1 /* 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/skbuff.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/if_vlan.h> 36 #include <linux/ip.h> 37 #include <linux/tcp.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/slab.h> 40 #include <linux/prefetch.h> 41 #include <net/arp.h> 42 #include "common.h" 43 #include "regs.h" 44 #include "sge_defs.h" 45 #include "t3_cpl.h" 46 #include "firmware_exports.h" 47 #include "cxgb3_offload.h" 48 49 #define USE_GTS 0 50 51 #define SGE_RX_SM_BUF_SIZE 1536 52 53 #define SGE_RX_COPY_THRES 256 54 #define SGE_RX_PULL_LEN 128 55 56 #define SGE_PG_RSVD SMP_CACHE_BYTES 57 /* 58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. 59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs 60 * directly. 61 */ 62 #define FL0_PG_CHUNK_SIZE 2048 63 #define FL0_PG_ORDER 0 64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) 65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) 66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) 67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) 68 69 #define SGE_RX_DROP_THRES 16 70 #define RX_RECLAIM_PERIOD (HZ/4) 71 72 /* 73 * Max number of Rx buffers we replenish at a time. 74 */ 75 #define MAX_RX_REFILL 16U 76 /* 77 * Period of the Tx buffer reclaim timer. This timer does not need to run 78 * frequently as Tx buffers are usually reclaimed by new Tx packets. 79 */ 80 #define TX_RECLAIM_PERIOD (HZ / 4) 81 #define TX_RECLAIM_TIMER_CHUNK 64U 82 #define TX_RECLAIM_CHUNK 16U 83 84 /* WR size in bytes */ 85 #define WR_LEN (WR_FLITS * 8) 86 87 /* 88 * Types of Tx queues in each queue set. Order here matters, do not change. 89 */ 90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; 91 92 /* Values for sge_txq.flags */ 93 enum { 94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */ 95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ 96 }; 97 98 struct tx_desc { 99 __be64 flit[TX_DESC_FLITS]; 100 }; 101 102 struct rx_desc { 103 __be32 addr_lo; 104 __be32 len_gen; 105 __be32 gen2; 106 __be32 addr_hi; 107 }; 108 109 struct tx_sw_desc { /* SW state per Tx descriptor */ 110 struct sk_buff *skb; 111 u8 eop; /* set if last descriptor for packet */ 112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */ 113 u8 fragidx; /* first page fragment associated with descriptor */ 114 s8 sflit; /* start flit of first SGL entry in descriptor */ 115 }; 116 117 struct rx_sw_desc { /* SW state per Rx descriptor */ 118 union { 119 struct sk_buff *skb; 120 struct fl_pg_chunk pg_chunk; 121 }; 122 DEFINE_DMA_UNMAP_ADDR(dma_addr); 123 }; 124 125 struct rsp_desc { /* response queue descriptor */ 126 struct rss_header rss_hdr; 127 __be32 flags; 128 __be32 len_cq; 129 u8 imm_data[47]; 130 u8 intr_gen; 131 }; 132 133 /* 134 * Holds unmapping information for Tx packets that need deferred unmapping. 135 * This structure lives at skb->head and must be allocated by callers. 136 */ 137 struct deferred_unmap_info { 138 struct pci_dev *pdev; 139 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 140 }; 141 142 /* 143 * Maps a number of flits to the number of Tx descriptors that can hold them. 144 * The formula is 145 * 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1). 147 * 148 * HW allows up to 4 descriptors to be combined into a WR. 149 */ 150 static u8 flit_desc_map[] = { 151 0, 152 #if SGE_NUM_GENBITS == 1 153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 157 #elif SGE_NUM_GENBITS == 2 158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 162 #else 163 # error "SGE_NUM_GENBITS must be 1 or 2" 164 #endif 165 }; 166 167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) 168 { 169 return container_of(q, struct sge_qset, fl[qidx]); 170 } 171 172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) 173 { 174 return container_of(q, struct sge_qset, rspq); 175 } 176 177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) 178 { 179 return container_of(q, struct sge_qset, txq[qidx]); 180 } 181 182 /** 183 * refill_rspq - replenish an SGE response queue 184 * @adapter: the adapter 185 * @q: the response queue to replenish 186 * @credits: how many new responses to make available 187 * 188 * Replenishes a response queue by making the supplied number of responses 189 * available to HW. 190 */ 191 static inline void refill_rspq(struct adapter *adapter, 192 const struct sge_rspq *q, unsigned int credits) 193 { 194 rmb(); 195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, 196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); 197 } 198 199 /** 200 * need_skb_unmap - does the platform need unmapping of sk_buffs? 201 * 202 * Returns true if the platform needs sk_buff unmapping. The compiler 203 * optimizes away unnecessary code if this returns true. 204 */ 205 static inline int need_skb_unmap(void) 206 { 207 #ifdef CONFIG_NEED_DMA_MAP_STATE 208 return 1; 209 #else 210 return 0; 211 #endif 212 } 213 214 /** 215 * unmap_skb - unmap a packet main body and its page fragments 216 * @skb: the packet 217 * @q: the Tx queue containing Tx descriptors for the packet 218 * @cidx: index of Tx descriptor 219 * @pdev: the PCI device 220 * 221 * Unmap the main body of an sk_buff and its page fragments, if any. 222 * Because of the fairly complicated structure of our SGLs and the desire 223 * to conserve space for metadata, the information necessary to unmap an 224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx 225 * descriptors (the physical addresses of the various data buffers), and 226 * the SW descriptor state (assorted indices). The send functions 227 * initialize the indices for the first packet descriptor so we can unmap 228 * the buffers held in the first Tx descriptor here, and we have enough 229 * information at this point to set the state for the next Tx descriptor. 230 * 231 * Note that it is possible to clean up the first descriptor of a packet 232 * before the send routines have written the next descriptors, but this 233 * race does not cause any problem. We just end up writing the unmapping 234 * info for the descriptor first. 235 */ 236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, 237 unsigned int cidx, struct pci_dev *pdev) 238 { 239 const struct sg_ent *sgp; 240 struct tx_sw_desc *d = &q->sdesc[cidx]; 241 int nfrags, frag_idx, curflit, j = d->addr_idx; 242 243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; 244 frag_idx = d->fragidx; 245 246 if (frag_idx == 0 && skb_headlen(skb)) { 247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), 248 skb_headlen(skb), PCI_DMA_TODEVICE); 249 j = 1; 250 } 251 252 curflit = d->sflit + 1 + j; 253 nfrags = skb_shinfo(skb)->nr_frags; 254 255 while (frag_idx < nfrags && curflit < WR_FLITS) { 256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), 257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), 258 PCI_DMA_TODEVICE); 259 j ^= 1; 260 if (j == 0) { 261 sgp++; 262 curflit++; 263 } 264 curflit++; 265 frag_idx++; 266 } 267 268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ 269 d = cidx + 1 == q->size ? q->sdesc : d + 1; 270 d->fragidx = frag_idx; 271 d->addr_idx = j; 272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ 273 } 274 } 275 276 /** 277 * free_tx_desc - reclaims Tx descriptors and their buffers 278 * @adapter: the adapter 279 * @q: the Tx queue to reclaim descriptors from 280 * @n: the number of descriptors to reclaim 281 * 282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 283 * Tx buffers. Called with the Tx queue lock held. 284 */ 285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, 286 unsigned int n) 287 { 288 struct tx_sw_desc *d; 289 struct pci_dev *pdev = adapter->pdev; 290 unsigned int cidx = q->cidx; 291 292 const int need_unmap = need_skb_unmap() && 293 q->cntxt_id >= FW_TUNNEL_SGEEC_START; 294 295 d = &q->sdesc[cidx]; 296 while (n--) { 297 if (d->skb) { /* an SGL is present */ 298 if (need_unmap) 299 unmap_skb(d->skb, q, cidx, pdev); 300 if (d->eop) { 301 dev_consume_skb_any(d->skb); 302 d->skb = NULL; 303 } 304 } 305 ++d; 306 if (++cidx == q->size) { 307 cidx = 0; 308 d = q->sdesc; 309 } 310 } 311 q->cidx = cidx; 312 } 313 314 /** 315 * reclaim_completed_tx - reclaims completed Tx descriptors 316 * @adapter: the adapter 317 * @q: the Tx queue to reclaim completed descriptors from 318 * @chunk: maximum number of descriptors to reclaim 319 * 320 * Reclaims Tx descriptors that the SGE has indicated it has processed, 321 * and frees the associated buffers if possible. Called with the Tx 322 * queue's lock held. 323 */ 324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter, 325 struct sge_txq *q, 326 unsigned int chunk) 327 { 328 unsigned int reclaim = q->processed - q->cleaned; 329 330 reclaim = min(chunk, reclaim); 331 if (reclaim) { 332 free_tx_desc(adapter, q, reclaim); 333 q->cleaned += reclaim; 334 q->in_use -= reclaim; 335 } 336 return q->processed - q->cleaned; 337 } 338 339 /** 340 * should_restart_tx - are there enough resources to restart a Tx queue? 341 * @q: the Tx queue 342 * 343 * Checks if there are enough descriptors to restart a suspended Tx queue. 344 */ 345 static inline int should_restart_tx(const struct sge_txq *q) 346 { 347 unsigned int r = q->processed - q->cleaned; 348 349 return q->in_use - r < (q->size >> 1); 350 } 351 352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, 353 struct rx_sw_desc *d) 354 { 355 if (q->use_pages && d->pg_chunk.page) { 356 (*d->pg_chunk.p_cnt)--; 357 if (!*d->pg_chunk.p_cnt) 358 pci_unmap_page(pdev, 359 d->pg_chunk.mapping, 360 q->alloc_size, PCI_DMA_FROMDEVICE); 361 362 put_page(d->pg_chunk.page); 363 d->pg_chunk.page = NULL; 364 } else { 365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr), 366 q->buf_size, PCI_DMA_FROMDEVICE); 367 kfree_skb(d->skb); 368 d->skb = NULL; 369 } 370 } 371 372 /** 373 * free_rx_bufs - free the Rx buffers on an SGE free list 374 * @pdev: the PCI device associated with the adapter 375 * @q: the SGE free list to clean up 376 * 377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from 378 * this queue should be stopped before calling this function. 379 */ 380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) 381 { 382 unsigned int cidx = q->cidx; 383 384 while (q->credits--) { 385 struct rx_sw_desc *d = &q->sdesc[cidx]; 386 387 388 clear_rx_desc(pdev, q, d); 389 if (++cidx == q->size) 390 cidx = 0; 391 } 392 393 if (q->pg_chunk.page) { 394 __free_pages(q->pg_chunk.page, q->order); 395 q->pg_chunk.page = NULL; 396 } 397 } 398 399 /** 400 * add_one_rx_buf - add a packet buffer to a free-buffer list 401 * @va: buffer start VA 402 * @len: the buffer length 403 * @d: the HW Rx descriptor to write 404 * @sd: the SW Rx descriptor to write 405 * @gen: the generation bit value 406 * @pdev: the PCI device associated with the adapter 407 * 408 * Add a buffer of the given length to the supplied HW and SW Rx 409 * descriptors. 410 */ 411 static inline int add_one_rx_buf(void *va, unsigned int len, 412 struct rx_desc *d, struct rx_sw_desc *sd, 413 unsigned int gen, struct pci_dev *pdev) 414 { 415 dma_addr_t mapping; 416 417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE); 418 if (unlikely(pci_dma_mapping_error(pdev, mapping))) 419 return -ENOMEM; 420 421 dma_unmap_addr_set(sd, dma_addr, mapping); 422 423 d->addr_lo = cpu_to_be32(mapping); 424 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 425 dma_wmb(); 426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 428 return 0; 429 } 430 431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, 432 unsigned int gen) 433 { 434 d->addr_lo = cpu_to_be32(mapping); 435 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 436 dma_wmb(); 437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 439 return 0; 440 } 441 442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, 443 struct rx_sw_desc *sd, gfp_t gfp, 444 unsigned int order) 445 { 446 if (!q->pg_chunk.page) { 447 dma_addr_t mapping; 448 449 q->pg_chunk.page = alloc_pages(gfp, order); 450 if (unlikely(!q->pg_chunk.page)) 451 return -ENOMEM; 452 q->pg_chunk.va = page_address(q->pg_chunk.page); 453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - 454 SGE_PG_RSVD; 455 q->pg_chunk.offset = 0; 456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page, 457 0, q->alloc_size, PCI_DMA_FROMDEVICE); 458 if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) { 459 __free_pages(q->pg_chunk.page, order); 460 q->pg_chunk.page = NULL; 461 return -EIO; 462 } 463 q->pg_chunk.mapping = mapping; 464 } 465 sd->pg_chunk = q->pg_chunk; 466 467 prefetch(sd->pg_chunk.p_cnt); 468 469 q->pg_chunk.offset += q->buf_size; 470 if (q->pg_chunk.offset == (PAGE_SIZE << order)) 471 q->pg_chunk.page = NULL; 472 else { 473 q->pg_chunk.va += q->buf_size; 474 get_page(q->pg_chunk.page); 475 } 476 477 if (sd->pg_chunk.offset == 0) 478 *sd->pg_chunk.p_cnt = 1; 479 else 480 *sd->pg_chunk.p_cnt += 1; 481 482 return 0; 483 } 484 485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 486 { 487 if (q->pend_cred >= q->credits / 4) { 488 q->pend_cred = 0; 489 wmb(); 490 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 491 } 492 } 493 494 /** 495 * refill_fl - refill an SGE free-buffer list 496 * @adap: the adapter 497 * @q: the free-list to refill 498 * @n: the number of new buffers to allocate 499 * @gfp: the gfp flags for allocating new buffers 500 * 501 * (Re)populate an SGE free-buffer list with up to @n new packet buffers, 502 * allocated with the supplied gfp flags. The caller must assure that 503 * @n does not exceed the queue's capacity. 504 */ 505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) 506 { 507 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 508 struct rx_desc *d = &q->desc[q->pidx]; 509 unsigned int count = 0; 510 511 while (n--) { 512 dma_addr_t mapping; 513 int err; 514 515 if (q->use_pages) { 516 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, 517 q->order))) { 518 nomem: q->alloc_failed++; 519 break; 520 } 521 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; 522 dma_unmap_addr_set(sd, dma_addr, mapping); 523 524 add_one_rx_chunk(mapping, d, q->gen); 525 pci_dma_sync_single_for_device(adap->pdev, mapping, 526 q->buf_size - SGE_PG_RSVD, 527 PCI_DMA_FROMDEVICE); 528 } else { 529 void *buf_start; 530 531 struct sk_buff *skb = alloc_skb(q->buf_size, gfp); 532 if (!skb) 533 goto nomem; 534 535 sd->skb = skb; 536 buf_start = skb->data; 537 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, 538 q->gen, adap->pdev); 539 if (unlikely(err)) { 540 clear_rx_desc(adap->pdev, q, sd); 541 break; 542 } 543 } 544 545 d++; 546 sd++; 547 if (++q->pidx == q->size) { 548 q->pidx = 0; 549 q->gen ^= 1; 550 sd = q->sdesc; 551 d = q->desc; 552 } 553 count++; 554 } 555 556 q->credits += count; 557 q->pend_cred += count; 558 ring_fl_db(adap, q); 559 560 return count; 561 } 562 563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 564 { 565 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), 566 GFP_ATOMIC | __GFP_COMP); 567 } 568 569 /** 570 * recycle_rx_buf - recycle a receive buffer 571 * @adap: the adapter 572 * @q: the SGE free list 573 * @idx: index of buffer to recycle 574 * 575 * Recycles the specified buffer on the given free list by adding it at 576 * the next available slot on the list. 577 */ 578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, 579 unsigned int idx) 580 { 581 struct rx_desc *from = &q->desc[idx]; 582 struct rx_desc *to = &q->desc[q->pidx]; 583 584 q->sdesc[q->pidx] = q->sdesc[idx]; 585 to->addr_lo = from->addr_lo; /* already big endian */ 586 to->addr_hi = from->addr_hi; /* likewise */ 587 dma_wmb(); 588 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); 589 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); 590 591 if (++q->pidx == q->size) { 592 q->pidx = 0; 593 q->gen ^= 1; 594 } 595 596 q->credits++; 597 q->pend_cred++; 598 ring_fl_db(adap, q); 599 } 600 601 /** 602 * alloc_ring - allocate resources for an SGE descriptor ring 603 * @pdev: the PCI device 604 * @nelem: the number of descriptors 605 * @elem_size: the size of each descriptor 606 * @sw_size: the size of the SW state associated with each ring element 607 * @phys: the physical address of the allocated ring 608 * @metadata: address of the array holding the SW state for the ring 609 * 610 * Allocates resources for an SGE descriptor ring, such as Tx queues, 611 * free buffer lists, or response queues. Each SGE ring requires 612 * space for its HW descriptors plus, optionally, space for the SW state 613 * associated with each HW entry (the metadata). The function returns 614 * three values: the virtual address for the HW ring (the return value 615 * of the function), the physical address of the HW ring, and the address 616 * of the SW ring. 617 */ 618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, 619 size_t sw_size, dma_addr_t * phys, void *metadata) 620 { 621 size_t len = nelem * elem_size; 622 void *s = NULL; 623 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); 624 625 if (!p) 626 return NULL; 627 if (sw_size && metadata) { 628 s = kcalloc(nelem, sw_size, GFP_KERNEL); 629 630 if (!s) { 631 dma_free_coherent(&pdev->dev, len, p, *phys); 632 return NULL; 633 } 634 *(void **)metadata = s; 635 } 636 return p; 637 } 638 639 /** 640 * t3_reset_qset - reset a sge qset 641 * @q: the queue set 642 * 643 * Reset the qset structure. 644 * the NAPI structure is preserved in the event of 645 * the qset's reincarnation, for example during EEH recovery. 646 */ 647 static void t3_reset_qset(struct sge_qset *q) 648 { 649 if (q->adap && 650 !(q->adap->flags & NAPI_INIT)) { 651 memset(q, 0, sizeof(*q)); 652 return; 653 } 654 655 q->adap = NULL; 656 memset(&q->rspq, 0, sizeof(q->rspq)); 657 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); 658 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); 659 q->txq_stopped = 0; 660 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ 661 q->rx_reclaim_timer.function = NULL; 662 q->nomem = 0; 663 napi_free_frags(&q->napi); 664 } 665 666 667 /** 668 * t3_free_qset - free the resources of an SGE queue set 669 * @adapter: the adapter owning the queue set 670 * @q: the queue set 671 * 672 * Release the HW and SW resources associated with an SGE queue set, such 673 * as HW contexts, packet buffers, and descriptor rings. Traffic to the 674 * queue set must be quiesced prior to calling this. 675 */ 676 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) 677 { 678 int i; 679 struct pci_dev *pdev = adapter->pdev; 680 681 for (i = 0; i < SGE_RXQ_PER_SET; ++i) 682 if (q->fl[i].desc) { 683 spin_lock_irq(&adapter->sge.reg_lock); 684 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); 685 spin_unlock_irq(&adapter->sge.reg_lock); 686 free_rx_bufs(pdev, &q->fl[i]); 687 kfree(q->fl[i].sdesc); 688 dma_free_coherent(&pdev->dev, 689 q->fl[i].size * 690 sizeof(struct rx_desc), q->fl[i].desc, 691 q->fl[i].phys_addr); 692 } 693 694 for (i = 0; i < SGE_TXQ_PER_SET; ++i) 695 if (q->txq[i].desc) { 696 spin_lock_irq(&adapter->sge.reg_lock); 697 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); 698 spin_unlock_irq(&adapter->sge.reg_lock); 699 if (q->txq[i].sdesc) { 700 free_tx_desc(adapter, &q->txq[i], 701 q->txq[i].in_use); 702 kfree(q->txq[i].sdesc); 703 } 704 dma_free_coherent(&pdev->dev, 705 q->txq[i].size * 706 sizeof(struct tx_desc), 707 q->txq[i].desc, q->txq[i].phys_addr); 708 __skb_queue_purge(&q->txq[i].sendq); 709 } 710 711 if (q->rspq.desc) { 712 spin_lock_irq(&adapter->sge.reg_lock); 713 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); 714 spin_unlock_irq(&adapter->sge.reg_lock); 715 dma_free_coherent(&pdev->dev, 716 q->rspq.size * sizeof(struct rsp_desc), 717 q->rspq.desc, q->rspq.phys_addr); 718 } 719 720 t3_reset_qset(q); 721 } 722 723 /** 724 * init_qset_cntxt - initialize an SGE queue set context info 725 * @qs: the queue set 726 * @id: the queue set id 727 * 728 * Initializes the TIDs and context ids for the queues of a queue set. 729 */ 730 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) 731 { 732 qs->rspq.cntxt_id = id; 733 qs->fl[0].cntxt_id = 2 * id; 734 qs->fl[1].cntxt_id = 2 * id + 1; 735 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; 736 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; 737 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; 738 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; 739 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; 740 } 741 742 /** 743 * sgl_len - calculates the size of an SGL of the given capacity 744 * @n: the number of SGL entries 745 * 746 * Calculates the number of flits needed for a scatter/gather list that 747 * can hold the given number of entries. 748 */ 749 static inline unsigned int sgl_len(unsigned int n) 750 { 751 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ 752 return (3 * n) / 2 + (n & 1); 753 } 754 755 /** 756 * flits_to_desc - returns the num of Tx descriptors for the given flits 757 * @n: the number of flits 758 * 759 * Calculates the number of Tx descriptors needed for the supplied number 760 * of flits. 761 */ 762 static inline unsigned int flits_to_desc(unsigned int n) 763 { 764 BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); 765 return flit_desc_map[n]; 766 } 767 768 /** 769 * get_packet - return the next ingress packet buffer from a free list 770 * @adap: the adapter that received the packet 771 * @fl: the SGE free list holding the packet 772 * @len: the packet length including any SGE padding 773 * @drop_thres: # of remaining buffers before we start dropping packets 774 * 775 * Get the next packet from a free list and complete setup of the 776 * sk_buff. If the packet is small we make a copy and recycle the 777 * original buffer, otherwise we use the original buffer itself. If a 778 * positive drop threshold is supplied packets are dropped and their 779 * buffers recycled if (a) the number of remaining buffers is under the 780 * threshold and the packet is too big to copy, or (b) the packet should 781 * be copied but there is no memory for the copy. 782 */ 783 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, 784 unsigned int len, unsigned int drop_thres) 785 { 786 struct sk_buff *skb = NULL; 787 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 788 789 prefetch(sd->skb->data); 790 fl->credits--; 791 792 if (len <= SGE_RX_COPY_THRES) { 793 skb = alloc_skb(len, GFP_ATOMIC); 794 if (likely(skb != NULL)) { 795 __skb_put(skb, len); 796 pci_dma_sync_single_for_cpu(adap->pdev, 797 dma_unmap_addr(sd, dma_addr), len, 798 PCI_DMA_FROMDEVICE); 799 memcpy(skb->data, sd->skb->data, len); 800 pci_dma_sync_single_for_device(adap->pdev, 801 dma_unmap_addr(sd, dma_addr), len, 802 PCI_DMA_FROMDEVICE); 803 } else if (!drop_thres) 804 goto use_orig_buf; 805 recycle: 806 recycle_rx_buf(adap, fl, fl->cidx); 807 return skb; 808 } 809 810 if (unlikely(fl->credits < drop_thres) && 811 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), 812 GFP_ATOMIC | __GFP_COMP) == 0) 813 goto recycle; 814 815 use_orig_buf: 816 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr), 817 fl->buf_size, PCI_DMA_FROMDEVICE); 818 skb = sd->skb; 819 skb_put(skb, len); 820 __refill_fl(adap, fl); 821 return skb; 822 } 823 824 /** 825 * get_packet_pg - return the next ingress packet buffer from a free list 826 * @adap: the adapter that received the packet 827 * @fl: the SGE free list holding the packet 828 * @q: the queue 829 * @len: the packet length including any SGE padding 830 * @drop_thres: # of remaining buffers before we start dropping packets 831 * 832 * Get the next packet from a free list populated with page chunks. 833 * If the packet is small we make a copy and recycle the original buffer, 834 * otherwise we attach the original buffer as a page fragment to a fresh 835 * sk_buff. If a positive drop threshold is supplied packets are dropped 836 * and their buffers recycled if (a) the number of remaining buffers is 837 * under the threshold and the packet is too big to copy, or (b) there's 838 * no system memory. 839 * 840 * Note: this function is similar to @get_packet but deals with Rx buffers 841 * that are page chunks rather than sk_buffs. 842 */ 843 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, 844 struct sge_rspq *q, unsigned int len, 845 unsigned int drop_thres) 846 { 847 struct sk_buff *newskb, *skb; 848 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 849 850 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); 851 852 newskb = skb = q->pg_skb; 853 if (!skb && (len <= SGE_RX_COPY_THRES)) { 854 newskb = alloc_skb(len, GFP_ATOMIC); 855 if (likely(newskb != NULL)) { 856 __skb_put(newskb, len); 857 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 858 PCI_DMA_FROMDEVICE); 859 memcpy(newskb->data, sd->pg_chunk.va, len); 860 pci_dma_sync_single_for_device(adap->pdev, dma_addr, 861 len, 862 PCI_DMA_FROMDEVICE); 863 } else if (!drop_thres) 864 return NULL; 865 recycle: 866 fl->credits--; 867 recycle_rx_buf(adap, fl, fl->cidx); 868 q->rx_recycle_buf++; 869 return newskb; 870 } 871 872 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) 873 goto recycle; 874 875 prefetch(sd->pg_chunk.p_cnt); 876 877 if (!skb) 878 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); 879 880 if (unlikely(!newskb)) { 881 if (!drop_thres) 882 return NULL; 883 goto recycle; 884 } 885 886 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 887 PCI_DMA_FROMDEVICE); 888 (*sd->pg_chunk.p_cnt)--; 889 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 890 pci_unmap_page(adap->pdev, 891 sd->pg_chunk.mapping, 892 fl->alloc_size, 893 PCI_DMA_FROMDEVICE); 894 if (!skb) { 895 __skb_put(newskb, SGE_RX_PULL_LEN); 896 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); 897 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, 898 sd->pg_chunk.offset + SGE_RX_PULL_LEN, 899 len - SGE_RX_PULL_LEN); 900 newskb->len = len; 901 newskb->data_len = len - SGE_RX_PULL_LEN; 902 newskb->truesize += newskb->data_len; 903 } else { 904 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, 905 sd->pg_chunk.page, 906 sd->pg_chunk.offset, len); 907 newskb->len += len; 908 newskb->data_len += len; 909 newskb->truesize += len; 910 } 911 912 fl->credits--; 913 /* 914 * We do not refill FLs here, we let the caller do it to overlap a 915 * prefetch. 916 */ 917 return newskb; 918 } 919 920 /** 921 * get_imm_packet - return the next ingress packet buffer from a response 922 * @resp: the response descriptor containing the packet data 923 * 924 * Return a packet containing the immediate data of the given response. 925 */ 926 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) 927 { 928 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); 929 930 if (skb) { 931 __skb_put(skb, IMMED_PKT_SIZE); 932 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE); 933 } 934 return skb; 935 } 936 937 /** 938 * calc_tx_descs - calculate the number of Tx descriptors for a packet 939 * @skb: the packet 940 * 941 * Returns the number of Tx descriptors needed for the given Ethernet 942 * packet. Ethernet packets require addition of WR and CPL headers. 943 */ 944 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 945 { 946 unsigned int flits; 947 948 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) 949 return 1; 950 951 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; 952 if (skb_shinfo(skb)->gso_size) 953 flits++; 954 return flits_to_desc(flits); 955 } 956 957 /* map_skb - map a packet main body and its page fragments 958 * @pdev: the PCI device 959 * @skb: the packet 960 * @addr: placeholder to save the mapped addresses 961 * 962 * map the main body of an sk_buff and its page fragments, if any. 963 */ 964 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb, 965 dma_addr_t *addr) 966 { 967 const skb_frag_t *fp, *end; 968 const struct skb_shared_info *si; 969 970 if (skb_headlen(skb)) { 971 *addr = pci_map_single(pdev, skb->data, skb_headlen(skb), 972 PCI_DMA_TODEVICE); 973 if (pci_dma_mapping_error(pdev, *addr)) 974 goto out_err; 975 addr++; 976 } 977 978 si = skb_shinfo(skb); 979 end = &si->frags[si->nr_frags]; 980 981 for (fp = si->frags; fp < end; fp++) { 982 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp), 983 DMA_TO_DEVICE); 984 if (pci_dma_mapping_error(pdev, *addr)) 985 goto unwind; 986 addr++; 987 } 988 return 0; 989 990 unwind: 991 while (fp-- > si->frags) 992 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp), 993 DMA_TO_DEVICE); 994 995 pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE); 996 out_err: 997 return -ENOMEM; 998 } 999 1000 /** 1001 * write_sgl - populate a scatter/gather list for a packet 1002 * @skb: the packet 1003 * @sgp: the SGL to populate 1004 * @start: start address of skb main body data to include in the SGL 1005 * @len: length of skb main body data to include in the SGL 1006 * @addr: the list of the mapped addresses 1007 * 1008 * Copies the scatter/gather list for the buffers that make up a packet 1009 * and returns the SGL size in 8-byte words. The caller must size the SGL 1010 * appropriately. 1011 */ 1012 static inline unsigned int write_sgl(const struct sk_buff *skb, 1013 struct sg_ent *sgp, unsigned char *start, 1014 unsigned int len, const dma_addr_t *addr) 1015 { 1016 unsigned int i, j = 0, k = 0, nfrags; 1017 1018 if (len) { 1019 sgp->len[0] = cpu_to_be32(len); 1020 sgp->addr[j++] = cpu_to_be64(addr[k++]); 1021 } 1022 1023 nfrags = skb_shinfo(skb)->nr_frags; 1024 for (i = 0; i < nfrags; i++) { 1025 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1026 1027 sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); 1028 sgp->addr[j] = cpu_to_be64(addr[k++]); 1029 j ^= 1; 1030 if (j == 0) 1031 ++sgp; 1032 } 1033 if (j) 1034 sgp->len[j] = 0; 1035 return ((nfrags + (len != 0)) * 3) / 2 + j; 1036 } 1037 1038 /** 1039 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell 1040 * @adap: the adapter 1041 * @q: the Tx queue 1042 * 1043 * Ring the doorbel if a Tx queue is asleep. There is a natural race, 1044 * where the HW is going to sleep just after we checked, however, 1045 * then the interrupt handler will detect the outstanding TX packet 1046 * and ring the doorbell for us. 1047 * 1048 * When GTS is disabled we unconditionally ring the doorbell. 1049 */ 1050 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) 1051 { 1052 #if USE_GTS 1053 clear_bit(TXQ_LAST_PKT_DB, &q->flags); 1054 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { 1055 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1056 t3_write_reg(adap, A_SG_KDOORBELL, 1057 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1058 } 1059 #else 1060 wmb(); /* write descriptors before telling HW */ 1061 t3_write_reg(adap, A_SG_KDOORBELL, 1062 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1063 #endif 1064 } 1065 1066 static inline void wr_gen2(struct tx_desc *d, unsigned int gen) 1067 { 1068 #if SGE_NUM_GENBITS == 2 1069 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); 1070 #endif 1071 } 1072 1073 /** 1074 * write_wr_hdr_sgl - write a WR header and, optionally, SGL 1075 * @ndesc: number of Tx descriptors spanned by the SGL 1076 * @skb: the packet corresponding to the WR 1077 * @d: first Tx descriptor to be written 1078 * @pidx: index of above descriptors 1079 * @q: the SGE Tx queue 1080 * @sgl: the SGL 1081 * @flits: number of flits to the start of the SGL in the first descriptor 1082 * @sgl_flits: the SGL size in flits 1083 * @gen: the Tx descriptor generation 1084 * @wr_hi: top 32 bits of WR header based on WR type (big endian) 1085 * @wr_lo: low 32 bits of WR header based on WR type (big endian) 1086 * 1087 * Write a work request header and an associated SGL. If the SGL is 1088 * small enough to fit into one Tx descriptor it has already been written 1089 * and we just need to write the WR header. Otherwise we distribute the 1090 * SGL across the number of descriptors it spans. 1091 */ 1092 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, 1093 struct tx_desc *d, unsigned int pidx, 1094 const struct sge_txq *q, 1095 const struct sg_ent *sgl, 1096 unsigned int flits, unsigned int sgl_flits, 1097 unsigned int gen, __be32 wr_hi, 1098 __be32 wr_lo) 1099 { 1100 struct work_request_hdr *wrp = (struct work_request_hdr *)d; 1101 struct tx_sw_desc *sd = &q->sdesc[pidx]; 1102 1103 sd->skb = skb; 1104 if (need_skb_unmap()) { 1105 sd->fragidx = 0; 1106 sd->addr_idx = 0; 1107 sd->sflit = flits; 1108 } 1109 1110 if (likely(ndesc == 1)) { 1111 sd->eop = 1; 1112 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | 1113 V_WR_SGLSFLT(flits)) | wr_hi; 1114 dma_wmb(); 1115 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | 1116 V_WR_GEN(gen)) | wr_lo; 1117 wr_gen2(d, gen); 1118 } else { 1119 unsigned int ogen = gen; 1120 const u64 *fp = (const u64 *)sgl; 1121 struct work_request_hdr *wp = wrp; 1122 1123 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | 1124 V_WR_SGLSFLT(flits)) | wr_hi; 1125 1126 while (sgl_flits) { 1127 unsigned int avail = WR_FLITS - flits; 1128 1129 if (avail > sgl_flits) 1130 avail = sgl_flits; 1131 memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); 1132 sgl_flits -= avail; 1133 ndesc--; 1134 if (!sgl_flits) 1135 break; 1136 1137 fp += avail; 1138 d++; 1139 sd->eop = 0; 1140 sd++; 1141 if (++pidx == q->size) { 1142 pidx = 0; 1143 gen ^= 1; 1144 d = q->desc; 1145 sd = q->sdesc; 1146 } 1147 1148 sd->skb = skb; 1149 wrp = (struct work_request_hdr *)d; 1150 wrp->wr_hi = htonl(V_WR_DATATYPE(1) | 1151 V_WR_SGLSFLT(1)) | wr_hi; 1152 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, 1153 sgl_flits + 1)) | 1154 V_WR_GEN(gen)) | wr_lo; 1155 wr_gen2(d, gen); 1156 flits = 1; 1157 } 1158 sd->eop = 1; 1159 wrp->wr_hi |= htonl(F_WR_EOP); 1160 dma_wmb(); 1161 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; 1162 wr_gen2((struct tx_desc *)wp, ogen); 1163 WARN_ON(ndesc != 0); 1164 } 1165 } 1166 1167 /** 1168 * write_tx_pkt_wr - write a TX_PKT work request 1169 * @adap: the adapter 1170 * @skb: the packet to send 1171 * @pi: the egress interface 1172 * @pidx: index of the first Tx descriptor to write 1173 * @gen: the generation value to use 1174 * @q: the Tx queue 1175 * @ndesc: number of descriptors the packet will occupy 1176 * @compl: the value of the COMPL bit to use 1177 * @addr: address 1178 * 1179 * Generate a TX_PKT work request to send the supplied packet. 1180 */ 1181 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, 1182 const struct port_info *pi, 1183 unsigned int pidx, unsigned int gen, 1184 struct sge_txq *q, unsigned int ndesc, 1185 unsigned int compl, const dma_addr_t *addr) 1186 { 1187 unsigned int flits, sgl_flits, cntrl, tso_info; 1188 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1189 struct tx_desc *d = &q->desc[pidx]; 1190 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; 1191 1192 cpl->len = htonl(skb->len); 1193 cntrl = V_TXPKT_INTF(pi->port_id); 1194 1195 if (skb_vlan_tag_present(skb)) 1196 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); 1197 1198 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); 1199 if (tso_info) { 1200 int eth_type; 1201 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; 1202 1203 d->flit[2] = 0; 1204 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); 1205 hdr->cntrl = htonl(cntrl); 1206 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1207 CPL_ETH_II : CPL_ETH_II_VLAN; 1208 tso_info |= V_LSO_ETH_TYPE(eth_type) | 1209 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | 1210 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); 1211 hdr->lso_info = htonl(tso_info); 1212 flits = 3; 1213 } else { 1214 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); 1215 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ 1216 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); 1217 cpl->cntrl = htonl(cntrl); 1218 1219 if (skb->len <= WR_LEN - sizeof(*cpl)) { 1220 q->sdesc[pidx].skb = NULL; 1221 if (!skb->data_len) 1222 skb_copy_from_linear_data(skb, &d->flit[2], 1223 skb->len); 1224 else 1225 skb_copy_bits(skb, 0, &d->flit[2], skb->len); 1226 1227 flits = (skb->len + 7) / 8 + 2; 1228 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | 1229 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) 1230 | F_WR_SOP | F_WR_EOP | compl); 1231 dma_wmb(); 1232 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | 1233 V_WR_TID(q->token)); 1234 wr_gen2(d, gen); 1235 dev_consume_skb_any(skb); 1236 return; 1237 } 1238 1239 flits = 2; 1240 } 1241 1242 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1243 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr); 1244 1245 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, 1246 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), 1247 htonl(V_WR_TID(q->token))); 1248 } 1249 1250 static inline void t3_stop_tx_queue(struct netdev_queue *txq, 1251 struct sge_qset *qs, struct sge_txq *q) 1252 { 1253 netif_tx_stop_queue(txq); 1254 set_bit(TXQ_ETH, &qs->txq_stopped); 1255 q->stops++; 1256 } 1257 1258 /** 1259 * t3_eth_xmit - add a packet to the Ethernet Tx queue 1260 * @skb: the packet 1261 * @dev: the egress net device 1262 * 1263 * Add a packet to an SGE Tx queue. Runs with softirqs disabled. 1264 */ 1265 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1266 { 1267 int qidx; 1268 unsigned int ndesc, pidx, credits, gen, compl; 1269 const struct port_info *pi = netdev_priv(dev); 1270 struct adapter *adap = pi->adapter; 1271 struct netdev_queue *txq; 1272 struct sge_qset *qs; 1273 struct sge_txq *q; 1274 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1275 1276 /* 1277 * The chip min packet length is 9 octets but play safe and reject 1278 * anything shorter than an Ethernet header. 1279 */ 1280 if (unlikely(skb->len < ETH_HLEN)) { 1281 dev_kfree_skb_any(skb); 1282 return NETDEV_TX_OK; 1283 } 1284 1285 qidx = skb_get_queue_mapping(skb); 1286 qs = &pi->qs[qidx]; 1287 q = &qs->txq[TXQ_ETH]; 1288 txq = netdev_get_tx_queue(dev, qidx); 1289 1290 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1291 1292 credits = q->size - q->in_use; 1293 ndesc = calc_tx_descs(skb); 1294 1295 if (unlikely(credits < ndesc)) { 1296 t3_stop_tx_queue(txq, qs, q); 1297 dev_err(&adap->pdev->dev, 1298 "%s: Tx ring %u full while queue awake!\n", 1299 dev->name, q->cntxt_id & 7); 1300 return NETDEV_TX_BUSY; 1301 } 1302 1303 /* Check if ethernet packet can't be sent as immediate data */ 1304 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) { 1305 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) { 1306 dev_kfree_skb(skb); 1307 return NETDEV_TX_OK; 1308 } 1309 } 1310 1311 q->in_use += ndesc; 1312 if (unlikely(credits - ndesc < q->stop_thres)) { 1313 t3_stop_tx_queue(txq, qs, q); 1314 1315 if (should_restart_tx(q) && 1316 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1317 q->restarts++; 1318 netif_tx_start_queue(txq); 1319 } 1320 } 1321 1322 gen = q->gen; 1323 q->unacked += ndesc; 1324 compl = (q->unacked & 8) << (S_WR_COMPL - 3); 1325 q->unacked &= 7; 1326 pidx = q->pidx; 1327 q->pidx += ndesc; 1328 if (q->pidx >= q->size) { 1329 q->pidx -= q->size; 1330 q->gen ^= 1; 1331 } 1332 1333 /* update port statistics */ 1334 if (skb->ip_summed == CHECKSUM_PARTIAL) 1335 qs->port_stats[SGE_PSTAT_TX_CSUM]++; 1336 if (skb_shinfo(skb)->gso_size) 1337 qs->port_stats[SGE_PSTAT_TSO]++; 1338 if (skb_vlan_tag_present(skb)) 1339 qs->port_stats[SGE_PSTAT_VLANINS]++; 1340 1341 /* 1342 * We do not use Tx completion interrupts to free DMAd Tx packets. 1343 * This is good for performance but means that we rely on new Tx 1344 * packets arriving to run the destructors of completed packets, 1345 * which open up space in their sockets' send queues. Sometimes 1346 * we do not get such new packets causing Tx to stall. A single 1347 * UDP transmitter is a good example of this situation. We have 1348 * a clean up timer that periodically reclaims completed packets 1349 * but it doesn't run often enough (nor do we want it to) to prevent 1350 * lengthy stalls. A solution to this problem is to run the 1351 * destructor early, after the packet is queued but before it's DMAd. 1352 * A cons is that we lie to socket memory accounting, but the amount 1353 * of extra memory is reasonable (limited by the number of Tx 1354 * descriptors), the packets do actually get freed quickly by new 1355 * packets almost always, and for protocols like TCP that wait for 1356 * acks to really free up the data the extra memory is even less. 1357 * On the positive side we run the destructors on the sending CPU 1358 * rather than on a potentially different completing CPU, usually a 1359 * good thing. We also run them without holding our Tx queue lock, 1360 * unlike what reclaim_completed_tx() would otherwise do. 1361 * 1362 * Run the destructor before telling the DMA engine about the packet 1363 * to make sure it doesn't complete and get freed prematurely. 1364 */ 1365 if (likely(!skb_shared(skb))) 1366 skb_orphan(skb); 1367 1368 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr); 1369 check_ring_tx_db(adap, q); 1370 return NETDEV_TX_OK; 1371 } 1372 1373 /** 1374 * write_imm - write a packet into a Tx descriptor as immediate data 1375 * @d: the Tx descriptor to write 1376 * @skb: the packet 1377 * @len: the length of packet data to write as immediate data 1378 * @gen: the generation bit value to write 1379 * 1380 * Writes a packet as immediate data into a Tx descriptor. The packet 1381 * contains a work request at its beginning. We must write the packet 1382 * carefully so the SGE doesn't read it accidentally before it's written 1383 * in its entirety. 1384 */ 1385 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, 1386 unsigned int len, unsigned int gen) 1387 { 1388 struct work_request_hdr *from = (struct work_request_hdr *)skb->data; 1389 struct work_request_hdr *to = (struct work_request_hdr *)d; 1390 1391 if (likely(!skb->data_len)) 1392 memcpy(&to[1], &from[1], len - sizeof(*from)); 1393 else 1394 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); 1395 1396 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | 1397 V_WR_BCNTLFLT(len & 7)); 1398 dma_wmb(); 1399 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | 1400 V_WR_LEN((len + 7) / 8)); 1401 wr_gen2(d, gen); 1402 kfree_skb(skb); 1403 } 1404 1405 /** 1406 * check_desc_avail - check descriptor availability on a send queue 1407 * @adap: the adapter 1408 * @q: the send queue 1409 * @skb: the packet needing the descriptors 1410 * @ndesc: the number of Tx descriptors needed 1411 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) 1412 * 1413 * Checks if the requested number of Tx descriptors is available on an 1414 * SGE send queue. If the queue is already suspended or not enough 1415 * descriptors are available the packet is queued for later transmission. 1416 * Must be called with the Tx queue locked. 1417 * 1418 * Returns 0 if enough descriptors are available, 1 if there aren't 1419 * enough descriptors and the packet has been queued, and 2 if the caller 1420 * needs to retry because there weren't enough descriptors at the 1421 * beginning of the call but some freed up in the mean time. 1422 */ 1423 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, 1424 struct sk_buff *skb, unsigned int ndesc, 1425 unsigned int qid) 1426 { 1427 if (unlikely(!skb_queue_empty(&q->sendq))) { 1428 addq_exit:__skb_queue_tail(&q->sendq, skb); 1429 return 1; 1430 } 1431 if (unlikely(q->size - q->in_use < ndesc)) { 1432 struct sge_qset *qs = txq_to_qset(q, qid); 1433 1434 set_bit(qid, &qs->txq_stopped); 1435 smp_mb__after_atomic(); 1436 1437 if (should_restart_tx(q) && 1438 test_and_clear_bit(qid, &qs->txq_stopped)) 1439 return 2; 1440 1441 q->stops++; 1442 goto addq_exit; 1443 } 1444 return 0; 1445 } 1446 1447 /** 1448 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1449 * @q: the SGE control Tx queue 1450 * 1451 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1452 * that send only immediate data (presently just the control queues) and 1453 * thus do not have any sk_buffs to release. 1454 */ 1455 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1456 { 1457 unsigned int reclaim = q->processed - q->cleaned; 1458 1459 q->in_use -= reclaim; 1460 q->cleaned += reclaim; 1461 } 1462 1463 static inline int immediate(const struct sk_buff *skb) 1464 { 1465 return skb->len <= WR_LEN; 1466 } 1467 1468 /** 1469 * ctrl_xmit - send a packet through an SGE control Tx queue 1470 * @adap: the adapter 1471 * @q: the control queue 1472 * @skb: the packet 1473 * 1474 * Send a packet through an SGE control Tx queue. Packets sent through 1475 * a control queue must fit entirely as immediate data in a single Tx 1476 * descriptor and have no page fragments. 1477 */ 1478 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, 1479 struct sk_buff *skb) 1480 { 1481 int ret; 1482 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; 1483 1484 if (unlikely(!immediate(skb))) { 1485 WARN_ON(1); 1486 dev_kfree_skb(skb); 1487 return NET_XMIT_SUCCESS; 1488 } 1489 1490 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); 1491 wrp->wr_lo = htonl(V_WR_TID(q->token)); 1492 1493 spin_lock(&q->lock); 1494 again:reclaim_completed_tx_imm(q); 1495 1496 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); 1497 if (unlikely(ret)) { 1498 if (ret == 1) { 1499 spin_unlock(&q->lock); 1500 return NET_XMIT_CN; 1501 } 1502 goto again; 1503 } 1504 1505 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1506 1507 q->in_use++; 1508 if (++q->pidx >= q->size) { 1509 q->pidx = 0; 1510 q->gen ^= 1; 1511 } 1512 spin_unlock(&q->lock); 1513 wmb(); 1514 t3_write_reg(adap, A_SG_KDOORBELL, 1515 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1516 return NET_XMIT_SUCCESS; 1517 } 1518 1519 /** 1520 * restart_ctrlq - restart a suspended control queue 1521 * @w: pointer to the work associated with this handler 1522 * 1523 * Resumes transmission on a suspended Tx control queue. 1524 */ 1525 static void restart_ctrlq(struct work_struct *w) 1526 { 1527 struct sk_buff *skb; 1528 struct sge_qset *qs = container_of(w, struct sge_qset, 1529 txq[TXQ_CTRL].qresume_task); 1530 struct sge_txq *q = &qs->txq[TXQ_CTRL]; 1531 1532 spin_lock(&q->lock); 1533 again:reclaim_completed_tx_imm(q); 1534 1535 while (q->in_use < q->size && 1536 (skb = __skb_dequeue(&q->sendq)) != NULL) { 1537 1538 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1539 1540 if (++q->pidx >= q->size) { 1541 q->pidx = 0; 1542 q->gen ^= 1; 1543 } 1544 q->in_use++; 1545 } 1546 1547 if (!skb_queue_empty(&q->sendq)) { 1548 set_bit(TXQ_CTRL, &qs->txq_stopped); 1549 smp_mb__after_atomic(); 1550 1551 if (should_restart_tx(q) && 1552 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) 1553 goto again; 1554 q->stops++; 1555 } 1556 1557 spin_unlock(&q->lock); 1558 wmb(); 1559 t3_write_reg(qs->adap, A_SG_KDOORBELL, 1560 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1561 } 1562 1563 /* 1564 * Send a management message through control queue 0 1565 */ 1566 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1567 { 1568 int ret; 1569 local_bh_disable(); 1570 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); 1571 local_bh_enable(); 1572 1573 return ret; 1574 } 1575 1576 /** 1577 * deferred_unmap_destructor - unmap a packet when it is freed 1578 * @skb: the packet 1579 * 1580 * This is the packet destructor used for Tx packets that need to remain 1581 * mapped until they are freed rather than until their Tx descriptors are 1582 * freed. 1583 */ 1584 static void deferred_unmap_destructor(struct sk_buff *skb) 1585 { 1586 int i; 1587 const dma_addr_t *p; 1588 const struct skb_shared_info *si; 1589 const struct deferred_unmap_info *dui; 1590 1591 dui = (struct deferred_unmap_info *)skb->head; 1592 p = dui->addr; 1593 1594 if (skb_tail_pointer(skb) - skb_transport_header(skb)) 1595 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) - 1596 skb_transport_header(skb), PCI_DMA_TODEVICE); 1597 1598 si = skb_shinfo(skb); 1599 for (i = 0; i < si->nr_frags; i++) 1600 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]), 1601 PCI_DMA_TODEVICE); 1602 } 1603 1604 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, 1605 const struct sg_ent *sgl, int sgl_flits) 1606 { 1607 dma_addr_t *p; 1608 struct deferred_unmap_info *dui; 1609 1610 dui = (struct deferred_unmap_info *)skb->head; 1611 dui->pdev = pdev; 1612 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { 1613 *p++ = be64_to_cpu(sgl->addr[0]); 1614 *p++ = be64_to_cpu(sgl->addr[1]); 1615 } 1616 if (sgl_flits) 1617 *p = be64_to_cpu(sgl->addr[0]); 1618 } 1619 1620 /** 1621 * write_ofld_wr - write an offload work request 1622 * @adap: the adapter 1623 * @skb: the packet to send 1624 * @q: the Tx queue 1625 * @pidx: index of the first Tx descriptor to write 1626 * @gen: the generation value to use 1627 * @ndesc: number of descriptors the packet will occupy 1628 * @addr: the address 1629 * 1630 * Write an offload work request to send the supplied packet. The packet 1631 * data already carry the work request with most fields populated. 1632 */ 1633 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, 1634 struct sge_txq *q, unsigned int pidx, 1635 unsigned int gen, unsigned int ndesc, 1636 const dma_addr_t *addr) 1637 { 1638 unsigned int sgl_flits, flits; 1639 struct work_request_hdr *from; 1640 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1641 struct tx_desc *d = &q->desc[pidx]; 1642 1643 if (immediate(skb)) { 1644 q->sdesc[pidx].skb = NULL; 1645 write_imm(d, skb, skb->len, gen); 1646 return; 1647 } 1648 1649 /* Only TX_DATA builds SGLs */ 1650 1651 from = (struct work_request_hdr *)skb->data; 1652 memcpy(&d->flit[1], &from[1], 1653 skb_transport_offset(skb) - sizeof(*from)); 1654 1655 flits = skb_transport_offset(skb) / 8; 1656 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1657 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb), 1658 skb_tail_pointer(skb) - skb_transport_header(skb), 1659 addr); 1660 if (need_skb_unmap()) { 1661 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); 1662 skb->destructor = deferred_unmap_destructor; 1663 } 1664 1665 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, 1666 gen, from->wr_hi, from->wr_lo); 1667 } 1668 1669 /** 1670 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet 1671 * @skb: the packet 1672 * 1673 * Returns the number of Tx descriptors needed for the given offload 1674 * packet. These packets are already fully constructed. 1675 */ 1676 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) 1677 { 1678 unsigned int flits, cnt; 1679 1680 if (skb->len <= WR_LEN) 1681 return 1; /* packet fits as immediate data */ 1682 1683 flits = skb_transport_offset(skb) / 8; /* headers */ 1684 cnt = skb_shinfo(skb)->nr_frags; 1685 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1686 cnt++; 1687 return flits_to_desc(flits + sgl_len(cnt)); 1688 } 1689 1690 /** 1691 * ofld_xmit - send a packet through an offload queue 1692 * @adap: the adapter 1693 * @q: the Tx offload queue 1694 * @skb: the packet 1695 * 1696 * Send an offload packet through an SGE offload queue. 1697 */ 1698 static int ofld_xmit(struct adapter *adap, struct sge_txq *q, 1699 struct sk_buff *skb) 1700 { 1701 int ret; 1702 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; 1703 1704 spin_lock(&q->lock); 1705 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1706 1707 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); 1708 if (unlikely(ret)) { 1709 if (ret == 1) { 1710 skb->priority = ndesc; /* save for restart */ 1711 spin_unlock(&q->lock); 1712 return NET_XMIT_CN; 1713 } 1714 goto again; 1715 } 1716 1717 if (!immediate(skb) && 1718 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) { 1719 spin_unlock(&q->lock); 1720 return NET_XMIT_SUCCESS; 1721 } 1722 1723 gen = q->gen; 1724 q->in_use += ndesc; 1725 pidx = q->pidx; 1726 q->pidx += ndesc; 1727 if (q->pidx >= q->size) { 1728 q->pidx -= q->size; 1729 q->gen ^= 1; 1730 } 1731 spin_unlock(&q->lock); 1732 1733 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head); 1734 check_ring_tx_db(adap, q); 1735 return NET_XMIT_SUCCESS; 1736 } 1737 1738 /** 1739 * restart_offloadq - restart a suspended offload queue 1740 * @w: pointer to the work associated with this handler 1741 * 1742 * Resumes transmission on a suspended Tx offload queue. 1743 */ 1744 static void restart_offloadq(struct work_struct *w) 1745 { 1746 struct sk_buff *skb; 1747 struct sge_qset *qs = container_of(w, struct sge_qset, 1748 txq[TXQ_OFLD].qresume_task); 1749 struct sge_txq *q = &qs->txq[TXQ_OFLD]; 1750 const struct port_info *pi = netdev_priv(qs->netdev); 1751 struct adapter *adap = pi->adapter; 1752 unsigned int written = 0; 1753 1754 spin_lock(&q->lock); 1755 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1756 1757 while ((skb = skb_peek(&q->sendq)) != NULL) { 1758 unsigned int gen, pidx; 1759 unsigned int ndesc = skb->priority; 1760 1761 if (unlikely(q->size - q->in_use < ndesc)) { 1762 set_bit(TXQ_OFLD, &qs->txq_stopped); 1763 smp_mb__after_atomic(); 1764 1765 if (should_restart_tx(q) && 1766 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) 1767 goto again; 1768 q->stops++; 1769 break; 1770 } 1771 1772 if (!immediate(skb) && 1773 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) 1774 break; 1775 1776 gen = q->gen; 1777 q->in_use += ndesc; 1778 pidx = q->pidx; 1779 q->pidx += ndesc; 1780 written += ndesc; 1781 if (q->pidx >= q->size) { 1782 q->pidx -= q->size; 1783 q->gen ^= 1; 1784 } 1785 __skb_unlink(skb, &q->sendq); 1786 spin_unlock(&q->lock); 1787 1788 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, 1789 (dma_addr_t *)skb->head); 1790 spin_lock(&q->lock); 1791 } 1792 spin_unlock(&q->lock); 1793 1794 #if USE_GTS 1795 set_bit(TXQ_RUNNING, &q->flags); 1796 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1797 #endif 1798 wmb(); 1799 if (likely(written)) 1800 t3_write_reg(adap, A_SG_KDOORBELL, 1801 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1802 } 1803 1804 /** 1805 * queue_set - return the queue set a packet should use 1806 * @skb: the packet 1807 * 1808 * Maps a packet to the SGE queue set it should use. The desired queue 1809 * set is carried in bits 1-3 in the packet's priority. 1810 */ 1811 static inline int queue_set(const struct sk_buff *skb) 1812 { 1813 return skb->priority >> 1; 1814 } 1815 1816 /** 1817 * is_ctrl_pkt - return whether an offload packet is a control packet 1818 * @skb: the packet 1819 * 1820 * Determines whether an offload packet should use an OFLD or a CTRL 1821 * Tx queue. This is indicated by bit 0 in the packet's priority. 1822 */ 1823 static inline int is_ctrl_pkt(const struct sk_buff *skb) 1824 { 1825 return skb->priority & 1; 1826 } 1827 1828 /** 1829 * t3_offload_tx - send an offload packet 1830 * @tdev: the offload device to send to 1831 * @skb: the packet 1832 * 1833 * Sends an offload packet. We use the packet priority to select the 1834 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1835 * should be sent as regular or control, bits 1-3 select the queue set. 1836 */ 1837 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 1838 { 1839 struct adapter *adap = tdev2adap(tdev); 1840 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; 1841 1842 if (unlikely(is_ctrl_pkt(skb))) 1843 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); 1844 1845 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); 1846 } 1847 1848 /** 1849 * offload_enqueue - add an offload packet to an SGE offload receive queue 1850 * @q: the SGE response queue 1851 * @skb: the packet 1852 * 1853 * Add a new offload packet to an SGE response queue's offload packet 1854 * queue. If the packet is the first on the queue it schedules the RX 1855 * softirq to process the queue. 1856 */ 1857 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) 1858 { 1859 int was_empty = skb_queue_empty(&q->rx_queue); 1860 1861 __skb_queue_tail(&q->rx_queue, skb); 1862 1863 if (was_empty) { 1864 struct sge_qset *qs = rspq_to_qset(q); 1865 1866 napi_schedule(&qs->napi); 1867 } 1868 } 1869 1870 /** 1871 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts 1872 * @tdev: the offload device that will be receiving the packets 1873 * @q: the SGE response queue that assembled the bundle 1874 * @skbs: the partial bundle 1875 * @n: the number of packets in the bundle 1876 * 1877 * Delivers a (partial) bundle of Rx offload packets to an offload device. 1878 */ 1879 static inline void deliver_partial_bundle(struct t3cdev *tdev, 1880 struct sge_rspq *q, 1881 struct sk_buff *skbs[], int n) 1882 { 1883 if (n) { 1884 q->offload_bundles++; 1885 tdev->recv(tdev, skbs, n); 1886 } 1887 } 1888 1889 /** 1890 * ofld_poll - NAPI handler for offload packets in interrupt mode 1891 * @napi: the network device doing the polling 1892 * @budget: polling budget 1893 * 1894 * The NAPI handler for offload packets when a response queue is serviced 1895 * by the hard interrupt handler, i.e., when it's operating in non-polling 1896 * mode. Creates small packet batches and sends them through the offload 1897 * receive handler. Batches need to be of modest size as we do prefetches 1898 * on the packets in each. 1899 */ 1900 static int ofld_poll(struct napi_struct *napi, int budget) 1901 { 1902 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 1903 struct sge_rspq *q = &qs->rspq; 1904 struct adapter *adapter = qs->adap; 1905 int work_done = 0; 1906 1907 while (work_done < budget) { 1908 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; 1909 struct sk_buff_head queue; 1910 int ngathered; 1911 1912 spin_lock_irq(&q->lock); 1913 __skb_queue_head_init(&queue); 1914 skb_queue_splice_init(&q->rx_queue, &queue); 1915 if (skb_queue_empty(&queue)) { 1916 napi_complete_done(napi, work_done); 1917 spin_unlock_irq(&q->lock); 1918 return work_done; 1919 } 1920 spin_unlock_irq(&q->lock); 1921 1922 ngathered = 0; 1923 skb_queue_walk_safe(&queue, skb, tmp) { 1924 if (work_done >= budget) 1925 break; 1926 work_done++; 1927 1928 __skb_unlink(skb, &queue); 1929 prefetch(skb->data); 1930 skbs[ngathered] = skb; 1931 if (++ngathered == RX_BUNDLE_SIZE) { 1932 q->offload_bundles++; 1933 adapter->tdev.recv(&adapter->tdev, skbs, 1934 ngathered); 1935 ngathered = 0; 1936 } 1937 } 1938 if (!skb_queue_empty(&queue)) { 1939 /* splice remaining packets back onto Rx queue */ 1940 spin_lock_irq(&q->lock); 1941 skb_queue_splice(&queue, &q->rx_queue); 1942 spin_unlock_irq(&q->lock); 1943 } 1944 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); 1945 } 1946 1947 return work_done; 1948 } 1949 1950 /** 1951 * rx_offload - process a received offload packet 1952 * @tdev: the offload device receiving the packet 1953 * @rq: the response queue that received the packet 1954 * @skb: the packet 1955 * @rx_gather: a gather list of packets if we are building a bundle 1956 * @gather_idx: index of the next available slot in the bundle 1957 * 1958 * Process an ingress offload pakcet and add it to the offload ingress 1959 * queue. Returns the index of the next available slot in the bundle. 1960 */ 1961 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, 1962 struct sk_buff *skb, struct sk_buff *rx_gather[], 1963 unsigned int gather_idx) 1964 { 1965 skb_reset_mac_header(skb); 1966 skb_reset_network_header(skb); 1967 skb_reset_transport_header(skb); 1968 1969 if (rq->polling) { 1970 rx_gather[gather_idx++] = skb; 1971 if (gather_idx == RX_BUNDLE_SIZE) { 1972 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); 1973 gather_idx = 0; 1974 rq->offload_bundles++; 1975 } 1976 } else 1977 offload_enqueue(rq, skb); 1978 1979 return gather_idx; 1980 } 1981 1982 /** 1983 * restart_tx - check whether to restart suspended Tx queues 1984 * @qs: the queue set to resume 1985 * 1986 * Restarts suspended Tx queues of an SGE queue set if they have enough 1987 * free resources to resume operation. 1988 */ 1989 static void restart_tx(struct sge_qset *qs) 1990 { 1991 if (test_bit(TXQ_ETH, &qs->txq_stopped) && 1992 should_restart_tx(&qs->txq[TXQ_ETH]) && 1993 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1994 qs->txq[TXQ_ETH].restarts++; 1995 if (netif_running(qs->netdev)) 1996 netif_tx_wake_queue(qs->tx_q); 1997 } 1998 1999 if (test_bit(TXQ_OFLD, &qs->txq_stopped) && 2000 should_restart_tx(&qs->txq[TXQ_OFLD]) && 2001 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { 2002 qs->txq[TXQ_OFLD].restarts++; 2003 2004 /* The work can be quite lengthy so we use driver's own queue */ 2005 queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task); 2006 } 2007 if (test_bit(TXQ_CTRL, &qs->txq_stopped) && 2008 should_restart_tx(&qs->txq[TXQ_CTRL]) && 2009 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { 2010 qs->txq[TXQ_CTRL].restarts++; 2011 2012 /* The work can be quite lengthy so we use driver's own queue */ 2013 queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task); 2014 } 2015 } 2016 2017 /** 2018 * cxgb3_arp_process - process an ARP request probing a private IP address 2019 * @pi: the port info 2020 * @skb: the skbuff containing the ARP request 2021 * 2022 * Check if the ARP request is probing the private IP address 2023 * dedicated to iSCSI, generate an ARP reply if so. 2024 */ 2025 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) 2026 { 2027 struct net_device *dev = skb->dev; 2028 struct arphdr *arp; 2029 unsigned char *arp_ptr; 2030 unsigned char *sha; 2031 __be32 sip, tip; 2032 2033 if (!dev) 2034 return; 2035 2036 skb_reset_network_header(skb); 2037 arp = arp_hdr(skb); 2038 2039 if (arp->ar_op != htons(ARPOP_REQUEST)) 2040 return; 2041 2042 arp_ptr = (unsigned char *)(arp + 1); 2043 sha = arp_ptr; 2044 arp_ptr += dev->addr_len; 2045 memcpy(&sip, arp_ptr, sizeof(sip)); 2046 arp_ptr += sizeof(sip); 2047 arp_ptr += dev->addr_len; 2048 memcpy(&tip, arp_ptr, sizeof(tip)); 2049 2050 if (tip != pi->iscsi_ipv4addr) 2051 return; 2052 2053 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, 2054 pi->iscsic.mac_addr, sha); 2055 2056 } 2057 2058 static inline int is_arp(struct sk_buff *skb) 2059 { 2060 return skb->protocol == htons(ETH_P_ARP); 2061 } 2062 2063 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, 2064 struct sk_buff *skb) 2065 { 2066 if (is_arp(skb)) { 2067 cxgb3_arp_process(pi, skb); 2068 return; 2069 } 2070 2071 if (pi->iscsic.recv) 2072 pi->iscsic.recv(pi, skb); 2073 2074 } 2075 2076 /** 2077 * rx_eth - process an ingress ethernet packet 2078 * @adap: the adapter 2079 * @rq: the response queue that received the packet 2080 * @skb: the packet 2081 * @pad: padding 2082 * @lro: large receive offload 2083 * 2084 * Process an ingress ethernet pakcet and deliver it to the stack. 2085 * The padding is 2 if the packet was delivered in an Rx buffer and 0 2086 * if it was immediate data in a response. 2087 */ 2088 static void rx_eth(struct adapter *adap, struct sge_rspq *rq, 2089 struct sk_buff *skb, int pad, int lro) 2090 { 2091 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); 2092 struct sge_qset *qs = rspq_to_qset(rq); 2093 struct port_info *pi; 2094 2095 skb_pull(skb, sizeof(*p) + pad); 2096 skb->protocol = eth_type_trans(skb, adap->port[p->iff]); 2097 pi = netdev_priv(skb->dev); 2098 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && 2099 p->csum == htons(0xffff) && !p->fragment) { 2100 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2101 skb->ip_summed = CHECKSUM_UNNECESSARY; 2102 } else 2103 skb_checksum_none_assert(skb); 2104 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2105 2106 if (p->vlan_valid) { 2107 qs->port_stats[SGE_PSTAT_VLANEX]++; 2108 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 2109 } 2110 if (rq->polling) { 2111 if (lro) 2112 napi_gro_receive(&qs->napi, skb); 2113 else { 2114 if (unlikely(pi->iscsic.flags)) 2115 cxgb3_process_iscsi_prov_pack(pi, skb); 2116 netif_receive_skb(skb); 2117 } 2118 } else 2119 netif_rx(skb); 2120 } 2121 2122 static inline int is_eth_tcp(u32 rss) 2123 { 2124 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; 2125 } 2126 2127 /** 2128 * lro_add_page - add a page chunk to an LRO session 2129 * @adap: the adapter 2130 * @qs: the associated queue set 2131 * @fl: the free list containing the page chunk to add 2132 * @len: packet length 2133 * @complete: Indicates the last fragment of a frame 2134 * 2135 * Add a received packet contained in a page chunk to an existing LRO 2136 * session. 2137 */ 2138 static void lro_add_page(struct adapter *adap, struct sge_qset *qs, 2139 struct sge_fl *fl, int len, int complete) 2140 { 2141 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2142 struct port_info *pi = netdev_priv(qs->netdev); 2143 struct sk_buff *skb = NULL; 2144 struct cpl_rx_pkt *cpl; 2145 skb_frag_t *rx_frag; 2146 int nr_frags; 2147 int offset = 0; 2148 2149 if (!qs->nomem) { 2150 skb = napi_get_frags(&qs->napi); 2151 qs->nomem = !skb; 2152 } 2153 2154 fl->credits--; 2155 2156 pci_dma_sync_single_for_cpu(adap->pdev, 2157 dma_unmap_addr(sd, dma_addr), 2158 fl->buf_size - SGE_PG_RSVD, 2159 PCI_DMA_FROMDEVICE); 2160 2161 (*sd->pg_chunk.p_cnt)--; 2162 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 2163 pci_unmap_page(adap->pdev, 2164 sd->pg_chunk.mapping, 2165 fl->alloc_size, 2166 PCI_DMA_FROMDEVICE); 2167 2168 if (!skb) { 2169 put_page(sd->pg_chunk.page); 2170 if (complete) 2171 qs->nomem = 0; 2172 return; 2173 } 2174 2175 rx_frag = skb_shinfo(skb)->frags; 2176 nr_frags = skb_shinfo(skb)->nr_frags; 2177 2178 if (!nr_frags) { 2179 offset = 2 + sizeof(struct cpl_rx_pkt); 2180 cpl = qs->lro_va = sd->pg_chunk.va + 2; 2181 2182 if ((qs->netdev->features & NETIF_F_RXCSUM) && 2183 cpl->csum_valid && cpl->csum == htons(0xffff)) { 2184 skb->ip_summed = CHECKSUM_UNNECESSARY; 2185 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2186 } else 2187 skb->ip_summed = CHECKSUM_NONE; 2188 } else 2189 cpl = qs->lro_va; 2190 2191 len -= offset; 2192 2193 rx_frag += nr_frags; 2194 __skb_frag_set_page(rx_frag, sd->pg_chunk.page); 2195 skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset); 2196 skb_frag_size_set(rx_frag, len); 2197 2198 skb->len += len; 2199 skb->data_len += len; 2200 skb->truesize += len; 2201 skb_shinfo(skb)->nr_frags++; 2202 2203 if (!complete) 2204 return; 2205 2206 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2207 2208 if (cpl->vlan_valid) { 2209 qs->port_stats[SGE_PSTAT_VLANEX]++; 2210 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 2211 } 2212 napi_gro_frags(&qs->napi); 2213 } 2214 2215 /** 2216 * handle_rsp_cntrl_info - handles control information in a response 2217 * @qs: the queue set corresponding to the response 2218 * @flags: the response control flags 2219 * 2220 * Handles the control information of an SGE response, such as GTS 2221 * indications and completion credits for the queue set's Tx queues. 2222 * HW coalesces credits, we don't do any extra SW coalescing. 2223 */ 2224 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) 2225 { 2226 unsigned int credits; 2227 2228 #if USE_GTS 2229 if (flags & F_RSPD_TXQ0_GTS) 2230 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); 2231 #endif 2232 2233 credits = G_RSPD_TXQ0_CR(flags); 2234 if (credits) 2235 qs->txq[TXQ_ETH].processed += credits; 2236 2237 credits = G_RSPD_TXQ2_CR(flags); 2238 if (credits) 2239 qs->txq[TXQ_CTRL].processed += credits; 2240 2241 # if USE_GTS 2242 if (flags & F_RSPD_TXQ1_GTS) 2243 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); 2244 # endif 2245 credits = G_RSPD_TXQ1_CR(flags); 2246 if (credits) 2247 qs->txq[TXQ_OFLD].processed += credits; 2248 } 2249 2250 /** 2251 * check_ring_db - check if we need to ring any doorbells 2252 * @adap: the adapter 2253 * @qs: the queue set whose Tx queues are to be examined 2254 * @sleeping: indicates which Tx queue sent GTS 2255 * 2256 * Checks if some of a queue set's Tx queues need to ring their doorbells 2257 * to resume transmission after idling while they still have unprocessed 2258 * descriptors. 2259 */ 2260 static void check_ring_db(struct adapter *adap, struct sge_qset *qs, 2261 unsigned int sleeping) 2262 { 2263 if (sleeping & F_RSPD_TXQ0_GTS) { 2264 struct sge_txq *txq = &qs->txq[TXQ_ETH]; 2265 2266 if (txq->cleaned + txq->in_use != txq->processed && 2267 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2268 set_bit(TXQ_RUNNING, &txq->flags); 2269 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2270 V_EGRCNTX(txq->cntxt_id)); 2271 } 2272 } 2273 2274 if (sleeping & F_RSPD_TXQ1_GTS) { 2275 struct sge_txq *txq = &qs->txq[TXQ_OFLD]; 2276 2277 if (txq->cleaned + txq->in_use != txq->processed && 2278 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2279 set_bit(TXQ_RUNNING, &txq->flags); 2280 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2281 V_EGRCNTX(txq->cntxt_id)); 2282 } 2283 } 2284 } 2285 2286 /** 2287 * is_new_response - check if a response is newly written 2288 * @r: the response descriptor 2289 * @q: the response queue 2290 * 2291 * Returns true if a response descriptor contains a yet unprocessed 2292 * response. 2293 */ 2294 static inline int is_new_response(const struct rsp_desc *r, 2295 const struct sge_rspq *q) 2296 { 2297 return (r->intr_gen & F_RSPD_GEN2) == q->gen; 2298 } 2299 2300 static inline void clear_rspq_bufstate(struct sge_rspq * const q) 2301 { 2302 q->pg_skb = NULL; 2303 q->rx_recycle_buf = 0; 2304 } 2305 2306 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) 2307 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ 2308 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ 2309 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ 2310 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) 2311 2312 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ 2313 #define NOMEM_INTR_DELAY 2500 2314 2315 /** 2316 * process_responses - process responses from an SGE response queue 2317 * @adap: the adapter 2318 * @qs: the queue set to which the response queue belongs 2319 * @budget: how many responses can be processed in this round 2320 * 2321 * Process responses from an SGE response queue up to the supplied budget. 2322 * Responses include received packets as well as credits and other events 2323 * for the queues that belong to the response queue's queue set. 2324 * A negative budget is effectively unlimited. 2325 * 2326 * Additionally choose the interrupt holdoff time for the next interrupt 2327 * on this queue. If the system is under memory shortage use a fairly 2328 * long delay to help recovery. 2329 */ 2330 static int process_responses(struct adapter *adap, struct sge_qset *qs, 2331 int budget) 2332 { 2333 struct sge_rspq *q = &qs->rspq; 2334 struct rsp_desc *r = &q->desc[q->cidx]; 2335 int budget_left = budget; 2336 unsigned int sleeping = 0; 2337 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; 2338 int ngathered = 0; 2339 2340 q->next_holdoff = q->holdoff_tmr; 2341 2342 while (likely(budget_left && is_new_response(r, q))) { 2343 int packet_complete, eth, ethpad = 2; 2344 int lro = !!(qs->netdev->features & NETIF_F_GRO); 2345 struct sk_buff *skb = NULL; 2346 u32 len, flags; 2347 __be32 rss_hi, rss_lo; 2348 2349 dma_rmb(); 2350 eth = r->rss_hdr.opcode == CPL_RX_PKT; 2351 rss_hi = *(const __be32 *)r; 2352 rss_lo = r->rss_hdr.rss_hash_val; 2353 flags = ntohl(r->flags); 2354 2355 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { 2356 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); 2357 if (!skb) 2358 goto no_mem; 2359 2360 __skb_put_data(skb, r, AN_PKT_SIZE); 2361 skb->data[0] = CPL_ASYNC_NOTIF; 2362 rss_hi = htonl(CPL_ASYNC_NOTIF << 24); 2363 q->async_notif++; 2364 } else if (flags & F_RSPD_IMM_DATA_VALID) { 2365 skb = get_imm_packet(r); 2366 if (unlikely(!skb)) { 2367 no_mem: 2368 q->next_holdoff = NOMEM_INTR_DELAY; 2369 q->nomem++; 2370 /* consume one credit since we tried */ 2371 budget_left--; 2372 break; 2373 } 2374 q->imm_data++; 2375 ethpad = 0; 2376 } else if ((len = ntohl(r->len_cq)) != 0) { 2377 struct sge_fl *fl; 2378 2379 lro &= eth && is_eth_tcp(rss_hi); 2380 2381 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2382 if (fl->use_pages) { 2383 void *addr = fl->sdesc[fl->cidx].pg_chunk.va; 2384 2385 net_prefetch(addr); 2386 __refill_fl(adap, fl); 2387 if (lro > 0) { 2388 lro_add_page(adap, qs, fl, 2389 G_RSPD_LEN(len), 2390 flags & F_RSPD_EOP); 2391 goto next_fl; 2392 } 2393 2394 skb = get_packet_pg(adap, fl, q, 2395 G_RSPD_LEN(len), 2396 eth ? 2397 SGE_RX_DROP_THRES : 0); 2398 q->pg_skb = skb; 2399 } else 2400 skb = get_packet(adap, fl, G_RSPD_LEN(len), 2401 eth ? SGE_RX_DROP_THRES : 0); 2402 if (unlikely(!skb)) { 2403 if (!eth) 2404 goto no_mem; 2405 q->rx_drops++; 2406 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) 2407 __skb_pull(skb, 2); 2408 next_fl: 2409 if (++fl->cidx == fl->size) 2410 fl->cidx = 0; 2411 } else 2412 q->pure_rsps++; 2413 2414 if (flags & RSPD_CTRL_MASK) { 2415 sleeping |= flags & RSPD_GTS_MASK; 2416 handle_rsp_cntrl_info(qs, flags); 2417 } 2418 2419 r++; 2420 if (unlikely(++q->cidx == q->size)) { 2421 q->cidx = 0; 2422 q->gen ^= 1; 2423 r = q->desc; 2424 } 2425 prefetch(r); 2426 2427 if (++q->credits >= (q->size / 4)) { 2428 refill_rspq(adap, q, q->credits); 2429 q->credits = 0; 2430 } 2431 2432 packet_complete = flags & 2433 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | 2434 F_RSPD_ASYNC_NOTIF); 2435 2436 if (skb != NULL && packet_complete) { 2437 if (eth) 2438 rx_eth(adap, q, skb, ethpad, lro); 2439 else { 2440 q->offload_pkts++; 2441 /* Preserve the RSS info in csum & priority */ 2442 skb->csum = rss_hi; 2443 skb->priority = rss_lo; 2444 ngathered = rx_offload(&adap->tdev, q, skb, 2445 offload_skbs, 2446 ngathered); 2447 } 2448 2449 if (flags & F_RSPD_EOP) 2450 clear_rspq_bufstate(q); 2451 } 2452 --budget_left; 2453 } 2454 2455 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); 2456 2457 if (sleeping) 2458 check_ring_db(adap, qs, sleeping); 2459 2460 smp_mb(); /* commit Tx queue .processed updates */ 2461 if (unlikely(qs->txq_stopped != 0)) 2462 restart_tx(qs); 2463 2464 budget -= budget_left; 2465 return budget; 2466 } 2467 2468 static inline int is_pure_response(const struct rsp_desc *r) 2469 { 2470 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); 2471 2472 return (n | r->len_cq) == 0; 2473 } 2474 2475 /** 2476 * napi_rx_handler - the NAPI handler for Rx processing 2477 * @napi: the napi instance 2478 * @budget: how many packets we can process in this round 2479 * 2480 * Handler for new data events when using NAPI. 2481 */ 2482 static int napi_rx_handler(struct napi_struct *napi, int budget) 2483 { 2484 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 2485 struct adapter *adap = qs->adap; 2486 int work_done = process_responses(adap, qs, budget); 2487 2488 if (likely(work_done < budget)) { 2489 napi_complete_done(napi, work_done); 2490 2491 /* 2492 * Because we don't atomically flush the following 2493 * write it is possible that in very rare cases it can 2494 * reach the device in a way that races with a new 2495 * response being written plus an error interrupt 2496 * causing the NAPI interrupt handler below to return 2497 * unhandled status to the OS. To protect against 2498 * this would require flushing the write and doing 2499 * both the write and the flush with interrupts off. 2500 * Way too expensive and unjustifiable given the 2501 * rarity of the race. 2502 * 2503 * The race cannot happen at all with MSI-X. 2504 */ 2505 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | 2506 V_NEWTIMER(qs->rspq.next_holdoff) | 2507 V_NEWINDEX(qs->rspq.cidx)); 2508 } 2509 return work_done; 2510 } 2511 2512 /* 2513 * Returns true if the device is already scheduled for polling. 2514 */ 2515 static inline int napi_is_scheduled(struct napi_struct *napi) 2516 { 2517 return test_bit(NAPI_STATE_SCHED, &napi->state); 2518 } 2519 2520 /** 2521 * process_pure_responses - process pure responses from a response queue 2522 * @adap: the adapter 2523 * @qs: the queue set owning the response queue 2524 * @r: the first pure response to process 2525 * 2526 * A simpler version of process_responses() that handles only pure (i.e., 2527 * non data-carrying) responses. Such respones are too light-weight to 2528 * justify calling a softirq under NAPI, so we handle them specially in 2529 * the interrupt handler. The function is called with a pointer to a 2530 * response, which the caller must ensure is a valid pure response. 2531 * 2532 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. 2533 */ 2534 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, 2535 struct rsp_desc *r) 2536 { 2537 struct sge_rspq *q = &qs->rspq; 2538 unsigned int sleeping = 0; 2539 2540 do { 2541 u32 flags = ntohl(r->flags); 2542 2543 r++; 2544 if (unlikely(++q->cidx == q->size)) { 2545 q->cidx = 0; 2546 q->gen ^= 1; 2547 r = q->desc; 2548 } 2549 prefetch(r); 2550 2551 if (flags & RSPD_CTRL_MASK) { 2552 sleeping |= flags & RSPD_GTS_MASK; 2553 handle_rsp_cntrl_info(qs, flags); 2554 } 2555 2556 q->pure_rsps++; 2557 if (++q->credits >= (q->size / 4)) { 2558 refill_rspq(adap, q, q->credits); 2559 q->credits = 0; 2560 } 2561 if (!is_new_response(r, q)) 2562 break; 2563 dma_rmb(); 2564 } while (is_pure_response(r)); 2565 2566 if (sleeping) 2567 check_ring_db(adap, qs, sleeping); 2568 2569 smp_mb(); /* commit Tx queue .processed updates */ 2570 if (unlikely(qs->txq_stopped != 0)) 2571 restart_tx(qs); 2572 2573 return is_new_response(r, q); 2574 } 2575 2576 /** 2577 * handle_responses - decide what to do with new responses in NAPI mode 2578 * @adap: the adapter 2579 * @q: the response queue 2580 * 2581 * This is used by the NAPI interrupt handlers to decide what to do with 2582 * new SGE responses. If there are no new responses it returns -1. If 2583 * there are new responses and they are pure (i.e., non-data carrying) 2584 * it handles them straight in hard interrupt context as they are very 2585 * cheap and don't deliver any packets. Finally, if there are any data 2586 * signaling responses it schedules the NAPI handler. Returns 1 if it 2587 * schedules NAPI, 0 if all new responses were pure. 2588 * 2589 * The caller must ascertain NAPI is not already running. 2590 */ 2591 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) 2592 { 2593 struct sge_qset *qs = rspq_to_qset(q); 2594 struct rsp_desc *r = &q->desc[q->cidx]; 2595 2596 if (!is_new_response(r, q)) 2597 return -1; 2598 dma_rmb(); 2599 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { 2600 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2601 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); 2602 return 0; 2603 } 2604 napi_schedule(&qs->napi); 2605 return 1; 2606 } 2607 2608 /* 2609 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case 2610 * (i.e., response queue serviced in hard interrupt). 2611 */ 2612 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) 2613 { 2614 struct sge_qset *qs = cookie; 2615 struct adapter *adap = qs->adap; 2616 struct sge_rspq *q = &qs->rspq; 2617 2618 spin_lock(&q->lock); 2619 if (process_responses(adap, qs, -1) == 0) 2620 q->unhandled_irqs++; 2621 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2622 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2623 spin_unlock(&q->lock); 2624 return IRQ_HANDLED; 2625 } 2626 2627 /* 2628 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 2629 * (i.e., response queue serviced by NAPI polling). 2630 */ 2631 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) 2632 { 2633 struct sge_qset *qs = cookie; 2634 struct sge_rspq *q = &qs->rspq; 2635 2636 spin_lock(&q->lock); 2637 2638 if (handle_responses(qs->adap, q) < 0) 2639 q->unhandled_irqs++; 2640 spin_unlock(&q->lock); 2641 return IRQ_HANDLED; 2642 } 2643 2644 /* 2645 * The non-NAPI MSI interrupt handler. This needs to handle data events from 2646 * SGE response queues as well as error and other async events as they all use 2647 * the same MSI vector. We use one SGE response queue per port in this mode 2648 * and protect all response queues with queue 0's lock. 2649 */ 2650 static irqreturn_t t3_intr_msi(int irq, void *cookie) 2651 { 2652 int new_packets = 0; 2653 struct adapter *adap = cookie; 2654 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2655 2656 spin_lock(&q->lock); 2657 2658 if (process_responses(adap, &adap->sge.qs[0], -1)) { 2659 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2660 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2661 new_packets = 1; 2662 } 2663 2664 if (adap->params.nports == 2 && 2665 process_responses(adap, &adap->sge.qs[1], -1)) { 2666 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2667 2668 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | 2669 V_NEWTIMER(q1->next_holdoff) | 2670 V_NEWINDEX(q1->cidx)); 2671 new_packets = 1; 2672 } 2673 2674 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2675 q->unhandled_irqs++; 2676 2677 spin_unlock(&q->lock); 2678 return IRQ_HANDLED; 2679 } 2680 2681 static int rspq_check_napi(struct sge_qset *qs) 2682 { 2683 struct sge_rspq *q = &qs->rspq; 2684 2685 if (!napi_is_scheduled(&qs->napi) && 2686 is_new_response(&q->desc[q->cidx], q)) { 2687 napi_schedule(&qs->napi); 2688 return 1; 2689 } 2690 return 0; 2691 } 2692 2693 /* 2694 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced 2695 * by NAPI polling). Handles data events from SGE response queues as well as 2696 * error and other async events as they all use the same MSI vector. We use 2697 * one SGE response queue per port in this mode and protect all response 2698 * queues with queue 0's lock. 2699 */ 2700 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) 2701 { 2702 int new_packets; 2703 struct adapter *adap = cookie; 2704 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2705 2706 spin_lock(&q->lock); 2707 2708 new_packets = rspq_check_napi(&adap->sge.qs[0]); 2709 if (adap->params.nports == 2) 2710 new_packets += rspq_check_napi(&adap->sge.qs[1]); 2711 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2712 q->unhandled_irqs++; 2713 2714 spin_unlock(&q->lock); 2715 return IRQ_HANDLED; 2716 } 2717 2718 /* 2719 * A helper function that processes responses and issues GTS. 2720 */ 2721 static inline int process_responses_gts(struct adapter *adap, 2722 struct sge_rspq *rq) 2723 { 2724 int work; 2725 2726 work = process_responses(adap, rspq_to_qset(rq), -1); 2727 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | 2728 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); 2729 return work; 2730 } 2731 2732 /* 2733 * The legacy INTx interrupt handler. This needs to handle data events from 2734 * SGE response queues as well as error and other async events as they all use 2735 * the same interrupt pin. We use one SGE response queue per port in this mode 2736 * and protect all response queues with queue 0's lock. 2737 */ 2738 static irqreturn_t t3_intr(int irq, void *cookie) 2739 { 2740 int work_done, w0, w1; 2741 struct adapter *adap = cookie; 2742 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2743 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2744 2745 spin_lock(&q0->lock); 2746 2747 w0 = is_new_response(&q0->desc[q0->cidx], q0); 2748 w1 = adap->params.nports == 2 && 2749 is_new_response(&q1->desc[q1->cidx], q1); 2750 2751 if (likely(w0 | w1)) { 2752 t3_write_reg(adap, A_PL_CLI, 0); 2753 t3_read_reg(adap, A_PL_CLI); /* flush */ 2754 2755 if (likely(w0)) 2756 process_responses_gts(adap, q0); 2757 2758 if (w1) 2759 process_responses_gts(adap, q1); 2760 2761 work_done = w0 | w1; 2762 } else 2763 work_done = t3_slow_intr_handler(adap); 2764 2765 spin_unlock(&q0->lock); 2766 return IRQ_RETVAL(work_done != 0); 2767 } 2768 2769 /* 2770 * Interrupt handler for legacy INTx interrupts for T3B-based cards. 2771 * Handles data events from SGE response queues as well as error and other 2772 * async events as they all use the same interrupt pin. We use one SGE 2773 * response queue per port in this mode and protect all response queues with 2774 * queue 0's lock. 2775 */ 2776 static irqreturn_t t3b_intr(int irq, void *cookie) 2777 { 2778 u32 map; 2779 struct adapter *adap = cookie; 2780 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2781 2782 t3_write_reg(adap, A_PL_CLI, 0); 2783 map = t3_read_reg(adap, A_SG_DATA_INTR); 2784 2785 if (unlikely(!map)) /* shared interrupt, most likely */ 2786 return IRQ_NONE; 2787 2788 spin_lock(&q0->lock); 2789 2790 if (unlikely(map & F_ERRINTR)) 2791 t3_slow_intr_handler(adap); 2792 2793 if (likely(map & 1)) 2794 process_responses_gts(adap, q0); 2795 2796 if (map & 2) 2797 process_responses_gts(adap, &adap->sge.qs[1].rspq); 2798 2799 spin_unlock(&q0->lock); 2800 return IRQ_HANDLED; 2801 } 2802 2803 /* 2804 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. 2805 * Handles data events from SGE response queues as well as error and other 2806 * async events as they all use the same interrupt pin. We use one SGE 2807 * response queue per port in this mode and protect all response queues with 2808 * queue 0's lock. 2809 */ 2810 static irqreturn_t t3b_intr_napi(int irq, void *cookie) 2811 { 2812 u32 map; 2813 struct adapter *adap = cookie; 2814 struct sge_qset *qs0 = &adap->sge.qs[0]; 2815 struct sge_rspq *q0 = &qs0->rspq; 2816 2817 t3_write_reg(adap, A_PL_CLI, 0); 2818 map = t3_read_reg(adap, A_SG_DATA_INTR); 2819 2820 if (unlikely(!map)) /* shared interrupt, most likely */ 2821 return IRQ_NONE; 2822 2823 spin_lock(&q0->lock); 2824 2825 if (unlikely(map & F_ERRINTR)) 2826 t3_slow_intr_handler(adap); 2827 2828 if (likely(map & 1)) 2829 napi_schedule(&qs0->napi); 2830 2831 if (map & 2) 2832 napi_schedule(&adap->sge.qs[1].napi); 2833 2834 spin_unlock(&q0->lock); 2835 return IRQ_HANDLED; 2836 } 2837 2838 /** 2839 * t3_intr_handler - select the top-level interrupt handler 2840 * @adap: the adapter 2841 * @polling: whether using NAPI to service response queues 2842 * 2843 * Selects the top-level interrupt handler based on the type of interrupts 2844 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the 2845 * response queues. 2846 */ 2847 irq_handler_t t3_intr_handler(struct adapter *adap, int polling) 2848 { 2849 if (adap->flags & USING_MSIX) 2850 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; 2851 if (adap->flags & USING_MSI) 2852 return polling ? t3_intr_msi_napi : t3_intr_msi; 2853 if (adap->params.rev > 0) 2854 return polling ? t3b_intr_napi : t3b_intr; 2855 return t3_intr; 2856 } 2857 2858 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 2859 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 2860 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 2861 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 2862 F_HIRCQPARITYERROR) 2863 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) 2864 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ 2865 F_RSPQDISABLED) 2866 2867 /** 2868 * t3_sge_err_intr_handler - SGE async event interrupt handler 2869 * @adapter: the adapter 2870 * 2871 * Interrupt handler for SGE asynchronous (non-data) events. 2872 */ 2873 void t3_sge_err_intr_handler(struct adapter *adapter) 2874 { 2875 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & 2876 ~F_FLEMPTY; 2877 2878 if (status & SGE_PARERR) 2879 CH_ALERT(adapter, "SGE parity error (0x%x)\n", 2880 status & SGE_PARERR); 2881 if (status & SGE_FRAMINGERR) 2882 CH_ALERT(adapter, "SGE framing error (0x%x)\n", 2883 status & SGE_FRAMINGERR); 2884 2885 if (status & F_RSPQCREDITOVERFOW) 2886 CH_ALERT(adapter, "SGE response queue credit overflow\n"); 2887 2888 if (status & F_RSPQDISABLED) { 2889 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); 2890 2891 CH_ALERT(adapter, 2892 "packet delivered to disabled response queue " 2893 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); 2894 } 2895 2896 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) 2897 queue_work(cxgb3_wq, &adapter->db_drop_task); 2898 2899 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) 2900 queue_work(cxgb3_wq, &adapter->db_full_task); 2901 2902 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) 2903 queue_work(cxgb3_wq, &adapter->db_empty_task); 2904 2905 t3_write_reg(adapter, A_SG_INT_CAUSE, status); 2906 if (status & SGE_FATALERR) 2907 t3_fatal_err(adapter); 2908 } 2909 2910 /** 2911 * sge_timer_tx - perform periodic maintenance of an SGE qset 2912 * @t: a timer list containing the SGE queue set to maintain 2913 * 2914 * Runs periodically from a timer to perform maintenance of an SGE queue 2915 * set. It performs two tasks: 2916 * 2917 * Cleans up any completed Tx descriptors that may still be pending. 2918 * Normal descriptor cleanup happens when new packets are added to a Tx 2919 * queue so this timer is relatively infrequent and does any cleanup only 2920 * if the Tx queue has not seen any new packets in a while. We make a 2921 * best effort attempt to reclaim descriptors, in that we don't wait 2922 * around if we cannot get a queue's lock (which most likely is because 2923 * someone else is queueing new packets and so will also handle the clean 2924 * up). Since control queues use immediate data exclusively we don't 2925 * bother cleaning them up here. 2926 * 2927 */ 2928 static void sge_timer_tx(struct timer_list *t) 2929 { 2930 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer); 2931 struct port_info *pi = netdev_priv(qs->netdev); 2932 struct adapter *adap = pi->adapter; 2933 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; 2934 unsigned long next_period; 2935 2936 if (__netif_tx_trylock(qs->tx_q)) { 2937 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], 2938 TX_RECLAIM_TIMER_CHUNK); 2939 __netif_tx_unlock(qs->tx_q); 2940 } 2941 2942 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { 2943 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], 2944 TX_RECLAIM_TIMER_CHUNK); 2945 spin_unlock(&qs->txq[TXQ_OFLD].lock); 2946 } 2947 2948 next_period = TX_RECLAIM_PERIOD >> 2949 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / 2950 TX_RECLAIM_TIMER_CHUNK); 2951 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); 2952 } 2953 2954 /** 2955 * sge_timer_rx - perform periodic maintenance of an SGE qset 2956 * @t: the timer list containing the SGE queue set to maintain 2957 * 2958 * a) Replenishes Rx queues that have run out due to memory shortage. 2959 * Normally new Rx buffers are added when existing ones are consumed but 2960 * when out of memory a queue can become empty. We try to add only a few 2961 * buffers here, the queue will be replenished fully as these new buffers 2962 * are used up if memory shortage has subsided. 2963 * 2964 * b) Return coalesced response queue credits in case a response queue is 2965 * starved. 2966 * 2967 */ 2968 static void sge_timer_rx(struct timer_list *t) 2969 { 2970 spinlock_t *lock; 2971 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer); 2972 struct port_info *pi = netdev_priv(qs->netdev); 2973 struct adapter *adap = pi->adapter; 2974 u32 status; 2975 2976 lock = adap->params.rev > 0 ? 2977 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; 2978 2979 if (!spin_trylock_irq(lock)) 2980 goto out; 2981 2982 if (napi_is_scheduled(&qs->napi)) 2983 goto unlock; 2984 2985 if (adap->params.rev < 4) { 2986 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); 2987 2988 if (status & (1 << qs->rspq.cntxt_id)) { 2989 qs->rspq.starved++; 2990 if (qs->rspq.credits) { 2991 qs->rspq.credits--; 2992 refill_rspq(adap, &qs->rspq, 1); 2993 qs->rspq.restarted++; 2994 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, 2995 1 << qs->rspq.cntxt_id); 2996 } 2997 } 2998 } 2999 3000 if (qs->fl[0].credits < qs->fl[0].size) 3001 __refill_fl(adap, &qs->fl[0]); 3002 if (qs->fl[1].credits < qs->fl[1].size) 3003 __refill_fl(adap, &qs->fl[1]); 3004 3005 unlock: 3006 spin_unlock_irq(lock); 3007 out: 3008 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 3009 } 3010 3011 /** 3012 * t3_update_qset_coalesce - update coalescing settings for a queue set 3013 * @qs: the SGE queue set 3014 * @p: new queue set parameters 3015 * 3016 * Update the coalescing settings for an SGE queue set. Nothing is done 3017 * if the queue set is not initialized yet. 3018 */ 3019 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) 3020 { 3021 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ 3022 qs->rspq.polling = p->polling; 3023 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; 3024 } 3025 3026 /** 3027 * t3_sge_alloc_qset - initialize an SGE queue set 3028 * @adapter: the adapter 3029 * @id: the queue set id 3030 * @nports: how many Ethernet ports will be using this queue set 3031 * @irq_vec_idx: the IRQ vector index for response queue interrupts 3032 * @p: configuration parameters for this queue set 3033 * @ntxq: number of Tx queues for the queue set 3034 * @dev: net device associated with this queue set 3035 * @netdevq: net device TX queue associated with this queue set 3036 * 3037 * Allocate resources and initialize an SGE queue set. A queue set 3038 * comprises a response queue, two Rx free-buffer queues, and up to 3 3039 * Tx queues. The Tx queues are assigned roles in the order Ethernet 3040 * queue, offload queue, and control queue. 3041 */ 3042 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, 3043 int irq_vec_idx, const struct qset_params *p, 3044 int ntxq, struct net_device *dev, 3045 struct netdev_queue *netdevq) 3046 { 3047 int i, avail, ret = -ENOMEM; 3048 struct sge_qset *q = &adapter->sge.qs[id]; 3049 3050 init_qset_cntxt(q, id); 3051 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0); 3052 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0); 3053 3054 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, 3055 sizeof(struct rx_desc), 3056 sizeof(struct rx_sw_desc), 3057 &q->fl[0].phys_addr, &q->fl[0].sdesc); 3058 if (!q->fl[0].desc) 3059 goto err; 3060 3061 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, 3062 sizeof(struct rx_desc), 3063 sizeof(struct rx_sw_desc), 3064 &q->fl[1].phys_addr, &q->fl[1].sdesc); 3065 if (!q->fl[1].desc) 3066 goto err; 3067 3068 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, 3069 sizeof(struct rsp_desc), 0, 3070 &q->rspq.phys_addr, NULL); 3071 if (!q->rspq.desc) 3072 goto err; 3073 3074 for (i = 0; i < ntxq; ++i) { 3075 /* 3076 * The control queue always uses immediate data so does not 3077 * need to keep track of any sk_buffs. 3078 */ 3079 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); 3080 3081 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], 3082 sizeof(struct tx_desc), sz, 3083 &q->txq[i].phys_addr, 3084 &q->txq[i].sdesc); 3085 if (!q->txq[i].desc) 3086 goto err; 3087 3088 q->txq[i].gen = 1; 3089 q->txq[i].size = p->txq_size[i]; 3090 spin_lock_init(&q->txq[i].lock); 3091 skb_queue_head_init(&q->txq[i].sendq); 3092 } 3093 3094 INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq); 3095 INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq); 3096 3097 q->fl[0].gen = q->fl[1].gen = 1; 3098 q->fl[0].size = p->fl_size; 3099 q->fl[1].size = p->jumbo_size; 3100 3101 q->rspq.gen = 1; 3102 q->rspq.size = p->rspq_size; 3103 spin_lock_init(&q->rspq.lock); 3104 skb_queue_head_init(&q->rspq.rx_queue); 3105 3106 q->txq[TXQ_ETH].stop_thres = nports * 3107 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); 3108 3109 #if FL0_PG_CHUNK_SIZE > 0 3110 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; 3111 #else 3112 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); 3113 #endif 3114 #if FL1_PG_CHUNK_SIZE > 0 3115 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; 3116 #else 3117 q->fl[1].buf_size = is_offload(adapter) ? 3118 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 3119 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); 3120 #endif 3121 3122 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; 3123 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; 3124 q->fl[0].order = FL0_PG_ORDER; 3125 q->fl[1].order = FL1_PG_ORDER; 3126 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; 3127 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; 3128 3129 spin_lock_irq(&adapter->sge.reg_lock); 3130 3131 /* FL threshold comparison uses < */ 3132 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, 3133 q->rspq.phys_addr, q->rspq.size, 3134 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); 3135 if (ret) 3136 goto err_unlock; 3137 3138 for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 3139 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, 3140 q->fl[i].phys_addr, q->fl[i].size, 3141 q->fl[i].buf_size - SGE_PG_RSVD, 3142 p->cong_thres, 1, 0); 3143 if (ret) 3144 goto err_unlock; 3145 } 3146 3147 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, 3148 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, 3149 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 3150 1, 0); 3151 if (ret) 3152 goto err_unlock; 3153 3154 if (ntxq > 1) { 3155 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, 3156 USE_GTS, SGE_CNTXT_OFLD, id, 3157 q->txq[TXQ_OFLD].phys_addr, 3158 q->txq[TXQ_OFLD].size, 0, 1, 0); 3159 if (ret) 3160 goto err_unlock; 3161 } 3162 3163 if (ntxq > 2) { 3164 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, 3165 SGE_CNTXT_CTRL, id, 3166 q->txq[TXQ_CTRL].phys_addr, 3167 q->txq[TXQ_CTRL].size, 3168 q->txq[TXQ_CTRL].token, 1, 0); 3169 if (ret) 3170 goto err_unlock; 3171 } 3172 3173 spin_unlock_irq(&adapter->sge.reg_lock); 3174 3175 q->adap = adapter; 3176 q->netdev = dev; 3177 q->tx_q = netdevq; 3178 t3_update_qset_coalesce(q, p); 3179 3180 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, 3181 GFP_KERNEL | __GFP_COMP); 3182 if (!avail) { 3183 CH_ALERT(adapter, "free list queue 0 initialization failed\n"); 3184 ret = -ENOMEM; 3185 goto err; 3186 } 3187 if (avail < q->fl[0].size) 3188 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", 3189 avail); 3190 3191 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, 3192 GFP_KERNEL | __GFP_COMP); 3193 if (avail < q->fl[1].size) 3194 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", 3195 avail); 3196 refill_rspq(adapter, &q->rspq, q->rspq.size - 1); 3197 3198 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | 3199 V_NEWTIMER(q->rspq.holdoff_tmr)); 3200 3201 return 0; 3202 3203 err_unlock: 3204 spin_unlock_irq(&adapter->sge.reg_lock); 3205 err: 3206 t3_free_qset(adapter, q); 3207 return ret; 3208 } 3209 3210 /** 3211 * t3_start_sge_timers - start SGE timer call backs 3212 * @adap: the adapter 3213 * 3214 * Starts each SGE queue set's timer call back 3215 */ 3216 void t3_start_sge_timers(struct adapter *adap) 3217 { 3218 int i; 3219 3220 for (i = 0; i < SGE_QSETS; ++i) { 3221 struct sge_qset *q = &adap->sge.qs[i]; 3222 3223 if (q->tx_reclaim_timer.function) 3224 mod_timer(&q->tx_reclaim_timer, 3225 jiffies + TX_RECLAIM_PERIOD); 3226 3227 if (q->rx_reclaim_timer.function) 3228 mod_timer(&q->rx_reclaim_timer, 3229 jiffies + RX_RECLAIM_PERIOD); 3230 } 3231 } 3232 3233 /** 3234 * t3_stop_sge_timers - stop SGE timer call backs 3235 * @adap: the adapter 3236 * 3237 * Stops each SGE queue set's timer call back 3238 */ 3239 void t3_stop_sge_timers(struct adapter *adap) 3240 { 3241 int i; 3242 3243 for (i = 0; i < SGE_QSETS; ++i) { 3244 struct sge_qset *q = &adap->sge.qs[i]; 3245 3246 if (q->tx_reclaim_timer.function) 3247 del_timer_sync(&q->tx_reclaim_timer); 3248 if (q->rx_reclaim_timer.function) 3249 del_timer_sync(&q->rx_reclaim_timer); 3250 } 3251 } 3252 3253 /** 3254 * t3_free_sge_resources - free SGE resources 3255 * @adap: the adapter 3256 * 3257 * Frees resources used by the SGE queue sets. 3258 */ 3259 void t3_free_sge_resources(struct adapter *adap) 3260 { 3261 int i; 3262 3263 for (i = 0; i < SGE_QSETS; ++i) 3264 t3_free_qset(adap, &adap->sge.qs[i]); 3265 } 3266 3267 /** 3268 * t3_sge_start - enable SGE 3269 * @adap: the adapter 3270 * 3271 * Enables the SGE for DMAs. This is the last step in starting packet 3272 * transfers. 3273 */ 3274 void t3_sge_start(struct adapter *adap) 3275 { 3276 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); 3277 } 3278 3279 /** 3280 * t3_sge_stop_dma - Disable SGE DMA engine operation 3281 * @adap: the adapter 3282 * 3283 * Can be invoked from interrupt context e.g. error handler. 3284 * 3285 * Note that this function cannot disable the restart of works as 3286 * it cannot wait if called from interrupt context, however the 3287 * works will have no effect since the doorbells are disabled. The 3288 * driver will call tg3_sge_stop() later from process context, at 3289 * which time the works will be stopped if they are still running. 3290 */ 3291 void t3_sge_stop_dma(struct adapter *adap) 3292 { 3293 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); 3294 } 3295 3296 /** 3297 * t3_sge_stop - disable SGE operation completly 3298 * @adap: the adapter 3299 * 3300 * Called from process context. Disables the DMA engine and any 3301 * pending queue restart works. 3302 */ 3303 void t3_sge_stop(struct adapter *adap) 3304 { 3305 int i; 3306 3307 t3_sge_stop_dma(adap); 3308 3309 for (i = 0; i < SGE_QSETS; ++i) { 3310 struct sge_qset *qs = &adap->sge.qs[i]; 3311 3312 cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task); 3313 cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task); 3314 } 3315 } 3316 3317 /** 3318 * t3_sge_init - initialize SGE 3319 * @adap: the adapter 3320 * @p: the SGE parameters 3321 * 3322 * Performs SGE initialization needed every time after a chip reset. 3323 * We do not initialize any of the queue sets here, instead the driver 3324 * top-level must request those individually. We also do not enable DMA 3325 * here, that should be done after the queues have been set up. 3326 */ 3327 void t3_sge_init(struct adapter *adap, struct sge_params *p) 3328 { 3329 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); 3330 3331 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | 3332 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | 3333 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | 3334 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; 3335 #if SGE_NUM_GENBITS == 1 3336 ctrl |= F_EGRGENCTRL; 3337 #endif 3338 if (adap->params.rev > 0) { 3339 if (!(adap->flags & (USING_MSIX | USING_MSI))) 3340 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; 3341 } 3342 t3_write_reg(adap, A_SG_CONTROL, ctrl); 3343 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | 3344 V_LORCQDRBTHRSH(512)); 3345 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); 3346 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | 3347 V_TIMEOUT(200 * core_ticks_per_usec(adap))); 3348 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 3349 adap->params.rev < T3_REV_C ? 1000 : 500); 3350 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); 3351 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); 3352 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); 3353 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); 3354 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); 3355 } 3356 3357 /** 3358 * t3_sge_prep - one-time SGE initialization 3359 * @adap: the associated adapter 3360 * @p: SGE parameters 3361 * 3362 * Performs one-time initialization of SGE SW state. Includes determining 3363 * defaults for the assorted SGE parameters, which admins can change until 3364 * they are used to initialize the SGE. 3365 */ 3366 void t3_sge_prep(struct adapter *adap, struct sge_params *p) 3367 { 3368 int i; 3369 3370 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - 3371 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3372 3373 for (i = 0; i < SGE_QSETS; ++i) { 3374 struct qset_params *q = p->qset + i; 3375 3376 q->polling = adap->params.rev > 0; 3377 q->coalesce_usecs = 5; 3378 q->rspq_size = 1024; 3379 q->fl_size = 1024; 3380 q->jumbo_size = 512; 3381 q->txq_size[TXQ_ETH] = 1024; 3382 q->txq_size[TXQ_OFLD] = 1024; 3383 q->txq_size[TXQ_CTRL] = 256; 3384 q->cong_thres = 0; 3385 } 3386 3387 spin_lock_init(&adap->sge.reg_lock); 3388 } 3389