1 /*
2  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48 
49 #define USE_GTS 0
50 
51 #define SGE_RX_SM_BUF_SIZE 1536
52 
53 #define SGE_RX_COPY_THRES  256
54 #define SGE_RX_PULL_LEN    128
55 
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
60  * directly.
61  */
62 #define FL0_PG_CHUNK_SIZE  2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68 
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71 
72 /*
73  * Max number of Rx buffers we replenish at a time.
74  */
75 #define MAX_RX_REFILL 16U
76 /*
77  * Period of the Tx buffer reclaim timer.  This timer does not need to run
78  * frequently as Tx buffers are usually reclaimed by new Tx packets.
79  */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83 
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86 
87 /*
88  * Types of Tx queues in each queue set.  Order here matters, do not change.
89  */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91 
92 /* Values for sge_txq.flags */
93 enum {
94 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
95 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
96 };
97 
98 struct tx_desc {
99 	__be64 flit[TX_DESC_FLITS];
100 };
101 
102 struct rx_desc {
103 	__be32 addr_lo;
104 	__be32 len_gen;
105 	__be32 gen2;
106 	__be32 addr_hi;
107 };
108 
109 struct tx_sw_desc {		/* SW state per Tx descriptor */
110 	struct sk_buff *skb;
111 	u8 eop;       /* set if last descriptor for packet */
112 	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
113 	u8 fragidx;   /* first page fragment associated with descriptor */
114 	s8 sflit;     /* start flit of first SGL entry in descriptor */
115 };
116 
117 struct rx_sw_desc {                /* SW state per Rx descriptor */
118 	union {
119 		struct sk_buff *skb;
120 		struct fl_pg_chunk pg_chunk;
121 	};
122 	DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124 
125 struct rsp_desc {		/* response queue descriptor */
126 	struct rss_header rss_hdr;
127 	__be32 flags;
128 	__be32 len_cq;
129 	struct_group(immediate,
130 		u8 imm_data[47];
131 		u8 intr_gen;
132 	);
133 };
134 
135 /*
136  * Holds unmapping information for Tx packets that need deferred unmapping.
137  * This structure lives at skb->head and must be allocated by callers.
138  */
139 struct deferred_unmap_info {
140 	struct pci_dev *pdev;
141 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
142 };
143 
144 /*
145  * Maps a number of flits to the number of Tx descriptors that can hold them.
146  * The formula is
147  *
148  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
149  *
150  * HW allows up to 4 descriptors to be combined into a WR.
151  */
152 static u8 flit_desc_map[] = {
153 	0,
154 #if SGE_NUM_GENBITS == 1
155 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
159 #elif SGE_NUM_GENBITS == 2
160 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
161 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
162 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
163 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
164 #else
165 # error "SGE_NUM_GENBITS must be 1 or 2"
166 #endif
167 };
168 
169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
170 {
171 	return container_of(q, struct sge_qset, rspq);
172 }
173 
174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
175 {
176 	return container_of(q, struct sge_qset, txq[qidx]);
177 }
178 
179 /**
180  *	refill_rspq - replenish an SGE response queue
181  *	@adapter: the adapter
182  *	@q: the response queue to replenish
183  *	@credits: how many new responses to make available
184  *
185  *	Replenishes a response queue by making the supplied number of responses
186  *	available to HW.
187  */
188 static inline void refill_rspq(struct adapter *adapter,
189 			       const struct sge_rspq *q, unsigned int credits)
190 {
191 	rmb();
192 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
194 }
195 
196 /**
197  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
198  *
199  *	Returns true if the platform needs sk_buff unmapping.  The compiler
200  *	optimizes away unnecessary code if this returns true.
201  */
202 static inline int need_skb_unmap(void)
203 {
204 #ifdef CONFIG_NEED_DMA_MAP_STATE
205 	return 1;
206 #else
207 	return 0;
208 #endif
209 }
210 
211 /**
212  *	unmap_skb - unmap a packet main body and its page fragments
213  *	@skb: the packet
214  *	@q: the Tx queue containing Tx descriptors for the packet
215  *	@cidx: index of Tx descriptor
216  *	@pdev: the PCI device
217  *
218  *	Unmap the main body of an sk_buff and its page fragments, if any.
219  *	Because of the fairly complicated structure of our SGLs and the desire
220  *	to conserve space for metadata, the information necessary to unmap an
221  *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
222  *	descriptors (the physical addresses of the various data buffers), and
223  *	the SW descriptor state (assorted indices).  The send functions
224  *	initialize the indices for the first packet descriptor so we can unmap
225  *	the buffers held in the first Tx descriptor here, and we have enough
226  *	information at this point to set the state for the next Tx descriptor.
227  *
228  *	Note that it is possible to clean up the first descriptor of a packet
229  *	before the send routines have written the next descriptors, but this
230  *	race does not cause any problem.  We just end up writing the unmapping
231  *	info for the descriptor first.
232  */
233 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
234 			     unsigned int cidx, struct pci_dev *pdev)
235 {
236 	const struct sg_ent *sgp;
237 	struct tx_sw_desc *d = &q->sdesc[cidx];
238 	int nfrags, frag_idx, curflit, j = d->addr_idx;
239 
240 	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
241 	frag_idx = d->fragidx;
242 
243 	if (frag_idx == 0 && skb_headlen(skb)) {
244 		dma_unmap_single(&pdev->dev, be64_to_cpu(sgp->addr[0]),
245 				 skb_headlen(skb), DMA_TO_DEVICE);
246 		j = 1;
247 	}
248 
249 	curflit = d->sflit + 1 + j;
250 	nfrags = skb_shinfo(skb)->nr_frags;
251 
252 	while (frag_idx < nfrags && curflit < WR_FLITS) {
253 		dma_unmap_page(&pdev->dev, be64_to_cpu(sgp->addr[j]),
254 			       skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
255 			       DMA_TO_DEVICE);
256 		j ^= 1;
257 		if (j == 0) {
258 			sgp++;
259 			curflit++;
260 		}
261 		curflit++;
262 		frag_idx++;
263 	}
264 
265 	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
266 		d = cidx + 1 == q->size ? q->sdesc : d + 1;
267 		d->fragidx = frag_idx;
268 		d->addr_idx = j;
269 		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
270 	}
271 }
272 
273 /**
274  *	free_tx_desc - reclaims Tx descriptors and their buffers
275  *	@adapter: the adapter
276  *	@q: the Tx queue to reclaim descriptors from
277  *	@n: the number of descriptors to reclaim
278  *
279  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
280  *	Tx buffers.  Called with the Tx queue lock held.
281  */
282 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
283 			 unsigned int n)
284 {
285 	struct tx_sw_desc *d;
286 	struct pci_dev *pdev = adapter->pdev;
287 	unsigned int cidx = q->cidx;
288 
289 	const int need_unmap = need_skb_unmap() &&
290 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
291 
292 	d = &q->sdesc[cidx];
293 	while (n--) {
294 		if (d->skb) {	/* an SGL is present */
295 			if (need_unmap)
296 				unmap_skb(d->skb, q, cidx, pdev);
297 			if (d->eop) {
298 				dev_consume_skb_any(d->skb);
299 				d->skb = NULL;
300 			}
301 		}
302 		++d;
303 		if (++cidx == q->size) {
304 			cidx = 0;
305 			d = q->sdesc;
306 		}
307 	}
308 	q->cidx = cidx;
309 }
310 
311 /**
312  *	reclaim_completed_tx - reclaims completed Tx descriptors
313  *	@adapter: the adapter
314  *	@q: the Tx queue to reclaim completed descriptors from
315  *	@chunk: maximum number of descriptors to reclaim
316  *
317  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
318  *	and frees the associated buffers if possible.  Called with the Tx
319  *	queue's lock held.
320  */
321 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
322 						struct sge_txq *q,
323 						unsigned int chunk)
324 {
325 	unsigned int reclaim = q->processed - q->cleaned;
326 
327 	reclaim = min(chunk, reclaim);
328 	if (reclaim) {
329 		free_tx_desc(adapter, q, reclaim);
330 		q->cleaned += reclaim;
331 		q->in_use -= reclaim;
332 	}
333 	return q->processed - q->cleaned;
334 }
335 
336 /**
337  *	should_restart_tx - are there enough resources to restart a Tx queue?
338  *	@q: the Tx queue
339  *
340  *	Checks if there are enough descriptors to restart a suspended Tx queue.
341  */
342 static inline int should_restart_tx(const struct sge_txq *q)
343 {
344 	unsigned int r = q->processed - q->cleaned;
345 
346 	return q->in_use - r < (q->size >> 1);
347 }
348 
349 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
350 			  struct rx_sw_desc *d)
351 {
352 	if (q->use_pages && d->pg_chunk.page) {
353 		(*d->pg_chunk.p_cnt)--;
354 		if (!*d->pg_chunk.p_cnt)
355 			dma_unmap_page(&pdev->dev, d->pg_chunk.mapping,
356 				       q->alloc_size, DMA_FROM_DEVICE);
357 
358 		put_page(d->pg_chunk.page);
359 		d->pg_chunk.page = NULL;
360 	} else {
361 		dma_unmap_single(&pdev->dev, dma_unmap_addr(d, dma_addr),
362 				 q->buf_size, DMA_FROM_DEVICE);
363 		kfree_skb(d->skb);
364 		d->skb = NULL;
365 	}
366 }
367 
368 /**
369  *	free_rx_bufs - free the Rx buffers on an SGE free list
370  *	@pdev: the PCI device associated with the adapter
371  *	@q: the SGE free list to clean up
372  *
373  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
374  *	this queue should be stopped before calling this function.
375  */
376 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
377 {
378 	unsigned int cidx = q->cidx;
379 
380 	while (q->credits--) {
381 		struct rx_sw_desc *d = &q->sdesc[cidx];
382 
383 
384 		clear_rx_desc(pdev, q, d);
385 		if (++cidx == q->size)
386 			cidx = 0;
387 	}
388 
389 	if (q->pg_chunk.page) {
390 		__free_pages(q->pg_chunk.page, q->order);
391 		q->pg_chunk.page = NULL;
392 	}
393 }
394 
395 /**
396  *	add_one_rx_buf - add a packet buffer to a free-buffer list
397  *	@va:  buffer start VA
398  *	@len: the buffer length
399  *	@d: the HW Rx descriptor to write
400  *	@sd: the SW Rx descriptor to write
401  *	@gen: the generation bit value
402  *	@pdev: the PCI device associated with the adapter
403  *
404  *	Add a buffer of the given length to the supplied HW and SW Rx
405  *	descriptors.
406  */
407 static inline int add_one_rx_buf(void *va, unsigned int len,
408 				 struct rx_desc *d, struct rx_sw_desc *sd,
409 				 unsigned int gen, struct pci_dev *pdev)
410 {
411 	dma_addr_t mapping;
412 
413 	mapping = dma_map_single(&pdev->dev, va, len, DMA_FROM_DEVICE);
414 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
415 		return -ENOMEM;
416 
417 	dma_unmap_addr_set(sd, dma_addr, mapping);
418 
419 	d->addr_lo = cpu_to_be32(mapping);
420 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
421 	dma_wmb();
422 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
423 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
424 	return 0;
425 }
426 
427 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
428 				   unsigned int gen)
429 {
430 	d->addr_lo = cpu_to_be32(mapping);
431 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
432 	dma_wmb();
433 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
434 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
435 	return 0;
436 }
437 
438 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
439 			  struct rx_sw_desc *sd, gfp_t gfp,
440 			  unsigned int order)
441 {
442 	if (!q->pg_chunk.page) {
443 		dma_addr_t mapping;
444 
445 		q->pg_chunk.page = alloc_pages(gfp, order);
446 		if (unlikely(!q->pg_chunk.page))
447 			return -ENOMEM;
448 		q->pg_chunk.va = page_address(q->pg_chunk.page);
449 		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
450 				    SGE_PG_RSVD;
451 		q->pg_chunk.offset = 0;
452 		mapping = dma_map_page(&adapter->pdev->dev, q->pg_chunk.page,
453 				       0, q->alloc_size, DMA_FROM_DEVICE);
454 		if (unlikely(dma_mapping_error(&adapter->pdev->dev, mapping))) {
455 			__free_pages(q->pg_chunk.page, order);
456 			q->pg_chunk.page = NULL;
457 			return -EIO;
458 		}
459 		q->pg_chunk.mapping = mapping;
460 	}
461 	sd->pg_chunk = q->pg_chunk;
462 
463 	prefetch(sd->pg_chunk.p_cnt);
464 
465 	q->pg_chunk.offset += q->buf_size;
466 	if (q->pg_chunk.offset == (PAGE_SIZE << order))
467 		q->pg_chunk.page = NULL;
468 	else {
469 		q->pg_chunk.va += q->buf_size;
470 		get_page(q->pg_chunk.page);
471 	}
472 
473 	if (sd->pg_chunk.offset == 0)
474 		*sd->pg_chunk.p_cnt = 1;
475 	else
476 		*sd->pg_chunk.p_cnt += 1;
477 
478 	return 0;
479 }
480 
481 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
482 {
483 	if (q->pend_cred >= q->credits / 4) {
484 		q->pend_cred = 0;
485 		wmb();
486 		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
487 	}
488 }
489 
490 /**
491  *	refill_fl - refill an SGE free-buffer list
492  *	@adap: the adapter
493  *	@q: the free-list to refill
494  *	@n: the number of new buffers to allocate
495  *	@gfp: the gfp flags for allocating new buffers
496  *
497  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
498  *	allocated with the supplied gfp flags.  The caller must assure that
499  *	@n does not exceed the queue's capacity.
500  */
501 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
502 {
503 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
504 	struct rx_desc *d = &q->desc[q->pidx];
505 	unsigned int count = 0;
506 
507 	while (n--) {
508 		dma_addr_t mapping;
509 		int err;
510 
511 		if (q->use_pages) {
512 			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
513 						    q->order))) {
514 nomem:				q->alloc_failed++;
515 				break;
516 			}
517 			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
518 			dma_unmap_addr_set(sd, dma_addr, mapping);
519 
520 			add_one_rx_chunk(mapping, d, q->gen);
521 			dma_sync_single_for_device(&adap->pdev->dev, mapping,
522 						   q->buf_size - SGE_PG_RSVD,
523 						   DMA_FROM_DEVICE);
524 		} else {
525 			void *buf_start;
526 
527 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
528 			if (!skb)
529 				goto nomem;
530 
531 			sd->skb = skb;
532 			buf_start = skb->data;
533 			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
534 					     q->gen, adap->pdev);
535 			if (unlikely(err)) {
536 				clear_rx_desc(adap->pdev, q, sd);
537 				break;
538 			}
539 		}
540 
541 		d++;
542 		sd++;
543 		if (++q->pidx == q->size) {
544 			q->pidx = 0;
545 			q->gen ^= 1;
546 			sd = q->sdesc;
547 			d = q->desc;
548 		}
549 		count++;
550 	}
551 
552 	q->credits += count;
553 	q->pend_cred += count;
554 	ring_fl_db(adap, q);
555 
556 	return count;
557 }
558 
559 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
560 {
561 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
562 		  GFP_ATOMIC | __GFP_COMP);
563 }
564 
565 /**
566  *	recycle_rx_buf - recycle a receive buffer
567  *	@adap: the adapter
568  *	@q: the SGE free list
569  *	@idx: index of buffer to recycle
570  *
571  *	Recycles the specified buffer on the given free list by adding it at
572  *	the next available slot on the list.
573  */
574 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
575 			   unsigned int idx)
576 {
577 	struct rx_desc *from = &q->desc[idx];
578 	struct rx_desc *to = &q->desc[q->pidx];
579 
580 	q->sdesc[q->pidx] = q->sdesc[idx];
581 	to->addr_lo = from->addr_lo;	/* already big endian */
582 	to->addr_hi = from->addr_hi;	/* likewise */
583 	dma_wmb();
584 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
585 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
586 
587 	if (++q->pidx == q->size) {
588 		q->pidx = 0;
589 		q->gen ^= 1;
590 	}
591 
592 	q->credits++;
593 	q->pend_cred++;
594 	ring_fl_db(adap, q);
595 }
596 
597 /**
598  *	alloc_ring - allocate resources for an SGE descriptor ring
599  *	@pdev: the PCI device
600  *	@nelem: the number of descriptors
601  *	@elem_size: the size of each descriptor
602  *	@sw_size: the size of the SW state associated with each ring element
603  *	@phys: the physical address of the allocated ring
604  *	@metadata: address of the array holding the SW state for the ring
605  *
606  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
607  *	free buffer lists, or response queues.  Each SGE ring requires
608  *	space for its HW descriptors plus, optionally, space for the SW state
609  *	associated with each HW entry (the metadata).  The function returns
610  *	three values: the virtual address for the HW ring (the return value
611  *	of the function), the physical address of the HW ring, and the address
612  *	of the SW ring.
613  */
614 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
615 			size_t sw_size, dma_addr_t * phys, void *metadata)
616 {
617 	size_t len = nelem * elem_size;
618 	void *s = NULL;
619 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
620 
621 	if (!p)
622 		return NULL;
623 	if (sw_size && metadata) {
624 		s = kcalloc(nelem, sw_size, GFP_KERNEL);
625 
626 		if (!s) {
627 			dma_free_coherent(&pdev->dev, len, p, *phys);
628 			return NULL;
629 		}
630 		*(void **)metadata = s;
631 	}
632 	return p;
633 }
634 
635 /**
636  *	t3_reset_qset - reset a sge qset
637  *	@q: the queue set
638  *
639  *	Reset the qset structure.
640  *	the NAPI structure is preserved in the event of
641  *	the qset's reincarnation, for example during EEH recovery.
642  */
643 static void t3_reset_qset(struct sge_qset *q)
644 {
645 	if (q->adap &&
646 	    !(q->adap->flags & NAPI_INIT)) {
647 		memset(q, 0, sizeof(*q));
648 		return;
649 	}
650 
651 	q->adap = NULL;
652 	memset(&q->rspq, 0, sizeof(q->rspq));
653 	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654 	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 	q->txq_stopped = 0;
656 	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657 	q->rx_reclaim_timer.function = NULL;
658 	q->nomem = 0;
659 	napi_free_frags(&q->napi);
660 }
661 
662 
663 /**
664  *	t3_free_qset - free the resources of an SGE queue set
665  *	@adapter: the adapter owning the queue set
666  *	@q: the queue set
667  *
668  *	Release the HW and SW resources associated with an SGE queue set, such
669  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
670  *	queue set must be quiesced prior to calling this.
671  */
672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
673 {
674 	int i;
675 	struct pci_dev *pdev = adapter->pdev;
676 
677 	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678 		if (q->fl[i].desc) {
679 			spin_lock_irq(&adapter->sge.reg_lock);
680 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681 			spin_unlock_irq(&adapter->sge.reg_lock);
682 			free_rx_bufs(pdev, &q->fl[i]);
683 			kfree(q->fl[i].sdesc);
684 			dma_free_coherent(&pdev->dev,
685 					  q->fl[i].size *
686 					  sizeof(struct rx_desc), q->fl[i].desc,
687 					  q->fl[i].phys_addr);
688 		}
689 
690 	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691 		if (q->txq[i].desc) {
692 			spin_lock_irq(&adapter->sge.reg_lock);
693 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694 			spin_unlock_irq(&adapter->sge.reg_lock);
695 			if (q->txq[i].sdesc) {
696 				free_tx_desc(adapter, &q->txq[i],
697 					     q->txq[i].in_use);
698 				kfree(q->txq[i].sdesc);
699 			}
700 			dma_free_coherent(&pdev->dev,
701 					  q->txq[i].size *
702 					  sizeof(struct tx_desc),
703 					  q->txq[i].desc, q->txq[i].phys_addr);
704 			__skb_queue_purge(&q->txq[i].sendq);
705 		}
706 
707 	if (q->rspq.desc) {
708 		spin_lock_irq(&adapter->sge.reg_lock);
709 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710 		spin_unlock_irq(&adapter->sge.reg_lock);
711 		dma_free_coherent(&pdev->dev,
712 				  q->rspq.size * sizeof(struct rsp_desc),
713 				  q->rspq.desc, q->rspq.phys_addr);
714 	}
715 
716 	t3_reset_qset(q);
717 }
718 
719 /**
720  *	init_qset_cntxt - initialize an SGE queue set context info
721  *	@qs: the queue set
722  *	@id: the queue set id
723  *
724  *	Initializes the TIDs and context ids for the queues of a queue set.
725  */
726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
727 {
728 	qs->rspq.cntxt_id = id;
729 	qs->fl[0].cntxt_id = 2 * id;
730 	qs->fl[1].cntxt_id = 2 * id + 1;
731 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
736 }
737 
738 /**
739  *	sgl_len - calculates the size of an SGL of the given capacity
740  *	@n: the number of SGL entries
741  *
742  *	Calculates the number of flits needed for a scatter/gather list that
743  *	can hold the given number of entries.
744  */
745 static inline unsigned int sgl_len(unsigned int n)
746 {
747 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748 	return (3 * n) / 2 + (n & 1);
749 }
750 
751 /**
752  *	flits_to_desc - returns the num of Tx descriptors for the given flits
753  *	@n: the number of flits
754  *
755  *	Calculates the number of Tx descriptors needed for the supplied number
756  *	of flits.
757  */
758 static inline unsigned int flits_to_desc(unsigned int n)
759 {
760 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761 	return flit_desc_map[n];
762 }
763 
764 /**
765  *	get_packet - return the next ingress packet buffer from a free list
766  *	@adap: the adapter that received the packet
767  *	@fl: the SGE free list holding the packet
768  *	@len: the packet length including any SGE padding
769  *	@drop_thres: # of remaining buffers before we start dropping packets
770  *
771  *	Get the next packet from a free list and complete setup of the
772  *	sk_buff.  If the packet is small we make a copy and recycle the
773  *	original buffer, otherwise we use the original buffer itself.  If a
774  *	positive drop threshold is supplied packets are dropped and their
775  *	buffers recycled if (a) the number of remaining buffers is under the
776  *	threshold and the packet is too big to copy, or (b) the packet should
777  *	be copied but there is no memory for the copy.
778  */
779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780 				  unsigned int len, unsigned int drop_thres)
781 {
782 	struct sk_buff *skb = NULL;
783 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
784 
785 	prefetch(sd->skb->data);
786 	fl->credits--;
787 
788 	if (len <= SGE_RX_COPY_THRES) {
789 		skb = alloc_skb(len, GFP_ATOMIC);
790 		if (likely(skb != NULL)) {
791 			__skb_put(skb, len);
792 			dma_sync_single_for_cpu(&adap->pdev->dev,
793 						dma_unmap_addr(sd, dma_addr),
794 						len, DMA_FROM_DEVICE);
795 			memcpy(skb->data, sd->skb->data, len);
796 			dma_sync_single_for_device(&adap->pdev->dev,
797 						   dma_unmap_addr(sd, dma_addr),
798 						   len, DMA_FROM_DEVICE);
799 		} else if (!drop_thres)
800 			goto use_orig_buf;
801 recycle:
802 		recycle_rx_buf(adap, fl, fl->cidx);
803 		return skb;
804 	}
805 
806 	if (unlikely(fl->credits < drop_thres) &&
807 	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808 		      GFP_ATOMIC | __GFP_COMP) == 0)
809 		goto recycle;
810 
811 use_orig_buf:
812 	dma_unmap_single(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr),
813 			 fl->buf_size, DMA_FROM_DEVICE);
814 	skb = sd->skb;
815 	skb_put(skb, len);
816 	__refill_fl(adap, fl);
817 	return skb;
818 }
819 
820 /**
821  *	get_packet_pg - return the next ingress packet buffer from a free list
822  *	@adap: the adapter that received the packet
823  *	@fl: the SGE free list holding the packet
824  *	@q: the queue
825  *	@len: the packet length including any SGE padding
826  *	@drop_thres: # of remaining buffers before we start dropping packets
827  *
828  *	Get the next packet from a free list populated with page chunks.
829  *	If the packet is small we make a copy and recycle the original buffer,
830  *	otherwise we attach the original buffer as a page fragment to a fresh
831  *	sk_buff.  If a positive drop threshold is supplied packets are dropped
832  *	and their buffers recycled if (a) the number of remaining buffers is
833  *	under the threshold and the packet is too big to copy, or (b) there's
834  *	no system memory.
835  *
836  * 	Note: this function is similar to @get_packet but deals with Rx buffers
837  * 	that are page chunks rather than sk_buffs.
838  */
839 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
840 				     struct sge_rspq *q, unsigned int len,
841 				     unsigned int drop_thres)
842 {
843 	struct sk_buff *newskb, *skb;
844 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
845 
846 	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
847 
848 	newskb = skb = q->pg_skb;
849 	if (!skb && (len <= SGE_RX_COPY_THRES)) {
850 		newskb = alloc_skb(len, GFP_ATOMIC);
851 		if (likely(newskb != NULL)) {
852 			__skb_put(newskb, len);
853 			dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr,
854 						len, DMA_FROM_DEVICE);
855 			memcpy(newskb->data, sd->pg_chunk.va, len);
856 			dma_sync_single_for_device(&adap->pdev->dev, dma_addr,
857 						   len, DMA_FROM_DEVICE);
858 		} else if (!drop_thres)
859 			return NULL;
860 recycle:
861 		fl->credits--;
862 		recycle_rx_buf(adap, fl, fl->cidx);
863 		q->rx_recycle_buf++;
864 		return newskb;
865 	}
866 
867 	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 		goto recycle;
869 
870 	prefetch(sd->pg_chunk.p_cnt);
871 
872 	if (!skb)
873 		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
874 
875 	if (unlikely(!newskb)) {
876 		if (!drop_thres)
877 			return NULL;
878 		goto recycle;
879 	}
880 
881 	dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len,
882 				DMA_FROM_DEVICE);
883 	(*sd->pg_chunk.p_cnt)--;
884 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885 		dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
886 			       fl->alloc_size, DMA_FROM_DEVICE);
887 	if (!skb) {
888 		__skb_put(newskb, SGE_RX_PULL_LEN);
889 		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
890 		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
891 				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
892 				   len - SGE_RX_PULL_LEN);
893 		newskb->len = len;
894 		newskb->data_len = len - SGE_RX_PULL_LEN;
895 		newskb->truesize += newskb->data_len;
896 	} else {
897 		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
898 				   sd->pg_chunk.page,
899 				   sd->pg_chunk.offset, len);
900 		newskb->len += len;
901 		newskb->data_len += len;
902 		newskb->truesize += len;
903 	}
904 
905 	fl->credits--;
906 	/*
907 	 * We do not refill FLs here, we let the caller do it to overlap a
908 	 * prefetch.
909 	 */
910 	return newskb;
911 }
912 
913 /**
914  *	get_imm_packet - return the next ingress packet buffer from a response
915  *	@resp: the response descriptor containing the packet data
916  *
917  *	Return a packet containing the immediate data of the given response.
918  */
919 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
920 {
921 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
922 
923 	if (skb) {
924 		__skb_put(skb, IMMED_PKT_SIZE);
925 		BUILD_BUG_ON(IMMED_PKT_SIZE != sizeof(resp->immediate));
926 		skb_copy_to_linear_data(skb, &resp->immediate, IMMED_PKT_SIZE);
927 	}
928 	return skb;
929 }
930 
931 /**
932  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
933  *	@skb: the packet
934  *
935  * 	Returns the number of Tx descriptors needed for the given Ethernet
936  * 	packet.  Ethernet packets require addition of WR and CPL headers.
937  */
938 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
939 {
940 	unsigned int flits;
941 
942 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
943 		return 1;
944 
945 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
946 	if (skb_shinfo(skb)->gso_size)
947 		flits++;
948 	return flits_to_desc(flits);
949 }
950 
951 /*	map_skb - map a packet main body and its page fragments
952  *	@pdev: the PCI device
953  *	@skb: the packet
954  *	@addr: placeholder to save the mapped addresses
955  *
956  *	map the main body of an sk_buff and its page fragments, if any.
957  */
958 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
959 		   dma_addr_t *addr)
960 {
961 	const skb_frag_t *fp, *end;
962 	const struct skb_shared_info *si;
963 
964 	if (skb_headlen(skb)) {
965 		*addr = dma_map_single(&pdev->dev, skb->data,
966 				       skb_headlen(skb), DMA_TO_DEVICE);
967 		if (dma_mapping_error(&pdev->dev, *addr))
968 			goto out_err;
969 		addr++;
970 	}
971 
972 	si = skb_shinfo(skb);
973 	end = &si->frags[si->nr_frags];
974 
975 	for (fp = si->frags; fp < end; fp++) {
976 		*addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
977 					 DMA_TO_DEVICE);
978 		if (dma_mapping_error(&pdev->dev, *addr))
979 			goto unwind;
980 		addr++;
981 	}
982 	return 0;
983 
984 unwind:
985 	while (fp-- > si->frags)
986 		dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
987 			       DMA_TO_DEVICE);
988 
989 	dma_unmap_single(&pdev->dev, addr[-1], skb_headlen(skb),
990 			 DMA_TO_DEVICE);
991 out_err:
992 	return -ENOMEM;
993 }
994 
995 /**
996  *	write_sgl - populate a scatter/gather list for a packet
997  *	@skb: the packet
998  *	@sgp: the SGL to populate
999  *	@start: start address of skb main body data to include in the SGL
1000  *	@len: length of skb main body data to include in the SGL
1001  *	@addr: the list of the mapped addresses
1002  *
1003  *	Copies the scatter/gather list for the buffers that make up a packet
1004  *	and returns the SGL size in 8-byte words.  The caller must size the SGL
1005  *	appropriately.
1006  */
1007 static inline unsigned int write_sgl(const struct sk_buff *skb,
1008 				     struct sg_ent *sgp, unsigned char *start,
1009 				     unsigned int len, const dma_addr_t *addr)
1010 {
1011 	unsigned int i, j = 0, k = 0, nfrags;
1012 
1013 	if (len) {
1014 		sgp->len[0] = cpu_to_be32(len);
1015 		sgp->addr[j++] = cpu_to_be64(addr[k++]);
1016 	}
1017 
1018 	nfrags = skb_shinfo(skb)->nr_frags;
1019 	for (i = 0; i < nfrags; i++) {
1020 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1021 
1022 		sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1023 		sgp->addr[j] = cpu_to_be64(addr[k++]);
1024 		j ^= 1;
1025 		if (j == 0)
1026 			++sgp;
1027 	}
1028 	if (j)
1029 		sgp->len[j] = 0;
1030 	return ((nfrags + (len != 0)) * 3) / 2 + j;
1031 }
1032 
1033 /**
1034  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1035  *	@adap: the adapter
1036  *	@q: the Tx queue
1037  *
1038  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1039  *	where the HW is going to sleep just after we checked, however,
1040  *	then the interrupt handler will detect the outstanding TX packet
1041  *	and ring the doorbell for us.
1042  *
1043  *	When GTS is disabled we unconditionally ring the doorbell.
1044  */
1045 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1046 {
1047 #if USE_GTS
1048 	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1049 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1050 		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1051 		t3_write_reg(adap, A_SG_KDOORBELL,
1052 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1053 	}
1054 #else
1055 	wmb();			/* write descriptors before telling HW */
1056 	t3_write_reg(adap, A_SG_KDOORBELL,
1057 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1058 #endif
1059 }
1060 
1061 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1062 {
1063 #if SGE_NUM_GENBITS == 2
1064 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1065 #endif
1066 }
1067 
1068 /**
1069  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1070  *	@ndesc: number of Tx descriptors spanned by the SGL
1071  *	@skb: the packet corresponding to the WR
1072  *	@d: first Tx descriptor to be written
1073  *	@pidx: index of above descriptors
1074  *	@q: the SGE Tx queue
1075  *	@sgl: the SGL
1076  *	@flits: number of flits to the start of the SGL in the first descriptor
1077  *	@sgl_flits: the SGL size in flits
1078  *	@gen: the Tx descriptor generation
1079  *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1080  *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1081  *
1082  *	Write a work request header and an associated SGL.  If the SGL is
1083  *	small enough to fit into one Tx descriptor it has already been written
1084  *	and we just need to write the WR header.  Otherwise we distribute the
1085  *	SGL across the number of descriptors it spans.
1086  */
1087 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1088 			     struct tx_desc *d, unsigned int pidx,
1089 			     const struct sge_txq *q,
1090 			     const struct sg_ent *sgl,
1091 			     unsigned int flits, unsigned int sgl_flits,
1092 			     unsigned int gen, __be32 wr_hi,
1093 			     __be32 wr_lo)
1094 {
1095 	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1096 	struct tx_sw_desc *sd = &q->sdesc[pidx];
1097 
1098 	sd->skb = skb;
1099 	if (need_skb_unmap()) {
1100 		sd->fragidx = 0;
1101 		sd->addr_idx = 0;
1102 		sd->sflit = flits;
1103 	}
1104 
1105 	if (likely(ndesc == 1)) {
1106 		sd->eop = 1;
1107 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1108 				   V_WR_SGLSFLT(flits)) | wr_hi;
1109 		dma_wmb();
1110 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1111 				   V_WR_GEN(gen)) | wr_lo;
1112 		wr_gen2(d, gen);
1113 	} else {
1114 		unsigned int ogen = gen;
1115 		const u64 *fp = (const u64 *)sgl;
1116 		struct work_request_hdr *wp = wrp;
1117 
1118 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1119 				   V_WR_SGLSFLT(flits)) | wr_hi;
1120 
1121 		while (sgl_flits) {
1122 			unsigned int avail = WR_FLITS - flits;
1123 
1124 			if (avail > sgl_flits)
1125 				avail = sgl_flits;
1126 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1127 			sgl_flits -= avail;
1128 			ndesc--;
1129 			if (!sgl_flits)
1130 				break;
1131 
1132 			fp += avail;
1133 			d++;
1134 			sd->eop = 0;
1135 			sd++;
1136 			if (++pidx == q->size) {
1137 				pidx = 0;
1138 				gen ^= 1;
1139 				d = q->desc;
1140 				sd = q->sdesc;
1141 			}
1142 
1143 			sd->skb = skb;
1144 			wrp = (struct work_request_hdr *)d;
1145 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1146 					   V_WR_SGLSFLT(1)) | wr_hi;
1147 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1148 							sgl_flits + 1)) |
1149 					   V_WR_GEN(gen)) | wr_lo;
1150 			wr_gen2(d, gen);
1151 			flits = 1;
1152 		}
1153 		sd->eop = 1;
1154 		wrp->wr_hi |= htonl(F_WR_EOP);
1155 		dma_wmb();
1156 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1157 		wr_gen2((struct tx_desc *)wp, ogen);
1158 		WARN_ON(ndesc != 0);
1159 	}
1160 }
1161 
1162 /**
1163  *	write_tx_pkt_wr - write a TX_PKT work request
1164  *	@adap: the adapter
1165  *	@skb: the packet to send
1166  *	@pi: the egress interface
1167  *	@pidx: index of the first Tx descriptor to write
1168  *	@gen: the generation value to use
1169  *	@q: the Tx queue
1170  *	@ndesc: number of descriptors the packet will occupy
1171  *	@compl: the value of the COMPL bit to use
1172  *	@addr: address
1173  *
1174  *	Generate a TX_PKT work request to send the supplied packet.
1175  */
1176 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1177 			    const struct port_info *pi,
1178 			    unsigned int pidx, unsigned int gen,
1179 			    struct sge_txq *q, unsigned int ndesc,
1180 			    unsigned int compl, const dma_addr_t *addr)
1181 {
1182 	unsigned int flits, sgl_flits, cntrl, tso_info;
1183 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1184 	struct tx_desc *d = &q->desc[pidx];
1185 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1186 
1187 	cpl->len = htonl(skb->len);
1188 	cntrl = V_TXPKT_INTF(pi->port_id);
1189 
1190 	if (skb_vlan_tag_present(skb))
1191 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1192 
1193 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1194 	if (tso_info) {
1195 		int eth_type;
1196 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1197 
1198 		d->flit[2] = 0;
1199 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1200 		hdr->cntrl = htonl(cntrl);
1201 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1202 		    CPL_ETH_II : CPL_ETH_II_VLAN;
1203 		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1204 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1205 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1206 		hdr->lso_info = htonl(tso_info);
1207 		flits = 3;
1208 	} else {
1209 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1210 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1211 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1212 		cpl->cntrl = htonl(cntrl);
1213 
1214 		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1215 			q->sdesc[pidx].skb = NULL;
1216 			if (!skb->data_len)
1217 				skb_copy_from_linear_data(skb, &d->flit[2],
1218 							  skb->len);
1219 			else
1220 				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1221 
1222 			flits = (skb->len + 7) / 8 + 2;
1223 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1224 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1225 					      | F_WR_SOP | F_WR_EOP | compl);
1226 			dma_wmb();
1227 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1228 					      V_WR_TID(q->token));
1229 			wr_gen2(d, gen);
1230 			dev_consume_skb_any(skb);
1231 			return;
1232 		}
1233 
1234 		flits = 2;
1235 	}
1236 
1237 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1238 	sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1239 
1240 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1241 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1242 			 htonl(V_WR_TID(q->token)));
1243 }
1244 
1245 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1246 				    struct sge_qset *qs, struct sge_txq *q)
1247 {
1248 	netif_tx_stop_queue(txq);
1249 	set_bit(TXQ_ETH, &qs->txq_stopped);
1250 	q->stops++;
1251 }
1252 
1253 /**
1254  *	t3_eth_xmit - add a packet to the Ethernet Tx queue
1255  *	@skb: the packet
1256  *	@dev: the egress net device
1257  *
1258  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1259  */
1260 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1261 {
1262 	int qidx;
1263 	unsigned int ndesc, pidx, credits, gen, compl;
1264 	const struct port_info *pi = netdev_priv(dev);
1265 	struct adapter *adap = pi->adapter;
1266 	struct netdev_queue *txq;
1267 	struct sge_qset *qs;
1268 	struct sge_txq *q;
1269 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1270 
1271 	/*
1272 	 * The chip min packet length is 9 octets but play safe and reject
1273 	 * anything shorter than an Ethernet header.
1274 	 */
1275 	if (unlikely(skb->len < ETH_HLEN)) {
1276 		dev_kfree_skb_any(skb);
1277 		return NETDEV_TX_OK;
1278 	}
1279 
1280 	qidx = skb_get_queue_mapping(skb);
1281 	qs = &pi->qs[qidx];
1282 	q = &qs->txq[TXQ_ETH];
1283 	txq = netdev_get_tx_queue(dev, qidx);
1284 
1285 	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1286 
1287 	credits = q->size - q->in_use;
1288 	ndesc = calc_tx_descs(skb);
1289 
1290 	if (unlikely(credits < ndesc)) {
1291 		t3_stop_tx_queue(txq, qs, q);
1292 		dev_err(&adap->pdev->dev,
1293 			"%s: Tx ring %u full while queue awake!\n",
1294 			dev->name, q->cntxt_id & 7);
1295 		return NETDEV_TX_BUSY;
1296 	}
1297 
1298 	/* Check if ethernet packet can't be sent as immediate data */
1299 	if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1300 		if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1301 			dev_kfree_skb(skb);
1302 			return NETDEV_TX_OK;
1303 		}
1304 	}
1305 
1306 	q->in_use += ndesc;
1307 	if (unlikely(credits - ndesc < q->stop_thres)) {
1308 		t3_stop_tx_queue(txq, qs, q);
1309 
1310 		if (should_restart_tx(q) &&
1311 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1312 			q->restarts++;
1313 			netif_tx_start_queue(txq);
1314 		}
1315 	}
1316 
1317 	gen = q->gen;
1318 	q->unacked += ndesc;
1319 	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1320 	q->unacked &= 7;
1321 	pidx = q->pidx;
1322 	q->pidx += ndesc;
1323 	if (q->pidx >= q->size) {
1324 		q->pidx -= q->size;
1325 		q->gen ^= 1;
1326 	}
1327 
1328 	/* update port statistics */
1329 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1330 		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1331 	if (skb_shinfo(skb)->gso_size)
1332 		qs->port_stats[SGE_PSTAT_TSO]++;
1333 	if (skb_vlan_tag_present(skb))
1334 		qs->port_stats[SGE_PSTAT_VLANINS]++;
1335 
1336 	/*
1337 	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1338 	 * This is good for performance but means that we rely on new Tx
1339 	 * packets arriving to run the destructors of completed packets,
1340 	 * which open up space in their sockets' send queues.  Sometimes
1341 	 * we do not get such new packets causing Tx to stall.  A single
1342 	 * UDP transmitter is a good example of this situation.  We have
1343 	 * a clean up timer that periodically reclaims completed packets
1344 	 * but it doesn't run often enough (nor do we want it to) to prevent
1345 	 * lengthy stalls.  A solution to this problem is to run the
1346 	 * destructor early, after the packet is queued but before it's DMAd.
1347 	 * A cons is that we lie to socket memory accounting, but the amount
1348 	 * of extra memory is reasonable (limited by the number of Tx
1349 	 * descriptors), the packets do actually get freed quickly by new
1350 	 * packets almost always, and for protocols like TCP that wait for
1351 	 * acks to really free up the data the extra memory is even less.
1352 	 * On the positive side we run the destructors on the sending CPU
1353 	 * rather than on a potentially different completing CPU, usually a
1354 	 * good thing.  We also run them without holding our Tx queue lock,
1355 	 * unlike what reclaim_completed_tx() would otherwise do.
1356 	 *
1357 	 * Run the destructor before telling the DMA engine about the packet
1358 	 * to make sure it doesn't complete and get freed prematurely.
1359 	 */
1360 	if (likely(!skb_shared(skb)))
1361 		skb_orphan(skb);
1362 
1363 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1364 	check_ring_tx_db(adap, q);
1365 	return NETDEV_TX_OK;
1366 }
1367 
1368 /**
1369  *	write_imm - write a packet into a Tx descriptor as immediate data
1370  *	@d: the Tx descriptor to write
1371  *	@skb: the packet
1372  *	@len: the length of packet data to write as immediate data
1373  *	@gen: the generation bit value to write
1374  *
1375  *	Writes a packet as immediate data into a Tx descriptor.  The packet
1376  *	contains a work request at its beginning.  We must write the packet
1377  *	carefully so the SGE doesn't read it accidentally before it's written
1378  *	in its entirety.
1379  */
1380 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1381 			     unsigned int len, unsigned int gen)
1382 {
1383 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1384 	struct work_request_hdr *to = (struct work_request_hdr *)d;
1385 
1386 	if (likely(!skb->data_len))
1387 		memcpy(&to[1], &from[1], len - sizeof(*from));
1388 	else
1389 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1390 
1391 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1392 					V_WR_BCNTLFLT(len & 7));
1393 	dma_wmb();
1394 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1395 					V_WR_LEN((len + 7) / 8));
1396 	wr_gen2(d, gen);
1397 	kfree_skb(skb);
1398 }
1399 
1400 /**
1401  *	check_desc_avail - check descriptor availability on a send queue
1402  *	@adap: the adapter
1403  *	@q: the send queue
1404  *	@skb: the packet needing the descriptors
1405  *	@ndesc: the number of Tx descriptors needed
1406  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1407  *
1408  *	Checks if the requested number of Tx descriptors is available on an
1409  *	SGE send queue.  If the queue is already suspended or not enough
1410  *	descriptors are available the packet is queued for later transmission.
1411  *	Must be called with the Tx queue locked.
1412  *
1413  *	Returns 0 if enough descriptors are available, 1 if there aren't
1414  *	enough descriptors and the packet has been queued, and 2 if the caller
1415  *	needs to retry because there weren't enough descriptors at the
1416  *	beginning of the call but some freed up in the mean time.
1417  */
1418 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1419 				   struct sk_buff *skb, unsigned int ndesc,
1420 				   unsigned int qid)
1421 {
1422 	if (unlikely(!skb_queue_empty(&q->sendq))) {
1423 	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1424 		return 1;
1425 	}
1426 	if (unlikely(q->size - q->in_use < ndesc)) {
1427 		struct sge_qset *qs = txq_to_qset(q, qid);
1428 
1429 		set_bit(qid, &qs->txq_stopped);
1430 		smp_mb__after_atomic();
1431 
1432 		if (should_restart_tx(q) &&
1433 		    test_and_clear_bit(qid, &qs->txq_stopped))
1434 			return 2;
1435 
1436 		q->stops++;
1437 		goto addq_exit;
1438 	}
1439 	return 0;
1440 }
1441 
1442 /**
1443  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1444  *	@q: the SGE control Tx queue
1445  *
1446  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1447  *	that send only immediate data (presently just the control queues) and
1448  *	thus do not have any sk_buffs to release.
1449  */
1450 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1451 {
1452 	unsigned int reclaim = q->processed - q->cleaned;
1453 
1454 	q->in_use -= reclaim;
1455 	q->cleaned += reclaim;
1456 }
1457 
1458 static inline int immediate(const struct sk_buff *skb)
1459 {
1460 	return skb->len <= WR_LEN;
1461 }
1462 
1463 /**
1464  *	ctrl_xmit - send a packet through an SGE control Tx queue
1465  *	@adap: the adapter
1466  *	@q: the control queue
1467  *	@skb: the packet
1468  *
1469  *	Send a packet through an SGE control Tx queue.  Packets sent through
1470  *	a control queue must fit entirely as immediate data in a single Tx
1471  *	descriptor and have no page fragments.
1472  */
1473 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1474 		     struct sk_buff *skb)
1475 {
1476 	int ret;
1477 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1478 
1479 	if (unlikely(!immediate(skb))) {
1480 		WARN_ON(1);
1481 		dev_kfree_skb(skb);
1482 		return NET_XMIT_SUCCESS;
1483 	}
1484 
1485 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1486 	wrp->wr_lo = htonl(V_WR_TID(q->token));
1487 
1488 	spin_lock(&q->lock);
1489       again:reclaim_completed_tx_imm(q);
1490 
1491 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1492 	if (unlikely(ret)) {
1493 		if (ret == 1) {
1494 			spin_unlock(&q->lock);
1495 			return NET_XMIT_CN;
1496 		}
1497 		goto again;
1498 	}
1499 
1500 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1501 
1502 	q->in_use++;
1503 	if (++q->pidx >= q->size) {
1504 		q->pidx = 0;
1505 		q->gen ^= 1;
1506 	}
1507 	spin_unlock(&q->lock);
1508 	wmb();
1509 	t3_write_reg(adap, A_SG_KDOORBELL,
1510 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1511 	return NET_XMIT_SUCCESS;
1512 }
1513 
1514 /**
1515  *	restart_ctrlq - restart a suspended control queue
1516  *	@w: pointer to the work associated with this handler
1517  *
1518  *	Resumes transmission on a suspended Tx control queue.
1519  */
1520 static void restart_ctrlq(struct work_struct *w)
1521 {
1522 	struct sk_buff *skb;
1523 	struct sge_qset *qs = container_of(w, struct sge_qset,
1524 					   txq[TXQ_CTRL].qresume_task);
1525 	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1526 
1527 	spin_lock(&q->lock);
1528       again:reclaim_completed_tx_imm(q);
1529 
1530 	while (q->in_use < q->size &&
1531 	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1532 
1533 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1534 
1535 		if (++q->pidx >= q->size) {
1536 			q->pidx = 0;
1537 			q->gen ^= 1;
1538 		}
1539 		q->in_use++;
1540 	}
1541 
1542 	if (!skb_queue_empty(&q->sendq)) {
1543 		set_bit(TXQ_CTRL, &qs->txq_stopped);
1544 		smp_mb__after_atomic();
1545 
1546 		if (should_restart_tx(q) &&
1547 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1548 			goto again;
1549 		q->stops++;
1550 	}
1551 
1552 	spin_unlock(&q->lock);
1553 	wmb();
1554 	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1555 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1556 }
1557 
1558 /*
1559  * Send a management message through control queue 0
1560  */
1561 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1562 {
1563 	int ret;
1564 	local_bh_disable();
1565 	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1566 	local_bh_enable();
1567 
1568 	return ret;
1569 }
1570 
1571 /**
1572  *	deferred_unmap_destructor - unmap a packet when it is freed
1573  *	@skb: the packet
1574  *
1575  *	This is the packet destructor used for Tx packets that need to remain
1576  *	mapped until they are freed rather than until their Tx descriptors are
1577  *	freed.
1578  */
1579 static void deferred_unmap_destructor(struct sk_buff *skb)
1580 {
1581 	int i;
1582 	const dma_addr_t *p;
1583 	const struct skb_shared_info *si;
1584 	const struct deferred_unmap_info *dui;
1585 
1586 	dui = (struct deferred_unmap_info *)skb->head;
1587 	p = dui->addr;
1588 
1589 	if (skb_tail_pointer(skb) - skb_transport_header(skb))
1590 		dma_unmap_single(&dui->pdev->dev, *p++,
1591 				 skb_tail_pointer(skb) - skb_transport_header(skb),
1592 				 DMA_TO_DEVICE);
1593 
1594 	si = skb_shinfo(skb);
1595 	for (i = 0; i < si->nr_frags; i++)
1596 		dma_unmap_page(&dui->pdev->dev, *p++,
1597 			       skb_frag_size(&si->frags[i]), DMA_TO_DEVICE);
1598 }
1599 
1600 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1601 				     const struct sg_ent *sgl, int sgl_flits)
1602 {
1603 	dma_addr_t *p;
1604 	struct deferred_unmap_info *dui;
1605 
1606 	dui = (struct deferred_unmap_info *)skb->head;
1607 	dui->pdev = pdev;
1608 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1609 		*p++ = be64_to_cpu(sgl->addr[0]);
1610 		*p++ = be64_to_cpu(sgl->addr[1]);
1611 	}
1612 	if (sgl_flits)
1613 		*p = be64_to_cpu(sgl->addr[0]);
1614 }
1615 
1616 /**
1617  *	write_ofld_wr - write an offload work request
1618  *	@adap: the adapter
1619  *	@skb: the packet to send
1620  *	@q: the Tx queue
1621  *	@pidx: index of the first Tx descriptor to write
1622  *	@gen: the generation value to use
1623  *	@ndesc: number of descriptors the packet will occupy
1624  *	@addr: the address
1625  *
1626  *	Write an offload work request to send the supplied packet.  The packet
1627  *	data already carry the work request with most fields populated.
1628  */
1629 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1630 			  struct sge_txq *q, unsigned int pidx,
1631 			  unsigned int gen, unsigned int ndesc,
1632 			  const dma_addr_t *addr)
1633 {
1634 	unsigned int sgl_flits, flits;
1635 	struct work_request_hdr *from;
1636 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1637 	struct tx_desc *d = &q->desc[pidx];
1638 
1639 	if (immediate(skb)) {
1640 		q->sdesc[pidx].skb = NULL;
1641 		write_imm(d, skb, skb->len, gen);
1642 		return;
1643 	}
1644 
1645 	/* Only TX_DATA builds SGLs */
1646 
1647 	from = (struct work_request_hdr *)skb->data;
1648 	memcpy(&d->flit[1], &from[1],
1649 	       skb_transport_offset(skb) - sizeof(*from));
1650 
1651 	flits = skb_transport_offset(skb) / 8;
1652 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1653 	sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1654 			      skb_tail_pointer(skb) - skb_transport_header(skb),
1655 			      addr);
1656 	if (need_skb_unmap()) {
1657 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1658 		skb->destructor = deferred_unmap_destructor;
1659 	}
1660 
1661 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1662 			 gen, from->wr_hi, from->wr_lo);
1663 }
1664 
1665 /**
1666  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1667  *	@skb: the packet
1668  *
1669  * 	Returns the number of Tx descriptors needed for the given offload
1670  * 	packet.  These packets are already fully constructed.
1671  */
1672 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1673 {
1674 	unsigned int flits, cnt;
1675 
1676 	if (skb->len <= WR_LEN)
1677 		return 1;	/* packet fits as immediate data */
1678 
1679 	flits = skb_transport_offset(skb) / 8;	/* headers */
1680 	cnt = skb_shinfo(skb)->nr_frags;
1681 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1682 		cnt++;
1683 	return flits_to_desc(flits + sgl_len(cnt));
1684 }
1685 
1686 /**
1687  *	ofld_xmit - send a packet through an offload queue
1688  *	@adap: the adapter
1689  *	@q: the Tx offload queue
1690  *	@skb: the packet
1691  *
1692  *	Send an offload packet through an SGE offload queue.
1693  */
1694 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1695 		     struct sk_buff *skb)
1696 {
1697 	int ret;
1698 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1699 
1700 	spin_lock(&q->lock);
1701 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1702 
1703 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1704 	if (unlikely(ret)) {
1705 		if (ret == 1) {
1706 			skb->priority = ndesc;	/* save for restart */
1707 			spin_unlock(&q->lock);
1708 			return NET_XMIT_CN;
1709 		}
1710 		goto again;
1711 	}
1712 
1713 	if (!immediate(skb) &&
1714 	    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1715 		spin_unlock(&q->lock);
1716 		return NET_XMIT_SUCCESS;
1717 	}
1718 
1719 	gen = q->gen;
1720 	q->in_use += ndesc;
1721 	pidx = q->pidx;
1722 	q->pidx += ndesc;
1723 	if (q->pidx >= q->size) {
1724 		q->pidx -= q->size;
1725 		q->gen ^= 1;
1726 	}
1727 	spin_unlock(&q->lock);
1728 
1729 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1730 	check_ring_tx_db(adap, q);
1731 	return NET_XMIT_SUCCESS;
1732 }
1733 
1734 /**
1735  *	restart_offloadq - restart a suspended offload queue
1736  *	@w: pointer to the work associated with this handler
1737  *
1738  *	Resumes transmission on a suspended Tx offload queue.
1739  */
1740 static void restart_offloadq(struct work_struct *w)
1741 {
1742 	struct sk_buff *skb;
1743 	struct sge_qset *qs = container_of(w, struct sge_qset,
1744 					   txq[TXQ_OFLD].qresume_task);
1745 	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1746 	const struct port_info *pi = netdev_priv(qs->netdev);
1747 	struct adapter *adap = pi->adapter;
1748 	unsigned int written = 0;
1749 
1750 	spin_lock(&q->lock);
1751 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1752 
1753 	while ((skb = skb_peek(&q->sendq)) != NULL) {
1754 		unsigned int gen, pidx;
1755 		unsigned int ndesc = skb->priority;
1756 
1757 		if (unlikely(q->size - q->in_use < ndesc)) {
1758 			set_bit(TXQ_OFLD, &qs->txq_stopped);
1759 			smp_mb__after_atomic();
1760 
1761 			if (should_restart_tx(q) &&
1762 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1763 				goto again;
1764 			q->stops++;
1765 			break;
1766 		}
1767 
1768 		if (!immediate(skb) &&
1769 		    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1770 			break;
1771 
1772 		gen = q->gen;
1773 		q->in_use += ndesc;
1774 		pidx = q->pidx;
1775 		q->pidx += ndesc;
1776 		written += ndesc;
1777 		if (q->pidx >= q->size) {
1778 			q->pidx -= q->size;
1779 			q->gen ^= 1;
1780 		}
1781 		__skb_unlink(skb, &q->sendq);
1782 		spin_unlock(&q->lock);
1783 
1784 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1785 			      (dma_addr_t *)skb->head);
1786 		spin_lock(&q->lock);
1787 	}
1788 	spin_unlock(&q->lock);
1789 
1790 #if USE_GTS
1791 	set_bit(TXQ_RUNNING, &q->flags);
1792 	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1793 #endif
1794 	wmb();
1795 	if (likely(written))
1796 		t3_write_reg(adap, A_SG_KDOORBELL,
1797 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1798 }
1799 
1800 /**
1801  *	queue_set - return the queue set a packet should use
1802  *	@skb: the packet
1803  *
1804  *	Maps a packet to the SGE queue set it should use.  The desired queue
1805  *	set is carried in bits 1-3 in the packet's priority.
1806  */
1807 static inline int queue_set(const struct sk_buff *skb)
1808 {
1809 	return skb->priority >> 1;
1810 }
1811 
1812 /**
1813  *	is_ctrl_pkt - return whether an offload packet is a control packet
1814  *	@skb: the packet
1815  *
1816  *	Determines whether an offload packet should use an OFLD or a CTRL
1817  *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1818  */
1819 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1820 {
1821 	return skb->priority & 1;
1822 }
1823 
1824 /**
1825  *	t3_offload_tx - send an offload packet
1826  *	@tdev: the offload device to send to
1827  *	@skb: the packet
1828  *
1829  *	Sends an offload packet.  We use the packet priority to select the
1830  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1831  *	should be sent as regular or control, bits 1-3 select the queue set.
1832  */
1833 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1834 {
1835 	struct adapter *adap = tdev2adap(tdev);
1836 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1837 
1838 	if (unlikely(is_ctrl_pkt(skb)))
1839 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1840 
1841 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1842 }
1843 
1844 /**
1845  *	offload_enqueue - add an offload packet to an SGE offload receive queue
1846  *	@q: the SGE response queue
1847  *	@skb: the packet
1848  *
1849  *	Add a new offload packet to an SGE response queue's offload packet
1850  *	queue.  If the packet is the first on the queue it schedules the RX
1851  *	softirq to process the queue.
1852  */
1853 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1854 {
1855 	int was_empty = skb_queue_empty(&q->rx_queue);
1856 
1857 	__skb_queue_tail(&q->rx_queue, skb);
1858 
1859 	if (was_empty) {
1860 		struct sge_qset *qs = rspq_to_qset(q);
1861 
1862 		napi_schedule(&qs->napi);
1863 	}
1864 }
1865 
1866 /**
1867  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1868  *	@tdev: the offload device that will be receiving the packets
1869  *	@q: the SGE response queue that assembled the bundle
1870  *	@skbs: the partial bundle
1871  *	@n: the number of packets in the bundle
1872  *
1873  *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1874  */
1875 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1876 					  struct sge_rspq *q,
1877 					  struct sk_buff *skbs[], int n)
1878 {
1879 	if (n) {
1880 		q->offload_bundles++;
1881 		tdev->recv(tdev, skbs, n);
1882 	}
1883 }
1884 
1885 /**
1886  *	ofld_poll - NAPI handler for offload packets in interrupt mode
1887  *	@napi: the network device doing the polling
1888  *	@budget: polling budget
1889  *
1890  *	The NAPI handler for offload packets when a response queue is serviced
1891  *	by the hard interrupt handler, i.e., when it's operating in non-polling
1892  *	mode.  Creates small packet batches and sends them through the offload
1893  *	receive handler.  Batches need to be of modest size as we do prefetches
1894  *	on the packets in each.
1895  */
1896 static int ofld_poll(struct napi_struct *napi, int budget)
1897 {
1898 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1899 	struct sge_rspq *q = &qs->rspq;
1900 	struct adapter *adapter = qs->adap;
1901 	int work_done = 0;
1902 
1903 	while (work_done < budget) {
1904 		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1905 		struct sk_buff_head queue;
1906 		int ngathered;
1907 
1908 		spin_lock_irq(&q->lock);
1909 		__skb_queue_head_init(&queue);
1910 		skb_queue_splice_init(&q->rx_queue, &queue);
1911 		if (skb_queue_empty(&queue)) {
1912 			napi_complete_done(napi, work_done);
1913 			spin_unlock_irq(&q->lock);
1914 			return work_done;
1915 		}
1916 		spin_unlock_irq(&q->lock);
1917 
1918 		ngathered = 0;
1919 		skb_queue_walk_safe(&queue, skb, tmp) {
1920 			if (work_done >= budget)
1921 				break;
1922 			work_done++;
1923 
1924 			__skb_unlink(skb, &queue);
1925 			prefetch(skb->data);
1926 			skbs[ngathered] = skb;
1927 			if (++ngathered == RX_BUNDLE_SIZE) {
1928 				q->offload_bundles++;
1929 				adapter->tdev.recv(&adapter->tdev, skbs,
1930 						   ngathered);
1931 				ngathered = 0;
1932 			}
1933 		}
1934 		if (!skb_queue_empty(&queue)) {
1935 			/* splice remaining packets back onto Rx queue */
1936 			spin_lock_irq(&q->lock);
1937 			skb_queue_splice(&queue, &q->rx_queue);
1938 			spin_unlock_irq(&q->lock);
1939 		}
1940 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1941 	}
1942 
1943 	return work_done;
1944 }
1945 
1946 /**
1947  *	rx_offload - process a received offload packet
1948  *	@tdev: the offload device receiving the packet
1949  *	@rq: the response queue that received the packet
1950  *	@skb: the packet
1951  *	@rx_gather: a gather list of packets if we are building a bundle
1952  *	@gather_idx: index of the next available slot in the bundle
1953  *
1954  *	Process an ingress offload packet and add it to the offload ingress
1955  *	queue. 	Returns the index of the next available slot in the bundle.
1956  */
1957 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1958 			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1959 			     unsigned int gather_idx)
1960 {
1961 	skb_reset_mac_header(skb);
1962 	skb_reset_network_header(skb);
1963 	skb_reset_transport_header(skb);
1964 
1965 	if (rq->polling) {
1966 		rx_gather[gather_idx++] = skb;
1967 		if (gather_idx == RX_BUNDLE_SIZE) {
1968 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1969 			gather_idx = 0;
1970 			rq->offload_bundles++;
1971 		}
1972 	} else
1973 		offload_enqueue(rq, skb);
1974 
1975 	return gather_idx;
1976 }
1977 
1978 /**
1979  *	restart_tx - check whether to restart suspended Tx queues
1980  *	@qs: the queue set to resume
1981  *
1982  *	Restarts suspended Tx queues of an SGE queue set if they have enough
1983  *	free resources to resume operation.
1984  */
1985 static void restart_tx(struct sge_qset *qs)
1986 {
1987 	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1988 	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1989 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1990 		qs->txq[TXQ_ETH].restarts++;
1991 		if (netif_running(qs->netdev))
1992 			netif_tx_wake_queue(qs->tx_q);
1993 	}
1994 
1995 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1996 	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1997 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1998 		qs->txq[TXQ_OFLD].restarts++;
1999 
2000 		/* The work can be quite lengthy so we use driver's own queue */
2001 		queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task);
2002 	}
2003 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2004 	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2005 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2006 		qs->txq[TXQ_CTRL].restarts++;
2007 
2008 		/* The work can be quite lengthy so we use driver's own queue */
2009 		queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task);
2010 	}
2011 }
2012 
2013 /**
2014  *	cxgb3_arp_process - process an ARP request probing a private IP address
2015  *	@pi: the port info
2016  *	@skb: the skbuff containing the ARP request
2017  *
2018  *	Check if the ARP request is probing the private IP address
2019  *	dedicated to iSCSI, generate an ARP reply if so.
2020  */
2021 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2022 {
2023 	struct net_device *dev = skb->dev;
2024 	struct arphdr *arp;
2025 	unsigned char *arp_ptr;
2026 	unsigned char *sha;
2027 	__be32 sip, tip;
2028 
2029 	if (!dev)
2030 		return;
2031 
2032 	skb_reset_network_header(skb);
2033 	arp = arp_hdr(skb);
2034 
2035 	if (arp->ar_op != htons(ARPOP_REQUEST))
2036 		return;
2037 
2038 	arp_ptr = (unsigned char *)(arp + 1);
2039 	sha = arp_ptr;
2040 	arp_ptr += dev->addr_len;
2041 	memcpy(&sip, arp_ptr, sizeof(sip));
2042 	arp_ptr += sizeof(sip);
2043 	arp_ptr += dev->addr_len;
2044 	memcpy(&tip, arp_ptr, sizeof(tip));
2045 
2046 	if (tip != pi->iscsi_ipv4addr)
2047 		return;
2048 
2049 	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2050 		 pi->iscsic.mac_addr, sha);
2051 
2052 }
2053 
2054 static inline int is_arp(struct sk_buff *skb)
2055 {
2056 	return skb->protocol == htons(ETH_P_ARP);
2057 }
2058 
2059 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2060 					struct sk_buff *skb)
2061 {
2062 	if (is_arp(skb)) {
2063 		cxgb3_arp_process(pi, skb);
2064 		return;
2065 	}
2066 
2067 	if (pi->iscsic.recv)
2068 		pi->iscsic.recv(pi, skb);
2069 
2070 }
2071 
2072 /**
2073  *	rx_eth - process an ingress ethernet packet
2074  *	@adap: the adapter
2075  *	@rq: the response queue that received the packet
2076  *	@skb: the packet
2077  *	@pad: padding
2078  *	@lro: large receive offload
2079  *
2080  *	Process an ingress ethernet packet and deliver it to the stack.
2081  *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2082  *	if it was immediate data in a response.
2083  */
2084 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2085 		   struct sk_buff *skb, int pad, int lro)
2086 {
2087 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2088 	struct sge_qset *qs = rspq_to_qset(rq);
2089 	struct port_info *pi;
2090 
2091 	skb_pull(skb, sizeof(*p) + pad);
2092 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2093 	pi = netdev_priv(skb->dev);
2094 	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2095 	    p->csum == htons(0xffff) && !p->fragment) {
2096 		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2097 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2098 	} else
2099 		skb_checksum_none_assert(skb);
2100 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2101 
2102 	if (p->vlan_valid) {
2103 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2104 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2105 	}
2106 	if (rq->polling) {
2107 		if (lro)
2108 			napi_gro_receive(&qs->napi, skb);
2109 		else {
2110 			if (unlikely(pi->iscsic.flags))
2111 				cxgb3_process_iscsi_prov_pack(pi, skb);
2112 			netif_receive_skb(skb);
2113 		}
2114 	} else
2115 		netif_rx(skb);
2116 }
2117 
2118 static inline int is_eth_tcp(u32 rss)
2119 {
2120 	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2121 }
2122 
2123 /**
2124  *	lro_add_page - add a page chunk to an LRO session
2125  *	@adap: the adapter
2126  *	@qs: the associated queue set
2127  *	@fl: the free list containing the page chunk to add
2128  *	@len: packet length
2129  *	@complete: Indicates the last fragment of a frame
2130  *
2131  *	Add a received packet contained in a page chunk to an existing LRO
2132  *	session.
2133  */
2134 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2135 			 struct sge_fl *fl, int len, int complete)
2136 {
2137 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2138 	struct port_info *pi = netdev_priv(qs->netdev);
2139 	struct sk_buff *skb = NULL;
2140 	struct cpl_rx_pkt *cpl;
2141 	skb_frag_t *rx_frag;
2142 	int nr_frags;
2143 	int offset = 0;
2144 
2145 	if (!qs->nomem) {
2146 		skb = napi_get_frags(&qs->napi);
2147 		qs->nomem = !skb;
2148 	}
2149 
2150 	fl->credits--;
2151 
2152 	dma_sync_single_for_cpu(&adap->pdev->dev,
2153 				dma_unmap_addr(sd, dma_addr),
2154 				fl->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE);
2155 
2156 	(*sd->pg_chunk.p_cnt)--;
2157 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2158 		dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
2159 			       fl->alloc_size, DMA_FROM_DEVICE);
2160 
2161 	if (!skb) {
2162 		put_page(sd->pg_chunk.page);
2163 		if (complete)
2164 			qs->nomem = 0;
2165 		return;
2166 	}
2167 
2168 	rx_frag = skb_shinfo(skb)->frags;
2169 	nr_frags = skb_shinfo(skb)->nr_frags;
2170 
2171 	if (!nr_frags) {
2172 		offset = 2 + sizeof(struct cpl_rx_pkt);
2173 		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2174 
2175 		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2176 		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2177 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2178 			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2179 		} else
2180 			skb->ip_summed = CHECKSUM_NONE;
2181 	} else
2182 		cpl = qs->lro_va;
2183 
2184 	len -= offset;
2185 
2186 	rx_frag += nr_frags;
2187 	__skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2188 	skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset);
2189 	skb_frag_size_set(rx_frag, len);
2190 
2191 	skb->len += len;
2192 	skb->data_len += len;
2193 	skb->truesize += len;
2194 	skb_shinfo(skb)->nr_frags++;
2195 
2196 	if (!complete)
2197 		return;
2198 
2199 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2200 
2201 	if (cpl->vlan_valid) {
2202 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2203 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2204 	}
2205 	napi_gro_frags(&qs->napi);
2206 }
2207 
2208 /**
2209  *	handle_rsp_cntrl_info - handles control information in a response
2210  *	@qs: the queue set corresponding to the response
2211  *	@flags: the response control flags
2212  *
2213  *	Handles the control information of an SGE response, such as GTS
2214  *	indications and completion credits for the queue set's Tx queues.
2215  *	HW coalesces credits, we don't do any extra SW coalescing.
2216  */
2217 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2218 {
2219 	unsigned int credits;
2220 
2221 #if USE_GTS
2222 	if (flags & F_RSPD_TXQ0_GTS)
2223 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2224 #endif
2225 
2226 	credits = G_RSPD_TXQ0_CR(flags);
2227 	if (credits)
2228 		qs->txq[TXQ_ETH].processed += credits;
2229 
2230 	credits = G_RSPD_TXQ2_CR(flags);
2231 	if (credits)
2232 		qs->txq[TXQ_CTRL].processed += credits;
2233 
2234 # if USE_GTS
2235 	if (flags & F_RSPD_TXQ1_GTS)
2236 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2237 # endif
2238 	credits = G_RSPD_TXQ1_CR(flags);
2239 	if (credits)
2240 		qs->txq[TXQ_OFLD].processed += credits;
2241 }
2242 
2243 /**
2244  *	check_ring_db - check if we need to ring any doorbells
2245  *	@adap: the adapter
2246  *	@qs: the queue set whose Tx queues are to be examined
2247  *	@sleeping: indicates which Tx queue sent GTS
2248  *
2249  *	Checks if some of a queue set's Tx queues need to ring their doorbells
2250  *	to resume transmission after idling while they still have unprocessed
2251  *	descriptors.
2252  */
2253 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2254 			  unsigned int sleeping)
2255 {
2256 	if (sleeping & F_RSPD_TXQ0_GTS) {
2257 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2258 
2259 		if (txq->cleaned + txq->in_use != txq->processed &&
2260 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2261 			set_bit(TXQ_RUNNING, &txq->flags);
2262 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2263 				     V_EGRCNTX(txq->cntxt_id));
2264 		}
2265 	}
2266 
2267 	if (sleeping & F_RSPD_TXQ1_GTS) {
2268 		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2269 
2270 		if (txq->cleaned + txq->in_use != txq->processed &&
2271 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2272 			set_bit(TXQ_RUNNING, &txq->flags);
2273 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2274 				     V_EGRCNTX(txq->cntxt_id));
2275 		}
2276 	}
2277 }
2278 
2279 /**
2280  *	is_new_response - check if a response is newly written
2281  *	@r: the response descriptor
2282  *	@q: the response queue
2283  *
2284  *	Returns true if a response descriptor contains a yet unprocessed
2285  *	response.
2286  */
2287 static inline int is_new_response(const struct rsp_desc *r,
2288 				  const struct sge_rspq *q)
2289 {
2290 	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2291 }
2292 
2293 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2294 {
2295 	q->pg_skb = NULL;
2296 	q->rx_recycle_buf = 0;
2297 }
2298 
2299 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2300 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2301 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2302 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2303 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2304 
2305 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2306 #define NOMEM_INTR_DELAY 2500
2307 
2308 /**
2309  *	process_responses - process responses from an SGE response queue
2310  *	@adap: the adapter
2311  *	@qs: the queue set to which the response queue belongs
2312  *	@budget: how many responses can be processed in this round
2313  *
2314  *	Process responses from an SGE response queue up to the supplied budget.
2315  *	Responses include received packets as well as credits and other events
2316  *	for the queues that belong to the response queue's queue set.
2317  *	A negative budget is effectively unlimited.
2318  *
2319  *	Additionally choose the interrupt holdoff time for the next interrupt
2320  *	on this queue.  If the system is under memory shortage use a fairly
2321  *	long delay to help recovery.
2322  */
2323 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2324 			     int budget)
2325 {
2326 	struct sge_rspq *q = &qs->rspq;
2327 	struct rsp_desc *r = &q->desc[q->cidx];
2328 	int budget_left = budget;
2329 	unsigned int sleeping = 0;
2330 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2331 	int ngathered = 0;
2332 
2333 	q->next_holdoff = q->holdoff_tmr;
2334 
2335 	while (likely(budget_left && is_new_response(r, q))) {
2336 		int packet_complete, eth, ethpad = 2;
2337 		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2338 		struct sk_buff *skb = NULL;
2339 		u32 len, flags;
2340 		__be32 rss_hi, rss_lo;
2341 
2342 		dma_rmb();
2343 		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2344 		rss_hi = *(const __be32 *)r;
2345 		rss_lo = r->rss_hdr.rss_hash_val;
2346 		flags = ntohl(r->flags);
2347 
2348 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2349 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2350 			if (!skb)
2351 				goto no_mem;
2352 
2353 			__skb_put_data(skb, r, AN_PKT_SIZE);
2354 			skb->data[0] = CPL_ASYNC_NOTIF;
2355 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2356 			q->async_notif++;
2357 		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2358 			skb = get_imm_packet(r);
2359 			if (unlikely(!skb)) {
2360 no_mem:
2361 				q->next_holdoff = NOMEM_INTR_DELAY;
2362 				q->nomem++;
2363 				/* consume one credit since we tried */
2364 				budget_left--;
2365 				break;
2366 			}
2367 			q->imm_data++;
2368 			ethpad = 0;
2369 		} else if ((len = ntohl(r->len_cq)) != 0) {
2370 			struct sge_fl *fl;
2371 
2372 			lro &= eth && is_eth_tcp(rss_hi);
2373 
2374 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2375 			if (fl->use_pages) {
2376 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2377 
2378 				net_prefetch(addr);
2379 				__refill_fl(adap, fl);
2380 				if (lro > 0) {
2381 					lro_add_page(adap, qs, fl,
2382 						     G_RSPD_LEN(len),
2383 						     flags & F_RSPD_EOP);
2384 					goto next_fl;
2385 				}
2386 
2387 				skb = get_packet_pg(adap, fl, q,
2388 						    G_RSPD_LEN(len),
2389 						    eth ?
2390 						    SGE_RX_DROP_THRES : 0);
2391 				q->pg_skb = skb;
2392 			} else
2393 				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2394 						 eth ? SGE_RX_DROP_THRES : 0);
2395 			if (unlikely(!skb)) {
2396 				if (!eth)
2397 					goto no_mem;
2398 				q->rx_drops++;
2399 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2400 				__skb_pull(skb, 2);
2401 next_fl:
2402 			if (++fl->cidx == fl->size)
2403 				fl->cidx = 0;
2404 		} else
2405 			q->pure_rsps++;
2406 
2407 		if (flags & RSPD_CTRL_MASK) {
2408 			sleeping |= flags & RSPD_GTS_MASK;
2409 			handle_rsp_cntrl_info(qs, flags);
2410 		}
2411 
2412 		r++;
2413 		if (unlikely(++q->cidx == q->size)) {
2414 			q->cidx = 0;
2415 			q->gen ^= 1;
2416 			r = q->desc;
2417 		}
2418 		prefetch(r);
2419 
2420 		if (++q->credits >= (q->size / 4)) {
2421 			refill_rspq(adap, q, q->credits);
2422 			q->credits = 0;
2423 		}
2424 
2425 		packet_complete = flags &
2426 				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2427 				   F_RSPD_ASYNC_NOTIF);
2428 
2429 		if (skb != NULL && packet_complete) {
2430 			if (eth)
2431 				rx_eth(adap, q, skb, ethpad, lro);
2432 			else {
2433 				q->offload_pkts++;
2434 				/* Preserve the RSS info in csum & priority */
2435 				skb->csum = rss_hi;
2436 				skb->priority = rss_lo;
2437 				ngathered = rx_offload(&adap->tdev, q, skb,
2438 						       offload_skbs,
2439 						       ngathered);
2440 			}
2441 
2442 			if (flags & F_RSPD_EOP)
2443 				clear_rspq_bufstate(q);
2444 		}
2445 		--budget_left;
2446 	}
2447 
2448 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2449 
2450 	if (sleeping)
2451 		check_ring_db(adap, qs, sleeping);
2452 
2453 	smp_mb();		/* commit Tx queue .processed updates */
2454 	if (unlikely(qs->txq_stopped != 0))
2455 		restart_tx(qs);
2456 
2457 	budget -= budget_left;
2458 	return budget;
2459 }
2460 
2461 static inline int is_pure_response(const struct rsp_desc *r)
2462 {
2463 	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2464 
2465 	return (n | r->len_cq) == 0;
2466 }
2467 
2468 /**
2469  *	napi_rx_handler - the NAPI handler for Rx processing
2470  *	@napi: the napi instance
2471  *	@budget: how many packets we can process in this round
2472  *
2473  *	Handler for new data events when using NAPI.
2474  */
2475 static int napi_rx_handler(struct napi_struct *napi, int budget)
2476 {
2477 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2478 	struct adapter *adap = qs->adap;
2479 	int work_done = process_responses(adap, qs, budget);
2480 
2481 	if (likely(work_done < budget)) {
2482 		napi_complete_done(napi, work_done);
2483 
2484 		/*
2485 		 * Because we don't atomically flush the following
2486 		 * write it is possible that in very rare cases it can
2487 		 * reach the device in a way that races with a new
2488 		 * response being written plus an error interrupt
2489 		 * causing the NAPI interrupt handler below to return
2490 		 * unhandled status to the OS.  To protect against
2491 		 * this would require flushing the write and doing
2492 		 * both the write and the flush with interrupts off.
2493 		 * Way too expensive and unjustifiable given the
2494 		 * rarity of the race.
2495 		 *
2496 		 * The race cannot happen at all with MSI-X.
2497 		 */
2498 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2499 			     V_NEWTIMER(qs->rspq.next_holdoff) |
2500 			     V_NEWINDEX(qs->rspq.cidx));
2501 	}
2502 	return work_done;
2503 }
2504 
2505 /*
2506  * Returns true if the device is already scheduled for polling.
2507  */
2508 static inline int napi_is_scheduled(struct napi_struct *napi)
2509 {
2510 	return test_bit(NAPI_STATE_SCHED, &napi->state);
2511 }
2512 
2513 /**
2514  *	process_pure_responses - process pure responses from a response queue
2515  *	@adap: the adapter
2516  *	@qs: the queue set owning the response queue
2517  *	@r: the first pure response to process
2518  *
2519  *	A simpler version of process_responses() that handles only pure (i.e.,
2520  *	non data-carrying) responses.  Such respones are too light-weight to
2521  *	justify calling a softirq under NAPI, so we handle them specially in
2522  *	the interrupt handler.  The function is called with a pointer to a
2523  *	response, which the caller must ensure is a valid pure response.
2524  *
2525  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2526  */
2527 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2528 				  struct rsp_desc *r)
2529 {
2530 	struct sge_rspq *q = &qs->rspq;
2531 	unsigned int sleeping = 0;
2532 
2533 	do {
2534 		u32 flags = ntohl(r->flags);
2535 
2536 		r++;
2537 		if (unlikely(++q->cidx == q->size)) {
2538 			q->cidx = 0;
2539 			q->gen ^= 1;
2540 			r = q->desc;
2541 		}
2542 		prefetch(r);
2543 
2544 		if (flags & RSPD_CTRL_MASK) {
2545 			sleeping |= flags & RSPD_GTS_MASK;
2546 			handle_rsp_cntrl_info(qs, flags);
2547 		}
2548 
2549 		q->pure_rsps++;
2550 		if (++q->credits >= (q->size / 4)) {
2551 			refill_rspq(adap, q, q->credits);
2552 			q->credits = 0;
2553 		}
2554 		if (!is_new_response(r, q))
2555 			break;
2556 		dma_rmb();
2557 	} while (is_pure_response(r));
2558 
2559 	if (sleeping)
2560 		check_ring_db(adap, qs, sleeping);
2561 
2562 	smp_mb();		/* commit Tx queue .processed updates */
2563 	if (unlikely(qs->txq_stopped != 0))
2564 		restart_tx(qs);
2565 
2566 	return is_new_response(r, q);
2567 }
2568 
2569 /**
2570  *	handle_responses - decide what to do with new responses in NAPI mode
2571  *	@adap: the adapter
2572  *	@q: the response queue
2573  *
2574  *	This is used by the NAPI interrupt handlers to decide what to do with
2575  *	new SGE responses.  If there are no new responses it returns -1.  If
2576  *	there are new responses and they are pure (i.e., non-data carrying)
2577  *	it handles them straight in hard interrupt context as they are very
2578  *	cheap and don't deliver any packets.  Finally, if there are any data
2579  *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2580  *	schedules NAPI, 0 if all new responses were pure.
2581  *
2582  *	The caller must ascertain NAPI is not already running.
2583  */
2584 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2585 {
2586 	struct sge_qset *qs = rspq_to_qset(q);
2587 	struct rsp_desc *r = &q->desc[q->cidx];
2588 
2589 	if (!is_new_response(r, q))
2590 		return -1;
2591 	dma_rmb();
2592 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2593 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2594 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2595 		return 0;
2596 	}
2597 	napi_schedule(&qs->napi);
2598 	return 1;
2599 }
2600 
2601 /*
2602  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2603  * (i.e., response queue serviced in hard interrupt).
2604  */
2605 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2606 {
2607 	struct sge_qset *qs = cookie;
2608 	struct adapter *adap = qs->adap;
2609 	struct sge_rspq *q = &qs->rspq;
2610 
2611 	spin_lock(&q->lock);
2612 	if (process_responses(adap, qs, -1) == 0)
2613 		q->unhandled_irqs++;
2614 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2615 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2616 	spin_unlock(&q->lock);
2617 	return IRQ_HANDLED;
2618 }
2619 
2620 /*
2621  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2622  * (i.e., response queue serviced by NAPI polling).
2623  */
2624 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2625 {
2626 	struct sge_qset *qs = cookie;
2627 	struct sge_rspq *q = &qs->rspq;
2628 
2629 	spin_lock(&q->lock);
2630 
2631 	if (handle_responses(qs->adap, q) < 0)
2632 		q->unhandled_irqs++;
2633 	spin_unlock(&q->lock);
2634 	return IRQ_HANDLED;
2635 }
2636 
2637 /*
2638  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2639  * SGE response queues as well as error and other async events as they all use
2640  * the same MSI vector.  We use one SGE response queue per port in this mode
2641  * and protect all response queues with queue 0's lock.
2642  */
2643 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2644 {
2645 	int new_packets = 0;
2646 	struct adapter *adap = cookie;
2647 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2648 
2649 	spin_lock(&q->lock);
2650 
2651 	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2652 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2653 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2654 		new_packets = 1;
2655 	}
2656 
2657 	if (adap->params.nports == 2 &&
2658 	    process_responses(adap, &adap->sge.qs[1], -1)) {
2659 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2660 
2661 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2662 			     V_NEWTIMER(q1->next_holdoff) |
2663 			     V_NEWINDEX(q1->cidx));
2664 		new_packets = 1;
2665 	}
2666 
2667 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2668 		q->unhandled_irqs++;
2669 
2670 	spin_unlock(&q->lock);
2671 	return IRQ_HANDLED;
2672 }
2673 
2674 static int rspq_check_napi(struct sge_qset *qs)
2675 {
2676 	struct sge_rspq *q = &qs->rspq;
2677 
2678 	if (!napi_is_scheduled(&qs->napi) &&
2679 	    is_new_response(&q->desc[q->cidx], q)) {
2680 		napi_schedule(&qs->napi);
2681 		return 1;
2682 	}
2683 	return 0;
2684 }
2685 
2686 /*
2687  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2688  * by NAPI polling).  Handles data events from SGE response queues as well as
2689  * error and other async events as they all use the same MSI vector.  We use
2690  * one SGE response queue per port in this mode and protect all response
2691  * queues with queue 0's lock.
2692  */
2693 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2694 {
2695 	int new_packets;
2696 	struct adapter *adap = cookie;
2697 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2698 
2699 	spin_lock(&q->lock);
2700 
2701 	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2702 	if (adap->params.nports == 2)
2703 		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2704 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2705 		q->unhandled_irqs++;
2706 
2707 	spin_unlock(&q->lock);
2708 	return IRQ_HANDLED;
2709 }
2710 
2711 /*
2712  * A helper function that processes responses and issues GTS.
2713  */
2714 static inline int process_responses_gts(struct adapter *adap,
2715 					struct sge_rspq *rq)
2716 {
2717 	int work;
2718 
2719 	work = process_responses(adap, rspq_to_qset(rq), -1);
2720 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2721 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2722 	return work;
2723 }
2724 
2725 /*
2726  * The legacy INTx interrupt handler.  This needs to handle data events from
2727  * SGE response queues as well as error and other async events as they all use
2728  * the same interrupt pin.  We use one SGE response queue per port in this mode
2729  * and protect all response queues with queue 0's lock.
2730  */
2731 static irqreturn_t t3_intr(int irq, void *cookie)
2732 {
2733 	int work_done, w0, w1;
2734 	struct adapter *adap = cookie;
2735 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2736 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2737 
2738 	spin_lock(&q0->lock);
2739 
2740 	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2741 	w1 = adap->params.nports == 2 &&
2742 	    is_new_response(&q1->desc[q1->cidx], q1);
2743 
2744 	if (likely(w0 | w1)) {
2745 		t3_write_reg(adap, A_PL_CLI, 0);
2746 		t3_read_reg(adap, A_PL_CLI);	/* flush */
2747 
2748 		if (likely(w0))
2749 			process_responses_gts(adap, q0);
2750 
2751 		if (w1)
2752 			process_responses_gts(adap, q1);
2753 
2754 		work_done = w0 | w1;
2755 	} else
2756 		work_done = t3_slow_intr_handler(adap);
2757 
2758 	spin_unlock(&q0->lock);
2759 	return IRQ_RETVAL(work_done != 0);
2760 }
2761 
2762 /*
2763  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2764  * Handles data events from SGE response queues as well as error and other
2765  * async events as they all use the same interrupt pin.  We use one SGE
2766  * response queue per port in this mode and protect all response queues with
2767  * queue 0's lock.
2768  */
2769 static irqreturn_t t3b_intr(int irq, void *cookie)
2770 {
2771 	u32 map;
2772 	struct adapter *adap = cookie;
2773 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2774 
2775 	t3_write_reg(adap, A_PL_CLI, 0);
2776 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2777 
2778 	if (unlikely(!map))	/* shared interrupt, most likely */
2779 		return IRQ_NONE;
2780 
2781 	spin_lock(&q0->lock);
2782 
2783 	if (unlikely(map & F_ERRINTR))
2784 		t3_slow_intr_handler(adap);
2785 
2786 	if (likely(map & 1))
2787 		process_responses_gts(adap, q0);
2788 
2789 	if (map & 2)
2790 		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2791 
2792 	spin_unlock(&q0->lock);
2793 	return IRQ_HANDLED;
2794 }
2795 
2796 /*
2797  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2798  * Handles data events from SGE response queues as well as error and other
2799  * async events as they all use the same interrupt pin.  We use one SGE
2800  * response queue per port in this mode and protect all response queues with
2801  * queue 0's lock.
2802  */
2803 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2804 {
2805 	u32 map;
2806 	struct adapter *adap = cookie;
2807 	struct sge_qset *qs0 = &adap->sge.qs[0];
2808 	struct sge_rspq *q0 = &qs0->rspq;
2809 
2810 	t3_write_reg(adap, A_PL_CLI, 0);
2811 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2812 
2813 	if (unlikely(!map))	/* shared interrupt, most likely */
2814 		return IRQ_NONE;
2815 
2816 	spin_lock(&q0->lock);
2817 
2818 	if (unlikely(map & F_ERRINTR))
2819 		t3_slow_intr_handler(adap);
2820 
2821 	if (likely(map & 1))
2822 		napi_schedule(&qs0->napi);
2823 
2824 	if (map & 2)
2825 		napi_schedule(&adap->sge.qs[1].napi);
2826 
2827 	spin_unlock(&q0->lock);
2828 	return IRQ_HANDLED;
2829 }
2830 
2831 /**
2832  *	t3_intr_handler - select the top-level interrupt handler
2833  *	@adap: the adapter
2834  *	@polling: whether using NAPI to service response queues
2835  *
2836  *	Selects the top-level interrupt handler based on the type of interrupts
2837  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2838  *	response queues.
2839  */
2840 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2841 {
2842 	if (adap->flags & USING_MSIX)
2843 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2844 	if (adap->flags & USING_MSI)
2845 		return polling ? t3_intr_msi_napi : t3_intr_msi;
2846 	if (adap->params.rev > 0)
2847 		return polling ? t3b_intr_napi : t3b_intr;
2848 	return t3_intr;
2849 }
2850 
2851 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2852 		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2853 		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2854 		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2855 		    F_HIRCQPARITYERROR)
2856 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2857 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2858 		      F_RSPQDISABLED)
2859 
2860 /**
2861  *	t3_sge_err_intr_handler - SGE async event interrupt handler
2862  *	@adapter: the adapter
2863  *
2864  *	Interrupt handler for SGE asynchronous (non-data) events.
2865  */
2866 void t3_sge_err_intr_handler(struct adapter *adapter)
2867 {
2868 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2869 				 ~F_FLEMPTY;
2870 
2871 	if (status & SGE_PARERR)
2872 		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2873 			 status & SGE_PARERR);
2874 	if (status & SGE_FRAMINGERR)
2875 		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2876 			 status & SGE_FRAMINGERR);
2877 
2878 	if (status & F_RSPQCREDITOVERFOW)
2879 		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2880 
2881 	if (status & F_RSPQDISABLED) {
2882 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2883 
2884 		CH_ALERT(adapter,
2885 			 "packet delivered to disabled response queue "
2886 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2887 	}
2888 
2889 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2890 		queue_work(cxgb3_wq, &adapter->db_drop_task);
2891 
2892 	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2893 		queue_work(cxgb3_wq, &adapter->db_full_task);
2894 
2895 	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2896 		queue_work(cxgb3_wq, &adapter->db_empty_task);
2897 
2898 	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2899 	if (status &  SGE_FATALERR)
2900 		t3_fatal_err(adapter);
2901 }
2902 
2903 /**
2904  *	sge_timer_tx - perform periodic maintenance of an SGE qset
2905  *	@t: a timer list containing the SGE queue set to maintain
2906  *
2907  *	Runs periodically from a timer to perform maintenance of an SGE queue
2908  *	set.  It performs two tasks:
2909  *
2910  *	Cleans up any completed Tx descriptors that may still be pending.
2911  *	Normal descriptor cleanup happens when new packets are added to a Tx
2912  *	queue so this timer is relatively infrequent and does any cleanup only
2913  *	if the Tx queue has not seen any new packets in a while.  We make a
2914  *	best effort attempt to reclaim descriptors, in that we don't wait
2915  *	around if we cannot get a queue's lock (which most likely is because
2916  *	someone else is queueing new packets and so will also handle the clean
2917  *	up).  Since control queues use immediate data exclusively we don't
2918  *	bother cleaning them up here.
2919  *
2920  */
2921 static void sge_timer_tx(struct timer_list *t)
2922 {
2923 	struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2924 	struct port_info *pi = netdev_priv(qs->netdev);
2925 	struct adapter *adap = pi->adapter;
2926 	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2927 	unsigned long next_period;
2928 
2929 	if (__netif_tx_trylock(qs->tx_q)) {
2930                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2931                                                      TX_RECLAIM_TIMER_CHUNK);
2932 		__netif_tx_unlock(qs->tx_q);
2933 	}
2934 
2935 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2936 		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2937 						     TX_RECLAIM_TIMER_CHUNK);
2938 		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2939 	}
2940 
2941 	next_period = TX_RECLAIM_PERIOD >>
2942                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2943                       TX_RECLAIM_TIMER_CHUNK);
2944 	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2945 }
2946 
2947 /**
2948  *	sge_timer_rx - perform periodic maintenance of an SGE qset
2949  *	@t: the timer list containing the SGE queue set to maintain
2950  *
2951  *	a) Replenishes Rx queues that have run out due to memory shortage.
2952  *	Normally new Rx buffers are added when existing ones are consumed but
2953  *	when out of memory a queue can become empty.  We try to add only a few
2954  *	buffers here, the queue will be replenished fully as these new buffers
2955  *	are used up if memory shortage has subsided.
2956  *
2957  *	b) Return coalesced response queue credits in case a response queue is
2958  *	starved.
2959  *
2960  */
2961 static void sge_timer_rx(struct timer_list *t)
2962 {
2963 	spinlock_t *lock;
2964 	struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2965 	struct port_info *pi = netdev_priv(qs->netdev);
2966 	struct adapter *adap = pi->adapter;
2967 	u32 status;
2968 
2969 	lock = adap->params.rev > 0 ?
2970 	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2971 
2972 	if (!spin_trylock_irq(lock))
2973 		goto out;
2974 
2975 	if (napi_is_scheduled(&qs->napi))
2976 		goto unlock;
2977 
2978 	if (adap->params.rev < 4) {
2979 		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2980 
2981 		if (status & (1 << qs->rspq.cntxt_id)) {
2982 			qs->rspq.starved++;
2983 			if (qs->rspq.credits) {
2984 				qs->rspq.credits--;
2985 				refill_rspq(adap, &qs->rspq, 1);
2986 				qs->rspq.restarted++;
2987 				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2988 					     1 << qs->rspq.cntxt_id);
2989 			}
2990 		}
2991 	}
2992 
2993 	if (qs->fl[0].credits < qs->fl[0].size)
2994 		__refill_fl(adap, &qs->fl[0]);
2995 	if (qs->fl[1].credits < qs->fl[1].size)
2996 		__refill_fl(adap, &qs->fl[1]);
2997 
2998 unlock:
2999 	spin_unlock_irq(lock);
3000 out:
3001 	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3002 }
3003 
3004 /**
3005  *	t3_update_qset_coalesce - update coalescing settings for a queue set
3006  *	@qs: the SGE queue set
3007  *	@p: new queue set parameters
3008  *
3009  *	Update the coalescing settings for an SGE queue set.  Nothing is done
3010  *	if the queue set is not initialized yet.
3011  */
3012 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3013 {
3014 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3015 	qs->rspq.polling = p->polling;
3016 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3017 }
3018 
3019 /**
3020  *	t3_sge_alloc_qset - initialize an SGE queue set
3021  *	@adapter: the adapter
3022  *	@id: the queue set id
3023  *	@nports: how many Ethernet ports will be using this queue set
3024  *	@irq_vec_idx: the IRQ vector index for response queue interrupts
3025  *	@p: configuration parameters for this queue set
3026  *	@ntxq: number of Tx queues for the queue set
3027  *	@dev: net device associated with this queue set
3028  *	@netdevq: net device TX queue associated with this queue set
3029  *
3030  *	Allocate resources and initialize an SGE queue set.  A queue set
3031  *	comprises a response queue, two Rx free-buffer queues, and up to 3
3032  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
3033  *	queue, offload queue, and control queue.
3034  */
3035 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3036 		      int irq_vec_idx, const struct qset_params *p,
3037 		      int ntxq, struct net_device *dev,
3038 		      struct netdev_queue *netdevq)
3039 {
3040 	int i, avail, ret = -ENOMEM;
3041 	struct sge_qset *q = &adapter->sge.qs[id];
3042 
3043 	init_qset_cntxt(q, id);
3044 	timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3045 	timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3046 
3047 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3048 				   sizeof(struct rx_desc),
3049 				   sizeof(struct rx_sw_desc),
3050 				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3051 	if (!q->fl[0].desc)
3052 		goto err;
3053 
3054 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3055 				   sizeof(struct rx_desc),
3056 				   sizeof(struct rx_sw_desc),
3057 				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3058 	if (!q->fl[1].desc)
3059 		goto err;
3060 
3061 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3062 				  sizeof(struct rsp_desc), 0,
3063 				  &q->rspq.phys_addr, NULL);
3064 	if (!q->rspq.desc)
3065 		goto err;
3066 
3067 	for (i = 0; i < ntxq; ++i) {
3068 		/*
3069 		 * The control queue always uses immediate data so does not
3070 		 * need to keep track of any sk_buffs.
3071 		 */
3072 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3073 
3074 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3075 					    sizeof(struct tx_desc), sz,
3076 					    &q->txq[i].phys_addr,
3077 					    &q->txq[i].sdesc);
3078 		if (!q->txq[i].desc)
3079 			goto err;
3080 
3081 		q->txq[i].gen = 1;
3082 		q->txq[i].size = p->txq_size[i];
3083 		spin_lock_init(&q->txq[i].lock);
3084 		skb_queue_head_init(&q->txq[i].sendq);
3085 	}
3086 
3087 	INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq);
3088 	INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq);
3089 
3090 	q->fl[0].gen = q->fl[1].gen = 1;
3091 	q->fl[0].size = p->fl_size;
3092 	q->fl[1].size = p->jumbo_size;
3093 
3094 	q->rspq.gen = 1;
3095 	q->rspq.size = p->rspq_size;
3096 	spin_lock_init(&q->rspq.lock);
3097 	skb_queue_head_init(&q->rspq.rx_queue);
3098 
3099 	q->txq[TXQ_ETH].stop_thres = nports *
3100 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3101 
3102 #if FL0_PG_CHUNK_SIZE > 0
3103 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3104 #else
3105 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3106 #endif
3107 #if FL1_PG_CHUNK_SIZE > 0
3108 	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3109 #else
3110 	q->fl[1].buf_size = is_offload(adapter) ?
3111 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3112 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3113 #endif
3114 
3115 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3116 	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3117 	q->fl[0].order = FL0_PG_ORDER;
3118 	q->fl[1].order = FL1_PG_ORDER;
3119 	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3120 	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3121 
3122 	spin_lock_irq(&adapter->sge.reg_lock);
3123 
3124 	/* FL threshold comparison uses < */
3125 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3126 				   q->rspq.phys_addr, q->rspq.size,
3127 				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3128 	if (ret)
3129 		goto err_unlock;
3130 
3131 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3132 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3133 					  q->fl[i].phys_addr, q->fl[i].size,
3134 					  q->fl[i].buf_size - SGE_PG_RSVD,
3135 					  p->cong_thres, 1, 0);
3136 		if (ret)
3137 			goto err_unlock;
3138 	}
3139 
3140 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3141 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3142 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3143 				 1, 0);
3144 	if (ret)
3145 		goto err_unlock;
3146 
3147 	if (ntxq > 1) {
3148 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3149 					 USE_GTS, SGE_CNTXT_OFLD, id,
3150 					 q->txq[TXQ_OFLD].phys_addr,
3151 					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3152 		if (ret)
3153 			goto err_unlock;
3154 	}
3155 
3156 	if (ntxq > 2) {
3157 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3158 					 SGE_CNTXT_CTRL, id,
3159 					 q->txq[TXQ_CTRL].phys_addr,
3160 					 q->txq[TXQ_CTRL].size,
3161 					 q->txq[TXQ_CTRL].token, 1, 0);
3162 		if (ret)
3163 			goto err_unlock;
3164 	}
3165 
3166 	spin_unlock_irq(&adapter->sge.reg_lock);
3167 
3168 	q->adap = adapter;
3169 	q->netdev = dev;
3170 	q->tx_q = netdevq;
3171 	t3_update_qset_coalesce(q, p);
3172 
3173 	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3174 			  GFP_KERNEL | __GFP_COMP);
3175 	if (!avail) {
3176 		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3177 		ret = -ENOMEM;
3178 		goto err;
3179 	}
3180 	if (avail < q->fl[0].size)
3181 		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3182 			avail);
3183 
3184 	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3185 			  GFP_KERNEL | __GFP_COMP);
3186 	if (avail < q->fl[1].size)
3187 		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3188 			avail);
3189 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3190 
3191 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3192 		     V_NEWTIMER(q->rspq.holdoff_tmr));
3193 
3194 	return 0;
3195 
3196 err_unlock:
3197 	spin_unlock_irq(&adapter->sge.reg_lock);
3198 err:
3199 	t3_free_qset(adapter, q);
3200 	return ret;
3201 }
3202 
3203 /**
3204  *      t3_start_sge_timers - start SGE timer call backs
3205  *      @adap: the adapter
3206  *
3207  *      Starts each SGE queue set's timer call back
3208  */
3209 void t3_start_sge_timers(struct adapter *adap)
3210 {
3211 	int i;
3212 
3213 	for (i = 0; i < SGE_QSETS; ++i) {
3214 		struct sge_qset *q = &adap->sge.qs[i];
3215 
3216 		if (q->tx_reclaim_timer.function)
3217 			mod_timer(&q->tx_reclaim_timer,
3218 				  jiffies + TX_RECLAIM_PERIOD);
3219 
3220 		if (q->rx_reclaim_timer.function)
3221 			mod_timer(&q->rx_reclaim_timer,
3222 				  jiffies + RX_RECLAIM_PERIOD);
3223 	}
3224 }
3225 
3226 /**
3227  *	t3_stop_sge_timers - stop SGE timer call backs
3228  *	@adap: the adapter
3229  *
3230  *	Stops each SGE queue set's timer call back
3231  */
3232 void t3_stop_sge_timers(struct adapter *adap)
3233 {
3234 	int i;
3235 
3236 	for (i = 0; i < SGE_QSETS; ++i) {
3237 		struct sge_qset *q = &adap->sge.qs[i];
3238 
3239 		if (q->tx_reclaim_timer.function)
3240 			del_timer_sync(&q->tx_reclaim_timer);
3241 		if (q->rx_reclaim_timer.function)
3242 			del_timer_sync(&q->rx_reclaim_timer);
3243 	}
3244 }
3245 
3246 /**
3247  *	t3_free_sge_resources - free SGE resources
3248  *	@adap: the adapter
3249  *
3250  *	Frees resources used by the SGE queue sets.
3251  */
3252 void t3_free_sge_resources(struct adapter *adap)
3253 {
3254 	int i;
3255 
3256 	for (i = 0; i < SGE_QSETS; ++i)
3257 		t3_free_qset(adap, &adap->sge.qs[i]);
3258 }
3259 
3260 /**
3261  *	t3_sge_start - enable SGE
3262  *	@adap: the adapter
3263  *
3264  *	Enables the SGE for DMAs.  This is the last step in starting packet
3265  *	transfers.
3266  */
3267 void t3_sge_start(struct adapter *adap)
3268 {
3269 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3270 }
3271 
3272 /**
3273  *	t3_sge_stop_dma - Disable SGE DMA engine operation
3274  *	@adap: the adapter
3275  *
3276  *	Can be invoked from interrupt context e.g.  error handler.
3277  *
3278  *	Note that this function cannot disable the restart of works as
3279  *	it cannot wait if called from interrupt context, however the
3280  *	works will have no effect since the doorbells are disabled. The
3281  *	driver will call tg3_sge_stop() later from process context, at
3282  *	which time the works will be stopped if they are still running.
3283  */
3284 void t3_sge_stop_dma(struct adapter *adap)
3285 {
3286 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3287 }
3288 
3289 /**
3290  *	t3_sge_stop - disable SGE operation completly
3291  *	@adap: the adapter
3292  *
3293  *	Called from process context. Disables the DMA engine and any
3294  *	pending queue restart works.
3295  */
3296 void t3_sge_stop(struct adapter *adap)
3297 {
3298 	int i;
3299 
3300 	t3_sge_stop_dma(adap);
3301 
3302 	/* workqueues aren't initialized otherwise */
3303 	if (!(adap->flags & FULL_INIT_DONE))
3304 		return;
3305 	for (i = 0; i < SGE_QSETS; ++i) {
3306 		struct sge_qset *qs = &adap->sge.qs[i];
3307 
3308 		cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task);
3309 		cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task);
3310 	}
3311 }
3312 
3313 /**
3314  *	t3_sge_init - initialize SGE
3315  *	@adap: the adapter
3316  *	@p: the SGE parameters
3317  *
3318  *	Performs SGE initialization needed every time after a chip reset.
3319  *	We do not initialize any of the queue sets here, instead the driver
3320  *	top-level must request those individually.  We also do not enable DMA
3321  *	here, that should be done after the queues have been set up.
3322  */
3323 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3324 {
3325 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3326 
3327 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3328 	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3329 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3330 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3331 #if SGE_NUM_GENBITS == 1
3332 	ctrl |= F_EGRGENCTRL;
3333 #endif
3334 	if (adap->params.rev > 0) {
3335 		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3336 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3337 	}
3338 	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3339 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3340 		     V_LORCQDRBTHRSH(512));
3341 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3342 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3343 		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3344 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3345 		     adap->params.rev < T3_REV_C ? 1000 : 500);
3346 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3347 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3348 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3349 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3350 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3351 }
3352 
3353 /**
3354  *	t3_sge_prep - one-time SGE initialization
3355  *	@adap: the associated adapter
3356  *	@p: SGE parameters
3357  *
3358  *	Performs one-time initialization of SGE SW state.  Includes determining
3359  *	defaults for the assorted SGE parameters, which admins can change until
3360  *	they are used to initialize the SGE.
3361  */
3362 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3363 {
3364 	int i;
3365 
3366 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3367 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3368 
3369 	for (i = 0; i < SGE_QSETS; ++i) {
3370 		struct qset_params *q = p->qset + i;
3371 
3372 		q->polling = adap->params.rev > 0;
3373 		q->coalesce_usecs = 5;
3374 		q->rspq_size = 1024;
3375 		q->fl_size = 1024;
3376 		q->jumbo_size = 512;
3377 		q->txq_size[TXQ_ETH] = 1024;
3378 		q->txq_size[TXQ_OFLD] = 1024;
3379 		q->txq_size[TXQ_CTRL] = 256;
3380 		q->cong_thres = 0;
3381 	}
3382 
3383 	spin_lock_init(&adap->sge.reg_lock);
3384 }
3385