1 /* 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/skbuff.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/if_vlan.h> 36 #include <linux/ip.h> 37 #include <linux/tcp.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/slab.h> 40 #include <linux/prefetch.h> 41 #include <net/arp.h> 42 #include "common.h" 43 #include "regs.h" 44 #include "sge_defs.h" 45 #include "t3_cpl.h" 46 #include "firmware_exports.h" 47 #include "cxgb3_offload.h" 48 49 #define USE_GTS 0 50 51 #define SGE_RX_SM_BUF_SIZE 1536 52 53 #define SGE_RX_COPY_THRES 256 54 #define SGE_RX_PULL_LEN 128 55 56 #define SGE_PG_RSVD SMP_CACHE_BYTES 57 /* 58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. 59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs 60 * directly. 61 */ 62 #define FL0_PG_CHUNK_SIZE 2048 63 #define FL0_PG_ORDER 0 64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) 65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) 66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) 67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) 68 69 #define SGE_RX_DROP_THRES 16 70 #define RX_RECLAIM_PERIOD (HZ/4) 71 72 /* 73 * Max number of Rx buffers we replenish at a time. 74 */ 75 #define MAX_RX_REFILL 16U 76 /* 77 * Period of the Tx buffer reclaim timer. This timer does not need to run 78 * frequently as Tx buffers are usually reclaimed by new Tx packets. 79 */ 80 #define TX_RECLAIM_PERIOD (HZ / 4) 81 #define TX_RECLAIM_TIMER_CHUNK 64U 82 #define TX_RECLAIM_CHUNK 16U 83 84 /* WR size in bytes */ 85 #define WR_LEN (WR_FLITS * 8) 86 87 /* 88 * Types of Tx queues in each queue set. Order here matters, do not change. 89 */ 90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; 91 92 /* Values for sge_txq.flags */ 93 enum { 94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */ 95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ 96 }; 97 98 struct tx_desc { 99 __be64 flit[TX_DESC_FLITS]; 100 }; 101 102 struct rx_desc { 103 __be32 addr_lo; 104 __be32 len_gen; 105 __be32 gen2; 106 __be32 addr_hi; 107 }; 108 109 struct tx_sw_desc { /* SW state per Tx descriptor */ 110 struct sk_buff *skb; 111 u8 eop; /* set if last descriptor for packet */ 112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */ 113 u8 fragidx; /* first page fragment associated with descriptor */ 114 s8 sflit; /* start flit of first SGL entry in descriptor */ 115 }; 116 117 struct rx_sw_desc { /* SW state per Rx descriptor */ 118 union { 119 struct sk_buff *skb; 120 struct fl_pg_chunk pg_chunk; 121 }; 122 DEFINE_DMA_UNMAP_ADDR(dma_addr); 123 }; 124 125 struct rsp_desc { /* response queue descriptor */ 126 struct rss_header rss_hdr; 127 __be32 flags; 128 __be32 len_cq; 129 u8 imm_data[47]; 130 u8 intr_gen; 131 }; 132 133 /* 134 * Holds unmapping information for Tx packets that need deferred unmapping. 135 * This structure lives at skb->head and must be allocated by callers. 136 */ 137 struct deferred_unmap_info { 138 struct pci_dev *pdev; 139 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 140 }; 141 142 /* 143 * Maps a number of flits to the number of Tx descriptors that can hold them. 144 * The formula is 145 * 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1). 147 * 148 * HW allows up to 4 descriptors to be combined into a WR. 149 */ 150 static u8 flit_desc_map[] = { 151 0, 152 #if SGE_NUM_GENBITS == 1 153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 157 #elif SGE_NUM_GENBITS == 2 158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 162 #else 163 # error "SGE_NUM_GENBITS must be 1 or 2" 164 #endif 165 }; 166 167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) 168 { 169 return container_of(q, struct sge_qset, fl[qidx]); 170 } 171 172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) 173 { 174 return container_of(q, struct sge_qset, rspq); 175 } 176 177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) 178 { 179 return container_of(q, struct sge_qset, txq[qidx]); 180 } 181 182 /** 183 * refill_rspq - replenish an SGE response queue 184 * @adapter: the adapter 185 * @q: the response queue to replenish 186 * @credits: how many new responses to make available 187 * 188 * Replenishes a response queue by making the supplied number of responses 189 * available to HW. 190 */ 191 static inline void refill_rspq(struct adapter *adapter, 192 const struct sge_rspq *q, unsigned int credits) 193 { 194 rmb(); 195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, 196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); 197 } 198 199 /** 200 * need_skb_unmap - does the platform need unmapping of sk_buffs? 201 * 202 * Returns true if the platform needs sk_buff unmapping. The compiler 203 * optimizes away unnecessary code if this returns true. 204 */ 205 static inline int need_skb_unmap(void) 206 { 207 #ifdef CONFIG_NEED_DMA_MAP_STATE 208 return 1; 209 #else 210 return 0; 211 #endif 212 } 213 214 /** 215 * unmap_skb - unmap a packet main body and its page fragments 216 * @skb: the packet 217 * @q: the Tx queue containing Tx descriptors for the packet 218 * @cidx: index of Tx descriptor 219 * @pdev: the PCI device 220 * 221 * Unmap the main body of an sk_buff and its page fragments, if any. 222 * Because of the fairly complicated structure of our SGLs and the desire 223 * to conserve space for metadata, the information necessary to unmap an 224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx 225 * descriptors (the physical addresses of the various data buffers), and 226 * the SW descriptor state (assorted indices). The send functions 227 * initialize the indices for the first packet descriptor so we can unmap 228 * the buffers held in the first Tx descriptor here, and we have enough 229 * information at this point to set the state for the next Tx descriptor. 230 * 231 * Note that it is possible to clean up the first descriptor of a packet 232 * before the send routines have written the next descriptors, but this 233 * race does not cause any problem. We just end up writing the unmapping 234 * info for the descriptor first. 235 */ 236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, 237 unsigned int cidx, struct pci_dev *pdev) 238 { 239 const struct sg_ent *sgp; 240 struct tx_sw_desc *d = &q->sdesc[cidx]; 241 int nfrags, frag_idx, curflit, j = d->addr_idx; 242 243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; 244 frag_idx = d->fragidx; 245 246 if (frag_idx == 0 && skb_headlen(skb)) { 247 dma_unmap_single(&pdev->dev, be64_to_cpu(sgp->addr[0]), 248 skb_headlen(skb), DMA_TO_DEVICE); 249 j = 1; 250 } 251 252 curflit = d->sflit + 1 + j; 253 nfrags = skb_shinfo(skb)->nr_frags; 254 255 while (frag_idx < nfrags && curflit < WR_FLITS) { 256 dma_unmap_page(&pdev->dev, be64_to_cpu(sgp->addr[j]), 257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), 258 DMA_TO_DEVICE); 259 j ^= 1; 260 if (j == 0) { 261 sgp++; 262 curflit++; 263 } 264 curflit++; 265 frag_idx++; 266 } 267 268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ 269 d = cidx + 1 == q->size ? q->sdesc : d + 1; 270 d->fragidx = frag_idx; 271 d->addr_idx = j; 272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ 273 } 274 } 275 276 /** 277 * free_tx_desc - reclaims Tx descriptors and their buffers 278 * @adapter: the adapter 279 * @q: the Tx queue to reclaim descriptors from 280 * @n: the number of descriptors to reclaim 281 * 282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 283 * Tx buffers. Called with the Tx queue lock held. 284 */ 285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, 286 unsigned int n) 287 { 288 struct tx_sw_desc *d; 289 struct pci_dev *pdev = adapter->pdev; 290 unsigned int cidx = q->cidx; 291 292 const int need_unmap = need_skb_unmap() && 293 q->cntxt_id >= FW_TUNNEL_SGEEC_START; 294 295 d = &q->sdesc[cidx]; 296 while (n--) { 297 if (d->skb) { /* an SGL is present */ 298 if (need_unmap) 299 unmap_skb(d->skb, q, cidx, pdev); 300 if (d->eop) { 301 dev_consume_skb_any(d->skb); 302 d->skb = NULL; 303 } 304 } 305 ++d; 306 if (++cidx == q->size) { 307 cidx = 0; 308 d = q->sdesc; 309 } 310 } 311 q->cidx = cidx; 312 } 313 314 /** 315 * reclaim_completed_tx - reclaims completed Tx descriptors 316 * @adapter: the adapter 317 * @q: the Tx queue to reclaim completed descriptors from 318 * @chunk: maximum number of descriptors to reclaim 319 * 320 * Reclaims Tx descriptors that the SGE has indicated it has processed, 321 * and frees the associated buffers if possible. Called with the Tx 322 * queue's lock held. 323 */ 324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter, 325 struct sge_txq *q, 326 unsigned int chunk) 327 { 328 unsigned int reclaim = q->processed - q->cleaned; 329 330 reclaim = min(chunk, reclaim); 331 if (reclaim) { 332 free_tx_desc(adapter, q, reclaim); 333 q->cleaned += reclaim; 334 q->in_use -= reclaim; 335 } 336 return q->processed - q->cleaned; 337 } 338 339 /** 340 * should_restart_tx - are there enough resources to restart a Tx queue? 341 * @q: the Tx queue 342 * 343 * Checks if there are enough descriptors to restart a suspended Tx queue. 344 */ 345 static inline int should_restart_tx(const struct sge_txq *q) 346 { 347 unsigned int r = q->processed - q->cleaned; 348 349 return q->in_use - r < (q->size >> 1); 350 } 351 352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, 353 struct rx_sw_desc *d) 354 { 355 if (q->use_pages && d->pg_chunk.page) { 356 (*d->pg_chunk.p_cnt)--; 357 if (!*d->pg_chunk.p_cnt) 358 dma_unmap_page(&pdev->dev, d->pg_chunk.mapping, 359 q->alloc_size, DMA_FROM_DEVICE); 360 361 put_page(d->pg_chunk.page); 362 d->pg_chunk.page = NULL; 363 } else { 364 dma_unmap_single(&pdev->dev, dma_unmap_addr(d, dma_addr), 365 q->buf_size, DMA_FROM_DEVICE); 366 kfree_skb(d->skb); 367 d->skb = NULL; 368 } 369 } 370 371 /** 372 * free_rx_bufs - free the Rx buffers on an SGE free list 373 * @pdev: the PCI device associated with the adapter 374 * @q: the SGE free list to clean up 375 * 376 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from 377 * this queue should be stopped before calling this function. 378 */ 379 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) 380 { 381 unsigned int cidx = q->cidx; 382 383 while (q->credits--) { 384 struct rx_sw_desc *d = &q->sdesc[cidx]; 385 386 387 clear_rx_desc(pdev, q, d); 388 if (++cidx == q->size) 389 cidx = 0; 390 } 391 392 if (q->pg_chunk.page) { 393 __free_pages(q->pg_chunk.page, q->order); 394 q->pg_chunk.page = NULL; 395 } 396 } 397 398 /** 399 * add_one_rx_buf - add a packet buffer to a free-buffer list 400 * @va: buffer start VA 401 * @len: the buffer length 402 * @d: the HW Rx descriptor to write 403 * @sd: the SW Rx descriptor to write 404 * @gen: the generation bit value 405 * @pdev: the PCI device associated with the adapter 406 * 407 * Add a buffer of the given length to the supplied HW and SW Rx 408 * descriptors. 409 */ 410 static inline int add_one_rx_buf(void *va, unsigned int len, 411 struct rx_desc *d, struct rx_sw_desc *sd, 412 unsigned int gen, struct pci_dev *pdev) 413 { 414 dma_addr_t mapping; 415 416 mapping = dma_map_single(&pdev->dev, va, len, DMA_FROM_DEVICE); 417 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 418 return -ENOMEM; 419 420 dma_unmap_addr_set(sd, dma_addr, mapping); 421 422 d->addr_lo = cpu_to_be32(mapping); 423 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 424 dma_wmb(); 425 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 426 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 427 return 0; 428 } 429 430 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, 431 unsigned int gen) 432 { 433 d->addr_lo = cpu_to_be32(mapping); 434 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 435 dma_wmb(); 436 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 437 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 438 return 0; 439 } 440 441 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, 442 struct rx_sw_desc *sd, gfp_t gfp, 443 unsigned int order) 444 { 445 if (!q->pg_chunk.page) { 446 dma_addr_t mapping; 447 448 q->pg_chunk.page = alloc_pages(gfp, order); 449 if (unlikely(!q->pg_chunk.page)) 450 return -ENOMEM; 451 q->pg_chunk.va = page_address(q->pg_chunk.page); 452 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - 453 SGE_PG_RSVD; 454 q->pg_chunk.offset = 0; 455 mapping = dma_map_page(&adapter->pdev->dev, q->pg_chunk.page, 456 0, q->alloc_size, DMA_FROM_DEVICE); 457 if (unlikely(dma_mapping_error(&adapter->pdev->dev, mapping))) { 458 __free_pages(q->pg_chunk.page, order); 459 q->pg_chunk.page = NULL; 460 return -EIO; 461 } 462 q->pg_chunk.mapping = mapping; 463 } 464 sd->pg_chunk = q->pg_chunk; 465 466 prefetch(sd->pg_chunk.p_cnt); 467 468 q->pg_chunk.offset += q->buf_size; 469 if (q->pg_chunk.offset == (PAGE_SIZE << order)) 470 q->pg_chunk.page = NULL; 471 else { 472 q->pg_chunk.va += q->buf_size; 473 get_page(q->pg_chunk.page); 474 } 475 476 if (sd->pg_chunk.offset == 0) 477 *sd->pg_chunk.p_cnt = 1; 478 else 479 *sd->pg_chunk.p_cnt += 1; 480 481 return 0; 482 } 483 484 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 485 { 486 if (q->pend_cred >= q->credits / 4) { 487 q->pend_cred = 0; 488 wmb(); 489 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 490 } 491 } 492 493 /** 494 * refill_fl - refill an SGE free-buffer list 495 * @adap: the adapter 496 * @q: the free-list to refill 497 * @n: the number of new buffers to allocate 498 * @gfp: the gfp flags for allocating new buffers 499 * 500 * (Re)populate an SGE free-buffer list with up to @n new packet buffers, 501 * allocated with the supplied gfp flags. The caller must assure that 502 * @n does not exceed the queue's capacity. 503 */ 504 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) 505 { 506 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 507 struct rx_desc *d = &q->desc[q->pidx]; 508 unsigned int count = 0; 509 510 while (n--) { 511 dma_addr_t mapping; 512 int err; 513 514 if (q->use_pages) { 515 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, 516 q->order))) { 517 nomem: q->alloc_failed++; 518 break; 519 } 520 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; 521 dma_unmap_addr_set(sd, dma_addr, mapping); 522 523 add_one_rx_chunk(mapping, d, q->gen); 524 dma_sync_single_for_device(&adap->pdev->dev, mapping, 525 q->buf_size - SGE_PG_RSVD, 526 DMA_FROM_DEVICE); 527 } else { 528 void *buf_start; 529 530 struct sk_buff *skb = alloc_skb(q->buf_size, gfp); 531 if (!skb) 532 goto nomem; 533 534 sd->skb = skb; 535 buf_start = skb->data; 536 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, 537 q->gen, adap->pdev); 538 if (unlikely(err)) { 539 clear_rx_desc(adap->pdev, q, sd); 540 break; 541 } 542 } 543 544 d++; 545 sd++; 546 if (++q->pidx == q->size) { 547 q->pidx = 0; 548 q->gen ^= 1; 549 sd = q->sdesc; 550 d = q->desc; 551 } 552 count++; 553 } 554 555 q->credits += count; 556 q->pend_cred += count; 557 ring_fl_db(adap, q); 558 559 return count; 560 } 561 562 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 563 { 564 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), 565 GFP_ATOMIC | __GFP_COMP); 566 } 567 568 /** 569 * recycle_rx_buf - recycle a receive buffer 570 * @adap: the adapter 571 * @q: the SGE free list 572 * @idx: index of buffer to recycle 573 * 574 * Recycles the specified buffer on the given free list by adding it at 575 * the next available slot on the list. 576 */ 577 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, 578 unsigned int idx) 579 { 580 struct rx_desc *from = &q->desc[idx]; 581 struct rx_desc *to = &q->desc[q->pidx]; 582 583 q->sdesc[q->pidx] = q->sdesc[idx]; 584 to->addr_lo = from->addr_lo; /* already big endian */ 585 to->addr_hi = from->addr_hi; /* likewise */ 586 dma_wmb(); 587 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); 588 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); 589 590 if (++q->pidx == q->size) { 591 q->pidx = 0; 592 q->gen ^= 1; 593 } 594 595 q->credits++; 596 q->pend_cred++; 597 ring_fl_db(adap, q); 598 } 599 600 /** 601 * alloc_ring - allocate resources for an SGE descriptor ring 602 * @pdev: the PCI device 603 * @nelem: the number of descriptors 604 * @elem_size: the size of each descriptor 605 * @sw_size: the size of the SW state associated with each ring element 606 * @phys: the physical address of the allocated ring 607 * @metadata: address of the array holding the SW state for the ring 608 * 609 * Allocates resources for an SGE descriptor ring, such as Tx queues, 610 * free buffer lists, or response queues. Each SGE ring requires 611 * space for its HW descriptors plus, optionally, space for the SW state 612 * associated with each HW entry (the metadata). The function returns 613 * three values: the virtual address for the HW ring (the return value 614 * of the function), the physical address of the HW ring, and the address 615 * of the SW ring. 616 */ 617 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, 618 size_t sw_size, dma_addr_t * phys, void *metadata) 619 { 620 size_t len = nelem * elem_size; 621 void *s = NULL; 622 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); 623 624 if (!p) 625 return NULL; 626 if (sw_size && metadata) { 627 s = kcalloc(nelem, sw_size, GFP_KERNEL); 628 629 if (!s) { 630 dma_free_coherent(&pdev->dev, len, p, *phys); 631 return NULL; 632 } 633 *(void **)metadata = s; 634 } 635 return p; 636 } 637 638 /** 639 * t3_reset_qset - reset a sge qset 640 * @q: the queue set 641 * 642 * Reset the qset structure. 643 * the NAPI structure is preserved in the event of 644 * the qset's reincarnation, for example during EEH recovery. 645 */ 646 static void t3_reset_qset(struct sge_qset *q) 647 { 648 if (q->adap && 649 !(q->adap->flags & NAPI_INIT)) { 650 memset(q, 0, sizeof(*q)); 651 return; 652 } 653 654 q->adap = NULL; 655 memset(&q->rspq, 0, sizeof(q->rspq)); 656 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); 657 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); 658 q->txq_stopped = 0; 659 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ 660 q->rx_reclaim_timer.function = NULL; 661 q->nomem = 0; 662 napi_free_frags(&q->napi); 663 } 664 665 666 /** 667 * t3_free_qset - free the resources of an SGE queue set 668 * @adapter: the adapter owning the queue set 669 * @q: the queue set 670 * 671 * Release the HW and SW resources associated with an SGE queue set, such 672 * as HW contexts, packet buffers, and descriptor rings. Traffic to the 673 * queue set must be quiesced prior to calling this. 674 */ 675 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) 676 { 677 int i; 678 struct pci_dev *pdev = adapter->pdev; 679 680 for (i = 0; i < SGE_RXQ_PER_SET; ++i) 681 if (q->fl[i].desc) { 682 spin_lock_irq(&adapter->sge.reg_lock); 683 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); 684 spin_unlock_irq(&adapter->sge.reg_lock); 685 free_rx_bufs(pdev, &q->fl[i]); 686 kfree(q->fl[i].sdesc); 687 dma_free_coherent(&pdev->dev, 688 q->fl[i].size * 689 sizeof(struct rx_desc), q->fl[i].desc, 690 q->fl[i].phys_addr); 691 } 692 693 for (i = 0; i < SGE_TXQ_PER_SET; ++i) 694 if (q->txq[i].desc) { 695 spin_lock_irq(&adapter->sge.reg_lock); 696 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); 697 spin_unlock_irq(&adapter->sge.reg_lock); 698 if (q->txq[i].sdesc) { 699 free_tx_desc(adapter, &q->txq[i], 700 q->txq[i].in_use); 701 kfree(q->txq[i].sdesc); 702 } 703 dma_free_coherent(&pdev->dev, 704 q->txq[i].size * 705 sizeof(struct tx_desc), 706 q->txq[i].desc, q->txq[i].phys_addr); 707 __skb_queue_purge(&q->txq[i].sendq); 708 } 709 710 if (q->rspq.desc) { 711 spin_lock_irq(&adapter->sge.reg_lock); 712 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); 713 spin_unlock_irq(&adapter->sge.reg_lock); 714 dma_free_coherent(&pdev->dev, 715 q->rspq.size * sizeof(struct rsp_desc), 716 q->rspq.desc, q->rspq.phys_addr); 717 } 718 719 t3_reset_qset(q); 720 } 721 722 /** 723 * init_qset_cntxt - initialize an SGE queue set context info 724 * @qs: the queue set 725 * @id: the queue set id 726 * 727 * Initializes the TIDs and context ids for the queues of a queue set. 728 */ 729 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) 730 { 731 qs->rspq.cntxt_id = id; 732 qs->fl[0].cntxt_id = 2 * id; 733 qs->fl[1].cntxt_id = 2 * id + 1; 734 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; 735 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; 736 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; 737 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; 738 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; 739 } 740 741 /** 742 * sgl_len - calculates the size of an SGL of the given capacity 743 * @n: the number of SGL entries 744 * 745 * Calculates the number of flits needed for a scatter/gather list that 746 * can hold the given number of entries. 747 */ 748 static inline unsigned int sgl_len(unsigned int n) 749 { 750 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ 751 return (3 * n) / 2 + (n & 1); 752 } 753 754 /** 755 * flits_to_desc - returns the num of Tx descriptors for the given flits 756 * @n: the number of flits 757 * 758 * Calculates the number of Tx descriptors needed for the supplied number 759 * of flits. 760 */ 761 static inline unsigned int flits_to_desc(unsigned int n) 762 { 763 BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); 764 return flit_desc_map[n]; 765 } 766 767 /** 768 * get_packet - return the next ingress packet buffer from a free list 769 * @adap: the adapter that received the packet 770 * @fl: the SGE free list holding the packet 771 * @len: the packet length including any SGE padding 772 * @drop_thres: # of remaining buffers before we start dropping packets 773 * 774 * Get the next packet from a free list and complete setup of the 775 * sk_buff. If the packet is small we make a copy and recycle the 776 * original buffer, otherwise we use the original buffer itself. If a 777 * positive drop threshold is supplied packets are dropped and their 778 * buffers recycled if (a) the number of remaining buffers is under the 779 * threshold and the packet is too big to copy, or (b) the packet should 780 * be copied but there is no memory for the copy. 781 */ 782 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, 783 unsigned int len, unsigned int drop_thres) 784 { 785 struct sk_buff *skb = NULL; 786 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 787 788 prefetch(sd->skb->data); 789 fl->credits--; 790 791 if (len <= SGE_RX_COPY_THRES) { 792 skb = alloc_skb(len, GFP_ATOMIC); 793 if (likely(skb != NULL)) { 794 __skb_put(skb, len); 795 dma_sync_single_for_cpu(&adap->pdev->dev, 796 dma_unmap_addr(sd, dma_addr), 797 len, DMA_FROM_DEVICE); 798 memcpy(skb->data, sd->skb->data, len); 799 dma_sync_single_for_device(&adap->pdev->dev, 800 dma_unmap_addr(sd, dma_addr), 801 len, DMA_FROM_DEVICE); 802 } else if (!drop_thres) 803 goto use_orig_buf; 804 recycle: 805 recycle_rx_buf(adap, fl, fl->cidx); 806 return skb; 807 } 808 809 if (unlikely(fl->credits < drop_thres) && 810 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), 811 GFP_ATOMIC | __GFP_COMP) == 0) 812 goto recycle; 813 814 use_orig_buf: 815 dma_unmap_single(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr), 816 fl->buf_size, DMA_FROM_DEVICE); 817 skb = sd->skb; 818 skb_put(skb, len); 819 __refill_fl(adap, fl); 820 return skb; 821 } 822 823 /** 824 * get_packet_pg - return the next ingress packet buffer from a free list 825 * @adap: the adapter that received the packet 826 * @fl: the SGE free list holding the packet 827 * @q: the queue 828 * @len: the packet length including any SGE padding 829 * @drop_thres: # of remaining buffers before we start dropping packets 830 * 831 * Get the next packet from a free list populated with page chunks. 832 * If the packet is small we make a copy and recycle the original buffer, 833 * otherwise we attach the original buffer as a page fragment to a fresh 834 * sk_buff. If a positive drop threshold is supplied packets are dropped 835 * and their buffers recycled if (a) the number of remaining buffers is 836 * under the threshold and the packet is too big to copy, or (b) there's 837 * no system memory. 838 * 839 * Note: this function is similar to @get_packet but deals with Rx buffers 840 * that are page chunks rather than sk_buffs. 841 */ 842 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, 843 struct sge_rspq *q, unsigned int len, 844 unsigned int drop_thres) 845 { 846 struct sk_buff *newskb, *skb; 847 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 848 849 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); 850 851 newskb = skb = q->pg_skb; 852 if (!skb && (len <= SGE_RX_COPY_THRES)) { 853 newskb = alloc_skb(len, GFP_ATOMIC); 854 if (likely(newskb != NULL)) { 855 __skb_put(newskb, len); 856 dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, 857 len, DMA_FROM_DEVICE); 858 memcpy(newskb->data, sd->pg_chunk.va, len); 859 dma_sync_single_for_device(&adap->pdev->dev, dma_addr, 860 len, DMA_FROM_DEVICE); 861 } else if (!drop_thres) 862 return NULL; 863 recycle: 864 fl->credits--; 865 recycle_rx_buf(adap, fl, fl->cidx); 866 q->rx_recycle_buf++; 867 return newskb; 868 } 869 870 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) 871 goto recycle; 872 873 prefetch(sd->pg_chunk.p_cnt); 874 875 if (!skb) 876 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); 877 878 if (unlikely(!newskb)) { 879 if (!drop_thres) 880 return NULL; 881 goto recycle; 882 } 883 884 dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len, 885 DMA_FROM_DEVICE); 886 (*sd->pg_chunk.p_cnt)--; 887 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 888 dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping, 889 fl->alloc_size, DMA_FROM_DEVICE); 890 if (!skb) { 891 __skb_put(newskb, SGE_RX_PULL_LEN); 892 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); 893 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, 894 sd->pg_chunk.offset + SGE_RX_PULL_LEN, 895 len - SGE_RX_PULL_LEN); 896 newskb->len = len; 897 newskb->data_len = len - SGE_RX_PULL_LEN; 898 newskb->truesize += newskb->data_len; 899 } else { 900 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, 901 sd->pg_chunk.page, 902 sd->pg_chunk.offset, len); 903 newskb->len += len; 904 newskb->data_len += len; 905 newskb->truesize += len; 906 } 907 908 fl->credits--; 909 /* 910 * We do not refill FLs here, we let the caller do it to overlap a 911 * prefetch. 912 */ 913 return newskb; 914 } 915 916 /** 917 * get_imm_packet - return the next ingress packet buffer from a response 918 * @resp: the response descriptor containing the packet data 919 * 920 * Return a packet containing the immediate data of the given response. 921 */ 922 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) 923 { 924 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); 925 926 if (skb) { 927 __skb_put(skb, IMMED_PKT_SIZE); 928 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE); 929 } 930 return skb; 931 } 932 933 /** 934 * calc_tx_descs - calculate the number of Tx descriptors for a packet 935 * @skb: the packet 936 * 937 * Returns the number of Tx descriptors needed for the given Ethernet 938 * packet. Ethernet packets require addition of WR and CPL headers. 939 */ 940 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 941 { 942 unsigned int flits; 943 944 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) 945 return 1; 946 947 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; 948 if (skb_shinfo(skb)->gso_size) 949 flits++; 950 return flits_to_desc(flits); 951 } 952 953 /* map_skb - map a packet main body and its page fragments 954 * @pdev: the PCI device 955 * @skb: the packet 956 * @addr: placeholder to save the mapped addresses 957 * 958 * map the main body of an sk_buff and its page fragments, if any. 959 */ 960 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb, 961 dma_addr_t *addr) 962 { 963 const skb_frag_t *fp, *end; 964 const struct skb_shared_info *si; 965 966 if (skb_headlen(skb)) { 967 *addr = dma_map_single(&pdev->dev, skb->data, 968 skb_headlen(skb), DMA_TO_DEVICE); 969 if (dma_mapping_error(&pdev->dev, *addr)) 970 goto out_err; 971 addr++; 972 } 973 974 si = skb_shinfo(skb); 975 end = &si->frags[si->nr_frags]; 976 977 for (fp = si->frags; fp < end; fp++) { 978 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp), 979 DMA_TO_DEVICE); 980 if (dma_mapping_error(&pdev->dev, *addr)) 981 goto unwind; 982 addr++; 983 } 984 return 0; 985 986 unwind: 987 while (fp-- > si->frags) 988 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp), 989 DMA_TO_DEVICE); 990 991 dma_unmap_single(&pdev->dev, addr[-1], skb_headlen(skb), 992 DMA_TO_DEVICE); 993 out_err: 994 return -ENOMEM; 995 } 996 997 /** 998 * write_sgl - populate a scatter/gather list for a packet 999 * @skb: the packet 1000 * @sgp: the SGL to populate 1001 * @start: start address of skb main body data to include in the SGL 1002 * @len: length of skb main body data to include in the SGL 1003 * @addr: the list of the mapped addresses 1004 * 1005 * Copies the scatter/gather list for the buffers that make up a packet 1006 * and returns the SGL size in 8-byte words. The caller must size the SGL 1007 * appropriately. 1008 */ 1009 static inline unsigned int write_sgl(const struct sk_buff *skb, 1010 struct sg_ent *sgp, unsigned char *start, 1011 unsigned int len, const dma_addr_t *addr) 1012 { 1013 unsigned int i, j = 0, k = 0, nfrags; 1014 1015 if (len) { 1016 sgp->len[0] = cpu_to_be32(len); 1017 sgp->addr[j++] = cpu_to_be64(addr[k++]); 1018 } 1019 1020 nfrags = skb_shinfo(skb)->nr_frags; 1021 for (i = 0; i < nfrags; i++) { 1022 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1023 1024 sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); 1025 sgp->addr[j] = cpu_to_be64(addr[k++]); 1026 j ^= 1; 1027 if (j == 0) 1028 ++sgp; 1029 } 1030 if (j) 1031 sgp->len[j] = 0; 1032 return ((nfrags + (len != 0)) * 3) / 2 + j; 1033 } 1034 1035 /** 1036 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell 1037 * @adap: the adapter 1038 * @q: the Tx queue 1039 * 1040 * Ring the doorbel if a Tx queue is asleep. There is a natural race, 1041 * where the HW is going to sleep just after we checked, however, 1042 * then the interrupt handler will detect the outstanding TX packet 1043 * and ring the doorbell for us. 1044 * 1045 * When GTS is disabled we unconditionally ring the doorbell. 1046 */ 1047 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) 1048 { 1049 #if USE_GTS 1050 clear_bit(TXQ_LAST_PKT_DB, &q->flags); 1051 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { 1052 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1053 t3_write_reg(adap, A_SG_KDOORBELL, 1054 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1055 } 1056 #else 1057 wmb(); /* write descriptors before telling HW */ 1058 t3_write_reg(adap, A_SG_KDOORBELL, 1059 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1060 #endif 1061 } 1062 1063 static inline void wr_gen2(struct tx_desc *d, unsigned int gen) 1064 { 1065 #if SGE_NUM_GENBITS == 2 1066 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); 1067 #endif 1068 } 1069 1070 /** 1071 * write_wr_hdr_sgl - write a WR header and, optionally, SGL 1072 * @ndesc: number of Tx descriptors spanned by the SGL 1073 * @skb: the packet corresponding to the WR 1074 * @d: first Tx descriptor to be written 1075 * @pidx: index of above descriptors 1076 * @q: the SGE Tx queue 1077 * @sgl: the SGL 1078 * @flits: number of flits to the start of the SGL in the first descriptor 1079 * @sgl_flits: the SGL size in flits 1080 * @gen: the Tx descriptor generation 1081 * @wr_hi: top 32 bits of WR header based on WR type (big endian) 1082 * @wr_lo: low 32 bits of WR header based on WR type (big endian) 1083 * 1084 * Write a work request header and an associated SGL. If the SGL is 1085 * small enough to fit into one Tx descriptor it has already been written 1086 * and we just need to write the WR header. Otherwise we distribute the 1087 * SGL across the number of descriptors it spans. 1088 */ 1089 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, 1090 struct tx_desc *d, unsigned int pidx, 1091 const struct sge_txq *q, 1092 const struct sg_ent *sgl, 1093 unsigned int flits, unsigned int sgl_flits, 1094 unsigned int gen, __be32 wr_hi, 1095 __be32 wr_lo) 1096 { 1097 struct work_request_hdr *wrp = (struct work_request_hdr *)d; 1098 struct tx_sw_desc *sd = &q->sdesc[pidx]; 1099 1100 sd->skb = skb; 1101 if (need_skb_unmap()) { 1102 sd->fragidx = 0; 1103 sd->addr_idx = 0; 1104 sd->sflit = flits; 1105 } 1106 1107 if (likely(ndesc == 1)) { 1108 sd->eop = 1; 1109 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | 1110 V_WR_SGLSFLT(flits)) | wr_hi; 1111 dma_wmb(); 1112 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | 1113 V_WR_GEN(gen)) | wr_lo; 1114 wr_gen2(d, gen); 1115 } else { 1116 unsigned int ogen = gen; 1117 const u64 *fp = (const u64 *)sgl; 1118 struct work_request_hdr *wp = wrp; 1119 1120 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | 1121 V_WR_SGLSFLT(flits)) | wr_hi; 1122 1123 while (sgl_flits) { 1124 unsigned int avail = WR_FLITS - flits; 1125 1126 if (avail > sgl_flits) 1127 avail = sgl_flits; 1128 memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); 1129 sgl_flits -= avail; 1130 ndesc--; 1131 if (!sgl_flits) 1132 break; 1133 1134 fp += avail; 1135 d++; 1136 sd->eop = 0; 1137 sd++; 1138 if (++pidx == q->size) { 1139 pidx = 0; 1140 gen ^= 1; 1141 d = q->desc; 1142 sd = q->sdesc; 1143 } 1144 1145 sd->skb = skb; 1146 wrp = (struct work_request_hdr *)d; 1147 wrp->wr_hi = htonl(V_WR_DATATYPE(1) | 1148 V_WR_SGLSFLT(1)) | wr_hi; 1149 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, 1150 sgl_flits + 1)) | 1151 V_WR_GEN(gen)) | wr_lo; 1152 wr_gen2(d, gen); 1153 flits = 1; 1154 } 1155 sd->eop = 1; 1156 wrp->wr_hi |= htonl(F_WR_EOP); 1157 dma_wmb(); 1158 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; 1159 wr_gen2((struct tx_desc *)wp, ogen); 1160 WARN_ON(ndesc != 0); 1161 } 1162 } 1163 1164 /** 1165 * write_tx_pkt_wr - write a TX_PKT work request 1166 * @adap: the adapter 1167 * @skb: the packet to send 1168 * @pi: the egress interface 1169 * @pidx: index of the first Tx descriptor to write 1170 * @gen: the generation value to use 1171 * @q: the Tx queue 1172 * @ndesc: number of descriptors the packet will occupy 1173 * @compl: the value of the COMPL bit to use 1174 * @addr: address 1175 * 1176 * Generate a TX_PKT work request to send the supplied packet. 1177 */ 1178 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, 1179 const struct port_info *pi, 1180 unsigned int pidx, unsigned int gen, 1181 struct sge_txq *q, unsigned int ndesc, 1182 unsigned int compl, const dma_addr_t *addr) 1183 { 1184 unsigned int flits, sgl_flits, cntrl, tso_info; 1185 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1186 struct tx_desc *d = &q->desc[pidx]; 1187 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; 1188 1189 cpl->len = htonl(skb->len); 1190 cntrl = V_TXPKT_INTF(pi->port_id); 1191 1192 if (skb_vlan_tag_present(skb)) 1193 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); 1194 1195 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); 1196 if (tso_info) { 1197 int eth_type; 1198 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; 1199 1200 d->flit[2] = 0; 1201 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); 1202 hdr->cntrl = htonl(cntrl); 1203 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1204 CPL_ETH_II : CPL_ETH_II_VLAN; 1205 tso_info |= V_LSO_ETH_TYPE(eth_type) | 1206 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | 1207 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); 1208 hdr->lso_info = htonl(tso_info); 1209 flits = 3; 1210 } else { 1211 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); 1212 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ 1213 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); 1214 cpl->cntrl = htonl(cntrl); 1215 1216 if (skb->len <= WR_LEN - sizeof(*cpl)) { 1217 q->sdesc[pidx].skb = NULL; 1218 if (!skb->data_len) 1219 skb_copy_from_linear_data(skb, &d->flit[2], 1220 skb->len); 1221 else 1222 skb_copy_bits(skb, 0, &d->flit[2], skb->len); 1223 1224 flits = (skb->len + 7) / 8 + 2; 1225 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | 1226 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) 1227 | F_WR_SOP | F_WR_EOP | compl); 1228 dma_wmb(); 1229 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | 1230 V_WR_TID(q->token)); 1231 wr_gen2(d, gen); 1232 dev_consume_skb_any(skb); 1233 return; 1234 } 1235 1236 flits = 2; 1237 } 1238 1239 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1240 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr); 1241 1242 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, 1243 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), 1244 htonl(V_WR_TID(q->token))); 1245 } 1246 1247 static inline void t3_stop_tx_queue(struct netdev_queue *txq, 1248 struct sge_qset *qs, struct sge_txq *q) 1249 { 1250 netif_tx_stop_queue(txq); 1251 set_bit(TXQ_ETH, &qs->txq_stopped); 1252 q->stops++; 1253 } 1254 1255 /** 1256 * t3_eth_xmit - add a packet to the Ethernet Tx queue 1257 * @skb: the packet 1258 * @dev: the egress net device 1259 * 1260 * Add a packet to an SGE Tx queue. Runs with softirqs disabled. 1261 */ 1262 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1263 { 1264 int qidx; 1265 unsigned int ndesc, pidx, credits, gen, compl; 1266 const struct port_info *pi = netdev_priv(dev); 1267 struct adapter *adap = pi->adapter; 1268 struct netdev_queue *txq; 1269 struct sge_qset *qs; 1270 struct sge_txq *q; 1271 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1272 1273 /* 1274 * The chip min packet length is 9 octets but play safe and reject 1275 * anything shorter than an Ethernet header. 1276 */ 1277 if (unlikely(skb->len < ETH_HLEN)) { 1278 dev_kfree_skb_any(skb); 1279 return NETDEV_TX_OK; 1280 } 1281 1282 qidx = skb_get_queue_mapping(skb); 1283 qs = &pi->qs[qidx]; 1284 q = &qs->txq[TXQ_ETH]; 1285 txq = netdev_get_tx_queue(dev, qidx); 1286 1287 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1288 1289 credits = q->size - q->in_use; 1290 ndesc = calc_tx_descs(skb); 1291 1292 if (unlikely(credits < ndesc)) { 1293 t3_stop_tx_queue(txq, qs, q); 1294 dev_err(&adap->pdev->dev, 1295 "%s: Tx ring %u full while queue awake!\n", 1296 dev->name, q->cntxt_id & 7); 1297 return NETDEV_TX_BUSY; 1298 } 1299 1300 /* Check if ethernet packet can't be sent as immediate data */ 1301 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) { 1302 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) { 1303 dev_kfree_skb(skb); 1304 return NETDEV_TX_OK; 1305 } 1306 } 1307 1308 q->in_use += ndesc; 1309 if (unlikely(credits - ndesc < q->stop_thres)) { 1310 t3_stop_tx_queue(txq, qs, q); 1311 1312 if (should_restart_tx(q) && 1313 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1314 q->restarts++; 1315 netif_tx_start_queue(txq); 1316 } 1317 } 1318 1319 gen = q->gen; 1320 q->unacked += ndesc; 1321 compl = (q->unacked & 8) << (S_WR_COMPL - 3); 1322 q->unacked &= 7; 1323 pidx = q->pidx; 1324 q->pidx += ndesc; 1325 if (q->pidx >= q->size) { 1326 q->pidx -= q->size; 1327 q->gen ^= 1; 1328 } 1329 1330 /* update port statistics */ 1331 if (skb->ip_summed == CHECKSUM_PARTIAL) 1332 qs->port_stats[SGE_PSTAT_TX_CSUM]++; 1333 if (skb_shinfo(skb)->gso_size) 1334 qs->port_stats[SGE_PSTAT_TSO]++; 1335 if (skb_vlan_tag_present(skb)) 1336 qs->port_stats[SGE_PSTAT_VLANINS]++; 1337 1338 /* 1339 * We do not use Tx completion interrupts to free DMAd Tx packets. 1340 * This is good for performance but means that we rely on new Tx 1341 * packets arriving to run the destructors of completed packets, 1342 * which open up space in their sockets' send queues. Sometimes 1343 * we do not get such new packets causing Tx to stall. A single 1344 * UDP transmitter is a good example of this situation. We have 1345 * a clean up timer that periodically reclaims completed packets 1346 * but it doesn't run often enough (nor do we want it to) to prevent 1347 * lengthy stalls. A solution to this problem is to run the 1348 * destructor early, after the packet is queued but before it's DMAd. 1349 * A cons is that we lie to socket memory accounting, but the amount 1350 * of extra memory is reasonable (limited by the number of Tx 1351 * descriptors), the packets do actually get freed quickly by new 1352 * packets almost always, and for protocols like TCP that wait for 1353 * acks to really free up the data the extra memory is even less. 1354 * On the positive side we run the destructors on the sending CPU 1355 * rather than on a potentially different completing CPU, usually a 1356 * good thing. We also run them without holding our Tx queue lock, 1357 * unlike what reclaim_completed_tx() would otherwise do. 1358 * 1359 * Run the destructor before telling the DMA engine about the packet 1360 * to make sure it doesn't complete and get freed prematurely. 1361 */ 1362 if (likely(!skb_shared(skb))) 1363 skb_orphan(skb); 1364 1365 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr); 1366 check_ring_tx_db(adap, q); 1367 return NETDEV_TX_OK; 1368 } 1369 1370 /** 1371 * write_imm - write a packet into a Tx descriptor as immediate data 1372 * @d: the Tx descriptor to write 1373 * @skb: the packet 1374 * @len: the length of packet data to write as immediate data 1375 * @gen: the generation bit value to write 1376 * 1377 * Writes a packet as immediate data into a Tx descriptor. The packet 1378 * contains a work request at its beginning. We must write the packet 1379 * carefully so the SGE doesn't read it accidentally before it's written 1380 * in its entirety. 1381 */ 1382 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, 1383 unsigned int len, unsigned int gen) 1384 { 1385 struct work_request_hdr *from = (struct work_request_hdr *)skb->data; 1386 struct work_request_hdr *to = (struct work_request_hdr *)d; 1387 1388 if (likely(!skb->data_len)) 1389 memcpy(&to[1], &from[1], len - sizeof(*from)); 1390 else 1391 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); 1392 1393 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | 1394 V_WR_BCNTLFLT(len & 7)); 1395 dma_wmb(); 1396 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | 1397 V_WR_LEN((len + 7) / 8)); 1398 wr_gen2(d, gen); 1399 kfree_skb(skb); 1400 } 1401 1402 /** 1403 * check_desc_avail - check descriptor availability on a send queue 1404 * @adap: the adapter 1405 * @q: the send queue 1406 * @skb: the packet needing the descriptors 1407 * @ndesc: the number of Tx descriptors needed 1408 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) 1409 * 1410 * Checks if the requested number of Tx descriptors is available on an 1411 * SGE send queue. If the queue is already suspended or not enough 1412 * descriptors are available the packet is queued for later transmission. 1413 * Must be called with the Tx queue locked. 1414 * 1415 * Returns 0 if enough descriptors are available, 1 if there aren't 1416 * enough descriptors and the packet has been queued, and 2 if the caller 1417 * needs to retry because there weren't enough descriptors at the 1418 * beginning of the call but some freed up in the mean time. 1419 */ 1420 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, 1421 struct sk_buff *skb, unsigned int ndesc, 1422 unsigned int qid) 1423 { 1424 if (unlikely(!skb_queue_empty(&q->sendq))) { 1425 addq_exit:__skb_queue_tail(&q->sendq, skb); 1426 return 1; 1427 } 1428 if (unlikely(q->size - q->in_use < ndesc)) { 1429 struct sge_qset *qs = txq_to_qset(q, qid); 1430 1431 set_bit(qid, &qs->txq_stopped); 1432 smp_mb__after_atomic(); 1433 1434 if (should_restart_tx(q) && 1435 test_and_clear_bit(qid, &qs->txq_stopped)) 1436 return 2; 1437 1438 q->stops++; 1439 goto addq_exit; 1440 } 1441 return 0; 1442 } 1443 1444 /** 1445 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1446 * @q: the SGE control Tx queue 1447 * 1448 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1449 * that send only immediate data (presently just the control queues) and 1450 * thus do not have any sk_buffs to release. 1451 */ 1452 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1453 { 1454 unsigned int reclaim = q->processed - q->cleaned; 1455 1456 q->in_use -= reclaim; 1457 q->cleaned += reclaim; 1458 } 1459 1460 static inline int immediate(const struct sk_buff *skb) 1461 { 1462 return skb->len <= WR_LEN; 1463 } 1464 1465 /** 1466 * ctrl_xmit - send a packet through an SGE control Tx queue 1467 * @adap: the adapter 1468 * @q: the control queue 1469 * @skb: the packet 1470 * 1471 * Send a packet through an SGE control Tx queue. Packets sent through 1472 * a control queue must fit entirely as immediate data in a single Tx 1473 * descriptor and have no page fragments. 1474 */ 1475 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, 1476 struct sk_buff *skb) 1477 { 1478 int ret; 1479 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; 1480 1481 if (unlikely(!immediate(skb))) { 1482 WARN_ON(1); 1483 dev_kfree_skb(skb); 1484 return NET_XMIT_SUCCESS; 1485 } 1486 1487 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); 1488 wrp->wr_lo = htonl(V_WR_TID(q->token)); 1489 1490 spin_lock(&q->lock); 1491 again:reclaim_completed_tx_imm(q); 1492 1493 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); 1494 if (unlikely(ret)) { 1495 if (ret == 1) { 1496 spin_unlock(&q->lock); 1497 return NET_XMIT_CN; 1498 } 1499 goto again; 1500 } 1501 1502 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1503 1504 q->in_use++; 1505 if (++q->pidx >= q->size) { 1506 q->pidx = 0; 1507 q->gen ^= 1; 1508 } 1509 spin_unlock(&q->lock); 1510 wmb(); 1511 t3_write_reg(adap, A_SG_KDOORBELL, 1512 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1513 return NET_XMIT_SUCCESS; 1514 } 1515 1516 /** 1517 * restart_ctrlq - restart a suspended control queue 1518 * @w: pointer to the work associated with this handler 1519 * 1520 * Resumes transmission on a suspended Tx control queue. 1521 */ 1522 static void restart_ctrlq(struct work_struct *w) 1523 { 1524 struct sk_buff *skb; 1525 struct sge_qset *qs = container_of(w, struct sge_qset, 1526 txq[TXQ_CTRL].qresume_task); 1527 struct sge_txq *q = &qs->txq[TXQ_CTRL]; 1528 1529 spin_lock(&q->lock); 1530 again:reclaim_completed_tx_imm(q); 1531 1532 while (q->in_use < q->size && 1533 (skb = __skb_dequeue(&q->sendq)) != NULL) { 1534 1535 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1536 1537 if (++q->pidx >= q->size) { 1538 q->pidx = 0; 1539 q->gen ^= 1; 1540 } 1541 q->in_use++; 1542 } 1543 1544 if (!skb_queue_empty(&q->sendq)) { 1545 set_bit(TXQ_CTRL, &qs->txq_stopped); 1546 smp_mb__after_atomic(); 1547 1548 if (should_restart_tx(q) && 1549 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) 1550 goto again; 1551 q->stops++; 1552 } 1553 1554 spin_unlock(&q->lock); 1555 wmb(); 1556 t3_write_reg(qs->adap, A_SG_KDOORBELL, 1557 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1558 } 1559 1560 /* 1561 * Send a management message through control queue 0 1562 */ 1563 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1564 { 1565 int ret; 1566 local_bh_disable(); 1567 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); 1568 local_bh_enable(); 1569 1570 return ret; 1571 } 1572 1573 /** 1574 * deferred_unmap_destructor - unmap a packet when it is freed 1575 * @skb: the packet 1576 * 1577 * This is the packet destructor used for Tx packets that need to remain 1578 * mapped until they are freed rather than until their Tx descriptors are 1579 * freed. 1580 */ 1581 static void deferred_unmap_destructor(struct sk_buff *skb) 1582 { 1583 int i; 1584 const dma_addr_t *p; 1585 const struct skb_shared_info *si; 1586 const struct deferred_unmap_info *dui; 1587 1588 dui = (struct deferred_unmap_info *)skb->head; 1589 p = dui->addr; 1590 1591 if (skb_tail_pointer(skb) - skb_transport_header(skb)) 1592 dma_unmap_single(&dui->pdev->dev, *p++, 1593 skb_tail_pointer(skb) - skb_transport_header(skb), 1594 DMA_TO_DEVICE); 1595 1596 si = skb_shinfo(skb); 1597 for (i = 0; i < si->nr_frags; i++) 1598 dma_unmap_page(&dui->pdev->dev, *p++, 1599 skb_frag_size(&si->frags[i]), DMA_TO_DEVICE); 1600 } 1601 1602 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, 1603 const struct sg_ent *sgl, int sgl_flits) 1604 { 1605 dma_addr_t *p; 1606 struct deferred_unmap_info *dui; 1607 1608 dui = (struct deferred_unmap_info *)skb->head; 1609 dui->pdev = pdev; 1610 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { 1611 *p++ = be64_to_cpu(sgl->addr[0]); 1612 *p++ = be64_to_cpu(sgl->addr[1]); 1613 } 1614 if (sgl_flits) 1615 *p = be64_to_cpu(sgl->addr[0]); 1616 } 1617 1618 /** 1619 * write_ofld_wr - write an offload work request 1620 * @adap: the adapter 1621 * @skb: the packet to send 1622 * @q: the Tx queue 1623 * @pidx: index of the first Tx descriptor to write 1624 * @gen: the generation value to use 1625 * @ndesc: number of descriptors the packet will occupy 1626 * @addr: the address 1627 * 1628 * Write an offload work request to send the supplied packet. The packet 1629 * data already carry the work request with most fields populated. 1630 */ 1631 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, 1632 struct sge_txq *q, unsigned int pidx, 1633 unsigned int gen, unsigned int ndesc, 1634 const dma_addr_t *addr) 1635 { 1636 unsigned int sgl_flits, flits; 1637 struct work_request_hdr *from; 1638 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1639 struct tx_desc *d = &q->desc[pidx]; 1640 1641 if (immediate(skb)) { 1642 q->sdesc[pidx].skb = NULL; 1643 write_imm(d, skb, skb->len, gen); 1644 return; 1645 } 1646 1647 /* Only TX_DATA builds SGLs */ 1648 1649 from = (struct work_request_hdr *)skb->data; 1650 memcpy(&d->flit[1], &from[1], 1651 skb_transport_offset(skb) - sizeof(*from)); 1652 1653 flits = skb_transport_offset(skb) / 8; 1654 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1655 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb), 1656 skb_tail_pointer(skb) - skb_transport_header(skb), 1657 addr); 1658 if (need_skb_unmap()) { 1659 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); 1660 skb->destructor = deferred_unmap_destructor; 1661 } 1662 1663 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, 1664 gen, from->wr_hi, from->wr_lo); 1665 } 1666 1667 /** 1668 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet 1669 * @skb: the packet 1670 * 1671 * Returns the number of Tx descriptors needed for the given offload 1672 * packet. These packets are already fully constructed. 1673 */ 1674 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) 1675 { 1676 unsigned int flits, cnt; 1677 1678 if (skb->len <= WR_LEN) 1679 return 1; /* packet fits as immediate data */ 1680 1681 flits = skb_transport_offset(skb) / 8; /* headers */ 1682 cnt = skb_shinfo(skb)->nr_frags; 1683 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1684 cnt++; 1685 return flits_to_desc(flits + sgl_len(cnt)); 1686 } 1687 1688 /** 1689 * ofld_xmit - send a packet through an offload queue 1690 * @adap: the adapter 1691 * @q: the Tx offload queue 1692 * @skb: the packet 1693 * 1694 * Send an offload packet through an SGE offload queue. 1695 */ 1696 static int ofld_xmit(struct adapter *adap, struct sge_txq *q, 1697 struct sk_buff *skb) 1698 { 1699 int ret; 1700 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; 1701 1702 spin_lock(&q->lock); 1703 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1704 1705 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); 1706 if (unlikely(ret)) { 1707 if (ret == 1) { 1708 skb->priority = ndesc; /* save for restart */ 1709 spin_unlock(&q->lock); 1710 return NET_XMIT_CN; 1711 } 1712 goto again; 1713 } 1714 1715 if (!immediate(skb) && 1716 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) { 1717 spin_unlock(&q->lock); 1718 return NET_XMIT_SUCCESS; 1719 } 1720 1721 gen = q->gen; 1722 q->in_use += ndesc; 1723 pidx = q->pidx; 1724 q->pidx += ndesc; 1725 if (q->pidx >= q->size) { 1726 q->pidx -= q->size; 1727 q->gen ^= 1; 1728 } 1729 spin_unlock(&q->lock); 1730 1731 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head); 1732 check_ring_tx_db(adap, q); 1733 return NET_XMIT_SUCCESS; 1734 } 1735 1736 /** 1737 * restart_offloadq - restart a suspended offload queue 1738 * @w: pointer to the work associated with this handler 1739 * 1740 * Resumes transmission on a suspended Tx offload queue. 1741 */ 1742 static void restart_offloadq(struct work_struct *w) 1743 { 1744 struct sk_buff *skb; 1745 struct sge_qset *qs = container_of(w, struct sge_qset, 1746 txq[TXQ_OFLD].qresume_task); 1747 struct sge_txq *q = &qs->txq[TXQ_OFLD]; 1748 const struct port_info *pi = netdev_priv(qs->netdev); 1749 struct adapter *adap = pi->adapter; 1750 unsigned int written = 0; 1751 1752 spin_lock(&q->lock); 1753 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1754 1755 while ((skb = skb_peek(&q->sendq)) != NULL) { 1756 unsigned int gen, pidx; 1757 unsigned int ndesc = skb->priority; 1758 1759 if (unlikely(q->size - q->in_use < ndesc)) { 1760 set_bit(TXQ_OFLD, &qs->txq_stopped); 1761 smp_mb__after_atomic(); 1762 1763 if (should_restart_tx(q) && 1764 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) 1765 goto again; 1766 q->stops++; 1767 break; 1768 } 1769 1770 if (!immediate(skb) && 1771 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) 1772 break; 1773 1774 gen = q->gen; 1775 q->in_use += ndesc; 1776 pidx = q->pidx; 1777 q->pidx += ndesc; 1778 written += ndesc; 1779 if (q->pidx >= q->size) { 1780 q->pidx -= q->size; 1781 q->gen ^= 1; 1782 } 1783 __skb_unlink(skb, &q->sendq); 1784 spin_unlock(&q->lock); 1785 1786 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, 1787 (dma_addr_t *)skb->head); 1788 spin_lock(&q->lock); 1789 } 1790 spin_unlock(&q->lock); 1791 1792 #if USE_GTS 1793 set_bit(TXQ_RUNNING, &q->flags); 1794 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1795 #endif 1796 wmb(); 1797 if (likely(written)) 1798 t3_write_reg(adap, A_SG_KDOORBELL, 1799 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1800 } 1801 1802 /** 1803 * queue_set - return the queue set a packet should use 1804 * @skb: the packet 1805 * 1806 * Maps a packet to the SGE queue set it should use. The desired queue 1807 * set is carried in bits 1-3 in the packet's priority. 1808 */ 1809 static inline int queue_set(const struct sk_buff *skb) 1810 { 1811 return skb->priority >> 1; 1812 } 1813 1814 /** 1815 * is_ctrl_pkt - return whether an offload packet is a control packet 1816 * @skb: the packet 1817 * 1818 * Determines whether an offload packet should use an OFLD or a CTRL 1819 * Tx queue. This is indicated by bit 0 in the packet's priority. 1820 */ 1821 static inline int is_ctrl_pkt(const struct sk_buff *skb) 1822 { 1823 return skb->priority & 1; 1824 } 1825 1826 /** 1827 * t3_offload_tx - send an offload packet 1828 * @tdev: the offload device to send to 1829 * @skb: the packet 1830 * 1831 * Sends an offload packet. We use the packet priority to select the 1832 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1833 * should be sent as regular or control, bits 1-3 select the queue set. 1834 */ 1835 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 1836 { 1837 struct adapter *adap = tdev2adap(tdev); 1838 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; 1839 1840 if (unlikely(is_ctrl_pkt(skb))) 1841 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); 1842 1843 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); 1844 } 1845 1846 /** 1847 * offload_enqueue - add an offload packet to an SGE offload receive queue 1848 * @q: the SGE response queue 1849 * @skb: the packet 1850 * 1851 * Add a new offload packet to an SGE response queue's offload packet 1852 * queue. If the packet is the first on the queue it schedules the RX 1853 * softirq to process the queue. 1854 */ 1855 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) 1856 { 1857 int was_empty = skb_queue_empty(&q->rx_queue); 1858 1859 __skb_queue_tail(&q->rx_queue, skb); 1860 1861 if (was_empty) { 1862 struct sge_qset *qs = rspq_to_qset(q); 1863 1864 napi_schedule(&qs->napi); 1865 } 1866 } 1867 1868 /** 1869 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts 1870 * @tdev: the offload device that will be receiving the packets 1871 * @q: the SGE response queue that assembled the bundle 1872 * @skbs: the partial bundle 1873 * @n: the number of packets in the bundle 1874 * 1875 * Delivers a (partial) bundle of Rx offload packets to an offload device. 1876 */ 1877 static inline void deliver_partial_bundle(struct t3cdev *tdev, 1878 struct sge_rspq *q, 1879 struct sk_buff *skbs[], int n) 1880 { 1881 if (n) { 1882 q->offload_bundles++; 1883 tdev->recv(tdev, skbs, n); 1884 } 1885 } 1886 1887 /** 1888 * ofld_poll - NAPI handler for offload packets in interrupt mode 1889 * @napi: the network device doing the polling 1890 * @budget: polling budget 1891 * 1892 * The NAPI handler for offload packets when a response queue is serviced 1893 * by the hard interrupt handler, i.e., when it's operating in non-polling 1894 * mode. Creates small packet batches and sends them through the offload 1895 * receive handler. Batches need to be of modest size as we do prefetches 1896 * on the packets in each. 1897 */ 1898 static int ofld_poll(struct napi_struct *napi, int budget) 1899 { 1900 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 1901 struct sge_rspq *q = &qs->rspq; 1902 struct adapter *adapter = qs->adap; 1903 int work_done = 0; 1904 1905 while (work_done < budget) { 1906 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; 1907 struct sk_buff_head queue; 1908 int ngathered; 1909 1910 spin_lock_irq(&q->lock); 1911 __skb_queue_head_init(&queue); 1912 skb_queue_splice_init(&q->rx_queue, &queue); 1913 if (skb_queue_empty(&queue)) { 1914 napi_complete_done(napi, work_done); 1915 spin_unlock_irq(&q->lock); 1916 return work_done; 1917 } 1918 spin_unlock_irq(&q->lock); 1919 1920 ngathered = 0; 1921 skb_queue_walk_safe(&queue, skb, tmp) { 1922 if (work_done >= budget) 1923 break; 1924 work_done++; 1925 1926 __skb_unlink(skb, &queue); 1927 prefetch(skb->data); 1928 skbs[ngathered] = skb; 1929 if (++ngathered == RX_BUNDLE_SIZE) { 1930 q->offload_bundles++; 1931 adapter->tdev.recv(&adapter->tdev, skbs, 1932 ngathered); 1933 ngathered = 0; 1934 } 1935 } 1936 if (!skb_queue_empty(&queue)) { 1937 /* splice remaining packets back onto Rx queue */ 1938 spin_lock_irq(&q->lock); 1939 skb_queue_splice(&queue, &q->rx_queue); 1940 spin_unlock_irq(&q->lock); 1941 } 1942 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); 1943 } 1944 1945 return work_done; 1946 } 1947 1948 /** 1949 * rx_offload - process a received offload packet 1950 * @tdev: the offload device receiving the packet 1951 * @rq: the response queue that received the packet 1952 * @skb: the packet 1953 * @rx_gather: a gather list of packets if we are building a bundle 1954 * @gather_idx: index of the next available slot in the bundle 1955 * 1956 * Process an ingress offload pakcet and add it to the offload ingress 1957 * queue. Returns the index of the next available slot in the bundle. 1958 */ 1959 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, 1960 struct sk_buff *skb, struct sk_buff *rx_gather[], 1961 unsigned int gather_idx) 1962 { 1963 skb_reset_mac_header(skb); 1964 skb_reset_network_header(skb); 1965 skb_reset_transport_header(skb); 1966 1967 if (rq->polling) { 1968 rx_gather[gather_idx++] = skb; 1969 if (gather_idx == RX_BUNDLE_SIZE) { 1970 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); 1971 gather_idx = 0; 1972 rq->offload_bundles++; 1973 } 1974 } else 1975 offload_enqueue(rq, skb); 1976 1977 return gather_idx; 1978 } 1979 1980 /** 1981 * restart_tx - check whether to restart suspended Tx queues 1982 * @qs: the queue set to resume 1983 * 1984 * Restarts suspended Tx queues of an SGE queue set if they have enough 1985 * free resources to resume operation. 1986 */ 1987 static void restart_tx(struct sge_qset *qs) 1988 { 1989 if (test_bit(TXQ_ETH, &qs->txq_stopped) && 1990 should_restart_tx(&qs->txq[TXQ_ETH]) && 1991 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1992 qs->txq[TXQ_ETH].restarts++; 1993 if (netif_running(qs->netdev)) 1994 netif_tx_wake_queue(qs->tx_q); 1995 } 1996 1997 if (test_bit(TXQ_OFLD, &qs->txq_stopped) && 1998 should_restart_tx(&qs->txq[TXQ_OFLD]) && 1999 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { 2000 qs->txq[TXQ_OFLD].restarts++; 2001 2002 /* The work can be quite lengthy so we use driver's own queue */ 2003 queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task); 2004 } 2005 if (test_bit(TXQ_CTRL, &qs->txq_stopped) && 2006 should_restart_tx(&qs->txq[TXQ_CTRL]) && 2007 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { 2008 qs->txq[TXQ_CTRL].restarts++; 2009 2010 /* The work can be quite lengthy so we use driver's own queue */ 2011 queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task); 2012 } 2013 } 2014 2015 /** 2016 * cxgb3_arp_process - process an ARP request probing a private IP address 2017 * @pi: the port info 2018 * @skb: the skbuff containing the ARP request 2019 * 2020 * Check if the ARP request is probing the private IP address 2021 * dedicated to iSCSI, generate an ARP reply if so. 2022 */ 2023 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) 2024 { 2025 struct net_device *dev = skb->dev; 2026 struct arphdr *arp; 2027 unsigned char *arp_ptr; 2028 unsigned char *sha; 2029 __be32 sip, tip; 2030 2031 if (!dev) 2032 return; 2033 2034 skb_reset_network_header(skb); 2035 arp = arp_hdr(skb); 2036 2037 if (arp->ar_op != htons(ARPOP_REQUEST)) 2038 return; 2039 2040 arp_ptr = (unsigned char *)(arp + 1); 2041 sha = arp_ptr; 2042 arp_ptr += dev->addr_len; 2043 memcpy(&sip, arp_ptr, sizeof(sip)); 2044 arp_ptr += sizeof(sip); 2045 arp_ptr += dev->addr_len; 2046 memcpy(&tip, arp_ptr, sizeof(tip)); 2047 2048 if (tip != pi->iscsi_ipv4addr) 2049 return; 2050 2051 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, 2052 pi->iscsic.mac_addr, sha); 2053 2054 } 2055 2056 static inline int is_arp(struct sk_buff *skb) 2057 { 2058 return skb->protocol == htons(ETH_P_ARP); 2059 } 2060 2061 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, 2062 struct sk_buff *skb) 2063 { 2064 if (is_arp(skb)) { 2065 cxgb3_arp_process(pi, skb); 2066 return; 2067 } 2068 2069 if (pi->iscsic.recv) 2070 pi->iscsic.recv(pi, skb); 2071 2072 } 2073 2074 /** 2075 * rx_eth - process an ingress ethernet packet 2076 * @adap: the adapter 2077 * @rq: the response queue that received the packet 2078 * @skb: the packet 2079 * @pad: padding 2080 * @lro: large receive offload 2081 * 2082 * Process an ingress ethernet pakcet and deliver it to the stack. 2083 * The padding is 2 if the packet was delivered in an Rx buffer and 0 2084 * if it was immediate data in a response. 2085 */ 2086 static void rx_eth(struct adapter *adap, struct sge_rspq *rq, 2087 struct sk_buff *skb, int pad, int lro) 2088 { 2089 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); 2090 struct sge_qset *qs = rspq_to_qset(rq); 2091 struct port_info *pi; 2092 2093 skb_pull(skb, sizeof(*p) + pad); 2094 skb->protocol = eth_type_trans(skb, adap->port[p->iff]); 2095 pi = netdev_priv(skb->dev); 2096 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && 2097 p->csum == htons(0xffff) && !p->fragment) { 2098 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2099 skb->ip_summed = CHECKSUM_UNNECESSARY; 2100 } else 2101 skb_checksum_none_assert(skb); 2102 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2103 2104 if (p->vlan_valid) { 2105 qs->port_stats[SGE_PSTAT_VLANEX]++; 2106 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 2107 } 2108 if (rq->polling) { 2109 if (lro) 2110 napi_gro_receive(&qs->napi, skb); 2111 else { 2112 if (unlikely(pi->iscsic.flags)) 2113 cxgb3_process_iscsi_prov_pack(pi, skb); 2114 netif_receive_skb(skb); 2115 } 2116 } else 2117 netif_rx(skb); 2118 } 2119 2120 static inline int is_eth_tcp(u32 rss) 2121 { 2122 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; 2123 } 2124 2125 /** 2126 * lro_add_page - add a page chunk to an LRO session 2127 * @adap: the adapter 2128 * @qs: the associated queue set 2129 * @fl: the free list containing the page chunk to add 2130 * @len: packet length 2131 * @complete: Indicates the last fragment of a frame 2132 * 2133 * Add a received packet contained in a page chunk to an existing LRO 2134 * session. 2135 */ 2136 static void lro_add_page(struct adapter *adap, struct sge_qset *qs, 2137 struct sge_fl *fl, int len, int complete) 2138 { 2139 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2140 struct port_info *pi = netdev_priv(qs->netdev); 2141 struct sk_buff *skb = NULL; 2142 struct cpl_rx_pkt *cpl; 2143 skb_frag_t *rx_frag; 2144 int nr_frags; 2145 int offset = 0; 2146 2147 if (!qs->nomem) { 2148 skb = napi_get_frags(&qs->napi); 2149 qs->nomem = !skb; 2150 } 2151 2152 fl->credits--; 2153 2154 dma_sync_single_for_cpu(&adap->pdev->dev, 2155 dma_unmap_addr(sd, dma_addr), 2156 fl->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE); 2157 2158 (*sd->pg_chunk.p_cnt)--; 2159 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 2160 dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping, 2161 fl->alloc_size, DMA_FROM_DEVICE); 2162 2163 if (!skb) { 2164 put_page(sd->pg_chunk.page); 2165 if (complete) 2166 qs->nomem = 0; 2167 return; 2168 } 2169 2170 rx_frag = skb_shinfo(skb)->frags; 2171 nr_frags = skb_shinfo(skb)->nr_frags; 2172 2173 if (!nr_frags) { 2174 offset = 2 + sizeof(struct cpl_rx_pkt); 2175 cpl = qs->lro_va = sd->pg_chunk.va + 2; 2176 2177 if ((qs->netdev->features & NETIF_F_RXCSUM) && 2178 cpl->csum_valid && cpl->csum == htons(0xffff)) { 2179 skb->ip_summed = CHECKSUM_UNNECESSARY; 2180 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2181 } else 2182 skb->ip_summed = CHECKSUM_NONE; 2183 } else 2184 cpl = qs->lro_va; 2185 2186 len -= offset; 2187 2188 rx_frag += nr_frags; 2189 __skb_frag_set_page(rx_frag, sd->pg_chunk.page); 2190 skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset); 2191 skb_frag_size_set(rx_frag, len); 2192 2193 skb->len += len; 2194 skb->data_len += len; 2195 skb->truesize += len; 2196 skb_shinfo(skb)->nr_frags++; 2197 2198 if (!complete) 2199 return; 2200 2201 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2202 2203 if (cpl->vlan_valid) { 2204 qs->port_stats[SGE_PSTAT_VLANEX]++; 2205 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 2206 } 2207 napi_gro_frags(&qs->napi); 2208 } 2209 2210 /** 2211 * handle_rsp_cntrl_info - handles control information in a response 2212 * @qs: the queue set corresponding to the response 2213 * @flags: the response control flags 2214 * 2215 * Handles the control information of an SGE response, such as GTS 2216 * indications and completion credits for the queue set's Tx queues. 2217 * HW coalesces credits, we don't do any extra SW coalescing. 2218 */ 2219 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) 2220 { 2221 unsigned int credits; 2222 2223 #if USE_GTS 2224 if (flags & F_RSPD_TXQ0_GTS) 2225 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); 2226 #endif 2227 2228 credits = G_RSPD_TXQ0_CR(flags); 2229 if (credits) 2230 qs->txq[TXQ_ETH].processed += credits; 2231 2232 credits = G_RSPD_TXQ2_CR(flags); 2233 if (credits) 2234 qs->txq[TXQ_CTRL].processed += credits; 2235 2236 # if USE_GTS 2237 if (flags & F_RSPD_TXQ1_GTS) 2238 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); 2239 # endif 2240 credits = G_RSPD_TXQ1_CR(flags); 2241 if (credits) 2242 qs->txq[TXQ_OFLD].processed += credits; 2243 } 2244 2245 /** 2246 * check_ring_db - check if we need to ring any doorbells 2247 * @adap: the adapter 2248 * @qs: the queue set whose Tx queues are to be examined 2249 * @sleeping: indicates which Tx queue sent GTS 2250 * 2251 * Checks if some of a queue set's Tx queues need to ring their doorbells 2252 * to resume transmission after idling while they still have unprocessed 2253 * descriptors. 2254 */ 2255 static void check_ring_db(struct adapter *adap, struct sge_qset *qs, 2256 unsigned int sleeping) 2257 { 2258 if (sleeping & F_RSPD_TXQ0_GTS) { 2259 struct sge_txq *txq = &qs->txq[TXQ_ETH]; 2260 2261 if (txq->cleaned + txq->in_use != txq->processed && 2262 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2263 set_bit(TXQ_RUNNING, &txq->flags); 2264 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2265 V_EGRCNTX(txq->cntxt_id)); 2266 } 2267 } 2268 2269 if (sleeping & F_RSPD_TXQ1_GTS) { 2270 struct sge_txq *txq = &qs->txq[TXQ_OFLD]; 2271 2272 if (txq->cleaned + txq->in_use != txq->processed && 2273 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2274 set_bit(TXQ_RUNNING, &txq->flags); 2275 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2276 V_EGRCNTX(txq->cntxt_id)); 2277 } 2278 } 2279 } 2280 2281 /** 2282 * is_new_response - check if a response is newly written 2283 * @r: the response descriptor 2284 * @q: the response queue 2285 * 2286 * Returns true if a response descriptor contains a yet unprocessed 2287 * response. 2288 */ 2289 static inline int is_new_response(const struct rsp_desc *r, 2290 const struct sge_rspq *q) 2291 { 2292 return (r->intr_gen & F_RSPD_GEN2) == q->gen; 2293 } 2294 2295 static inline void clear_rspq_bufstate(struct sge_rspq * const q) 2296 { 2297 q->pg_skb = NULL; 2298 q->rx_recycle_buf = 0; 2299 } 2300 2301 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) 2302 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ 2303 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ 2304 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ 2305 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) 2306 2307 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ 2308 #define NOMEM_INTR_DELAY 2500 2309 2310 /** 2311 * process_responses - process responses from an SGE response queue 2312 * @adap: the adapter 2313 * @qs: the queue set to which the response queue belongs 2314 * @budget: how many responses can be processed in this round 2315 * 2316 * Process responses from an SGE response queue up to the supplied budget. 2317 * Responses include received packets as well as credits and other events 2318 * for the queues that belong to the response queue's queue set. 2319 * A negative budget is effectively unlimited. 2320 * 2321 * Additionally choose the interrupt holdoff time for the next interrupt 2322 * on this queue. If the system is under memory shortage use a fairly 2323 * long delay to help recovery. 2324 */ 2325 static int process_responses(struct adapter *adap, struct sge_qset *qs, 2326 int budget) 2327 { 2328 struct sge_rspq *q = &qs->rspq; 2329 struct rsp_desc *r = &q->desc[q->cidx]; 2330 int budget_left = budget; 2331 unsigned int sleeping = 0; 2332 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; 2333 int ngathered = 0; 2334 2335 q->next_holdoff = q->holdoff_tmr; 2336 2337 while (likely(budget_left && is_new_response(r, q))) { 2338 int packet_complete, eth, ethpad = 2; 2339 int lro = !!(qs->netdev->features & NETIF_F_GRO); 2340 struct sk_buff *skb = NULL; 2341 u32 len, flags; 2342 __be32 rss_hi, rss_lo; 2343 2344 dma_rmb(); 2345 eth = r->rss_hdr.opcode == CPL_RX_PKT; 2346 rss_hi = *(const __be32 *)r; 2347 rss_lo = r->rss_hdr.rss_hash_val; 2348 flags = ntohl(r->flags); 2349 2350 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { 2351 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); 2352 if (!skb) 2353 goto no_mem; 2354 2355 __skb_put_data(skb, r, AN_PKT_SIZE); 2356 skb->data[0] = CPL_ASYNC_NOTIF; 2357 rss_hi = htonl(CPL_ASYNC_NOTIF << 24); 2358 q->async_notif++; 2359 } else if (flags & F_RSPD_IMM_DATA_VALID) { 2360 skb = get_imm_packet(r); 2361 if (unlikely(!skb)) { 2362 no_mem: 2363 q->next_holdoff = NOMEM_INTR_DELAY; 2364 q->nomem++; 2365 /* consume one credit since we tried */ 2366 budget_left--; 2367 break; 2368 } 2369 q->imm_data++; 2370 ethpad = 0; 2371 } else if ((len = ntohl(r->len_cq)) != 0) { 2372 struct sge_fl *fl; 2373 2374 lro &= eth && is_eth_tcp(rss_hi); 2375 2376 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2377 if (fl->use_pages) { 2378 void *addr = fl->sdesc[fl->cidx].pg_chunk.va; 2379 2380 net_prefetch(addr); 2381 __refill_fl(adap, fl); 2382 if (lro > 0) { 2383 lro_add_page(adap, qs, fl, 2384 G_RSPD_LEN(len), 2385 flags & F_RSPD_EOP); 2386 goto next_fl; 2387 } 2388 2389 skb = get_packet_pg(adap, fl, q, 2390 G_RSPD_LEN(len), 2391 eth ? 2392 SGE_RX_DROP_THRES : 0); 2393 q->pg_skb = skb; 2394 } else 2395 skb = get_packet(adap, fl, G_RSPD_LEN(len), 2396 eth ? SGE_RX_DROP_THRES : 0); 2397 if (unlikely(!skb)) { 2398 if (!eth) 2399 goto no_mem; 2400 q->rx_drops++; 2401 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) 2402 __skb_pull(skb, 2); 2403 next_fl: 2404 if (++fl->cidx == fl->size) 2405 fl->cidx = 0; 2406 } else 2407 q->pure_rsps++; 2408 2409 if (flags & RSPD_CTRL_MASK) { 2410 sleeping |= flags & RSPD_GTS_MASK; 2411 handle_rsp_cntrl_info(qs, flags); 2412 } 2413 2414 r++; 2415 if (unlikely(++q->cidx == q->size)) { 2416 q->cidx = 0; 2417 q->gen ^= 1; 2418 r = q->desc; 2419 } 2420 prefetch(r); 2421 2422 if (++q->credits >= (q->size / 4)) { 2423 refill_rspq(adap, q, q->credits); 2424 q->credits = 0; 2425 } 2426 2427 packet_complete = flags & 2428 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | 2429 F_RSPD_ASYNC_NOTIF); 2430 2431 if (skb != NULL && packet_complete) { 2432 if (eth) 2433 rx_eth(adap, q, skb, ethpad, lro); 2434 else { 2435 q->offload_pkts++; 2436 /* Preserve the RSS info in csum & priority */ 2437 skb->csum = rss_hi; 2438 skb->priority = rss_lo; 2439 ngathered = rx_offload(&adap->tdev, q, skb, 2440 offload_skbs, 2441 ngathered); 2442 } 2443 2444 if (flags & F_RSPD_EOP) 2445 clear_rspq_bufstate(q); 2446 } 2447 --budget_left; 2448 } 2449 2450 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); 2451 2452 if (sleeping) 2453 check_ring_db(adap, qs, sleeping); 2454 2455 smp_mb(); /* commit Tx queue .processed updates */ 2456 if (unlikely(qs->txq_stopped != 0)) 2457 restart_tx(qs); 2458 2459 budget -= budget_left; 2460 return budget; 2461 } 2462 2463 static inline int is_pure_response(const struct rsp_desc *r) 2464 { 2465 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); 2466 2467 return (n | r->len_cq) == 0; 2468 } 2469 2470 /** 2471 * napi_rx_handler - the NAPI handler for Rx processing 2472 * @napi: the napi instance 2473 * @budget: how many packets we can process in this round 2474 * 2475 * Handler for new data events when using NAPI. 2476 */ 2477 static int napi_rx_handler(struct napi_struct *napi, int budget) 2478 { 2479 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 2480 struct adapter *adap = qs->adap; 2481 int work_done = process_responses(adap, qs, budget); 2482 2483 if (likely(work_done < budget)) { 2484 napi_complete_done(napi, work_done); 2485 2486 /* 2487 * Because we don't atomically flush the following 2488 * write it is possible that in very rare cases it can 2489 * reach the device in a way that races with a new 2490 * response being written plus an error interrupt 2491 * causing the NAPI interrupt handler below to return 2492 * unhandled status to the OS. To protect against 2493 * this would require flushing the write and doing 2494 * both the write and the flush with interrupts off. 2495 * Way too expensive and unjustifiable given the 2496 * rarity of the race. 2497 * 2498 * The race cannot happen at all with MSI-X. 2499 */ 2500 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | 2501 V_NEWTIMER(qs->rspq.next_holdoff) | 2502 V_NEWINDEX(qs->rspq.cidx)); 2503 } 2504 return work_done; 2505 } 2506 2507 /* 2508 * Returns true if the device is already scheduled for polling. 2509 */ 2510 static inline int napi_is_scheduled(struct napi_struct *napi) 2511 { 2512 return test_bit(NAPI_STATE_SCHED, &napi->state); 2513 } 2514 2515 /** 2516 * process_pure_responses - process pure responses from a response queue 2517 * @adap: the adapter 2518 * @qs: the queue set owning the response queue 2519 * @r: the first pure response to process 2520 * 2521 * A simpler version of process_responses() that handles only pure (i.e., 2522 * non data-carrying) responses. Such respones are too light-weight to 2523 * justify calling a softirq under NAPI, so we handle them specially in 2524 * the interrupt handler. The function is called with a pointer to a 2525 * response, which the caller must ensure is a valid pure response. 2526 * 2527 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. 2528 */ 2529 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, 2530 struct rsp_desc *r) 2531 { 2532 struct sge_rspq *q = &qs->rspq; 2533 unsigned int sleeping = 0; 2534 2535 do { 2536 u32 flags = ntohl(r->flags); 2537 2538 r++; 2539 if (unlikely(++q->cidx == q->size)) { 2540 q->cidx = 0; 2541 q->gen ^= 1; 2542 r = q->desc; 2543 } 2544 prefetch(r); 2545 2546 if (flags & RSPD_CTRL_MASK) { 2547 sleeping |= flags & RSPD_GTS_MASK; 2548 handle_rsp_cntrl_info(qs, flags); 2549 } 2550 2551 q->pure_rsps++; 2552 if (++q->credits >= (q->size / 4)) { 2553 refill_rspq(adap, q, q->credits); 2554 q->credits = 0; 2555 } 2556 if (!is_new_response(r, q)) 2557 break; 2558 dma_rmb(); 2559 } while (is_pure_response(r)); 2560 2561 if (sleeping) 2562 check_ring_db(adap, qs, sleeping); 2563 2564 smp_mb(); /* commit Tx queue .processed updates */ 2565 if (unlikely(qs->txq_stopped != 0)) 2566 restart_tx(qs); 2567 2568 return is_new_response(r, q); 2569 } 2570 2571 /** 2572 * handle_responses - decide what to do with new responses in NAPI mode 2573 * @adap: the adapter 2574 * @q: the response queue 2575 * 2576 * This is used by the NAPI interrupt handlers to decide what to do with 2577 * new SGE responses. If there are no new responses it returns -1. If 2578 * there are new responses and they are pure (i.e., non-data carrying) 2579 * it handles them straight in hard interrupt context as they are very 2580 * cheap and don't deliver any packets. Finally, if there are any data 2581 * signaling responses it schedules the NAPI handler. Returns 1 if it 2582 * schedules NAPI, 0 if all new responses were pure. 2583 * 2584 * The caller must ascertain NAPI is not already running. 2585 */ 2586 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) 2587 { 2588 struct sge_qset *qs = rspq_to_qset(q); 2589 struct rsp_desc *r = &q->desc[q->cidx]; 2590 2591 if (!is_new_response(r, q)) 2592 return -1; 2593 dma_rmb(); 2594 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { 2595 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2596 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); 2597 return 0; 2598 } 2599 napi_schedule(&qs->napi); 2600 return 1; 2601 } 2602 2603 /* 2604 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case 2605 * (i.e., response queue serviced in hard interrupt). 2606 */ 2607 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) 2608 { 2609 struct sge_qset *qs = cookie; 2610 struct adapter *adap = qs->adap; 2611 struct sge_rspq *q = &qs->rspq; 2612 2613 spin_lock(&q->lock); 2614 if (process_responses(adap, qs, -1) == 0) 2615 q->unhandled_irqs++; 2616 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2617 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2618 spin_unlock(&q->lock); 2619 return IRQ_HANDLED; 2620 } 2621 2622 /* 2623 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 2624 * (i.e., response queue serviced by NAPI polling). 2625 */ 2626 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) 2627 { 2628 struct sge_qset *qs = cookie; 2629 struct sge_rspq *q = &qs->rspq; 2630 2631 spin_lock(&q->lock); 2632 2633 if (handle_responses(qs->adap, q) < 0) 2634 q->unhandled_irqs++; 2635 spin_unlock(&q->lock); 2636 return IRQ_HANDLED; 2637 } 2638 2639 /* 2640 * The non-NAPI MSI interrupt handler. This needs to handle data events from 2641 * SGE response queues as well as error and other async events as they all use 2642 * the same MSI vector. We use one SGE response queue per port in this mode 2643 * and protect all response queues with queue 0's lock. 2644 */ 2645 static irqreturn_t t3_intr_msi(int irq, void *cookie) 2646 { 2647 int new_packets = 0; 2648 struct adapter *adap = cookie; 2649 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2650 2651 spin_lock(&q->lock); 2652 2653 if (process_responses(adap, &adap->sge.qs[0], -1)) { 2654 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2655 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2656 new_packets = 1; 2657 } 2658 2659 if (adap->params.nports == 2 && 2660 process_responses(adap, &adap->sge.qs[1], -1)) { 2661 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2662 2663 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | 2664 V_NEWTIMER(q1->next_holdoff) | 2665 V_NEWINDEX(q1->cidx)); 2666 new_packets = 1; 2667 } 2668 2669 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2670 q->unhandled_irqs++; 2671 2672 spin_unlock(&q->lock); 2673 return IRQ_HANDLED; 2674 } 2675 2676 static int rspq_check_napi(struct sge_qset *qs) 2677 { 2678 struct sge_rspq *q = &qs->rspq; 2679 2680 if (!napi_is_scheduled(&qs->napi) && 2681 is_new_response(&q->desc[q->cidx], q)) { 2682 napi_schedule(&qs->napi); 2683 return 1; 2684 } 2685 return 0; 2686 } 2687 2688 /* 2689 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced 2690 * by NAPI polling). Handles data events from SGE response queues as well as 2691 * error and other async events as they all use the same MSI vector. We use 2692 * one SGE response queue per port in this mode and protect all response 2693 * queues with queue 0's lock. 2694 */ 2695 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) 2696 { 2697 int new_packets; 2698 struct adapter *adap = cookie; 2699 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2700 2701 spin_lock(&q->lock); 2702 2703 new_packets = rspq_check_napi(&adap->sge.qs[0]); 2704 if (adap->params.nports == 2) 2705 new_packets += rspq_check_napi(&adap->sge.qs[1]); 2706 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2707 q->unhandled_irqs++; 2708 2709 spin_unlock(&q->lock); 2710 return IRQ_HANDLED; 2711 } 2712 2713 /* 2714 * A helper function that processes responses and issues GTS. 2715 */ 2716 static inline int process_responses_gts(struct adapter *adap, 2717 struct sge_rspq *rq) 2718 { 2719 int work; 2720 2721 work = process_responses(adap, rspq_to_qset(rq), -1); 2722 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | 2723 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); 2724 return work; 2725 } 2726 2727 /* 2728 * The legacy INTx interrupt handler. This needs to handle data events from 2729 * SGE response queues as well as error and other async events as they all use 2730 * the same interrupt pin. We use one SGE response queue per port in this mode 2731 * and protect all response queues with queue 0's lock. 2732 */ 2733 static irqreturn_t t3_intr(int irq, void *cookie) 2734 { 2735 int work_done, w0, w1; 2736 struct adapter *adap = cookie; 2737 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2738 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2739 2740 spin_lock(&q0->lock); 2741 2742 w0 = is_new_response(&q0->desc[q0->cidx], q0); 2743 w1 = adap->params.nports == 2 && 2744 is_new_response(&q1->desc[q1->cidx], q1); 2745 2746 if (likely(w0 | w1)) { 2747 t3_write_reg(adap, A_PL_CLI, 0); 2748 t3_read_reg(adap, A_PL_CLI); /* flush */ 2749 2750 if (likely(w0)) 2751 process_responses_gts(adap, q0); 2752 2753 if (w1) 2754 process_responses_gts(adap, q1); 2755 2756 work_done = w0 | w1; 2757 } else 2758 work_done = t3_slow_intr_handler(adap); 2759 2760 spin_unlock(&q0->lock); 2761 return IRQ_RETVAL(work_done != 0); 2762 } 2763 2764 /* 2765 * Interrupt handler for legacy INTx interrupts for T3B-based cards. 2766 * Handles data events from SGE response queues as well as error and other 2767 * async events as they all use the same interrupt pin. We use one SGE 2768 * response queue per port in this mode and protect all response queues with 2769 * queue 0's lock. 2770 */ 2771 static irqreturn_t t3b_intr(int irq, void *cookie) 2772 { 2773 u32 map; 2774 struct adapter *adap = cookie; 2775 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2776 2777 t3_write_reg(adap, A_PL_CLI, 0); 2778 map = t3_read_reg(adap, A_SG_DATA_INTR); 2779 2780 if (unlikely(!map)) /* shared interrupt, most likely */ 2781 return IRQ_NONE; 2782 2783 spin_lock(&q0->lock); 2784 2785 if (unlikely(map & F_ERRINTR)) 2786 t3_slow_intr_handler(adap); 2787 2788 if (likely(map & 1)) 2789 process_responses_gts(adap, q0); 2790 2791 if (map & 2) 2792 process_responses_gts(adap, &adap->sge.qs[1].rspq); 2793 2794 spin_unlock(&q0->lock); 2795 return IRQ_HANDLED; 2796 } 2797 2798 /* 2799 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. 2800 * Handles data events from SGE response queues as well as error and other 2801 * async events as they all use the same interrupt pin. We use one SGE 2802 * response queue per port in this mode and protect all response queues with 2803 * queue 0's lock. 2804 */ 2805 static irqreturn_t t3b_intr_napi(int irq, void *cookie) 2806 { 2807 u32 map; 2808 struct adapter *adap = cookie; 2809 struct sge_qset *qs0 = &adap->sge.qs[0]; 2810 struct sge_rspq *q0 = &qs0->rspq; 2811 2812 t3_write_reg(adap, A_PL_CLI, 0); 2813 map = t3_read_reg(adap, A_SG_DATA_INTR); 2814 2815 if (unlikely(!map)) /* shared interrupt, most likely */ 2816 return IRQ_NONE; 2817 2818 spin_lock(&q0->lock); 2819 2820 if (unlikely(map & F_ERRINTR)) 2821 t3_slow_intr_handler(adap); 2822 2823 if (likely(map & 1)) 2824 napi_schedule(&qs0->napi); 2825 2826 if (map & 2) 2827 napi_schedule(&adap->sge.qs[1].napi); 2828 2829 spin_unlock(&q0->lock); 2830 return IRQ_HANDLED; 2831 } 2832 2833 /** 2834 * t3_intr_handler - select the top-level interrupt handler 2835 * @adap: the adapter 2836 * @polling: whether using NAPI to service response queues 2837 * 2838 * Selects the top-level interrupt handler based on the type of interrupts 2839 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the 2840 * response queues. 2841 */ 2842 irq_handler_t t3_intr_handler(struct adapter *adap, int polling) 2843 { 2844 if (adap->flags & USING_MSIX) 2845 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; 2846 if (adap->flags & USING_MSI) 2847 return polling ? t3_intr_msi_napi : t3_intr_msi; 2848 if (adap->params.rev > 0) 2849 return polling ? t3b_intr_napi : t3b_intr; 2850 return t3_intr; 2851 } 2852 2853 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 2854 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 2855 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 2856 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 2857 F_HIRCQPARITYERROR) 2858 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) 2859 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ 2860 F_RSPQDISABLED) 2861 2862 /** 2863 * t3_sge_err_intr_handler - SGE async event interrupt handler 2864 * @adapter: the adapter 2865 * 2866 * Interrupt handler for SGE asynchronous (non-data) events. 2867 */ 2868 void t3_sge_err_intr_handler(struct adapter *adapter) 2869 { 2870 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & 2871 ~F_FLEMPTY; 2872 2873 if (status & SGE_PARERR) 2874 CH_ALERT(adapter, "SGE parity error (0x%x)\n", 2875 status & SGE_PARERR); 2876 if (status & SGE_FRAMINGERR) 2877 CH_ALERT(adapter, "SGE framing error (0x%x)\n", 2878 status & SGE_FRAMINGERR); 2879 2880 if (status & F_RSPQCREDITOVERFOW) 2881 CH_ALERT(adapter, "SGE response queue credit overflow\n"); 2882 2883 if (status & F_RSPQDISABLED) { 2884 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); 2885 2886 CH_ALERT(adapter, 2887 "packet delivered to disabled response queue " 2888 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); 2889 } 2890 2891 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) 2892 queue_work(cxgb3_wq, &adapter->db_drop_task); 2893 2894 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) 2895 queue_work(cxgb3_wq, &adapter->db_full_task); 2896 2897 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) 2898 queue_work(cxgb3_wq, &adapter->db_empty_task); 2899 2900 t3_write_reg(adapter, A_SG_INT_CAUSE, status); 2901 if (status & SGE_FATALERR) 2902 t3_fatal_err(adapter); 2903 } 2904 2905 /** 2906 * sge_timer_tx - perform periodic maintenance of an SGE qset 2907 * @t: a timer list containing the SGE queue set to maintain 2908 * 2909 * Runs periodically from a timer to perform maintenance of an SGE queue 2910 * set. It performs two tasks: 2911 * 2912 * Cleans up any completed Tx descriptors that may still be pending. 2913 * Normal descriptor cleanup happens when new packets are added to a Tx 2914 * queue so this timer is relatively infrequent and does any cleanup only 2915 * if the Tx queue has not seen any new packets in a while. We make a 2916 * best effort attempt to reclaim descriptors, in that we don't wait 2917 * around if we cannot get a queue's lock (which most likely is because 2918 * someone else is queueing new packets and so will also handle the clean 2919 * up). Since control queues use immediate data exclusively we don't 2920 * bother cleaning them up here. 2921 * 2922 */ 2923 static void sge_timer_tx(struct timer_list *t) 2924 { 2925 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer); 2926 struct port_info *pi = netdev_priv(qs->netdev); 2927 struct adapter *adap = pi->adapter; 2928 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; 2929 unsigned long next_period; 2930 2931 if (__netif_tx_trylock(qs->tx_q)) { 2932 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], 2933 TX_RECLAIM_TIMER_CHUNK); 2934 __netif_tx_unlock(qs->tx_q); 2935 } 2936 2937 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { 2938 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], 2939 TX_RECLAIM_TIMER_CHUNK); 2940 spin_unlock(&qs->txq[TXQ_OFLD].lock); 2941 } 2942 2943 next_period = TX_RECLAIM_PERIOD >> 2944 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / 2945 TX_RECLAIM_TIMER_CHUNK); 2946 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); 2947 } 2948 2949 /** 2950 * sge_timer_rx - perform periodic maintenance of an SGE qset 2951 * @t: the timer list containing the SGE queue set to maintain 2952 * 2953 * a) Replenishes Rx queues that have run out due to memory shortage. 2954 * Normally new Rx buffers are added when existing ones are consumed but 2955 * when out of memory a queue can become empty. We try to add only a few 2956 * buffers here, the queue will be replenished fully as these new buffers 2957 * are used up if memory shortage has subsided. 2958 * 2959 * b) Return coalesced response queue credits in case a response queue is 2960 * starved. 2961 * 2962 */ 2963 static void sge_timer_rx(struct timer_list *t) 2964 { 2965 spinlock_t *lock; 2966 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer); 2967 struct port_info *pi = netdev_priv(qs->netdev); 2968 struct adapter *adap = pi->adapter; 2969 u32 status; 2970 2971 lock = adap->params.rev > 0 ? 2972 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; 2973 2974 if (!spin_trylock_irq(lock)) 2975 goto out; 2976 2977 if (napi_is_scheduled(&qs->napi)) 2978 goto unlock; 2979 2980 if (adap->params.rev < 4) { 2981 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); 2982 2983 if (status & (1 << qs->rspq.cntxt_id)) { 2984 qs->rspq.starved++; 2985 if (qs->rspq.credits) { 2986 qs->rspq.credits--; 2987 refill_rspq(adap, &qs->rspq, 1); 2988 qs->rspq.restarted++; 2989 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, 2990 1 << qs->rspq.cntxt_id); 2991 } 2992 } 2993 } 2994 2995 if (qs->fl[0].credits < qs->fl[0].size) 2996 __refill_fl(adap, &qs->fl[0]); 2997 if (qs->fl[1].credits < qs->fl[1].size) 2998 __refill_fl(adap, &qs->fl[1]); 2999 3000 unlock: 3001 spin_unlock_irq(lock); 3002 out: 3003 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 3004 } 3005 3006 /** 3007 * t3_update_qset_coalesce - update coalescing settings for a queue set 3008 * @qs: the SGE queue set 3009 * @p: new queue set parameters 3010 * 3011 * Update the coalescing settings for an SGE queue set. Nothing is done 3012 * if the queue set is not initialized yet. 3013 */ 3014 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) 3015 { 3016 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ 3017 qs->rspq.polling = p->polling; 3018 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; 3019 } 3020 3021 /** 3022 * t3_sge_alloc_qset - initialize an SGE queue set 3023 * @adapter: the adapter 3024 * @id: the queue set id 3025 * @nports: how many Ethernet ports will be using this queue set 3026 * @irq_vec_idx: the IRQ vector index for response queue interrupts 3027 * @p: configuration parameters for this queue set 3028 * @ntxq: number of Tx queues for the queue set 3029 * @dev: net device associated with this queue set 3030 * @netdevq: net device TX queue associated with this queue set 3031 * 3032 * Allocate resources and initialize an SGE queue set. A queue set 3033 * comprises a response queue, two Rx free-buffer queues, and up to 3 3034 * Tx queues. The Tx queues are assigned roles in the order Ethernet 3035 * queue, offload queue, and control queue. 3036 */ 3037 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, 3038 int irq_vec_idx, const struct qset_params *p, 3039 int ntxq, struct net_device *dev, 3040 struct netdev_queue *netdevq) 3041 { 3042 int i, avail, ret = -ENOMEM; 3043 struct sge_qset *q = &adapter->sge.qs[id]; 3044 3045 init_qset_cntxt(q, id); 3046 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0); 3047 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0); 3048 3049 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, 3050 sizeof(struct rx_desc), 3051 sizeof(struct rx_sw_desc), 3052 &q->fl[0].phys_addr, &q->fl[0].sdesc); 3053 if (!q->fl[0].desc) 3054 goto err; 3055 3056 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, 3057 sizeof(struct rx_desc), 3058 sizeof(struct rx_sw_desc), 3059 &q->fl[1].phys_addr, &q->fl[1].sdesc); 3060 if (!q->fl[1].desc) 3061 goto err; 3062 3063 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, 3064 sizeof(struct rsp_desc), 0, 3065 &q->rspq.phys_addr, NULL); 3066 if (!q->rspq.desc) 3067 goto err; 3068 3069 for (i = 0; i < ntxq; ++i) { 3070 /* 3071 * The control queue always uses immediate data so does not 3072 * need to keep track of any sk_buffs. 3073 */ 3074 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); 3075 3076 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], 3077 sizeof(struct tx_desc), sz, 3078 &q->txq[i].phys_addr, 3079 &q->txq[i].sdesc); 3080 if (!q->txq[i].desc) 3081 goto err; 3082 3083 q->txq[i].gen = 1; 3084 q->txq[i].size = p->txq_size[i]; 3085 spin_lock_init(&q->txq[i].lock); 3086 skb_queue_head_init(&q->txq[i].sendq); 3087 } 3088 3089 INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq); 3090 INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq); 3091 3092 q->fl[0].gen = q->fl[1].gen = 1; 3093 q->fl[0].size = p->fl_size; 3094 q->fl[1].size = p->jumbo_size; 3095 3096 q->rspq.gen = 1; 3097 q->rspq.size = p->rspq_size; 3098 spin_lock_init(&q->rspq.lock); 3099 skb_queue_head_init(&q->rspq.rx_queue); 3100 3101 q->txq[TXQ_ETH].stop_thres = nports * 3102 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); 3103 3104 #if FL0_PG_CHUNK_SIZE > 0 3105 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; 3106 #else 3107 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); 3108 #endif 3109 #if FL1_PG_CHUNK_SIZE > 0 3110 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; 3111 #else 3112 q->fl[1].buf_size = is_offload(adapter) ? 3113 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 3114 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); 3115 #endif 3116 3117 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; 3118 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; 3119 q->fl[0].order = FL0_PG_ORDER; 3120 q->fl[1].order = FL1_PG_ORDER; 3121 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; 3122 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; 3123 3124 spin_lock_irq(&adapter->sge.reg_lock); 3125 3126 /* FL threshold comparison uses < */ 3127 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, 3128 q->rspq.phys_addr, q->rspq.size, 3129 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); 3130 if (ret) 3131 goto err_unlock; 3132 3133 for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 3134 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, 3135 q->fl[i].phys_addr, q->fl[i].size, 3136 q->fl[i].buf_size - SGE_PG_RSVD, 3137 p->cong_thres, 1, 0); 3138 if (ret) 3139 goto err_unlock; 3140 } 3141 3142 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, 3143 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, 3144 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 3145 1, 0); 3146 if (ret) 3147 goto err_unlock; 3148 3149 if (ntxq > 1) { 3150 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, 3151 USE_GTS, SGE_CNTXT_OFLD, id, 3152 q->txq[TXQ_OFLD].phys_addr, 3153 q->txq[TXQ_OFLD].size, 0, 1, 0); 3154 if (ret) 3155 goto err_unlock; 3156 } 3157 3158 if (ntxq > 2) { 3159 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, 3160 SGE_CNTXT_CTRL, id, 3161 q->txq[TXQ_CTRL].phys_addr, 3162 q->txq[TXQ_CTRL].size, 3163 q->txq[TXQ_CTRL].token, 1, 0); 3164 if (ret) 3165 goto err_unlock; 3166 } 3167 3168 spin_unlock_irq(&adapter->sge.reg_lock); 3169 3170 q->adap = adapter; 3171 q->netdev = dev; 3172 q->tx_q = netdevq; 3173 t3_update_qset_coalesce(q, p); 3174 3175 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, 3176 GFP_KERNEL | __GFP_COMP); 3177 if (!avail) { 3178 CH_ALERT(adapter, "free list queue 0 initialization failed\n"); 3179 ret = -ENOMEM; 3180 goto err; 3181 } 3182 if (avail < q->fl[0].size) 3183 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", 3184 avail); 3185 3186 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, 3187 GFP_KERNEL | __GFP_COMP); 3188 if (avail < q->fl[1].size) 3189 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", 3190 avail); 3191 refill_rspq(adapter, &q->rspq, q->rspq.size - 1); 3192 3193 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | 3194 V_NEWTIMER(q->rspq.holdoff_tmr)); 3195 3196 return 0; 3197 3198 err_unlock: 3199 spin_unlock_irq(&adapter->sge.reg_lock); 3200 err: 3201 t3_free_qset(adapter, q); 3202 return ret; 3203 } 3204 3205 /** 3206 * t3_start_sge_timers - start SGE timer call backs 3207 * @adap: the adapter 3208 * 3209 * Starts each SGE queue set's timer call back 3210 */ 3211 void t3_start_sge_timers(struct adapter *adap) 3212 { 3213 int i; 3214 3215 for (i = 0; i < SGE_QSETS; ++i) { 3216 struct sge_qset *q = &adap->sge.qs[i]; 3217 3218 if (q->tx_reclaim_timer.function) 3219 mod_timer(&q->tx_reclaim_timer, 3220 jiffies + TX_RECLAIM_PERIOD); 3221 3222 if (q->rx_reclaim_timer.function) 3223 mod_timer(&q->rx_reclaim_timer, 3224 jiffies + RX_RECLAIM_PERIOD); 3225 } 3226 } 3227 3228 /** 3229 * t3_stop_sge_timers - stop SGE timer call backs 3230 * @adap: the adapter 3231 * 3232 * Stops each SGE queue set's timer call back 3233 */ 3234 void t3_stop_sge_timers(struct adapter *adap) 3235 { 3236 int i; 3237 3238 for (i = 0; i < SGE_QSETS; ++i) { 3239 struct sge_qset *q = &adap->sge.qs[i]; 3240 3241 if (q->tx_reclaim_timer.function) 3242 del_timer_sync(&q->tx_reclaim_timer); 3243 if (q->rx_reclaim_timer.function) 3244 del_timer_sync(&q->rx_reclaim_timer); 3245 } 3246 } 3247 3248 /** 3249 * t3_free_sge_resources - free SGE resources 3250 * @adap: the adapter 3251 * 3252 * Frees resources used by the SGE queue sets. 3253 */ 3254 void t3_free_sge_resources(struct adapter *adap) 3255 { 3256 int i; 3257 3258 for (i = 0; i < SGE_QSETS; ++i) 3259 t3_free_qset(adap, &adap->sge.qs[i]); 3260 } 3261 3262 /** 3263 * t3_sge_start - enable SGE 3264 * @adap: the adapter 3265 * 3266 * Enables the SGE for DMAs. This is the last step in starting packet 3267 * transfers. 3268 */ 3269 void t3_sge_start(struct adapter *adap) 3270 { 3271 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); 3272 } 3273 3274 /** 3275 * t3_sge_stop_dma - Disable SGE DMA engine operation 3276 * @adap: the adapter 3277 * 3278 * Can be invoked from interrupt context e.g. error handler. 3279 * 3280 * Note that this function cannot disable the restart of works as 3281 * it cannot wait if called from interrupt context, however the 3282 * works will have no effect since the doorbells are disabled. The 3283 * driver will call tg3_sge_stop() later from process context, at 3284 * which time the works will be stopped if they are still running. 3285 */ 3286 void t3_sge_stop_dma(struct adapter *adap) 3287 { 3288 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); 3289 } 3290 3291 /** 3292 * t3_sge_stop - disable SGE operation completly 3293 * @adap: the adapter 3294 * 3295 * Called from process context. Disables the DMA engine and any 3296 * pending queue restart works. 3297 */ 3298 void t3_sge_stop(struct adapter *adap) 3299 { 3300 int i; 3301 3302 t3_sge_stop_dma(adap); 3303 3304 /* workqueues aren't initialized otherwise */ 3305 if (!(adap->flags & FULL_INIT_DONE)) 3306 return; 3307 for (i = 0; i < SGE_QSETS; ++i) { 3308 struct sge_qset *qs = &adap->sge.qs[i]; 3309 3310 cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task); 3311 cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task); 3312 } 3313 } 3314 3315 /** 3316 * t3_sge_init - initialize SGE 3317 * @adap: the adapter 3318 * @p: the SGE parameters 3319 * 3320 * Performs SGE initialization needed every time after a chip reset. 3321 * We do not initialize any of the queue sets here, instead the driver 3322 * top-level must request those individually. We also do not enable DMA 3323 * here, that should be done after the queues have been set up. 3324 */ 3325 void t3_sge_init(struct adapter *adap, struct sge_params *p) 3326 { 3327 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); 3328 3329 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | 3330 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | 3331 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | 3332 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; 3333 #if SGE_NUM_GENBITS == 1 3334 ctrl |= F_EGRGENCTRL; 3335 #endif 3336 if (adap->params.rev > 0) { 3337 if (!(adap->flags & (USING_MSIX | USING_MSI))) 3338 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; 3339 } 3340 t3_write_reg(adap, A_SG_CONTROL, ctrl); 3341 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | 3342 V_LORCQDRBTHRSH(512)); 3343 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); 3344 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | 3345 V_TIMEOUT(200 * core_ticks_per_usec(adap))); 3346 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 3347 adap->params.rev < T3_REV_C ? 1000 : 500); 3348 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); 3349 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); 3350 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); 3351 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); 3352 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); 3353 } 3354 3355 /** 3356 * t3_sge_prep - one-time SGE initialization 3357 * @adap: the associated adapter 3358 * @p: SGE parameters 3359 * 3360 * Performs one-time initialization of SGE SW state. Includes determining 3361 * defaults for the assorted SGE parameters, which admins can change until 3362 * they are used to initialize the SGE. 3363 */ 3364 void t3_sge_prep(struct adapter *adap, struct sge_params *p) 3365 { 3366 int i; 3367 3368 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - 3369 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3370 3371 for (i = 0; i < SGE_QSETS; ++i) { 3372 struct qset_params *q = p->qset + i; 3373 3374 q->polling = adap->params.rev > 0; 3375 q->coalesce_usecs = 5; 3376 q->rspq_size = 1024; 3377 q->fl_size = 1024; 3378 q->jumbo_size = 512; 3379 q->txq_size[TXQ_ETH] = 1024; 3380 q->txq_size[TXQ_OFLD] = 1024; 3381 q->txq_size[TXQ_CTRL] = 256; 3382 q->cong_thres = 0; 3383 } 3384 3385 spin_lock_init(&adap->sge.reg_lock); 3386 } 3387