1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include "common.h"
33 #include "regs.h"
34 #include "sge_defs.h"
35 #include "firmware_exports.h"
36 
37 static void t3_port_intr_clear(struct adapter *adapter, int idx);
38 
39 /**
40  *	t3_wait_op_done_val - wait until an operation is completed
41  *	@adapter: the adapter performing the operation
42  *	@reg: the register to check for completion
43  *	@mask: a single-bit field within @reg that indicates completion
44  *	@polarity: the value of the field when the operation is completed
45  *	@attempts: number of check iterations
46  *	@delay: delay in usecs between iterations
47  *	@valp: where to store the value of the register at completion time
48  *
49  *	Wait until an operation is completed by checking a bit in a register
50  *	up to @attempts times.  If @valp is not NULL the value of the register
51  *	at the time it indicated completion is stored there.  Returns 0 if the
52  *	operation completes and -EAGAIN otherwise.
53  */
54 
55 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
56 			int polarity, int attempts, int delay, u32 *valp)
57 {
58 	while (1) {
59 		u32 val = t3_read_reg(adapter, reg);
60 
61 		if (!!(val & mask) == polarity) {
62 			if (valp)
63 				*valp = val;
64 			return 0;
65 		}
66 		if (--attempts == 0)
67 			return -EAGAIN;
68 		if (delay)
69 			udelay(delay);
70 	}
71 }
72 
73 /**
74  *	t3_write_regs - write a bunch of registers
75  *	@adapter: the adapter to program
76  *	@p: an array of register address/register value pairs
77  *	@n: the number of address/value pairs
78  *	@offset: register address offset
79  *
80  *	Takes an array of register address/register value pairs and writes each
81  *	value to the corresponding register.  Register addresses are adjusted
82  *	by the supplied offset.
83  */
84 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
85 		   int n, unsigned int offset)
86 {
87 	while (n--) {
88 		t3_write_reg(adapter, p->reg_addr + offset, p->val);
89 		p++;
90 	}
91 }
92 
93 /**
94  *	t3_set_reg_field - set a register field to a value
95  *	@adapter: the adapter to program
96  *	@addr: the register address
97  *	@mask: specifies the portion of the register to modify
98  *	@val: the new value for the register field
99  *
100  *	Sets a register field specified by the supplied mask to the
101  *	given value.
102  */
103 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
104 		      u32 val)
105 {
106 	u32 v = t3_read_reg(adapter, addr) & ~mask;
107 
108 	t3_write_reg(adapter, addr, v | val);
109 	t3_read_reg(adapter, addr);	/* flush */
110 }
111 
112 /**
113  *	t3_read_indirect - read indirectly addressed registers
114  *	@adap: the adapter
115  *	@addr_reg: register holding the indirect address
116  *	@data_reg: register holding the value of the indirect register
117  *	@vals: where the read register values are stored
118  *	@start_idx: index of first indirect register to read
119  *	@nregs: how many indirect registers to read
120  *
121  *	Reads registers that are accessed indirectly through an address/data
122  *	register pair.
123  */
124 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
125 			     unsigned int data_reg, u32 *vals,
126 			     unsigned int nregs, unsigned int start_idx)
127 {
128 	while (nregs--) {
129 		t3_write_reg(adap, addr_reg, start_idx);
130 		*vals++ = t3_read_reg(adap, data_reg);
131 		start_idx++;
132 	}
133 }
134 
135 /**
136  *	t3_mc7_bd_read - read from MC7 through backdoor accesses
137  *	@mc7: identifies MC7 to read from
138  *	@start: index of first 64-bit word to read
139  *	@n: number of 64-bit words to read
140  *	@buf: where to store the read result
141  *
142  *	Read n 64-bit words from MC7 starting at word start, using backdoor
143  *	accesses.
144  */
145 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
146 		   u64 *buf)
147 {
148 	static const int shift[] = { 0, 0, 16, 24 };
149 	static const int step[] = { 0, 32, 16, 8 };
150 
151 	unsigned int size64 = mc7->size / 8;	/* # of 64-bit words */
152 	struct adapter *adap = mc7->adapter;
153 
154 	if (start >= size64 || start + n > size64)
155 		return -EINVAL;
156 
157 	start *= (8 << mc7->width);
158 	while (n--) {
159 		int i;
160 		u64 val64 = 0;
161 
162 		for (i = (1 << mc7->width) - 1; i >= 0; --i) {
163 			int attempts = 10;
164 			u32 val;
165 
166 			t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
167 			t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
168 			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
169 			while ((val & F_BUSY) && attempts--)
170 				val = t3_read_reg(adap,
171 						  mc7->offset + A_MC7_BD_OP);
172 			if (val & F_BUSY)
173 				return -EIO;
174 
175 			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
176 			if (mc7->width == 0) {
177 				val64 = t3_read_reg(adap,
178 						    mc7->offset +
179 						    A_MC7_BD_DATA0);
180 				val64 |= (u64) val << 32;
181 			} else {
182 				if (mc7->width > 1)
183 					val >>= shift[mc7->width];
184 				val64 |= (u64) val << (step[mc7->width] * i);
185 			}
186 			start += 8;
187 		}
188 		*buf++ = val64;
189 	}
190 	return 0;
191 }
192 
193 /*
194  * Initialize MI1.
195  */
196 static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
197 {
198 	u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
199 	u32 val = F_PREEN | V_CLKDIV(clkdiv);
200 
201 	t3_write_reg(adap, A_MI1_CFG, val);
202 }
203 
204 #define MDIO_ATTEMPTS 20
205 
206 /*
207  * MI1 read/write operations for clause 22 PHYs.
208  */
209 static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
210 		       u16 reg_addr)
211 {
212 	struct port_info *pi = netdev_priv(dev);
213 	struct adapter *adapter = pi->adapter;
214 	int ret;
215 	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
216 
217 	mutex_lock(&adapter->mdio_lock);
218 	t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
219 	t3_write_reg(adapter, A_MI1_ADDR, addr);
220 	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
221 	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
222 	if (!ret)
223 		ret = t3_read_reg(adapter, A_MI1_DATA);
224 	mutex_unlock(&adapter->mdio_lock);
225 	return ret;
226 }
227 
228 static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
229 			u16 reg_addr, u16 val)
230 {
231 	struct port_info *pi = netdev_priv(dev);
232 	struct adapter *adapter = pi->adapter;
233 	int ret;
234 	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
235 
236 	mutex_lock(&adapter->mdio_lock);
237 	t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
238 	t3_write_reg(adapter, A_MI1_ADDR, addr);
239 	t3_write_reg(adapter, A_MI1_DATA, val);
240 	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
241 	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
242 	mutex_unlock(&adapter->mdio_lock);
243 	return ret;
244 }
245 
246 static const struct mdio_ops mi1_mdio_ops = {
247 	.read = t3_mi1_read,
248 	.write = t3_mi1_write,
249 	.mode_support = MDIO_SUPPORTS_C22
250 };
251 
252 /*
253  * Performs the address cycle for clause 45 PHYs.
254  * Must be called with the MDIO_LOCK held.
255  */
256 static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
257 		       int reg_addr)
258 {
259 	u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
260 
261 	t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
262 	t3_write_reg(adapter, A_MI1_ADDR, addr);
263 	t3_write_reg(adapter, A_MI1_DATA, reg_addr);
264 	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
265 	return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
266 			       MDIO_ATTEMPTS, 10);
267 }
268 
269 /*
270  * MI1 read/write operations for indirect-addressed PHYs.
271  */
272 static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
273 			u16 reg_addr)
274 {
275 	struct port_info *pi = netdev_priv(dev);
276 	struct adapter *adapter = pi->adapter;
277 	int ret;
278 
279 	mutex_lock(&adapter->mdio_lock);
280 	ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
281 	if (!ret) {
282 		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
283 		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
284 				      MDIO_ATTEMPTS, 10);
285 		if (!ret)
286 			ret = t3_read_reg(adapter, A_MI1_DATA);
287 	}
288 	mutex_unlock(&adapter->mdio_lock);
289 	return ret;
290 }
291 
292 static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
293 			 u16 reg_addr, u16 val)
294 {
295 	struct port_info *pi = netdev_priv(dev);
296 	struct adapter *adapter = pi->adapter;
297 	int ret;
298 
299 	mutex_lock(&adapter->mdio_lock);
300 	ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
301 	if (!ret) {
302 		t3_write_reg(adapter, A_MI1_DATA, val);
303 		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
304 		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
305 				      MDIO_ATTEMPTS, 10);
306 	}
307 	mutex_unlock(&adapter->mdio_lock);
308 	return ret;
309 }
310 
311 static const struct mdio_ops mi1_mdio_ext_ops = {
312 	.read = mi1_ext_read,
313 	.write = mi1_ext_write,
314 	.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
315 };
316 
317 /**
318  *	t3_mdio_change_bits - modify the value of a PHY register
319  *	@phy: the PHY to operate on
320  *	@mmd: the device address
321  *	@reg: the register address
322  *	@clear: what part of the register value to mask off
323  *	@set: what part of the register value to set
324  *
325  *	Changes the value of a PHY register by applying a mask to its current
326  *	value and ORing the result with a new value.
327  */
328 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
329 			unsigned int set)
330 {
331 	int ret;
332 	unsigned int val;
333 
334 	ret = t3_mdio_read(phy, mmd, reg, &val);
335 	if (!ret) {
336 		val &= ~clear;
337 		ret = t3_mdio_write(phy, mmd, reg, val | set);
338 	}
339 	return ret;
340 }
341 
342 /**
343  *	t3_phy_reset - reset a PHY block
344  *	@phy: the PHY to operate on
345  *	@mmd: the device address of the PHY block to reset
346  *	@wait: how long to wait for the reset to complete in 1ms increments
347  *
348  *	Resets a PHY block and optionally waits for the reset to complete.
349  *	@mmd should be 0 for 10/100/1000 PHYs and the device address to reset
350  *	for 10G PHYs.
351  */
352 int t3_phy_reset(struct cphy *phy, int mmd, int wait)
353 {
354 	int err;
355 	unsigned int ctl;
356 
357 	err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
358 				  MDIO_CTRL1_RESET);
359 	if (err || !wait)
360 		return err;
361 
362 	do {
363 		err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
364 		if (err)
365 			return err;
366 		ctl &= MDIO_CTRL1_RESET;
367 		if (ctl)
368 			msleep(1);
369 	} while (ctl && --wait);
370 
371 	return ctl ? -1 : 0;
372 }
373 
374 /**
375  *	t3_phy_advertise - set the PHY advertisement registers for autoneg
376  *	@phy: the PHY to operate on
377  *	@advert: bitmap of capabilities the PHY should advertise
378  *
379  *	Sets a 10/100/1000 PHY's advertisement registers to advertise the
380  *	requested capabilities.
381  */
382 int t3_phy_advertise(struct cphy *phy, unsigned int advert)
383 {
384 	int err;
385 	unsigned int val = 0;
386 
387 	err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
388 	if (err)
389 		return err;
390 
391 	val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
392 	if (advert & ADVERTISED_1000baseT_Half)
393 		val |= ADVERTISE_1000HALF;
394 	if (advert & ADVERTISED_1000baseT_Full)
395 		val |= ADVERTISE_1000FULL;
396 
397 	err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
398 	if (err)
399 		return err;
400 
401 	val = 1;
402 	if (advert & ADVERTISED_10baseT_Half)
403 		val |= ADVERTISE_10HALF;
404 	if (advert & ADVERTISED_10baseT_Full)
405 		val |= ADVERTISE_10FULL;
406 	if (advert & ADVERTISED_100baseT_Half)
407 		val |= ADVERTISE_100HALF;
408 	if (advert & ADVERTISED_100baseT_Full)
409 		val |= ADVERTISE_100FULL;
410 	if (advert & ADVERTISED_Pause)
411 		val |= ADVERTISE_PAUSE_CAP;
412 	if (advert & ADVERTISED_Asym_Pause)
413 		val |= ADVERTISE_PAUSE_ASYM;
414 	return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
415 }
416 
417 /**
418  *	t3_phy_advertise_fiber - set fiber PHY advertisement register
419  *	@phy: the PHY to operate on
420  *	@advert: bitmap of capabilities the PHY should advertise
421  *
422  *	Sets a fiber PHY's advertisement register to advertise the
423  *	requested capabilities.
424  */
425 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
426 {
427 	unsigned int val = 0;
428 
429 	if (advert & ADVERTISED_1000baseT_Half)
430 		val |= ADVERTISE_1000XHALF;
431 	if (advert & ADVERTISED_1000baseT_Full)
432 		val |= ADVERTISE_1000XFULL;
433 	if (advert & ADVERTISED_Pause)
434 		val |= ADVERTISE_1000XPAUSE;
435 	if (advert & ADVERTISED_Asym_Pause)
436 		val |= ADVERTISE_1000XPSE_ASYM;
437 	return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
438 }
439 
440 /**
441  *	t3_set_phy_speed_duplex - force PHY speed and duplex
442  *	@phy: the PHY to operate on
443  *	@speed: requested PHY speed
444  *	@duplex: requested PHY duplex
445  *
446  *	Force a 10/100/1000 PHY's speed and duplex.  This also disables
447  *	auto-negotiation except for GigE, where auto-negotiation is mandatory.
448  */
449 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
450 {
451 	int err;
452 	unsigned int ctl;
453 
454 	err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
455 	if (err)
456 		return err;
457 
458 	if (speed >= 0) {
459 		ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
460 		if (speed == SPEED_100)
461 			ctl |= BMCR_SPEED100;
462 		else if (speed == SPEED_1000)
463 			ctl |= BMCR_SPEED1000;
464 	}
465 	if (duplex >= 0) {
466 		ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
467 		if (duplex == DUPLEX_FULL)
468 			ctl |= BMCR_FULLDPLX;
469 	}
470 	if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
471 		ctl |= BMCR_ANENABLE;
472 	return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
473 }
474 
475 int t3_phy_lasi_intr_enable(struct cphy *phy)
476 {
477 	return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
478 			     MDIO_PMA_LASI_LSALARM);
479 }
480 
481 int t3_phy_lasi_intr_disable(struct cphy *phy)
482 {
483 	return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
484 }
485 
486 int t3_phy_lasi_intr_clear(struct cphy *phy)
487 {
488 	u32 val;
489 
490 	return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
491 }
492 
493 int t3_phy_lasi_intr_handler(struct cphy *phy)
494 {
495 	unsigned int status;
496 	int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
497 			       &status);
498 
499 	if (err)
500 		return err;
501 	return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
502 }
503 
504 static const struct adapter_info t3_adap_info[] = {
505 	{1, 1, 0,
506 	 F_GPIO2_OEN | F_GPIO4_OEN |
507 	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
508 	 &mi1_mdio_ops, "Chelsio PE9000"},
509 	{1, 1, 0,
510 	 F_GPIO2_OEN | F_GPIO4_OEN |
511 	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
512 	 &mi1_mdio_ops, "Chelsio T302"},
513 	{1, 0, 0,
514 	 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
515 	 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
516 	 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
517 	 &mi1_mdio_ext_ops, "Chelsio T310"},
518 	{1, 1, 0,
519 	 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
520 	 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
521 	 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
522 	 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
523 	 &mi1_mdio_ext_ops, "Chelsio T320"},
524 	{},
525 	{},
526 	{1, 0, 0,
527 	 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
528 	 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
529 	 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
530 	 &mi1_mdio_ext_ops, "Chelsio T310" },
531 	{1, 0, 0,
532 	 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
533 	 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
534 	 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
535 	 &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
536 };
537 
538 /*
539  * Return the adapter_info structure with a given index.  Out-of-range indices
540  * return NULL.
541  */
542 const struct adapter_info *t3_get_adapter_info(unsigned int id)
543 {
544 	return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
545 }
546 
547 struct port_type_info {
548 	int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
549 			int phy_addr, const struct mdio_ops *ops);
550 };
551 
552 static const struct port_type_info port_types[] = {
553 	{ NULL },
554 	{ t3_ael1002_phy_prep },
555 	{ t3_vsc8211_phy_prep },
556 	{ NULL},
557 	{ t3_xaui_direct_phy_prep },
558 	{ t3_ael2005_phy_prep },
559 	{ t3_qt2045_phy_prep },
560 	{ t3_ael1006_phy_prep },
561 	{ NULL },
562 	{ t3_aq100x_phy_prep },
563 	{ t3_ael2020_phy_prep },
564 };
565 
566 #define VPD_ENTRY(name, len) \
567 	u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
568 
569 /*
570  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
571  * VPD-R sections.
572  */
573 struct t3_vpd {
574 	u8 id_tag;
575 	u8 id_len[2];
576 	u8 id_data[16];
577 	u8 vpdr_tag;
578 	u8 vpdr_len[2];
579 	VPD_ENTRY(pn, 16);	/* part number */
580 	VPD_ENTRY(ec, 16);	/* EC level */
581 	VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
582 	VPD_ENTRY(na, 12);	/* MAC address base */
583 	VPD_ENTRY(cclk, 6);	/* core clock */
584 	VPD_ENTRY(mclk, 6);	/* mem clock */
585 	VPD_ENTRY(uclk, 6);	/* uP clk */
586 	VPD_ENTRY(mdc, 6);	/* MDIO clk */
587 	VPD_ENTRY(mt, 2);	/* mem timing */
588 	VPD_ENTRY(xaui0cfg, 6);	/* XAUI0 config */
589 	VPD_ENTRY(xaui1cfg, 6);	/* XAUI1 config */
590 	VPD_ENTRY(port0, 2);	/* PHY0 complex */
591 	VPD_ENTRY(port1, 2);	/* PHY1 complex */
592 	VPD_ENTRY(port2, 2);	/* PHY2 complex */
593 	VPD_ENTRY(port3, 2);	/* PHY3 complex */
594 	VPD_ENTRY(rv, 1);	/* csum */
595 	u32 pad;		/* for multiple-of-4 sizing and alignment */
596 };
597 
598 #define EEPROM_MAX_POLL   40
599 #define EEPROM_STAT_ADDR  0x4000
600 #define VPD_BASE          0xc00
601 
602 /**
603  *	t3_seeprom_read - read a VPD EEPROM location
604  *	@adapter: adapter to read
605  *	@addr: EEPROM address
606  *	@data: where to store the read data
607  *
608  *	Read a 32-bit word from a location in VPD EEPROM using the card's PCI
609  *	VPD ROM capability.  A zero is written to the flag bit when the
610  *	address is written to the control register.  The hardware device will
611  *	set the flag to 1 when 4 bytes have been read into the data register.
612  */
613 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
614 {
615 	u16 val;
616 	int attempts = EEPROM_MAX_POLL;
617 	u32 v;
618 	unsigned int base = adapter->params.pci.vpd_cap_addr;
619 
620 	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
621 		return -EINVAL;
622 
623 	pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
624 	do {
625 		udelay(10);
626 		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
627 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
628 
629 	if (!(val & PCI_VPD_ADDR_F)) {
630 		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
631 		return -EIO;
632 	}
633 	pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
634 	*data = cpu_to_le32(v);
635 	return 0;
636 }
637 
638 /**
639  *	t3_seeprom_write - write a VPD EEPROM location
640  *	@adapter: adapter to write
641  *	@addr: EEPROM address
642  *	@data: value to write
643  *
644  *	Write a 32-bit word to a location in VPD EEPROM using the card's PCI
645  *	VPD ROM capability.
646  */
647 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
648 {
649 	u16 val;
650 	int attempts = EEPROM_MAX_POLL;
651 	unsigned int base = adapter->params.pci.vpd_cap_addr;
652 
653 	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
654 		return -EINVAL;
655 
656 	pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
657 			       le32_to_cpu(data));
658 	pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
659 			      addr | PCI_VPD_ADDR_F);
660 	do {
661 		msleep(1);
662 		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
663 	} while ((val & PCI_VPD_ADDR_F) && --attempts);
664 
665 	if (val & PCI_VPD_ADDR_F) {
666 		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
667 		return -EIO;
668 	}
669 	return 0;
670 }
671 
672 /**
673  *	t3_seeprom_wp - enable/disable EEPROM write protection
674  *	@adapter: the adapter
675  *	@enable: 1 to enable write protection, 0 to disable it
676  *
677  *	Enables or disables write protection on the serial EEPROM.
678  */
679 int t3_seeprom_wp(struct adapter *adapter, int enable)
680 {
681 	return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
682 }
683 
684 /**
685  *	get_vpd_params - read VPD parameters from VPD EEPROM
686  *	@adapter: adapter to read
687  *	@p: where to store the parameters
688  *
689  *	Reads card parameters stored in VPD EEPROM.
690  */
691 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
692 {
693 	int i, addr, ret;
694 	struct t3_vpd vpd;
695 
696 	/*
697 	 * Card information is normally at VPD_BASE but some early cards had
698 	 * it at 0.
699 	 */
700 	ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
701 	if (ret)
702 		return ret;
703 	addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
704 
705 	for (i = 0; i < sizeof(vpd); i += 4) {
706 		ret = t3_seeprom_read(adapter, addr + i,
707 				      (__le32 *)((u8 *)&vpd + i));
708 		if (ret)
709 			return ret;
710 	}
711 
712 	p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
713 	p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
714 	p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
715 	p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
716 	p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
717 	memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
718 
719 	/* Old eeproms didn't have port information */
720 	if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
721 		p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
722 		p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
723 	} else {
724 		p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
725 		p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
726 		p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
727 		p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
728 	}
729 
730 	for (i = 0; i < 6; i++)
731 		p->eth_base[i] = hex_to_bin(vpd.na_data[2 * i]) * 16 +
732 				 hex_to_bin(vpd.na_data[2 * i + 1]);
733 	return 0;
734 }
735 
736 /* serial flash and firmware constants */
737 enum {
738 	SF_ATTEMPTS = 5,	/* max retries for SF1 operations */
739 	SF_SEC_SIZE = 64 * 1024,	/* serial flash sector size */
740 	SF_SIZE = SF_SEC_SIZE * 8,	/* serial flash size */
741 
742 	/* flash command opcodes */
743 	SF_PROG_PAGE = 2,	/* program page */
744 	SF_WR_DISABLE = 4,	/* disable writes */
745 	SF_RD_STATUS = 5,	/* read status register */
746 	SF_WR_ENABLE = 6,	/* enable writes */
747 	SF_RD_DATA_FAST = 0xb,	/* read flash */
748 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
749 
750 	FW_FLASH_BOOT_ADDR = 0x70000,	/* start address of FW in flash */
751 	FW_VERS_ADDR = 0x7fffc,    /* flash address holding FW version */
752 	FW_MIN_SIZE = 8            /* at least version and csum */
753 };
754 
755 /**
756  *	sf1_read - read data from the serial flash
757  *	@adapter: the adapter
758  *	@byte_cnt: number of bytes to read
759  *	@cont: whether another operation will be chained
760  *	@valp: where to store the read data
761  *
762  *	Reads up to 4 bytes of data from the serial flash.  The location of
763  *	the read needs to be specified prior to calling this by issuing the
764  *	appropriate commands to the serial flash.
765  */
766 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
767 		    u32 *valp)
768 {
769 	int ret;
770 
771 	if (!byte_cnt || byte_cnt > 4)
772 		return -EINVAL;
773 	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
774 		return -EBUSY;
775 	t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
776 	ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
777 	if (!ret)
778 		*valp = t3_read_reg(adapter, A_SF_DATA);
779 	return ret;
780 }
781 
782 /**
783  *	sf1_write - write data to the serial flash
784  *	@adapter: the adapter
785  *	@byte_cnt: number of bytes to write
786  *	@cont: whether another operation will be chained
787  *	@val: value to write
788  *
789  *	Writes up to 4 bytes of data to the serial flash.  The location of
790  *	the write needs to be specified prior to calling this by issuing the
791  *	appropriate commands to the serial flash.
792  */
793 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
794 		     u32 val)
795 {
796 	if (!byte_cnt || byte_cnt > 4)
797 		return -EINVAL;
798 	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
799 		return -EBUSY;
800 	t3_write_reg(adapter, A_SF_DATA, val);
801 	t3_write_reg(adapter, A_SF_OP,
802 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
803 	return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
804 }
805 
806 /**
807  *	flash_wait_op - wait for a flash operation to complete
808  *	@adapter: the adapter
809  *	@attempts: max number of polls of the status register
810  *	@delay: delay between polls in ms
811  *
812  *	Wait for a flash operation to complete by polling the status register.
813  */
814 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
815 {
816 	int ret;
817 	u32 status;
818 
819 	while (1) {
820 		if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
821 		    (ret = sf1_read(adapter, 1, 0, &status)) != 0)
822 			return ret;
823 		if (!(status & 1))
824 			return 0;
825 		if (--attempts == 0)
826 			return -EAGAIN;
827 		if (delay)
828 			msleep(delay);
829 	}
830 }
831 
832 /**
833  *	t3_read_flash - read words from serial flash
834  *	@adapter: the adapter
835  *	@addr: the start address for the read
836  *	@nwords: how many 32-bit words to read
837  *	@data: where to store the read data
838  *	@byte_oriented: whether to store data as bytes or as words
839  *
840  *	Read the specified number of 32-bit words from the serial flash.
841  *	If @byte_oriented is set the read data is stored as a byte array
842  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
843  *	natural endianess.
844  */
845 static int t3_read_flash(struct adapter *adapter, unsigned int addr,
846 			 unsigned int nwords, u32 *data, int byte_oriented)
847 {
848 	int ret;
849 
850 	if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
851 		return -EINVAL;
852 
853 	addr = swab32(addr) | SF_RD_DATA_FAST;
854 
855 	if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
856 	    (ret = sf1_read(adapter, 1, 1, data)) != 0)
857 		return ret;
858 
859 	for (; nwords; nwords--, data++) {
860 		ret = sf1_read(adapter, 4, nwords > 1, data);
861 		if (ret)
862 			return ret;
863 		if (byte_oriented)
864 			*data = htonl(*data);
865 	}
866 	return 0;
867 }
868 
869 /**
870  *	t3_write_flash - write up to a page of data to the serial flash
871  *	@adapter: the adapter
872  *	@addr: the start address to write
873  *	@n: length of data to write
874  *	@data: the data to write
875  *
876  *	Writes up to a page of data (256 bytes) to the serial flash starting
877  *	at the given address.
878  */
879 static int t3_write_flash(struct adapter *adapter, unsigned int addr,
880 			  unsigned int n, const u8 *data)
881 {
882 	int ret;
883 	u32 buf[64];
884 	unsigned int i, c, left, val, offset = addr & 0xff;
885 
886 	if (addr + n > SF_SIZE || offset + n > 256)
887 		return -EINVAL;
888 
889 	val = swab32(addr) | SF_PROG_PAGE;
890 
891 	if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
892 	    (ret = sf1_write(adapter, 4, 1, val)) != 0)
893 		return ret;
894 
895 	for (left = n; left; left -= c) {
896 		c = min(left, 4U);
897 		for (val = 0, i = 0; i < c; ++i)
898 			val = (val << 8) + *data++;
899 
900 		ret = sf1_write(adapter, c, c != left, val);
901 		if (ret)
902 			return ret;
903 	}
904 	if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
905 		return ret;
906 
907 	/* Read the page to verify the write succeeded */
908 	ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
909 	if (ret)
910 		return ret;
911 
912 	if (memcmp(data - n, (u8 *) buf + offset, n))
913 		return -EIO;
914 	return 0;
915 }
916 
917 /**
918  *	t3_get_tp_version - read the tp sram version
919  *	@adapter: the adapter
920  *	@vers: where to place the version
921  *
922  *	Reads the protocol sram version from sram.
923  */
924 int t3_get_tp_version(struct adapter *adapter, u32 *vers)
925 {
926 	int ret;
927 
928 	/* Get version loaded in SRAM */
929 	t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
930 	ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
931 			      1, 1, 5, 1);
932 	if (ret)
933 		return ret;
934 
935 	*vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
936 
937 	return 0;
938 }
939 
940 /**
941  *	t3_check_tpsram_version - read the tp sram version
942  *	@adapter: the adapter
943  *
944  *	Reads the protocol sram version from flash.
945  */
946 int t3_check_tpsram_version(struct adapter *adapter)
947 {
948 	int ret;
949 	u32 vers;
950 	unsigned int major, minor;
951 
952 	if (adapter->params.rev == T3_REV_A)
953 		return 0;
954 
955 
956 	ret = t3_get_tp_version(adapter, &vers);
957 	if (ret)
958 		return ret;
959 
960 	major = G_TP_VERSION_MAJOR(vers);
961 	minor = G_TP_VERSION_MINOR(vers);
962 
963 	if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
964 		return 0;
965 	else {
966 		CH_ERR(adapter, "found wrong TP version (%u.%u), "
967 		       "driver compiled for version %d.%d\n", major, minor,
968 		       TP_VERSION_MAJOR, TP_VERSION_MINOR);
969 	}
970 	return -EINVAL;
971 }
972 
973 /**
974  *	t3_check_tpsram - check if provided protocol SRAM
975  *			  is compatible with this driver
976  *	@adapter: the adapter
977  *	@tp_sram: the firmware image to write
978  *	@size: image size
979  *
980  *	Checks if an adapter's tp sram is compatible with the driver.
981  *	Returns 0 if the versions are compatible, a negative error otherwise.
982  */
983 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
984 		    unsigned int size)
985 {
986 	u32 csum;
987 	unsigned int i;
988 	const __be32 *p = (const __be32 *)tp_sram;
989 
990 	/* Verify checksum */
991 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
992 		csum += ntohl(p[i]);
993 	if (csum != 0xffffffff) {
994 		CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
995 		       csum);
996 		return -EINVAL;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 enum fw_version_type {
1003 	FW_VERSION_N3,
1004 	FW_VERSION_T3
1005 };
1006 
1007 /**
1008  *	t3_get_fw_version - read the firmware version
1009  *	@adapter: the adapter
1010  *	@vers: where to place the version
1011  *
1012  *	Reads the FW version from flash.
1013  */
1014 int t3_get_fw_version(struct adapter *adapter, u32 *vers)
1015 {
1016 	return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
1017 }
1018 
1019 /**
1020  *	t3_check_fw_version - check if the FW is compatible with this driver
1021  *	@adapter: the adapter
1022  *
1023  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
1024  *	if the versions are compatible, a negative error otherwise.
1025  */
1026 int t3_check_fw_version(struct adapter *adapter)
1027 {
1028 	int ret;
1029 	u32 vers;
1030 	unsigned int type, major, minor;
1031 
1032 	ret = t3_get_fw_version(adapter, &vers);
1033 	if (ret)
1034 		return ret;
1035 
1036 	type = G_FW_VERSION_TYPE(vers);
1037 	major = G_FW_VERSION_MAJOR(vers);
1038 	minor = G_FW_VERSION_MINOR(vers);
1039 
1040 	if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
1041 	    minor == FW_VERSION_MINOR)
1042 		return 0;
1043 	else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
1044 		CH_WARN(adapter, "found old FW minor version(%u.%u), "
1045 		        "driver compiled for version %u.%u\n", major, minor,
1046 			FW_VERSION_MAJOR, FW_VERSION_MINOR);
1047 	else {
1048 		CH_WARN(adapter, "found newer FW version(%u.%u), "
1049 		        "driver compiled for version %u.%u\n", major, minor,
1050 			FW_VERSION_MAJOR, FW_VERSION_MINOR);
1051 			return 0;
1052 	}
1053 	return -EINVAL;
1054 }
1055 
1056 /**
1057  *	t3_flash_erase_sectors - erase a range of flash sectors
1058  *	@adapter: the adapter
1059  *	@start: the first sector to erase
1060  *	@end: the last sector to erase
1061  *
1062  *	Erases the sectors in the given range.
1063  */
1064 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1065 {
1066 	while (start <= end) {
1067 		int ret;
1068 
1069 		if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1070 		    (ret = sf1_write(adapter, 4, 0,
1071 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
1072 		    (ret = flash_wait_op(adapter, 5, 500)) != 0)
1073 			return ret;
1074 		start++;
1075 	}
1076 	return 0;
1077 }
1078 
1079 /**
1080  *	t3_load_fw - download firmware
1081  *	@adapter: the adapter
1082  *	@fw_data: the firmware image to write
1083  *	@size: image size
1084  *
1085  *	Write the supplied firmware image to the card's serial flash.
1086  *	The FW image has the following sections: @size - 8 bytes of code and
1087  *	data, followed by 4 bytes of FW version, followed by the 32-bit
1088  *	1's complement checksum of the whole image.
1089  */
1090 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1091 {
1092 	u32 csum;
1093 	unsigned int i;
1094 	const __be32 *p = (const __be32 *)fw_data;
1095 	int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1096 
1097 	if ((size & 3) || size < FW_MIN_SIZE)
1098 		return -EINVAL;
1099 	if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1100 		return -EFBIG;
1101 
1102 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1103 		csum += ntohl(p[i]);
1104 	if (csum != 0xffffffff) {
1105 		CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1106 		       csum);
1107 		return -EINVAL;
1108 	}
1109 
1110 	ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1111 	if (ret)
1112 		goto out;
1113 
1114 	size -= 8;		/* trim off version and checksum */
1115 	for (addr = FW_FLASH_BOOT_ADDR; size;) {
1116 		unsigned int chunk_size = min(size, 256U);
1117 
1118 		ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1119 		if (ret)
1120 			goto out;
1121 
1122 		addr += chunk_size;
1123 		fw_data += chunk_size;
1124 		size -= chunk_size;
1125 	}
1126 
1127 	ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1128 out:
1129 	if (ret)
1130 		CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1131 	return ret;
1132 }
1133 
1134 #define CIM_CTL_BASE 0x2000
1135 
1136 /**
1137  *      t3_cim_ctl_blk_read - read a block from CIM control region
1138  *
1139  *      @adap: the adapter
1140  *      @addr: the start address within the CIM control region
1141  *      @n: number of words to read
1142  *      @valp: where to store the result
1143  *
1144  *      Reads a block of 4-byte words from the CIM control region.
1145  */
1146 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1147 			unsigned int n, unsigned int *valp)
1148 {
1149 	int ret = 0;
1150 
1151 	if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1152 		return -EBUSY;
1153 
1154 	for ( ; !ret && n--; addr += 4) {
1155 		t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1156 		ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1157 				      0, 5, 2);
1158 		if (!ret)
1159 			*valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1160 	}
1161 	return ret;
1162 }
1163 
1164 static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
1165 			       u32 *rx_hash_high, u32 *rx_hash_low)
1166 {
1167 	/* stop Rx unicast traffic */
1168 	t3_mac_disable_exact_filters(mac);
1169 
1170 	/* stop broadcast, multicast, promiscuous mode traffic */
1171 	*rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
1172 	t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1173 			 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1174 			 F_DISBCAST);
1175 
1176 	*rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
1177 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
1178 
1179 	*rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
1180 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
1181 
1182 	/* Leave time to drain max RX fifo */
1183 	msleep(1);
1184 }
1185 
1186 static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
1187 			       u32 rx_hash_high, u32 rx_hash_low)
1188 {
1189 	t3_mac_enable_exact_filters(mac);
1190 	t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1191 			 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1192 			 rx_cfg);
1193 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
1194 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
1195 }
1196 
1197 /**
1198  *	t3_link_changed - handle interface link changes
1199  *	@adapter: the adapter
1200  *	@port_id: the port index that changed link state
1201  *
1202  *	Called when a port's link settings change to propagate the new values
1203  *	to the associated PHY and MAC.  After performing the common tasks it
1204  *	invokes an OS-specific handler.
1205  */
1206 void t3_link_changed(struct adapter *adapter, int port_id)
1207 {
1208 	int link_ok, speed, duplex, fc;
1209 	struct port_info *pi = adap2pinfo(adapter, port_id);
1210 	struct cphy *phy = &pi->phy;
1211 	struct cmac *mac = &pi->mac;
1212 	struct link_config *lc = &pi->link_config;
1213 
1214 	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1215 
1216 	if (!lc->link_ok && link_ok) {
1217 		u32 rx_cfg, rx_hash_high, rx_hash_low;
1218 		u32 status;
1219 
1220 		t3_xgm_intr_enable(adapter, port_id);
1221 		t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1222 		t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1223 		t3_mac_enable(mac, MAC_DIRECTION_RX);
1224 
1225 		status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
1226 		if (status & F_LINKFAULTCHANGE) {
1227 			mac->stats.link_faults++;
1228 			pi->link_fault = 1;
1229 		}
1230 		t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1231 	}
1232 
1233 	if (lc->requested_fc & PAUSE_AUTONEG)
1234 		fc &= lc->requested_fc;
1235 	else
1236 		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1237 
1238 	if (link_ok == lc->link_ok && speed == lc->speed &&
1239 	    duplex == lc->duplex && fc == lc->fc)
1240 		return;                            /* nothing changed */
1241 
1242 	if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1243 	    uses_xaui(adapter)) {
1244 		if (link_ok)
1245 			t3b_pcs_reset(mac);
1246 		t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1247 			     link_ok ? F_TXACTENABLE | F_RXEN : 0);
1248 	}
1249 	lc->link_ok = link_ok;
1250 	lc->speed = speed < 0 ? SPEED_INVALID : speed;
1251 	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1252 
1253 	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1254 		/* Set MAC speed, duplex, and flow control to match PHY. */
1255 		t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1256 		lc->fc = fc;
1257 	}
1258 
1259 	t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
1260 			   speed, duplex, fc);
1261 }
1262 
1263 void t3_link_fault(struct adapter *adapter, int port_id)
1264 {
1265 	struct port_info *pi = adap2pinfo(adapter, port_id);
1266 	struct cmac *mac = &pi->mac;
1267 	struct cphy *phy = &pi->phy;
1268 	struct link_config *lc = &pi->link_config;
1269 	int link_ok, speed, duplex, fc, link_fault;
1270 	u32 rx_cfg, rx_hash_high, rx_hash_low;
1271 
1272 	t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1273 
1274 	if (adapter->params.rev > 0 && uses_xaui(adapter))
1275 		t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
1276 
1277 	t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1278 	t3_mac_enable(mac, MAC_DIRECTION_RX);
1279 
1280 	t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1281 
1282 	link_fault = t3_read_reg(adapter,
1283 				 A_XGM_INT_STATUS + mac->offset);
1284 	link_fault &= F_LINKFAULTCHANGE;
1285 
1286 	link_ok = lc->link_ok;
1287 	speed = lc->speed;
1288 	duplex = lc->duplex;
1289 	fc = lc->fc;
1290 
1291 	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1292 
1293 	if (link_fault) {
1294 		lc->link_ok = 0;
1295 		lc->speed = SPEED_INVALID;
1296 		lc->duplex = DUPLEX_INVALID;
1297 
1298 		t3_os_link_fault(adapter, port_id, 0);
1299 
1300 		/* Account link faults only when the phy reports a link up */
1301 		if (link_ok)
1302 			mac->stats.link_faults++;
1303 	} else {
1304 		if (link_ok)
1305 			t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1306 				     F_TXACTENABLE | F_RXEN);
1307 
1308 		pi->link_fault = 0;
1309 		lc->link_ok = (unsigned char)link_ok;
1310 		lc->speed = speed < 0 ? SPEED_INVALID : speed;
1311 		lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1312 		t3_os_link_fault(adapter, port_id, link_ok);
1313 	}
1314 }
1315 
1316 /**
1317  *	t3_link_start - apply link configuration to MAC/PHY
1318  *	@phy: the PHY to setup
1319  *	@mac: the MAC to setup
1320  *	@lc: the requested link configuration
1321  *
1322  *	Set up a port's MAC and PHY according to a desired link configuration.
1323  *	- If the PHY can auto-negotiate first decide what to advertise, then
1324  *	  enable/disable auto-negotiation as desired, and reset.
1325  *	- If the PHY does not auto-negotiate just reset it.
1326  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1327  *	  otherwise do it later based on the outcome of auto-negotiation.
1328  */
1329 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1330 {
1331 	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1332 
1333 	lc->link_ok = 0;
1334 	if (lc->supported & SUPPORTED_Autoneg) {
1335 		lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1336 		if (fc) {
1337 			lc->advertising |= ADVERTISED_Asym_Pause;
1338 			if (fc & PAUSE_RX)
1339 				lc->advertising |= ADVERTISED_Pause;
1340 		}
1341 		phy->ops->advertise(phy, lc->advertising);
1342 
1343 		if (lc->autoneg == AUTONEG_DISABLE) {
1344 			lc->speed = lc->requested_speed;
1345 			lc->duplex = lc->requested_duplex;
1346 			lc->fc = (unsigned char)fc;
1347 			t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1348 						   fc);
1349 			/* Also disables autoneg */
1350 			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1351 		} else
1352 			phy->ops->autoneg_enable(phy);
1353 	} else {
1354 		t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1355 		lc->fc = (unsigned char)fc;
1356 		phy->ops->reset(phy, 0);
1357 	}
1358 	return 0;
1359 }
1360 
1361 /**
1362  *	t3_set_vlan_accel - control HW VLAN extraction
1363  *	@adapter: the adapter
1364  *	@ports: bitmap of adapter ports to operate on
1365  *	@on: enable (1) or disable (0) HW VLAN extraction
1366  *
1367  *	Enables or disables HW extraction of VLAN tags for the given port.
1368  */
1369 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1370 {
1371 	t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1372 			 ports << S_VLANEXTRACTIONENABLE,
1373 			 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1374 }
1375 
1376 struct intr_info {
1377 	unsigned int mask;	/* bits to check in interrupt status */
1378 	const char *msg;	/* message to print or NULL */
1379 	short stat_idx;		/* stat counter to increment or -1 */
1380 	unsigned short fatal;	/* whether the condition reported is fatal */
1381 };
1382 
1383 /**
1384  *	t3_handle_intr_status - table driven interrupt handler
1385  *	@adapter: the adapter that generated the interrupt
1386  *	@reg: the interrupt status register to process
1387  *	@mask: a mask to apply to the interrupt status
1388  *	@acts: table of interrupt actions
1389  *	@stats: statistics counters tracking interrupt occurrences
1390  *
1391  *	A table driven interrupt handler that applies a set of masks to an
1392  *	interrupt status word and performs the corresponding actions if the
1393  *	interrupts described by the mask have occurred.  The actions include
1394  *	optionally printing a warning or alert message, and optionally
1395  *	incrementing a stat counter.  The table is terminated by an entry
1396  *	specifying mask 0.  Returns the number of fatal interrupt conditions.
1397  */
1398 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1399 				 unsigned int mask,
1400 				 const struct intr_info *acts,
1401 				 unsigned long *stats)
1402 {
1403 	int fatal = 0;
1404 	unsigned int status = t3_read_reg(adapter, reg) & mask;
1405 
1406 	for (; acts->mask; ++acts) {
1407 		if (!(status & acts->mask))
1408 			continue;
1409 		if (acts->fatal) {
1410 			fatal++;
1411 			CH_ALERT(adapter, "%s (0x%x)\n",
1412 				 acts->msg, status & acts->mask);
1413 			status &= ~acts->mask;
1414 		} else if (acts->msg)
1415 			CH_WARN(adapter, "%s (0x%x)\n",
1416 				acts->msg, status & acts->mask);
1417 		if (acts->stat_idx >= 0)
1418 			stats[acts->stat_idx]++;
1419 	}
1420 	if (status)		/* clear processed interrupts */
1421 		t3_write_reg(adapter, reg, status);
1422 	return fatal;
1423 }
1424 
1425 #define SGE_INTR_MASK (F_RSPQDISABLED | \
1426 		       F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
1427 		       F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
1428 		       F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
1429 		       V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
1430 		       F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
1431 		       F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
1432 		       F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
1433 		       F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
1434 		       F_LOPIODRBDROPERR)
1435 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1436 		       F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1437 		       F_NFASRCHFAIL)
1438 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1439 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1440 		       V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1441 		       F_TXFIFO_UNDERRUN)
1442 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1443 			F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1444 			F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1445 			F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1446 			V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1447 			V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1448 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1449 			F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1450 			/* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1451 			F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
1452 			F_TXPARERR | V_BISTERR(M_BISTERR))
1453 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
1454 			 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
1455 			 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
1456 #define ULPTX_INTR_MASK 0xfc
1457 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
1458 			 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1459 			 F_ZERO_SWITCH_ERROR)
1460 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1461 		       F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1462 		       F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1463 	 	       F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
1464 		       F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
1465 		       F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
1466 		       F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
1467 		       F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
1468 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1469 			V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1470 			V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1471 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1472 			V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1473 			V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1474 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1475 		       V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1476 		       V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1477 		       V_MCAPARERRENB(M_MCAPARERRENB))
1478 #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
1479 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1480 		      F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1481 		      F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1482 		      F_MPS0 | F_CPL_SWITCH)
1483 /*
1484  * Interrupt handler for the PCIX1 module.
1485  */
1486 static void pci_intr_handler(struct adapter *adapter)
1487 {
1488 	static const struct intr_info pcix1_intr_info[] = {
1489 		{F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1490 		{F_SIGTARABT, "PCI signaled target abort", -1, 1},
1491 		{F_RCVTARABT, "PCI received target abort", -1, 1},
1492 		{F_RCVMSTABT, "PCI received master abort", -1, 1},
1493 		{F_SIGSYSERR, "PCI signaled system error", -1, 1},
1494 		{F_DETPARERR, "PCI detected parity error", -1, 1},
1495 		{F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1496 		{F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1497 		{F_RCVSPLCMPERR, "PCI received split completion error", -1,
1498 		 1},
1499 		{F_DETCORECCERR, "PCI correctable ECC error",
1500 		 STAT_PCI_CORR_ECC, 0},
1501 		{F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1502 		{F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1503 		{V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1504 		 1},
1505 		{V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1506 		 1},
1507 		{V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1508 		 1},
1509 		{V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1510 		 "error", -1, 1},
1511 		{0}
1512 	};
1513 
1514 	if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1515 				  pcix1_intr_info, adapter->irq_stats))
1516 		t3_fatal_err(adapter);
1517 }
1518 
1519 /*
1520  * Interrupt handler for the PCIE module.
1521  */
1522 static void pcie_intr_handler(struct adapter *adapter)
1523 {
1524 	static const struct intr_info pcie_intr_info[] = {
1525 		{F_PEXERR, "PCI PEX error", -1, 1},
1526 		{F_UNXSPLCPLERRR,
1527 		 "PCI unexpected split completion DMA read error", -1, 1},
1528 		{F_UNXSPLCPLERRC,
1529 		 "PCI unexpected split completion DMA command error", -1, 1},
1530 		{F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1531 		{F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1532 		{F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1533 		{F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1534 		{V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1535 		 "PCI MSI-X table/PBA parity error", -1, 1},
1536 		{F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
1537 		{F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
1538 		{F_RXPARERR, "PCI Rx parity error", -1, 1},
1539 		{F_TXPARERR, "PCI Tx parity error", -1, 1},
1540 		{V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1541 		{0}
1542 	};
1543 
1544 	if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
1545 		CH_ALERT(adapter, "PEX error code 0x%x\n",
1546 			 t3_read_reg(adapter, A_PCIE_PEX_ERR));
1547 
1548 	if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1549 				  pcie_intr_info, adapter->irq_stats))
1550 		t3_fatal_err(adapter);
1551 }
1552 
1553 /*
1554  * TP interrupt handler.
1555  */
1556 static void tp_intr_handler(struct adapter *adapter)
1557 {
1558 	static const struct intr_info tp_intr_info[] = {
1559 		{0xffffff, "TP parity error", -1, 1},
1560 		{0x1000000, "TP out of Rx pages", -1, 1},
1561 		{0x2000000, "TP out of Tx pages", -1, 1},
1562 		{0}
1563 	};
1564 
1565 	static const struct intr_info tp_intr_info_t3c[] = {
1566 		{0x1fffffff, "TP parity error", -1, 1},
1567 		{F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
1568 		{F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
1569 		{0}
1570 	};
1571 
1572 	if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1573 				  adapter->params.rev < T3_REV_C ?
1574 				  tp_intr_info : tp_intr_info_t3c, NULL))
1575 		t3_fatal_err(adapter);
1576 }
1577 
1578 /*
1579  * CIM interrupt handler.
1580  */
1581 static void cim_intr_handler(struct adapter *adapter)
1582 {
1583 	static const struct intr_info cim_intr_info[] = {
1584 		{F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1585 		{F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1586 		{F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1587 		{F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1588 		{F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1589 		{F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1590 		{F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1591 		{F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1592 		{F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1593 		{F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1594 		{F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1595 		{F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1596 		{F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
1597 		{F_ICACHEPARERR, "CIM icache parity error", -1, 1},
1598 		{F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
1599 		{F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
1600 		{F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
1601 		{F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
1602 		{F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
1603 		{F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
1604 		{F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
1605 		{F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
1606 		{F_ITAGPARERR, "CIM itag parity error", -1, 1},
1607 		{F_DTAGPARERR, "CIM dtag parity error", -1, 1},
1608 		{0}
1609 	};
1610 
1611 	if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1612 				  cim_intr_info, NULL))
1613 		t3_fatal_err(adapter);
1614 }
1615 
1616 /*
1617  * ULP RX interrupt handler.
1618  */
1619 static void ulprx_intr_handler(struct adapter *adapter)
1620 {
1621 	static const struct intr_info ulprx_intr_info[] = {
1622 		{F_PARERRDATA, "ULP RX data parity error", -1, 1},
1623 		{F_PARERRPCMD, "ULP RX command parity error", -1, 1},
1624 		{F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
1625 		{F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
1626 		{F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
1627 		{F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
1628 		{F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
1629 		{F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
1630 		{0}
1631 	};
1632 
1633 	if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1634 				  ulprx_intr_info, NULL))
1635 		t3_fatal_err(adapter);
1636 }
1637 
1638 /*
1639  * ULP TX interrupt handler.
1640  */
1641 static void ulptx_intr_handler(struct adapter *adapter)
1642 {
1643 	static const struct intr_info ulptx_intr_info[] = {
1644 		{F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1645 		 STAT_ULP_CH0_PBL_OOB, 0},
1646 		{F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1647 		 STAT_ULP_CH1_PBL_OOB, 0},
1648 		{0xfc, "ULP TX parity error", -1, 1},
1649 		{0}
1650 	};
1651 
1652 	if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1653 				  ulptx_intr_info, adapter->irq_stats))
1654 		t3_fatal_err(adapter);
1655 }
1656 
1657 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1658 	F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1659 	F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1660 	F_ICSPI1_TX_FRAMING_ERROR)
1661 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1662 	F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1663 	F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1664 	F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1665 
1666 /*
1667  * PM TX interrupt handler.
1668  */
1669 static void pmtx_intr_handler(struct adapter *adapter)
1670 {
1671 	static const struct intr_info pmtx_intr_info[] = {
1672 		{F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1673 		{ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1674 		{OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1675 		{V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1676 		 "PMTX ispi parity error", -1, 1},
1677 		{V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1678 		 "PMTX ospi parity error", -1, 1},
1679 		{0}
1680 	};
1681 
1682 	if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1683 				  pmtx_intr_info, NULL))
1684 		t3_fatal_err(adapter);
1685 }
1686 
1687 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1688 	F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1689 	F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1690 	F_IESPI1_TX_FRAMING_ERROR)
1691 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1692 	F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1693 	F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1694 	F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1695 
1696 /*
1697  * PM RX interrupt handler.
1698  */
1699 static void pmrx_intr_handler(struct adapter *adapter)
1700 {
1701 	static const struct intr_info pmrx_intr_info[] = {
1702 		{F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1703 		{IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1704 		{OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1705 		{V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1706 		 "PMRX ispi parity error", -1, 1},
1707 		{V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1708 		 "PMRX ospi parity error", -1, 1},
1709 		{0}
1710 	};
1711 
1712 	if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1713 				  pmrx_intr_info, NULL))
1714 		t3_fatal_err(adapter);
1715 }
1716 
1717 /*
1718  * CPL switch interrupt handler.
1719  */
1720 static void cplsw_intr_handler(struct adapter *adapter)
1721 {
1722 	static const struct intr_info cplsw_intr_info[] = {
1723 		{F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
1724 		{F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
1725 		{F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1726 		{F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1727 		{F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1728 		{F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1729 		{0}
1730 	};
1731 
1732 	if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1733 				  cplsw_intr_info, NULL))
1734 		t3_fatal_err(adapter);
1735 }
1736 
1737 /*
1738  * MPS interrupt handler.
1739  */
1740 static void mps_intr_handler(struct adapter *adapter)
1741 {
1742 	static const struct intr_info mps_intr_info[] = {
1743 		{0x1ff, "MPS parity error", -1, 1},
1744 		{0}
1745 	};
1746 
1747 	if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1748 				  mps_intr_info, NULL))
1749 		t3_fatal_err(adapter);
1750 }
1751 
1752 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1753 
1754 /*
1755  * MC7 interrupt handler.
1756  */
1757 static void mc7_intr_handler(struct mc7 *mc7)
1758 {
1759 	struct adapter *adapter = mc7->adapter;
1760 	u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1761 
1762 	if (cause & F_CE) {
1763 		mc7->stats.corr_err++;
1764 		CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1765 			"data 0x%x 0x%x 0x%x\n", mc7->name,
1766 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1767 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1768 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1769 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1770 	}
1771 
1772 	if (cause & F_UE) {
1773 		mc7->stats.uncorr_err++;
1774 		CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1775 			 "data 0x%x 0x%x 0x%x\n", mc7->name,
1776 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1777 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1778 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1779 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1780 	}
1781 
1782 	if (G_PE(cause)) {
1783 		mc7->stats.parity_err++;
1784 		CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1785 			 mc7->name, G_PE(cause));
1786 	}
1787 
1788 	if (cause & F_AE) {
1789 		u32 addr = 0;
1790 
1791 		if (adapter->params.rev > 0)
1792 			addr = t3_read_reg(adapter,
1793 					   mc7->offset + A_MC7_ERR_ADDR);
1794 		mc7->stats.addr_err++;
1795 		CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1796 			 mc7->name, addr);
1797 	}
1798 
1799 	if (cause & MC7_INTR_FATAL)
1800 		t3_fatal_err(adapter);
1801 
1802 	t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1803 }
1804 
1805 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1806 			V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1807 /*
1808  * XGMAC interrupt handler.
1809  */
1810 static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1811 {
1812 	struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1813 	/*
1814 	 * We mask out interrupt causes for which we're not taking interrupts.
1815 	 * This allows us to use polling logic to monitor some of the other
1816 	 * conditions when taking interrupts would impose too much load on the
1817 	 * system.
1818 	 */
1819 	u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
1820 		    ~F_RXFIFO_OVERFLOW;
1821 
1822 	if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1823 		mac->stats.tx_fifo_parity_err++;
1824 		CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1825 	}
1826 	if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1827 		mac->stats.rx_fifo_parity_err++;
1828 		CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1829 	}
1830 	if (cause & F_TXFIFO_UNDERRUN)
1831 		mac->stats.tx_fifo_urun++;
1832 	if (cause & F_RXFIFO_OVERFLOW)
1833 		mac->stats.rx_fifo_ovfl++;
1834 	if (cause & V_SERDES_LOS(M_SERDES_LOS))
1835 		mac->stats.serdes_signal_loss++;
1836 	if (cause & F_XAUIPCSCTCERR)
1837 		mac->stats.xaui_pcs_ctc_err++;
1838 	if (cause & F_XAUIPCSALIGNCHANGE)
1839 		mac->stats.xaui_pcs_align_change++;
1840 	if (cause & F_XGM_INT) {
1841 		t3_set_reg_field(adap,
1842 				 A_XGM_INT_ENABLE + mac->offset,
1843 				 F_XGM_INT, 0);
1844 		mac->stats.link_faults++;
1845 
1846 		t3_os_link_fault_handler(adap, idx);
1847 	}
1848 
1849 	if (cause & XGM_INTR_FATAL)
1850 		t3_fatal_err(adap);
1851 
1852 	t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1853 	return cause != 0;
1854 }
1855 
1856 /*
1857  * Interrupt handler for PHY events.
1858  */
1859 int t3_phy_intr_handler(struct adapter *adapter)
1860 {
1861 	u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1862 
1863 	for_each_port(adapter, i) {
1864 		struct port_info *p = adap2pinfo(adapter, i);
1865 
1866 		if (!(p->phy.caps & SUPPORTED_IRQ))
1867 			continue;
1868 
1869 		if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
1870 			int phy_cause = p->phy.ops->intr_handler(&p->phy);
1871 
1872 			if (phy_cause & cphy_cause_link_change)
1873 				t3_link_changed(adapter, i);
1874 			if (phy_cause & cphy_cause_fifo_error)
1875 				p->phy.fifo_errors++;
1876 			if (phy_cause & cphy_cause_module_change)
1877 				t3_os_phymod_changed(adapter, i);
1878 		}
1879 	}
1880 
1881 	t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1882 	return 0;
1883 }
1884 
1885 /*
1886  * T3 slow path (non-data) interrupt handler.
1887  */
1888 int t3_slow_intr_handler(struct adapter *adapter)
1889 {
1890 	u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1891 
1892 	cause &= adapter->slow_intr_mask;
1893 	if (!cause)
1894 		return 0;
1895 	if (cause & F_PCIM0) {
1896 		if (is_pcie(adapter))
1897 			pcie_intr_handler(adapter);
1898 		else
1899 			pci_intr_handler(adapter);
1900 	}
1901 	if (cause & F_SGE3)
1902 		t3_sge_err_intr_handler(adapter);
1903 	if (cause & F_MC7_PMRX)
1904 		mc7_intr_handler(&adapter->pmrx);
1905 	if (cause & F_MC7_PMTX)
1906 		mc7_intr_handler(&adapter->pmtx);
1907 	if (cause & F_MC7_CM)
1908 		mc7_intr_handler(&adapter->cm);
1909 	if (cause & F_CIM)
1910 		cim_intr_handler(adapter);
1911 	if (cause & F_TP1)
1912 		tp_intr_handler(adapter);
1913 	if (cause & F_ULP2_RX)
1914 		ulprx_intr_handler(adapter);
1915 	if (cause & F_ULP2_TX)
1916 		ulptx_intr_handler(adapter);
1917 	if (cause & F_PM1_RX)
1918 		pmrx_intr_handler(adapter);
1919 	if (cause & F_PM1_TX)
1920 		pmtx_intr_handler(adapter);
1921 	if (cause & F_CPL_SWITCH)
1922 		cplsw_intr_handler(adapter);
1923 	if (cause & F_MPS0)
1924 		mps_intr_handler(adapter);
1925 	if (cause & F_MC5A)
1926 		t3_mc5_intr_handler(&adapter->mc5);
1927 	if (cause & F_XGMAC0_0)
1928 		mac_intr_handler(adapter, 0);
1929 	if (cause & F_XGMAC0_1)
1930 		mac_intr_handler(adapter, 1);
1931 	if (cause & F_T3DBG)
1932 		t3_os_ext_intr_handler(adapter);
1933 
1934 	/* Clear the interrupts just processed. */
1935 	t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1936 	t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
1937 	return 1;
1938 }
1939 
1940 static unsigned int calc_gpio_intr(struct adapter *adap)
1941 {
1942 	unsigned int i, gpi_intr = 0;
1943 
1944 	for_each_port(adap, i)
1945 		if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
1946 		    adapter_info(adap)->gpio_intr[i])
1947 			gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
1948 	return gpi_intr;
1949 }
1950 
1951 /**
1952  *	t3_intr_enable - enable interrupts
1953  *	@adapter: the adapter whose interrupts should be enabled
1954  *
1955  *	Enable interrupts by setting the interrupt enable registers of the
1956  *	various HW modules and then enabling the top-level interrupt
1957  *	concentrator.
1958  */
1959 void t3_intr_enable(struct adapter *adapter)
1960 {
1961 	static const struct addr_val_pair intr_en_avp[] = {
1962 		{A_SG_INT_ENABLE, SGE_INTR_MASK},
1963 		{A_MC7_INT_ENABLE, MC7_INTR_MASK},
1964 		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1965 		 MC7_INTR_MASK},
1966 		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1967 		 MC7_INTR_MASK},
1968 		{A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1969 		{A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1970 		{A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1971 		{A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1972 		{A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1973 		{A_MPS_INT_ENABLE, MPS_INTR_MASK},
1974 	};
1975 
1976 	adapter->slow_intr_mask = PL_INTR_MASK;
1977 
1978 	t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1979 	t3_write_reg(adapter, A_TP_INT_ENABLE,
1980 		     adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
1981 
1982 	if (adapter->params.rev > 0) {
1983 		t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1984 			     CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1985 		t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1986 			     ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1987 			     F_PBL_BOUND_ERR_CH1);
1988 	} else {
1989 		t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1990 		t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1991 	}
1992 
1993 	t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
1994 
1995 	if (is_pcie(adapter))
1996 		t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1997 	else
1998 		t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1999 	t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
2000 	t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
2001 }
2002 
2003 /**
2004  *	t3_intr_disable - disable a card's interrupts
2005  *	@adapter: the adapter whose interrupts should be disabled
2006  *
2007  *	Disable interrupts.  We only disable the top-level interrupt
2008  *	concentrator and the SGE data interrupts.
2009  */
2010 void t3_intr_disable(struct adapter *adapter)
2011 {
2012 	t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
2013 	t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
2014 	adapter->slow_intr_mask = 0;
2015 }
2016 
2017 /**
2018  *	t3_intr_clear - clear all interrupts
2019  *	@adapter: the adapter whose interrupts should be cleared
2020  *
2021  *	Clears all interrupts.
2022  */
2023 void t3_intr_clear(struct adapter *adapter)
2024 {
2025 	static const unsigned int cause_reg_addr[] = {
2026 		A_SG_INT_CAUSE,
2027 		A_SG_RSPQ_FL_STATUS,
2028 		A_PCIX_INT_CAUSE,
2029 		A_MC7_INT_CAUSE,
2030 		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
2031 		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
2032 		A_CIM_HOST_INT_CAUSE,
2033 		A_TP_INT_CAUSE,
2034 		A_MC5_DB_INT_CAUSE,
2035 		A_ULPRX_INT_CAUSE,
2036 		A_ULPTX_INT_CAUSE,
2037 		A_CPL_INTR_CAUSE,
2038 		A_PM1_TX_INT_CAUSE,
2039 		A_PM1_RX_INT_CAUSE,
2040 		A_MPS_INT_CAUSE,
2041 		A_T3DBG_INT_CAUSE,
2042 	};
2043 	unsigned int i;
2044 
2045 	/* Clear PHY and MAC interrupts for each port. */
2046 	for_each_port(adapter, i)
2047 	    t3_port_intr_clear(adapter, i);
2048 
2049 	for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
2050 		t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
2051 
2052 	if (is_pcie(adapter))
2053 		t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
2054 	t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
2055 	t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
2056 }
2057 
2058 void t3_xgm_intr_enable(struct adapter *adapter, int idx)
2059 {
2060 	struct port_info *pi = adap2pinfo(adapter, idx);
2061 
2062 	t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
2063 		     XGM_EXTRA_INTR_MASK);
2064 }
2065 
2066 void t3_xgm_intr_disable(struct adapter *adapter, int idx)
2067 {
2068 	struct port_info *pi = adap2pinfo(adapter, idx);
2069 
2070 	t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
2071 		     0x7ff);
2072 }
2073 
2074 /**
2075  *	t3_port_intr_enable - enable port-specific interrupts
2076  *	@adapter: associated adapter
2077  *	@idx: index of port whose interrupts should be enabled
2078  *
2079  *	Enable port-specific (i.e., MAC and PHY) interrupts for the given
2080  *	adapter port.
2081  */
2082 void t3_port_intr_enable(struct adapter *adapter, int idx)
2083 {
2084 	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2085 
2086 	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
2087 	t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2088 	phy->ops->intr_enable(phy);
2089 }
2090 
2091 /**
2092  *	t3_port_intr_disable - disable port-specific interrupts
2093  *	@adapter: associated adapter
2094  *	@idx: index of port whose interrupts should be disabled
2095  *
2096  *	Disable port-specific (i.e., MAC and PHY) interrupts for the given
2097  *	adapter port.
2098  */
2099 void t3_port_intr_disable(struct adapter *adapter, int idx)
2100 {
2101 	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2102 
2103 	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
2104 	t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2105 	phy->ops->intr_disable(phy);
2106 }
2107 
2108 /**
2109  *	t3_port_intr_clear - clear port-specific interrupts
2110  *	@adapter: associated adapter
2111  *	@idx: index of port whose interrupts to clear
2112  *
2113  *	Clear port-specific (i.e., MAC and PHY) interrupts for the given
2114  *	adapter port.
2115  */
2116 static void t3_port_intr_clear(struct adapter *adapter, int idx)
2117 {
2118 	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2119 
2120 	t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
2121 	t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
2122 	phy->ops->intr_clear(phy);
2123 }
2124 
2125 #define SG_CONTEXT_CMD_ATTEMPTS 100
2126 
2127 /**
2128  * 	t3_sge_write_context - write an SGE context
2129  * 	@adapter: the adapter
2130  * 	@id: the context id
2131  * 	@type: the context type
2132  *
2133  * 	Program an SGE context with the values already loaded in the
2134  * 	CONTEXT_DATA? registers.
2135  */
2136 static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
2137 				unsigned int type)
2138 {
2139 	if (type == F_RESPONSEQ) {
2140 		/*
2141 		 * Can't write the Response Queue Context bits for
2142 		 * Interrupt Armed or the Reserve bits after the chip
2143 		 * has been initialized out of reset.  Writing to these
2144 		 * bits can confuse the hardware.
2145 		 */
2146 		t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2147 		t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2148 		t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
2149 		t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2150 	} else {
2151 		t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2152 		t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2153 		t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
2154 		t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2155 	}
2156 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2157 		     V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2158 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2159 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2160 }
2161 
2162 /**
2163  *	clear_sge_ctxt - completely clear an SGE context
2164  *	@adapter: the adapter
2165  *	@id: the context id
2166  *	@type: the context type
2167  *
2168  *	Completely clear an SGE context.  Used predominantly at post-reset
2169  *	initialization.  Note in particular that we don't skip writing to any
2170  *	"sensitive bits" in the contexts the way that t3_sge_write_context()
2171  *	does ...
2172  */
2173 static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
2174 			  unsigned int type)
2175 {
2176 	t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
2177 	t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
2178 	t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
2179 	t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
2180 	t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
2181 	t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
2182 	t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
2183 	t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
2184 	t3_write_reg(adap, A_SG_CONTEXT_CMD,
2185 		     V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2186 	return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2187 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2188 }
2189 
2190 /**
2191  *	t3_sge_init_ecntxt - initialize an SGE egress context
2192  *	@adapter: the adapter to configure
2193  *	@id: the context id
2194  *	@gts_enable: whether to enable GTS for the context
2195  *	@type: the egress context type
2196  *	@respq: associated response queue
2197  *	@base_addr: base address of queue
2198  *	@size: number of queue entries
2199  *	@token: uP token
2200  *	@gen: initial generation value for the context
2201  *	@cidx: consumer pointer
2202  *
2203  *	Initialize an SGE egress context and make it ready for use.  If the
2204  *	platform allows concurrent context operations, the caller is
2205  *	responsible for appropriate locking.
2206  */
2207 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
2208 		       enum sge_context_type type, int respq, u64 base_addr,
2209 		       unsigned int size, unsigned int token, int gen,
2210 		       unsigned int cidx)
2211 {
2212 	unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
2213 
2214 	if (base_addr & 0xfff)	/* must be 4K aligned */
2215 		return -EINVAL;
2216 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2217 		return -EBUSY;
2218 
2219 	base_addr >>= 12;
2220 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
2221 		     V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
2222 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
2223 		     V_EC_BASE_LO(base_addr & 0xffff));
2224 	base_addr >>= 16;
2225 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
2226 	base_addr >>= 32;
2227 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2228 		     V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
2229 		     V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
2230 		     F_EC_VALID);
2231 	return t3_sge_write_context(adapter, id, F_EGRESS);
2232 }
2233 
2234 /**
2235  *	t3_sge_init_flcntxt - initialize an SGE free-buffer list context
2236  *	@adapter: the adapter to configure
2237  *	@id: the context id
2238  *	@gts_enable: whether to enable GTS for the context
2239  *	@base_addr: base address of queue
2240  *	@size: number of queue entries
2241  *	@bsize: size of each buffer for this queue
2242  *	@cong_thres: threshold to signal congestion to upstream producers
2243  *	@gen: initial generation value for the context
2244  *	@cidx: consumer pointer
2245  *
2246  *	Initialize an SGE free list context and make it ready for use.  The
2247  *	caller is responsible for ensuring only one context operation occurs
2248  *	at a time.
2249  */
2250 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
2251 			int gts_enable, u64 base_addr, unsigned int size,
2252 			unsigned int bsize, unsigned int cong_thres, int gen,
2253 			unsigned int cidx)
2254 {
2255 	if (base_addr & 0xfff)	/* must be 4K aligned */
2256 		return -EINVAL;
2257 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2258 		return -EBUSY;
2259 
2260 	base_addr >>= 12;
2261 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
2262 	base_addr >>= 32;
2263 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
2264 		     V_FL_BASE_HI((u32) base_addr) |
2265 		     V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
2266 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
2267 		     V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
2268 		     V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
2269 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2270 		     V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
2271 		     V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
2272 	return t3_sge_write_context(adapter, id, F_FREELIST);
2273 }
2274 
2275 /**
2276  *	t3_sge_init_rspcntxt - initialize an SGE response queue context
2277  *	@adapter: the adapter to configure
2278  *	@id: the context id
2279  *	@irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
2280  *	@base_addr: base address of queue
2281  *	@size: number of queue entries
2282  *	@fl_thres: threshold for selecting the normal or jumbo free list
2283  *	@gen: initial generation value for the context
2284  *	@cidx: consumer pointer
2285  *
2286  *	Initialize an SGE response queue context and make it ready for use.
2287  *	The caller is responsible for ensuring only one context operation
2288  *	occurs at a time.
2289  */
2290 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
2291 			 int irq_vec_idx, u64 base_addr, unsigned int size,
2292 			 unsigned int fl_thres, int gen, unsigned int cidx)
2293 {
2294 	unsigned int intr = 0;
2295 
2296 	if (base_addr & 0xfff)	/* must be 4K aligned */
2297 		return -EINVAL;
2298 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2299 		return -EBUSY;
2300 
2301 	base_addr >>= 12;
2302 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2303 		     V_CQ_INDEX(cidx));
2304 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2305 	base_addr >>= 32;
2306 	if (irq_vec_idx >= 0)
2307 		intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2308 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2309 		     V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2310 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2311 	return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2312 }
2313 
2314 /**
2315  *	t3_sge_init_cqcntxt - initialize an SGE completion queue context
2316  *	@adapter: the adapter to configure
2317  *	@id: the context id
2318  *	@base_addr: base address of queue
2319  *	@size: number of queue entries
2320  *	@rspq: response queue for async notifications
2321  *	@ovfl_mode: CQ overflow mode
2322  *	@credits: completion queue credits
2323  *	@credit_thres: the credit threshold
2324  *
2325  *	Initialize an SGE completion queue context and make it ready for use.
2326  *	The caller is responsible for ensuring only one context operation
2327  *	occurs at a time.
2328  */
2329 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2330 			unsigned int size, int rspq, int ovfl_mode,
2331 			unsigned int credits, unsigned int credit_thres)
2332 {
2333 	if (base_addr & 0xfff)	/* must be 4K aligned */
2334 		return -EINVAL;
2335 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2336 		return -EBUSY;
2337 
2338 	base_addr >>= 12;
2339 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2340 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2341 	base_addr >>= 32;
2342 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2343 		     V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2344 		     V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
2345 		     V_CQ_ERR(ovfl_mode));
2346 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2347 		     V_CQ_CREDIT_THRES(credit_thres));
2348 	return t3_sge_write_context(adapter, id, F_CQ);
2349 }
2350 
2351 /**
2352  *	t3_sge_enable_ecntxt - enable/disable an SGE egress context
2353  *	@adapter: the adapter
2354  *	@id: the egress context id
2355  *	@enable: enable (1) or disable (0) the context
2356  *
2357  *	Enable or disable an SGE egress context.  The caller is responsible for
2358  *	ensuring only one context operation occurs at a time.
2359  */
2360 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2361 {
2362 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2363 		return -EBUSY;
2364 
2365 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2366 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2367 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2368 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2369 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2370 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2371 		     V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2372 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2373 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2374 }
2375 
2376 /**
2377  *	t3_sge_disable_fl - disable an SGE free-buffer list
2378  *	@adapter: the adapter
2379  *	@id: the free list context id
2380  *
2381  *	Disable an SGE free-buffer list.  The caller is responsible for
2382  *	ensuring only one context operation occurs at a time.
2383  */
2384 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2385 {
2386 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2387 		return -EBUSY;
2388 
2389 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2390 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2391 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2392 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2393 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2394 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2395 		     V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2396 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2397 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2398 }
2399 
2400 /**
2401  *	t3_sge_disable_rspcntxt - disable an SGE response queue
2402  *	@adapter: the adapter
2403  *	@id: the response queue context id
2404  *
2405  *	Disable an SGE response queue.  The caller is responsible for
2406  *	ensuring only one context operation occurs at a time.
2407  */
2408 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2409 {
2410 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2411 		return -EBUSY;
2412 
2413 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2414 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2415 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2416 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2417 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2418 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2419 		     V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2420 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2421 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2422 }
2423 
2424 /**
2425  *	t3_sge_disable_cqcntxt - disable an SGE completion queue
2426  *	@adapter: the adapter
2427  *	@id: the completion queue context id
2428  *
2429  *	Disable an SGE completion queue.  The caller is responsible for
2430  *	ensuring only one context operation occurs at a time.
2431  */
2432 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2433 {
2434 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2435 		return -EBUSY;
2436 
2437 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2438 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2439 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2440 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2441 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2442 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2443 		     V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2444 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2445 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2446 }
2447 
2448 /**
2449  *	t3_sge_cqcntxt_op - perform an operation on a completion queue context
2450  *	@adapter: the adapter
2451  *	@id: the context id
2452  *	@op: the operation to perform
2453  *
2454  *	Perform the selected operation on an SGE completion queue context.
2455  *	The caller is responsible for ensuring only one context operation
2456  *	occurs at a time.
2457  */
2458 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2459 		      unsigned int credits)
2460 {
2461 	u32 val;
2462 
2463 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2464 		return -EBUSY;
2465 
2466 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2467 	t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2468 		     V_CONTEXT(id) | F_CQ);
2469 	if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2470 				0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
2471 		return -EIO;
2472 
2473 	if (op >= 2 && op < 7) {
2474 		if (adapter->params.rev > 0)
2475 			return G_CQ_INDEX(val);
2476 
2477 		t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2478 			     V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2479 		if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2480 				    F_CONTEXT_CMD_BUSY, 0,
2481 				    SG_CONTEXT_CMD_ATTEMPTS, 1))
2482 			return -EIO;
2483 		return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2484 	}
2485 	return 0;
2486 }
2487 
2488 /**
2489  *	t3_config_rss - configure Rx packet steering
2490  *	@adapter: the adapter
2491  *	@rss_config: RSS settings (written to TP_RSS_CONFIG)
2492  *	@cpus: values for the CPU lookup table (0xff terminated)
2493  *	@rspq: values for the response queue lookup table (0xffff terminated)
2494  *
2495  *	Programs the receive packet steering logic.  @cpus and @rspq provide
2496  *	the values for the CPU and response queue lookup tables.  If they
2497  *	provide fewer values than the size of the tables the supplied values
2498  *	are used repeatedly until the tables are fully populated.
2499  */
2500 void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2501 		   const u8 * cpus, const u16 *rspq)
2502 {
2503 	int i, j, cpu_idx = 0, q_idx = 0;
2504 
2505 	if (cpus)
2506 		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2507 			u32 val = i << 16;
2508 
2509 			for (j = 0; j < 2; ++j) {
2510 				val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2511 				if (cpus[cpu_idx] == 0xff)
2512 					cpu_idx = 0;
2513 			}
2514 			t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2515 		}
2516 
2517 	if (rspq)
2518 		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2519 			t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2520 				     (i << 16) | rspq[q_idx++]);
2521 			if (rspq[q_idx] == 0xffff)
2522 				q_idx = 0;
2523 		}
2524 
2525 	t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2526 }
2527 
2528 /**
2529  *	t3_tp_set_offload_mode - put TP in NIC/offload mode
2530  *	@adap: the adapter
2531  *	@enable: 1 to select offload mode, 0 for regular NIC
2532  *
2533  *	Switches TP to NIC/offload mode.
2534  */
2535 void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2536 {
2537 	if (is_offload(adap) || !enable)
2538 		t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2539 				 V_NICMODE(!enable));
2540 }
2541 
2542 /**
2543  *	pm_num_pages - calculate the number of pages of the payload memory
2544  *	@mem_size: the size of the payload memory
2545  *	@pg_size: the size of each payload memory page
2546  *
2547  *	Calculate the number of pages, each of the given size, that fit in a
2548  *	memory of the specified size, respecting the HW requirement that the
2549  *	number of pages must be a multiple of 24.
2550  */
2551 static inline unsigned int pm_num_pages(unsigned int mem_size,
2552 					unsigned int pg_size)
2553 {
2554 	unsigned int n = mem_size / pg_size;
2555 
2556 	return n - n % 24;
2557 }
2558 
2559 #define mem_region(adap, start, size, reg) \
2560 	t3_write_reg((adap), A_ ## reg, (start)); \
2561 	start += size
2562 
2563 /**
2564  *	partition_mem - partition memory and configure TP memory settings
2565  *	@adap: the adapter
2566  *	@p: the TP parameters
2567  *
2568  *	Partitions context and payload memory and configures TP's memory
2569  *	registers.
2570  */
2571 static void partition_mem(struct adapter *adap, const struct tp_params *p)
2572 {
2573 	unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2574 	unsigned int timers = 0, timers_shift = 22;
2575 
2576 	if (adap->params.rev > 0) {
2577 		if (tids <= 16 * 1024) {
2578 			timers = 1;
2579 			timers_shift = 16;
2580 		} else if (tids <= 64 * 1024) {
2581 			timers = 2;
2582 			timers_shift = 18;
2583 		} else if (tids <= 256 * 1024) {
2584 			timers = 3;
2585 			timers_shift = 20;
2586 		}
2587 	}
2588 
2589 	t3_write_reg(adap, A_TP_PMM_SIZE,
2590 		     p->chan_rx_size | (p->chan_tx_size >> 16));
2591 
2592 	t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2593 	t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2594 	t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2595 	t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2596 			 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2597 
2598 	t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2599 	t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2600 	t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2601 
2602 	pstructs = p->rx_num_pgs + p->tx_num_pgs;
2603 	/* Add a bit of headroom and make multiple of 24 */
2604 	pstructs += 48;
2605 	pstructs -= pstructs % 24;
2606 	t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2607 
2608 	m = tids * TCB_SIZE;
2609 	mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2610 	mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2611 	t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2612 	m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2613 	mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2614 	mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2615 	mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2616 	mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2617 
2618 	m = (m + 4095) & ~0xfff;
2619 	t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2620 	t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2621 
2622 	tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2623 	m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2624 	    adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2625 	if (tids < m)
2626 		adap->params.mc5.nservers += m - tids;
2627 }
2628 
2629 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2630 				  u32 val)
2631 {
2632 	t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2633 	t3_write_reg(adap, A_TP_PIO_DATA, val);
2634 }
2635 
2636 static void tp_config(struct adapter *adap, const struct tp_params *p)
2637 {
2638 	t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2639 		     F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2640 		     F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2641 	t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2642 		     F_MTUENABLE | V_WINDOWSCALEMODE(1) |
2643 		     V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
2644 	t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2645 		     V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2646 		     V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
2647 		     F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2648 	t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
2649 			 F_IPV6ENABLE | F_NICMODE);
2650 	t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2651 	t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
2652 	t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2653 			 adap->params.rev > 0 ? F_ENABLEESND :
2654 			 F_T3A_ENABLEESND);
2655 
2656 	t3_set_reg_field(adap, A_TP_PC_CONFIG,
2657 			 F_ENABLEEPCMDAFULL,
2658 			 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2659 			 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
2660 	t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
2661 			 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
2662 			 F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
2663 	t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2664 	t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2665 
2666 	if (adap->params.rev > 0) {
2667 		tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2668 		t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2669 				 F_TXPACEAUTO);
2670 		t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2671 		t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2672 	} else
2673 		t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2674 
2675 	if (adap->params.rev == T3_REV_C)
2676 		t3_set_reg_field(adap, A_TP_PC_CONFIG,
2677 				 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
2678 				 V_TABLELATENCYDELTA(4));
2679 
2680 	t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2681 	t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2682 	t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2683 	t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
2684 }
2685 
2686 /* Desired TP timer resolution in usec */
2687 #define TP_TMR_RES 50
2688 
2689 /* TCP timer values in ms */
2690 #define TP_DACK_TIMER 50
2691 #define TP_RTO_MIN    250
2692 
2693 /**
2694  *	tp_set_timers - set TP timing parameters
2695  *	@adap: the adapter to set
2696  *	@core_clk: the core clock frequency in Hz
2697  *
2698  *	Set TP's timing parameters, such as the various timer resolutions and
2699  *	the TCP timer values.
2700  */
2701 static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2702 {
2703 	unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2704 	unsigned int dack_re = fls(core_clk / 5000) - 1;	/* 200us */
2705 	unsigned int tstamp_re = fls(core_clk / 1000);	/* 1ms, at least */
2706 	unsigned int tps = core_clk >> tre;
2707 
2708 	t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2709 		     V_DELAYEDACKRESOLUTION(dack_re) |
2710 		     V_TIMESTAMPRESOLUTION(tstamp_re));
2711 	t3_write_reg(adap, A_TP_DACK_TIMER,
2712 		     (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2713 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2714 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2715 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2716 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2717 	t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2718 		     V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2719 		     V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2720 		     V_KEEPALIVEMAX(9));
2721 
2722 #define SECONDS * tps
2723 
2724 	t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2725 	t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2726 	t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2727 	t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2728 	t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2729 	t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2730 	t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2731 	t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2732 	t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2733 
2734 #undef SECONDS
2735 }
2736 
2737 /**
2738  *	t3_tp_set_coalescing_size - set receive coalescing size
2739  *	@adap: the adapter
2740  *	@size: the receive coalescing size
2741  *	@psh: whether a set PSH bit should deliver coalesced data
2742  *
2743  *	Set the receive coalescing size and PSH bit handling.
2744  */
2745 static int t3_tp_set_coalescing_size(struct adapter *adap,
2746 				     unsigned int size, int psh)
2747 {
2748 	u32 val;
2749 
2750 	if (size > MAX_RX_COALESCING_LEN)
2751 		return -EINVAL;
2752 
2753 	val = t3_read_reg(adap, A_TP_PARA_REG3);
2754 	val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2755 
2756 	if (size) {
2757 		val |= F_RXCOALESCEENABLE;
2758 		if (psh)
2759 			val |= F_RXCOALESCEPSHEN;
2760 		size = min(MAX_RX_COALESCING_LEN, size);
2761 		t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2762 			     V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2763 	}
2764 	t3_write_reg(adap, A_TP_PARA_REG3, val);
2765 	return 0;
2766 }
2767 
2768 /**
2769  *	t3_tp_set_max_rxsize - set the max receive size
2770  *	@adap: the adapter
2771  *	@size: the max receive size
2772  *
2773  *	Set TP's max receive size.  This is the limit that applies when
2774  *	receive coalescing is disabled.
2775  */
2776 static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2777 {
2778 	t3_write_reg(adap, A_TP_PARA_REG7,
2779 		     V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2780 }
2781 
2782 static void init_mtus(unsigned short mtus[])
2783 {
2784 	/*
2785 	 * See draft-mathis-plpmtud-00.txt for the values.  The min is 88 so
2786 	 * it can accommodate max size TCP/IP headers when SACK and timestamps
2787 	 * are enabled and still have at least 8 bytes of payload.
2788 	 */
2789 	mtus[0] = 88;
2790 	mtus[1] = 88;
2791 	mtus[2] = 256;
2792 	mtus[3] = 512;
2793 	mtus[4] = 576;
2794 	mtus[5] = 1024;
2795 	mtus[6] = 1280;
2796 	mtus[7] = 1492;
2797 	mtus[8] = 1500;
2798 	mtus[9] = 2002;
2799 	mtus[10] = 2048;
2800 	mtus[11] = 4096;
2801 	mtus[12] = 4352;
2802 	mtus[13] = 8192;
2803 	mtus[14] = 9000;
2804 	mtus[15] = 9600;
2805 }
2806 
2807 /*
2808  * Initial congestion control parameters.
2809  */
2810 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2811 {
2812 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2813 	a[9] = 2;
2814 	a[10] = 3;
2815 	a[11] = 4;
2816 	a[12] = 5;
2817 	a[13] = 6;
2818 	a[14] = 7;
2819 	a[15] = 8;
2820 	a[16] = 9;
2821 	a[17] = 10;
2822 	a[18] = 14;
2823 	a[19] = 17;
2824 	a[20] = 21;
2825 	a[21] = 25;
2826 	a[22] = 30;
2827 	a[23] = 35;
2828 	a[24] = 45;
2829 	a[25] = 60;
2830 	a[26] = 80;
2831 	a[27] = 100;
2832 	a[28] = 200;
2833 	a[29] = 300;
2834 	a[30] = 400;
2835 	a[31] = 500;
2836 
2837 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2838 	b[9] = b[10] = 1;
2839 	b[11] = b[12] = 2;
2840 	b[13] = b[14] = b[15] = b[16] = 3;
2841 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2842 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2843 	b[28] = b[29] = 6;
2844 	b[30] = b[31] = 7;
2845 }
2846 
2847 /* The minimum additive increment value for the congestion control table */
2848 #define CC_MIN_INCR 2U
2849 
2850 /**
2851  *	t3_load_mtus - write the MTU and congestion control HW tables
2852  *	@adap: the adapter
2853  *	@mtus: the unrestricted values for the MTU table
2854  *	@alphs: the values for the congestion control alpha parameter
2855  *	@beta: the values for the congestion control beta parameter
2856  *	@mtu_cap: the maximum permitted effective MTU
2857  *
2858  *	Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2859  *	Update the high-speed congestion control table with the supplied alpha,
2860  * 	beta, and MTUs.
2861  */
2862 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2863 		  unsigned short alpha[NCCTRL_WIN],
2864 		  unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2865 {
2866 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
2867 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2868 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2869 		28672, 40960, 57344, 81920, 114688, 163840, 229376
2870 	};
2871 
2872 	unsigned int i, w;
2873 
2874 	for (i = 0; i < NMTUS; ++i) {
2875 		unsigned int mtu = min(mtus[i], mtu_cap);
2876 		unsigned int log2 = fls(mtu);
2877 
2878 		if (!(mtu & ((1 << log2) >> 2)))	/* round */
2879 			log2--;
2880 		t3_write_reg(adap, A_TP_MTU_TABLE,
2881 			     (i << 24) | (log2 << 16) | mtu);
2882 
2883 		for (w = 0; w < NCCTRL_WIN; ++w) {
2884 			unsigned int inc;
2885 
2886 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2887 				  CC_MIN_INCR);
2888 
2889 			t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2890 				     (w << 16) | (beta[w] << 13) | inc);
2891 		}
2892 	}
2893 }
2894 
2895 /**
2896  *	t3_tp_get_mib_stats - read TP's MIB counters
2897  *	@adap: the adapter
2898  *	@tps: holds the returned counter values
2899  *
2900  *	Returns the values of TP's MIB counters.
2901  */
2902 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2903 {
2904 	t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2905 			 sizeof(*tps) / sizeof(u32), 0);
2906 }
2907 
2908 #define ulp_region(adap, name, start, len) \
2909 	t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2910 	t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2911 		     (start) + (len) - 1); \
2912 	start += len
2913 
2914 #define ulptx_region(adap, name, start, len) \
2915 	t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2916 	t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2917 		     (start) + (len) - 1)
2918 
2919 static void ulp_config(struct adapter *adap, const struct tp_params *p)
2920 {
2921 	unsigned int m = p->chan_rx_size;
2922 
2923 	ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2924 	ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2925 	ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2926 	ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2927 	ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2928 	ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2929 	ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2930 	t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2931 }
2932 
2933 /**
2934  *	t3_set_proto_sram - set the contents of the protocol sram
2935  *	@adapter: the adapter
2936  *	@data: the protocol image
2937  *
2938  *	Write the contents of the protocol SRAM.
2939  */
2940 int t3_set_proto_sram(struct adapter *adap, const u8 *data)
2941 {
2942 	int i;
2943 	const __be32 *buf = (const __be32 *)data;
2944 
2945 	for (i = 0; i < PROTO_SRAM_LINES; i++) {
2946 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
2947 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
2948 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
2949 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
2950 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
2951 
2952 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
2953 		if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
2954 			return -EIO;
2955 	}
2956 	t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
2957 
2958 	return 0;
2959 }
2960 
2961 void t3_config_trace_filter(struct adapter *adapter,
2962 			    const struct trace_params *tp, int filter_index,
2963 			    int invert, int enable)
2964 {
2965 	u32 addr, key[4], mask[4];
2966 
2967 	key[0] = tp->sport | (tp->sip << 16);
2968 	key[1] = (tp->sip >> 16) | (tp->dport << 16);
2969 	key[2] = tp->dip;
2970 	key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
2971 
2972 	mask[0] = tp->sport_mask | (tp->sip_mask << 16);
2973 	mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
2974 	mask[2] = tp->dip_mask;
2975 	mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
2976 
2977 	if (invert)
2978 		key[3] |= (1 << 29);
2979 	if (enable)
2980 		key[3] |= (1 << 28);
2981 
2982 	addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
2983 	tp_wr_indirect(adapter, addr++, key[0]);
2984 	tp_wr_indirect(adapter, addr++, mask[0]);
2985 	tp_wr_indirect(adapter, addr++, key[1]);
2986 	tp_wr_indirect(adapter, addr++, mask[1]);
2987 	tp_wr_indirect(adapter, addr++, key[2]);
2988 	tp_wr_indirect(adapter, addr++, mask[2]);
2989 	tp_wr_indirect(adapter, addr++, key[3]);
2990 	tp_wr_indirect(adapter, addr, mask[3]);
2991 	t3_read_reg(adapter, A_TP_PIO_DATA);
2992 }
2993 
2994 /**
2995  *	t3_config_sched - configure a HW traffic scheduler
2996  *	@adap: the adapter
2997  *	@kbps: target rate in Kbps
2998  *	@sched: the scheduler index
2999  *
3000  *	Configure a HW scheduler for the target rate
3001  */
3002 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
3003 {
3004 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3005 	unsigned int clk = adap->params.vpd.cclk * 1000;
3006 	unsigned int selected_cpt = 0, selected_bpt = 0;
3007 
3008 	if (kbps > 0) {
3009 		kbps *= 125;	/* -> bytes */
3010 		for (cpt = 1; cpt <= 255; cpt++) {
3011 			tps = clk / cpt;
3012 			bpt = (kbps + tps / 2) / tps;
3013 			if (bpt > 0 && bpt <= 255) {
3014 				v = bpt * tps;
3015 				delta = v >= kbps ? v - kbps : kbps - v;
3016 				if (delta <= mindelta) {
3017 					mindelta = delta;
3018 					selected_cpt = cpt;
3019 					selected_bpt = bpt;
3020 				}
3021 			} else if (selected_cpt)
3022 				break;
3023 		}
3024 		if (!selected_cpt)
3025 			return -EINVAL;
3026 	}
3027 	t3_write_reg(adap, A_TP_TM_PIO_ADDR,
3028 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3029 	v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
3030 	if (sched & 1)
3031 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3032 	else
3033 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3034 	t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
3035 	return 0;
3036 }
3037 
3038 static int tp_init(struct adapter *adap, const struct tp_params *p)
3039 {
3040 	int busy = 0;
3041 
3042 	tp_config(adap, p);
3043 	t3_set_vlan_accel(adap, 3, 0);
3044 
3045 	if (is_offload(adap)) {
3046 		tp_set_timers(adap, adap->params.vpd.cclk * 1000);
3047 		t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
3048 		busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
3049 				       0, 1000, 5);
3050 		if (busy)
3051 			CH_ERR(adap, "TP initialization timed out\n");
3052 	}
3053 
3054 	if (!busy)
3055 		t3_write_reg(adap, A_TP_RESET, F_TPRESET);
3056 	return busy;
3057 }
3058 
3059 /*
3060  * Perform the bits of HW initialization that are dependent on the Tx
3061  * channels being used.
3062  */
3063 static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
3064 {
3065 	int i;
3066 
3067 	if (chan_map != 3) {                                 /* one channel */
3068 		t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
3069 		t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
3070 		t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
3071 			     (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
3072 					      F_TPTXPORT1EN | F_PORT1ACTIVE));
3073 		t3_write_reg(adap, A_PM1_TX_CFG,
3074 			     chan_map == 1 ? 0xffffffff : 0);
3075 	} else {                                             /* two channels */
3076 		t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
3077 		t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
3078 		t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
3079 			     V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
3080 		t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
3081 			     F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
3082 			     F_ENFORCEPKT);
3083 		t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
3084 		t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
3085 		t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
3086 			     V_TX_MOD_QUEUE_REQ_MAP(0xaa));
3087 		for (i = 0; i < 16; i++)
3088 			t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
3089 				     (i << 16) | 0x1010);
3090 	}
3091 }
3092 
3093 static int calibrate_xgm(struct adapter *adapter)
3094 {
3095 	if (uses_xaui(adapter)) {
3096 		unsigned int v, i;
3097 
3098 		for (i = 0; i < 5; ++i) {
3099 			t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
3100 			t3_read_reg(adapter, A_XGM_XAUI_IMP);
3101 			msleep(1);
3102 			v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
3103 			if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
3104 				t3_write_reg(adapter, A_XGM_XAUI_IMP,
3105 					     V_XAUIIMP(G_CALIMP(v) >> 2));
3106 				return 0;
3107 			}
3108 		}
3109 		CH_ERR(adapter, "MAC calibration failed\n");
3110 		return -1;
3111 	} else {
3112 		t3_write_reg(adapter, A_XGM_RGMII_IMP,
3113 			     V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3114 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3115 				 F_XGM_IMPSETUPDATE);
3116 	}
3117 	return 0;
3118 }
3119 
3120 static void calibrate_xgm_t3b(struct adapter *adapter)
3121 {
3122 	if (!uses_xaui(adapter)) {
3123 		t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
3124 			     F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3125 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
3126 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
3127 				 F_XGM_IMPSETUPDATE);
3128 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3129 				 0);
3130 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
3131 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
3132 	}
3133 }
3134 
3135 struct mc7_timing_params {
3136 	unsigned char ActToPreDly;
3137 	unsigned char ActToRdWrDly;
3138 	unsigned char PreCyc;
3139 	unsigned char RefCyc[5];
3140 	unsigned char BkCyc;
3141 	unsigned char WrToRdDly;
3142 	unsigned char RdToWrDly;
3143 };
3144 
3145 /*
3146  * Write a value to a register and check that the write completed.  These
3147  * writes normally complete in a cycle or two, so one read should suffice.
3148  * The very first read exists to flush the posted write to the device.
3149  */
3150 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3151 {
3152 	t3_write_reg(adapter, addr, val);
3153 	t3_read_reg(adapter, addr);	/* flush */
3154 	if (!(t3_read_reg(adapter, addr) & F_BUSY))
3155 		return 0;
3156 	CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3157 	return -EIO;
3158 }
3159 
3160 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3161 {
3162 	static const unsigned int mc7_mode[] = {
3163 		0x632, 0x642, 0x652, 0x432, 0x442
3164 	};
3165 	static const struct mc7_timing_params mc7_timings[] = {
3166 		{12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3167 		{12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3168 		{12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3169 		{9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3170 		{9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3171 	};
3172 
3173 	u32 val;
3174 	unsigned int width, density, slow, attempts;
3175 	struct adapter *adapter = mc7->adapter;
3176 	const struct mc7_timing_params *p = &mc7_timings[mem_type];
3177 
3178 	if (!mc7->size)
3179 		return 0;
3180 
3181 	val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3182 	slow = val & F_SLOW;
3183 	width = G_WIDTH(val);
3184 	density = G_DEN(val);
3185 
3186 	t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3187 	val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);	/* flush */
3188 	msleep(1);
3189 
3190 	if (!slow) {
3191 		t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3192 		t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3193 		msleep(1);
3194 		if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3195 		    (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3196 			CH_ERR(adapter, "%s MC7 calibration timed out\n",
3197 			       mc7->name);
3198 			goto out_fail;
3199 		}
3200 	}
3201 
3202 	t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3203 		     V_ACTTOPREDLY(p->ActToPreDly) |
3204 		     V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3205 		     V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3206 		     V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3207 
3208 	t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3209 		     val | F_CLKEN | F_TERM150);
3210 	t3_read_reg(adapter, mc7->offset + A_MC7_CFG);	/* flush */
3211 
3212 	if (!slow)
3213 		t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3214 				 F_DLLENB);
3215 	udelay(1);
3216 
3217 	val = slow ? 3 : 6;
3218 	if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3219 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3220 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3221 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3222 		goto out_fail;
3223 
3224 	if (!slow) {
3225 		t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3226 		t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3227 		udelay(5);
3228 	}
3229 
3230 	if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3231 	    wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3232 	    wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3233 	    wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3234 		       mc7_mode[mem_type]) ||
3235 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3236 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3237 		goto out_fail;
3238 
3239 	/* clock value is in KHz */
3240 	mc7_clock = mc7_clock * 7812 + mc7_clock / 2;	/* ns */
3241 	mc7_clock /= 1000000;	/* KHz->MHz, ns->us */
3242 
3243 	t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3244 		     F_PERREFEN | V_PREREFDIV(mc7_clock));
3245 	t3_read_reg(adapter, mc7->offset + A_MC7_REF);	/* flush */
3246 
3247 	t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3248 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3249 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3250 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3251 		     (mc7->size << width) - 1);
3252 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3253 	t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);	/* flush */
3254 
3255 	attempts = 50;
3256 	do {
3257 		msleep(250);
3258 		val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3259 	} while ((val & F_BUSY) && --attempts);
3260 	if (val & F_BUSY) {
3261 		CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3262 		goto out_fail;
3263 	}
3264 
3265 	/* Enable normal memory accesses. */
3266 	t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3267 	return 0;
3268 
3269 out_fail:
3270 	return -1;
3271 }
3272 
3273 static void config_pcie(struct adapter *adap)
3274 {
3275 	static const u16 ack_lat[4][6] = {
3276 		{237, 416, 559, 1071, 2095, 4143},
3277 		{128, 217, 289, 545, 1057, 2081},
3278 		{73, 118, 154, 282, 538, 1050},
3279 		{67, 107, 86, 150, 278, 534}
3280 	};
3281 	static const u16 rpl_tmr[4][6] = {
3282 		{711, 1248, 1677, 3213, 6285, 12429},
3283 		{384, 651, 867, 1635, 3171, 6243},
3284 		{219, 354, 462, 846, 1614, 3150},
3285 		{201, 321, 258, 450, 834, 1602}
3286 	};
3287 
3288 	u16 val, devid;
3289 	unsigned int log2_width, pldsize;
3290 	unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3291 
3292 	pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, &val);
3293 	pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3294 
3295 	pci_read_config_word(adap->pdev, 0x2, &devid);
3296 	if (devid == 0x37) {
3297 		pcie_capability_write_word(adap->pdev, PCI_EXP_DEVCTL,
3298 					   val & ~PCI_EXP_DEVCTL_READRQ &
3299 					   ~PCI_EXP_DEVCTL_PAYLOAD);
3300 		pldsize = 0;
3301 	}
3302 
3303 	pcie_capability_read_word(adap->pdev, PCI_EXP_LNKCTL, &val);
3304 
3305 	fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3306 	fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3307 	    G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3308 	log2_width = fls(adap->params.pci.width) - 1;
3309 	acklat = ack_lat[log2_width][pldsize];
3310 	if (val & PCI_EXP_LNKCTL_ASPM_L0S)	/* check LOsEnable */
3311 		acklat += fst_trn_tx * 4;
3312 	rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3313 
3314 	if (adap->params.rev == 0)
3315 		t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3316 				 V_T3A_ACKLAT(M_T3A_ACKLAT),
3317 				 V_T3A_ACKLAT(acklat));
3318 	else
3319 		t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3320 				 V_ACKLAT(acklat));
3321 
3322 	t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3323 			 V_REPLAYLMT(rpllmt));
3324 
3325 	t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3326 	t3_set_reg_field(adap, A_PCIE_CFG, 0,
3327 			 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
3328 			 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
3329 }
3330 
3331 /*
3332  * Initialize and configure T3 HW modules.  This performs the
3333  * initialization steps that need to be done once after a card is reset.
3334  * MAC and PHY initialization is handled separarely whenever a port is enabled.
3335  *
3336  * fw_params are passed to FW and their value is platform dependent.  Only the
3337  * top 8 bits are available for use, the rest must be 0.
3338  */
3339 int t3_init_hw(struct adapter *adapter, u32 fw_params)
3340 {
3341 	int err = -EIO, attempts, i;
3342 	const struct vpd_params *vpd = &adapter->params.vpd;
3343 
3344 	if (adapter->params.rev > 0)
3345 		calibrate_xgm_t3b(adapter);
3346 	else if (calibrate_xgm(adapter))
3347 		goto out_err;
3348 
3349 	if (vpd->mclk) {
3350 		partition_mem(adapter, &adapter->params.tp);
3351 
3352 		if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3353 		    mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3354 		    mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3355 		    t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3356 				adapter->params.mc5.nfilters,
3357 				adapter->params.mc5.nroutes))
3358 			goto out_err;
3359 
3360 		for (i = 0; i < 32; i++)
3361 			if (clear_sge_ctxt(adapter, i, F_CQ))
3362 				goto out_err;
3363 	}
3364 
3365 	if (tp_init(adapter, &adapter->params.tp))
3366 		goto out_err;
3367 
3368 	t3_tp_set_coalescing_size(adapter,
3369 				  min(adapter->params.sge.max_pkt_size,
3370 				      MAX_RX_COALESCING_LEN), 1);
3371 	t3_tp_set_max_rxsize(adapter,
3372 			     min(adapter->params.sge.max_pkt_size, 16384U));
3373 	ulp_config(adapter, &adapter->params.tp);
3374 
3375 	if (is_pcie(adapter))
3376 		config_pcie(adapter);
3377 	else
3378 		t3_set_reg_field(adapter, A_PCIX_CFG, 0,
3379 				 F_DMASTOPEN | F_CLIDECEN);
3380 
3381 	if (adapter->params.rev == T3_REV_C)
3382 		t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
3383 				 F_CFG_CQE_SOP_MASK);
3384 
3385 	t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
3386 	t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3387 	t3_write_reg(adapter, A_PM1_TX_MODE, 0);
3388 	chan_init_hw(adapter, adapter->params.chan_map);
3389 	t3_sge_init(adapter, &adapter->params.sge);
3390 	t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN);
3391 
3392 	t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
3393 
3394 	t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3395 	t3_write_reg(adapter, A_CIM_BOOT_CFG,
3396 		     V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3397 	t3_read_reg(adapter, A_CIM_BOOT_CFG);	/* flush */
3398 
3399 	attempts = 100;
3400 	do {			/* wait for uP to initialize */
3401 		msleep(20);
3402 	} while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
3403 	if (!attempts) {
3404 		CH_ERR(adapter, "uP initialization timed out\n");
3405 		goto out_err;
3406 	}
3407 
3408 	err = 0;
3409 out_err:
3410 	return err;
3411 }
3412 
3413 /**
3414  *	get_pci_mode - determine a card's PCI mode
3415  *	@adapter: the adapter
3416  *	@p: where to store the PCI settings
3417  *
3418  *	Determines a card's PCI mode and associated parameters, such as speed
3419  *	and width.
3420  */
3421 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
3422 {
3423 	static unsigned short speed_map[] = { 33, 66, 100, 133 };
3424 	u32 pci_mode;
3425 
3426 	if (pci_is_pcie(adapter->pdev)) {
3427 		u16 val;
3428 
3429 		p->variant = PCI_VARIANT_PCIE;
3430 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
3431 		p->width = (val >> 4) & 0x3f;
3432 		return;
3433 	}
3434 
3435 	pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3436 	p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3437 	p->width = (pci_mode & F_64BIT) ? 64 : 32;
3438 	pci_mode = G_PCIXINITPAT(pci_mode);
3439 	if (pci_mode == 0)
3440 		p->variant = PCI_VARIANT_PCI;
3441 	else if (pci_mode < 4)
3442 		p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3443 	else if (pci_mode < 8)
3444 		p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3445 	else
3446 		p->variant = PCI_VARIANT_PCIX_266_MODE2;
3447 }
3448 
3449 /**
3450  *	init_link_config - initialize a link's SW state
3451  *	@lc: structure holding the link state
3452  *	@ai: information about the current card
3453  *
3454  *	Initializes the SW state maintained for each link, including the link's
3455  *	capabilities and default speed/duplex/flow-control/autonegotiation
3456  *	settings.
3457  */
3458 static void init_link_config(struct link_config *lc, unsigned int caps)
3459 {
3460 	lc->supported = caps;
3461 	lc->requested_speed = lc->speed = SPEED_INVALID;
3462 	lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3463 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3464 	if (lc->supported & SUPPORTED_Autoneg) {
3465 		lc->advertising = lc->supported;
3466 		lc->autoneg = AUTONEG_ENABLE;
3467 		lc->requested_fc |= PAUSE_AUTONEG;
3468 	} else {
3469 		lc->advertising = 0;
3470 		lc->autoneg = AUTONEG_DISABLE;
3471 	}
3472 }
3473 
3474 /**
3475  *	mc7_calc_size - calculate MC7 memory size
3476  *	@cfg: the MC7 configuration
3477  *
3478  *	Calculates the size of an MC7 memory in bytes from the value of its
3479  *	configuration register.
3480  */
3481 static unsigned int mc7_calc_size(u32 cfg)
3482 {
3483 	unsigned int width = G_WIDTH(cfg);
3484 	unsigned int banks = !!(cfg & F_BKS) + 1;
3485 	unsigned int org = !!(cfg & F_ORG) + 1;
3486 	unsigned int density = G_DEN(cfg);
3487 	unsigned int MBs = ((256 << density) * banks) / (org << width);
3488 
3489 	return MBs << 20;
3490 }
3491 
3492 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3493 		     unsigned int base_addr, const char *name)
3494 {
3495 	u32 cfg;
3496 
3497 	mc7->adapter = adapter;
3498 	mc7->name = name;
3499 	mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3500 	cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3501 	mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
3502 	mc7->width = G_WIDTH(cfg);
3503 }
3504 
3505 static void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3506 {
3507 	u16 devid;
3508 
3509 	mac->adapter = adapter;
3510 	pci_read_config_word(adapter->pdev, 0x2, &devid);
3511 
3512 	if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
3513 		index = 0;
3514 	mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3515 	mac->nucast = 1;
3516 
3517 	if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3518 		t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3519 			     is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3520 		t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3521 				 F_ENRGMII, 0);
3522 	}
3523 }
3524 
3525 static void early_hw_init(struct adapter *adapter,
3526 			  const struct adapter_info *ai)
3527 {
3528 	u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3529 
3530 	mi1_init(adapter, ai);
3531 	t3_write_reg(adapter, A_I2C_CFG,	/* set for 80KHz */
3532 		     V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3533 	t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3534 		     ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
3535 	t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
3536 	t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
3537 
3538 	if (adapter->params.rev == 0 || !uses_xaui(adapter))
3539 		val |= F_ENRGMII;
3540 
3541 	/* Enable MAC clocks so we can access the registers */
3542 	t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3543 	t3_read_reg(adapter, A_XGM_PORT_CFG);
3544 
3545 	val |= F_CLKDIVRESET_;
3546 	t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3547 	t3_read_reg(adapter, A_XGM_PORT_CFG);
3548 	t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3549 	t3_read_reg(adapter, A_XGM_PORT_CFG);
3550 }
3551 
3552 /*
3553  * Reset the adapter.
3554  * Older PCIe cards lose their config space during reset, PCI-X
3555  * ones don't.
3556  */
3557 int t3_reset_adapter(struct adapter *adapter)
3558 {
3559 	int i, save_and_restore_pcie =
3560 	    adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
3561 	uint16_t devid = 0;
3562 
3563 	if (save_and_restore_pcie)
3564 		pci_save_state(adapter->pdev);
3565 	t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3566 
3567 	/*
3568 	 * Delay. Give Some time to device to reset fully.
3569 	 * XXX The delay time should be modified.
3570 	 */
3571 	for (i = 0; i < 10; i++) {
3572 		msleep(50);
3573 		pci_read_config_word(adapter->pdev, 0x00, &devid);
3574 		if (devid == 0x1425)
3575 			break;
3576 	}
3577 
3578 	if (devid != 0x1425)
3579 		return -1;
3580 
3581 	if (save_and_restore_pcie)
3582 		pci_restore_state(adapter->pdev);
3583 	return 0;
3584 }
3585 
3586 static int init_parity(struct adapter *adap)
3587 {
3588 		int i, err, addr;
3589 
3590 	if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
3591 		return -EBUSY;
3592 
3593 	for (err = i = 0; !err && i < 16; i++)
3594 		err = clear_sge_ctxt(adap, i, F_EGRESS);
3595 	for (i = 0xfff0; !err && i <= 0xffff; i++)
3596 		err = clear_sge_ctxt(adap, i, F_EGRESS);
3597 	for (i = 0; !err && i < SGE_QSETS; i++)
3598 		err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
3599 	if (err)
3600 		return err;
3601 
3602 	t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
3603 	for (i = 0; i < 4; i++)
3604 		for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
3605 			t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
3606 				     F_IBQDBGWR | V_IBQDBGQID(i) |
3607 				     V_IBQDBGADDR(addr));
3608 			err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
3609 					      F_IBQDBGBUSY, 0, 2, 1);
3610 			if (err)
3611 				return err;
3612 		}
3613 	return 0;
3614 }
3615 
3616 /*
3617  * Initialize adapter SW state for the various HW modules, set initial values
3618  * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3619  * interface.
3620  */
3621 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
3622 		    int reset)
3623 {
3624 	int ret;
3625 	unsigned int i, j = -1;
3626 
3627 	get_pci_mode(adapter, &adapter->params.pci);
3628 
3629 	adapter->params.info = ai;
3630 	adapter->params.nports = ai->nports0 + ai->nports1;
3631 	adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
3632 	adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3633 	/*
3634 	 * We used to only run the "adapter check task" once a second if
3635 	 * we had PHYs which didn't support interrupts (we would check
3636 	 * their link status once a second).  Now we check other conditions
3637 	 * in that routine which could potentially impose a very high
3638 	 * interrupt load on the system.  As such, we now always scan the
3639 	 * adapter state once a second ...
3640 	 */
3641 	adapter->params.linkpoll_period = 10;
3642 	adapter->params.stats_update_period = is_10G(adapter) ?
3643 	    MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3644 	adapter->params.pci.vpd_cap_addr =
3645 	    pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3646 	ret = get_vpd_params(adapter, &adapter->params.vpd);
3647 	if (ret < 0)
3648 		return ret;
3649 
3650 	if (reset && t3_reset_adapter(adapter))
3651 		return -1;
3652 
3653 	t3_sge_prep(adapter, &adapter->params.sge);
3654 
3655 	if (adapter->params.vpd.mclk) {
3656 		struct tp_params *p = &adapter->params.tp;
3657 
3658 		mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3659 		mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3660 		mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3661 
3662 		p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
3663 		p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3664 		p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3665 		p->cm_size = t3_mc7_size(&adapter->cm);
3666 		p->chan_rx_size = p->pmrx_size / 2;	/* only 1 Rx channel */
3667 		p->chan_tx_size = p->pmtx_size / p->nchan;
3668 		p->rx_pg_size = 64 * 1024;
3669 		p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3670 		p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3671 		p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3672 		p->ntimer_qs = p->cm_size >= (128 << 20) ||
3673 		    adapter->params.rev > 0 ? 12 : 6;
3674 	}
3675 
3676 	adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3677 				  t3_mc7_size(&adapter->pmtx) &&
3678 				  t3_mc7_size(&adapter->cm);
3679 
3680 	if (is_offload(adapter)) {
3681 		adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3682 		adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3683 		    DEFAULT_NFILTERS : 0;
3684 		adapter->params.mc5.nroutes = 0;
3685 		t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3686 
3687 		init_mtus(adapter->params.mtus);
3688 		init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3689 	}
3690 
3691 	early_hw_init(adapter, ai);
3692 	ret = init_parity(adapter);
3693 	if (ret)
3694 		return ret;
3695 
3696 	for_each_port(adapter, i) {
3697 		u8 hw_addr[6];
3698 		const struct port_type_info *pti;
3699 		struct port_info *p = adap2pinfo(adapter, i);
3700 
3701 		while (!adapter->params.vpd.port_type[++j])
3702 			;
3703 
3704 		pti = &port_types[adapter->params.vpd.port_type[j]];
3705 		if (!pti->phy_prep) {
3706 			CH_ALERT(adapter, "Invalid port type index %d\n",
3707 				 adapter->params.vpd.port_type[j]);
3708 			return -EINVAL;
3709 		}
3710 
3711 		p->phy.mdio.dev = adapter->port[i];
3712 		ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3713 				    ai->mdio_ops);
3714 		if (ret)
3715 			return ret;
3716 		mac_prep(&p->mac, adapter, j);
3717 
3718 		/*
3719 		 * The VPD EEPROM stores the base Ethernet address for the
3720 		 * card.  A port's address is derived from the base by adding
3721 		 * the port's index to the base's low octet.
3722 		 */
3723 		memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3724 		hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3725 
3726 		memcpy(adapter->port[i]->dev_addr, hw_addr,
3727 		       ETH_ALEN);
3728 		init_link_config(&p->link_config, p->phy.caps);
3729 		p->phy.ops->power_down(&p->phy, 1);
3730 
3731 		/*
3732 		 * If the PHY doesn't support interrupts for link status
3733 		 * changes, schedule a scan of the adapter links at least
3734 		 * once a second.
3735 		 */
3736 		if (!(p->phy.caps & SUPPORTED_IRQ) &&
3737 		    adapter->params.linkpoll_period > 10)
3738 			adapter->params.linkpoll_period = 10;
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 void t3_led_ready(struct adapter *adapter)
3745 {
3746 	t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3747 			 F_GPIO0_OUT_VAL);
3748 }
3749 
3750 int t3_replay_prep_adapter(struct adapter *adapter)
3751 {
3752 	const struct adapter_info *ai = adapter->params.info;
3753 	unsigned int i, j = -1;
3754 	int ret;
3755 
3756 	early_hw_init(adapter, ai);
3757 	ret = init_parity(adapter);
3758 	if (ret)
3759 		return ret;
3760 
3761 	for_each_port(adapter, i) {
3762 		const struct port_type_info *pti;
3763 		struct port_info *p = adap2pinfo(adapter, i);
3764 
3765 		while (!adapter->params.vpd.port_type[++j])
3766 			;
3767 
3768 		pti = &port_types[adapter->params.vpd.port_type[j]];
3769 		ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
3770 		if (ret)
3771 			return ret;
3772 		p->phy.ops->power_down(&p->phy, 1);
3773 	}
3774 
3775 return 0;
3776 }
3777 
3778