0} 1710 }; 1711 1712 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, 1713 pmrx_intr_info, NULL)) 1714 t3_fatal_err(adapter); 1715 } 1716 1717 /* 1718 * CPL switch interrupt handler. 1719 */ 1720 static void cplsw_intr_handler(struct adapter *adapter) 1721 { 1722 static const struct intr_info cplsw_intr_info[] = { 1723 {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1}, 1724 {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1}, 1725 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1}, 1726 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1}, 1727 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1}, 1728 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1}, 1729 {0} 1730 }; 1731 1732 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, 1733 cplsw_intr_info, NULL)) 1734 t3_fatal_err(adapter); 1735 } 1736 1737 /* 1738 * MPS interrupt handler. 1739 */ 1740 static void mps_intr_handler(struct adapter *adapter) 1741 { 1742 static const struct intr_info mps_intr_info[] = { 1743 {0x1ff, "MPS parity error", -1, 1}, 1744 {0} 1745 }; 1746 1747 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, 1748 mps_intr_info, NULL)) 1749 t3_fatal_err(adapter); 1750 } 1751 1752 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) 1753 1754 /* 1755 * MC7 interrupt handler. 1756 */ 1757 static void mc7_intr_handler(struct mc7 *mc7) 1758 { 1759 struct adapter *adapter = mc7->adapter; 1760 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); 1761 1762 if (cause & F_CE) { 1763 mc7->stats.corr_err++; 1764 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " 1765 "data 0x%x 0x%x 0x%x\n", mc7->name, 1766 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), 1767 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), 1768 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), 1769 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); 1770 } 1771 1772 if (cause & F_UE) { 1773 mc7->stats.uncorr_err++; 1774 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " 1775 "data 0x%x 0x%x 0x%x\n", mc7->name, 1776 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), 1777 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), 1778 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), 1779 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); 1780 } 1781 1782 if (G_PE(cause)) { 1783 mc7->stats.parity_err++; 1784 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", 1785 mc7->name, G_PE(cause)); 1786 } 1787 1788 if (cause & F_AE) { 1789 u32 addr = 0; 1790 1791 if (adapter->params.rev > 0) 1792 addr = t3_read_reg(adapter, 1793 mc7->offset + A_MC7_ERR_ADDR); 1794 mc7->stats.addr_err++; 1795 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", 1796 mc7->name, addr); 1797 } 1798 1799 if (cause & MC7_INTR_FATAL) 1800 t3_fatal_err(adapter); 1801 1802 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); 1803 } 1804 1805 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ 1806 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) 1807 /* 1808 * XGMAC interrupt handler. 1809 */ 1810 static int mac_intr_handler(struct adapter *adap, unsigned int idx) 1811 { 1812 struct cmac *mac = &adap2pinfo(adap, idx)->mac; 1813 /* 1814 * We mask out interrupt causes for which we're not taking interrupts. 1815 * This allows us to use polling logic to monitor some of the other 1816 * conditions when taking interrupts would impose too much load on the 1817 * system. 1818 */ 1819 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) & 1820 ~F_RXFIFO_OVERFLOW; 1821 1822 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { 1823 mac->stats.tx_fifo_parity_err++; 1824 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); 1825 } 1826 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { 1827 mac->stats.rx_fifo_parity_err++; 1828 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); 1829 } 1830 if (cause & F_TXFIFO_UNDERRUN) 1831 mac->stats.tx_fifo_urun++; 1832 if (cause & F_RXFIFO_OVERFLOW) 1833 mac->stats.rx_fifo_ovfl++; 1834 if (cause & V_SERDES_LOS(M_SERDES_LOS)) 1835 mac->stats.serdes_signal_loss++; 1836 if (cause & F_XAUIPCSCTCERR) 1837 mac->stats.xaui_pcs_ctc_err++; 1838 if (cause & F_XAUIPCSALIGNCHANGE) 1839 mac->stats.xaui_pcs_align_change++; 1840 if (cause & F_XGM_INT) { 1841 t3_set_reg_field(adap, 1842 A_XGM_INT_ENABLE + mac->offset, 1843 F_XGM_INT, 0); 1844 mac->stats.link_faults++; 1845 1846 t3_os_link_fault_handler(adap, idx); 1847 } 1848 1849 if (cause & XGM_INTR_FATAL) 1850 t3_fatal_err(adap); 1851 1852 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); 1853 return cause != 0; 1854 } 1855 1856 /* 1857 * Interrupt handler for PHY events. 1858 */ 1859 int t3_phy_intr_handler(struct adapter *adapter) 1860 { 1861 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); 1862 1863 for_each_port(adapter, i) { 1864 struct port_info *p = adap2pinfo(adapter, i); 1865 1866 if (!(p->phy.caps & SUPPORTED_IRQ)) 1867 continue; 1868 1869 if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) { 1870 int phy_cause = p->phy.ops->intr_handler(&p->phy); 1871 1872 if (phy_cause & cphy_cause_link_change) 1873 t3_link_changed(adapter, i); 1874 if (phy_cause & cphy_cause_fifo_error) 1875 p->phy.fifo_errors++; 1876 if (phy_cause & cphy_cause_module_change) 1877 t3_os_phymod_changed(adapter, i); 1878 } 1879 } 1880 1881 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); 1882 return 0; 1883 } 1884 1885 /* 1886 * T3 slow path (non-data) interrupt handler. 1887 */ 1888 int t3_slow_intr_handler(struct adapter *adapter) 1889 { 1890 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); 1891 1892 cause &= adapter->slow_intr_mask; 1893 if (!cause) 1894 return 0; 1895 if (cause & F_PCIM0) { 1896 if (is_pcie(adapter)) 1897 pcie_intr_handler(adapter); 1898 else 1899 pci_intr_handler(adapter); 1900 } 1901 if (cause & F_SGE3) 1902 t3_sge_err_intr_handler(adapter); 1903 if (cause & F_MC7_PMRX) 1904 mc7_intr_handler(&adapter->pmrx); 1905 if (cause & F_MC7_PMTX) 1906 mc7_intr_handler(&adapter->pmtx); 1907 if (cause & F_MC7_CM) 1908 mc7_intr_handler(&adapter->cm); 1909 if (cause & F_CIM) 1910 cim_intr_handler(adapter); 1911 if (cause & F_TP1) 1912 tp_intr_handler(adapter); 1913 if (cause & F_ULP2_RX) 1914 ulprx_intr_handler(adapter); 1915 if (cause & F_ULP2_TX) 1916 ulptx_intr_handler(adapter); 1917 if (cause & F_PM1_RX) 1918 pmrx_intr_handler(adapter); 1919 if (cause & F_PM1_TX) 1920 pmtx_intr_handler(adapter); 1921 if (cause & F_CPL_SWITCH) 1922 cplsw_intr_handler(adapter); 1923 if (cause & F_MPS0) 1924 mps_intr_handler(adapter); 1925 if (cause & F_MC5A) 1926 t3_mc5_intr_handler(&adapter->mc5); 1927 if (cause & F_XGMAC0_0) 1928 mac_intr_handler(adapter, 0); 1929 if (cause & F_XGMAC0_1) 1930 mac_intr_handler(adapter, 1); 1931 if (cause & F_T3DBG) 1932 t3_os_ext_intr_handler(adapter); 1933 1934 /* Clear the interrupts just processed. */ 1935 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); 1936 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ 1937 return 1; 1938 } 1939 1940 static unsigned int calc_gpio_intr(struct adapter *adap) 1941 { 1942 unsigned int i, gpi_intr = 0; 1943 1944 for_each_port(adap, i) 1945 if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) && 1946 adapter_info(adap)->gpio_intr[i]) 1947 gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i]; 1948 return gpi_intr; 1949 } 1950 1951 /** 1952 * t3_intr_enable - enable interrupts 1953 * @adapter: the adapter whose interrupts should be enabled 1954 * 1955 * Enable interrupts by setting the interrupt enable registers of the 1956 * various HW modules and then enabling the top-level interrupt 1957 * concentrator. 1958 */ 1959 void t3_intr_enable(struct adapter *adapter) 1960 { 1961 static const struct addr_val_pair intr_en_avp[] = { 1962 {A_SG_INT_ENABLE, SGE_INTR_MASK}, 1963 {A_MC7_INT_ENABLE, MC7_INTR_MASK}, 1964 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, 1965 MC7_INTR_MASK}, 1966 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, 1967 MC7_INTR_MASK}, 1968 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK}, 1969 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK}, 1970 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK}, 1971 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK}, 1972 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK}, 1973 {A_MPS_INT_ENABLE, MPS_INTR_MASK}, 1974 }; 1975 1976 adapter->slow_intr_mask = PL_INTR_MASK; 1977 1978 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); 1979 t3_write_reg(adapter, A_TP_INT_ENABLE, 1980 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff); 1981 1982 if (adapter->params.rev > 0) { 1983 t3_write_reg(adapter, A_CPL_INTR_ENABLE, 1984 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); 1985 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, 1986 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | 1987 F_PBL_BOUND_ERR_CH1); 1988 } else { 1989 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); 1990 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); 1991 } 1992 1993 t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter)); 1994 1995 if (is_pcie(adapter)) 1996 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); 1997 else 1998 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); 1999 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); 2000 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ 2001 } 2002 2003 /** 2004 * t3_intr_disable - disable a card's interrupts 2005 * @adapter: the adapter whose interrupts should be disabled 2006 * 2007 * Disable interrupts. We only disable the top-level interrupt 2008 * concentrator and the SGE data interrupts. 2009 */ 2010 void t3_intr_disable(struct adapter *adapter) 2011 { 2012 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); 2013 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ 2014 adapter->slow_intr_mask = 0; 2015 } 2016 2017 /** 2018 * t3_intr_clear - clear all interrupts 2019 * @adapter: the adapter whose interrupts should be cleared 2020 * 2021 * Clears all interrupts. 2022 */ 2023 void t3_intr_clear(struct adapter *adapter) 2024 { 2025 static const unsigned int cause_reg_addr[] = { 2026 A_SG_INT_CAUSE, 2027 A_SG_RSPQ_FL_STATUS, 2028 A_PCIX_INT_CAUSE, 2029 A_MC7_INT_CAUSE, 2030 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, 2031 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, 2032 A_CIM_HOST_INT_CAUSE, 2033 A_TP_INT_CAUSE, 2034 A_MC5_DB_INT_CAUSE, 2035 A_ULPRX_INT_CAUSE, 2036 A_ULPTX_INT_CAUSE, 2037 A_CPL_INTR_CAUSE, 2038 A_PM1_TX_INT_CAUSE, 2039 A_PM1_RX_INT_CAUSE, 2040 A_MPS_INT_CAUSE, 2041 A_T3DBG_INT_CAUSE, 2042 }; 2043 unsigned int i; 2044 2045 /* Clear PHY and MAC interrupts for each port. */ 2046 for_each_port(adapter, i) 2047 t3_port_intr_clear(adapter, i); 2048 2049 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) 2050 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); 2051 2052 if (is_pcie(adapter)) 2053 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff); 2054 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); 2055 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ 2056 } 2057 2058 void t3_xgm_intr_enable(struct adapter *adapter, int idx) 2059 { 2060 struct port_info *pi = adap2pinfo(adapter, idx); 2061 2062 t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset, 2063 XGM_EXTRA_INTR_MASK); 2064 } 2065 2066 void t3_xgm_intr_disable(struct adapter *adapter, int idx) 2067 { 2068 struct port_info *pi = adap2pinfo(adapter, idx); 2069 2070 t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset, 2071 0x7ff); 2072 } 2073 2074 /** 2075 * t3_port_intr_enable - enable port-specific interrupts 2076 * @adapter: associated adapter 2077 * @idx: index of port whose interrupts should be enabled 2078 * 2079 * Enable port-specific (i.e., MAC and PHY) interrupts for the given 2080 * adapter port. 2081 */ 2082 void t3_port_intr_enable(struct adapter *adapter, int idx) 2083 { 2084 struct cphy *phy = &adap2pinfo(adapter, idx)->phy; 2085 2086 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK); 2087 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ 2088 phy->ops->intr_enable(phy); 2089 } 2090 2091 /** 2092 * t3_port_intr_disable - disable port-specific interrupts 2093 * @adapter: associated adapter 2094 * @idx: index of port whose interrupts should be disabled 2095 * 2096 * Disable port-specific (i.e., MAC and PHY) interrupts for the given 2097 * adapter port. 2098 */ 2099 void t3_port_intr_disable(struct adapter *adapter, int idx) 2100 { 2101 struct cphy *phy = &adap2pinfo(adapter, idx)->phy; 2102 2103 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0); 2104 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ 2105 phy->ops->intr_disable(phy); 2106 } 2107 2108 /** 2109 * t3_port_intr_clear - clear port-specific interrupts 2110 * @adapter: associated adapter 2111 * @idx: index of port whose interrupts to clear 2112 * 2113 * Clear port-specific (i.e., MAC and PHY) interrupts for the given 2114 * adapter port. 2115 */ 2116 static void t3_port_intr_clear(struct adapter *adapter, int idx) 2117 { 2118 struct cphy *phy = &adap2pinfo(adapter, idx)->phy; 2119 2120 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff); 2121 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */ 2122 phy->ops->intr_clear(phy); 2123 } 2124 2125 #define SG_CONTEXT_CMD_ATTEMPTS 100 2126 2127 /** 2128 * t3_sge_write_context - write an SGE context 2129 * @adapter: the adapter 2130 * @id: the context id 2131 * @type: the context type 2132 * 2133 * Program an SGE context with the values already loaded in the 2134 * CONTEXT_DATA? registers. 2135 */ 2136 static int t3_sge_write_context(struct adapter *adapter, unsigned int id, 2137 unsigned int type) 2138 { 2139 if (type == F_RESPONSEQ) { 2140 /* 2141 * Can't write the Response Queue Context bits for 2142 * Interrupt Armed or the Reserve bits after the chip 2143 * has been initialized out of reset. Writing to these 2144 * bits can confuse the hardware. 2145 */ 2146 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); 2147 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); 2148 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff); 2149 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); 2150 } else { 2151 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); 2152 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); 2153 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); 2154 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); 2155 } 2156 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2157 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); 2158 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2159 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2160 } 2161 2162 /** 2163 * clear_sge_ctxt - completely clear an SGE context 2164 * @adapter: the adapter 2165 * @id: the context id 2166 * @type: the context type 2167 * 2168 * Completely clear an SGE context. Used predominantly at post-reset 2169 * initialization. Note in particular that we don't skip writing to any 2170 * "sensitive bits" in the contexts the way that t3_sge_write_context() 2171 * does ... 2172 */ 2173 static int clear_sge_ctxt(struct adapter *adap, unsigned int id, 2174 unsigned int type) 2175 { 2176 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0); 2177 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0); 2178 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0); 2179 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0); 2180 t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff); 2181 t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff); 2182 t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff); 2183 t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff); 2184 t3_write_reg(adap, A_SG_CONTEXT_CMD, 2185 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); 2186 return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2187 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2188 } 2189 2190 /** 2191 * t3_sge_init_ecntxt - initialize an SGE egress context 2192 * @adapter: the adapter to configure 2193 * @id: the context id 2194 * @gts_enable: whether to enable GTS for the context 2195 * @type: the egress context type 2196 * @respq: associated response queue 2197 * @base_addr: base address of queue 2198 * @size: number of queue entries 2199 * @token: uP token 2200 * @gen: initial generation value for the context 2201 * @cidx: consumer pointer 2202 * 2203 * Initialize an SGE egress context and make it ready for use. If the 2204 * platform allows concurrent context operations, the caller is 2205 * responsible for appropriate locking. 2206 */ 2207 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, 2208 enum sge_context_type type, int respq, u64 base_addr, 2209 unsigned int size, unsigned int token, int gen, 2210 unsigned int cidx) 2211 { 2212 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; 2213 2214 if (base_addr & 0xfff) /* must be 4K aligned */ 2215 return -EINVAL; 2216 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2217 return -EBUSY; 2218 2219 base_addr >>= 12; 2220 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | 2221 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); 2222 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | 2223 V_EC_BASE_LO(base_addr & 0xffff)); 2224 base_addr >>= 16; 2225 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr); 2226 base_addr >>= 32; 2227 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, 2228 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) | 2229 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | 2230 F_EC_VALID); 2231 return t3_sge_write_context(adapter, id, F_EGRESS); 2232 } 2233 2234 /** 2235 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context 2236 * @adapter: the adapter to configure 2237 * @id: the context id 2238 * @gts_enable: whether to enable GTS for the context 2239 * @base_addr: base address of queue 2240 * @size: number of queue entries 2241 * @bsize: size of each buffer for this queue 2242 * @cong_thres: threshold to signal congestion to upstream producers 2243 * @gen: initial generation value for the context 2244 * @cidx: consumer pointer 2245 * 2246 * Initialize an SGE free list context and make it ready for use. The 2247 * caller is responsible for ensuring only one context operation occurs 2248 * at a time. 2249 */ 2250 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, 2251 int gts_enable, u64 base_addr, unsigned int size, 2252 unsigned int bsize, unsigned int cong_thres, int gen, 2253 unsigned int cidx) 2254 { 2255 if (base_addr & 0xfff) /* must be 4K aligned */ 2256 return -EINVAL; 2257 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2258 return -EBUSY; 2259 2260 base_addr >>= 12; 2261 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr); 2262 base_addr >>= 32; 2263 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, 2264 V_FL_BASE_HI((u32) base_addr) | 2265 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); 2266 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | 2267 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | 2268 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); 2269 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, 2270 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | 2271 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); 2272 return t3_sge_write_context(adapter, id, F_FREELIST); 2273 } 2274 2275 /** 2276 * t3_sge_init_rspcntxt - initialize an SGE response queue context 2277 * @adapter: the adapter to configure 2278 * @id: the context id 2279 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ 2280 * @base_addr: base address of queue 2281 * @size: number of queue entries 2282 * @fl_thres: threshold for selecting the normal or jumbo free list 2283 * @gen: initial generation value for the context 2284 * @cidx: consumer pointer 2285 * 2286 * Initialize an SGE response queue context and make it ready for use. 2287 * The caller is responsible for ensuring only one context operation 2288 * occurs at a time. 2289 */ 2290 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, 2291 int irq_vec_idx, u64 base_addr, unsigned int size, 2292 unsigned int fl_thres, int gen, unsigned int cidx) 2293 { 2294 unsigned int intr = 0; 2295 2296 if (base_addr & 0xfff) /* must be 4K aligned */ 2297 return -EINVAL; 2298 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2299 return -EBUSY; 2300 2301 base_addr >>= 12; 2302 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | 2303 V_CQ_INDEX(cidx)); 2304 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); 2305 base_addr >>= 32; 2306 if (irq_vec_idx >= 0) 2307 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN; 2308 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 2309 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen)); 2310 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); 2311 return t3_sge_write_context(adapter, id, F_RESPONSEQ); 2312 } 2313 2314 /** 2315 * t3_sge_init_cqcntxt - initialize an SGE completion queue context 2316 * @adapter: the adapter to configure 2317 * @id: the context id 2318 * @base_addr: base address of queue 2319 * @size: number of queue entries 2320 * @rspq: response queue for async notifications 2321 * @ovfl_mode: CQ overflow mode 2322 * @credits: completion queue credits 2323 * @credit_thres: the credit threshold 2324 * 2325 * Initialize an SGE completion queue context and make it ready for use. 2326 * The caller is responsible for ensuring only one context operation 2327 * occurs at a time. 2328 */ 2329 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, 2330 unsigned int size, int rspq, int ovfl_mode, 2331 unsigned int credits, unsigned int credit_thres) 2332 { 2333 if (base_addr & 0xfff) /* must be 4K aligned */ 2334 return -EINVAL; 2335 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2336 return -EBUSY; 2337 2338 base_addr >>= 12; 2339 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); 2340 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); 2341 base_addr >>= 32; 2342 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 2343 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) | 2344 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) | 2345 V_CQ_ERR(ovfl_mode)); 2346 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | 2347 V_CQ_CREDIT_THRES(credit_thres)); 2348 return t3_sge_write_context(adapter, id, F_CQ); 2349 } 2350 2351 /** 2352 * t3_sge_enable_ecntxt - enable/disable an SGE egress context 2353 * @adapter: the adapter 2354 * @id: the egress context id 2355 * @enable: enable (1) or disable (0) the context 2356 * 2357 * Enable or disable an SGE egress context. The caller is responsible for 2358 * ensuring only one context operation occurs at a time. 2359 */ 2360 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable) 2361 { 2362 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2363 return -EBUSY; 2364 2365 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); 2366 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2367 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2368 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); 2369 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); 2370 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2371 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); 2372 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2373 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2374 } 2375 2376 /** 2377 * t3_sge_disable_fl - disable an SGE free-buffer list 2378 * @adapter: the adapter 2379 * @id: the free list context id 2380 * 2381 * Disable an SGE free-buffer list. The caller is responsible for 2382 * ensuring only one context operation occurs at a time. 2383 */ 2384 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id) 2385 { 2386 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2387 return -EBUSY; 2388 2389 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); 2390 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2391 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); 2392 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2393 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); 2394 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2395 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); 2396 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2397 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2398 } 2399 2400 /** 2401 * t3_sge_disable_rspcntxt - disable an SGE response queue 2402 * @adapter: the adapter 2403 * @id: the response queue context id 2404 * 2405 * Disable an SGE response queue. The caller is responsible for 2406 * ensuring only one context operation occurs at a time. 2407 */ 2408 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id) 2409 { 2410 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2411 return -EBUSY; 2412 2413 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); 2414 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2415 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2416 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2417 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); 2418 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2419 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); 2420 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2421 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2422 } 2423 2424 /** 2425 * t3_sge_disable_cqcntxt - disable an SGE completion queue 2426 * @adapter: the adapter 2427 * @id: the completion queue context id 2428 * 2429 * Disable an SGE completion queue. The caller is responsible for 2430 * ensuring only one context operation occurs at a time. 2431 */ 2432 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id) 2433 { 2434 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2435 return -EBUSY; 2436 2437 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); 2438 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); 2439 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); 2440 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); 2441 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); 2442 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2443 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); 2444 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2445 0, SG_CONTEXT_CMD_ATTEMPTS, 1); 2446 } 2447 2448 /** 2449 * t3_sge_cqcntxt_op - perform an operation on a completion queue context 2450 * @adapter: the adapter 2451 * @id: the context id 2452 * @op: the operation to perform 2453 * 2454 * Perform the selected operation on an SGE completion queue context. 2455 * The caller is responsible for ensuring only one context operation 2456 * occurs at a time. 2457 */ 2458 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, 2459 unsigned int credits) 2460 { 2461 u32 val; 2462 2463 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 2464 return -EBUSY; 2465 2466 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); 2467 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | 2468 V_CONTEXT(id) | F_CQ); 2469 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 2470 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val)) 2471 return -EIO; 2472 2473 if (op >= 2 && op < 7) { 2474 if (adapter->params.rev > 0) 2475 return G_CQ_INDEX(val); 2476 2477 t3_write_reg(adapter, A_SG_CONTEXT_CMD, 2478 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); 2479 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, 2480 F_CONTEXT_CMD_BUSY, 0, 2481 SG_CONTEXT_CMD_ATTEMPTS, 1)) 2482 return -EIO; 2483 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); 2484 } 2485 return 0; 2486 } 2487 2488 /** 2489 * t3_config_rss - configure Rx packet steering 2490 * @adapter: the adapter 2491 * @rss_config: RSS settings (written to TP_RSS_CONFIG) 2492 * @cpus: values for the CPU lookup table (0xff terminated) 2493 * @rspq: values for the response queue lookup table (0xffff terminated) 2494 * 2495 * Programs the receive packet steering logic. @cpus and @rspq provide 2496 * the values for the CPU and response queue lookup tables. If they 2497 * provide fewer values than the size of the tables the supplied values 2498 * are used repeatedly until the tables are fully populated. 2499 */ 2500 void t3_config_rss(struct adapter *adapter, unsigned int rss_config, 2501 const u8 * cpus, const u16 *rspq) 2502 { 2503 int i, j, cpu_idx = 0, q_idx = 0; 2504 2505 if (cpus) 2506 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 2507 u32 val = i << 16; 2508 2509 for (j = 0; j < 2; ++j) { 2510 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); 2511 if (cpus[cpu_idx] == 0xff) 2512 cpu_idx = 0; 2513 } 2514 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); 2515 } 2516 2517 if (rspq) 2518 for (i = 0; i < RSS_TABLE_SIZE; ++i) { 2519 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, 2520 (i << 16) | rspq[q_idx++]); 2521 if (rspq[q_idx] == 0xffff) 2522 q_idx = 0; 2523 } 2524 2525 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); 2526 } 2527 2528 /** 2529 * t3_tp_set_offload_mode - put TP in NIC/offload mode 2530 * @adap: the adapter 2531 * @enable: 1 to select offload mode, 0 for regular NIC 2532 * 2533 * Switches TP to NIC/offload mode. 2534 */ 2535 void t3_tp_set_offload_mode(struct adapter *adap, int enable) 2536 { 2537 if (is_offload(adap) || !enable) 2538 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, 2539 V_NICMODE(!enable)); 2540 } 2541 2542 /** 2543 * pm_num_pages - calculate the number of pages of the payload memory 2544 * @mem_size: the size of the payload memory 2545 * @pg_size: the size of each payload memory page 2546 * 2547 * Calculate the number of pages, each of the given size, that fit in a 2548 * memory of the specified size, respecting the HW requirement that the 2549 * number of pages must be a multiple of 24. 2550 */ 2551 static inline unsigned int pm_num_pages(unsigned int mem_size, 2552 unsigned int pg_size) 2553 { 2554 unsigned int n = mem_size / pg_size; 2555 2556 return n - n % 24; 2557 } 2558 2559 #define mem_region(adap, start, size, reg) \ 2560 t3_write_reg((adap), A_ ## reg, (start)); \ 2561 start += size 2562 2563 /** 2564 * partition_mem - partition memory and configure TP memory settings 2565 * @adap: the adapter 2566 * @p: the TP parameters 2567 * 2568 * Partitions context and payload memory and configures TP's memory 2569 * registers. 2570 */ 2571 static void partition_mem(struct adapter *adap, const struct tp_params *p) 2572 { 2573 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); 2574 unsigned int timers = 0, timers_shift = 22; 2575 2576 if (adap->params.rev > 0) { 2577 if (tids <= 16 * 1024) { 2578 timers = 1; 2579 timers_shift = 16; 2580 } else if (tids <= 64 * 1024) { 2581 timers = 2; 2582 timers_shift = 18; 2583 } else if (tids <= 256 * 1024) { 2584 timers = 3; 2585 timers_shift = 20; 2586 } 2587 } 2588 2589 t3_write_reg(adap, A_TP_PMM_SIZE, 2590 p->chan_rx_size | (p->chan_tx_size >> 16)); 2591 2592 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); 2593 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); 2594 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); 2595 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), 2596 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); 2597 2598 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); 2599 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); 2600 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); 2601 2602 pstructs = p->rx_num_pgs + p->tx_num_pgs; 2603 /* Add a bit of headroom and make multiple of 24 */ 2604 pstructs += 48; 2605 pstructs -= pstructs % 24; 2606 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); 2607 2608 m = tids * TCB_SIZE; 2609 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); 2610 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); 2611 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); 2612 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); 2613 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); 2614 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); 2615 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); 2616 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); 2617 2618 m = (m + 4095) & ~0xfff; 2619 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); 2620 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); 2621 2622 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; 2623 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 2624 adap->params.mc5.nfilters - adap->params.mc5.nroutes; 2625 if (tids < m) 2626 adap->params.mc5.nservers += m - tids; 2627 } 2628 2629 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr, 2630 u32 val) 2631 { 2632 t3_write_reg(adap, A_TP_PIO_ADDR, addr); 2633 t3_write_reg(adap, A_TP_PIO_DATA, val); 2634 } 2635 2636 static void tp_config(struct adapter *adap, const struct tp_params *p) 2637 { 2638 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | 2639 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | 2640 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); 2641 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | 2642 F_MTUENABLE | V_WINDOWSCALEMODE(1) | 2643 V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); 2644 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | 2645 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | 2646 V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) | 2647 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); 2648 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO, 2649 F_IPV6ENABLE | F_NICMODE); 2650 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); 2651 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); 2652 t3_set_reg_field(adap, A_TP_PARA_REG6, 0, 2653 adap->params.rev > 0 ? F_ENABLEESND : 2654 F_T3A_ENABLEESND); 2655 2656 t3_set_reg_field(adap, A_TP_PC_CONFIG, 2657 F_ENABLEEPCMDAFULL, 2658 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK | 2659 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE); 2660 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 2661 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN | 2662 F_ENABLEARPMISS | F_DISBLEDAPARBIT0); 2663 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080); 2664 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000); 2665 2666 if (adap->params.rev > 0) { 2667 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); 2668 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO, 2669 F_TXPACEAUTO); 2670 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); 2671 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT); 2672 } else 2673 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); 2674 2675 if (adap->params.rev == T3_REV_C) 2676 t3_set_reg_field(adap, A_TP_PC_CONFIG, 2677 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA), 2678 V_TABLELATENCYDELTA(4)); 2679 2680 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0); 2681 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0); 2682 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0); 2683 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000); 2684 } 2685 2686 /* Desired TP timer resolution in usec */ 2687 #define TP_TMR_RES 50 2688 2689 /* TCP timer values in ms */ 2690 #define TP_DACK_TIMER 50 2691 #define TP_RTO_MIN 250 2692 2693 /** 2694 * tp_set_timers - set TP timing parameters 2695 * @adap: the adapter to set 2696 * @core_clk: the core clock frequency in Hz 2697 * 2698 * Set TP's timing parameters, such as the various timer resolutions and 2699 * the TCP timer values. 2700 */ 2701 static void tp_set_timers(struct adapter *adap, unsigned int core_clk) 2702 { 2703 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1; 2704 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */ 2705 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ 2706 unsigned int tps = core_clk >> tre; 2707 2708 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | 2709 V_DELAYEDACKRESOLUTION(dack_re) | 2710 V_TIMESTAMPRESOLUTION(tstamp_re)); 2711 t3_write_reg(adap, A_TP_DACK_TIMER, 2712 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); 2713 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); 2714 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); 2715 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); 2716 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); 2717 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | 2718 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | 2719 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | 2720 V_KEEPALIVEMAX(9)); 2721 2722 #define SECONDS * tps 2723 2724 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS); 2725 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); 2726 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); 2727 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); 2728 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); 2729 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); 2730 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); 2731 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); 2732 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); 2733 2734 #undef SECONDS 2735 } 2736 2737 /** 2738 * t3_tp_set_coalescing_size - set receive coalescing size 2739 * @adap: the adapter 2740 * @size: the receive coalescing size 2741 * @psh: whether a set PSH bit should deliver coalesced data 2742 * 2743 * Set the receive coalescing size and PSH bit handling. 2744 */ 2745 static int t3_tp_set_coalescing_size(struct adapter *adap, 2746 unsigned int size, int psh) 2747 { 2748 u32 val; 2749 2750 if (size > MAX_RX_COALESCING_LEN) 2751 return -EINVAL; 2752 2753 val = t3_read_reg(adap, A_TP_PARA_REG3); 2754 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); 2755 2756 if (size) { 2757 val |= F_RXCOALESCEENABLE; 2758 if (psh) 2759 val |= F_RXCOALESCEPSHEN; 2760 size = min(MAX_RX_COALESCING_LEN, size); 2761 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | 2762 V_MAXRXDATA(MAX_RX_COALESCING_LEN)); 2763 } 2764 t3_write_reg(adap, A_TP_PARA_REG3, val); 2765 return 0; 2766 } 2767 2768 /** 2769 * t3_tp_set_max_rxsize - set the max receive size 2770 * @adap: the adapter 2771 * @size: the max receive size 2772 * 2773 * Set TP's max receive size. This is the limit that applies when 2774 * receive coalescing is disabled. 2775 */ 2776 static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size) 2777 { 2778 t3_write_reg(adap, A_TP_PARA_REG7, 2779 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); 2780 } 2781 2782 static void init_mtus(unsigned short mtus[]) 2783 { 2784 /* 2785 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so 2786 * it can accommodate max size TCP/IP headers when SACK and timestamps 2787 * are enabled and still have at least 8 bytes of payload. 2788 */ 2789 mtus[0] = 88; 2790 mtus[1] = 88; 2791 mtus[2] = 256; 2792 mtus[3] = 512; 2793 mtus[4] = 576; 2794 mtus[5] = 1024; 2795 mtus[6] = 1280; 2796 mtus[7] = 1492; 2797 mtus[8] = 1500; 2798 mtus[9] = 2002; 2799 mtus[10] = 2048; 2800 mtus[11] = 4096; 2801 mtus[12] = 4352; 2802 mtus[13] = 8192; 2803 mtus[14] = 9000; 2804 mtus[15] = 9600; 2805 } 2806 2807 /* 2808 * Initial congestion control parameters. 2809 */ 2810 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 2811 { 2812 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 2813 a[9] = 2; 2814 a[10] = 3; 2815 a[11] = 4; 2816 a[12] = 5; 2817 a[13] = 6; 2818 a[14] = 7; 2819 a[15] = 8; 2820 a[16] = 9; 2821 a[17] = 10; 2822 a[18] = 14; 2823 a[19] = 17; 2824 a[20] = 21; 2825 a[21] = 25; 2826 a[22] = 30; 2827 a[23] = 35; 2828 a[24] = 45; 2829 a[25] = 60; 2830 a[26] = 80; 2831 a[27] = 100; 2832 a[28] = 200; 2833 a[29] = 300; 2834 a[30] = 400; 2835 a[31] = 500; 2836 2837 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 2838 b[9] = b[10] = 1; 2839 b[11] = b[12] = 2; 2840 b[13] = b[14] = b[15] = b[16] = 3; 2841 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 2842 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 2843 b[28] = b[29] = 6; 2844 b[30] = b[31] = 7; 2845 } 2846 2847 /* The minimum additive increment value for the congestion control table */ 2848 #define CC_MIN_INCR 2U 2849 2850 /** 2851 * t3_load_mtus - write the MTU and congestion control HW tables 2852 * @adap: the adapter 2853 * @mtus: the unrestricted values for the MTU table 2854 * @alphs: the values for the congestion control alpha parameter 2855 * @beta: the values for the congestion control beta parameter 2856 * @mtu_cap: the maximum permitted effective MTU 2857 * 2858 * Write the MTU table with the supplied MTUs capping each at &mtu_cap. 2859 * Update the high-speed congestion control table with the supplied alpha, 2860 * beta, and MTUs. 2861 */ 2862 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], 2863 unsigned short alpha[NCCTRL_WIN], 2864 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) 2865 { 2866 static const unsigned int avg_pkts[NCCTRL_WIN] = { 2867 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 2868 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 2869 28672, 40960, 57344, 81920, 114688, 163840, 229376 2870 }; 2871 2872 unsigned int i, w; 2873 2874 for (i = 0; i < NMTUS; ++i) { 2875 unsigned int mtu = min(mtus[i], mtu_cap); 2876 unsigned int log2 = fls(mtu); 2877 2878 if (!(mtu & ((1 << log2) >> 2))) /* round */ 2879 log2--; 2880 t3_write_reg(adap, A_TP_MTU_TABLE, 2881 (i << 24) | (log2 << 16) | mtu); 2882 2883 for (w = 0; w < NCCTRL_WIN; ++w) { 2884 unsigned int inc; 2885 2886 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 2887 CC_MIN_INCR); 2888 2889 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 2890 (w << 16) | (beta[w] << 13) | inc); 2891 } 2892 } 2893 } 2894 2895 /** 2896 * t3_tp_get_mib_stats - read TP's MIB counters 2897 * @adap: the adapter 2898 * @tps: holds the returned counter values 2899 * 2900 * Returns the values of TP's MIB counters. 2901 */ 2902 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps) 2903 { 2904 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps, 2905 sizeof(*tps) / sizeof(u32), 0); 2906 } 2907 2908 #define ulp_region(adap, name, start, len) \ 2909 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ 2910 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ 2911 (start) + (len) - 1); \ 2912 start += len 2913 2914 #define ulptx_region(adap, name, start, len) \ 2915 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ 2916 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ 2917 (start) + (len) - 1) 2918 2919 static void ulp_config(struct adapter *adap, const struct tp_params *p) 2920 { 2921 unsigned int m = p->chan_rx_size; 2922 2923 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); 2924 ulp_region(adap, TDDP, m, p->chan_rx_size / 8); 2925 ulptx_region(adap, TPT, m, p->chan_rx_size / 4); 2926 ulp_region(adap, STAG, m, p->chan_rx_size / 4); 2927 ulp_region(adap, RQ, m, p->chan_rx_size / 4); 2928 ulptx_region(adap, PBL, m, p->chan_rx_size / 4); 2929 ulp_region(adap, PBL, m, p->chan_rx_size / 4); 2930 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); 2931 } 2932 2933 /** 2934 * t3_set_proto_sram - set the contents of the protocol sram 2935 * @adapter: the adapter 2936 * @data: the protocol image 2937 * 2938 * Write the contents of the protocol SRAM. 2939 */ 2940 int t3_set_proto_sram(struct adapter *adap, const u8 *data) 2941 { 2942 int i; 2943 const __be32 *buf = (const __be32 *)data; 2944 2945 for (i = 0; i < PROTO_SRAM_LINES; i++) { 2946 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++)); 2947 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++)); 2948 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++)); 2949 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++)); 2950 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++)); 2951 2952 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31); 2953 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1)) 2954 return -EIO; 2955 } 2956 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0); 2957 2958 return 0; 2959 } 2960 2961 void t3_config_trace_filter(struct adapter *adapter, 2962 const struct trace_params *tp, int filter_index, 2963 int invert, int enable) 2964 { 2965 u32 addr, key[4], mask[4]; 2966 2967 key[0] = tp->sport | (tp->sip << 16); 2968 key[1] = (tp->sip >> 16) | (tp->dport << 16); 2969 key[2] = tp->dip; 2970 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); 2971 2972 mask[0] = tp->sport_mask | (tp->sip_mask << 16); 2973 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); 2974 mask[2] = tp->dip_mask; 2975 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); 2976 2977 if (invert) 2978 key[3] |= (1 << 29); 2979 if (enable) 2980 key[3] |= (1 << 28); 2981 2982 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; 2983 tp_wr_indirect(adapter, addr++, key[0]); 2984 tp_wr_indirect(adapter, addr++, mask[0]); 2985 tp_wr_indirect(adapter, addr++, key[1]); 2986 tp_wr_indirect(adapter, addr++, mask[1]); 2987 tp_wr_indirect(adapter, addr++, key[2]); 2988 tp_wr_indirect(adapter, addr++, mask[2]); 2989 tp_wr_indirect(adapter, addr++, key[3]); 2990 tp_wr_indirect(adapter, addr, mask[3]); 2991 t3_read_reg(adapter, A_TP_PIO_DATA); 2992 } 2993 2994 /** 2995 * t3_config_sched - configure a HW traffic scheduler 2996 * @adap: the adapter 2997 * @kbps: target rate in Kbps 2998 * @sched: the scheduler index 2999 * 3000 * Configure a HW scheduler for the target rate 3001 */ 3002 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched) 3003 { 3004 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 3005 unsigned int clk = adap->params.vpd.cclk * 1000; 3006 unsigned int selected_cpt = 0, selected_bpt = 0; 3007 3008 if (kbps > 0) { 3009 kbps *= 125; /* -> bytes */ 3010 for (cpt = 1; cpt <= 255; cpt++) { 3011 tps = clk / cpt; 3012 bpt = (kbps + tps / 2) / tps; 3013 if (bpt > 0 && bpt <= 255) { 3014 v = bpt * tps; 3015 delta = v >= kbps ? v - kbps : kbps - v; 3016 if (delta <= mindelta) { 3017 mindelta = delta; 3018 selected_cpt = cpt; 3019 selected_bpt = bpt; 3020 } 3021 } else if (selected_cpt) 3022 break; 3023 } 3024 if (!selected_cpt) 3025 return -EINVAL; 3026 } 3027 t3_write_reg(adap, A_TP_TM_PIO_ADDR, 3028 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 3029 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 3030 if (sched & 1) 3031 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 3032 else 3033 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 3034 t3_write_reg(adap, A_TP_TM_PIO_DATA, v); 3035 return 0; 3036 } 3037 3038 static int tp_init(struct adapter *adap, const struct tp_params *p) 3039 { 3040 int busy = 0; 3041 3042 tp_config(adap, p); 3043 t3_set_vlan_accel(adap, 3, 0); 3044 3045 if (is_offload(adap)) { 3046 tp_set_timers(adap, adap->params.vpd.cclk * 1000); 3047 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); 3048 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, 3049 0, 1000, 5); 3050 if (busy) 3051 CH_ERR(adap, "TP initialization timed out\n"); 3052 } 3053 3054 if (!busy) 3055 t3_write_reg(adap, A_TP_RESET, F_TPRESET); 3056 return busy; 3057 } 3058 3059 /* 3060 * Perform the bits of HW initialization that are dependent on the Tx 3061 * channels being used. 3062 */ 3063 static void chan_init_hw(struct adapter *adap, unsigned int chan_map) 3064 { 3065 int i; 3066 3067 if (chan_map != 3) { /* one channel */ 3068 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); 3069 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); 3070 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT | 3071 (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE : 3072 F_TPTXPORT1EN | F_PORT1ACTIVE)); 3073 t3_write_reg(adap, A_PM1_TX_CFG, 3074 chan_map == 1 ? 0xffffffff : 0); 3075 } else { /* two channels */ 3076 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); 3077 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); 3078 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, 3079 V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); 3080 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | 3081 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | 3082 F_ENFORCEPKT); 3083 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); 3084 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); 3085 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 3086 V_TX_MOD_QUEUE_REQ_MAP(0xaa)); 3087 for (i = 0; i < 16; i++) 3088 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, 3089 (i << 16) | 0x1010); 3090 } 3091 } 3092 3093 static int calibrate_xgm(struct adapter *adapter) 3094 { 3095 if (uses_xaui(adapter)) { 3096 unsigned int v, i; 3097 3098 for (i = 0; i < 5; ++i) { 3099 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); 3100 t3_read_reg(adapter, A_XGM_XAUI_IMP); 3101 msleep(1); 3102 v = t3_read_reg(adapter, A_XGM_XAUI_IMP); 3103 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { 3104 t3_write_reg(adapter, A_XGM_XAUI_IMP, 3105 V_XAUIIMP(G_CALIMP(v) >> 2)); 3106 return 0; 3107 } 3108 } 3109 CH_ERR(adapter, "MAC calibration failed\n"); 3110 return -1; 3111 } else { 3112 t3_write_reg(adapter, A_XGM_RGMII_IMP, 3113 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); 3114 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, 3115 F_XGM_IMPSETUPDATE); 3116 } 3117 return 0; 3118 } 3119 3120 static void calibrate_xgm_t3b(struct adapter *adapter) 3121 { 3122 if (!uses_xaui(adapter)) { 3123 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | 3124 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); 3125 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); 3126 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, 3127 F_XGM_IMPSETUPDATE); 3128 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, 3129 0); 3130 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); 3131 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); 3132 } 3133 } 3134 3135 struct mc7_timing_params { 3136 unsigned char ActToPreDly; 3137 unsigned char ActToRdWrDly; 3138 unsigned char PreCyc; 3139 unsigned char RefCyc[5]; 3140 unsigned char BkCyc; 3141 unsigned char WrToRdDly; 3142 unsigned char RdToWrDly; 3143 }; 3144 3145 /* 3146 * Write a value to a register and check that the write completed. These 3147 * writes normally complete in a cycle or two, so one read should suffice. 3148 * The very first read exists to flush the posted write to the device. 3149 */ 3150 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val) 3151 { 3152 t3_write_reg(adapter, addr, val); 3153 t3_read_reg(adapter, addr); /* flush */ 3154 if (!(t3_read_reg(adapter, addr) & F_BUSY)) 3155 return 0; 3156 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); 3157 return -EIO; 3158 } 3159 3160 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) 3161 { 3162 static const unsigned int mc7_mode[] = { 3163 0x632, 0x642, 0x652, 0x432, 0x442 3164 }; 3165 static const struct mc7_timing_params mc7_timings[] = { 3166 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4}, 3167 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4}, 3168 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4}, 3169 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4}, 3170 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4} 3171 }; 3172 3173 u32 val; 3174 unsigned int width, density, slow, attempts; 3175 struct adapter *adapter = mc7->adapter; 3176 const struct mc7_timing_params *p = &mc7_timings[mem_type]; 3177 3178 if (!mc7->size) 3179 return 0; 3180 3181 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); 3182 slow = val & F_SLOW; 3183 width = G_WIDTH(val); 3184 density = G_DEN(val); 3185 3186 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); 3187 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ 3188 msleep(1); 3189 3190 if (!slow) { 3191 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); 3192 t3_read_reg(adapter, mc7->offset + A_MC7_CAL); 3193 msleep(1); 3194 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & 3195 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { 3196 CH_ERR(adapter, "%s MC7 calibration timed out\n", 3197 mc7->name); 3198 goto out_fail; 3199 } 3200 } 3201 3202 t3_write_reg(adapter, mc7->offset + A_MC7_PARM, 3203 V_ACTTOPREDLY(p->ActToPreDly) | 3204 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | 3205 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | 3206 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); 3207 3208 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, 3209 val | F_CLKEN | F_TERM150); 3210 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ 3211 3212 if (!slow) 3213 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, 3214 F_DLLENB); 3215 udelay(1); 3216 3217 val = slow ? 3 : 6; 3218 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || 3219 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || 3220 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || 3221 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) 3222 goto out_fail; 3223 3224 if (!slow) { 3225 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); 3226 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0); 3227 udelay(5); 3228 } 3229 3230 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || 3231 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || 3232 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || 3233 wrreg_wait(adapter, mc7->offset + A_MC7_MODE, 3234 mc7_mode[mem_type]) || 3235 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || 3236 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) 3237 goto out_fail; 3238 3239 /* clock value is in KHz */ 3240 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ 3241 mc7_clock /= 1000000; /* KHz->MHz, ns->us */ 3242 3243 t3_write_reg(adapter, mc7->offset + A_MC7_REF, 3244 F_PERREFEN | V_PREREFDIV(mc7_clock)); 3245 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ 3246 3247 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN); 3248 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); 3249 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); 3250 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, 3251 (mc7->size << width) - 1); 3252 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); 3253 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ 3254 3255 attempts = 50; 3256 do { 3257 msleep(250); 3258 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); 3259 } while ((val & F_BUSY) && --attempts); 3260 if (val & F_BUSY) { 3261 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); 3262 goto out_fail; 3263 } 3264 3265 /* Enable normal memory accesses. */ 3266 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); 3267 return 0; 3268 3269 out_fail: 3270 return -1; 3271 } 3272 3273 static void config_pcie(struct adapter *adap) 3274 { 3275 static const u16 ack_lat[4][6] = { 3276 {237, 416, 559, 1071, 2095, 4143}, 3277 {128, 217, 289, 545, 1057, 2081}, 3278 {73, 118, 154, 282, 538, 1050}, 3279 {67, 107, 86, 150, 278, 534} 3280 }; 3281 static const u16 rpl_tmr[4][6] = { 3282 {711, 1248, 1677, 3213, 6285, 12429}, 3283 {384, 651, 867, 1635, 3171, 6243}, 3284 {219, 354, 462, 846, 1614, 3150}, 3285 {201, 321, 258, 450, 834, 1602} 3286 }; 3287 3288 u16 val, devid; 3289 unsigned int log2_width, pldsize; 3290 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; 3291 3292 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, &val); 3293 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; 3294 3295 pci_read_config_word(adap->pdev, 0x2, &devid); 3296 if (devid == 0x37) { 3297 pcie_capability_write_word(adap->pdev, PCI_EXP_DEVCTL, 3298 val & ~PCI_EXP_DEVCTL_READRQ & 3299 ~PCI_EXP_DEVCTL_PAYLOAD); 3300 pldsize = 0; 3301 } 3302 3303 pcie_capability_read_word(adap->pdev, PCI_EXP_LNKCTL, &val); 3304 3305 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); 3306 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : 3307 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); 3308 log2_width = fls(adap->params.pci.width) - 1; 3309 acklat = ack_lat[log2_width][pldsize]; 3310 if (val & PCI_EXP_LNKCTL_ASPM_L0S) /* check LOsEnable */ 3311 acklat += fst_trn_tx * 4; 3312 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; 3313 3314 if (adap->params.rev == 0) 3315 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, 3316 V_T3A_ACKLAT(M_T3A_ACKLAT), 3317 V_T3A_ACKLAT(acklat)); 3318 else 3319 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), 3320 V_ACKLAT(acklat)); 3321 3322 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), 3323 V_REPLAYLMT(rpllmt)); 3324 3325 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); 3326 t3_set_reg_field(adap, A_PCIE_CFG, 0, 3327 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST | 3328 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN); 3329 } 3330 3331 /* 3332 * Initialize and configure T3 HW modules. This performs the 3333 * initialization steps that need to be done once after a card is reset. 3334 * MAC and PHY initialization is handled separarely whenever a port is enabled. 3335 * 3336 * fw_params are passed to FW and their value is platform dependent. Only the 3337 * top 8 bits are available for use, the rest must be 0. 3338 */ 3339 int t3_init_hw(struct adapter *adapter, u32 fw_params) 3340 { 3341 int err = -EIO, attempts, i; 3342 const struct vpd_params *vpd = &adapter->params.vpd; 3343 3344 if (adapter->params.rev > 0) 3345 calibrate_xgm_t3b(adapter); 3346 else if (calibrate_xgm(adapter)) 3347 goto out_err; 3348 3349 if (vpd->mclk) { 3350 partition_mem(adapter, &adapter->params.tp); 3351 3352 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || 3353 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || 3354 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || 3355 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, 3356 adapter->params.mc5.nfilters, 3357 adapter->params.mc5.nroutes)) 3358 goto out_err; 3359 3360 for (i = 0; i < 32; i++) 3361 if (clear_sge_ctxt(adapter, i, F_CQ)) 3362 goto out_err; 3363 } 3364 3365 if (tp_init(adapter, &adapter->params.tp)) 3366 goto out_err; 3367 3368 t3_tp_set_coalescing_size(adapter, 3369 min(adapter->params.sge.max_pkt_size, 3370 MAX_RX_COALESCING_LEN), 1); 3371 t3_tp_set_max_rxsize(adapter, 3372 min(adapter->params.sge.max_pkt_size, 16384U)); 3373 ulp_config(adapter, &adapter->params.tp); 3374 3375 if (is_pcie(adapter)) 3376 config_pcie(adapter); 3377 else 3378 t3_set_reg_field(adapter, A_PCIX_CFG, 0, 3379 F_DMASTOPEN | F_CLIDECEN); 3380 3381 if (adapter->params.rev == T3_REV_C) 3382 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0, 3383 F_CFG_CQE_SOP_MASK); 3384 3385 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff); 3386 t3_write_reg(adapter, A_PM1_RX_MODE, 0); 3387 t3_write_reg(adapter, A_PM1_TX_MODE, 0); 3388 chan_init_hw(adapter, adapter->params.chan_map); 3389 t3_sge_init(adapter, &adapter->params.sge); 3390 t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN); 3391 3392 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter)); 3393 3394 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); 3395 t3_write_reg(adapter, A_CIM_BOOT_CFG, 3396 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); 3397 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ 3398 3399 attempts = 100; 3400 do { /* wait for uP to initialize */ 3401 msleep(20); 3402 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); 3403 if (!attempts) { 3404 CH_ERR(adapter, "uP initialization timed out\n"); 3405 goto out_err; 3406 } 3407 3408 err = 0; 3409 out_err: 3410 return err; 3411 } 3412 3413 /** 3414 * get_pci_mode - determine a card's PCI mode 3415 * @adapter: the adapter 3416 * @p: where to store the PCI settings 3417 * 3418 * Determines a card's PCI mode and associated parameters, such as speed 3419 * and width. 3420 */ 3421 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 3422 { 3423 static unsigned short speed_map[] = { 33, 66, 100, 133 }; 3424 u32 pci_mode; 3425 3426 if (pci_is_pcie(adapter->pdev)) { 3427 u16 val; 3428 3429 p->variant = PCI_VARIANT_PCIE; 3430 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 3431 p->width = (val >> 4) & 0x3f; 3432 return; 3433 } 3434 3435 pci_mode = t3_read_reg(adapter, A_PCIX_MODE); 3436 p->speed = speed_map[G_PCLKRANGE(pci_mode)]; 3437 p->width = (pci_mode & F_64BIT) ? 64 : 32; 3438 pci_mode = G_PCIXINITPAT(pci_mode); 3439 if (pci_mode == 0) 3440 p->variant = PCI_VARIANT_PCI; 3441 else if (pci_mode < 4) 3442 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; 3443 else if (pci_mode < 8) 3444 p->variant = PCI_VARIANT_PCIX_MODE1_ECC; 3445 else 3446 p->variant = PCI_VARIANT_PCIX_266_MODE2; 3447 } 3448 3449 /** 3450 * init_link_config - initialize a link's SW state 3451 * @lc: structure holding the link state 3452 * @ai: information about the current card 3453 * 3454 * Initializes the SW state maintained for each link, including the link's 3455 * capabilities and default speed/duplex/flow-control/autonegotiation 3456 * settings. 3457 */ 3458 static void init_link_config(struct link_config *lc, unsigned int caps) 3459 { 3460 lc->supported = caps; 3461 lc->requested_speed = lc->speed = SPEED_INVALID; 3462 lc->requested_duplex = lc->duplex = DUPLEX_INVALID; 3463 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 3464 if (lc->supported & SUPPORTED_Autoneg) { 3465 lc->advertising = lc->supported; 3466 lc->autoneg = AUTONEG_ENABLE; 3467 lc->requested_fc |= PAUSE_AUTONEG; 3468 } else { 3469 lc->advertising = 0; 3470 lc->autoneg = AUTONEG_DISABLE; 3471 } 3472 } 3473 3474 /** 3475 * mc7_calc_size - calculate MC7 memory size 3476 * @cfg: the MC7 configuration 3477 * 3478 * Calculates the size of an MC7 memory in bytes from the value of its 3479 * configuration register. 3480 */ 3481 static unsigned int mc7_calc_size(u32 cfg) 3482 { 3483 unsigned int width = G_WIDTH(cfg); 3484 unsigned int banks = !!(cfg & F_BKS) + 1; 3485 unsigned int org = !!(cfg & F_ORG) + 1; 3486 unsigned int density = G_DEN(cfg); 3487 unsigned int MBs = ((256 << density) * banks) / (org << width); 3488 3489 return MBs << 20; 3490 } 3491 3492 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7, 3493 unsigned int base_addr, const char *name) 3494 { 3495 u32 cfg; 3496 3497 mc7->adapter = adapter; 3498 mc7->name = name; 3499 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; 3500 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); 3501 mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg); 3502 mc7->width = G_WIDTH(cfg); 3503 } 3504 3505 static void mac_prep(struct cmac *mac, struct adapter *adapter, int index) 3506 { 3507 u16 devid; 3508 3509 mac->adapter = adapter; 3510 pci_read_config_word(adapter->pdev, 0x2, &devid); 3511 3512 if (devid == 0x37 && !adapter->params.vpd.xauicfg[1]) 3513 index = 0; 3514 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; 3515 mac->nucast = 1; 3516 3517 if (adapter->params.rev == 0 && uses_xaui(adapter)) { 3518 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, 3519 is_10G(adapter) ? 0x2901c04 : 0x2301c04); 3520 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, 3521 F_ENRGMII, 0); 3522 } 3523 } 3524 3525 static void early_hw_init(struct adapter *adapter, 3526 const struct adapter_info *ai) 3527 { 3528 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2); 3529 3530 mi1_init(adapter, ai); 3531 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ 3532 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); 3533 t3_write_reg(adapter, A_T3DBG_GPIO_EN, 3534 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); 3535 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0); 3536 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff)); 3537 3538 if (adapter->params.rev == 0 || !uses_xaui(adapter)) 3539 val |= F_ENRGMII; 3540 3541 /* Enable MAC clocks so we can access the registers */ 3542 t3_write_reg(adapter, A_XGM_PORT_CFG, val); 3543 t3_read_reg(adapter, A_XGM_PORT_CFG); 3544 3545 val |= F_CLKDIVRESET_; 3546 t3_write_reg(adapter, A_XGM_PORT_CFG, val); 3547 t3_read_reg(adapter, A_XGM_PORT_CFG); 3548 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); 3549 t3_read_reg(adapter, A_XGM_PORT_CFG); 3550 } 3551 3552 /* 3553 * Reset the adapter. 3554 * Older PCIe cards lose their config space during reset, PCI-X 3555 * ones don't. 3556 */ 3557 int t3_reset_adapter(struct adapter *adapter) 3558 { 3559 int i, save_and_restore_pcie = 3560 adapter->params.rev < T3_REV_B2 && is_pcie(adapter); 3561 uint16_t devid = 0; 3562 3563 if (save_and_restore_pcie) 3564 pci_save_state(adapter->pdev); 3565 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); 3566 3567 /* 3568 * Delay. Give Some time to device to reset fully. 3569 * XXX The delay time should be modified. 3570 */ 3571 for (i = 0; i < 10; i++) { 3572 msleep(50); 3573 pci_read_config_word(adapter->pdev, 0x00, &devid); 3574 if (devid == 0x1425) 3575 break; 3576 } 3577 3578 if (devid != 0x1425) 3579 return -1; 3580 3581 if (save_and_restore_pcie) 3582 pci_restore_state(adapter->pdev); 3583 return 0; 3584 } 3585 3586 static int init_parity(struct adapter *adap) 3587 { 3588 int i, err, addr; 3589 3590 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) 3591 return -EBUSY; 3592 3593 for (err = i = 0; !err && i < 16; i++) 3594 err = clear_sge_ctxt(adap, i, F_EGRESS); 3595 for (i = 0xfff0; !err && i <= 0xffff; i++) 3596 err = clear_sge_ctxt(adap, i, F_EGRESS); 3597 for (i = 0; !err && i < SGE_QSETS; i++) 3598 err = clear_sge_ctxt(adap, i, F_RESPONSEQ); 3599 if (err) 3600 return err; 3601 3602 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0); 3603 for (i = 0; i < 4; i++) 3604 for (addr = 0; addr <= M_IBQDBGADDR; addr++) { 3605 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN | 3606 F_IBQDBGWR | V_IBQDBGQID(i) | 3607 V_IBQDBGADDR(addr)); 3608 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, 3609 F_IBQDBGBUSY, 0, 2, 1); 3610 if (err) 3611 return err; 3612 } 3613 return 0; 3614 } 3615 3616 /* 3617 * Initialize adapter SW state for the various HW modules, set initial values 3618 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO 3619 * interface. 3620 */ 3621 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai, 3622 int reset) 3623 { 3624 int ret; 3625 unsigned int i, j = -1; 3626 3627 get_pci_mode(adapter, &adapter->params.pci); 3628 3629 adapter->params.info = ai; 3630 adapter->params.nports = ai->nports0 + ai->nports1; 3631 adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1); 3632 adapter->params.rev = t3_read_reg(adapter, A_PL_REV); 3633 /* 3634 * We used to only run the "adapter check task" once a second if 3635 * we had PHYs which didn't support interrupts (we would check 3636 * their link status once a second). Now we check other conditions 3637 * in that routine which could potentially impose a very high 3638 * interrupt load on the system. As such, we now always scan the 3639 * adapter state once a second ... 3640 */ 3641 adapter->params.linkpoll_period = 10; 3642 adapter->params.stats_update_period = is_10G(adapter) ? 3643 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); 3644 adapter->params.pci.vpd_cap_addr = 3645 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD); 3646 ret = get_vpd_params(adapter, &adapter->params.vpd); 3647 if (ret < 0) 3648 return ret; 3649 3650 if (reset && t3_reset_adapter(adapter)) 3651 return -1; 3652 3653 t3_sge_prep(adapter, &adapter->params.sge); 3654 3655 if (adapter->params.vpd.mclk) { 3656 struct tp_params *p = &adapter->params.tp; 3657 3658 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); 3659 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); 3660 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); 3661 3662 p->nchan = adapter->params.chan_map == 3 ? 2 : 1; 3663 p->pmrx_size = t3_mc7_size(&adapter->pmrx); 3664 p->pmtx_size = t3_mc7_size(&adapter->pmtx); 3665 p->cm_size = t3_mc7_size(&adapter->cm); 3666 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ 3667 p->chan_tx_size = p->pmtx_size / p->nchan; 3668 p->rx_pg_size = 64 * 1024; 3669 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; 3670 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); 3671 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); 3672 p->ntimer_qs = p->cm_size >= (128 << 20) || 3673 adapter->params.rev > 0 ? 12 : 6; 3674 } 3675 3676 adapter->params.offload = t3_mc7_size(&adapter->pmrx) && 3677 t3_mc7_size(&adapter->pmtx) && 3678 t3_mc7_size(&adapter->cm); 3679 3680 if (is_offload(adapter)) { 3681 adapter->params.mc5.nservers = DEFAULT_NSERVERS; 3682 adapter->params.mc5.nfilters = adapter->params.rev > 0 ? 3683 DEFAULT_NFILTERS : 0; 3684 adapter->params.mc5.nroutes = 0; 3685 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); 3686 3687 init_mtus(adapter->params.mtus); 3688 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 3689 } 3690 3691 early_hw_init(adapter, ai); 3692 ret = init_parity(adapter); 3693 if (ret) 3694 return ret; 3695 3696 for_each_port(adapter, i) { 3697 u8 hw_addr[6]; 3698 const struct port_type_info *pti; 3699 struct port_info *p = adap2pinfo(adapter, i); 3700 3701 while (!adapter->params.vpd.port_type[++j]) 3702 ; 3703 3704 pti = &port_types[adapter->params.vpd.port_type[j]]; 3705 if (!pti->phy_prep) { 3706 CH_ALERT(adapter, "Invalid port type index %d\n", 3707 adapter->params.vpd.port_type[j]); 3708 return -EINVAL; 3709 } 3710 3711 p->phy.mdio.dev = adapter->port[i]; 3712 ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j, 3713 ai->mdio_ops); 3714 if (ret) 3715 return ret; 3716 mac_prep(&p->mac, adapter, j); 3717 3718 /* 3719 * The VPD EEPROM stores the base Ethernet address for the 3720 * card. A port's address is derived from the base by adding 3721 * the port's index to the base's low octet. 3722 */ 3723 memcpy(hw_addr, adapter->params.vpd.eth_base, 5); 3724 hw_addr[5] = adapter->params.vpd.eth_base[5] + i; 3725 3726 memcpy(adapter->port[i]->dev_addr, hw_addr, 3727 ETH_ALEN); 3728 init_link_config(&p->link_config, p->phy.caps); 3729 p->phy.ops->power_down(&p->phy, 1); 3730 3731 /* 3732 * If the PHY doesn't support interrupts for link status 3733 * changes, schedule a scan of the adapter links at least 3734 * once a second. 3735 */ 3736 if (!(p->phy.caps & SUPPORTED_IRQ) && 3737 adapter->params.linkpoll_period > 10) 3738 adapter->params.linkpoll_period = 10; 3739 } 3740 3741 return 0; 3742 } 3743 3744 void t3_led_ready(struct adapter *adapter) 3745 { 3746 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 3747 F_GPIO0_OUT_VAL); 3748 } 3749 3750 int t3_replay_prep_adapter(struct adapter *adapter) 3751 { 3752 const struct adapter_info *ai = adapter->params.info; 3753 unsigned int i, j = -1; 3754 int ret; 3755 3756 early_hw_init(adapter, ai); 3757 ret = init_parity(adapter); 3758 if (ret) 3759 return ret; 3760 3761 for_each_port(adapter, i) { 3762 const struct port_type_info *pti; 3763 struct port_info *p = adap2pinfo(adapter, i); 3764 3765 while (!adapter->params.vpd.port_type[++j]) 3766 ; 3767 3768 pti = &port_types[adapter->params.vpd.port_type[j]]; 3769 ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL); 3770 if (ret) 3771 return ret; 3772 p->phy.ops->power_down(&p->phy, 1); 3773 } 3774 3775 return 0; 3776 } 3777 3778