1 /*
2  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48 
49 #define USE_GTS 0
50 
51 #define SGE_RX_SM_BUF_SIZE 1536
52 
53 #define SGE_RX_COPY_THRES  256
54 #define SGE_RX_PULL_LEN    128
55 
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
60  * directly.
61  */
62 #define FL0_PG_CHUNK_SIZE  2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68 
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71 
72 /*
73  * Max number of Rx buffers we replenish at a time.
74  */
75 #define MAX_RX_REFILL 16U
76 /*
77  * Period of the Tx buffer reclaim timer.  This timer does not need to run
78  * frequently as Tx buffers are usually reclaimed by new Tx packets.
79  */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83 
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86 
87 /*
88  * Types of Tx queues in each queue set.  Order here matters, do not change.
89  */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91 
92 /* Values for sge_txq.flags */
93 enum {
94 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
95 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
96 };
97 
98 struct tx_desc {
99 	__be64 flit[TX_DESC_FLITS];
100 };
101 
102 struct rx_desc {
103 	__be32 addr_lo;
104 	__be32 len_gen;
105 	__be32 gen2;
106 	__be32 addr_hi;
107 };
108 
109 struct tx_sw_desc {		/* SW state per Tx descriptor */
110 	struct sk_buff *skb;
111 	u8 eop;       /* set if last descriptor for packet */
112 	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
113 	u8 fragidx;   /* first page fragment associated with descriptor */
114 	s8 sflit;     /* start flit of first SGL entry in descriptor */
115 };
116 
117 struct rx_sw_desc {                /* SW state per Rx descriptor */
118 	union {
119 		struct sk_buff *skb;
120 		struct fl_pg_chunk pg_chunk;
121 	};
122 	DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124 
125 struct rsp_desc {		/* response queue descriptor */
126 	struct rss_header rss_hdr;
127 	__be32 flags;
128 	__be32 len_cq;
129 	u8 imm_data[47];
130 	u8 intr_gen;
131 };
132 
133 /*
134  * Holds unmapping information for Tx packets that need deferred unmapping.
135  * This structure lives at skb->head and must be allocated by callers.
136  */
137 struct deferred_unmap_info {
138 	struct pci_dev *pdev;
139 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
140 };
141 
142 /*
143  * Maps a number of flits to the number of Tx descriptors that can hold them.
144  * The formula is
145  *
146  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147  *
148  * HW allows up to 4 descriptors to be combined into a WR.
149  */
150 static u8 flit_desc_map[] = {
151 	0,
152 #if SGE_NUM_GENBITS == 1
153 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 #else
163 # error "SGE_NUM_GENBITS must be 1 or 2"
164 #endif
165 };
166 
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
168 {
169 	return container_of(q, struct sge_qset, fl[qidx]);
170 }
171 
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
173 {
174 	return container_of(q, struct sge_qset, rspq);
175 }
176 
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
178 {
179 	return container_of(q, struct sge_qset, txq[qidx]);
180 }
181 
182 /**
183  *	refill_rspq - replenish an SGE response queue
184  *	@adapter: the adapter
185  *	@q: the response queue to replenish
186  *	@credits: how many new responses to make available
187  *
188  *	Replenishes a response queue by making the supplied number of responses
189  *	available to HW.
190  */
191 static inline void refill_rspq(struct adapter *adapter,
192 			       const struct sge_rspq *q, unsigned int credits)
193 {
194 	rmb();
195 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197 }
198 
199 /**
200  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
201  *
202  *	Returns true if the platform needs sk_buff unmapping.  The compiler
203  *	optimizes away unnecessary code if this returns true.
204  */
205 static inline int need_skb_unmap(void)
206 {
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
208 	return 1;
209 #else
210 	return 0;
211 #endif
212 }
213 
214 /**
215  *	unmap_skb - unmap a packet main body and its page fragments
216  *	@skb: the packet
217  *	@q: the Tx queue containing Tx descriptors for the packet
218  *	@cidx: index of Tx descriptor
219  *	@pdev: the PCI device
220  *
221  *	Unmap the main body of an sk_buff and its page fragments, if any.
222  *	Because of the fairly complicated structure of our SGLs and the desire
223  *	to conserve space for metadata, the information necessary to unmap an
224  *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225  *	descriptors (the physical addresses of the various data buffers), and
226  *	the SW descriptor state (assorted indices).  The send functions
227  *	initialize the indices for the first packet descriptor so we can unmap
228  *	the buffers held in the first Tx descriptor here, and we have enough
229  *	information at this point to set the state for the next Tx descriptor.
230  *
231  *	Note that it is possible to clean up the first descriptor of a packet
232  *	before the send routines have written the next descriptors, but this
233  *	race does not cause any problem.  We just end up writing the unmapping
234  *	info for the descriptor first.
235  */
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 			     unsigned int cidx, struct pci_dev *pdev)
238 {
239 	const struct sg_ent *sgp;
240 	struct tx_sw_desc *d = &q->sdesc[cidx];
241 	int nfrags, frag_idx, curflit, j = d->addr_idx;
242 
243 	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 	frag_idx = d->fragidx;
245 
246 	if (frag_idx == 0 && skb_headlen(skb)) {
247 		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 				 skb_headlen(skb), PCI_DMA_TODEVICE);
249 		j = 1;
250 	}
251 
252 	curflit = d->sflit + 1 + j;
253 	nfrags = skb_shinfo(skb)->nr_frags;
254 
255 	while (frag_idx < nfrags && curflit < WR_FLITS) {
256 		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 			       skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258 			       PCI_DMA_TODEVICE);
259 		j ^= 1;
260 		if (j == 0) {
261 			sgp++;
262 			curflit++;
263 		}
264 		curflit++;
265 		frag_idx++;
266 	}
267 
268 	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
269 		d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 		d->fragidx = frag_idx;
271 		d->addr_idx = j;
272 		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
273 	}
274 }
275 
276 /**
277  *	free_tx_desc - reclaims Tx descriptors and their buffers
278  *	@adapter: the adapter
279  *	@q: the Tx queue to reclaim descriptors from
280  *	@n: the number of descriptors to reclaim
281  *
282  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283  *	Tx buffers.  Called with the Tx queue lock held.
284  */
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 			 unsigned int n)
287 {
288 	struct tx_sw_desc *d;
289 	struct pci_dev *pdev = adapter->pdev;
290 	unsigned int cidx = q->cidx;
291 
292 	const int need_unmap = need_skb_unmap() &&
293 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
294 
295 	d = &q->sdesc[cidx];
296 	while (n--) {
297 		if (d->skb) {	/* an SGL is present */
298 			if (need_unmap)
299 				unmap_skb(d->skb, q, cidx, pdev);
300 			if (d->eop) {
301 				dev_consume_skb_any(d->skb);
302 				d->skb = NULL;
303 			}
304 		}
305 		++d;
306 		if (++cidx == q->size) {
307 			cidx = 0;
308 			d = q->sdesc;
309 		}
310 	}
311 	q->cidx = cidx;
312 }
313 
314 /**
315  *	reclaim_completed_tx - reclaims completed Tx descriptors
316  *	@adapter: the adapter
317  *	@q: the Tx queue to reclaim completed descriptors from
318  *	@chunk: maximum number of descriptors to reclaim
319  *
320  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
321  *	and frees the associated buffers if possible.  Called with the Tx
322  *	queue's lock held.
323  */
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 						struct sge_txq *q,
326 						unsigned int chunk)
327 {
328 	unsigned int reclaim = q->processed - q->cleaned;
329 
330 	reclaim = min(chunk, reclaim);
331 	if (reclaim) {
332 		free_tx_desc(adapter, q, reclaim);
333 		q->cleaned += reclaim;
334 		q->in_use -= reclaim;
335 	}
336 	return q->processed - q->cleaned;
337 }
338 
339 /**
340  *	should_restart_tx - are there enough resources to restart a Tx queue?
341  *	@q: the Tx queue
342  *
343  *	Checks if there are enough descriptors to restart a suspended Tx queue.
344  */
345 static inline int should_restart_tx(const struct sge_txq *q)
346 {
347 	unsigned int r = q->processed - q->cleaned;
348 
349 	return q->in_use - r < (q->size >> 1);
350 }
351 
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 			  struct rx_sw_desc *d)
354 {
355 	if (q->use_pages && d->pg_chunk.page) {
356 		(*d->pg_chunk.p_cnt)--;
357 		if (!*d->pg_chunk.p_cnt)
358 			pci_unmap_page(pdev,
359 				       d->pg_chunk.mapping,
360 				       q->alloc_size, PCI_DMA_FROMDEVICE);
361 
362 		put_page(d->pg_chunk.page);
363 		d->pg_chunk.page = NULL;
364 	} else {
365 		pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 				 q->buf_size, PCI_DMA_FROMDEVICE);
367 		kfree_skb(d->skb);
368 		d->skb = NULL;
369 	}
370 }
371 
372 /**
373  *	free_rx_bufs - free the Rx buffers on an SGE free list
374  *	@pdev: the PCI device associated with the adapter
375  *	@rxq: the SGE free list to clean up
376  *
377  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
378  *	this queue should be stopped before calling this function.
379  */
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381 {
382 	unsigned int cidx = q->cidx;
383 
384 	while (q->credits--) {
385 		struct rx_sw_desc *d = &q->sdesc[cidx];
386 
387 
388 		clear_rx_desc(pdev, q, d);
389 		if (++cidx == q->size)
390 			cidx = 0;
391 	}
392 
393 	if (q->pg_chunk.page) {
394 		__free_pages(q->pg_chunk.page, q->order);
395 		q->pg_chunk.page = NULL;
396 	}
397 }
398 
399 /**
400  *	add_one_rx_buf - add a packet buffer to a free-buffer list
401  *	@va:  buffer start VA
402  *	@len: the buffer length
403  *	@d: the HW Rx descriptor to write
404  *	@sd: the SW Rx descriptor to write
405  *	@gen: the generation bit value
406  *	@pdev: the PCI device associated with the adapter
407  *
408  *	Add a buffer of the given length to the supplied HW and SW Rx
409  *	descriptors.
410  */
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 				 struct rx_desc *d, struct rx_sw_desc *sd,
413 				 unsigned int gen, struct pci_dev *pdev)
414 {
415 	dma_addr_t mapping;
416 
417 	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 	if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 		return -ENOMEM;
420 
421 	dma_unmap_addr_set(sd, dma_addr, mapping);
422 
423 	d->addr_lo = cpu_to_be32(mapping);
424 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 	dma_wmb();
426 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 	return 0;
429 }
430 
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 				   unsigned int gen)
433 {
434 	d->addr_lo = cpu_to_be32(mapping);
435 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 	dma_wmb();
437 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 	return 0;
440 }
441 
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 			  struct rx_sw_desc *sd, gfp_t gfp,
444 			  unsigned int order)
445 {
446 	if (!q->pg_chunk.page) {
447 		dma_addr_t mapping;
448 
449 		q->pg_chunk.page = alloc_pages(gfp, order);
450 		if (unlikely(!q->pg_chunk.page))
451 			return -ENOMEM;
452 		q->pg_chunk.va = page_address(q->pg_chunk.page);
453 		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 				    SGE_PG_RSVD;
455 		q->pg_chunk.offset = 0;
456 		mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 				       0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 		if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
459 			__free_pages(q->pg_chunk.page, order);
460 			q->pg_chunk.page = NULL;
461 			return -EIO;
462 		}
463 		q->pg_chunk.mapping = mapping;
464 	}
465 	sd->pg_chunk = q->pg_chunk;
466 
467 	prefetch(sd->pg_chunk.p_cnt);
468 
469 	q->pg_chunk.offset += q->buf_size;
470 	if (q->pg_chunk.offset == (PAGE_SIZE << order))
471 		q->pg_chunk.page = NULL;
472 	else {
473 		q->pg_chunk.va += q->buf_size;
474 		get_page(q->pg_chunk.page);
475 	}
476 
477 	if (sd->pg_chunk.offset == 0)
478 		*sd->pg_chunk.p_cnt = 1;
479 	else
480 		*sd->pg_chunk.p_cnt += 1;
481 
482 	return 0;
483 }
484 
485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
486 {
487 	if (q->pend_cred >= q->credits / 4) {
488 		q->pend_cred = 0;
489 		wmb();
490 		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
491 	}
492 }
493 
494 /**
495  *	refill_fl - refill an SGE free-buffer list
496  *	@adapter: the adapter
497  *	@q: the free-list to refill
498  *	@n: the number of new buffers to allocate
499  *	@gfp: the gfp flags for allocating new buffers
500  *
501  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
502  *	allocated with the supplied gfp flags.  The caller must assure that
503  *	@n does not exceed the queue's capacity.
504  */
505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
506 {
507 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
508 	struct rx_desc *d = &q->desc[q->pidx];
509 	unsigned int count = 0;
510 
511 	while (n--) {
512 		dma_addr_t mapping;
513 		int err;
514 
515 		if (q->use_pages) {
516 			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
517 						    q->order))) {
518 nomem:				q->alloc_failed++;
519 				break;
520 			}
521 			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
522 			dma_unmap_addr_set(sd, dma_addr, mapping);
523 
524 			add_one_rx_chunk(mapping, d, q->gen);
525 			pci_dma_sync_single_for_device(adap->pdev, mapping,
526 						q->buf_size - SGE_PG_RSVD,
527 						PCI_DMA_FROMDEVICE);
528 		} else {
529 			void *buf_start;
530 
531 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
532 			if (!skb)
533 				goto nomem;
534 
535 			sd->skb = skb;
536 			buf_start = skb->data;
537 			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
538 					     q->gen, adap->pdev);
539 			if (unlikely(err)) {
540 				clear_rx_desc(adap->pdev, q, sd);
541 				break;
542 			}
543 		}
544 
545 		d++;
546 		sd++;
547 		if (++q->pidx == q->size) {
548 			q->pidx = 0;
549 			q->gen ^= 1;
550 			sd = q->sdesc;
551 			d = q->desc;
552 		}
553 		count++;
554 	}
555 
556 	q->credits += count;
557 	q->pend_cred += count;
558 	ring_fl_db(adap, q);
559 
560 	return count;
561 }
562 
563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
564 {
565 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
566 		  GFP_ATOMIC | __GFP_COMP);
567 }
568 
569 /**
570  *	recycle_rx_buf - recycle a receive buffer
571  *	@adapter: the adapter
572  *	@q: the SGE free list
573  *	@idx: index of buffer to recycle
574  *
575  *	Recycles the specified buffer on the given free list by adding it at
576  *	the next available slot on the list.
577  */
578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
579 			   unsigned int idx)
580 {
581 	struct rx_desc *from = &q->desc[idx];
582 	struct rx_desc *to = &q->desc[q->pidx];
583 
584 	q->sdesc[q->pidx] = q->sdesc[idx];
585 	to->addr_lo = from->addr_lo;	/* already big endian */
586 	to->addr_hi = from->addr_hi;	/* likewise */
587 	dma_wmb();
588 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
589 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
590 
591 	if (++q->pidx == q->size) {
592 		q->pidx = 0;
593 		q->gen ^= 1;
594 	}
595 
596 	q->credits++;
597 	q->pend_cred++;
598 	ring_fl_db(adap, q);
599 }
600 
601 /**
602  *	alloc_ring - allocate resources for an SGE descriptor ring
603  *	@pdev: the PCI device
604  *	@nelem: the number of descriptors
605  *	@elem_size: the size of each descriptor
606  *	@sw_size: the size of the SW state associated with each ring element
607  *	@phys: the physical address of the allocated ring
608  *	@metadata: address of the array holding the SW state for the ring
609  *
610  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
611  *	free buffer lists, or response queues.  Each SGE ring requires
612  *	space for its HW descriptors plus, optionally, space for the SW state
613  *	associated with each HW entry (the metadata).  The function returns
614  *	three values: the virtual address for the HW ring (the return value
615  *	of the function), the physical address of the HW ring, and the address
616  *	of the SW ring.
617  */
618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
619 			size_t sw_size, dma_addr_t * phys, void *metadata)
620 {
621 	size_t len = nelem * elem_size;
622 	void *s = NULL;
623 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
624 
625 	if (!p)
626 		return NULL;
627 	if (sw_size && metadata) {
628 		s = kcalloc(nelem, sw_size, GFP_KERNEL);
629 
630 		if (!s) {
631 			dma_free_coherent(&pdev->dev, len, p, *phys);
632 			return NULL;
633 		}
634 		*(void **)metadata = s;
635 	}
636 	memset(p, 0, len);
637 	return p;
638 }
639 
640 /**
641  *	t3_reset_qset - reset a sge qset
642  *	@q: the queue set
643  *
644  *	Reset the qset structure.
645  *	the NAPI structure is preserved in the event of
646  *	the qset's reincarnation, for example during EEH recovery.
647  */
648 static void t3_reset_qset(struct sge_qset *q)
649 {
650 	if (q->adap &&
651 	    !(q->adap->flags & NAPI_INIT)) {
652 		memset(q, 0, sizeof(*q));
653 		return;
654 	}
655 
656 	q->adap = NULL;
657 	memset(&q->rspq, 0, sizeof(q->rspq));
658 	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
659 	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
660 	q->txq_stopped = 0;
661 	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
662 	q->rx_reclaim_timer.function = NULL;
663 	q->nomem = 0;
664 	napi_free_frags(&q->napi);
665 }
666 
667 
668 /**
669  *	free_qset - free the resources of an SGE queue set
670  *	@adapter: the adapter owning the queue set
671  *	@q: the queue set
672  *
673  *	Release the HW and SW resources associated with an SGE queue set, such
674  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
675  *	queue set must be quiesced prior to calling this.
676  */
677 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
678 {
679 	int i;
680 	struct pci_dev *pdev = adapter->pdev;
681 
682 	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
683 		if (q->fl[i].desc) {
684 			spin_lock_irq(&adapter->sge.reg_lock);
685 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
686 			spin_unlock_irq(&adapter->sge.reg_lock);
687 			free_rx_bufs(pdev, &q->fl[i]);
688 			kfree(q->fl[i].sdesc);
689 			dma_free_coherent(&pdev->dev,
690 					  q->fl[i].size *
691 					  sizeof(struct rx_desc), q->fl[i].desc,
692 					  q->fl[i].phys_addr);
693 		}
694 
695 	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
696 		if (q->txq[i].desc) {
697 			spin_lock_irq(&adapter->sge.reg_lock);
698 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
699 			spin_unlock_irq(&adapter->sge.reg_lock);
700 			if (q->txq[i].sdesc) {
701 				free_tx_desc(adapter, &q->txq[i],
702 					     q->txq[i].in_use);
703 				kfree(q->txq[i].sdesc);
704 			}
705 			dma_free_coherent(&pdev->dev,
706 					  q->txq[i].size *
707 					  sizeof(struct tx_desc),
708 					  q->txq[i].desc, q->txq[i].phys_addr);
709 			__skb_queue_purge(&q->txq[i].sendq);
710 		}
711 
712 	if (q->rspq.desc) {
713 		spin_lock_irq(&adapter->sge.reg_lock);
714 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
715 		spin_unlock_irq(&adapter->sge.reg_lock);
716 		dma_free_coherent(&pdev->dev,
717 				  q->rspq.size * sizeof(struct rsp_desc),
718 				  q->rspq.desc, q->rspq.phys_addr);
719 	}
720 
721 	t3_reset_qset(q);
722 }
723 
724 /**
725  *	init_qset_cntxt - initialize an SGE queue set context info
726  *	@qs: the queue set
727  *	@id: the queue set id
728  *
729  *	Initializes the TIDs and context ids for the queues of a queue set.
730  */
731 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
732 {
733 	qs->rspq.cntxt_id = id;
734 	qs->fl[0].cntxt_id = 2 * id;
735 	qs->fl[1].cntxt_id = 2 * id + 1;
736 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
737 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
738 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
739 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
740 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
741 }
742 
743 /**
744  *	sgl_len - calculates the size of an SGL of the given capacity
745  *	@n: the number of SGL entries
746  *
747  *	Calculates the number of flits needed for a scatter/gather list that
748  *	can hold the given number of entries.
749  */
750 static inline unsigned int sgl_len(unsigned int n)
751 {
752 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
753 	return (3 * n) / 2 + (n & 1);
754 }
755 
756 /**
757  *	flits_to_desc - returns the num of Tx descriptors for the given flits
758  *	@n: the number of flits
759  *
760  *	Calculates the number of Tx descriptors needed for the supplied number
761  *	of flits.
762  */
763 static inline unsigned int flits_to_desc(unsigned int n)
764 {
765 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
766 	return flit_desc_map[n];
767 }
768 
769 /**
770  *	get_packet - return the next ingress packet buffer from a free list
771  *	@adap: the adapter that received the packet
772  *	@fl: the SGE free list holding the packet
773  *	@len: the packet length including any SGE padding
774  *	@drop_thres: # of remaining buffers before we start dropping packets
775  *
776  *	Get the next packet from a free list and complete setup of the
777  *	sk_buff.  If the packet is small we make a copy and recycle the
778  *	original buffer, otherwise we use the original buffer itself.  If a
779  *	positive drop threshold is supplied packets are dropped and their
780  *	buffers recycled if (a) the number of remaining buffers is under the
781  *	threshold and the packet is too big to copy, or (b) the packet should
782  *	be copied but there is no memory for the copy.
783  */
784 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
785 				  unsigned int len, unsigned int drop_thres)
786 {
787 	struct sk_buff *skb = NULL;
788 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
789 
790 	prefetch(sd->skb->data);
791 	fl->credits--;
792 
793 	if (len <= SGE_RX_COPY_THRES) {
794 		skb = alloc_skb(len, GFP_ATOMIC);
795 		if (likely(skb != NULL)) {
796 			__skb_put(skb, len);
797 			pci_dma_sync_single_for_cpu(adap->pdev,
798 					    dma_unmap_addr(sd, dma_addr), len,
799 					    PCI_DMA_FROMDEVICE);
800 			memcpy(skb->data, sd->skb->data, len);
801 			pci_dma_sync_single_for_device(adap->pdev,
802 					    dma_unmap_addr(sd, dma_addr), len,
803 					    PCI_DMA_FROMDEVICE);
804 		} else if (!drop_thres)
805 			goto use_orig_buf;
806 recycle:
807 		recycle_rx_buf(adap, fl, fl->cidx);
808 		return skb;
809 	}
810 
811 	if (unlikely(fl->credits < drop_thres) &&
812 	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
813 		      GFP_ATOMIC | __GFP_COMP) == 0)
814 		goto recycle;
815 
816 use_orig_buf:
817 	pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
818 			 fl->buf_size, PCI_DMA_FROMDEVICE);
819 	skb = sd->skb;
820 	skb_put(skb, len);
821 	__refill_fl(adap, fl);
822 	return skb;
823 }
824 
825 /**
826  *	get_packet_pg - return the next ingress packet buffer from a free list
827  *	@adap: the adapter that received the packet
828  *	@fl: the SGE free list holding the packet
829  *	@len: the packet length including any SGE padding
830  *	@drop_thres: # of remaining buffers before we start dropping packets
831  *
832  *	Get the next packet from a free list populated with page chunks.
833  *	If the packet is small we make a copy and recycle the original buffer,
834  *	otherwise we attach the original buffer as a page fragment to a fresh
835  *	sk_buff.  If a positive drop threshold is supplied packets are dropped
836  *	and their buffers recycled if (a) the number of remaining buffers is
837  *	under the threshold and the packet is too big to copy, or (b) there's
838  *	no system memory.
839  *
840  * 	Note: this function is similar to @get_packet but deals with Rx buffers
841  * 	that are page chunks rather than sk_buffs.
842  */
843 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
844 				     struct sge_rspq *q, unsigned int len,
845 				     unsigned int drop_thres)
846 {
847 	struct sk_buff *newskb, *skb;
848 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
849 
850 	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
851 
852 	newskb = skb = q->pg_skb;
853 	if (!skb && (len <= SGE_RX_COPY_THRES)) {
854 		newskb = alloc_skb(len, GFP_ATOMIC);
855 		if (likely(newskb != NULL)) {
856 			__skb_put(newskb, len);
857 			pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
858 					    PCI_DMA_FROMDEVICE);
859 			memcpy(newskb->data, sd->pg_chunk.va, len);
860 			pci_dma_sync_single_for_device(adap->pdev, dma_addr,
861 						       len,
862 						       PCI_DMA_FROMDEVICE);
863 		} else if (!drop_thres)
864 			return NULL;
865 recycle:
866 		fl->credits--;
867 		recycle_rx_buf(adap, fl, fl->cidx);
868 		q->rx_recycle_buf++;
869 		return newskb;
870 	}
871 
872 	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
873 		goto recycle;
874 
875 	prefetch(sd->pg_chunk.p_cnt);
876 
877 	if (!skb)
878 		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
879 
880 	if (unlikely(!newskb)) {
881 		if (!drop_thres)
882 			return NULL;
883 		goto recycle;
884 	}
885 
886 	pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
887 				    PCI_DMA_FROMDEVICE);
888 	(*sd->pg_chunk.p_cnt)--;
889 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
890 		pci_unmap_page(adap->pdev,
891 			       sd->pg_chunk.mapping,
892 			       fl->alloc_size,
893 			       PCI_DMA_FROMDEVICE);
894 	if (!skb) {
895 		__skb_put(newskb, SGE_RX_PULL_LEN);
896 		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
897 		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
898 				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
899 				   len - SGE_RX_PULL_LEN);
900 		newskb->len = len;
901 		newskb->data_len = len - SGE_RX_PULL_LEN;
902 		newskb->truesize += newskb->data_len;
903 	} else {
904 		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
905 				   sd->pg_chunk.page,
906 				   sd->pg_chunk.offset, len);
907 		newskb->len += len;
908 		newskb->data_len += len;
909 		newskb->truesize += len;
910 	}
911 
912 	fl->credits--;
913 	/*
914 	 * We do not refill FLs here, we let the caller do it to overlap a
915 	 * prefetch.
916 	 */
917 	return newskb;
918 }
919 
920 /**
921  *	get_imm_packet - return the next ingress packet buffer from a response
922  *	@resp: the response descriptor containing the packet data
923  *
924  *	Return a packet containing the immediate data of the given response.
925  */
926 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
927 {
928 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
929 
930 	if (skb) {
931 		__skb_put(skb, IMMED_PKT_SIZE);
932 		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
933 	}
934 	return skb;
935 }
936 
937 /**
938  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
939  *	@skb: the packet
940  *
941  * 	Returns the number of Tx descriptors needed for the given Ethernet
942  * 	packet.  Ethernet packets require addition of WR and CPL headers.
943  */
944 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
945 {
946 	unsigned int flits;
947 
948 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
949 		return 1;
950 
951 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
952 	if (skb_shinfo(skb)->gso_size)
953 		flits++;
954 	return flits_to_desc(flits);
955 }
956 
957 /*	map_skb - map a packet main body and its page fragments
958  *	@pdev: the PCI device
959  *	@skb: the packet
960  *	@addr: placeholder to save the mapped addresses
961  *
962  *	map the main body of an sk_buff and its page fragments, if any.
963  */
964 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
965 		   dma_addr_t *addr)
966 {
967 	const skb_frag_t *fp, *end;
968 	const struct skb_shared_info *si;
969 
970 	if (skb_headlen(skb)) {
971 		*addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
972 				       PCI_DMA_TODEVICE);
973 		if (pci_dma_mapping_error(pdev, *addr))
974 			goto out_err;
975 		addr++;
976 	}
977 
978 	si = skb_shinfo(skb);
979 	end = &si->frags[si->nr_frags];
980 
981 	for (fp = si->frags; fp < end; fp++) {
982 		*addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
983 					 DMA_TO_DEVICE);
984 		if (pci_dma_mapping_error(pdev, *addr))
985 			goto unwind;
986 		addr++;
987 	}
988 	return 0;
989 
990 unwind:
991 	while (fp-- > si->frags)
992 		dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
993 			       DMA_TO_DEVICE);
994 
995 	pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
996 out_err:
997 	return -ENOMEM;
998 }
999 
1000 /**
1001  *	write_sgl - populate a scatter/gather list for a packet
1002  *	@skb: the packet
1003  *	@sgp: the SGL to populate
1004  *	@start: start address of skb main body data to include in the SGL
1005  *	@len: length of skb main body data to include in the SGL
1006  *	@addr: the list of the mapped addresses
1007  *
1008  *	Copies the scatter/gather list for the buffers that make up a packet
1009  *	and returns the SGL size in 8-byte words.  The caller must size the SGL
1010  *	appropriately.
1011  */
1012 static inline unsigned int write_sgl(const struct sk_buff *skb,
1013 				     struct sg_ent *sgp, unsigned char *start,
1014 				     unsigned int len, const dma_addr_t *addr)
1015 {
1016 	unsigned int i, j = 0, k = 0, nfrags;
1017 
1018 	if (len) {
1019 		sgp->len[0] = cpu_to_be32(len);
1020 		sgp->addr[j++] = cpu_to_be64(addr[k++]);
1021 	}
1022 
1023 	nfrags = skb_shinfo(skb)->nr_frags;
1024 	for (i = 0; i < nfrags; i++) {
1025 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1026 
1027 		sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1028 		sgp->addr[j] = cpu_to_be64(addr[k++]);
1029 		j ^= 1;
1030 		if (j == 0)
1031 			++sgp;
1032 	}
1033 	if (j)
1034 		sgp->len[j] = 0;
1035 	return ((nfrags + (len != 0)) * 3) / 2 + j;
1036 }
1037 
1038 /**
1039  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1040  *	@adap: the adapter
1041  *	@q: the Tx queue
1042  *
1043  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1044  *	where the HW is going to sleep just after we checked, however,
1045  *	then the interrupt handler will detect the outstanding TX packet
1046  *	and ring the doorbell for us.
1047  *
1048  *	When GTS is disabled we unconditionally ring the doorbell.
1049  */
1050 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1051 {
1052 #if USE_GTS
1053 	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1054 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1055 		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1056 		t3_write_reg(adap, A_SG_KDOORBELL,
1057 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1058 	}
1059 #else
1060 	wmb();			/* write descriptors before telling HW */
1061 	t3_write_reg(adap, A_SG_KDOORBELL,
1062 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1063 #endif
1064 }
1065 
1066 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1067 {
1068 #if SGE_NUM_GENBITS == 2
1069 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1070 #endif
1071 }
1072 
1073 /**
1074  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1075  *	@ndesc: number of Tx descriptors spanned by the SGL
1076  *	@skb: the packet corresponding to the WR
1077  *	@d: first Tx descriptor to be written
1078  *	@pidx: index of above descriptors
1079  *	@q: the SGE Tx queue
1080  *	@sgl: the SGL
1081  *	@flits: number of flits to the start of the SGL in the first descriptor
1082  *	@sgl_flits: the SGL size in flits
1083  *	@gen: the Tx descriptor generation
1084  *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1085  *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1086  *
1087  *	Write a work request header and an associated SGL.  If the SGL is
1088  *	small enough to fit into one Tx descriptor it has already been written
1089  *	and we just need to write the WR header.  Otherwise we distribute the
1090  *	SGL across the number of descriptors it spans.
1091  */
1092 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1093 			     struct tx_desc *d, unsigned int pidx,
1094 			     const struct sge_txq *q,
1095 			     const struct sg_ent *sgl,
1096 			     unsigned int flits, unsigned int sgl_flits,
1097 			     unsigned int gen, __be32 wr_hi,
1098 			     __be32 wr_lo)
1099 {
1100 	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1101 	struct tx_sw_desc *sd = &q->sdesc[pidx];
1102 
1103 	sd->skb = skb;
1104 	if (need_skb_unmap()) {
1105 		sd->fragidx = 0;
1106 		sd->addr_idx = 0;
1107 		sd->sflit = flits;
1108 	}
1109 
1110 	if (likely(ndesc == 1)) {
1111 		sd->eop = 1;
1112 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1113 				   V_WR_SGLSFLT(flits)) | wr_hi;
1114 		dma_wmb();
1115 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1116 				   V_WR_GEN(gen)) | wr_lo;
1117 		wr_gen2(d, gen);
1118 	} else {
1119 		unsigned int ogen = gen;
1120 		const u64 *fp = (const u64 *)sgl;
1121 		struct work_request_hdr *wp = wrp;
1122 
1123 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1124 				   V_WR_SGLSFLT(flits)) | wr_hi;
1125 
1126 		while (sgl_flits) {
1127 			unsigned int avail = WR_FLITS - flits;
1128 
1129 			if (avail > sgl_flits)
1130 				avail = sgl_flits;
1131 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1132 			sgl_flits -= avail;
1133 			ndesc--;
1134 			if (!sgl_flits)
1135 				break;
1136 
1137 			fp += avail;
1138 			d++;
1139 			sd->eop = 0;
1140 			sd++;
1141 			if (++pidx == q->size) {
1142 				pidx = 0;
1143 				gen ^= 1;
1144 				d = q->desc;
1145 				sd = q->sdesc;
1146 			}
1147 
1148 			sd->skb = skb;
1149 			wrp = (struct work_request_hdr *)d;
1150 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1151 					   V_WR_SGLSFLT(1)) | wr_hi;
1152 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1153 							sgl_flits + 1)) |
1154 					   V_WR_GEN(gen)) | wr_lo;
1155 			wr_gen2(d, gen);
1156 			flits = 1;
1157 		}
1158 		sd->eop = 1;
1159 		wrp->wr_hi |= htonl(F_WR_EOP);
1160 		dma_wmb();
1161 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1162 		wr_gen2((struct tx_desc *)wp, ogen);
1163 		WARN_ON(ndesc != 0);
1164 	}
1165 }
1166 
1167 /**
1168  *	write_tx_pkt_wr - write a TX_PKT work request
1169  *	@adap: the adapter
1170  *	@skb: the packet to send
1171  *	@pi: the egress interface
1172  *	@pidx: index of the first Tx descriptor to write
1173  *	@gen: the generation value to use
1174  *	@q: the Tx queue
1175  *	@ndesc: number of descriptors the packet will occupy
1176  *	@compl: the value of the COMPL bit to use
1177  *
1178  *	Generate a TX_PKT work request to send the supplied packet.
1179  */
1180 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1181 			    const struct port_info *pi,
1182 			    unsigned int pidx, unsigned int gen,
1183 			    struct sge_txq *q, unsigned int ndesc,
1184 			    unsigned int compl, const dma_addr_t *addr)
1185 {
1186 	unsigned int flits, sgl_flits, cntrl, tso_info;
1187 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1188 	struct tx_desc *d = &q->desc[pidx];
1189 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1190 
1191 	cpl->len = htonl(skb->len);
1192 	cntrl = V_TXPKT_INTF(pi->port_id);
1193 
1194 	if (skb_vlan_tag_present(skb))
1195 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1196 
1197 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1198 	if (tso_info) {
1199 		int eth_type;
1200 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1201 
1202 		d->flit[2] = 0;
1203 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1204 		hdr->cntrl = htonl(cntrl);
1205 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1206 		    CPL_ETH_II : CPL_ETH_II_VLAN;
1207 		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1208 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1209 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1210 		hdr->lso_info = htonl(tso_info);
1211 		flits = 3;
1212 	} else {
1213 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1214 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1215 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1216 		cpl->cntrl = htonl(cntrl);
1217 
1218 		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1219 			q->sdesc[pidx].skb = NULL;
1220 			if (!skb->data_len)
1221 				skb_copy_from_linear_data(skb, &d->flit[2],
1222 							  skb->len);
1223 			else
1224 				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1225 
1226 			flits = (skb->len + 7) / 8 + 2;
1227 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1228 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1229 					      | F_WR_SOP | F_WR_EOP | compl);
1230 			dma_wmb();
1231 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1232 					      V_WR_TID(q->token));
1233 			wr_gen2(d, gen);
1234 			dev_consume_skb_any(skb);
1235 			return;
1236 		}
1237 
1238 		flits = 2;
1239 	}
1240 
1241 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1242 	sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1243 
1244 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1245 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1246 			 htonl(V_WR_TID(q->token)));
1247 }
1248 
1249 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1250 				    struct sge_qset *qs, struct sge_txq *q)
1251 {
1252 	netif_tx_stop_queue(txq);
1253 	set_bit(TXQ_ETH, &qs->txq_stopped);
1254 	q->stops++;
1255 }
1256 
1257 /**
1258  *	eth_xmit - add a packet to the Ethernet Tx queue
1259  *	@skb: the packet
1260  *	@dev: the egress net device
1261  *
1262  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1263  */
1264 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1265 {
1266 	int qidx;
1267 	unsigned int ndesc, pidx, credits, gen, compl;
1268 	const struct port_info *pi = netdev_priv(dev);
1269 	struct adapter *adap = pi->adapter;
1270 	struct netdev_queue *txq;
1271 	struct sge_qset *qs;
1272 	struct sge_txq *q;
1273 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1274 
1275 	/*
1276 	 * The chip min packet length is 9 octets but play safe and reject
1277 	 * anything shorter than an Ethernet header.
1278 	 */
1279 	if (unlikely(skb->len < ETH_HLEN)) {
1280 		dev_kfree_skb_any(skb);
1281 		return NETDEV_TX_OK;
1282 	}
1283 
1284 	qidx = skb_get_queue_mapping(skb);
1285 	qs = &pi->qs[qidx];
1286 	q = &qs->txq[TXQ_ETH];
1287 	txq = netdev_get_tx_queue(dev, qidx);
1288 
1289 	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1290 
1291 	credits = q->size - q->in_use;
1292 	ndesc = calc_tx_descs(skb);
1293 
1294 	if (unlikely(credits < ndesc)) {
1295 		t3_stop_tx_queue(txq, qs, q);
1296 		dev_err(&adap->pdev->dev,
1297 			"%s: Tx ring %u full while queue awake!\n",
1298 			dev->name, q->cntxt_id & 7);
1299 		return NETDEV_TX_BUSY;
1300 	}
1301 
1302 	/* Check if ethernet packet can't be sent as immediate data */
1303 	if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1304 		if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1305 			dev_kfree_skb(skb);
1306 			return NETDEV_TX_OK;
1307 		}
1308 	}
1309 
1310 	q->in_use += ndesc;
1311 	if (unlikely(credits - ndesc < q->stop_thres)) {
1312 		t3_stop_tx_queue(txq, qs, q);
1313 
1314 		if (should_restart_tx(q) &&
1315 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1316 			q->restarts++;
1317 			netif_tx_start_queue(txq);
1318 		}
1319 	}
1320 
1321 	gen = q->gen;
1322 	q->unacked += ndesc;
1323 	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1324 	q->unacked &= 7;
1325 	pidx = q->pidx;
1326 	q->pidx += ndesc;
1327 	if (q->pidx >= q->size) {
1328 		q->pidx -= q->size;
1329 		q->gen ^= 1;
1330 	}
1331 
1332 	/* update port statistics */
1333 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1334 		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1335 	if (skb_shinfo(skb)->gso_size)
1336 		qs->port_stats[SGE_PSTAT_TSO]++;
1337 	if (skb_vlan_tag_present(skb))
1338 		qs->port_stats[SGE_PSTAT_VLANINS]++;
1339 
1340 	/*
1341 	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1342 	 * This is good for performance but means that we rely on new Tx
1343 	 * packets arriving to run the destructors of completed packets,
1344 	 * which open up space in their sockets' send queues.  Sometimes
1345 	 * we do not get such new packets causing Tx to stall.  A single
1346 	 * UDP transmitter is a good example of this situation.  We have
1347 	 * a clean up timer that periodically reclaims completed packets
1348 	 * but it doesn't run often enough (nor do we want it to) to prevent
1349 	 * lengthy stalls.  A solution to this problem is to run the
1350 	 * destructor early, after the packet is queued but before it's DMAd.
1351 	 * A cons is that we lie to socket memory accounting, but the amount
1352 	 * of extra memory is reasonable (limited by the number of Tx
1353 	 * descriptors), the packets do actually get freed quickly by new
1354 	 * packets almost always, and for protocols like TCP that wait for
1355 	 * acks to really free up the data the extra memory is even less.
1356 	 * On the positive side we run the destructors on the sending CPU
1357 	 * rather than on a potentially different completing CPU, usually a
1358 	 * good thing.  We also run them without holding our Tx queue lock,
1359 	 * unlike what reclaim_completed_tx() would otherwise do.
1360 	 *
1361 	 * Run the destructor before telling the DMA engine about the packet
1362 	 * to make sure it doesn't complete and get freed prematurely.
1363 	 */
1364 	if (likely(!skb_shared(skb)))
1365 		skb_orphan(skb);
1366 
1367 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1368 	check_ring_tx_db(adap, q);
1369 	return NETDEV_TX_OK;
1370 }
1371 
1372 /**
1373  *	write_imm - write a packet into a Tx descriptor as immediate data
1374  *	@d: the Tx descriptor to write
1375  *	@skb: the packet
1376  *	@len: the length of packet data to write as immediate data
1377  *	@gen: the generation bit value to write
1378  *
1379  *	Writes a packet as immediate data into a Tx descriptor.  The packet
1380  *	contains a work request at its beginning.  We must write the packet
1381  *	carefully so the SGE doesn't read it accidentally before it's written
1382  *	in its entirety.
1383  */
1384 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1385 			     unsigned int len, unsigned int gen)
1386 {
1387 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1388 	struct work_request_hdr *to = (struct work_request_hdr *)d;
1389 
1390 	if (likely(!skb->data_len))
1391 		memcpy(&to[1], &from[1], len - sizeof(*from));
1392 	else
1393 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1394 
1395 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1396 					V_WR_BCNTLFLT(len & 7));
1397 	dma_wmb();
1398 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1399 					V_WR_LEN((len + 7) / 8));
1400 	wr_gen2(d, gen);
1401 	kfree_skb(skb);
1402 }
1403 
1404 /**
1405  *	check_desc_avail - check descriptor availability on a send queue
1406  *	@adap: the adapter
1407  *	@q: the send queue
1408  *	@skb: the packet needing the descriptors
1409  *	@ndesc: the number of Tx descriptors needed
1410  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1411  *
1412  *	Checks if the requested number of Tx descriptors is available on an
1413  *	SGE send queue.  If the queue is already suspended or not enough
1414  *	descriptors are available the packet is queued for later transmission.
1415  *	Must be called with the Tx queue locked.
1416  *
1417  *	Returns 0 if enough descriptors are available, 1 if there aren't
1418  *	enough descriptors and the packet has been queued, and 2 if the caller
1419  *	needs to retry because there weren't enough descriptors at the
1420  *	beginning of the call but some freed up in the mean time.
1421  */
1422 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1423 				   struct sk_buff *skb, unsigned int ndesc,
1424 				   unsigned int qid)
1425 {
1426 	if (unlikely(!skb_queue_empty(&q->sendq))) {
1427 	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1428 		return 1;
1429 	}
1430 	if (unlikely(q->size - q->in_use < ndesc)) {
1431 		struct sge_qset *qs = txq_to_qset(q, qid);
1432 
1433 		set_bit(qid, &qs->txq_stopped);
1434 		smp_mb__after_atomic();
1435 
1436 		if (should_restart_tx(q) &&
1437 		    test_and_clear_bit(qid, &qs->txq_stopped))
1438 			return 2;
1439 
1440 		q->stops++;
1441 		goto addq_exit;
1442 	}
1443 	return 0;
1444 }
1445 
1446 /**
1447  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1448  *	@q: the SGE control Tx queue
1449  *
1450  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1451  *	that send only immediate data (presently just the control queues) and
1452  *	thus do not have any sk_buffs to release.
1453  */
1454 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1455 {
1456 	unsigned int reclaim = q->processed - q->cleaned;
1457 
1458 	q->in_use -= reclaim;
1459 	q->cleaned += reclaim;
1460 }
1461 
1462 static inline int immediate(const struct sk_buff *skb)
1463 {
1464 	return skb->len <= WR_LEN;
1465 }
1466 
1467 /**
1468  *	ctrl_xmit - send a packet through an SGE control Tx queue
1469  *	@adap: the adapter
1470  *	@q: the control queue
1471  *	@skb: the packet
1472  *
1473  *	Send a packet through an SGE control Tx queue.  Packets sent through
1474  *	a control queue must fit entirely as immediate data in a single Tx
1475  *	descriptor and have no page fragments.
1476  */
1477 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1478 		     struct sk_buff *skb)
1479 {
1480 	int ret;
1481 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1482 
1483 	if (unlikely(!immediate(skb))) {
1484 		WARN_ON(1);
1485 		dev_kfree_skb(skb);
1486 		return NET_XMIT_SUCCESS;
1487 	}
1488 
1489 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1490 	wrp->wr_lo = htonl(V_WR_TID(q->token));
1491 
1492 	spin_lock(&q->lock);
1493       again:reclaim_completed_tx_imm(q);
1494 
1495 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1496 	if (unlikely(ret)) {
1497 		if (ret == 1) {
1498 			spin_unlock(&q->lock);
1499 			return NET_XMIT_CN;
1500 		}
1501 		goto again;
1502 	}
1503 
1504 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1505 
1506 	q->in_use++;
1507 	if (++q->pidx >= q->size) {
1508 		q->pidx = 0;
1509 		q->gen ^= 1;
1510 	}
1511 	spin_unlock(&q->lock);
1512 	wmb();
1513 	t3_write_reg(adap, A_SG_KDOORBELL,
1514 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1515 	return NET_XMIT_SUCCESS;
1516 }
1517 
1518 /**
1519  *	restart_ctrlq - restart a suspended control queue
1520  *	@qs: the queue set cotaining the control queue
1521  *
1522  *	Resumes transmission on a suspended Tx control queue.
1523  */
1524 static void restart_ctrlq(unsigned long data)
1525 {
1526 	struct sk_buff *skb;
1527 	struct sge_qset *qs = (struct sge_qset *)data;
1528 	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1529 
1530 	spin_lock(&q->lock);
1531       again:reclaim_completed_tx_imm(q);
1532 
1533 	while (q->in_use < q->size &&
1534 	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1535 
1536 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1537 
1538 		if (++q->pidx >= q->size) {
1539 			q->pidx = 0;
1540 			q->gen ^= 1;
1541 		}
1542 		q->in_use++;
1543 	}
1544 
1545 	if (!skb_queue_empty(&q->sendq)) {
1546 		set_bit(TXQ_CTRL, &qs->txq_stopped);
1547 		smp_mb__after_atomic();
1548 
1549 		if (should_restart_tx(q) &&
1550 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1551 			goto again;
1552 		q->stops++;
1553 	}
1554 
1555 	spin_unlock(&q->lock);
1556 	wmb();
1557 	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1558 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1559 }
1560 
1561 /*
1562  * Send a management message through control queue 0
1563  */
1564 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1565 {
1566 	int ret;
1567 	local_bh_disable();
1568 	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1569 	local_bh_enable();
1570 
1571 	return ret;
1572 }
1573 
1574 /**
1575  *	deferred_unmap_destructor - unmap a packet when it is freed
1576  *	@skb: the packet
1577  *
1578  *	This is the packet destructor used for Tx packets that need to remain
1579  *	mapped until they are freed rather than until their Tx descriptors are
1580  *	freed.
1581  */
1582 static void deferred_unmap_destructor(struct sk_buff *skb)
1583 {
1584 	int i;
1585 	const dma_addr_t *p;
1586 	const struct skb_shared_info *si;
1587 	const struct deferred_unmap_info *dui;
1588 
1589 	dui = (struct deferred_unmap_info *)skb->head;
1590 	p = dui->addr;
1591 
1592 	if (skb_tail_pointer(skb) - skb_transport_header(skb))
1593 		pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1594 				 skb_transport_header(skb), PCI_DMA_TODEVICE);
1595 
1596 	si = skb_shinfo(skb);
1597 	for (i = 0; i < si->nr_frags; i++)
1598 		pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1599 			       PCI_DMA_TODEVICE);
1600 }
1601 
1602 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1603 				     const struct sg_ent *sgl, int sgl_flits)
1604 {
1605 	dma_addr_t *p;
1606 	struct deferred_unmap_info *dui;
1607 
1608 	dui = (struct deferred_unmap_info *)skb->head;
1609 	dui->pdev = pdev;
1610 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1611 		*p++ = be64_to_cpu(sgl->addr[0]);
1612 		*p++ = be64_to_cpu(sgl->addr[1]);
1613 	}
1614 	if (sgl_flits)
1615 		*p = be64_to_cpu(sgl->addr[0]);
1616 }
1617 
1618 /**
1619  *	write_ofld_wr - write an offload work request
1620  *	@adap: the adapter
1621  *	@skb: the packet to send
1622  *	@q: the Tx queue
1623  *	@pidx: index of the first Tx descriptor to write
1624  *	@gen: the generation value to use
1625  *	@ndesc: number of descriptors the packet will occupy
1626  *
1627  *	Write an offload work request to send the supplied packet.  The packet
1628  *	data already carry the work request with most fields populated.
1629  */
1630 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1631 			  struct sge_txq *q, unsigned int pidx,
1632 			  unsigned int gen, unsigned int ndesc,
1633 			  const dma_addr_t *addr)
1634 {
1635 	unsigned int sgl_flits, flits;
1636 	struct work_request_hdr *from;
1637 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1638 	struct tx_desc *d = &q->desc[pidx];
1639 
1640 	if (immediate(skb)) {
1641 		q->sdesc[pidx].skb = NULL;
1642 		write_imm(d, skb, skb->len, gen);
1643 		return;
1644 	}
1645 
1646 	/* Only TX_DATA builds SGLs */
1647 
1648 	from = (struct work_request_hdr *)skb->data;
1649 	memcpy(&d->flit[1], &from[1],
1650 	       skb_transport_offset(skb) - sizeof(*from));
1651 
1652 	flits = skb_transport_offset(skb) / 8;
1653 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1654 	sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1655 			      skb_tail_pointer(skb) - skb_transport_header(skb),
1656 			      addr);
1657 	if (need_skb_unmap()) {
1658 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1659 		skb->destructor = deferred_unmap_destructor;
1660 	}
1661 
1662 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1663 			 gen, from->wr_hi, from->wr_lo);
1664 }
1665 
1666 /**
1667  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1668  *	@skb: the packet
1669  *
1670  * 	Returns the number of Tx descriptors needed for the given offload
1671  * 	packet.  These packets are already fully constructed.
1672  */
1673 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1674 {
1675 	unsigned int flits, cnt;
1676 
1677 	if (skb->len <= WR_LEN)
1678 		return 1;	/* packet fits as immediate data */
1679 
1680 	flits = skb_transport_offset(skb) / 8;	/* headers */
1681 	cnt = skb_shinfo(skb)->nr_frags;
1682 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1683 		cnt++;
1684 	return flits_to_desc(flits + sgl_len(cnt));
1685 }
1686 
1687 /**
1688  *	ofld_xmit - send a packet through an offload queue
1689  *	@adap: the adapter
1690  *	@q: the Tx offload queue
1691  *	@skb: the packet
1692  *
1693  *	Send an offload packet through an SGE offload queue.
1694  */
1695 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1696 		     struct sk_buff *skb)
1697 {
1698 	int ret;
1699 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1700 
1701 	spin_lock(&q->lock);
1702 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1703 
1704 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1705 	if (unlikely(ret)) {
1706 		if (ret == 1) {
1707 			skb->priority = ndesc;	/* save for restart */
1708 			spin_unlock(&q->lock);
1709 			return NET_XMIT_CN;
1710 		}
1711 		goto again;
1712 	}
1713 
1714 	if (!immediate(skb) &&
1715 	    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1716 		spin_unlock(&q->lock);
1717 		return NET_XMIT_SUCCESS;
1718 	}
1719 
1720 	gen = q->gen;
1721 	q->in_use += ndesc;
1722 	pidx = q->pidx;
1723 	q->pidx += ndesc;
1724 	if (q->pidx >= q->size) {
1725 		q->pidx -= q->size;
1726 		q->gen ^= 1;
1727 	}
1728 	spin_unlock(&q->lock);
1729 
1730 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1731 	check_ring_tx_db(adap, q);
1732 	return NET_XMIT_SUCCESS;
1733 }
1734 
1735 /**
1736  *	restart_offloadq - restart a suspended offload queue
1737  *	@qs: the queue set cotaining the offload queue
1738  *
1739  *	Resumes transmission on a suspended Tx offload queue.
1740  */
1741 static void restart_offloadq(unsigned long data)
1742 {
1743 	struct sk_buff *skb;
1744 	struct sge_qset *qs = (struct sge_qset *)data;
1745 	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1746 	const struct port_info *pi = netdev_priv(qs->netdev);
1747 	struct adapter *adap = pi->adapter;
1748 	unsigned int written = 0;
1749 
1750 	spin_lock(&q->lock);
1751 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1752 
1753 	while ((skb = skb_peek(&q->sendq)) != NULL) {
1754 		unsigned int gen, pidx;
1755 		unsigned int ndesc = skb->priority;
1756 
1757 		if (unlikely(q->size - q->in_use < ndesc)) {
1758 			set_bit(TXQ_OFLD, &qs->txq_stopped);
1759 			smp_mb__after_atomic();
1760 
1761 			if (should_restart_tx(q) &&
1762 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1763 				goto again;
1764 			q->stops++;
1765 			break;
1766 		}
1767 
1768 		if (!immediate(skb) &&
1769 		    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1770 			break;
1771 
1772 		gen = q->gen;
1773 		q->in_use += ndesc;
1774 		pidx = q->pidx;
1775 		q->pidx += ndesc;
1776 		written += ndesc;
1777 		if (q->pidx >= q->size) {
1778 			q->pidx -= q->size;
1779 			q->gen ^= 1;
1780 		}
1781 		__skb_unlink(skb, &q->sendq);
1782 		spin_unlock(&q->lock);
1783 
1784 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1785 			      (dma_addr_t *)skb->head);
1786 		spin_lock(&q->lock);
1787 	}
1788 	spin_unlock(&q->lock);
1789 
1790 #if USE_GTS
1791 	set_bit(TXQ_RUNNING, &q->flags);
1792 	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1793 #endif
1794 	wmb();
1795 	if (likely(written))
1796 		t3_write_reg(adap, A_SG_KDOORBELL,
1797 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1798 }
1799 
1800 /**
1801  *	queue_set - return the queue set a packet should use
1802  *	@skb: the packet
1803  *
1804  *	Maps a packet to the SGE queue set it should use.  The desired queue
1805  *	set is carried in bits 1-3 in the packet's priority.
1806  */
1807 static inline int queue_set(const struct sk_buff *skb)
1808 {
1809 	return skb->priority >> 1;
1810 }
1811 
1812 /**
1813  *	is_ctrl_pkt - return whether an offload packet is a control packet
1814  *	@skb: the packet
1815  *
1816  *	Determines whether an offload packet should use an OFLD or a CTRL
1817  *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1818  */
1819 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1820 {
1821 	return skb->priority & 1;
1822 }
1823 
1824 /**
1825  *	t3_offload_tx - send an offload packet
1826  *	@tdev: the offload device to send to
1827  *	@skb: the packet
1828  *
1829  *	Sends an offload packet.  We use the packet priority to select the
1830  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1831  *	should be sent as regular or control, bits 1-3 select the queue set.
1832  */
1833 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1834 {
1835 	struct adapter *adap = tdev2adap(tdev);
1836 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1837 
1838 	if (unlikely(is_ctrl_pkt(skb)))
1839 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1840 
1841 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1842 }
1843 
1844 /**
1845  *	offload_enqueue - add an offload packet to an SGE offload receive queue
1846  *	@q: the SGE response queue
1847  *	@skb: the packet
1848  *
1849  *	Add a new offload packet to an SGE response queue's offload packet
1850  *	queue.  If the packet is the first on the queue it schedules the RX
1851  *	softirq to process the queue.
1852  */
1853 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1854 {
1855 	int was_empty = skb_queue_empty(&q->rx_queue);
1856 
1857 	__skb_queue_tail(&q->rx_queue, skb);
1858 
1859 	if (was_empty) {
1860 		struct sge_qset *qs = rspq_to_qset(q);
1861 
1862 		napi_schedule(&qs->napi);
1863 	}
1864 }
1865 
1866 /**
1867  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1868  *	@tdev: the offload device that will be receiving the packets
1869  *	@q: the SGE response queue that assembled the bundle
1870  *	@skbs: the partial bundle
1871  *	@n: the number of packets in the bundle
1872  *
1873  *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1874  */
1875 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1876 					  struct sge_rspq *q,
1877 					  struct sk_buff *skbs[], int n)
1878 {
1879 	if (n) {
1880 		q->offload_bundles++;
1881 		tdev->recv(tdev, skbs, n);
1882 	}
1883 }
1884 
1885 /**
1886  *	ofld_poll - NAPI handler for offload packets in interrupt mode
1887  *	@dev: the network device doing the polling
1888  *	@budget: polling budget
1889  *
1890  *	The NAPI handler for offload packets when a response queue is serviced
1891  *	by the hard interrupt handler, i.e., when it's operating in non-polling
1892  *	mode.  Creates small packet batches and sends them through the offload
1893  *	receive handler.  Batches need to be of modest size as we do prefetches
1894  *	on the packets in each.
1895  */
1896 static int ofld_poll(struct napi_struct *napi, int budget)
1897 {
1898 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1899 	struct sge_rspq *q = &qs->rspq;
1900 	struct adapter *adapter = qs->adap;
1901 	int work_done = 0;
1902 
1903 	while (work_done < budget) {
1904 		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1905 		struct sk_buff_head queue;
1906 		int ngathered;
1907 
1908 		spin_lock_irq(&q->lock);
1909 		__skb_queue_head_init(&queue);
1910 		skb_queue_splice_init(&q->rx_queue, &queue);
1911 		if (skb_queue_empty(&queue)) {
1912 			napi_complete_done(napi, work_done);
1913 			spin_unlock_irq(&q->lock);
1914 			return work_done;
1915 		}
1916 		spin_unlock_irq(&q->lock);
1917 
1918 		ngathered = 0;
1919 		skb_queue_walk_safe(&queue, skb, tmp) {
1920 			if (work_done >= budget)
1921 				break;
1922 			work_done++;
1923 
1924 			__skb_unlink(skb, &queue);
1925 			prefetch(skb->data);
1926 			skbs[ngathered] = skb;
1927 			if (++ngathered == RX_BUNDLE_SIZE) {
1928 				q->offload_bundles++;
1929 				adapter->tdev.recv(&adapter->tdev, skbs,
1930 						   ngathered);
1931 				ngathered = 0;
1932 			}
1933 		}
1934 		if (!skb_queue_empty(&queue)) {
1935 			/* splice remaining packets back onto Rx queue */
1936 			spin_lock_irq(&q->lock);
1937 			skb_queue_splice(&queue, &q->rx_queue);
1938 			spin_unlock_irq(&q->lock);
1939 		}
1940 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1941 	}
1942 
1943 	return work_done;
1944 }
1945 
1946 /**
1947  *	rx_offload - process a received offload packet
1948  *	@tdev: the offload device receiving the packet
1949  *	@rq: the response queue that received the packet
1950  *	@skb: the packet
1951  *	@rx_gather: a gather list of packets if we are building a bundle
1952  *	@gather_idx: index of the next available slot in the bundle
1953  *
1954  *	Process an ingress offload pakcet and add it to the offload ingress
1955  *	queue. 	Returns the index of the next available slot in the bundle.
1956  */
1957 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1958 			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1959 			     unsigned int gather_idx)
1960 {
1961 	skb_reset_mac_header(skb);
1962 	skb_reset_network_header(skb);
1963 	skb_reset_transport_header(skb);
1964 
1965 	if (rq->polling) {
1966 		rx_gather[gather_idx++] = skb;
1967 		if (gather_idx == RX_BUNDLE_SIZE) {
1968 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1969 			gather_idx = 0;
1970 			rq->offload_bundles++;
1971 		}
1972 	} else
1973 		offload_enqueue(rq, skb);
1974 
1975 	return gather_idx;
1976 }
1977 
1978 /**
1979  *	restart_tx - check whether to restart suspended Tx queues
1980  *	@qs: the queue set to resume
1981  *
1982  *	Restarts suspended Tx queues of an SGE queue set if they have enough
1983  *	free resources to resume operation.
1984  */
1985 static void restart_tx(struct sge_qset *qs)
1986 {
1987 	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1988 	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1989 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1990 		qs->txq[TXQ_ETH].restarts++;
1991 		if (netif_running(qs->netdev))
1992 			netif_tx_wake_queue(qs->tx_q);
1993 	}
1994 
1995 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1996 	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1997 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1998 		qs->txq[TXQ_OFLD].restarts++;
1999 		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
2000 	}
2001 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2002 	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2003 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2004 		qs->txq[TXQ_CTRL].restarts++;
2005 		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
2006 	}
2007 }
2008 
2009 /**
2010  *	cxgb3_arp_process - process an ARP request probing a private IP address
2011  *	@adapter: the adapter
2012  *	@skb: the skbuff containing the ARP request
2013  *
2014  *	Check if the ARP request is probing the private IP address
2015  *	dedicated to iSCSI, generate an ARP reply if so.
2016  */
2017 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2018 {
2019 	struct net_device *dev = skb->dev;
2020 	struct arphdr *arp;
2021 	unsigned char *arp_ptr;
2022 	unsigned char *sha;
2023 	__be32 sip, tip;
2024 
2025 	if (!dev)
2026 		return;
2027 
2028 	skb_reset_network_header(skb);
2029 	arp = arp_hdr(skb);
2030 
2031 	if (arp->ar_op != htons(ARPOP_REQUEST))
2032 		return;
2033 
2034 	arp_ptr = (unsigned char *)(arp + 1);
2035 	sha = arp_ptr;
2036 	arp_ptr += dev->addr_len;
2037 	memcpy(&sip, arp_ptr, sizeof(sip));
2038 	arp_ptr += sizeof(sip);
2039 	arp_ptr += dev->addr_len;
2040 	memcpy(&tip, arp_ptr, sizeof(tip));
2041 
2042 	if (tip != pi->iscsi_ipv4addr)
2043 		return;
2044 
2045 	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2046 		 pi->iscsic.mac_addr, sha);
2047 
2048 }
2049 
2050 static inline int is_arp(struct sk_buff *skb)
2051 {
2052 	return skb->protocol == htons(ETH_P_ARP);
2053 }
2054 
2055 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2056 					struct sk_buff *skb)
2057 {
2058 	if (is_arp(skb)) {
2059 		cxgb3_arp_process(pi, skb);
2060 		return;
2061 	}
2062 
2063 	if (pi->iscsic.recv)
2064 		pi->iscsic.recv(pi, skb);
2065 
2066 }
2067 
2068 /**
2069  *	rx_eth - process an ingress ethernet packet
2070  *	@adap: the adapter
2071  *	@rq: the response queue that received the packet
2072  *	@skb: the packet
2073  *	@pad: amount of padding at the start of the buffer
2074  *
2075  *	Process an ingress ethernet pakcet and deliver it to the stack.
2076  *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2077  *	if it was immediate data in a response.
2078  */
2079 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2080 		   struct sk_buff *skb, int pad, int lro)
2081 {
2082 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2083 	struct sge_qset *qs = rspq_to_qset(rq);
2084 	struct port_info *pi;
2085 
2086 	skb_pull(skb, sizeof(*p) + pad);
2087 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2088 	pi = netdev_priv(skb->dev);
2089 	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2090 	    p->csum == htons(0xffff) && !p->fragment) {
2091 		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2092 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2093 	} else
2094 		skb_checksum_none_assert(skb);
2095 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2096 
2097 	if (p->vlan_valid) {
2098 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2099 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2100 	}
2101 	if (rq->polling) {
2102 		if (lro)
2103 			napi_gro_receive(&qs->napi, skb);
2104 		else {
2105 			if (unlikely(pi->iscsic.flags))
2106 				cxgb3_process_iscsi_prov_pack(pi, skb);
2107 			netif_receive_skb(skb);
2108 		}
2109 	} else
2110 		netif_rx(skb);
2111 }
2112 
2113 static inline int is_eth_tcp(u32 rss)
2114 {
2115 	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2116 }
2117 
2118 /**
2119  *	lro_add_page - add a page chunk to an LRO session
2120  *	@adap: the adapter
2121  *	@qs: the associated queue set
2122  *	@fl: the free list containing the page chunk to add
2123  *	@len: packet length
2124  *	@complete: Indicates the last fragment of a frame
2125  *
2126  *	Add a received packet contained in a page chunk to an existing LRO
2127  *	session.
2128  */
2129 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2130 			 struct sge_fl *fl, int len, int complete)
2131 {
2132 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2133 	struct port_info *pi = netdev_priv(qs->netdev);
2134 	struct sk_buff *skb = NULL;
2135 	struct cpl_rx_pkt *cpl;
2136 	struct skb_frag_struct *rx_frag;
2137 	int nr_frags;
2138 	int offset = 0;
2139 
2140 	if (!qs->nomem) {
2141 		skb = napi_get_frags(&qs->napi);
2142 		qs->nomem = !skb;
2143 	}
2144 
2145 	fl->credits--;
2146 
2147 	pci_dma_sync_single_for_cpu(adap->pdev,
2148 				    dma_unmap_addr(sd, dma_addr),
2149 				    fl->buf_size - SGE_PG_RSVD,
2150 				    PCI_DMA_FROMDEVICE);
2151 
2152 	(*sd->pg_chunk.p_cnt)--;
2153 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2154 		pci_unmap_page(adap->pdev,
2155 			       sd->pg_chunk.mapping,
2156 			       fl->alloc_size,
2157 			       PCI_DMA_FROMDEVICE);
2158 
2159 	if (!skb) {
2160 		put_page(sd->pg_chunk.page);
2161 		if (complete)
2162 			qs->nomem = 0;
2163 		return;
2164 	}
2165 
2166 	rx_frag = skb_shinfo(skb)->frags;
2167 	nr_frags = skb_shinfo(skb)->nr_frags;
2168 
2169 	if (!nr_frags) {
2170 		offset = 2 + sizeof(struct cpl_rx_pkt);
2171 		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2172 
2173 		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2174 		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2175 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2176 			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2177 		} else
2178 			skb->ip_summed = CHECKSUM_NONE;
2179 	} else
2180 		cpl = qs->lro_va;
2181 
2182 	len -= offset;
2183 
2184 	rx_frag += nr_frags;
2185 	__skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2186 	rx_frag->page_offset = sd->pg_chunk.offset + offset;
2187 	skb_frag_size_set(rx_frag, len);
2188 
2189 	skb->len += len;
2190 	skb->data_len += len;
2191 	skb->truesize += len;
2192 	skb_shinfo(skb)->nr_frags++;
2193 
2194 	if (!complete)
2195 		return;
2196 
2197 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2198 
2199 	if (cpl->vlan_valid) {
2200 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2201 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2202 	}
2203 	napi_gro_frags(&qs->napi);
2204 }
2205 
2206 /**
2207  *	handle_rsp_cntrl_info - handles control information in a response
2208  *	@qs: the queue set corresponding to the response
2209  *	@flags: the response control flags
2210  *
2211  *	Handles the control information of an SGE response, such as GTS
2212  *	indications and completion credits for the queue set's Tx queues.
2213  *	HW coalesces credits, we don't do any extra SW coalescing.
2214  */
2215 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2216 {
2217 	unsigned int credits;
2218 
2219 #if USE_GTS
2220 	if (flags & F_RSPD_TXQ0_GTS)
2221 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2222 #endif
2223 
2224 	credits = G_RSPD_TXQ0_CR(flags);
2225 	if (credits)
2226 		qs->txq[TXQ_ETH].processed += credits;
2227 
2228 	credits = G_RSPD_TXQ2_CR(flags);
2229 	if (credits)
2230 		qs->txq[TXQ_CTRL].processed += credits;
2231 
2232 # if USE_GTS
2233 	if (flags & F_RSPD_TXQ1_GTS)
2234 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2235 # endif
2236 	credits = G_RSPD_TXQ1_CR(flags);
2237 	if (credits)
2238 		qs->txq[TXQ_OFLD].processed += credits;
2239 }
2240 
2241 /**
2242  *	check_ring_db - check if we need to ring any doorbells
2243  *	@adapter: the adapter
2244  *	@qs: the queue set whose Tx queues are to be examined
2245  *	@sleeping: indicates which Tx queue sent GTS
2246  *
2247  *	Checks if some of a queue set's Tx queues need to ring their doorbells
2248  *	to resume transmission after idling while they still have unprocessed
2249  *	descriptors.
2250  */
2251 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2252 			  unsigned int sleeping)
2253 {
2254 	if (sleeping & F_RSPD_TXQ0_GTS) {
2255 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2256 
2257 		if (txq->cleaned + txq->in_use != txq->processed &&
2258 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2259 			set_bit(TXQ_RUNNING, &txq->flags);
2260 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2261 				     V_EGRCNTX(txq->cntxt_id));
2262 		}
2263 	}
2264 
2265 	if (sleeping & F_RSPD_TXQ1_GTS) {
2266 		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2267 
2268 		if (txq->cleaned + txq->in_use != txq->processed &&
2269 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2270 			set_bit(TXQ_RUNNING, &txq->flags);
2271 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2272 				     V_EGRCNTX(txq->cntxt_id));
2273 		}
2274 	}
2275 }
2276 
2277 /**
2278  *	is_new_response - check if a response is newly written
2279  *	@r: the response descriptor
2280  *	@q: the response queue
2281  *
2282  *	Returns true if a response descriptor contains a yet unprocessed
2283  *	response.
2284  */
2285 static inline int is_new_response(const struct rsp_desc *r,
2286 				  const struct sge_rspq *q)
2287 {
2288 	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2289 }
2290 
2291 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2292 {
2293 	q->pg_skb = NULL;
2294 	q->rx_recycle_buf = 0;
2295 }
2296 
2297 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2298 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2299 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2300 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2301 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2302 
2303 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2304 #define NOMEM_INTR_DELAY 2500
2305 
2306 /**
2307  *	process_responses - process responses from an SGE response queue
2308  *	@adap: the adapter
2309  *	@qs: the queue set to which the response queue belongs
2310  *	@budget: how many responses can be processed in this round
2311  *
2312  *	Process responses from an SGE response queue up to the supplied budget.
2313  *	Responses include received packets as well as credits and other events
2314  *	for the queues that belong to the response queue's queue set.
2315  *	A negative budget is effectively unlimited.
2316  *
2317  *	Additionally choose the interrupt holdoff time for the next interrupt
2318  *	on this queue.  If the system is under memory shortage use a fairly
2319  *	long delay to help recovery.
2320  */
2321 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2322 			     int budget)
2323 {
2324 	struct sge_rspq *q = &qs->rspq;
2325 	struct rsp_desc *r = &q->desc[q->cidx];
2326 	int budget_left = budget;
2327 	unsigned int sleeping = 0;
2328 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2329 	int ngathered = 0;
2330 
2331 	q->next_holdoff = q->holdoff_tmr;
2332 
2333 	while (likely(budget_left && is_new_response(r, q))) {
2334 		int packet_complete, eth, ethpad = 2;
2335 		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2336 		struct sk_buff *skb = NULL;
2337 		u32 len, flags;
2338 		__be32 rss_hi, rss_lo;
2339 
2340 		dma_rmb();
2341 		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2342 		rss_hi = *(const __be32 *)r;
2343 		rss_lo = r->rss_hdr.rss_hash_val;
2344 		flags = ntohl(r->flags);
2345 
2346 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2347 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2348 			if (!skb)
2349 				goto no_mem;
2350 
2351 			__skb_put_data(skb, r, AN_PKT_SIZE);
2352 			skb->data[0] = CPL_ASYNC_NOTIF;
2353 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2354 			q->async_notif++;
2355 		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2356 			skb = get_imm_packet(r);
2357 			if (unlikely(!skb)) {
2358 no_mem:
2359 				q->next_holdoff = NOMEM_INTR_DELAY;
2360 				q->nomem++;
2361 				/* consume one credit since we tried */
2362 				budget_left--;
2363 				break;
2364 			}
2365 			q->imm_data++;
2366 			ethpad = 0;
2367 		} else if ((len = ntohl(r->len_cq)) != 0) {
2368 			struct sge_fl *fl;
2369 
2370 			lro &= eth && is_eth_tcp(rss_hi);
2371 
2372 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2373 			if (fl->use_pages) {
2374 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2375 
2376 				prefetch(addr);
2377 #if L1_CACHE_BYTES < 128
2378 				prefetch(addr + L1_CACHE_BYTES);
2379 #endif
2380 				__refill_fl(adap, fl);
2381 				if (lro > 0) {
2382 					lro_add_page(adap, qs, fl,
2383 						     G_RSPD_LEN(len),
2384 						     flags & F_RSPD_EOP);
2385 					 goto next_fl;
2386 				}
2387 
2388 				skb = get_packet_pg(adap, fl, q,
2389 						    G_RSPD_LEN(len),
2390 						    eth ?
2391 						    SGE_RX_DROP_THRES : 0);
2392 				q->pg_skb = skb;
2393 			} else
2394 				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2395 						 eth ? SGE_RX_DROP_THRES : 0);
2396 			if (unlikely(!skb)) {
2397 				if (!eth)
2398 					goto no_mem;
2399 				q->rx_drops++;
2400 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2401 				__skb_pull(skb, 2);
2402 next_fl:
2403 			if (++fl->cidx == fl->size)
2404 				fl->cidx = 0;
2405 		} else
2406 			q->pure_rsps++;
2407 
2408 		if (flags & RSPD_CTRL_MASK) {
2409 			sleeping |= flags & RSPD_GTS_MASK;
2410 			handle_rsp_cntrl_info(qs, flags);
2411 		}
2412 
2413 		r++;
2414 		if (unlikely(++q->cidx == q->size)) {
2415 			q->cidx = 0;
2416 			q->gen ^= 1;
2417 			r = q->desc;
2418 		}
2419 		prefetch(r);
2420 
2421 		if (++q->credits >= (q->size / 4)) {
2422 			refill_rspq(adap, q, q->credits);
2423 			q->credits = 0;
2424 		}
2425 
2426 		packet_complete = flags &
2427 				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2428 				   F_RSPD_ASYNC_NOTIF);
2429 
2430 		if (skb != NULL && packet_complete) {
2431 			if (eth)
2432 				rx_eth(adap, q, skb, ethpad, lro);
2433 			else {
2434 				q->offload_pkts++;
2435 				/* Preserve the RSS info in csum & priority */
2436 				skb->csum = rss_hi;
2437 				skb->priority = rss_lo;
2438 				ngathered = rx_offload(&adap->tdev, q, skb,
2439 						       offload_skbs,
2440 						       ngathered);
2441 			}
2442 
2443 			if (flags & F_RSPD_EOP)
2444 				clear_rspq_bufstate(q);
2445 		}
2446 		--budget_left;
2447 	}
2448 
2449 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2450 
2451 	if (sleeping)
2452 		check_ring_db(adap, qs, sleeping);
2453 
2454 	smp_mb();		/* commit Tx queue .processed updates */
2455 	if (unlikely(qs->txq_stopped != 0))
2456 		restart_tx(qs);
2457 
2458 	budget -= budget_left;
2459 	return budget;
2460 }
2461 
2462 static inline int is_pure_response(const struct rsp_desc *r)
2463 {
2464 	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2465 
2466 	return (n | r->len_cq) == 0;
2467 }
2468 
2469 /**
2470  *	napi_rx_handler - the NAPI handler for Rx processing
2471  *	@napi: the napi instance
2472  *	@budget: how many packets we can process in this round
2473  *
2474  *	Handler for new data events when using NAPI.
2475  */
2476 static int napi_rx_handler(struct napi_struct *napi, int budget)
2477 {
2478 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2479 	struct adapter *adap = qs->adap;
2480 	int work_done = process_responses(adap, qs, budget);
2481 
2482 	if (likely(work_done < budget)) {
2483 		napi_complete_done(napi, work_done);
2484 
2485 		/*
2486 		 * Because we don't atomically flush the following
2487 		 * write it is possible that in very rare cases it can
2488 		 * reach the device in a way that races with a new
2489 		 * response being written plus an error interrupt
2490 		 * causing the NAPI interrupt handler below to return
2491 		 * unhandled status to the OS.  To protect against
2492 		 * this would require flushing the write and doing
2493 		 * both the write and the flush with interrupts off.
2494 		 * Way too expensive and unjustifiable given the
2495 		 * rarity of the race.
2496 		 *
2497 		 * The race cannot happen at all with MSI-X.
2498 		 */
2499 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2500 			     V_NEWTIMER(qs->rspq.next_holdoff) |
2501 			     V_NEWINDEX(qs->rspq.cidx));
2502 	}
2503 	return work_done;
2504 }
2505 
2506 /*
2507  * Returns true if the device is already scheduled for polling.
2508  */
2509 static inline int napi_is_scheduled(struct napi_struct *napi)
2510 {
2511 	return test_bit(NAPI_STATE_SCHED, &napi->state);
2512 }
2513 
2514 /**
2515  *	process_pure_responses - process pure responses from a response queue
2516  *	@adap: the adapter
2517  *	@qs: the queue set owning the response queue
2518  *	@r: the first pure response to process
2519  *
2520  *	A simpler version of process_responses() that handles only pure (i.e.,
2521  *	non data-carrying) responses.  Such respones are too light-weight to
2522  *	justify calling a softirq under NAPI, so we handle them specially in
2523  *	the interrupt handler.  The function is called with a pointer to a
2524  *	response, which the caller must ensure is a valid pure response.
2525  *
2526  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2527  */
2528 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2529 				  struct rsp_desc *r)
2530 {
2531 	struct sge_rspq *q = &qs->rspq;
2532 	unsigned int sleeping = 0;
2533 
2534 	do {
2535 		u32 flags = ntohl(r->flags);
2536 
2537 		r++;
2538 		if (unlikely(++q->cidx == q->size)) {
2539 			q->cidx = 0;
2540 			q->gen ^= 1;
2541 			r = q->desc;
2542 		}
2543 		prefetch(r);
2544 
2545 		if (flags & RSPD_CTRL_MASK) {
2546 			sleeping |= flags & RSPD_GTS_MASK;
2547 			handle_rsp_cntrl_info(qs, flags);
2548 		}
2549 
2550 		q->pure_rsps++;
2551 		if (++q->credits >= (q->size / 4)) {
2552 			refill_rspq(adap, q, q->credits);
2553 			q->credits = 0;
2554 		}
2555 		if (!is_new_response(r, q))
2556 			break;
2557 		dma_rmb();
2558 	} while (is_pure_response(r));
2559 
2560 	if (sleeping)
2561 		check_ring_db(adap, qs, sleeping);
2562 
2563 	smp_mb();		/* commit Tx queue .processed updates */
2564 	if (unlikely(qs->txq_stopped != 0))
2565 		restart_tx(qs);
2566 
2567 	return is_new_response(r, q);
2568 }
2569 
2570 /**
2571  *	handle_responses - decide what to do with new responses in NAPI mode
2572  *	@adap: the adapter
2573  *	@q: the response queue
2574  *
2575  *	This is used by the NAPI interrupt handlers to decide what to do with
2576  *	new SGE responses.  If there are no new responses it returns -1.  If
2577  *	there are new responses and they are pure (i.e., non-data carrying)
2578  *	it handles them straight in hard interrupt context as they are very
2579  *	cheap and don't deliver any packets.  Finally, if there are any data
2580  *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2581  *	schedules NAPI, 0 if all new responses were pure.
2582  *
2583  *	The caller must ascertain NAPI is not already running.
2584  */
2585 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2586 {
2587 	struct sge_qset *qs = rspq_to_qset(q);
2588 	struct rsp_desc *r = &q->desc[q->cidx];
2589 
2590 	if (!is_new_response(r, q))
2591 		return -1;
2592 	dma_rmb();
2593 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2594 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2595 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2596 		return 0;
2597 	}
2598 	napi_schedule(&qs->napi);
2599 	return 1;
2600 }
2601 
2602 /*
2603  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2604  * (i.e., response queue serviced in hard interrupt).
2605  */
2606 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2607 {
2608 	struct sge_qset *qs = cookie;
2609 	struct adapter *adap = qs->adap;
2610 	struct sge_rspq *q = &qs->rspq;
2611 
2612 	spin_lock(&q->lock);
2613 	if (process_responses(adap, qs, -1) == 0)
2614 		q->unhandled_irqs++;
2615 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2616 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2617 	spin_unlock(&q->lock);
2618 	return IRQ_HANDLED;
2619 }
2620 
2621 /*
2622  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2623  * (i.e., response queue serviced by NAPI polling).
2624  */
2625 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2626 {
2627 	struct sge_qset *qs = cookie;
2628 	struct sge_rspq *q = &qs->rspq;
2629 
2630 	spin_lock(&q->lock);
2631 
2632 	if (handle_responses(qs->adap, q) < 0)
2633 		q->unhandled_irqs++;
2634 	spin_unlock(&q->lock);
2635 	return IRQ_HANDLED;
2636 }
2637 
2638 /*
2639  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2640  * SGE response queues as well as error and other async events as they all use
2641  * the same MSI vector.  We use one SGE response queue per port in this mode
2642  * and protect all response queues with queue 0's lock.
2643  */
2644 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2645 {
2646 	int new_packets = 0;
2647 	struct adapter *adap = cookie;
2648 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2649 
2650 	spin_lock(&q->lock);
2651 
2652 	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2653 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2654 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2655 		new_packets = 1;
2656 	}
2657 
2658 	if (adap->params.nports == 2 &&
2659 	    process_responses(adap, &adap->sge.qs[1], -1)) {
2660 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2661 
2662 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2663 			     V_NEWTIMER(q1->next_holdoff) |
2664 			     V_NEWINDEX(q1->cidx));
2665 		new_packets = 1;
2666 	}
2667 
2668 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2669 		q->unhandled_irqs++;
2670 
2671 	spin_unlock(&q->lock);
2672 	return IRQ_HANDLED;
2673 }
2674 
2675 static int rspq_check_napi(struct sge_qset *qs)
2676 {
2677 	struct sge_rspq *q = &qs->rspq;
2678 
2679 	if (!napi_is_scheduled(&qs->napi) &&
2680 	    is_new_response(&q->desc[q->cidx], q)) {
2681 		napi_schedule(&qs->napi);
2682 		return 1;
2683 	}
2684 	return 0;
2685 }
2686 
2687 /*
2688  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2689  * by NAPI polling).  Handles data events from SGE response queues as well as
2690  * error and other async events as they all use the same MSI vector.  We use
2691  * one SGE response queue per port in this mode and protect all response
2692  * queues with queue 0's lock.
2693  */
2694 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2695 {
2696 	int new_packets;
2697 	struct adapter *adap = cookie;
2698 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2699 
2700 	spin_lock(&q->lock);
2701 
2702 	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2703 	if (adap->params.nports == 2)
2704 		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2705 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2706 		q->unhandled_irqs++;
2707 
2708 	spin_unlock(&q->lock);
2709 	return IRQ_HANDLED;
2710 }
2711 
2712 /*
2713  * A helper function that processes responses and issues GTS.
2714  */
2715 static inline int process_responses_gts(struct adapter *adap,
2716 					struct sge_rspq *rq)
2717 {
2718 	int work;
2719 
2720 	work = process_responses(adap, rspq_to_qset(rq), -1);
2721 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2722 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2723 	return work;
2724 }
2725 
2726 /*
2727  * The legacy INTx interrupt handler.  This needs to handle data events from
2728  * SGE response queues as well as error and other async events as they all use
2729  * the same interrupt pin.  We use one SGE response queue per port in this mode
2730  * and protect all response queues with queue 0's lock.
2731  */
2732 static irqreturn_t t3_intr(int irq, void *cookie)
2733 {
2734 	int work_done, w0, w1;
2735 	struct adapter *adap = cookie;
2736 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2737 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2738 
2739 	spin_lock(&q0->lock);
2740 
2741 	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2742 	w1 = adap->params.nports == 2 &&
2743 	    is_new_response(&q1->desc[q1->cidx], q1);
2744 
2745 	if (likely(w0 | w1)) {
2746 		t3_write_reg(adap, A_PL_CLI, 0);
2747 		t3_read_reg(adap, A_PL_CLI);	/* flush */
2748 
2749 		if (likely(w0))
2750 			process_responses_gts(adap, q0);
2751 
2752 		if (w1)
2753 			process_responses_gts(adap, q1);
2754 
2755 		work_done = w0 | w1;
2756 	} else
2757 		work_done = t3_slow_intr_handler(adap);
2758 
2759 	spin_unlock(&q0->lock);
2760 	return IRQ_RETVAL(work_done != 0);
2761 }
2762 
2763 /*
2764  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2765  * Handles data events from SGE response queues as well as error and other
2766  * async events as they all use the same interrupt pin.  We use one SGE
2767  * response queue per port in this mode and protect all response queues with
2768  * queue 0's lock.
2769  */
2770 static irqreturn_t t3b_intr(int irq, void *cookie)
2771 {
2772 	u32 map;
2773 	struct adapter *adap = cookie;
2774 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2775 
2776 	t3_write_reg(adap, A_PL_CLI, 0);
2777 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2778 
2779 	if (unlikely(!map))	/* shared interrupt, most likely */
2780 		return IRQ_NONE;
2781 
2782 	spin_lock(&q0->lock);
2783 
2784 	if (unlikely(map & F_ERRINTR))
2785 		t3_slow_intr_handler(adap);
2786 
2787 	if (likely(map & 1))
2788 		process_responses_gts(adap, q0);
2789 
2790 	if (map & 2)
2791 		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2792 
2793 	spin_unlock(&q0->lock);
2794 	return IRQ_HANDLED;
2795 }
2796 
2797 /*
2798  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2799  * Handles data events from SGE response queues as well as error and other
2800  * async events as they all use the same interrupt pin.  We use one SGE
2801  * response queue per port in this mode and protect all response queues with
2802  * queue 0's lock.
2803  */
2804 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2805 {
2806 	u32 map;
2807 	struct adapter *adap = cookie;
2808 	struct sge_qset *qs0 = &adap->sge.qs[0];
2809 	struct sge_rspq *q0 = &qs0->rspq;
2810 
2811 	t3_write_reg(adap, A_PL_CLI, 0);
2812 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2813 
2814 	if (unlikely(!map))	/* shared interrupt, most likely */
2815 		return IRQ_NONE;
2816 
2817 	spin_lock(&q0->lock);
2818 
2819 	if (unlikely(map & F_ERRINTR))
2820 		t3_slow_intr_handler(adap);
2821 
2822 	if (likely(map & 1))
2823 		napi_schedule(&qs0->napi);
2824 
2825 	if (map & 2)
2826 		napi_schedule(&adap->sge.qs[1].napi);
2827 
2828 	spin_unlock(&q0->lock);
2829 	return IRQ_HANDLED;
2830 }
2831 
2832 /**
2833  *	t3_intr_handler - select the top-level interrupt handler
2834  *	@adap: the adapter
2835  *	@polling: whether using NAPI to service response queues
2836  *
2837  *	Selects the top-level interrupt handler based on the type of interrupts
2838  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2839  *	response queues.
2840  */
2841 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2842 {
2843 	if (adap->flags & USING_MSIX)
2844 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2845 	if (adap->flags & USING_MSI)
2846 		return polling ? t3_intr_msi_napi : t3_intr_msi;
2847 	if (adap->params.rev > 0)
2848 		return polling ? t3b_intr_napi : t3b_intr;
2849 	return t3_intr;
2850 }
2851 
2852 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2853 		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2854 		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2855 		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2856 		    F_HIRCQPARITYERROR)
2857 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2858 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2859 		      F_RSPQDISABLED)
2860 
2861 /**
2862  *	t3_sge_err_intr_handler - SGE async event interrupt handler
2863  *	@adapter: the adapter
2864  *
2865  *	Interrupt handler for SGE asynchronous (non-data) events.
2866  */
2867 void t3_sge_err_intr_handler(struct adapter *adapter)
2868 {
2869 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2870 				 ~F_FLEMPTY;
2871 
2872 	if (status & SGE_PARERR)
2873 		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2874 			 status & SGE_PARERR);
2875 	if (status & SGE_FRAMINGERR)
2876 		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2877 			 status & SGE_FRAMINGERR);
2878 
2879 	if (status & F_RSPQCREDITOVERFOW)
2880 		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2881 
2882 	if (status & F_RSPQDISABLED) {
2883 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2884 
2885 		CH_ALERT(adapter,
2886 			 "packet delivered to disabled response queue "
2887 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2888 	}
2889 
2890 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2891 		queue_work(cxgb3_wq, &adapter->db_drop_task);
2892 
2893 	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2894 		queue_work(cxgb3_wq, &adapter->db_full_task);
2895 
2896 	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2897 		queue_work(cxgb3_wq, &adapter->db_empty_task);
2898 
2899 	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2900 	if (status &  SGE_FATALERR)
2901 		t3_fatal_err(adapter);
2902 }
2903 
2904 /**
2905  *	sge_timer_tx - perform periodic maintenance of an SGE qset
2906  *	@data: the SGE queue set to maintain
2907  *
2908  *	Runs periodically from a timer to perform maintenance of an SGE queue
2909  *	set.  It performs two tasks:
2910  *
2911  *	Cleans up any completed Tx descriptors that may still be pending.
2912  *	Normal descriptor cleanup happens when new packets are added to a Tx
2913  *	queue so this timer is relatively infrequent and does any cleanup only
2914  *	if the Tx queue has not seen any new packets in a while.  We make a
2915  *	best effort attempt to reclaim descriptors, in that we don't wait
2916  *	around if we cannot get a queue's lock (which most likely is because
2917  *	someone else is queueing new packets and so will also handle the clean
2918  *	up).  Since control queues use immediate data exclusively we don't
2919  *	bother cleaning them up here.
2920  *
2921  */
2922 static void sge_timer_tx(struct timer_list *t)
2923 {
2924 	struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2925 	struct port_info *pi = netdev_priv(qs->netdev);
2926 	struct adapter *adap = pi->adapter;
2927 	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2928 	unsigned long next_period;
2929 
2930 	if (__netif_tx_trylock(qs->tx_q)) {
2931                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2932                                                      TX_RECLAIM_TIMER_CHUNK);
2933 		__netif_tx_unlock(qs->tx_q);
2934 	}
2935 
2936 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2937 		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2938 						     TX_RECLAIM_TIMER_CHUNK);
2939 		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2940 	}
2941 
2942 	next_period = TX_RECLAIM_PERIOD >>
2943                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2944                       TX_RECLAIM_TIMER_CHUNK);
2945 	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2946 }
2947 
2948 /**
2949  *	sge_timer_rx - perform periodic maintenance of an SGE qset
2950  *	@data: the SGE queue set to maintain
2951  *
2952  *	a) Replenishes Rx queues that have run out due to memory shortage.
2953  *	Normally new Rx buffers are added when existing ones are consumed but
2954  *	when out of memory a queue can become empty.  We try to add only a few
2955  *	buffers here, the queue will be replenished fully as these new buffers
2956  *	are used up if memory shortage has subsided.
2957  *
2958  *	b) Return coalesced response queue credits in case a response queue is
2959  *	starved.
2960  *
2961  */
2962 static void sge_timer_rx(struct timer_list *t)
2963 {
2964 	spinlock_t *lock;
2965 	struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2966 	struct port_info *pi = netdev_priv(qs->netdev);
2967 	struct adapter *adap = pi->adapter;
2968 	u32 status;
2969 
2970 	lock = adap->params.rev > 0 ?
2971 	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2972 
2973 	if (!spin_trylock_irq(lock))
2974 		goto out;
2975 
2976 	if (napi_is_scheduled(&qs->napi))
2977 		goto unlock;
2978 
2979 	if (adap->params.rev < 4) {
2980 		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2981 
2982 		if (status & (1 << qs->rspq.cntxt_id)) {
2983 			qs->rspq.starved++;
2984 			if (qs->rspq.credits) {
2985 				qs->rspq.credits--;
2986 				refill_rspq(adap, &qs->rspq, 1);
2987 				qs->rspq.restarted++;
2988 				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2989 					     1 << qs->rspq.cntxt_id);
2990 			}
2991 		}
2992 	}
2993 
2994 	if (qs->fl[0].credits < qs->fl[0].size)
2995 		__refill_fl(adap, &qs->fl[0]);
2996 	if (qs->fl[1].credits < qs->fl[1].size)
2997 		__refill_fl(adap, &qs->fl[1]);
2998 
2999 unlock:
3000 	spin_unlock_irq(lock);
3001 out:
3002 	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3003 }
3004 
3005 /**
3006  *	t3_update_qset_coalesce - update coalescing settings for a queue set
3007  *	@qs: the SGE queue set
3008  *	@p: new queue set parameters
3009  *
3010  *	Update the coalescing settings for an SGE queue set.  Nothing is done
3011  *	if the queue set is not initialized yet.
3012  */
3013 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3014 {
3015 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3016 	qs->rspq.polling = p->polling;
3017 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3018 }
3019 
3020 /**
3021  *	t3_sge_alloc_qset - initialize an SGE queue set
3022  *	@adapter: the adapter
3023  *	@id: the queue set id
3024  *	@nports: how many Ethernet ports will be using this queue set
3025  *	@irq_vec_idx: the IRQ vector index for response queue interrupts
3026  *	@p: configuration parameters for this queue set
3027  *	@ntxq: number of Tx queues for the queue set
3028  *	@netdev: net device associated with this queue set
3029  *	@netdevq: net device TX queue associated with this queue set
3030  *
3031  *	Allocate resources and initialize an SGE queue set.  A queue set
3032  *	comprises a response queue, two Rx free-buffer queues, and up to 3
3033  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
3034  *	queue, offload queue, and control queue.
3035  */
3036 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3037 		      int irq_vec_idx, const struct qset_params *p,
3038 		      int ntxq, struct net_device *dev,
3039 		      struct netdev_queue *netdevq)
3040 {
3041 	int i, avail, ret = -ENOMEM;
3042 	struct sge_qset *q = &adapter->sge.qs[id];
3043 
3044 	init_qset_cntxt(q, id);
3045 	timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3046 	timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3047 
3048 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3049 				   sizeof(struct rx_desc),
3050 				   sizeof(struct rx_sw_desc),
3051 				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3052 	if (!q->fl[0].desc)
3053 		goto err;
3054 
3055 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3056 				   sizeof(struct rx_desc),
3057 				   sizeof(struct rx_sw_desc),
3058 				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3059 	if (!q->fl[1].desc)
3060 		goto err;
3061 
3062 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3063 				  sizeof(struct rsp_desc), 0,
3064 				  &q->rspq.phys_addr, NULL);
3065 	if (!q->rspq.desc)
3066 		goto err;
3067 
3068 	for (i = 0; i < ntxq; ++i) {
3069 		/*
3070 		 * The control queue always uses immediate data so does not
3071 		 * need to keep track of any sk_buffs.
3072 		 */
3073 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3074 
3075 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3076 					    sizeof(struct tx_desc), sz,
3077 					    &q->txq[i].phys_addr,
3078 					    &q->txq[i].sdesc);
3079 		if (!q->txq[i].desc)
3080 			goto err;
3081 
3082 		q->txq[i].gen = 1;
3083 		q->txq[i].size = p->txq_size[i];
3084 		spin_lock_init(&q->txq[i].lock);
3085 		skb_queue_head_init(&q->txq[i].sendq);
3086 	}
3087 
3088 	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3089 		     (unsigned long)q);
3090 	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3091 		     (unsigned long)q);
3092 
3093 	q->fl[0].gen = q->fl[1].gen = 1;
3094 	q->fl[0].size = p->fl_size;
3095 	q->fl[1].size = p->jumbo_size;
3096 
3097 	q->rspq.gen = 1;
3098 	q->rspq.size = p->rspq_size;
3099 	spin_lock_init(&q->rspq.lock);
3100 	skb_queue_head_init(&q->rspq.rx_queue);
3101 
3102 	q->txq[TXQ_ETH].stop_thres = nports *
3103 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3104 
3105 #if FL0_PG_CHUNK_SIZE > 0
3106 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3107 #else
3108 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3109 #endif
3110 #if FL1_PG_CHUNK_SIZE > 0
3111 	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3112 #else
3113 	q->fl[1].buf_size = is_offload(adapter) ?
3114 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3115 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3116 #endif
3117 
3118 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3119 	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3120 	q->fl[0].order = FL0_PG_ORDER;
3121 	q->fl[1].order = FL1_PG_ORDER;
3122 	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3123 	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3124 
3125 	spin_lock_irq(&adapter->sge.reg_lock);
3126 
3127 	/* FL threshold comparison uses < */
3128 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3129 				   q->rspq.phys_addr, q->rspq.size,
3130 				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3131 	if (ret)
3132 		goto err_unlock;
3133 
3134 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3135 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3136 					  q->fl[i].phys_addr, q->fl[i].size,
3137 					  q->fl[i].buf_size - SGE_PG_RSVD,
3138 					  p->cong_thres, 1, 0);
3139 		if (ret)
3140 			goto err_unlock;
3141 	}
3142 
3143 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3144 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3145 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3146 				 1, 0);
3147 	if (ret)
3148 		goto err_unlock;
3149 
3150 	if (ntxq > 1) {
3151 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3152 					 USE_GTS, SGE_CNTXT_OFLD, id,
3153 					 q->txq[TXQ_OFLD].phys_addr,
3154 					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3155 		if (ret)
3156 			goto err_unlock;
3157 	}
3158 
3159 	if (ntxq > 2) {
3160 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3161 					 SGE_CNTXT_CTRL, id,
3162 					 q->txq[TXQ_CTRL].phys_addr,
3163 					 q->txq[TXQ_CTRL].size,
3164 					 q->txq[TXQ_CTRL].token, 1, 0);
3165 		if (ret)
3166 			goto err_unlock;
3167 	}
3168 
3169 	spin_unlock_irq(&adapter->sge.reg_lock);
3170 
3171 	q->adap = adapter;
3172 	q->netdev = dev;
3173 	q->tx_q = netdevq;
3174 	t3_update_qset_coalesce(q, p);
3175 
3176 	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3177 			  GFP_KERNEL | __GFP_COMP);
3178 	if (!avail) {
3179 		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3180 		goto err;
3181 	}
3182 	if (avail < q->fl[0].size)
3183 		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3184 			avail);
3185 
3186 	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3187 			  GFP_KERNEL | __GFP_COMP);
3188 	if (avail < q->fl[1].size)
3189 		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3190 			avail);
3191 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3192 
3193 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3194 		     V_NEWTIMER(q->rspq.holdoff_tmr));
3195 
3196 	return 0;
3197 
3198 err_unlock:
3199 	spin_unlock_irq(&adapter->sge.reg_lock);
3200 err:
3201 	t3_free_qset(adapter, q);
3202 	return ret;
3203 }
3204 
3205 /**
3206  *      t3_start_sge_timers - start SGE timer call backs
3207  *      @adap: the adapter
3208  *
3209  *      Starts each SGE queue set's timer call back
3210  */
3211 void t3_start_sge_timers(struct adapter *adap)
3212 {
3213 	int i;
3214 
3215 	for (i = 0; i < SGE_QSETS; ++i) {
3216 		struct sge_qset *q = &adap->sge.qs[i];
3217 
3218 	if (q->tx_reclaim_timer.function)
3219 		mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3220 
3221 	if (q->rx_reclaim_timer.function)
3222 		mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3223 	}
3224 }
3225 
3226 /**
3227  *	t3_stop_sge_timers - stop SGE timer call backs
3228  *	@adap: the adapter
3229  *
3230  *	Stops each SGE queue set's timer call back
3231  */
3232 void t3_stop_sge_timers(struct adapter *adap)
3233 {
3234 	int i;
3235 
3236 	for (i = 0; i < SGE_QSETS; ++i) {
3237 		struct sge_qset *q = &adap->sge.qs[i];
3238 
3239 		if (q->tx_reclaim_timer.function)
3240 			del_timer_sync(&q->tx_reclaim_timer);
3241 		if (q->rx_reclaim_timer.function)
3242 			del_timer_sync(&q->rx_reclaim_timer);
3243 	}
3244 }
3245 
3246 /**
3247  *	t3_free_sge_resources - free SGE resources
3248  *	@adap: the adapter
3249  *
3250  *	Frees resources used by the SGE queue sets.
3251  */
3252 void t3_free_sge_resources(struct adapter *adap)
3253 {
3254 	int i;
3255 
3256 	for (i = 0; i < SGE_QSETS; ++i)
3257 		t3_free_qset(adap, &adap->sge.qs[i]);
3258 }
3259 
3260 /**
3261  *	t3_sge_start - enable SGE
3262  *	@adap: the adapter
3263  *
3264  *	Enables the SGE for DMAs.  This is the last step in starting packet
3265  *	transfers.
3266  */
3267 void t3_sge_start(struct adapter *adap)
3268 {
3269 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3270 }
3271 
3272 /**
3273  *	t3_sge_stop - disable SGE operation
3274  *	@adap: the adapter
3275  *
3276  *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
3277  *	from error interrupts) or from normal process context.  In the latter
3278  *	case it also disables any pending queue restart tasklets.  Note that
3279  *	if it is called in interrupt context it cannot disable the restart
3280  *	tasklets as it cannot wait, however the tasklets will have no effect
3281  *	since the doorbells are disabled and the driver will call this again
3282  *	later from process context, at which time the tasklets will be stopped
3283  *	if they are still running.
3284  */
3285 void t3_sge_stop(struct adapter *adap)
3286 {
3287 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3288 	if (!in_interrupt()) {
3289 		int i;
3290 
3291 		for (i = 0; i < SGE_QSETS; ++i) {
3292 			struct sge_qset *qs = &adap->sge.qs[i];
3293 
3294 			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3295 			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3296 		}
3297 	}
3298 }
3299 
3300 /**
3301  *	t3_sge_init - initialize SGE
3302  *	@adap: the adapter
3303  *	@p: the SGE parameters
3304  *
3305  *	Performs SGE initialization needed every time after a chip reset.
3306  *	We do not initialize any of the queue sets here, instead the driver
3307  *	top-level must request those individually.  We also do not enable DMA
3308  *	here, that should be done after the queues have been set up.
3309  */
3310 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3311 {
3312 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3313 
3314 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3315 	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3316 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3317 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3318 #if SGE_NUM_GENBITS == 1
3319 	ctrl |= F_EGRGENCTRL;
3320 #endif
3321 	if (adap->params.rev > 0) {
3322 		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3323 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3324 	}
3325 	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3326 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3327 		     V_LORCQDRBTHRSH(512));
3328 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3329 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3330 		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3331 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3332 		     adap->params.rev < T3_REV_C ? 1000 : 500);
3333 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3334 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3335 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3336 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3337 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3338 }
3339 
3340 /**
3341  *	t3_sge_prep - one-time SGE initialization
3342  *	@adap: the associated adapter
3343  *	@p: SGE parameters
3344  *
3345  *	Performs one-time initialization of SGE SW state.  Includes determining
3346  *	defaults for the assorted SGE parameters, which admins can change until
3347  *	they are used to initialize the SGE.
3348  */
3349 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3350 {
3351 	int i;
3352 
3353 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3354 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3355 
3356 	for (i = 0; i < SGE_QSETS; ++i) {
3357 		struct qset_params *q = p->qset + i;
3358 
3359 		q->polling = adap->params.rev > 0;
3360 		q->coalesce_usecs = 5;
3361 		q->rspq_size = 1024;
3362 		q->fl_size = 1024;
3363  		q->jumbo_size = 512;
3364 		q->txq_size[TXQ_ETH] = 1024;
3365 		q->txq_size[TXQ_OFLD] = 1024;
3366 		q->txq_size[TXQ_CTRL] = 256;
3367 		q->cong_thres = 0;
3368 	}
3369 
3370 	spin_lock_init(&adap->sge.reg_lock);
3371 }
3372