1 /*
2  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48 
49 #define USE_GTS 0
50 
51 #define SGE_RX_SM_BUF_SIZE 1536
52 
53 #define SGE_RX_COPY_THRES  256
54 #define SGE_RX_PULL_LEN    128
55 
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
60  * directly.
61  */
62 #define FL0_PG_CHUNK_SIZE  2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68 
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71 
72 /*
73  * Max number of Rx buffers we replenish at a time.
74  */
75 #define MAX_RX_REFILL 16U
76 /*
77  * Period of the Tx buffer reclaim timer.  This timer does not need to run
78  * frequently as Tx buffers are usually reclaimed by new Tx packets.
79  */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83 
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86 
87 /*
88  * Types of Tx queues in each queue set.  Order here matters, do not change.
89  */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91 
92 /* Values for sge_txq.flags */
93 enum {
94 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
95 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
96 };
97 
98 struct tx_desc {
99 	__be64 flit[TX_DESC_FLITS];
100 };
101 
102 struct rx_desc {
103 	__be32 addr_lo;
104 	__be32 len_gen;
105 	__be32 gen2;
106 	__be32 addr_hi;
107 };
108 
109 struct tx_sw_desc {		/* SW state per Tx descriptor */
110 	struct sk_buff *skb;
111 	u8 eop;       /* set if last descriptor for packet */
112 	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
113 	u8 fragidx;   /* first page fragment associated with descriptor */
114 	s8 sflit;     /* start flit of first SGL entry in descriptor */
115 };
116 
117 struct rx_sw_desc {                /* SW state per Rx descriptor */
118 	union {
119 		struct sk_buff *skb;
120 		struct fl_pg_chunk pg_chunk;
121 	};
122 	DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124 
125 struct rsp_desc {		/* response queue descriptor */
126 	struct rss_header rss_hdr;
127 	__be32 flags;
128 	__be32 len_cq;
129 	u8 imm_data[47];
130 	u8 intr_gen;
131 };
132 
133 /*
134  * Holds unmapping information for Tx packets that need deferred unmapping.
135  * This structure lives at skb->head and must be allocated by callers.
136  */
137 struct deferred_unmap_info {
138 	struct pci_dev *pdev;
139 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
140 };
141 
142 /*
143  * Maps a number of flits to the number of Tx descriptors that can hold them.
144  * The formula is
145  *
146  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147  *
148  * HW allows up to 4 descriptors to be combined into a WR.
149  */
150 static u8 flit_desc_map[] = {
151 	0,
152 #if SGE_NUM_GENBITS == 1
153 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 #else
163 # error "SGE_NUM_GENBITS must be 1 or 2"
164 #endif
165 };
166 
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
168 {
169 	return container_of(q, struct sge_qset, fl[qidx]);
170 }
171 
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
173 {
174 	return container_of(q, struct sge_qset, rspq);
175 }
176 
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
178 {
179 	return container_of(q, struct sge_qset, txq[qidx]);
180 }
181 
182 /**
183  *	refill_rspq - replenish an SGE response queue
184  *	@adapter: the adapter
185  *	@q: the response queue to replenish
186  *	@credits: how many new responses to make available
187  *
188  *	Replenishes a response queue by making the supplied number of responses
189  *	available to HW.
190  */
191 static inline void refill_rspq(struct adapter *adapter,
192 			       const struct sge_rspq *q, unsigned int credits)
193 {
194 	rmb();
195 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197 }
198 
199 /**
200  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
201  *
202  *	Returns true if the platform needs sk_buff unmapping.  The compiler
203  *	optimizes away unnecessary code if this returns true.
204  */
205 static inline int need_skb_unmap(void)
206 {
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
208 	return 1;
209 #else
210 	return 0;
211 #endif
212 }
213 
214 /**
215  *	unmap_skb - unmap a packet main body and its page fragments
216  *	@skb: the packet
217  *	@q: the Tx queue containing Tx descriptors for the packet
218  *	@cidx: index of Tx descriptor
219  *	@pdev: the PCI device
220  *
221  *	Unmap the main body of an sk_buff and its page fragments, if any.
222  *	Because of the fairly complicated structure of our SGLs and the desire
223  *	to conserve space for metadata, the information necessary to unmap an
224  *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225  *	descriptors (the physical addresses of the various data buffers), and
226  *	the SW descriptor state (assorted indices).  The send functions
227  *	initialize the indices for the first packet descriptor so we can unmap
228  *	the buffers held in the first Tx descriptor here, and we have enough
229  *	information at this point to set the state for the next Tx descriptor.
230  *
231  *	Note that it is possible to clean up the first descriptor of a packet
232  *	before the send routines have written the next descriptors, but this
233  *	race does not cause any problem.  We just end up writing the unmapping
234  *	info for the descriptor first.
235  */
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 			     unsigned int cidx, struct pci_dev *pdev)
238 {
239 	const struct sg_ent *sgp;
240 	struct tx_sw_desc *d = &q->sdesc[cidx];
241 	int nfrags, frag_idx, curflit, j = d->addr_idx;
242 
243 	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 	frag_idx = d->fragidx;
245 
246 	if (frag_idx == 0 && skb_headlen(skb)) {
247 		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 				 skb_headlen(skb), PCI_DMA_TODEVICE);
249 		j = 1;
250 	}
251 
252 	curflit = d->sflit + 1 + j;
253 	nfrags = skb_shinfo(skb)->nr_frags;
254 
255 	while (frag_idx < nfrags && curflit < WR_FLITS) {
256 		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 			       skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258 			       PCI_DMA_TODEVICE);
259 		j ^= 1;
260 		if (j == 0) {
261 			sgp++;
262 			curflit++;
263 		}
264 		curflit++;
265 		frag_idx++;
266 	}
267 
268 	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
269 		d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 		d->fragidx = frag_idx;
271 		d->addr_idx = j;
272 		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
273 	}
274 }
275 
276 /**
277  *	free_tx_desc - reclaims Tx descriptors and their buffers
278  *	@adapter: the adapter
279  *	@q: the Tx queue to reclaim descriptors from
280  *	@n: the number of descriptors to reclaim
281  *
282  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283  *	Tx buffers.  Called with the Tx queue lock held.
284  */
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 			 unsigned int n)
287 {
288 	struct tx_sw_desc *d;
289 	struct pci_dev *pdev = adapter->pdev;
290 	unsigned int cidx = q->cidx;
291 
292 	const int need_unmap = need_skb_unmap() &&
293 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
294 
295 	d = &q->sdesc[cidx];
296 	while (n--) {
297 		if (d->skb) {	/* an SGL is present */
298 			if (need_unmap)
299 				unmap_skb(d->skb, q, cidx, pdev);
300 			if (d->eop) {
301 				kfree_skb(d->skb);
302 				d->skb = NULL;
303 			}
304 		}
305 		++d;
306 		if (++cidx == q->size) {
307 			cidx = 0;
308 			d = q->sdesc;
309 		}
310 	}
311 	q->cidx = cidx;
312 }
313 
314 /**
315  *	reclaim_completed_tx - reclaims completed Tx descriptors
316  *	@adapter: the adapter
317  *	@q: the Tx queue to reclaim completed descriptors from
318  *	@chunk: maximum number of descriptors to reclaim
319  *
320  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
321  *	and frees the associated buffers if possible.  Called with the Tx
322  *	queue's lock held.
323  */
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 						struct sge_txq *q,
326 						unsigned int chunk)
327 {
328 	unsigned int reclaim = q->processed - q->cleaned;
329 
330 	reclaim = min(chunk, reclaim);
331 	if (reclaim) {
332 		free_tx_desc(adapter, q, reclaim);
333 		q->cleaned += reclaim;
334 		q->in_use -= reclaim;
335 	}
336 	return q->processed - q->cleaned;
337 }
338 
339 /**
340  *	should_restart_tx - are there enough resources to restart a Tx queue?
341  *	@q: the Tx queue
342  *
343  *	Checks if there are enough descriptors to restart a suspended Tx queue.
344  */
345 static inline int should_restart_tx(const struct sge_txq *q)
346 {
347 	unsigned int r = q->processed - q->cleaned;
348 
349 	return q->in_use - r < (q->size >> 1);
350 }
351 
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 			  struct rx_sw_desc *d)
354 {
355 	if (q->use_pages && d->pg_chunk.page) {
356 		(*d->pg_chunk.p_cnt)--;
357 		if (!*d->pg_chunk.p_cnt)
358 			pci_unmap_page(pdev,
359 				       d->pg_chunk.mapping,
360 				       q->alloc_size, PCI_DMA_FROMDEVICE);
361 
362 		put_page(d->pg_chunk.page);
363 		d->pg_chunk.page = NULL;
364 	} else {
365 		pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 				 q->buf_size, PCI_DMA_FROMDEVICE);
367 		kfree_skb(d->skb);
368 		d->skb = NULL;
369 	}
370 }
371 
372 /**
373  *	free_rx_bufs - free the Rx buffers on an SGE free list
374  *	@pdev: the PCI device associated with the adapter
375  *	@rxq: the SGE free list to clean up
376  *
377  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
378  *	this queue should be stopped before calling this function.
379  */
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381 {
382 	unsigned int cidx = q->cidx;
383 
384 	while (q->credits--) {
385 		struct rx_sw_desc *d = &q->sdesc[cidx];
386 
387 
388 		clear_rx_desc(pdev, q, d);
389 		if (++cidx == q->size)
390 			cidx = 0;
391 	}
392 
393 	if (q->pg_chunk.page) {
394 		__free_pages(q->pg_chunk.page, q->order);
395 		q->pg_chunk.page = NULL;
396 	}
397 }
398 
399 /**
400  *	add_one_rx_buf - add a packet buffer to a free-buffer list
401  *	@va:  buffer start VA
402  *	@len: the buffer length
403  *	@d: the HW Rx descriptor to write
404  *	@sd: the SW Rx descriptor to write
405  *	@gen: the generation bit value
406  *	@pdev: the PCI device associated with the adapter
407  *
408  *	Add a buffer of the given length to the supplied HW and SW Rx
409  *	descriptors.
410  */
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 				 struct rx_desc *d, struct rx_sw_desc *sd,
413 				 unsigned int gen, struct pci_dev *pdev)
414 {
415 	dma_addr_t mapping;
416 
417 	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 	if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 		return -ENOMEM;
420 
421 	dma_unmap_addr_set(sd, dma_addr, mapping);
422 
423 	d->addr_lo = cpu_to_be32(mapping);
424 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 	wmb();
426 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 	return 0;
429 }
430 
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 				   unsigned int gen)
433 {
434 	d->addr_lo = cpu_to_be32(mapping);
435 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 	wmb();
437 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 	return 0;
440 }
441 
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 			  struct rx_sw_desc *sd, gfp_t gfp,
444 			  unsigned int order)
445 {
446 	if (!q->pg_chunk.page) {
447 		dma_addr_t mapping;
448 
449 		q->pg_chunk.page = alloc_pages(gfp, order);
450 		if (unlikely(!q->pg_chunk.page))
451 			return -ENOMEM;
452 		q->pg_chunk.va = page_address(q->pg_chunk.page);
453 		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 				    SGE_PG_RSVD;
455 		q->pg_chunk.offset = 0;
456 		mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 				       0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 		q->pg_chunk.mapping = mapping;
459 	}
460 	sd->pg_chunk = q->pg_chunk;
461 
462 	prefetch(sd->pg_chunk.p_cnt);
463 
464 	q->pg_chunk.offset += q->buf_size;
465 	if (q->pg_chunk.offset == (PAGE_SIZE << order))
466 		q->pg_chunk.page = NULL;
467 	else {
468 		q->pg_chunk.va += q->buf_size;
469 		get_page(q->pg_chunk.page);
470 	}
471 
472 	if (sd->pg_chunk.offset == 0)
473 		*sd->pg_chunk.p_cnt = 1;
474 	else
475 		*sd->pg_chunk.p_cnt += 1;
476 
477 	return 0;
478 }
479 
480 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
481 {
482 	if (q->pend_cred >= q->credits / 4) {
483 		q->pend_cred = 0;
484 		wmb();
485 		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
486 	}
487 }
488 
489 /**
490  *	refill_fl - refill an SGE free-buffer list
491  *	@adapter: the adapter
492  *	@q: the free-list to refill
493  *	@n: the number of new buffers to allocate
494  *	@gfp: the gfp flags for allocating new buffers
495  *
496  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
497  *	allocated with the supplied gfp flags.  The caller must assure that
498  *	@n does not exceed the queue's capacity.
499  */
500 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
501 {
502 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
503 	struct rx_desc *d = &q->desc[q->pidx];
504 	unsigned int count = 0;
505 
506 	while (n--) {
507 		dma_addr_t mapping;
508 		int err;
509 
510 		if (q->use_pages) {
511 			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
512 						    q->order))) {
513 nomem:				q->alloc_failed++;
514 				break;
515 			}
516 			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
517 			dma_unmap_addr_set(sd, dma_addr, mapping);
518 
519 			add_one_rx_chunk(mapping, d, q->gen);
520 			pci_dma_sync_single_for_device(adap->pdev, mapping,
521 						q->buf_size - SGE_PG_RSVD,
522 						PCI_DMA_FROMDEVICE);
523 		} else {
524 			void *buf_start;
525 
526 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
527 			if (!skb)
528 				goto nomem;
529 
530 			sd->skb = skb;
531 			buf_start = skb->data;
532 			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
533 					     q->gen, adap->pdev);
534 			if (unlikely(err)) {
535 				clear_rx_desc(adap->pdev, q, sd);
536 				break;
537 			}
538 		}
539 
540 		d++;
541 		sd++;
542 		if (++q->pidx == q->size) {
543 			q->pidx = 0;
544 			q->gen ^= 1;
545 			sd = q->sdesc;
546 			d = q->desc;
547 		}
548 		count++;
549 	}
550 
551 	q->credits += count;
552 	q->pend_cred += count;
553 	ring_fl_db(adap, q);
554 
555 	return count;
556 }
557 
558 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
559 {
560 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
561 		  GFP_ATOMIC | __GFP_COMP);
562 }
563 
564 /**
565  *	recycle_rx_buf - recycle a receive buffer
566  *	@adapter: the adapter
567  *	@q: the SGE free list
568  *	@idx: index of buffer to recycle
569  *
570  *	Recycles the specified buffer on the given free list by adding it at
571  *	the next available slot on the list.
572  */
573 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
574 			   unsigned int idx)
575 {
576 	struct rx_desc *from = &q->desc[idx];
577 	struct rx_desc *to = &q->desc[q->pidx];
578 
579 	q->sdesc[q->pidx] = q->sdesc[idx];
580 	to->addr_lo = from->addr_lo;	/* already big endian */
581 	to->addr_hi = from->addr_hi;	/* likewise */
582 	wmb();
583 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
584 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
585 
586 	if (++q->pidx == q->size) {
587 		q->pidx = 0;
588 		q->gen ^= 1;
589 	}
590 
591 	q->credits++;
592 	q->pend_cred++;
593 	ring_fl_db(adap, q);
594 }
595 
596 /**
597  *	alloc_ring - allocate resources for an SGE descriptor ring
598  *	@pdev: the PCI device
599  *	@nelem: the number of descriptors
600  *	@elem_size: the size of each descriptor
601  *	@sw_size: the size of the SW state associated with each ring element
602  *	@phys: the physical address of the allocated ring
603  *	@metadata: address of the array holding the SW state for the ring
604  *
605  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
606  *	free buffer lists, or response queues.  Each SGE ring requires
607  *	space for its HW descriptors plus, optionally, space for the SW state
608  *	associated with each HW entry (the metadata).  The function returns
609  *	three values: the virtual address for the HW ring (the return value
610  *	of the function), the physical address of the HW ring, and the address
611  *	of the SW ring.
612  */
613 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
614 			size_t sw_size, dma_addr_t * phys, void *metadata)
615 {
616 	size_t len = nelem * elem_size;
617 	void *s = NULL;
618 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
619 
620 	if (!p)
621 		return NULL;
622 	if (sw_size && metadata) {
623 		s = kcalloc(nelem, sw_size, GFP_KERNEL);
624 
625 		if (!s) {
626 			dma_free_coherent(&pdev->dev, len, p, *phys);
627 			return NULL;
628 		}
629 		*(void **)metadata = s;
630 	}
631 	memset(p, 0, len);
632 	return p;
633 }
634 
635 /**
636  *	t3_reset_qset - reset a sge qset
637  *	@q: the queue set
638  *
639  *	Reset the qset structure.
640  *	the NAPI structure is preserved in the event of
641  *	the qset's reincarnation, for example during EEH recovery.
642  */
643 static void t3_reset_qset(struct sge_qset *q)
644 {
645 	if (q->adap &&
646 	    !(q->adap->flags & NAPI_INIT)) {
647 		memset(q, 0, sizeof(*q));
648 		return;
649 	}
650 
651 	q->adap = NULL;
652 	memset(&q->rspq, 0, sizeof(q->rspq));
653 	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654 	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 	q->txq_stopped = 0;
656 	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657 	q->rx_reclaim_timer.function = NULL;
658 	q->nomem = 0;
659 	napi_free_frags(&q->napi);
660 }
661 
662 
663 /**
664  *	free_qset - free the resources of an SGE queue set
665  *	@adapter: the adapter owning the queue set
666  *	@q: the queue set
667  *
668  *	Release the HW and SW resources associated with an SGE queue set, such
669  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
670  *	queue set must be quiesced prior to calling this.
671  */
672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
673 {
674 	int i;
675 	struct pci_dev *pdev = adapter->pdev;
676 
677 	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678 		if (q->fl[i].desc) {
679 			spin_lock_irq(&adapter->sge.reg_lock);
680 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681 			spin_unlock_irq(&adapter->sge.reg_lock);
682 			free_rx_bufs(pdev, &q->fl[i]);
683 			kfree(q->fl[i].sdesc);
684 			dma_free_coherent(&pdev->dev,
685 					  q->fl[i].size *
686 					  sizeof(struct rx_desc), q->fl[i].desc,
687 					  q->fl[i].phys_addr);
688 		}
689 
690 	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691 		if (q->txq[i].desc) {
692 			spin_lock_irq(&adapter->sge.reg_lock);
693 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694 			spin_unlock_irq(&adapter->sge.reg_lock);
695 			if (q->txq[i].sdesc) {
696 				free_tx_desc(adapter, &q->txq[i],
697 					     q->txq[i].in_use);
698 				kfree(q->txq[i].sdesc);
699 			}
700 			dma_free_coherent(&pdev->dev,
701 					  q->txq[i].size *
702 					  sizeof(struct tx_desc),
703 					  q->txq[i].desc, q->txq[i].phys_addr);
704 			__skb_queue_purge(&q->txq[i].sendq);
705 		}
706 
707 	if (q->rspq.desc) {
708 		spin_lock_irq(&adapter->sge.reg_lock);
709 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710 		spin_unlock_irq(&adapter->sge.reg_lock);
711 		dma_free_coherent(&pdev->dev,
712 				  q->rspq.size * sizeof(struct rsp_desc),
713 				  q->rspq.desc, q->rspq.phys_addr);
714 	}
715 
716 	t3_reset_qset(q);
717 }
718 
719 /**
720  *	init_qset_cntxt - initialize an SGE queue set context info
721  *	@qs: the queue set
722  *	@id: the queue set id
723  *
724  *	Initializes the TIDs and context ids for the queues of a queue set.
725  */
726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
727 {
728 	qs->rspq.cntxt_id = id;
729 	qs->fl[0].cntxt_id = 2 * id;
730 	qs->fl[1].cntxt_id = 2 * id + 1;
731 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
736 }
737 
738 /**
739  *	sgl_len - calculates the size of an SGL of the given capacity
740  *	@n: the number of SGL entries
741  *
742  *	Calculates the number of flits needed for a scatter/gather list that
743  *	can hold the given number of entries.
744  */
745 static inline unsigned int sgl_len(unsigned int n)
746 {
747 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748 	return (3 * n) / 2 + (n & 1);
749 }
750 
751 /**
752  *	flits_to_desc - returns the num of Tx descriptors for the given flits
753  *	@n: the number of flits
754  *
755  *	Calculates the number of Tx descriptors needed for the supplied number
756  *	of flits.
757  */
758 static inline unsigned int flits_to_desc(unsigned int n)
759 {
760 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761 	return flit_desc_map[n];
762 }
763 
764 /**
765  *	get_packet - return the next ingress packet buffer from a free list
766  *	@adap: the adapter that received the packet
767  *	@fl: the SGE free list holding the packet
768  *	@len: the packet length including any SGE padding
769  *	@drop_thres: # of remaining buffers before we start dropping packets
770  *
771  *	Get the next packet from a free list and complete setup of the
772  *	sk_buff.  If the packet is small we make a copy and recycle the
773  *	original buffer, otherwise we use the original buffer itself.  If a
774  *	positive drop threshold is supplied packets are dropped and their
775  *	buffers recycled if (a) the number of remaining buffers is under the
776  *	threshold and the packet is too big to copy, or (b) the packet should
777  *	be copied but there is no memory for the copy.
778  */
779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780 				  unsigned int len, unsigned int drop_thres)
781 {
782 	struct sk_buff *skb = NULL;
783 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
784 
785 	prefetch(sd->skb->data);
786 	fl->credits--;
787 
788 	if (len <= SGE_RX_COPY_THRES) {
789 		skb = alloc_skb(len, GFP_ATOMIC);
790 		if (likely(skb != NULL)) {
791 			__skb_put(skb, len);
792 			pci_dma_sync_single_for_cpu(adap->pdev,
793 					    dma_unmap_addr(sd, dma_addr), len,
794 					    PCI_DMA_FROMDEVICE);
795 			memcpy(skb->data, sd->skb->data, len);
796 			pci_dma_sync_single_for_device(adap->pdev,
797 					    dma_unmap_addr(sd, dma_addr), len,
798 					    PCI_DMA_FROMDEVICE);
799 		} else if (!drop_thres)
800 			goto use_orig_buf;
801 recycle:
802 		recycle_rx_buf(adap, fl, fl->cidx);
803 		return skb;
804 	}
805 
806 	if (unlikely(fl->credits < drop_thres) &&
807 	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808 		      GFP_ATOMIC | __GFP_COMP) == 0)
809 		goto recycle;
810 
811 use_orig_buf:
812 	pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
813 			 fl->buf_size, PCI_DMA_FROMDEVICE);
814 	skb = sd->skb;
815 	skb_put(skb, len);
816 	__refill_fl(adap, fl);
817 	return skb;
818 }
819 
820 /**
821  *	get_packet_pg - return the next ingress packet buffer from a free list
822  *	@adap: the adapter that received the packet
823  *	@fl: the SGE free list holding the packet
824  *	@len: the packet length including any SGE padding
825  *	@drop_thres: # of remaining buffers before we start dropping packets
826  *
827  *	Get the next packet from a free list populated with page chunks.
828  *	If the packet is small we make a copy and recycle the original buffer,
829  *	otherwise we attach the original buffer as a page fragment to a fresh
830  *	sk_buff.  If a positive drop threshold is supplied packets are dropped
831  *	and their buffers recycled if (a) the number of remaining buffers is
832  *	under the threshold and the packet is too big to copy, or (b) there's
833  *	no system memory.
834  *
835  * 	Note: this function is similar to @get_packet but deals with Rx buffers
836  * 	that are page chunks rather than sk_buffs.
837  */
838 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
839 				     struct sge_rspq *q, unsigned int len,
840 				     unsigned int drop_thres)
841 {
842 	struct sk_buff *newskb, *skb;
843 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
844 
845 	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
846 
847 	newskb = skb = q->pg_skb;
848 	if (!skb && (len <= SGE_RX_COPY_THRES)) {
849 		newskb = alloc_skb(len, GFP_ATOMIC);
850 		if (likely(newskb != NULL)) {
851 			__skb_put(newskb, len);
852 			pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
853 					    PCI_DMA_FROMDEVICE);
854 			memcpy(newskb->data, sd->pg_chunk.va, len);
855 			pci_dma_sync_single_for_device(adap->pdev, dma_addr,
856 						       len,
857 						       PCI_DMA_FROMDEVICE);
858 		} else if (!drop_thres)
859 			return NULL;
860 recycle:
861 		fl->credits--;
862 		recycle_rx_buf(adap, fl, fl->cidx);
863 		q->rx_recycle_buf++;
864 		return newskb;
865 	}
866 
867 	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 		goto recycle;
869 
870 	prefetch(sd->pg_chunk.p_cnt);
871 
872 	if (!skb)
873 		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
874 
875 	if (unlikely(!newskb)) {
876 		if (!drop_thres)
877 			return NULL;
878 		goto recycle;
879 	}
880 
881 	pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
882 				    PCI_DMA_FROMDEVICE);
883 	(*sd->pg_chunk.p_cnt)--;
884 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885 		pci_unmap_page(adap->pdev,
886 			       sd->pg_chunk.mapping,
887 			       fl->alloc_size,
888 			       PCI_DMA_FROMDEVICE);
889 	if (!skb) {
890 		__skb_put(newskb, SGE_RX_PULL_LEN);
891 		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
892 		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
893 				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
894 				   len - SGE_RX_PULL_LEN);
895 		newskb->len = len;
896 		newskb->data_len = len - SGE_RX_PULL_LEN;
897 		newskb->truesize += newskb->data_len;
898 	} else {
899 		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
900 				   sd->pg_chunk.page,
901 				   sd->pg_chunk.offset, len);
902 		newskb->len += len;
903 		newskb->data_len += len;
904 		newskb->truesize += len;
905 	}
906 
907 	fl->credits--;
908 	/*
909 	 * We do not refill FLs here, we let the caller do it to overlap a
910 	 * prefetch.
911 	 */
912 	return newskb;
913 }
914 
915 /**
916  *	get_imm_packet - return the next ingress packet buffer from a response
917  *	@resp: the response descriptor containing the packet data
918  *
919  *	Return a packet containing the immediate data of the given response.
920  */
921 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
922 {
923 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
924 
925 	if (skb) {
926 		__skb_put(skb, IMMED_PKT_SIZE);
927 		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
928 	}
929 	return skb;
930 }
931 
932 /**
933  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
934  *	@skb: the packet
935  *
936  * 	Returns the number of Tx descriptors needed for the given Ethernet
937  * 	packet.  Ethernet packets require addition of WR and CPL headers.
938  */
939 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
940 {
941 	unsigned int flits;
942 
943 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
944 		return 1;
945 
946 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
947 	if (skb_shinfo(skb)->gso_size)
948 		flits++;
949 	return flits_to_desc(flits);
950 }
951 
952 /**
953  *	make_sgl - populate a scatter/gather list for a packet
954  *	@skb: the packet
955  *	@sgp: the SGL to populate
956  *	@start: start address of skb main body data to include in the SGL
957  *	@len: length of skb main body data to include in the SGL
958  *	@pdev: the PCI device
959  *
960  *	Generates a scatter/gather list for the buffers that make up a packet
961  *	and returns the SGL size in 8-byte words.  The caller must size the SGL
962  *	appropriately.
963  */
964 static inline unsigned int make_sgl(const struct sk_buff *skb,
965 				    struct sg_ent *sgp, unsigned char *start,
966 				    unsigned int len, struct pci_dev *pdev)
967 {
968 	dma_addr_t mapping;
969 	unsigned int i, j = 0, nfrags;
970 
971 	if (len) {
972 		mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
973 		sgp->len[0] = cpu_to_be32(len);
974 		sgp->addr[0] = cpu_to_be64(mapping);
975 		j = 1;
976 	}
977 
978 	nfrags = skb_shinfo(skb)->nr_frags;
979 	for (i = 0; i < nfrags; i++) {
980 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
981 
982 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, skb_frag_size(frag),
983 					   DMA_TO_DEVICE);
984 		sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
985 		sgp->addr[j] = cpu_to_be64(mapping);
986 		j ^= 1;
987 		if (j == 0)
988 			++sgp;
989 	}
990 	if (j)
991 		sgp->len[j] = 0;
992 	return ((nfrags + (len != 0)) * 3) / 2 + j;
993 }
994 
995 /**
996  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
997  *	@adap: the adapter
998  *	@q: the Tx queue
999  *
1000  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1001  *	where the HW is going to sleep just after we checked, however,
1002  *	then the interrupt handler will detect the outstanding TX packet
1003  *	and ring the doorbell for us.
1004  *
1005  *	When GTS is disabled we unconditionally ring the doorbell.
1006  */
1007 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1008 {
1009 #if USE_GTS
1010 	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1012 		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1013 		t3_write_reg(adap, A_SG_KDOORBELL,
1014 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1015 	}
1016 #else
1017 	wmb();			/* write descriptors before telling HW */
1018 	t3_write_reg(adap, A_SG_KDOORBELL,
1019 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1020 #endif
1021 }
1022 
1023 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1024 {
1025 #if SGE_NUM_GENBITS == 2
1026 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1027 #endif
1028 }
1029 
1030 /**
1031  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1032  *	@ndesc: number of Tx descriptors spanned by the SGL
1033  *	@skb: the packet corresponding to the WR
1034  *	@d: first Tx descriptor to be written
1035  *	@pidx: index of above descriptors
1036  *	@q: the SGE Tx queue
1037  *	@sgl: the SGL
1038  *	@flits: number of flits to the start of the SGL in the first descriptor
1039  *	@sgl_flits: the SGL size in flits
1040  *	@gen: the Tx descriptor generation
1041  *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1042  *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1043  *
1044  *	Write a work request header and an associated SGL.  If the SGL is
1045  *	small enough to fit into one Tx descriptor it has already been written
1046  *	and we just need to write the WR header.  Otherwise we distribute the
1047  *	SGL across the number of descriptors it spans.
1048  */
1049 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1050 			     struct tx_desc *d, unsigned int pidx,
1051 			     const struct sge_txq *q,
1052 			     const struct sg_ent *sgl,
1053 			     unsigned int flits, unsigned int sgl_flits,
1054 			     unsigned int gen, __be32 wr_hi,
1055 			     __be32 wr_lo)
1056 {
1057 	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1058 	struct tx_sw_desc *sd = &q->sdesc[pidx];
1059 
1060 	sd->skb = skb;
1061 	if (need_skb_unmap()) {
1062 		sd->fragidx = 0;
1063 		sd->addr_idx = 0;
1064 		sd->sflit = flits;
1065 	}
1066 
1067 	if (likely(ndesc == 1)) {
1068 		sd->eop = 1;
1069 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1070 				   V_WR_SGLSFLT(flits)) | wr_hi;
1071 		wmb();
1072 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1073 				   V_WR_GEN(gen)) | wr_lo;
1074 		wr_gen2(d, gen);
1075 	} else {
1076 		unsigned int ogen = gen;
1077 		const u64 *fp = (const u64 *)sgl;
1078 		struct work_request_hdr *wp = wrp;
1079 
1080 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1081 				   V_WR_SGLSFLT(flits)) | wr_hi;
1082 
1083 		while (sgl_flits) {
1084 			unsigned int avail = WR_FLITS - flits;
1085 
1086 			if (avail > sgl_flits)
1087 				avail = sgl_flits;
1088 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1089 			sgl_flits -= avail;
1090 			ndesc--;
1091 			if (!sgl_flits)
1092 				break;
1093 
1094 			fp += avail;
1095 			d++;
1096 			sd->eop = 0;
1097 			sd++;
1098 			if (++pidx == q->size) {
1099 				pidx = 0;
1100 				gen ^= 1;
1101 				d = q->desc;
1102 				sd = q->sdesc;
1103 			}
1104 
1105 			sd->skb = skb;
1106 			wrp = (struct work_request_hdr *)d;
1107 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1108 					   V_WR_SGLSFLT(1)) | wr_hi;
1109 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1110 							sgl_flits + 1)) |
1111 					   V_WR_GEN(gen)) | wr_lo;
1112 			wr_gen2(d, gen);
1113 			flits = 1;
1114 		}
1115 		sd->eop = 1;
1116 		wrp->wr_hi |= htonl(F_WR_EOP);
1117 		wmb();
1118 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1119 		wr_gen2((struct tx_desc *)wp, ogen);
1120 		WARN_ON(ndesc != 0);
1121 	}
1122 }
1123 
1124 /**
1125  *	write_tx_pkt_wr - write a TX_PKT work request
1126  *	@adap: the adapter
1127  *	@skb: the packet to send
1128  *	@pi: the egress interface
1129  *	@pidx: index of the first Tx descriptor to write
1130  *	@gen: the generation value to use
1131  *	@q: the Tx queue
1132  *	@ndesc: number of descriptors the packet will occupy
1133  *	@compl: the value of the COMPL bit to use
1134  *
1135  *	Generate a TX_PKT work request to send the supplied packet.
1136  */
1137 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1138 			    const struct port_info *pi,
1139 			    unsigned int pidx, unsigned int gen,
1140 			    struct sge_txq *q, unsigned int ndesc,
1141 			    unsigned int compl)
1142 {
1143 	unsigned int flits, sgl_flits, cntrl, tso_info;
1144 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1145 	struct tx_desc *d = &q->desc[pidx];
1146 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1147 
1148 	cpl->len = htonl(skb->len);
1149 	cntrl = V_TXPKT_INTF(pi->port_id);
1150 
1151 	if (vlan_tx_tag_present(skb))
1152 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1153 
1154 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1155 	if (tso_info) {
1156 		int eth_type;
1157 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1158 
1159 		d->flit[2] = 0;
1160 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1161 		hdr->cntrl = htonl(cntrl);
1162 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1163 		    CPL_ETH_II : CPL_ETH_II_VLAN;
1164 		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1165 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1166 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1167 		hdr->lso_info = htonl(tso_info);
1168 		flits = 3;
1169 	} else {
1170 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1171 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1172 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1173 		cpl->cntrl = htonl(cntrl);
1174 
1175 		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1176 			q->sdesc[pidx].skb = NULL;
1177 			if (!skb->data_len)
1178 				skb_copy_from_linear_data(skb, &d->flit[2],
1179 							  skb->len);
1180 			else
1181 				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1182 
1183 			flits = (skb->len + 7) / 8 + 2;
1184 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1185 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1186 					      | F_WR_SOP | F_WR_EOP | compl);
1187 			wmb();
1188 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1189 					      V_WR_TID(q->token));
1190 			wr_gen2(d, gen);
1191 			kfree_skb(skb);
1192 			return;
1193 		}
1194 
1195 		flits = 2;
1196 	}
1197 
1198 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1199 	sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1200 
1201 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1202 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1203 			 htonl(V_WR_TID(q->token)));
1204 }
1205 
1206 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1207 				    struct sge_qset *qs, struct sge_txq *q)
1208 {
1209 	netif_tx_stop_queue(txq);
1210 	set_bit(TXQ_ETH, &qs->txq_stopped);
1211 	q->stops++;
1212 }
1213 
1214 /**
1215  *	eth_xmit - add a packet to the Ethernet Tx queue
1216  *	@skb: the packet
1217  *	@dev: the egress net device
1218  *
1219  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1220  */
1221 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1222 {
1223 	int qidx;
1224 	unsigned int ndesc, pidx, credits, gen, compl;
1225 	const struct port_info *pi = netdev_priv(dev);
1226 	struct adapter *adap = pi->adapter;
1227 	struct netdev_queue *txq;
1228 	struct sge_qset *qs;
1229 	struct sge_txq *q;
1230 
1231 	/*
1232 	 * The chip min packet length is 9 octets but play safe and reject
1233 	 * anything shorter than an Ethernet header.
1234 	 */
1235 	if (unlikely(skb->len < ETH_HLEN)) {
1236 		dev_kfree_skb(skb);
1237 		return NETDEV_TX_OK;
1238 	}
1239 
1240 	qidx = skb_get_queue_mapping(skb);
1241 	qs = &pi->qs[qidx];
1242 	q = &qs->txq[TXQ_ETH];
1243 	txq = netdev_get_tx_queue(dev, qidx);
1244 
1245 	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1246 
1247 	credits = q->size - q->in_use;
1248 	ndesc = calc_tx_descs(skb);
1249 
1250 	if (unlikely(credits < ndesc)) {
1251 		t3_stop_tx_queue(txq, qs, q);
1252 		dev_err(&adap->pdev->dev,
1253 			"%s: Tx ring %u full while queue awake!\n",
1254 			dev->name, q->cntxt_id & 7);
1255 		return NETDEV_TX_BUSY;
1256 	}
1257 
1258 	q->in_use += ndesc;
1259 	if (unlikely(credits - ndesc < q->stop_thres)) {
1260 		t3_stop_tx_queue(txq, qs, q);
1261 
1262 		if (should_restart_tx(q) &&
1263 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1264 			q->restarts++;
1265 			netif_tx_start_queue(txq);
1266 		}
1267 	}
1268 
1269 	gen = q->gen;
1270 	q->unacked += ndesc;
1271 	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1272 	q->unacked &= 7;
1273 	pidx = q->pidx;
1274 	q->pidx += ndesc;
1275 	if (q->pidx >= q->size) {
1276 		q->pidx -= q->size;
1277 		q->gen ^= 1;
1278 	}
1279 
1280 	/* update port statistics */
1281 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1282 		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283 	if (skb_shinfo(skb)->gso_size)
1284 		qs->port_stats[SGE_PSTAT_TSO]++;
1285 	if (vlan_tx_tag_present(skb))
1286 		qs->port_stats[SGE_PSTAT_VLANINS]++;
1287 
1288 	/*
1289 	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1290 	 * This is good for performance but means that we rely on new Tx
1291 	 * packets arriving to run the destructors of completed packets,
1292 	 * which open up space in their sockets' send queues.  Sometimes
1293 	 * we do not get such new packets causing Tx to stall.  A single
1294 	 * UDP transmitter is a good example of this situation.  We have
1295 	 * a clean up timer that periodically reclaims completed packets
1296 	 * but it doesn't run often enough (nor do we want it to) to prevent
1297 	 * lengthy stalls.  A solution to this problem is to run the
1298 	 * destructor early, after the packet is queued but before it's DMAd.
1299 	 * A cons is that we lie to socket memory accounting, but the amount
1300 	 * of extra memory is reasonable (limited by the number of Tx
1301 	 * descriptors), the packets do actually get freed quickly by new
1302 	 * packets almost always, and for protocols like TCP that wait for
1303 	 * acks to really free up the data the extra memory is even less.
1304 	 * On the positive side we run the destructors on the sending CPU
1305 	 * rather than on a potentially different completing CPU, usually a
1306 	 * good thing.  We also run them without holding our Tx queue lock,
1307 	 * unlike what reclaim_completed_tx() would otherwise do.
1308 	 *
1309 	 * Run the destructor before telling the DMA engine about the packet
1310 	 * to make sure it doesn't complete and get freed prematurely.
1311 	 */
1312 	if (likely(!skb_shared(skb)))
1313 		skb_orphan(skb);
1314 
1315 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1316 	check_ring_tx_db(adap, q);
1317 	return NETDEV_TX_OK;
1318 }
1319 
1320 /**
1321  *	write_imm - write a packet into a Tx descriptor as immediate data
1322  *	@d: the Tx descriptor to write
1323  *	@skb: the packet
1324  *	@len: the length of packet data to write as immediate data
1325  *	@gen: the generation bit value to write
1326  *
1327  *	Writes a packet as immediate data into a Tx descriptor.  The packet
1328  *	contains a work request at its beginning.  We must write the packet
1329  *	carefully so the SGE doesn't read it accidentally before it's written
1330  *	in its entirety.
1331  */
1332 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1333 			     unsigned int len, unsigned int gen)
1334 {
1335 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1336 	struct work_request_hdr *to = (struct work_request_hdr *)d;
1337 
1338 	if (likely(!skb->data_len))
1339 		memcpy(&to[1], &from[1], len - sizeof(*from));
1340 	else
1341 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1342 
1343 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1344 					V_WR_BCNTLFLT(len & 7));
1345 	wmb();
1346 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1347 					V_WR_LEN((len + 7) / 8));
1348 	wr_gen2(d, gen);
1349 	kfree_skb(skb);
1350 }
1351 
1352 /**
1353  *	check_desc_avail - check descriptor availability on a send queue
1354  *	@adap: the adapter
1355  *	@q: the send queue
1356  *	@skb: the packet needing the descriptors
1357  *	@ndesc: the number of Tx descriptors needed
1358  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1359  *
1360  *	Checks if the requested number of Tx descriptors is available on an
1361  *	SGE send queue.  If the queue is already suspended or not enough
1362  *	descriptors are available the packet is queued for later transmission.
1363  *	Must be called with the Tx queue locked.
1364  *
1365  *	Returns 0 if enough descriptors are available, 1 if there aren't
1366  *	enough descriptors and the packet has been queued, and 2 if the caller
1367  *	needs to retry because there weren't enough descriptors at the
1368  *	beginning of the call but some freed up in the mean time.
1369  */
1370 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1371 				   struct sk_buff *skb, unsigned int ndesc,
1372 				   unsigned int qid)
1373 {
1374 	if (unlikely(!skb_queue_empty(&q->sendq))) {
1375 	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1376 		return 1;
1377 	}
1378 	if (unlikely(q->size - q->in_use < ndesc)) {
1379 		struct sge_qset *qs = txq_to_qset(q, qid);
1380 
1381 		set_bit(qid, &qs->txq_stopped);
1382 		smp_mb__after_clear_bit();
1383 
1384 		if (should_restart_tx(q) &&
1385 		    test_and_clear_bit(qid, &qs->txq_stopped))
1386 			return 2;
1387 
1388 		q->stops++;
1389 		goto addq_exit;
1390 	}
1391 	return 0;
1392 }
1393 
1394 /**
1395  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1396  *	@q: the SGE control Tx queue
1397  *
1398  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1399  *	that send only immediate data (presently just the control queues) and
1400  *	thus do not have any sk_buffs to release.
1401  */
1402 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1403 {
1404 	unsigned int reclaim = q->processed - q->cleaned;
1405 
1406 	q->in_use -= reclaim;
1407 	q->cleaned += reclaim;
1408 }
1409 
1410 static inline int immediate(const struct sk_buff *skb)
1411 {
1412 	return skb->len <= WR_LEN;
1413 }
1414 
1415 /**
1416  *	ctrl_xmit - send a packet through an SGE control Tx queue
1417  *	@adap: the adapter
1418  *	@q: the control queue
1419  *	@skb: the packet
1420  *
1421  *	Send a packet through an SGE control Tx queue.  Packets sent through
1422  *	a control queue must fit entirely as immediate data in a single Tx
1423  *	descriptor and have no page fragments.
1424  */
1425 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1426 		     struct sk_buff *skb)
1427 {
1428 	int ret;
1429 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1430 
1431 	if (unlikely(!immediate(skb))) {
1432 		WARN_ON(1);
1433 		dev_kfree_skb(skb);
1434 		return NET_XMIT_SUCCESS;
1435 	}
1436 
1437 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1438 	wrp->wr_lo = htonl(V_WR_TID(q->token));
1439 
1440 	spin_lock(&q->lock);
1441       again:reclaim_completed_tx_imm(q);
1442 
1443 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1444 	if (unlikely(ret)) {
1445 		if (ret == 1) {
1446 			spin_unlock(&q->lock);
1447 			return NET_XMIT_CN;
1448 		}
1449 		goto again;
1450 	}
1451 
1452 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1453 
1454 	q->in_use++;
1455 	if (++q->pidx >= q->size) {
1456 		q->pidx = 0;
1457 		q->gen ^= 1;
1458 	}
1459 	spin_unlock(&q->lock);
1460 	wmb();
1461 	t3_write_reg(adap, A_SG_KDOORBELL,
1462 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1463 	return NET_XMIT_SUCCESS;
1464 }
1465 
1466 /**
1467  *	restart_ctrlq - restart a suspended control queue
1468  *	@qs: the queue set cotaining the control queue
1469  *
1470  *	Resumes transmission on a suspended Tx control queue.
1471  */
1472 static void restart_ctrlq(unsigned long data)
1473 {
1474 	struct sk_buff *skb;
1475 	struct sge_qset *qs = (struct sge_qset *)data;
1476 	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1477 
1478 	spin_lock(&q->lock);
1479       again:reclaim_completed_tx_imm(q);
1480 
1481 	while (q->in_use < q->size &&
1482 	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1483 
1484 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1485 
1486 		if (++q->pidx >= q->size) {
1487 			q->pidx = 0;
1488 			q->gen ^= 1;
1489 		}
1490 		q->in_use++;
1491 	}
1492 
1493 	if (!skb_queue_empty(&q->sendq)) {
1494 		set_bit(TXQ_CTRL, &qs->txq_stopped);
1495 		smp_mb__after_clear_bit();
1496 
1497 		if (should_restart_tx(q) &&
1498 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1499 			goto again;
1500 		q->stops++;
1501 	}
1502 
1503 	spin_unlock(&q->lock);
1504 	wmb();
1505 	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1506 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1507 }
1508 
1509 /*
1510  * Send a management message through control queue 0
1511  */
1512 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1513 {
1514 	int ret;
1515 	local_bh_disable();
1516 	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1517 	local_bh_enable();
1518 
1519 	return ret;
1520 }
1521 
1522 /**
1523  *	deferred_unmap_destructor - unmap a packet when it is freed
1524  *	@skb: the packet
1525  *
1526  *	This is the packet destructor used for Tx packets that need to remain
1527  *	mapped until they are freed rather than until their Tx descriptors are
1528  *	freed.
1529  */
1530 static void deferred_unmap_destructor(struct sk_buff *skb)
1531 {
1532 	int i;
1533 	const dma_addr_t *p;
1534 	const struct skb_shared_info *si;
1535 	const struct deferred_unmap_info *dui;
1536 
1537 	dui = (struct deferred_unmap_info *)skb->head;
1538 	p = dui->addr;
1539 
1540 	if (skb->tail - skb->transport_header)
1541 		pci_unmap_single(dui->pdev, *p++,
1542 				 skb->tail - skb->transport_header,
1543 				 PCI_DMA_TODEVICE);
1544 
1545 	si = skb_shinfo(skb);
1546 	for (i = 0; i < si->nr_frags; i++)
1547 		pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1548 			       PCI_DMA_TODEVICE);
1549 }
1550 
1551 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1552 				     const struct sg_ent *sgl, int sgl_flits)
1553 {
1554 	dma_addr_t *p;
1555 	struct deferred_unmap_info *dui;
1556 
1557 	dui = (struct deferred_unmap_info *)skb->head;
1558 	dui->pdev = pdev;
1559 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1560 		*p++ = be64_to_cpu(sgl->addr[0]);
1561 		*p++ = be64_to_cpu(sgl->addr[1]);
1562 	}
1563 	if (sgl_flits)
1564 		*p = be64_to_cpu(sgl->addr[0]);
1565 }
1566 
1567 /**
1568  *	write_ofld_wr - write an offload work request
1569  *	@adap: the adapter
1570  *	@skb: the packet to send
1571  *	@q: the Tx queue
1572  *	@pidx: index of the first Tx descriptor to write
1573  *	@gen: the generation value to use
1574  *	@ndesc: number of descriptors the packet will occupy
1575  *
1576  *	Write an offload work request to send the supplied packet.  The packet
1577  *	data already carry the work request with most fields populated.
1578  */
1579 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1580 			  struct sge_txq *q, unsigned int pidx,
1581 			  unsigned int gen, unsigned int ndesc)
1582 {
1583 	unsigned int sgl_flits, flits;
1584 	struct work_request_hdr *from;
1585 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1586 	struct tx_desc *d = &q->desc[pidx];
1587 
1588 	if (immediate(skb)) {
1589 		q->sdesc[pidx].skb = NULL;
1590 		write_imm(d, skb, skb->len, gen);
1591 		return;
1592 	}
1593 
1594 	/* Only TX_DATA builds SGLs */
1595 
1596 	from = (struct work_request_hdr *)skb->data;
1597 	memcpy(&d->flit[1], &from[1],
1598 	       skb_transport_offset(skb) - sizeof(*from));
1599 
1600 	flits = skb_transport_offset(skb) / 8;
1601 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1602 	sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1603 			     skb->tail - skb->transport_header,
1604 			     adap->pdev);
1605 	if (need_skb_unmap()) {
1606 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1607 		skb->destructor = deferred_unmap_destructor;
1608 	}
1609 
1610 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1611 			 gen, from->wr_hi, from->wr_lo);
1612 }
1613 
1614 /**
1615  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1616  *	@skb: the packet
1617  *
1618  * 	Returns the number of Tx descriptors needed for the given offload
1619  * 	packet.  These packets are already fully constructed.
1620  */
1621 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1622 {
1623 	unsigned int flits, cnt;
1624 
1625 	if (skb->len <= WR_LEN)
1626 		return 1;	/* packet fits as immediate data */
1627 
1628 	flits = skb_transport_offset(skb) / 8;	/* headers */
1629 	cnt = skb_shinfo(skb)->nr_frags;
1630 	if (skb->tail != skb->transport_header)
1631 		cnt++;
1632 	return flits_to_desc(flits + sgl_len(cnt));
1633 }
1634 
1635 /**
1636  *	ofld_xmit - send a packet through an offload queue
1637  *	@adap: the adapter
1638  *	@q: the Tx offload queue
1639  *	@skb: the packet
1640  *
1641  *	Send an offload packet through an SGE offload queue.
1642  */
1643 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1644 		     struct sk_buff *skb)
1645 {
1646 	int ret;
1647 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1648 
1649 	spin_lock(&q->lock);
1650 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1651 
1652 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1653 	if (unlikely(ret)) {
1654 		if (ret == 1) {
1655 			skb->priority = ndesc;	/* save for restart */
1656 			spin_unlock(&q->lock);
1657 			return NET_XMIT_CN;
1658 		}
1659 		goto again;
1660 	}
1661 
1662 	gen = q->gen;
1663 	q->in_use += ndesc;
1664 	pidx = q->pidx;
1665 	q->pidx += ndesc;
1666 	if (q->pidx >= q->size) {
1667 		q->pidx -= q->size;
1668 		q->gen ^= 1;
1669 	}
1670 	spin_unlock(&q->lock);
1671 
1672 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1673 	check_ring_tx_db(adap, q);
1674 	return NET_XMIT_SUCCESS;
1675 }
1676 
1677 /**
1678  *	restart_offloadq - restart a suspended offload queue
1679  *	@qs: the queue set cotaining the offload queue
1680  *
1681  *	Resumes transmission on a suspended Tx offload queue.
1682  */
1683 static void restart_offloadq(unsigned long data)
1684 {
1685 	struct sk_buff *skb;
1686 	struct sge_qset *qs = (struct sge_qset *)data;
1687 	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1688 	const struct port_info *pi = netdev_priv(qs->netdev);
1689 	struct adapter *adap = pi->adapter;
1690 
1691 	spin_lock(&q->lock);
1692 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1693 
1694 	while ((skb = skb_peek(&q->sendq)) != NULL) {
1695 		unsigned int gen, pidx;
1696 		unsigned int ndesc = skb->priority;
1697 
1698 		if (unlikely(q->size - q->in_use < ndesc)) {
1699 			set_bit(TXQ_OFLD, &qs->txq_stopped);
1700 			smp_mb__after_clear_bit();
1701 
1702 			if (should_restart_tx(q) &&
1703 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1704 				goto again;
1705 			q->stops++;
1706 			break;
1707 		}
1708 
1709 		gen = q->gen;
1710 		q->in_use += ndesc;
1711 		pidx = q->pidx;
1712 		q->pidx += ndesc;
1713 		if (q->pidx >= q->size) {
1714 			q->pidx -= q->size;
1715 			q->gen ^= 1;
1716 		}
1717 		__skb_unlink(skb, &q->sendq);
1718 		spin_unlock(&q->lock);
1719 
1720 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1721 		spin_lock(&q->lock);
1722 	}
1723 	spin_unlock(&q->lock);
1724 
1725 #if USE_GTS
1726 	set_bit(TXQ_RUNNING, &q->flags);
1727 	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1728 #endif
1729 	wmb();
1730 	t3_write_reg(adap, A_SG_KDOORBELL,
1731 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1732 }
1733 
1734 /**
1735  *	queue_set - return the queue set a packet should use
1736  *	@skb: the packet
1737  *
1738  *	Maps a packet to the SGE queue set it should use.  The desired queue
1739  *	set is carried in bits 1-3 in the packet's priority.
1740  */
1741 static inline int queue_set(const struct sk_buff *skb)
1742 {
1743 	return skb->priority >> 1;
1744 }
1745 
1746 /**
1747  *	is_ctrl_pkt - return whether an offload packet is a control packet
1748  *	@skb: the packet
1749  *
1750  *	Determines whether an offload packet should use an OFLD or a CTRL
1751  *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1752  */
1753 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1754 {
1755 	return skb->priority & 1;
1756 }
1757 
1758 /**
1759  *	t3_offload_tx - send an offload packet
1760  *	@tdev: the offload device to send to
1761  *	@skb: the packet
1762  *
1763  *	Sends an offload packet.  We use the packet priority to select the
1764  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1765  *	should be sent as regular or control, bits 1-3 select the queue set.
1766  */
1767 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1768 {
1769 	struct adapter *adap = tdev2adap(tdev);
1770 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1771 
1772 	if (unlikely(is_ctrl_pkt(skb)))
1773 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1774 
1775 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1776 }
1777 
1778 /**
1779  *	offload_enqueue - add an offload packet to an SGE offload receive queue
1780  *	@q: the SGE response queue
1781  *	@skb: the packet
1782  *
1783  *	Add a new offload packet to an SGE response queue's offload packet
1784  *	queue.  If the packet is the first on the queue it schedules the RX
1785  *	softirq to process the queue.
1786  */
1787 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1788 {
1789 	int was_empty = skb_queue_empty(&q->rx_queue);
1790 
1791 	__skb_queue_tail(&q->rx_queue, skb);
1792 
1793 	if (was_empty) {
1794 		struct sge_qset *qs = rspq_to_qset(q);
1795 
1796 		napi_schedule(&qs->napi);
1797 	}
1798 }
1799 
1800 /**
1801  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1802  *	@tdev: the offload device that will be receiving the packets
1803  *	@q: the SGE response queue that assembled the bundle
1804  *	@skbs: the partial bundle
1805  *	@n: the number of packets in the bundle
1806  *
1807  *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1808  */
1809 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1810 					  struct sge_rspq *q,
1811 					  struct sk_buff *skbs[], int n)
1812 {
1813 	if (n) {
1814 		q->offload_bundles++;
1815 		tdev->recv(tdev, skbs, n);
1816 	}
1817 }
1818 
1819 /**
1820  *	ofld_poll - NAPI handler for offload packets in interrupt mode
1821  *	@dev: the network device doing the polling
1822  *	@budget: polling budget
1823  *
1824  *	The NAPI handler for offload packets when a response queue is serviced
1825  *	by the hard interrupt handler, i.e., when it's operating in non-polling
1826  *	mode.  Creates small packet batches and sends them through the offload
1827  *	receive handler.  Batches need to be of modest size as we do prefetches
1828  *	on the packets in each.
1829  */
1830 static int ofld_poll(struct napi_struct *napi, int budget)
1831 {
1832 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1833 	struct sge_rspq *q = &qs->rspq;
1834 	struct adapter *adapter = qs->adap;
1835 	int work_done = 0;
1836 
1837 	while (work_done < budget) {
1838 		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1839 		struct sk_buff_head queue;
1840 		int ngathered;
1841 
1842 		spin_lock_irq(&q->lock);
1843 		__skb_queue_head_init(&queue);
1844 		skb_queue_splice_init(&q->rx_queue, &queue);
1845 		if (skb_queue_empty(&queue)) {
1846 			napi_complete(napi);
1847 			spin_unlock_irq(&q->lock);
1848 			return work_done;
1849 		}
1850 		spin_unlock_irq(&q->lock);
1851 
1852 		ngathered = 0;
1853 		skb_queue_walk_safe(&queue, skb, tmp) {
1854 			if (work_done >= budget)
1855 				break;
1856 			work_done++;
1857 
1858 			__skb_unlink(skb, &queue);
1859 			prefetch(skb->data);
1860 			skbs[ngathered] = skb;
1861 			if (++ngathered == RX_BUNDLE_SIZE) {
1862 				q->offload_bundles++;
1863 				adapter->tdev.recv(&adapter->tdev, skbs,
1864 						   ngathered);
1865 				ngathered = 0;
1866 			}
1867 		}
1868 		if (!skb_queue_empty(&queue)) {
1869 			/* splice remaining packets back onto Rx queue */
1870 			spin_lock_irq(&q->lock);
1871 			skb_queue_splice(&queue, &q->rx_queue);
1872 			spin_unlock_irq(&q->lock);
1873 		}
1874 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1875 	}
1876 
1877 	return work_done;
1878 }
1879 
1880 /**
1881  *	rx_offload - process a received offload packet
1882  *	@tdev: the offload device receiving the packet
1883  *	@rq: the response queue that received the packet
1884  *	@skb: the packet
1885  *	@rx_gather: a gather list of packets if we are building a bundle
1886  *	@gather_idx: index of the next available slot in the bundle
1887  *
1888  *	Process an ingress offload pakcet and add it to the offload ingress
1889  *	queue. 	Returns the index of the next available slot in the bundle.
1890  */
1891 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1892 			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1893 			     unsigned int gather_idx)
1894 {
1895 	skb_reset_mac_header(skb);
1896 	skb_reset_network_header(skb);
1897 	skb_reset_transport_header(skb);
1898 
1899 	if (rq->polling) {
1900 		rx_gather[gather_idx++] = skb;
1901 		if (gather_idx == RX_BUNDLE_SIZE) {
1902 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1903 			gather_idx = 0;
1904 			rq->offload_bundles++;
1905 		}
1906 	} else
1907 		offload_enqueue(rq, skb);
1908 
1909 	return gather_idx;
1910 }
1911 
1912 /**
1913  *	restart_tx - check whether to restart suspended Tx queues
1914  *	@qs: the queue set to resume
1915  *
1916  *	Restarts suspended Tx queues of an SGE queue set if they have enough
1917  *	free resources to resume operation.
1918  */
1919 static void restart_tx(struct sge_qset *qs)
1920 {
1921 	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1922 	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1923 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1924 		qs->txq[TXQ_ETH].restarts++;
1925 		if (netif_running(qs->netdev))
1926 			netif_tx_wake_queue(qs->tx_q);
1927 	}
1928 
1929 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1930 	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1931 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1932 		qs->txq[TXQ_OFLD].restarts++;
1933 		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1934 	}
1935 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1936 	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1937 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1938 		qs->txq[TXQ_CTRL].restarts++;
1939 		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1940 	}
1941 }
1942 
1943 /**
1944  *	cxgb3_arp_process - process an ARP request probing a private IP address
1945  *	@adapter: the adapter
1946  *	@skb: the skbuff containing the ARP request
1947  *
1948  *	Check if the ARP request is probing the private IP address
1949  *	dedicated to iSCSI, generate an ARP reply if so.
1950  */
1951 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1952 {
1953 	struct net_device *dev = skb->dev;
1954 	struct arphdr *arp;
1955 	unsigned char *arp_ptr;
1956 	unsigned char *sha;
1957 	__be32 sip, tip;
1958 
1959 	if (!dev)
1960 		return;
1961 
1962 	skb_reset_network_header(skb);
1963 	arp = arp_hdr(skb);
1964 
1965 	if (arp->ar_op != htons(ARPOP_REQUEST))
1966 		return;
1967 
1968 	arp_ptr = (unsigned char *)(arp + 1);
1969 	sha = arp_ptr;
1970 	arp_ptr += dev->addr_len;
1971 	memcpy(&sip, arp_ptr, sizeof(sip));
1972 	arp_ptr += sizeof(sip);
1973 	arp_ptr += dev->addr_len;
1974 	memcpy(&tip, arp_ptr, sizeof(tip));
1975 
1976 	if (tip != pi->iscsi_ipv4addr)
1977 		return;
1978 
1979 	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1980 		 pi->iscsic.mac_addr, sha);
1981 
1982 }
1983 
1984 static inline int is_arp(struct sk_buff *skb)
1985 {
1986 	return skb->protocol == htons(ETH_P_ARP);
1987 }
1988 
1989 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1990 					struct sk_buff *skb)
1991 {
1992 	if (is_arp(skb)) {
1993 		cxgb3_arp_process(pi, skb);
1994 		return;
1995 	}
1996 
1997 	if (pi->iscsic.recv)
1998 		pi->iscsic.recv(pi, skb);
1999 
2000 }
2001 
2002 /**
2003  *	rx_eth - process an ingress ethernet packet
2004  *	@adap: the adapter
2005  *	@rq: the response queue that received the packet
2006  *	@skb: the packet
2007  *	@pad: amount of padding at the start of the buffer
2008  *
2009  *	Process an ingress ethernet pakcet and deliver it to the stack.
2010  *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2011  *	if it was immediate data in a response.
2012  */
2013 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2014 		   struct sk_buff *skb, int pad, int lro)
2015 {
2016 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2017 	struct sge_qset *qs = rspq_to_qset(rq);
2018 	struct port_info *pi;
2019 
2020 	skb_pull(skb, sizeof(*p) + pad);
2021 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2022 	pi = netdev_priv(skb->dev);
2023 	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2024 	    p->csum == htons(0xffff) && !p->fragment) {
2025 		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2026 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2027 	} else
2028 		skb_checksum_none_assert(skb);
2029 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2030 
2031 	if (p->vlan_valid) {
2032 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2033 		__vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
2034 	}
2035 	if (rq->polling) {
2036 		if (lro)
2037 			napi_gro_receive(&qs->napi, skb);
2038 		else {
2039 			if (unlikely(pi->iscsic.flags))
2040 				cxgb3_process_iscsi_prov_pack(pi, skb);
2041 			netif_receive_skb(skb);
2042 		}
2043 	} else
2044 		netif_rx(skb);
2045 }
2046 
2047 static inline int is_eth_tcp(u32 rss)
2048 {
2049 	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2050 }
2051 
2052 /**
2053  *	lro_add_page - add a page chunk to an LRO session
2054  *	@adap: the adapter
2055  *	@qs: the associated queue set
2056  *	@fl: the free list containing the page chunk to add
2057  *	@len: packet length
2058  *	@complete: Indicates the last fragment of a frame
2059  *
2060  *	Add a received packet contained in a page chunk to an existing LRO
2061  *	session.
2062  */
2063 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2064 			 struct sge_fl *fl, int len, int complete)
2065 {
2066 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2067 	struct port_info *pi = netdev_priv(qs->netdev);
2068 	struct sk_buff *skb = NULL;
2069 	struct cpl_rx_pkt *cpl;
2070 	struct skb_frag_struct *rx_frag;
2071 	int nr_frags;
2072 	int offset = 0;
2073 
2074 	if (!qs->nomem) {
2075 		skb = napi_get_frags(&qs->napi);
2076 		qs->nomem = !skb;
2077 	}
2078 
2079 	fl->credits--;
2080 
2081 	pci_dma_sync_single_for_cpu(adap->pdev,
2082 				    dma_unmap_addr(sd, dma_addr),
2083 				    fl->buf_size - SGE_PG_RSVD,
2084 				    PCI_DMA_FROMDEVICE);
2085 
2086 	(*sd->pg_chunk.p_cnt)--;
2087 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2088 		pci_unmap_page(adap->pdev,
2089 			       sd->pg_chunk.mapping,
2090 			       fl->alloc_size,
2091 			       PCI_DMA_FROMDEVICE);
2092 
2093 	if (!skb) {
2094 		put_page(sd->pg_chunk.page);
2095 		if (complete)
2096 			qs->nomem = 0;
2097 		return;
2098 	}
2099 
2100 	rx_frag = skb_shinfo(skb)->frags;
2101 	nr_frags = skb_shinfo(skb)->nr_frags;
2102 
2103 	if (!nr_frags) {
2104 		offset = 2 + sizeof(struct cpl_rx_pkt);
2105 		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2106 
2107 		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2108 		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2109 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2110 			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2111 		} else
2112 			skb->ip_summed = CHECKSUM_NONE;
2113 	} else
2114 		cpl = qs->lro_va;
2115 
2116 	len -= offset;
2117 
2118 	rx_frag += nr_frags;
2119 	__skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2120 	rx_frag->page_offset = sd->pg_chunk.offset + offset;
2121 	skb_frag_size_set(rx_frag, len);
2122 
2123 	skb->len += len;
2124 	skb->data_len += len;
2125 	skb->truesize += len;
2126 	skb_shinfo(skb)->nr_frags++;
2127 
2128 	if (!complete)
2129 		return;
2130 
2131 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2132 
2133 	if (cpl->vlan_valid)
2134 		__vlan_hwaccel_put_tag(skb, ntohs(cpl->vlan));
2135 	napi_gro_frags(&qs->napi);
2136 }
2137 
2138 /**
2139  *	handle_rsp_cntrl_info - handles control information in a response
2140  *	@qs: the queue set corresponding to the response
2141  *	@flags: the response control flags
2142  *
2143  *	Handles the control information of an SGE response, such as GTS
2144  *	indications and completion credits for the queue set's Tx queues.
2145  *	HW coalesces credits, we don't do any extra SW coalescing.
2146  */
2147 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2148 {
2149 	unsigned int credits;
2150 
2151 #if USE_GTS
2152 	if (flags & F_RSPD_TXQ0_GTS)
2153 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2154 #endif
2155 
2156 	credits = G_RSPD_TXQ0_CR(flags);
2157 	if (credits)
2158 		qs->txq[TXQ_ETH].processed += credits;
2159 
2160 	credits = G_RSPD_TXQ2_CR(flags);
2161 	if (credits)
2162 		qs->txq[TXQ_CTRL].processed += credits;
2163 
2164 # if USE_GTS
2165 	if (flags & F_RSPD_TXQ1_GTS)
2166 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2167 # endif
2168 	credits = G_RSPD_TXQ1_CR(flags);
2169 	if (credits)
2170 		qs->txq[TXQ_OFLD].processed += credits;
2171 }
2172 
2173 /**
2174  *	check_ring_db - check if we need to ring any doorbells
2175  *	@adapter: the adapter
2176  *	@qs: the queue set whose Tx queues are to be examined
2177  *	@sleeping: indicates which Tx queue sent GTS
2178  *
2179  *	Checks if some of a queue set's Tx queues need to ring their doorbells
2180  *	to resume transmission after idling while they still have unprocessed
2181  *	descriptors.
2182  */
2183 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2184 			  unsigned int sleeping)
2185 {
2186 	if (sleeping & F_RSPD_TXQ0_GTS) {
2187 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2188 
2189 		if (txq->cleaned + txq->in_use != txq->processed &&
2190 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2191 			set_bit(TXQ_RUNNING, &txq->flags);
2192 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2193 				     V_EGRCNTX(txq->cntxt_id));
2194 		}
2195 	}
2196 
2197 	if (sleeping & F_RSPD_TXQ1_GTS) {
2198 		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2199 
2200 		if (txq->cleaned + txq->in_use != txq->processed &&
2201 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2202 			set_bit(TXQ_RUNNING, &txq->flags);
2203 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2204 				     V_EGRCNTX(txq->cntxt_id));
2205 		}
2206 	}
2207 }
2208 
2209 /**
2210  *	is_new_response - check if a response is newly written
2211  *	@r: the response descriptor
2212  *	@q: the response queue
2213  *
2214  *	Returns true if a response descriptor contains a yet unprocessed
2215  *	response.
2216  */
2217 static inline int is_new_response(const struct rsp_desc *r,
2218 				  const struct sge_rspq *q)
2219 {
2220 	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2221 }
2222 
2223 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2224 {
2225 	q->pg_skb = NULL;
2226 	q->rx_recycle_buf = 0;
2227 }
2228 
2229 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2230 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2231 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2232 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2233 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2234 
2235 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2236 #define NOMEM_INTR_DELAY 2500
2237 
2238 /**
2239  *	process_responses - process responses from an SGE response queue
2240  *	@adap: the adapter
2241  *	@qs: the queue set to which the response queue belongs
2242  *	@budget: how many responses can be processed in this round
2243  *
2244  *	Process responses from an SGE response queue up to the supplied budget.
2245  *	Responses include received packets as well as credits and other events
2246  *	for the queues that belong to the response queue's queue set.
2247  *	A negative budget is effectively unlimited.
2248  *
2249  *	Additionally choose the interrupt holdoff time for the next interrupt
2250  *	on this queue.  If the system is under memory shortage use a fairly
2251  *	long delay to help recovery.
2252  */
2253 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2254 			     int budget)
2255 {
2256 	struct sge_rspq *q = &qs->rspq;
2257 	struct rsp_desc *r = &q->desc[q->cidx];
2258 	int budget_left = budget;
2259 	unsigned int sleeping = 0;
2260 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2261 	int ngathered = 0;
2262 
2263 	q->next_holdoff = q->holdoff_tmr;
2264 
2265 	while (likely(budget_left && is_new_response(r, q))) {
2266 		int packet_complete, eth, ethpad = 2;
2267 		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2268 		struct sk_buff *skb = NULL;
2269 		u32 len, flags;
2270 		__be32 rss_hi, rss_lo;
2271 
2272 		rmb();
2273 		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2274 		rss_hi = *(const __be32 *)r;
2275 		rss_lo = r->rss_hdr.rss_hash_val;
2276 		flags = ntohl(r->flags);
2277 
2278 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2279 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2280 			if (!skb)
2281 				goto no_mem;
2282 
2283 			memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2284 			skb->data[0] = CPL_ASYNC_NOTIF;
2285 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2286 			q->async_notif++;
2287 		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2288 			skb = get_imm_packet(r);
2289 			if (unlikely(!skb)) {
2290 no_mem:
2291 				q->next_holdoff = NOMEM_INTR_DELAY;
2292 				q->nomem++;
2293 				/* consume one credit since we tried */
2294 				budget_left--;
2295 				break;
2296 			}
2297 			q->imm_data++;
2298 			ethpad = 0;
2299 		} else if ((len = ntohl(r->len_cq)) != 0) {
2300 			struct sge_fl *fl;
2301 
2302 			lro &= eth && is_eth_tcp(rss_hi);
2303 
2304 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2305 			if (fl->use_pages) {
2306 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2307 
2308 				prefetch(addr);
2309 #if L1_CACHE_BYTES < 128
2310 				prefetch(addr + L1_CACHE_BYTES);
2311 #endif
2312 				__refill_fl(adap, fl);
2313 				if (lro > 0) {
2314 					lro_add_page(adap, qs, fl,
2315 						     G_RSPD_LEN(len),
2316 						     flags & F_RSPD_EOP);
2317 					 goto next_fl;
2318 				}
2319 
2320 				skb = get_packet_pg(adap, fl, q,
2321 						    G_RSPD_LEN(len),
2322 						    eth ?
2323 						    SGE_RX_DROP_THRES : 0);
2324 				q->pg_skb = skb;
2325 			} else
2326 				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2327 						 eth ? SGE_RX_DROP_THRES : 0);
2328 			if (unlikely(!skb)) {
2329 				if (!eth)
2330 					goto no_mem;
2331 				q->rx_drops++;
2332 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2333 				__skb_pull(skb, 2);
2334 next_fl:
2335 			if (++fl->cidx == fl->size)
2336 				fl->cidx = 0;
2337 		} else
2338 			q->pure_rsps++;
2339 
2340 		if (flags & RSPD_CTRL_MASK) {
2341 			sleeping |= flags & RSPD_GTS_MASK;
2342 			handle_rsp_cntrl_info(qs, flags);
2343 		}
2344 
2345 		r++;
2346 		if (unlikely(++q->cidx == q->size)) {
2347 			q->cidx = 0;
2348 			q->gen ^= 1;
2349 			r = q->desc;
2350 		}
2351 		prefetch(r);
2352 
2353 		if (++q->credits >= (q->size / 4)) {
2354 			refill_rspq(adap, q, q->credits);
2355 			q->credits = 0;
2356 		}
2357 
2358 		packet_complete = flags &
2359 				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2360 				   F_RSPD_ASYNC_NOTIF);
2361 
2362 		if (skb != NULL && packet_complete) {
2363 			if (eth)
2364 				rx_eth(adap, q, skb, ethpad, lro);
2365 			else {
2366 				q->offload_pkts++;
2367 				/* Preserve the RSS info in csum & priority */
2368 				skb->csum = rss_hi;
2369 				skb->priority = rss_lo;
2370 				ngathered = rx_offload(&adap->tdev, q, skb,
2371 						       offload_skbs,
2372 						       ngathered);
2373 			}
2374 
2375 			if (flags & F_RSPD_EOP)
2376 				clear_rspq_bufstate(q);
2377 		}
2378 		--budget_left;
2379 	}
2380 
2381 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2382 
2383 	if (sleeping)
2384 		check_ring_db(adap, qs, sleeping);
2385 
2386 	smp_mb();		/* commit Tx queue .processed updates */
2387 	if (unlikely(qs->txq_stopped != 0))
2388 		restart_tx(qs);
2389 
2390 	budget -= budget_left;
2391 	return budget;
2392 }
2393 
2394 static inline int is_pure_response(const struct rsp_desc *r)
2395 {
2396 	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2397 
2398 	return (n | r->len_cq) == 0;
2399 }
2400 
2401 /**
2402  *	napi_rx_handler - the NAPI handler for Rx processing
2403  *	@napi: the napi instance
2404  *	@budget: how many packets we can process in this round
2405  *
2406  *	Handler for new data events when using NAPI.
2407  */
2408 static int napi_rx_handler(struct napi_struct *napi, int budget)
2409 {
2410 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2411 	struct adapter *adap = qs->adap;
2412 	int work_done = process_responses(adap, qs, budget);
2413 
2414 	if (likely(work_done < budget)) {
2415 		napi_complete(napi);
2416 
2417 		/*
2418 		 * Because we don't atomically flush the following
2419 		 * write it is possible that in very rare cases it can
2420 		 * reach the device in a way that races with a new
2421 		 * response being written plus an error interrupt
2422 		 * causing the NAPI interrupt handler below to return
2423 		 * unhandled status to the OS.  To protect against
2424 		 * this would require flushing the write and doing
2425 		 * both the write and the flush with interrupts off.
2426 		 * Way too expensive and unjustifiable given the
2427 		 * rarity of the race.
2428 		 *
2429 		 * The race cannot happen at all with MSI-X.
2430 		 */
2431 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2432 			     V_NEWTIMER(qs->rspq.next_holdoff) |
2433 			     V_NEWINDEX(qs->rspq.cidx));
2434 	}
2435 	return work_done;
2436 }
2437 
2438 /*
2439  * Returns true if the device is already scheduled for polling.
2440  */
2441 static inline int napi_is_scheduled(struct napi_struct *napi)
2442 {
2443 	return test_bit(NAPI_STATE_SCHED, &napi->state);
2444 }
2445 
2446 /**
2447  *	process_pure_responses - process pure responses from a response queue
2448  *	@adap: the adapter
2449  *	@qs: the queue set owning the response queue
2450  *	@r: the first pure response to process
2451  *
2452  *	A simpler version of process_responses() that handles only pure (i.e.,
2453  *	non data-carrying) responses.  Such respones are too light-weight to
2454  *	justify calling a softirq under NAPI, so we handle them specially in
2455  *	the interrupt handler.  The function is called with a pointer to a
2456  *	response, which the caller must ensure is a valid pure response.
2457  *
2458  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2459  */
2460 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2461 				  struct rsp_desc *r)
2462 {
2463 	struct sge_rspq *q = &qs->rspq;
2464 	unsigned int sleeping = 0;
2465 
2466 	do {
2467 		u32 flags = ntohl(r->flags);
2468 
2469 		r++;
2470 		if (unlikely(++q->cidx == q->size)) {
2471 			q->cidx = 0;
2472 			q->gen ^= 1;
2473 			r = q->desc;
2474 		}
2475 		prefetch(r);
2476 
2477 		if (flags & RSPD_CTRL_MASK) {
2478 			sleeping |= flags & RSPD_GTS_MASK;
2479 			handle_rsp_cntrl_info(qs, flags);
2480 		}
2481 
2482 		q->pure_rsps++;
2483 		if (++q->credits >= (q->size / 4)) {
2484 			refill_rspq(adap, q, q->credits);
2485 			q->credits = 0;
2486 		}
2487 		if (!is_new_response(r, q))
2488 			break;
2489 		rmb();
2490 	} while (is_pure_response(r));
2491 
2492 	if (sleeping)
2493 		check_ring_db(adap, qs, sleeping);
2494 
2495 	smp_mb();		/* commit Tx queue .processed updates */
2496 	if (unlikely(qs->txq_stopped != 0))
2497 		restart_tx(qs);
2498 
2499 	return is_new_response(r, q);
2500 }
2501 
2502 /**
2503  *	handle_responses - decide what to do with new responses in NAPI mode
2504  *	@adap: the adapter
2505  *	@q: the response queue
2506  *
2507  *	This is used by the NAPI interrupt handlers to decide what to do with
2508  *	new SGE responses.  If there are no new responses it returns -1.  If
2509  *	there are new responses and they are pure (i.e., non-data carrying)
2510  *	it handles them straight in hard interrupt context as they are very
2511  *	cheap and don't deliver any packets.  Finally, if there are any data
2512  *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2513  *	schedules NAPI, 0 if all new responses were pure.
2514  *
2515  *	The caller must ascertain NAPI is not already running.
2516  */
2517 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2518 {
2519 	struct sge_qset *qs = rspq_to_qset(q);
2520 	struct rsp_desc *r = &q->desc[q->cidx];
2521 
2522 	if (!is_new_response(r, q))
2523 		return -1;
2524 	rmb();
2525 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2526 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2527 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2528 		return 0;
2529 	}
2530 	napi_schedule(&qs->napi);
2531 	return 1;
2532 }
2533 
2534 /*
2535  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2536  * (i.e., response queue serviced in hard interrupt).
2537  */
2538 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2539 {
2540 	struct sge_qset *qs = cookie;
2541 	struct adapter *adap = qs->adap;
2542 	struct sge_rspq *q = &qs->rspq;
2543 
2544 	spin_lock(&q->lock);
2545 	if (process_responses(adap, qs, -1) == 0)
2546 		q->unhandled_irqs++;
2547 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2548 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2549 	spin_unlock(&q->lock);
2550 	return IRQ_HANDLED;
2551 }
2552 
2553 /*
2554  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2555  * (i.e., response queue serviced by NAPI polling).
2556  */
2557 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2558 {
2559 	struct sge_qset *qs = cookie;
2560 	struct sge_rspq *q = &qs->rspq;
2561 
2562 	spin_lock(&q->lock);
2563 
2564 	if (handle_responses(qs->adap, q) < 0)
2565 		q->unhandled_irqs++;
2566 	spin_unlock(&q->lock);
2567 	return IRQ_HANDLED;
2568 }
2569 
2570 /*
2571  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2572  * SGE response queues as well as error and other async events as they all use
2573  * the same MSI vector.  We use one SGE response queue per port in this mode
2574  * and protect all response queues with queue 0's lock.
2575  */
2576 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2577 {
2578 	int new_packets = 0;
2579 	struct adapter *adap = cookie;
2580 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2581 
2582 	spin_lock(&q->lock);
2583 
2584 	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2585 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2586 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2587 		new_packets = 1;
2588 	}
2589 
2590 	if (adap->params.nports == 2 &&
2591 	    process_responses(adap, &adap->sge.qs[1], -1)) {
2592 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2593 
2594 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2595 			     V_NEWTIMER(q1->next_holdoff) |
2596 			     V_NEWINDEX(q1->cidx));
2597 		new_packets = 1;
2598 	}
2599 
2600 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2601 		q->unhandled_irqs++;
2602 
2603 	spin_unlock(&q->lock);
2604 	return IRQ_HANDLED;
2605 }
2606 
2607 static int rspq_check_napi(struct sge_qset *qs)
2608 {
2609 	struct sge_rspq *q = &qs->rspq;
2610 
2611 	if (!napi_is_scheduled(&qs->napi) &&
2612 	    is_new_response(&q->desc[q->cidx], q)) {
2613 		napi_schedule(&qs->napi);
2614 		return 1;
2615 	}
2616 	return 0;
2617 }
2618 
2619 /*
2620  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2621  * by NAPI polling).  Handles data events from SGE response queues as well as
2622  * error and other async events as they all use the same MSI vector.  We use
2623  * one SGE response queue per port in this mode and protect all response
2624  * queues with queue 0's lock.
2625  */
2626 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2627 {
2628 	int new_packets;
2629 	struct adapter *adap = cookie;
2630 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2631 
2632 	spin_lock(&q->lock);
2633 
2634 	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2635 	if (adap->params.nports == 2)
2636 		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2637 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2638 		q->unhandled_irqs++;
2639 
2640 	spin_unlock(&q->lock);
2641 	return IRQ_HANDLED;
2642 }
2643 
2644 /*
2645  * A helper function that processes responses and issues GTS.
2646  */
2647 static inline int process_responses_gts(struct adapter *adap,
2648 					struct sge_rspq *rq)
2649 {
2650 	int work;
2651 
2652 	work = process_responses(adap, rspq_to_qset(rq), -1);
2653 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2654 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2655 	return work;
2656 }
2657 
2658 /*
2659  * The legacy INTx interrupt handler.  This needs to handle data events from
2660  * SGE response queues as well as error and other async events as they all use
2661  * the same interrupt pin.  We use one SGE response queue per port in this mode
2662  * and protect all response queues with queue 0's lock.
2663  */
2664 static irqreturn_t t3_intr(int irq, void *cookie)
2665 {
2666 	int work_done, w0, w1;
2667 	struct adapter *adap = cookie;
2668 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2669 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2670 
2671 	spin_lock(&q0->lock);
2672 
2673 	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2674 	w1 = adap->params.nports == 2 &&
2675 	    is_new_response(&q1->desc[q1->cidx], q1);
2676 
2677 	if (likely(w0 | w1)) {
2678 		t3_write_reg(adap, A_PL_CLI, 0);
2679 		t3_read_reg(adap, A_PL_CLI);	/* flush */
2680 
2681 		if (likely(w0))
2682 			process_responses_gts(adap, q0);
2683 
2684 		if (w1)
2685 			process_responses_gts(adap, q1);
2686 
2687 		work_done = w0 | w1;
2688 	} else
2689 		work_done = t3_slow_intr_handler(adap);
2690 
2691 	spin_unlock(&q0->lock);
2692 	return IRQ_RETVAL(work_done != 0);
2693 }
2694 
2695 /*
2696  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2697  * Handles data events from SGE response queues as well as error and other
2698  * async events as they all use the same interrupt pin.  We use one SGE
2699  * response queue per port in this mode and protect all response queues with
2700  * queue 0's lock.
2701  */
2702 static irqreturn_t t3b_intr(int irq, void *cookie)
2703 {
2704 	u32 map;
2705 	struct adapter *adap = cookie;
2706 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2707 
2708 	t3_write_reg(adap, A_PL_CLI, 0);
2709 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2710 
2711 	if (unlikely(!map))	/* shared interrupt, most likely */
2712 		return IRQ_NONE;
2713 
2714 	spin_lock(&q0->lock);
2715 
2716 	if (unlikely(map & F_ERRINTR))
2717 		t3_slow_intr_handler(adap);
2718 
2719 	if (likely(map & 1))
2720 		process_responses_gts(adap, q0);
2721 
2722 	if (map & 2)
2723 		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2724 
2725 	spin_unlock(&q0->lock);
2726 	return IRQ_HANDLED;
2727 }
2728 
2729 /*
2730  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2731  * Handles data events from SGE response queues as well as error and other
2732  * async events as they all use the same interrupt pin.  We use one SGE
2733  * response queue per port in this mode and protect all response queues with
2734  * queue 0's lock.
2735  */
2736 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2737 {
2738 	u32 map;
2739 	struct adapter *adap = cookie;
2740 	struct sge_qset *qs0 = &adap->sge.qs[0];
2741 	struct sge_rspq *q0 = &qs0->rspq;
2742 
2743 	t3_write_reg(adap, A_PL_CLI, 0);
2744 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2745 
2746 	if (unlikely(!map))	/* shared interrupt, most likely */
2747 		return IRQ_NONE;
2748 
2749 	spin_lock(&q0->lock);
2750 
2751 	if (unlikely(map & F_ERRINTR))
2752 		t3_slow_intr_handler(adap);
2753 
2754 	if (likely(map & 1))
2755 		napi_schedule(&qs0->napi);
2756 
2757 	if (map & 2)
2758 		napi_schedule(&adap->sge.qs[1].napi);
2759 
2760 	spin_unlock(&q0->lock);
2761 	return IRQ_HANDLED;
2762 }
2763 
2764 /**
2765  *	t3_intr_handler - select the top-level interrupt handler
2766  *	@adap: the adapter
2767  *	@polling: whether using NAPI to service response queues
2768  *
2769  *	Selects the top-level interrupt handler based on the type of interrupts
2770  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2771  *	response queues.
2772  */
2773 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2774 {
2775 	if (adap->flags & USING_MSIX)
2776 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2777 	if (adap->flags & USING_MSI)
2778 		return polling ? t3_intr_msi_napi : t3_intr_msi;
2779 	if (adap->params.rev > 0)
2780 		return polling ? t3b_intr_napi : t3b_intr;
2781 	return t3_intr;
2782 }
2783 
2784 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2785 		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2786 		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2787 		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2788 		    F_HIRCQPARITYERROR)
2789 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2790 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2791 		      F_RSPQDISABLED)
2792 
2793 /**
2794  *	t3_sge_err_intr_handler - SGE async event interrupt handler
2795  *	@adapter: the adapter
2796  *
2797  *	Interrupt handler for SGE asynchronous (non-data) events.
2798  */
2799 void t3_sge_err_intr_handler(struct adapter *adapter)
2800 {
2801 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2802 				 ~F_FLEMPTY;
2803 
2804 	if (status & SGE_PARERR)
2805 		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2806 			 status & SGE_PARERR);
2807 	if (status & SGE_FRAMINGERR)
2808 		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2809 			 status & SGE_FRAMINGERR);
2810 
2811 	if (status & F_RSPQCREDITOVERFOW)
2812 		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2813 
2814 	if (status & F_RSPQDISABLED) {
2815 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2816 
2817 		CH_ALERT(adapter,
2818 			 "packet delivered to disabled response queue "
2819 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2820 	}
2821 
2822 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2823 		queue_work(cxgb3_wq, &adapter->db_drop_task);
2824 
2825 	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2826 		queue_work(cxgb3_wq, &adapter->db_full_task);
2827 
2828 	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2829 		queue_work(cxgb3_wq, &adapter->db_empty_task);
2830 
2831 	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2832 	if (status &  SGE_FATALERR)
2833 		t3_fatal_err(adapter);
2834 }
2835 
2836 /**
2837  *	sge_timer_tx - perform periodic maintenance of an SGE qset
2838  *	@data: the SGE queue set to maintain
2839  *
2840  *	Runs periodically from a timer to perform maintenance of an SGE queue
2841  *	set.  It performs two tasks:
2842  *
2843  *	Cleans up any completed Tx descriptors that may still be pending.
2844  *	Normal descriptor cleanup happens when new packets are added to a Tx
2845  *	queue so this timer is relatively infrequent and does any cleanup only
2846  *	if the Tx queue has not seen any new packets in a while.  We make a
2847  *	best effort attempt to reclaim descriptors, in that we don't wait
2848  *	around if we cannot get a queue's lock (which most likely is because
2849  *	someone else is queueing new packets and so will also handle the clean
2850  *	up).  Since control queues use immediate data exclusively we don't
2851  *	bother cleaning them up here.
2852  *
2853  */
2854 static void sge_timer_tx(unsigned long data)
2855 {
2856 	struct sge_qset *qs = (struct sge_qset *)data;
2857 	struct port_info *pi = netdev_priv(qs->netdev);
2858 	struct adapter *adap = pi->adapter;
2859 	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2860 	unsigned long next_period;
2861 
2862 	if (__netif_tx_trylock(qs->tx_q)) {
2863                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2864                                                      TX_RECLAIM_TIMER_CHUNK);
2865 		__netif_tx_unlock(qs->tx_q);
2866 	}
2867 
2868 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2869 		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2870 						     TX_RECLAIM_TIMER_CHUNK);
2871 		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2872 	}
2873 
2874 	next_period = TX_RECLAIM_PERIOD >>
2875                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2876                       TX_RECLAIM_TIMER_CHUNK);
2877 	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2878 }
2879 
2880 /**
2881  *	sge_timer_rx - perform periodic maintenance of an SGE qset
2882  *	@data: the SGE queue set to maintain
2883  *
2884  *	a) Replenishes Rx queues that have run out due to memory shortage.
2885  *	Normally new Rx buffers are added when existing ones are consumed but
2886  *	when out of memory a queue can become empty.  We try to add only a few
2887  *	buffers here, the queue will be replenished fully as these new buffers
2888  *	are used up if memory shortage has subsided.
2889  *
2890  *	b) Return coalesced response queue credits in case a response queue is
2891  *	starved.
2892  *
2893  */
2894 static void sge_timer_rx(unsigned long data)
2895 {
2896 	spinlock_t *lock;
2897 	struct sge_qset *qs = (struct sge_qset *)data;
2898 	struct port_info *pi = netdev_priv(qs->netdev);
2899 	struct adapter *adap = pi->adapter;
2900 	u32 status;
2901 
2902 	lock = adap->params.rev > 0 ?
2903 	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2904 
2905 	if (!spin_trylock_irq(lock))
2906 		goto out;
2907 
2908 	if (napi_is_scheduled(&qs->napi))
2909 		goto unlock;
2910 
2911 	if (adap->params.rev < 4) {
2912 		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2913 
2914 		if (status & (1 << qs->rspq.cntxt_id)) {
2915 			qs->rspq.starved++;
2916 			if (qs->rspq.credits) {
2917 				qs->rspq.credits--;
2918 				refill_rspq(adap, &qs->rspq, 1);
2919 				qs->rspq.restarted++;
2920 				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2921 					     1 << qs->rspq.cntxt_id);
2922 			}
2923 		}
2924 	}
2925 
2926 	if (qs->fl[0].credits < qs->fl[0].size)
2927 		__refill_fl(adap, &qs->fl[0]);
2928 	if (qs->fl[1].credits < qs->fl[1].size)
2929 		__refill_fl(adap, &qs->fl[1]);
2930 
2931 unlock:
2932 	spin_unlock_irq(lock);
2933 out:
2934 	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2935 }
2936 
2937 /**
2938  *	t3_update_qset_coalesce - update coalescing settings for a queue set
2939  *	@qs: the SGE queue set
2940  *	@p: new queue set parameters
2941  *
2942  *	Update the coalescing settings for an SGE queue set.  Nothing is done
2943  *	if the queue set is not initialized yet.
2944  */
2945 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2946 {
2947 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2948 	qs->rspq.polling = p->polling;
2949 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2950 }
2951 
2952 /**
2953  *	t3_sge_alloc_qset - initialize an SGE queue set
2954  *	@adapter: the adapter
2955  *	@id: the queue set id
2956  *	@nports: how many Ethernet ports will be using this queue set
2957  *	@irq_vec_idx: the IRQ vector index for response queue interrupts
2958  *	@p: configuration parameters for this queue set
2959  *	@ntxq: number of Tx queues for the queue set
2960  *	@netdev: net device associated with this queue set
2961  *	@netdevq: net device TX queue associated with this queue set
2962  *
2963  *	Allocate resources and initialize an SGE queue set.  A queue set
2964  *	comprises a response queue, two Rx free-buffer queues, and up to 3
2965  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
2966  *	queue, offload queue, and control queue.
2967  */
2968 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2969 		      int irq_vec_idx, const struct qset_params *p,
2970 		      int ntxq, struct net_device *dev,
2971 		      struct netdev_queue *netdevq)
2972 {
2973 	int i, avail, ret = -ENOMEM;
2974 	struct sge_qset *q = &adapter->sge.qs[id];
2975 
2976 	init_qset_cntxt(q, id);
2977 	setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2978 	setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2979 
2980 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2981 				   sizeof(struct rx_desc),
2982 				   sizeof(struct rx_sw_desc),
2983 				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
2984 	if (!q->fl[0].desc)
2985 		goto err;
2986 
2987 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2988 				   sizeof(struct rx_desc),
2989 				   sizeof(struct rx_sw_desc),
2990 				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
2991 	if (!q->fl[1].desc)
2992 		goto err;
2993 
2994 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2995 				  sizeof(struct rsp_desc), 0,
2996 				  &q->rspq.phys_addr, NULL);
2997 	if (!q->rspq.desc)
2998 		goto err;
2999 
3000 	for (i = 0; i < ntxq; ++i) {
3001 		/*
3002 		 * The control queue always uses immediate data so does not
3003 		 * need to keep track of any sk_buffs.
3004 		 */
3005 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3006 
3007 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3008 					    sizeof(struct tx_desc), sz,
3009 					    &q->txq[i].phys_addr,
3010 					    &q->txq[i].sdesc);
3011 		if (!q->txq[i].desc)
3012 			goto err;
3013 
3014 		q->txq[i].gen = 1;
3015 		q->txq[i].size = p->txq_size[i];
3016 		spin_lock_init(&q->txq[i].lock);
3017 		skb_queue_head_init(&q->txq[i].sendq);
3018 	}
3019 
3020 	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3021 		     (unsigned long)q);
3022 	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3023 		     (unsigned long)q);
3024 
3025 	q->fl[0].gen = q->fl[1].gen = 1;
3026 	q->fl[0].size = p->fl_size;
3027 	q->fl[1].size = p->jumbo_size;
3028 
3029 	q->rspq.gen = 1;
3030 	q->rspq.size = p->rspq_size;
3031 	spin_lock_init(&q->rspq.lock);
3032 	skb_queue_head_init(&q->rspq.rx_queue);
3033 
3034 	q->txq[TXQ_ETH].stop_thres = nports *
3035 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3036 
3037 #if FL0_PG_CHUNK_SIZE > 0
3038 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3039 #else
3040 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3041 #endif
3042 #if FL1_PG_CHUNK_SIZE > 0
3043 	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3044 #else
3045 	q->fl[1].buf_size = is_offload(adapter) ?
3046 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3047 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3048 #endif
3049 
3050 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3051 	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3052 	q->fl[0].order = FL0_PG_ORDER;
3053 	q->fl[1].order = FL1_PG_ORDER;
3054 	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3055 	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3056 
3057 	spin_lock_irq(&adapter->sge.reg_lock);
3058 
3059 	/* FL threshold comparison uses < */
3060 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3061 				   q->rspq.phys_addr, q->rspq.size,
3062 				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3063 	if (ret)
3064 		goto err_unlock;
3065 
3066 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3067 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3068 					  q->fl[i].phys_addr, q->fl[i].size,
3069 					  q->fl[i].buf_size - SGE_PG_RSVD,
3070 					  p->cong_thres, 1, 0);
3071 		if (ret)
3072 			goto err_unlock;
3073 	}
3074 
3075 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3076 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3077 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3078 				 1, 0);
3079 	if (ret)
3080 		goto err_unlock;
3081 
3082 	if (ntxq > 1) {
3083 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3084 					 USE_GTS, SGE_CNTXT_OFLD, id,
3085 					 q->txq[TXQ_OFLD].phys_addr,
3086 					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3087 		if (ret)
3088 			goto err_unlock;
3089 	}
3090 
3091 	if (ntxq > 2) {
3092 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3093 					 SGE_CNTXT_CTRL, id,
3094 					 q->txq[TXQ_CTRL].phys_addr,
3095 					 q->txq[TXQ_CTRL].size,
3096 					 q->txq[TXQ_CTRL].token, 1, 0);
3097 		if (ret)
3098 			goto err_unlock;
3099 	}
3100 
3101 	spin_unlock_irq(&adapter->sge.reg_lock);
3102 
3103 	q->adap = adapter;
3104 	q->netdev = dev;
3105 	q->tx_q = netdevq;
3106 	t3_update_qset_coalesce(q, p);
3107 
3108 	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3109 			  GFP_KERNEL | __GFP_COMP);
3110 	if (!avail) {
3111 		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3112 		goto err;
3113 	}
3114 	if (avail < q->fl[0].size)
3115 		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3116 			avail);
3117 
3118 	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3119 			  GFP_KERNEL | __GFP_COMP);
3120 	if (avail < q->fl[1].size)
3121 		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3122 			avail);
3123 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3124 
3125 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3126 		     V_NEWTIMER(q->rspq.holdoff_tmr));
3127 
3128 	return 0;
3129 
3130 err_unlock:
3131 	spin_unlock_irq(&adapter->sge.reg_lock);
3132 err:
3133 	t3_free_qset(adapter, q);
3134 	return ret;
3135 }
3136 
3137 /**
3138  *      t3_start_sge_timers - start SGE timer call backs
3139  *      @adap: the adapter
3140  *
3141  *      Starts each SGE queue set's timer call back
3142  */
3143 void t3_start_sge_timers(struct adapter *adap)
3144 {
3145 	int i;
3146 
3147 	for (i = 0; i < SGE_QSETS; ++i) {
3148 		struct sge_qset *q = &adap->sge.qs[i];
3149 
3150 	if (q->tx_reclaim_timer.function)
3151 		mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3152 
3153 	if (q->rx_reclaim_timer.function)
3154 		mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3155 	}
3156 }
3157 
3158 /**
3159  *	t3_stop_sge_timers - stop SGE timer call backs
3160  *	@adap: the adapter
3161  *
3162  *	Stops each SGE queue set's timer call back
3163  */
3164 void t3_stop_sge_timers(struct adapter *adap)
3165 {
3166 	int i;
3167 
3168 	for (i = 0; i < SGE_QSETS; ++i) {
3169 		struct sge_qset *q = &adap->sge.qs[i];
3170 
3171 		if (q->tx_reclaim_timer.function)
3172 			del_timer_sync(&q->tx_reclaim_timer);
3173 		if (q->rx_reclaim_timer.function)
3174 			del_timer_sync(&q->rx_reclaim_timer);
3175 	}
3176 }
3177 
3178 /**
3179  *	t3_free_sge_resources - free SGE resources
3180  *	@adap: the adapter
3181  *
3182  *	Frees resources used by the SGE queue sets.
3183  */
3184 void t3_free_sge_resources(struct adapter *adap)
3185 {
3186 	int i;
3187 
3188 	for (i = 0; i < SGE_QSETS; ++i)
3189 		t3_free_qset(adap, &adap->sge.qs[i]);
3190 }
3191 
3192 /**
3193  *	t3_sge_start - enable SGE
3194  *	@adap: the adapter
3195  *
3196  *	Enables the SGE for DMAs.  This is the last step in starting packet
3197  *	transfers.
3198  */
3199 void t3_sge_start(struct adapter *adap)
3200 {
3201 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3202 }
3203 
3204 /**
3205  *	t3_sge_stop - disable SGE operation
3206  *	@adap: the adapter
3207  *
3208  *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
3209  *	from error interrupts) or from normal process context.  In the latter
3210  *	case it also disables any pending queue restart tasklets.  Note that
3211  *	if it is called in interrupt context it cannot disable the restart
3212  *	tasklets as it cannot wait, however the tasklets will have no effect
3213  *	since the doorbells are disabled and the driver will call this again
3214  *	later from process context, at which time the tasklets will be stopped
3215  *	if they are still running.
3216  */
3217 void t3_sge_stop(struct adapter *adap)
3218 {
3219 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3220 	if (!in_interrupt()) {
3221 		int i;
3222 
3223 		for (i = 0; i < SGE_QSETS; ++i) {
3224 			struct sge_qset *qs = &adap->sge.qs[i];
3225 
3226 			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3227 			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3228 		}
3229 	}
3230 }
3231 
3232 /**
3233  *	t3_sge_init - initialize SGE
3234  *	@adap: the adapter
3235  *	@p: the SGE parameters
3236  *
3237  *	Performs SGE initialization needed every time after a chip reset.
3238  *	We do not initialize any of the queue sets here, instead the driver
3239  *	top-level must request those individually.  We also do not enable DMA
3240  *	here, that should be done after the queues have been set up.
3241  */
3242 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3243 {
3244 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3245 
3246 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3247 	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3248 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3249 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3250 #if SGE_NUM_GENBITS == 1
3251 	ctrl |= F_EGRGENCTRL;
3252 #endif
3253 	if (adap->params.rev > 0) {
3254 		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3255 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3256 	}
3257 	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3258 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3259 		     V_LORCQDRBTHRSH(512));
3260 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3261 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3262 		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3263 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3264 		     adap->params.rev < T3_REV_C ? 1000 : 500);
3265 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3266 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3267 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3268 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3269 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3270 }
3271 
3272 /**
3273  *	t3_sge_prep - one-time SGE initialization
3274  *	@adap: the associated adapter
3275  *	@p: SGE parameters
3276  *
3277  *	Performs one-time initialization of SGE SW state.  Includes determining
3278  *	defaults for the assorted SGE parameters, which admins can change until
3279  *	they are used to initialize the SGE.
3280  */
3281 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3282 {
3283 	int i;
3284 
3285 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3286 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3287 
3288 	for (i = 0; i < SGE_QSETS; ++i) {
3289 		struct qset_params *q = p->qset + i;
3290 
3291 		q->polling = adap->params.rev > 0;
3292 		q->coalesce_usecs = 5;
3293 		q->rspq_size = 1024;
3294 		q->fl_size = 1024;
3295  		q->jumbo_size = 512;
3296 		q->txq_size[TXQ_ETH] = 1024;
3297 		q->txq_size[TXQ_OFLD] = 1024;
3298 		q->txq_size[TXQ_CTRL] = 256;
3299 		q->cong_thres = 0;
3300 	}
3301 
3302 	spin_lock_init(&adap->sge.reg_lock);
3303 }
3304