1 /* 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/skbuff.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/if_vlan.h> 36 #include <linux/ip.h> 37 #include <linux/tcp.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/slab.h> 40 #include <linux/prefetch.h> 41 #include <net/arp.h> 42 #include "common.h" 43 #include "regs.h" 44 #include "sge_defs.h" 45 #include "t3_cpl.h" 46 #include "firmware_exports.h" 47 #include "cxgb3_offload.h" 48 49 #define USE_GTS 0 50 51 #define SGE_RX_SM_BUF_SIZE 1536 52 53 #define SGE_RX_COPY_THRES 256 54 #define SGE_RX_PULL_LEN 128 55 56 #define SGE_PG_RSVD SMP_CACHE_BYTES 57 /* 58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. 59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs 60 * directly. 61 */ 62 #define FL0_PG_CHUNK_SIZE 2048 63 #define FL0_PG_ORDER 0 64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) 65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) 66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) 67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) 68 69 #define SGE_RX_DROP_THRES 16 70 #define RX_RECLAIM_PERIOD (HZ/4) 71 72 /* 73 * Max number of Rx buffers we replenish at a time. 74 */ 75 #define MAX_RX_REFILL 16U 76 /* 77 * Period of the Tx buffer reclaim timer. This timer does not need to run 78 * frequently as Tx buffers are usually reclaimed by new Tx packets. 79 */ 80 #define TX_RECLAIM_PERIOD (HZ / 4) 81 #define TX_RECLAIM_TIMER_CHUNK 64U 82 #define TX_RECLAIM_CHUNK 16U 83 84 /* WR size in bytes */ 85 #define WR_LEN (WR_FLITS * 8) 86 87 /* 88 * Types of Tx queues in each queue set. Order here matters, do not change. 89 */ 90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; 91 92 /* Values for sge_txq.flags */ 93 enum { 94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */ 95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ 96 }; 97 98 struct tx_desc { 99 __be64 flit[TX_DESC_FLITS]; 100 }; 101 102 struct rx_desc { 103 __be32 addr_lo; 104 __be32 len_gen; 105 __be32 gen2; 106 __be32 addr_hi; 107 }; 108 109 struct tx_sw_desc { /* SW state per Tx descriptor */ 110 struct sk_buff *skb; 111 u8 eop; /* set if last descriptor for packet */ 112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */ 113 u8 fragidx; /* first page fragment associated with descriptor */ 114 s8 sflit; /* start flit of first SGL entry in descriptor */ 115 }; 116 117 struct rx_sw_desc { /* SW state per Rx descriptor */ 118 union { 119 struct sk_buff *skb; 120 struct fl_pg_chunk pg_chunk; 121 }; 122 DEFINE_DMA_UNMAP_ADDR(dma_addr); 123 }; 124 125 struct rsp_desc { /* response queue descriptor */ 126 struct rss_header rss_hdr; 127 __be32 flags; 128 __be32 len_cq; 129 u8 imm_data[47]; 130 u8 intr_gen; 131 }; 132 133 /* 134 * Holds unmapping information for Tx packets that need deferred unmapping. 135 * This structure lives at skb->head and must be allocated by callers. 136 */ 137 struct deferred_unmap_info { 138 struct pci_dev *pdev; 139 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 140 }; 141 142 /* 143 * Maps a number of flits to the number of Tx descriptors that can hold them. 144 * The formula is 145 * 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1). 147 * 148 * HW allows up to 4 descriptors to be combined into a WR. 149 */ 150 static u8 flit_desc_map[] = { 151 0, 152 #if SGE_NUM_GENBITS == 1 153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 157 #elif SGE_NUM_GENBITS == 2 158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 162 #else 163 # error "SGE_NUM_GENBITS must be 1 or 2" 164 #endif 165 }; 166 167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) 168 { 169 return container_of(q, struct sge_qset, fl[qidx]); 170 } 171 172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) 173 { 174 return container_of(q, struct sge_qset, rspq); 175 } 176 177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) 178 { 179 return container_of(q, struct sge_qset, txq[qidx]); 180 } 181 182 /** 183 * refill_rspq - replenish an SGE response queue 184 * @adapter: the adapter 185 * @q: the response queue to replenish 186 * @credits: how many new responses to make available 187 * 188 * Replenishes a response queue by making the supplied number of responses 189 * available to HW. 190 */ 191 static inline void refill_rspq(struct adapter *adapter, 192 const struct sge_rspq *q, unsigned int credits) 193 { 194 rmb(); 195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, 196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); 197 } 198 199 /** 200 * need_skb_unmap - does the platform need unmapping of sk_buffs? 201 * 202 * Returns true if the platform needs sk_buff unmapping. The compiler 203 * optimizes away unnecessary code if this returns true. 204 */ 205 static inline int need_skb_unmap(void) 206 { 207 #ifdef CONFIG_NEED_DMA_MAP_STATE 208 return 1; 209 #else 210 return 0; 211 #endif 212 } 213 214 /** 215 * unmap_skb - unmap a packet main body and its page fragments 216 * @skb: the packet 217 * @q: the Tx queue containing Tx descriptors for the packet 218 * @cidx: index of Tx descriptor 219 * @pdev: the PCI device 220 * 221 * Unmap the main body of an sk_buff and its page fragments, if any. 222 * Because of the fairly complicated structure of our SGLs and the desire 223 * to conserve space for metadata, the information necessary to unmap an 224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx 225 * descriptors (the physical addresses of the various data buffers), and 226 * the SW descriptor state (assorted indices). The send functions 227 * initialize the indices for the first packet descriptor so we can unmap 228 * the buffers held in the first Tx descriptor here, and we have enough 229 * information at this point to set the state for the next Tx descriptor. 230 * 231 * Note that it is possible to clean up the first descriptor of a packet 232 * before the send routines have written the next descriptors, but this 233 * race does not cause any problem. We just end up writing the unmapping 234 * info for the descriptor first. 235 */ 236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, 237 unsigned int cidx, struct pci_dev *pdev) 238 { 239 const struct sg_ent *sgp; 240 struct tx_sw_desc *d = &q->sdesc[cidx]; 241 int nfrags, frag_idx, curflit, j = d->addr_idx; 242 243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; 244 frag_idx = d->fragidx; 245 246 if (frag_idx == 0 && skb_headlen(skb)) { 247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), 248 skb_headlen(skb), PCI_DMA_TODEVICE); 249 j = 1; 250 } 251 252 curflit = d->sflit + 1 + j; 253 nfrags = skb_shinfo(skb)->nr_frags; 254 255 while (frag_idx < nfrags && curflit < WR_FLITS) { 256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), 257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), 258 PCI_DMA_TODEVICE); 259 j ^= 1; 260 if (j == 0) { 261 sgp++; 262 curflit++; 263 } 264 curflit++; 265 frag_idx++; 266 } 267 268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ 269 d = cidx + 1 == q->size ? q->sdesc : d + 1; 270 d->fragidx = frag_idx; 271 d->addr_idx = j; 272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ 273 } 274 } 275 276 /** 277 * free_tx_desc - reclaims Tx descriptors and their buffers 278 * @adapter: the adapter 279 * @q: the Tx queue to reclaim descriptors from 280 * @n: the number of descriptors to reclaim 281 * 282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 283 * Tx buffers. Called with the Tx queue lock held. 284 */ 285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, 286 unsigned int n) 287 { 288 struct tx_sw_desc *d; 289 struct pci_dev *pdev = adapter->pdev; 290 unsigned int cidx = q->cidx; 291 292 const int need_unmap = need_skb_unmap() && 293 q->cntxt_id >= FW_TUNNEL_SGEEC_START; 294 295 d = &q->sdesc[cidx]; 296 while (n--) { 297 if (d->skb) { /* an SGL is present */ 298 if (need_unmap) 299 unmap_skb(d->skb, q, cidx, pdev); 300 if (d->eop) { 301 dev_consume_skb_any(d->skb); 302 d->skb = NULL; 303 } 304 } 305 ++d; 306 if (++cidx == q->size) { 307 cidx = 0; 308 d = q->sdesc; 309 } 310 } 311 q->cidx = cidx; 312 } 313 314 /** 315 * reclaim_completed_tx - reclaims completed Tx descriptors 316 * @adapter: the adapter 317 * @q: the Tx queue to reclaim completed descriptors from 318 * @chunk: maximum number of descriptors to reclaim 319 * 320 * Reclaims Tx descriptors that the SGE has indicated it has processed, 321 * and frees the associated buffers if possible. Called with the Tx 322 * queue's lock held. 323 */ 324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter, 325 struct sge_txq *q, 326 unsigned int chunk) 327 { 328 unsigned int reclaim = q->processed - q->cleaned; 329 330 reclaim = min(chunk, reclaim); 331 if (reclaim) { 332 free_tx_desc(adapter, q, reclaim); 333 q->cleaned += reclaim; 334 q->in_use -= reclaim; 335 } 336 return q->processed - q->cleaned; 337 } 338 339 /** 340 * should_restart_tx - are there enough resources to restart a Tx queue? 341 * @q: the Tx queue 342 * 343 * Checks if there are enough descriptors to restart a suspended Tx queue. 344 */ 345 static inline int should_restart_tx(const struct sge_txq *q) 346 { 347 unsigned int r = q->processed - q->cleaned; 348 349 return q->in_use - r < (q->size >> 1); 350 } 351 352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, 353 struct rx_sw_desc *d) 354 { 355 if (q->use_pages && d->pg_chunk.page) { 356 (*d->pg_chunk.p_cnt)--; 357 if (!*d->pg_chunk.p_cnt) 358 pci_unmap_page(pdev, 359 d->pg_chunk.mapping, 360 q->alloc_size, PCI_DMA_FROMDEVICE); 361 362 put_page(d->pg_chunk.page); 363 d->pg_chunk.page = NULL; 364 } else { 365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr), 366 q->buf_size, PCI_DMA_FROMDEVICE); 367 kfree_skb(d->skb); 368 d->skb = NULL; 369 } 370 } 371 372 /** 373 * free_rx_bufs - free the Rx buffers on an SGE free list 374 * @pdev: the PCI device associated with the adapter 375 * @rxq: the SGE free list to clean up 376 * 377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from 378 * this queue should be stopped before calling this function. 379 */ 380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) 381 { 382 unsigned int cidx = q->cidx; 383 384 while (q->credits--) { 385 struct rx_sw_desc *d = &q->sdesc[cidx]; 386 387 388 clear_rx_desc(pdev, q, d); 389 if (++cidx == q->size) 390 cidx = 0; 391 } 392 393 if (q->pg_chunk.page) { 394 __free_pages(q->pg_chunk.page, q->order); 395 q->pg_chunk.page = NULL; 396 } 397 } 398 399 /** 400 * add_one_rx_buf - add a packet buffer to a free-buffer list 401 * @va: buffer start VA 402 * @len: the buffer length 403 * @d: the HW Rx descriptor to write 404 * @sd: the SW Rx descriptor to write 405 * @gen: the generation bit value 406 * @pdev: the PCI device associated with the adapter 407 * 408 * Add a buffer of the given length to the supplied HW and SW Rx 409 * descriptors. 410 */ 411 static inline int add_one_rx_buf(void *va, unsigned int len, 412 struct rx_desc *d, struct rx_sw_desc *sd, 413 unsigned int gen, struct pci_dev *pdev) 414 { 415 dma_addr_t mapping; 416 417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE); 418 if (unlikely(pci_dma_mapping_error(pdev, mapping))) 419 return -ENOMEM; 420 421 dma_unmap_addr_set(sd, dma_addr, mapping); 422 423 d->addr_lo = cpu_to_be32(mapping); 424 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 425 dma_wmb(); 426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 428 return 0; 429 } 430 431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, 432 unsigned int gen) 433 { 434 d->addr_lo = cpu_to_be32(mapping); 435 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 436 dma_wmb(); 437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 439 return 0; 440 } 441 442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, 443 struct rx_sw_desc *sd, gfp_t gfp, 444 unsigned int order) 445 { 446 if (!q->pg_chunk.page) { 447 dma_addr_t mapping; 448 449 q->pg_chunk.page = alloc_pages(gfp, order); 450 if (unlikely(!q->pg_chunk.page)) 451 return -ENOMEM; 452 q->pg_chunk.va = page_address(q->pg_chunk.page); 453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - 454 SGE_PG_RSVD; 455 q->pg_chunk.offset = 0; 456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page, 457 0, q->alloc_size, PCI_DMA_FROMDEVICE); 458 if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) { 459 __free_pages(q->pg_chunk.page, order); 460 q->pg_chunk.page = NULL; 461 return -EIO; 462 } 463 q->pg_chunk.mapping = mapping; 464 } 465 sd->pg_chunk = q->pg_chunk; 466 467 prefetch(sd->pg_chunk.p_cnt); 468 469 q->pg_chunk.offset += q->buf_size; 470 if (q->pg_chunk.offset == (PAGE_SIZE << order)) 471 q->pg_chunk.page = NULL; 472 else { 473 q->pg_chunk.va += q->buf_size; 474 get_page(q->pg_chunk.page); 475 } 476 477 if (sd->pg_chunk.offset == 0) 478 *sd->pg_chunk.p_cnt = 1; 479 else 480 *sd->pg_chunk.p_cnt += 1; 481 482 return 0; 483 } 484 485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 486 { 487 if (q->pend_cred >= q->credits / 4) { 488 q->pend_cred = 0; 489 wmb(); 490 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 491 } 492 } 493 494 /** 495 * refill_fl - refill an SGE free-buffer list 496 * @adapter: the adapter 497 * @q: the free-list to refill 498 * @n: the number of new buffers to allocate 499 * @gfp: the gfp flags for allocating new buffers 500 * 501 * (Re)populate an SGE free-buffer list with up to @n new packet buffers, 502 * allocated with the supplied gfp flags. The caller must assure that 503 * @n does not exceed the queue's capacity. 504 */ 505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) 506 { 507 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 508 struct rx_desc *d = &q->desc[q->pidx]; 509 unsigned int count = 0; 510 511 while (n--) { 512 dma_addr_t mapping; 513 int err; 514 515 if (q->use_pages) { 516 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, 517 q->order))) { 518 nomem: q->alloc_failed++; 519 break; 520 } 521 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; 522 dma_unmap_addr_set(sd, dma_addr, mapping); 523 524 add_one_rx_chunk(mapping, d, q->gen); 525 pci_dma_sync_single_for_device(adap->pdev, mapping, 526 q->buf_size - SGE_PG_RSVD, 527 PCI_DMA_FROMDEVICE); 528 } else { 529 void *buf_start; 530 531 struct sk_buff *skb = alloc_skb(q->buf_size, gfp); 532 if (!skb) 533 goto nomem; 534 535 sd->skb = skb; 536 buf_start = skb->data; 537 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, 538 q->gen, adap->pdev); 539 if (unlikely(err)) { 540 clear_rx_desc(adap->pdev, q, sd); 541 break; 542 } 543 } 544 545 d++; 546 sd++; 547 if (++q->pidx == q->size) { 548 q->pidx = 0; 549 q->gen ^= 1; 550 sd = q->sdesc; 551 d = q->desc; 552 } 553 count++; 554 } 555 556 q->credits += count; 557 q->pend_cred += count; 558 ring_fl_db(adap, q); 559 560 return count; 561 } 562 563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 564 { 565 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), 566 GFP_ATOMIC | __GFP_COMP); 567 } 568 569 /** 570 * recycle_rx_buf - recycle a receive buffer 571 * @adapter: the adapter 572 * @q: the SGE free list 573 * @idx: index of buffer to recycle 574 * 575 * Recycles the specified buffer on the given free list by adding it at 576 * the next available slot on the list. 577 */ 578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, 579 unsigned int idx) 580 { 581 struct rx_desc *from = &q->desc[idx]; 582 struct rx_desc *to = &q->desc[q->pidx]; 583 584 q->sdesc[q->pidx] = q->sdesc[idx]; 585 to->addr_lo = from->addr_lo; /* already big endian */ 586 to->addr_hi = from->addr_hi; /* likewise */ 587 dma_wmb(); 588 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); 589 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); 590 591 if (++q->pidx == q->size) { 592 q->pidx = 0; 593 q->gen ^= 1; 594 } 595 596 q->credits++; 597 q->pend_cred++; 598 ring_fl_db(adap, q); 599 } 600 601 /** 602 * alloc_ring - allocate resources for an SGE descriptor ring 603 * @pdev: the PCI device 604 * @nelem: the number of descriptors 605 * @elem_size: the size of each descriptor 606 * @sw_size: the size of the SW state associated with each ring element 607 * @phys: the physical address of the allocated ring 608 * @metadata: address of the array holding the SW state for the ring 609 * 610 * Allocates resources for an SGE descriptor ring, such as Tx queues, 611 * free buffer lists, or response queues. Each SGE ring requires 612 * space for its HW descriptors plus, optionally, space for the SW state 613 * associated with each HW entry (the metadata). The function returns 614 * three values: the virtual address for the HW ring (the return value 615 * of the function), the physical address of the HW ring, and the address 616 * of the SW ring. 617 */ 618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, 619 size_t sw_size, dma_addr_t * phys, void *metadata) 620 { 621 size_t len = nelem * elem_size; 622 void *s = NULL; 623 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); 624 625 if (!p) 626 return NULL; 627 if (sw_size && metadata) { 628 s = kcalloc(nelem, sw_size, GFP_KERNEL); 629 630 if (!s) { 631 dma_free_coherent(&pdev->dev, len, p, *phys); 632 return NULL; 633 } 634 *(void **)metadata = s; 635 } 636 memset(p, 0, len); 637 return p; 638 } 639 640 /** 641 * t3_reset_qset - reset a sge qset 642 * @q: the queue set 643 * 644 * Reset the qset structure. 645 * the NAPI structure is preserved in the event of 646 * the qset's reincarnation, for example during EEH recovery. 647 */ 648 static void t3_reset_qset(struct sge_qset *q) 649 { 650 if (q->adap && 651 !(q->adap->flags & NAPI_INIT)) { 652 memset(q, 0, sizeof(*q)); 653 return; 654 } 655 656 q->adap = NULL; 657 memset(&q->rspq, 0, sizeof(q->rspq)); 658 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); 659 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); 660 q->txq_stopped = 0; 661 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ 662 q->rx_reclaim_timer.function = NULL; 663 q->nomem = 0; 664 napi_free_frags(&q->napi); 665 } 666 667 668 /** 669 * free_qset - free the resources of an SGE queue set 670 * @adapter: the adapter owning the queue set 671 * @q: the queue set 672 * 673 * Release the HW and SW resources associated with an SGE queue set, such 674 * as HW contexts, packet buffers, and descriptor rings. Traffic to the 675 * queue set must be quiesced prior to calling this. 676 */ 677 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) 678 { 679 int i; 680 struct pci_dev *pdev = adapter->pdev; 681 682 for (i = 0; i < SGE_RXQ_PER_SET; ++i) 683 if (q->fl[i].desc) { 684 spin_lock_irq(&adapter->sge.reg_lock); 685 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); 686 spin_unlock_irq(&adapter->sge.reg_lock); 687 free_rx_bufs(pdev, &q->fl[i]); 688 kfree(q->fl[i].sdesc); 689 dma_free_coherent(&pdev->dev, 690 q->fl[i].size * 691 sizeof(struct rx_desc), q->fl[i].desc, 692 q->fl[i].phys_addr); 693 } 694 695 for (i = 0; i < SGE_TXQ_PER_SET; ++i) 696 if (q->txq[i].desc) { 697 spin_lock_irq(&adapter->sge.reg_lock); 698 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); 699 spin_unlock_irq(&adapter->sge.reg_lock); 700 if (q->txq[i].sdesc) { 701 free_tx_desc(adapter, &q->txq[i], 702 q->txq[i].in_use); 703 kfree(q->txq[i].sdesc); 704 } 705 dma_free_coherent(&pdev->dev, 706 q->txq[i].size * 707 sizeof(struct tx_desc), 708 q->txq[i].desc, q->txq[i].phys_addr); 709 __skb_queue_purge(&q->txq[i].sendq); 710 } 711 712 if (q->rspq.desc) { 713 spin_lock_irq(&adapter->sge.reg_lock); 714 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); 715 spin_unlock_irq(&adapter->sge.reg_lock); 716 dma_free_coherent(&pdev->dev, 717 q->rspq.size * sizeof(struct rsp_desc), 718 q->rspq.desc, q->rspq.phys_addr); 719 } 720 721 t3_reset_qset(q); 722 } 723 724 /** 725 * init_qset_cntxt - initialize an SGE queue set context info 726 * @qs: the queue set 727 * @id: the queue set id 728 * 729 * Initializes the TIDs and context ids for the queues of a queue set. 730 */ 731 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) 732 { 733 qs->rspq.cntxt_id = id; 734 qs->fl[0].cntxt_id = 2 * id; 735 qs->fl[1].cntxt_id = 2 * id + 1; 736 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; 737 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; 738 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; 739 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; 740 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; 741 } 742 743 /** 744 * sgl_len - calculates the size of an SGL of the given capacity 745 * @n: the number of SGL entries 746 * 747 * Calculates the number of flits needed for a scatter/gather list that 748 * can hold the given number of entries. 749 */ 750 static inline unsigned int sgl_len(unsigned int n) 751 { 752 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ 753 return (3 * n) / 2 + (n & 1); 754 } 755 756 /** 757 * flits_to_desc - returns the num of Tx descriptors for the given flits 758 * @n: the number of flits 759 * 760 * Calculates the number of Tx descriptors needed for the supplied number 761 * of flits. 762 */ 763 static inline unsigned int flits_to_desc(unsigned int n) 764 { 765 BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); 766 return flit_desc_map[n]; 767 } 768 769 /** 770 * get_packet - return the next ingress packet buffer from a free list 771 * @adap: the adapter that received the packet 772 * @fl: the SGE free list holding the packet 773 * @len: the packet length including any SGE padding 774 * @drop_thres: # of remaining buffers before we start dropping packets 775 * 776 * Get the next packet from a free list and complete setup of the 777 * sk_buff. If the packet is small we make a copy and recycle the 778 * original buffer, otherwise we use the original buffer itself. If a 779 * positive drop threshold is supplied packets are dropped and their 780 * buffers recycled if (a) the number of remaining buffers is under the 781 * threshold and the packet is too big to copy, or (b) the packet should 782 * be copied but there is no memory for the copy. 783 */ 784 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, 785 unsigned int len, unsigned int drop_thres) 786 { 787 struct sk_buff *skb = NULL; 788 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 789 790 prefetch(sd->skb->data); 791 fl->credits--; 792 793 if (len <= SGE_RX_COPY_THRES) { 794 skb = alloc_skb(len, GFP_ATOMIC); 795 if (likely(skb != NULL)) { 796 __skb_put(skb, len); 797 pci_dma_sync_single_for_cpu(adap->pdev, 798 dma_unmap_addr(sd, dma_addr), len, 799 PCI_DMA_FROMDEVICE); 800 memcpy(skb->data, sd->skb->data, len); 801 pci_dma_sync_single_for_device(adap->pdev, 802 dma_unmap_addr(sd, dma_addr), len, 803 PCI_DMA_FROMDEVICE); 804 } else if (!drop_thres) 805 goto use_orig_buf; 806 recycle: 807 recycle_rx_buf(adap, fl, fl->cidx); 808 return skb; 809 } 810 811 if (unlikely(fl->credits < drop_thres) && 812 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), 813 GFP_ATOMIC | __GFP_COMP) == 0) 814 goto recycle; 815 816 use_orig_buf: 817 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr), 818 fl->buf_size, PCI_DMA_FROMDEVICE); 819 skb = sd->skb; 820 skb_put(skb, len); 821 __refill_fl(adap, fl); 822 return skb; 823 } 824 825 /** 826 * get_packet_pg - return the next ingress packet buffer from a free list 827 * @adap: the adapter that received the packet 828 * @fl: the SGE free list holding the packet 829 * @len: the packet length including any SGE padding 830 * @drop_thres: # of remaining buffers before we start dropping packets 831 * 832 * Get the next packet from a free list populated with page chunks. 833 * If the packet is small we make a copy and recycle the original buffer, 834 * otherwise we attach the original buffer as a page fragment to a fresh 835 * sk_buff. If a positive drop threshold is supplied packets are dropped 836 * and their buffers recycled if (a) the number of remaining buffers is 837 * under the threshold and the packet is too big to copy, or (b) there's 838 * no system memory. 839 * 840 * Note: this function is similar to @get_packet but deals with Rx buffers 841 * that are page chunks rather than sk_buffs. 842 */ 843 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, 844 struct sge_rspq *q, unsigned int len, 845 unsigned int drop_thres) 846 { 847 struct sk_buff *newskb, *skb; 848 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 849 850 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); 851 852 newskb = skb = q->pg_skb; 853 if (!skb && (len <= SGE_RX_COPY_THRES)) { 854 newskb = alloc_skb(len, GFP_ATOMIC); 855 if (likely(newskb != NULL)) { 856 __skb_put(newskb, len); 857 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 858 PCI_DMA_FROMDEVICE); 859 memcpy(newskb->data, sd->pg_chunk.va, len); 860 pci_dma_sync_single_for_device(adap->pdev, dma_addr, 861 len, 862 PCI_DMA_FROMDEVICE); 863 } else if (!drop_thres) 864 return NULL; 865 recycle: 866 fl->credits--; 867 recycle_rx_buf(adap, fl, fl->cidx); 868 q->rx_recycle_buf++; 869 return newskb; 870 } 871 872 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) 873 goto recycle; 874 875 prefetch(sd->pg_chunk.p_cnt); 876 877 if (!skb) 878 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); 879 880 if (unlikely(!newskb)) { 881 if (!drop_thres) 882 return NULL; 883 goto recycle; 884 } 885 886 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 887 PCI_DMA_FROMDEVICE); 888 (*sd->pg_chunk.p_cnt)--; 889 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 890 pci_unmap_page(adap->pdev, 891 sd->pg_chunk.mapping, 892 fl->alloc_size, 893 PCI_DMA_FROMDEVICE); 894 if (!skb) { 895 __skb_put(newskb, SGE_RX_PULL_LEN); 896 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); 897 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, 898 sd->pg_chunk.offset + SGE_RX_PULL_LEN, 899 len - SGE_RX_PULL_LEN); 900 newskb->len = len; 901 newskb->data_len = len - SGE_RX_PULL_LEN; 902 newskb->truesize += newskb->data_len; 903 } else { 904 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, 905 sd->pg_chunk.page, 906 sd->pg_chunk.offset, len); 907 newskb->len += len; 908 newskb->data_len += len; 909 newskb->truesize += len; 910 } 911 912 fl->credits--; 913 /* 914 * We do not refill FLs here, we let the caller do it to overlap a 915 * prefetch. 916 */ 917 return newskb; 918 } 919 920 /** 921 * get_imm_packet - return the next ingress packet buffer from a response 922 * @resp: the response descriptor containing the packet data 923 * 924 * Return a packet containing the immediate data of the given response. 925 */ 926 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) 927 { 928 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); 929 930 if (skb) { 931 __skb_put(skb, IMMED_PKT_SIZE); 932 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE); 933 } 934 return skb; 935 } 936 937 /** 938 * calc_tx_descs - calculate the number of Tx descriptors for a packet 939 * @skb: the packet 940 * 941 * Returns the number of Tx descriptors needed for the given Ethernet 942 * packet. Ethernet packets require addition of WR and CPL headers. 943 */ 944 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 945 { 946 unsigned int flits; 947 948 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) 949 return 1; 950 951 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; 952 if (skb_shinfo(skb)->gso_size) 953 flits++; 954 return flits_to_desc(flits); 955 } 956 957 /* map_skb - map a packet main body and its page fragments 958 * @pdev: the PCI device 959 * @skb: the packet 960 * @addr: placeholder to save the mapped addresses 961 * 962 * map the main body of an sk_buff and its page fragments, if any. 963 */ 964 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb, 965 dma_addr_t *addr) 966 { 967 const skb_frag_t *fp, *end; 968 const struct skb_shared_info *si; 969 970 if (skb_headlen(skb)) { 971 *addr = pci_map_single(pdev, skb->data, skb_headlen(skb), 972 PCI_DMA_TODEVICE); 973 if (pci_dma_mapping_error(pdev, *addr)) 974 goto out_err; 975 addr++; 976 } 977 978 si = skb_shinfo(skb); 979 end = &si->frags[si->nr_frags]; 980 981 for (fp = si->frags; fp < end; fp++) { 982 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp), 983 DMA_TO_DEVICE); 984 if (pci_dma_mapping_error(pdev, *addr)) 985 goto unwind; 986 addr++; 987 } 988 return 0; 989 990 unwind: 991 while (fp-- > si->frags) 992 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp), 993 DMA_TO_DEVICE); 994 995 pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE); 996 out_err: 997 return -ENOMEM; 998 } 999 1000 /** 1001 * write_sgl - populate a scatter/gather list for a packet 1002 * @skb: the packet 1003 * @sgp: the SGL to populate 1004 * @start: start address of skb main body data to include in the SGL 1005 * @len: length of skb main body data to include in the SGL 1006 * @addr: the list of the mapped addresses 1007 * 1008 * Copies the scatter/gather list for the buffers that make up a packet 1009 * and returns the SGL size in 8-byte words. The caller must size the SGL 1010 * appropriately. 1011 */ 1012 static inline unsigned int write_sgl(const struct sk_buff *skb, 1013 struct sg_ent *sgp, unsigned char *start, 1014 unsigned int len, const dma_addr_t *addr) 1015 { 1016 unsigned int i, j = 0, k = 0, nfrags; 1017 1018 if (len) { 1019 sgp->len[0] = cpu_to_be32(len); 1020 sgp->addr[j++] = cpu_to_be64(addr[k++]); 1021 } 1022 1023 nfrags = skb_shinfo(skb)->nr_frags; 1024 for (i = 0; i < nfrags; i++) { 1025 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1026 1027 sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); 1028 sgp->addr[j] = cpu_to_be64(addr[k++]); 1029 j ^= 1; 1030 if (j == 0) 1031 ++sgp; 1032 } 1033 if (j) 1034 sgp->len[j] = 0; 1035 return ((nfrags + (len != 0)) * 3) / 2 + j; 1036 } 1037 1038 /** 1039 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell 1040 * @adap: the adapter 1041 * @q: the Tx queue 1042 * 1043 * Ring the doorbel if a Tx queue is asleep. There is a natural race, 1044 * where the HW is going to sleep just after we checked, however, 1045 * then the interrupt handler will detect the outstanding TX packet 1046 * and ring the doorbell for us. 1047 * 1048 * When GTS is disabled we unconditionally ring the doorbell. 1049 */ 1050 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) 1051 { 1052 #if USE_GTS 1053 clear_bit(TXQ_LAST_PKT_DB, &q->flags); 1054 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { 1055 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1056 t3_write_reg(adap, A_SG_KDOORBELL, 1057 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1058 } 1059 #else 1060 wmb(); /* write descriptors before telling HW */ 1061 t3_write_reg(adap, A_SG_KDOORBELL, 1062 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1063 #endif 1064 } 1065 1066 static inline void wr_gen2(struct tx_desc *d, unsigned int gen) 1067 { 1068 #if SGE_NUM_GENBITS == 2 1069 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); 1070 #endif 1071 } 1072 1073 /** 1074 * write_wr_hdr_sgl - write a WR header and, optionally, SGL 1075 * @ndesc: number of Tx descriptors spanned by the SGL 1076 * @skb: the packet corresponding to the WR 1077 * @d: first Tx descriptor to be written 1078 * @pidx: index of above descriptors 1079 * @q: the SGE Tx queue 1080 * @sgl: the SGL 1081 * @flits: number of flits to the start of the SGL in the first descriptor 1082 * @sgl_flits: the SGL size in flits 1083 * @gen: the Tx descriptor generation 1084 * @wr_hi: top 32 bits of WR header based on WR type (big endian) 1085 * @wr_lo: low 32 bits of WR header based on WR type (big endian) 1086 * 1087 * Write a work request header and an associated SGL. If the SGL is 1088 * small enough to fit into one Tx descriptor it has already been written 1089 * and we just need to write the WR header. Otherwise we distribute the 1090 * SGL across the number of descriptors it spans. 1091 */ 1092 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, 1093 struct tx_desc *d, unsigned int pidx, 1094 const struct sge_txq *q, 1095 const struct sg_ent *sgl, 1096 unsigned int flits, unsigned int sgl_flits, 1097 unsigned int gen, __be32 wr_hi, 1098 __be32 wr_lo) 1099 { 1100 struct work_request_hdr *wrp = (struct work_request_hdr *)d; 1101 struct tx_sw_desc *sd = &q->sdesc[pidx]; 1102 1103 sd->skb = skb; 1104 if (need_skb_unmap()) { 1105 sd->fragidx = 0; 1106 sd->addr_idx = 0; 1107 sd->sflit = flits; 1108 } 1109 1110 if (likely(ndesc == 1)) { 1111 sd->eop = 1; 1112 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | 1113 V_WR_SGLSFLT(flits)) | wr_hi; 1114 dma_wmb(); 1115 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | 1116 V_WR_GEN(gen)) | wr_lo; 1117 wr_gen2(d, gen); 1118 } else { 1119 unsigned int ogen = gen; 1120 const u64 *fp = (const u64 *)sgl; 1121 struct work_request_hdr *wp = wrp; 1122 1123 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | 1124 V_WR_SGLSFLT(flits)) | wr_hi; 1125 1126 while (sgl_flits) { 1127 unsigned int avail = WR_FLITS - flits; 1128 1129 if (avail > sgl_flits) 1130 avail = sgl_flits; 1131 memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); 1132 sgl_flits -= avail; 1133 ndesc--; 1134 if (!sgl_flits) 1135 break; 1136 1137 fp += avail; 1138 d++; 1139 sd->eop = 0; 1140 sd++; 1141 if (++pidx == q->size) { 1142 pidx = 0; 1143 gen ^= 1; 1144 d = q->desc; 1145 sd = q->sdesc; 1146 } 1147 1148 sd->skb = skb; 1149 wrp = (struct work_request_hdr *)d; 1150 wrp->wr_hi = htonl(V_WR_DATATYPE(1) | 1151 V_WR_SGLSFLT(1)) | wr_hi; 1152 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, 1153 sgl_flits + 1)) | 1154 V_WR_GEN(gen)) | wr_lo; 1155 wr_gen2(d, gen); 1156 flits = 1; 1157 } 1158 sd->eop = 1; 1159 wrp->wr_hi |= htonl(F_WR_EOP); 1160 dma_wmb(); 1161 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; 1162 wr_gen2((struct tx_desc *)wp, ogen); 1163 WARN_ON(ndesc != 0); 1164 } 1165 } 1166 1167 /** 1168 * write_tx_pkt_wr - write a TX_PKT work request 1169 * @adap: the adapter 1170 * @skb: the packet to send 1171 * @pi: the egress interface 1172 * @pidx: index of the first Tx descriptor to write 1173 * @gen: the generation value to use 1174 * @q: the Tx queue 1175 * @ndesc: number of descriptors the packet will occupy 1176 * @compl: the value of the COMPL bit to use 1177 * 1178 * Generate a TX_PKT work request to send the supplied packet. 1179 */ 1180 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, 1181 const struct port_info *pi, 1182 unsigned int pidx, unsigned int gen, 1183 struct sge_txq *q, unsigned int ndesc, 1184 unsigned int compl, const dma_addr_t *addr) 1185 { 1186 unsigned int flits, sgl_flits, cntrl, tso_info; 1187 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1188 struct tx_desc *d = &q->desc[pidx]; 1189 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; 1190 1191 cpl->len = htonl(skb->len); 1192 cntrl = V_TXPKT_INTF(pi->port_id); 1193 1194 if (skb_vlan_tag_present(skb)) 1195 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); 1196 1197 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); 1198 if (tso_info) { 1199 int eth_type; 1200 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; 1201 1202 d->flit[2] = 0; 1203 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); 1204 hdr->cntrl = htonl(cntrl); 1205 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1206 CPL_ETH_II : CPL_ETH_II_VLAN; 1207 tso_info |= V_LSO_ETH_TYPE(eth_type) | 1208 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | 1209 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); 1210 hdr->lso_info = htonl(tso_info); 1211 flits = 3; 1212 } else { 1213 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); 1214 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ 1215 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); 1216 cpl->cntrl = htonl(cntrl); 1217 1218 if (skb->len <= WR_LEN - sizeof(*cpl)) { 1219 q->sdesc[pidx].skb = NULL; 1220 if (!skb->data_len) 1221 skb_copy_from_linear_data(skb, &d->flit[2], 1222 skb->len); 1223 else 1224 skb_copy_bits(skb, 0, &d->flit[2], skb->len); 1225 1226 flits = (skb->len + 7) / 8 + 2; 1227 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | 1228 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) 1229 | F_WR_SOP | F_WR_EOP | compl); 1230 dma_wmb(); 1231 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | 1232 V_WR_TID(q->token)); 1233 wr_gen2(d, gen); 1234 dev_consume_skb_any(skb); 1235 return; 1236 } 1237 1238 flits = 2; 1239 } 1240 1241 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1242 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr); 1243 1244 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, 1245 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), 1246 htonl(V_WR_TID(q->token))); 1247 } 1248 1249 static inline void t3_stop_tx_queue(struct netdev_queue *txq, 1250 struct sge_qset *qs, struct sge_txq *q) 1251 { 1252 netif_tx_stop_queue(txq); 1253 set_bit(TXQ_ETH, &qs->txq_stopped); 1254 q->stops++; 1255 } 1256 1257 /** 1258 * eth_xmit - add a packet to the Ethernet Tx queue 1259 * @skb: the packet 1260 * @dev: the egress net device 1261 * 1262 * Add a packet to an SGE Tx queue. Runs with softirqs disabled. 1263 */ 1264 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1265 { 1266 int qidx; 1267 unsigned int ndesc, pidx, credits, gen, compl; 1268 const struct port_info *pi = netdev_priv(dev); 1269 struct adapter *adap = pi->adapter; 1270 struct netdev_queue *txq; 1271 struct sge_qset *qs; 1272 struct sge_txq *q; 1273 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1274 1275 /* 1276 * The chip min packet length is 9 octets but play safe and reject 1277 * anything shorter than an Ethernet header. 1278 */ 1279 if (unlikely(skb->len < ETH_HLEN)) { 1280 dev_kfree_skb_any(skb); 1281 return NETDEV_TX_OK; 1282 } 1283 1284 qidx = skb_get_queue_mapping(skb); 1285 qs = &pi->qs[qidx]; 1286 q = &qs->txq[TXQ_ETH]; 1287 txq = netdev_get_tx_queue(dev, qidx); 1288 1289 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1290 1291 credits = q->size - q->in_use; 1292 ndesc = calc_tx_descs(skb); 1293 1294 if (unlikely(credits < ndesc)) { 1295 t3_stop_tx_queue(txq, qs, q); 1296 dev_err(&adap->pdev->dev, 1297 "%s: Tx ring %u full while queue awake!\n", 1298 dev->name, q->cntxt_id & 7); 1299 return NETDEV_TX_BUSY; 1300 } 1301 1302 /* Check if ethernet packet can't be sent as immediate data */ 1303 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) { 1304 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) { 1305 dev_kfree_skb(skb); 1306 return NETDEV_TX_OK; 1307 } 1308 } 1309 1310 q->in_use += ndesc; 1311 if (unlikely(credits - ndesc < q->stop_thres)) { 1312 t3_stop_tx_queue(txq, qs, q); 1313 1314 if (should_restart_tx(q) && 1315 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1316 q->restarts++; 1317 netif_tx_start_queue(txq); 1318 } 1319 } 1320 1321 gen = q->gen; 1322 q->unacked += ndesc; 1323 compl = (q->unacked & 8) << (S_WR_COMPL - 3); 1324 q->unacked &= 7; 1325 pidx = q->pidx; 1326 q->pidx += ndesc; 1327 if (q->pidx >= q->size) { 1328 q->pidx -= q->size; 1329 q->gen ^= 1; 1330 } 1331 1332 /* update port statistics */ 1333 if (skb->ip_summed == CHECKSUM_PARTIAL) 1334 qs->port_stats[SGE_PSTAT_TX_CSUM]++; 1335 if (skb_shinfo(skb)->gso_size) 1336 qs->port_stats[SGE_PSTAT_TSO]++; 1337 if (skb_vlan_tag_present(skb)) 1338 qs->port_stats[SGE_PSTAT_VLANINS]++; 1339 1340 /* 1341 * We do not use Tx completion interrupts to free DMAd Tx packets. 1342 * This is good for performance but means that we rely on new Tx 1343 * packets arriving to run the destructors of completed packets, 1344 * which open up space in their sockets' send queues. Sometimes 1345 * we do not get such new packets causing Tx to stall. A single 1346 * UDP transmitter is a good example of this situation. We have 1347 * a clean up timer that periodically reclaims completed packets 1348 * but it doesn't run often enough (nor do we want it to) to prevent 1349 * lengthy stalls. A solution to this problem is to run the 1350 * destructor early, after the packet is queued but before it's DMAd. 1351 * A cons is that we lie to socket memory accounting, but the amount 1352 * of extra memory is reasonable (limited by the number of Tx 1353 * descriptors), the packets do actually get freed quickly by new 1354 * packets almost always, and for protocols like TCP that wait for 1355 * acks to really free up the data the extra memory is even less. 1356 * On the positive side we run the destructors on the sending CPU 1357 * rather than on a potentially different completing CPU, usually a 1358 * good thing. We also run them without holding our Tx queue lock, 1359 * unlike what reclaim_completed_tx() would otherwise do. 1360 * 1361 * Run the destructor before telling the DMA engine about the packet 1362 * to make sure it doesn't complete and get freed prematurely. 1363 */ 1364 if (likely(!skb_shared(skb))) 1365 skb_orphan(skb); 1366 1367 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr); 1368 check_ring_tx_db(adap, q); 1369 return NETDEV_TX_OK; 1370 } 1371 1372 /** 1373 * write_imm - write a packet into a Tx descriptor as immediate data 1374 * @d: the Tx descriptor to write 1375 * @skb: the packet 1376 * @len: the length of packet data to write as immediate data 1377 * @gen: the generation bit value to write 1378 * 1379 * Writes a packet as immediate data into a Tx descriptor. The packet 1380 * contains a work request at its beginning. We must write the packet 1381 * carefully so the SGE doesn't read it accidentally before it's written 1382 * in its entirety. 1383 */ 1384 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, 1385 unsigned int len, unsigned int gen) 1386 { 1387 struct work_request_hdr *from = (struct work_request_hdr *)skb->data; 1388 struct work_request_hdr *to = (struct work_request_hdr *)d; 1389 1390 if (likely(!skb->data_len)) 1391 memcpy(&to[1], &from[1], len - sizeof(*from)); 1392 else 1393 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); 1394 1395 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | 1396 V_WR_BCNTLFLT(len & 7)); 1397 dma_wmb(); 1398 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | 1399 V_WR_LEN((len + 7) / 8)); 1400 wr_gen2(d, gen); 1401 kfree_skb(skb); 1402 } 1403 1404 /** 1405 * check_desc_avail - check descriptor availability on a send queue 1406 * @adap: the adapter 1407 * @q: the send queue 1408 * @skb: the packet needing the descriptors 1409 * @ndesc: the number of Tx descriptors needed 1410 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) 1411 * 1412 * Checks if the requested number of Tx descriptors is available on an 1413 * SGE send queue. If the queue is already suspended or not enough 1414 * descriptors are available the packet is queued for later transmission. 1415 * Must be called with the Tx queue locked. 1416 * 1417 * Returns 0 if enough descriptors are available, 1 if there aren't 1418 * enough descriptors and the packet has been queued, and 2 if the caller 1419 * needs to retry because there weren't enough descriptors at the 1420 * beginning of the call but some freed up in the mean time. 1421 */ 1422 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, 1423 struct sk_buff *skb, unsigned int ndesc, 1424 unsigned int qid) 1425 { 1426 if (unlikely(!skb_queue_empty(&q->sendq))) { 1427 addq_exit:__skb_queue_tail(&q->sendq, skb); 1428 return 1; 1429 } 1430 if (unlikely(q->size - q->in_use < ndesc)) { 1431 struct sge_qset *qs = txq_to_qset(q, qid); 1432 1433 set_bit(qid, &qs->txq_stopped); 1434 smp_mb__after_atomic(); 1435 1436 if (should_restart_tx(q) && 1437 test_and_clear_bit(qid, &qs->txq_stopped)) 1438 return 2; 1439 1440 q->stops++; 1441 goto addq_exit; 1442 } 1443 return 0; 1444 } 1445 1446 /** 1447 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1448 * @q: the SGE control Tx queue 1449 * 1450 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1451 * that send only immediate data (presently just the control queues) and 1452 * thus do not have any sk_buffs to release. 1453 */ 1454 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1455 { 1456 unsigned int reclaim = q->processed - q->cleaned; 1457 1458 q->in_use -= reclaim; 1459 q->cleaned += reclaim; 1460 } 1461 1462 static inline int immediate(const struct sk_buff *skb) 1463 { 1464 return skb->len <= WR_LEN; 1465 } 1466 1467 /** 1468 * ctrl_xmit - send a packet through an SGE control Tx queue 1469 * @adap: the adapter 1470 * @q: the control queue 1471 * @skb: the packet 1472 * 1473 * Send a packet through an SGE control Tx queue. Packets sent through 1474 * a control queue must fit entirely as immediate data in a single Tx 1475 * descriptor and have no page fragments. 1476 */ 1477 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, 1478 struct sk_buff *skb) 1479 { 1480 int ret; 1481 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; 1482 1483 if (unlikely(!immediate(skb))) { 1484 WARN_ON(1); 1485 dev_kfree_skb(skb); 1486 return NET_XMIT_SUCCESS; 1487 } 1488 1489 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); 1490 wrp->wr_lo = htonl(V_WR_TID(q->token)); 1491 1492 spin_lock(&q->lock); 1493 again:reclaim_completed_tx_imm(q); 1494 1495 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); 1496 if (unlikely(ret)) { 1497 if (ret == 1) { 1498 spin_unlock(&q->lock); 1499 return NET_XMIT_CN; 1500 } 1501 goto again; 1502 } 1503 1504 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1505 1506 q->in_use++; 1507 if (++q->pidx >= q->size) { 1508 q->pidx = 0; 1509 q->gen ^= 1; 1510 } 1511 spin_unlock(&q->lock); 1512 wmb(); 1513 t3_write_reg(adap, A_SG_KDOORBELL, 1514 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1515 return NET_XMIT_SUCCESS; 1516 } 1517 1518 /** 1519 * restart_ctrlq - restart a suspended control queue 1520 * @qs: the queue set cotaining the control queue 1521 * 1522 * Resumes transmission on a suspended Tx control queue. 1523 */ 1524 static void restart_ctrlq(unsigned long data) 1525 { 1526 struct sk_buff *skb; 1527 struct sge_qset *qs = (struct sge_qset *)data; 1528 struct sge_txq *q = &qs->txq[TXQ_CTRL]; 1529 1530 spin_lock(&q->lock); 1531 again:reclaim_completed_tx_imm(q); 1532 1533 while (q->in_use < q->size && 1534 (skb = __skb_dequeue(&q->sendq)) != NULL) { 1535 1536 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1537 1538 if (++q->pidx >= q->size) { 1539 q->pidx = 0; 1540 q->gen ^= 1; 1541 } 1542 q->in_use++; 1543 } 1544 1545 if (!skb_queue_empty(&q->sendq)) { 1546 set_bit(TXQ_CTRL, &qs->txq_stopped); 1547 smp_mb__after_atomic(); 1548 1549 if (should_restart_tx(q) && 1550 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) 1551 goto again; 1552 q->stops++; 1553 } 1554 1555 spin_unlock(&q->lock); 1556 wmb(); 1557 t3_write_reg(qs->adap, A_SG_KDOORBELL, 1558 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1559 } 1560 1561 /* 1562 * Send a management message through control queue 0 1563 */ 1564 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1565 { 1566 int ret; 1567 local_bh_disable(); 1568 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); 1569 local_bh_enable(); 1570 1571 return ret; 1572 } 1573 1574 /** 1575 * deferred_unmap_destructor - unmap a packet when it is freed 1576 * @skb: the packet 1577 * 1578 * This is the packet destructor used for Tx packets that need to remain 1579 * mapped until they are freed rather than until their Tx descriptors are 1580 * freed. 1581 */ 1582 static void deferred_unmap_destructor(struct sk_buff *skb) 1583 { 1584 int i; 1585 const dma_addr_t *p; 1586 const struct skb_shared_info *si; 1587 const struct deferred_unmap_info *dui; 1588 1589 dui = (struct deferred_unmap_info *)skb->head; 1590 p = dui->addr; 1591 1592 if (skb_tail_pointer(skb) - skb_transport_header(skb)) 1593 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) - 1594 skb_transport_header(skb), PCI_DMA_TODEVICE); 1595 1596 si = skb_shinfo(skb); 1597 for (i = 0; i < si->nr_frags; i++) 1598 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]), 1599 PCI_DMA_TODEVICE); 1600 } 1601 1602 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, 1603 const struct sg_ent *sgl, int sgl_flits) 1604 { 1605 dma_addr_t *p; 1606 struct deferred_unmap_info *dui; 1607 1608 dui = (struct deferred_unmap_info *)skb->head; 1609 dui->pdev = pdev; 1610 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { 1611 *p++ = be64_to_cpu(sgl->addr[0]); 1612 *p++ = be64_to_cpu(sgl->addr[1]); 1613 } 1614 if (sgl_flits) 1615 *p = be64_to_cpu(sgl->addr[0]); 1616 } 1617 1618 /** 1619 * write_ofld_wr - write an offload work request 1620 * @adap: the adapter 1621 * @skb: the packet to send 1622 * @q: the Tx queue 1623 * @pidx: index of the first Tx descriptor to write 1624 * @gen: the generation value to use 1625 * @ndesc: number of descriptors the packet will occupy 1626 * 1627 * Write an offload work request to send the supplied packet. The packet 1628 * data already carry the work request with most fields populated. 1629 */ 1630 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, 1631 struct sge_txq *q, unsigned int pidx, 1632 unsigned int gen, unsigned int ndesc, 1633 const dma_addr_t *addr) 1634 { 1635 unsigned int sgl_flits, flits; 1636 struct work_request_hdr *from; 1637 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1638 struct tx_desc *d = &q->desc[pidx]; 1639 1640 if (immediate(skb)) { 1641 q->sdesc[pidx].skb = NULL; 1642 write_imm(d, skb, skb->len, gen); 1643 return; 1644 } 1645 1646 /* Only TX_DATA builds SGLs */ 1647 1648 from = (struct work_request_hdr *)skb->data; 1649 memcpy(&d->flit[1], &from[1], 1650 skb_transport_offset(skb) - sizeof(*from)); 1651 1652 flits = skb_transport_offset(skb) / 8; 1653 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1654 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb), 1655 skb_tail_pointer(skb) - skb_transport_header(skb), 1656 addr); 1657 if (need_skb_unmap()) { 1658 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); 1659 skb->destructor = deferred_unmap_destructor; 1660 } 1661 1662 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, 1663 gen, from->wr_hi, from->wr_lo); 1664 } 1665 1666 /** 1667 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet 1668 * @skb: the packet 1669 * 1670 * Returns the number of Tx descriptors needed for the given offload 1671 * packet. These packets are already fully constructed. 1672 */ 1673 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) 1674 { 1675 unsigned int flits, cnt; 1676 1677 if (skb->len <= WR_LEN) 1678 return 1; /* packet fits as immediate data */ 1679 1680 flits = skb_transport_offset(skb) / 8; /* headers */ 1681 cnt = skb_shinfo(skb)->nr_frags; 1682 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1683 cnt++; 1684 return flits_to_desc(flits + sgl_len(cnt)); 1685 } 1686 1687 /** 1688 * ofld_xmit - send a packet through an offload queue 1689 * @adap: the adapter 1690 * @q: the Tx offload queue 1691 * @skb: the packet 1692 * 1693 * Send an offload packet through an SGE offload queue. 1694 */ 1695 static int ofld_xmit(struct adapter *adap, struct sge_txq *q, 1696 struct sk_buff *skb) 1697 { 1698 int ret; 1699 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; 1700 1701 spin_lock(&q->lock); 1702 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1703 1704 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); 1705 if (unlikely(ret)) { 1706 if (ret == 1) { 1707 skb->priority = ndesc; /* save for restart */ 1708 spin_unlock(&q->lock); 1709 return NET_XMIT_CN; 1710 } 1711 goto again; 1712 } 1713 1714 if (!immediate(skb) && 1715 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) { 1716 spin_unlock(&q->lock); 1717 return NET_XMIT_SUCCESS; 1718 } 1719 1720 gen = q->gen; 1721 q->in_use += ndesc; 1722 pidx = q->pidx; 1723 q->pidx += ndesc; 1724 if (q->pidx >= q->size) { 1725 q->pidx -= q->size; 1726 q->gen ^= 1; 1727 } 1728 spin_unlock(&q->lock); 1729 1730 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head); 1731 check_ring_tx_db(adap, q); 1732 return NET_XMIT_SUCCESS; 1733 } 1734 1735 /** 1736 * restart_offloadq - restart a suspended offload queue 1737 * @qs: the queue set cotaining the offload queue 1738 * 1739 * Resumes transmission on a suspended Tx offload queue. 1740 */ 1741 static void restart_offloadq(unsigned long data) 1742 { 1743 struct sk_buff *skb; 1744 struct sge_qset *qs = (struct sge_qset *)data; 1745 struct sge_txq *q = &qs->txq[TXQ_OFLD]; 1746 const struct port_info *pi = netdev_priv(qs->netdev); 1747 struct adapter *adap = pi->adapter; 1748 unsigned int written = 0; 1749 1750 spin_lock(&q->lock); 1751 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1752 1753 while ((skb = skb_peek(&q->sendq)) != NULL) { 1754 unsigned int gen, pidx; 1755 unsigned int ndesc = skb->priority; 1756 1757 if (unlikely(q->size - q->in_use < ndesc)) { 1758 set_bit(TXQ_OFLD, &qs->txq_stopped); 1759 smp_mb__after_atomic(); 1760 1761 if (should_restart_tx(q) && 1762 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) 1763 goto again; 1764 q->stops++; 1765 break; 1766 } 1767 1768 if (!immediate(skb) && 1769 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) 1770 break; 1771 1772 gen = q->gen; 1773 q->in_use += ndesc; 1774 pidx = q->pidx; 1775 q->pidx += ndesc; 1776 written += ndesc; 1777 if (q->pidx >= q->size) { 1778 q->pidx -= q->size; 1779 q->gen ^= 1; 1780 } 1781 __skb_unlink(skb, &q->sendq); 1782 spin_unlock(&q->lock); 1783 1784 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, 1785 (dma_addr_t *)skb->head); 1786 spin_lock(&q->lock); 1787 } 1788 spin_unlock(&q->lock); 1789 1790 #if USE_GTS 1791 set_bit(TXQ_RUNNING, &q->flags); 1792 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1793 #endif 1794 wmb(); 1795 if (likely(written)) 1796 t3_write_reg(adap, A_SG_KDOORBELL, 1797 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1798 } 1799 1800 /** 1801 * queue_set - return the queue set a packet should use 1802 * @skb: the packet 1803 * 1804 * Maps a packet to the SGE queue set it should use. The desired queue 1805 * set is carried in bits 1-3 in the packet's priority. 1806 */ 1807 static inline int queue_set(const struct sk_buff *skb) 1808 { 1809 return skb->priority >> 1; 1810 } 1811 1812 /** 1813 * is_ctrl_pkt - return whether an offload packet is a control packet 1814 * @skb: the packet 1815 * 1816 * Determines whether an offload packet should use an OFLD or a CTRL 1817 * Tx queue. This is indicated by bit 0 in the packet's priority. 1818 */ 1819 static inline int is_ctrl_pkt(const struct sk_buff *skb) 1820 { 1821 return skb->priority & 1; 1822 } 1823 1824 /** 1825 * t3_offload_tx - send an offload packet 1826 * @tdev: the offload device to send to 1827 * @skb: the packet 1828 * 1829 * Sends an offload packet. We use the packet priority to select the 1830 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1831 * should be sent as regular or control, bits 1-3 select the queue set. 1832 */ 1833 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 1834 { 1835 struct adapter *adap = tdev2adap(tdev); 1836 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; 1837 1838 if (unlikely(is_ctrl_pkt(skb))) 1839 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); 1840 1841 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); 1842 } 1843 1844 /** 1845 * offload_enqueue - add an offload packet to an SGE offload receive queue 1846 * @q: the SGE response queue 1847 * @skb: the packet 1848 * 1849 * Add a new offload packet to an SGE response queue's offload packet 1850 * queue. If the packet is the first on the queue it schedules the RX 1851 * softirq to process the queue. 1852 */ 1853 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) 1854 { 1855 int was_empty = skb_queue_empty(&q->rx_queue); 1856 1857 __skb_queue_tail(&q->rx_queue, skb); 1858 1859 if (was_empty) { 1860 struct sge_qset *qs = rspq_to_qset(q); 1861 1862 napi_schedule(&qs->napi); 1863 } 1864 } 1865 1866 /** 1867 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts 1868 * @tdev: the offload device that will be receiving the packets 1869 * @q: the SGE response queue that assembled the bundle 1870 * @skbs: the partial bundle 1871 * @n: the number of packets in the bundle 1872 * 1873 * Delivers a (partial) bundle of Rx offload packets to an offload device. 1874 */ 1875 static inline void deliver_partial_bundle(struct t3cdev *tdev, 1876 struct sge_rspq *q, 1877 struct sk_buff *skbs[], int n) 1878 { 1879 if (n) { 1880 q->offload_bundles++; 1881 tdev->recv(tdev, skbs, n); 1882 } 1883 } 1884 1885 /** 1886 * ofld_poll - NAPI handler for offload packets in interrupt mode 1887 * @dev: the network device doing the polling 1888 * @budget: polling budget 1889 * 1890 * The NAPI handler for offload packets when a response queue is serviced 1891 * by the hard interrupt handler, i.e., when it's operating in non-polling 1892 * mode. Creates small packet batches and sends them through the offload 1893 * receive handler. Batches need to be of modest size as we do prefetches 1894 * on the packets in each. 1895 */ 1896 static int ofld_poll(struct napi_struct *napi, int budget) 1897 { 1898 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 1899 struct sge_rspq *q = &qs->rspq; 1900 struct adapter *adapter = qs->adap; 1901 int work_done = 0; 1902 1903 while (work_done < budget) { 1904 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; 1905 struct sk_buff_head queue; 1906 int ngathered; 1907 1908 spin_lock_irq(&q->lock); 1909 __skb_queue_head_init(&queue); 1910 skb_queue_splice_init(&q->rx_queue, &queue); 1911 if (skb_queue_empty(&queue)) { 1912 napi_complete_done(napi, work_done); 1913 spin_unlock_irq(&q->lock); 1914 return work_done; 1915 } 1916 spin_unlock_irq(&q->lock); 1917 1918 ngathered = 0; 1919 skb_queue_walk_safe(&queue, skb, tmp) { 1920 if (work_done >= budget) 1921 break; 1922 work_done++; 1923 1924 __skb_unlink(skb, &queue); 1925 prefetch(skb->data); 1926 skbs[ngathered] = skb; 1927 if (++ngathered == RX_BUNDLE_SIZE) { 1928 q->offload_bundles++; 1929 adapter->tdev.recv(&adapter->tdev, skbs, 1930 ngathered); 1931 ngathered = 0; 1932 } 1933 } 1934 if (!skb_queue_empty(&queue)) { 1935 /* splice remaining packets back onto Rx queue */ 1936 spin_lock_irq(&q->lock); 1937 skb_queue_splice(&queue, &q->rx_queue); 1938 spin_unlock_irq(&q->lock); 1939 } 1940 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); 1941 } 1942 1943 return work_done; 1944 } 1945 1946 /** 1947 * rx_offload - process a received offload packet 1948 * @tdev: the offload device receiving the packet 1949 * @rq: the response queue that received the packet 1950 * @skb: the packet 1951 * @rx_gather: a gather list of packets if we are building a bundle 1952 * @gather_idx: index of the next available slot in the bundle 1953 * 1954 * Process an ingress offload pakcet and add it to the offload ingress 1955 * queue. Returns the index of the next available slot in the bundle. 1956 */ 1957 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, 1958 struct sk_buff *skb, struct sk_buff *rx_gather[], 1959 unsigned int gather_idx) 1960 { 1961 skb_reset_mac_header(skb); 1962 skb_reset_network_header(skb); 1963 skb_reset_transport_header(skb); 1964 1965 if (rq->polling) { 1966 rx_gather[gather_idx++] = skb; 1967 if (gather_idx == RX_BUNDLE_SIZE) { 1968 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); 1969 gather_idx = 0; 1970 rq->offload_bundles++; 1971 } 1972 } else 1973 offload_enqueue(rq, skb); 1974 1975 return gather_idx; 1976 } 1977 1978 /** 1979 * restart_tx - check whether to restart suspended Tx queues 1980 * @qs: the queue set to resume 1981 * 1982 * Restarts suspended Tx queues of an SGE queue set if they have enough 1983 * free resources to resume operation. 1984 */ 1985 static void restart_tx(struct sge_qset *qs) 1986 { 1987 if (test_bit(TXQ_ETH, &qs->txq_stopped) && 1988 should_restart_tx(&qs->txq[TXQ_ETH]) && 1989 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1990 qs->txq[TXQ_ETH].restarts++; 1991 if (netif_running(qs->netdev)) 1992 netif_tx_wake_queue(qs->tx_q); 1993 } 1994 1995 if (test_bit(TXQ_OFLD, &qs->txq_stopped) && 1996 should_restart_tx(&qs->txq[TXQ_OFLD]) && 1997 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { 1998 qs->txq[TXQ_OFLD].restarts++; 1999 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); 2000 } 2001 if (test_bit(TXQ_CTRL, &qs->txq_stopped) && 2002 should_restart_tx(&qs->txq[TXQ_CTRL]) && 2003 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { 2004 qs->txq[TXQ_CTRL].restarts++; 2005 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); 2006 } 2007 } 2008 2009 /** 2010 * cxgb3_arp_process - process an ARP request probing a private IP address 2011 * @adapter: the adapter 2012 * @skb: the skbuff containing the ARP request 2013 * 2014 * Check if the ARP request is probing the private IP address 2015 * dedicated to iSCSI, generate an ARP reply if so. 2016 */ 2017 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) 2018 { 2019 struct net_device *dev = skb->dev; 2020 struct arphdr *arp; 2021 unsigned char *arp_ptr; 2022 unsigned char *sha; 2023 __be32 sip, tip; 2024 2025 if (!dev) 2026 return; 2027 2028 skb_reset_network_header(skb); 2029 arp = arp_hdr(skb); 2030 2031 if (arp->ar_op != htons(ARPOP_REQUEST)) 2032 return; 2033 2034 arp_ptr = (unsigned char *)(arp + 1); 2035 sha = arp_ptr; 2036 arp_ptr += dev->addr_len; 2037 memcpy(&sip, arp_ptr, sizeof(sip)); 2038 arp_ptr += sizeof(sip); 2039 arp_ptr += dev->addr_len; 2040 memcpy(&tip, arp_ptr, sizeof(tip)); 2041 2042 if (tip != pi->iscsi_ipv4addr) 2043 return; 2044 2045 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, 2046 pi->iscsic.mac_addr, sha); 2047 2048 } 2049 2050 static inline int is_arp(struct sk_buff *skb) 2051 { 2052 return skb->protocol == htons(ETH_P_ARP); 2053 } 2054 2055 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, 2056 struct sk_buff *skb) 2057 { 2058 if (is_arp(skb)) { 2059 cxgb3_arp_process(pi, skb); 2060 return; 2061 } 2062 2063 if (pi->iscsic.recv) 2064 pi->iscsic.recv(pi, skb); 2065 2066 } 2067 2068 /** 2069 * rx_eth - process an ingress ethernet packet 2070 * @adap: the adapter 2071 * @rq: the response queue that received the packet 2072 * @skb: the packet 2073 * @pad: amount of padding at the start of the buffer 2074 * 2075 * Process an ingress ethernet pakcet and deliver it to the stack. 2076 * The padding is 2 if the packet was delivered in an Rx buffer and 0 2077 * if it was immediate data in a response. 2078 */ 2079 static void rx_eth(struct adapter *adap, struct sge_rspq *rq, 2080 struct sk_buff *skb, int pad, int lro) 2081 { 2082 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); 2083 struct sge_qset *qs = rspq_to_qset(rq); 2084 struct port_info *pi; 2085 2086 skb_pull(skb, sizeof(*p) + pad); 2087 skb->protocol = eth_type_trans(skb, adap->port[p->iff]); 2088 pi = netdev_priv(skb->dev); 2089 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && 2090 p->csum == htons(0xffff) && !p->fragment) { 2091 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2092 skb->ip_summed = CHECKSUM_UNNECESSARY; 2093 } else 2094 skb_checksum_none_assert(skb); 2095 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2096 2097 if (p->vlan_valid) { 2098 qs->port_stats[SGE_PSTAT_VLANEX]++; 2099 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 2100 } 2101 if (rq->polling) { 2102 if (lro) 2103 napi_gro_receive(&qs->napi, skb); 2104 else { 2105 if (unlikely(pi->iscsic.flags)) 2106 cxgb3_process_iscsi_prov_pack(pi, skb); 2107 netif_receive_skb(skb); 2108 } 2109 } else 2110 netif_rx(skb); 2111 } 2112 2113 static inline int is_eth_tcp(u32 rss) 2114 { 2115 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; 2116 } 2117 2118 /** 2119 * lro_add_page - add a page chunk to an LRO session 2120 * @adap: the adapter 2121 * @qs: the associated queue set 2122 * @fl: the free list containing the page chunk to add 2123 * @len: packet length 2124 * @complete: Indicates the last fragment of a frame 2125 * 2126 * Add a received packet contained in a page chunk to an existing LRO 2127 * session. 2128 */ 2129 static void lro_add_page(struct adapter *adap, struct sge_qset *qs, 2130 struct sge_fl *fl, int len, int complete) 2131 { 2132 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2133 struct port_info *pi = netdev_priv(qs->netdev); 2134 struct sk_buff *skb = NULL; 2135 struct cpl_rx_pkt *cpl; 2136 struct skb_frag_struct *rx_frag; 2137 int nr_frags; 2138 int offset = 0; 2139 2140 if (!qs->nomem) { 2141 skb = napi_get_frags(&qs->napi); 2142 qs->nomem = !skb; 2143 } 2144 2145 fl->credits--; 2146 2147 pci_dma_sync_single_for_cpu(adap->pdev, 2148 dma_unmap_addr(sd, dma_addr), 2149 fl->buf_size - SGE_PG_RSVD, 2150 PCI_DMA_FROMDEVICE); 2151 2152 (*sd->pg_chunk.p_cnt)--; 2153 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 2154 pci_unmap_page(adap->pdev, 2155 sd->pg_chunk.mapping, 2156 fl->alloc_size, 2157 PCI_DMA_FROMDEVICE); 2158 2159 if (!skb) { 2160 put_page(sd->pg_chunk.page); 2161 if (complete) 2162 qs->nomem = 0; 2163 return; 2164 } 2165 2166 rx_frag = skb_shinfo(skb)->frags; 2167 nr_frags = skb_shinfo(skb)->nr_frags; 2168 2169 if (!nr_frags) { 2170 offset = 2 + sizeof(struct cpl_rx_pkt); 2171 cpl = qs->lro_va = sd->pg_chunk.va + 2; 2172 2173 if ((qs->netdev->features & NETIF_F_RXCSUM) && 2174 cpl->csum_valid && cpl->csum == htons(0xffff)) { 2175 skb->ip_summed = CHECKSUM_UNNECESSARY; 2176 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2177 } else 2178 skb->ip_summed = CHECKSUM_NONE; 2179 } else 2180 cpl = qs->lro_va; 2181 2182 len -= offset; 2183 2184 rx_frag += nr_frags; 2185 __skb_frag_set_page(rx_frag, sd->pg_chunk.page); 2186 rx_frag->page_offset = sd->pg_chunk.offset + offset; 2187 skb_frag_size_set(rx_frag, len); 2188 2189 skb->len += len; 2190 skb->data_len += len; 2191 skb->truesize += len; 2192 skb_shinfo(skb)->nr_frags++; 2193 2194 if (!complete) 2195 return; 2196 2197 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2198 2199 if (cpl->vlan_valid) { 2200 qs->port_stats[SGE_PSTAT_VLANEX]++; 2201 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 2202 } 2203 napi_gro_frags(&qs->napi); 2204 } 2205 2206 /** 2207 * handle_rsp_cntrl_info - handles control information in a response 2208 * @qs: the queue set corresponding to the response 2209 * @flags: the response control flags 2210 * 2211 * Handles the control information of an SGE response, such as GTS 2212 * indications and completion credits for the queue set's Tx queues. 2213 * HW coalesces credits, we don't do any extra SW coalescing. 2214 */ 2215 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) 2216 { 2217 unsigned int credits; 2218 2219 #if USE_GTS 2220 if (flags & F_RSPD_TXQ0_GTS) 2221 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); 2222 #endif 2223 2224 credits = G_RSPD_TXQ0_CR(flags); 2225 if (credits) 2226 qs->txq[TXQ_ETH].processed += credits; 2227 2228 credits = G_RSPD_TXQ2_CR(flags); 2229 if (credits) 2230 qs->txq[TXQ_CTRL].processed += credits; 2231 2232 # if USE_GTS 2233 if (flags & F_RSPD_TXQ1_GTS) 2234 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); 2235 # endif 2236 credits = G_RSPD_TXQ1_CR(flags); 2237 if (credits) 2238 qs->txq[TXQ_OFLD].processed += credits; 2239 } 2240 2241 /** 2242 * check_ring_db - check if we need to ring any doorbells 2243 * @adapter: the adapter 2244 * @qs: the queue set whose Tx queues are to be examined 2245 * @sleeping: indicates which Tx queue sent GTS 2246 * 2247 * Checks if some of a queue set's Tx queues need to ring their doorbells 2248 * to resume transmission after idling while they still have unprocessed 2249 * descriptors. 2250 */ 2251 static void check_ring_db(struct adapter *adap, struct sge_qset *qs, 2252 unsigned int sleeping) 2253 { 2254 if (sleeping & F_RSPD_TXQ0_GTS) { 2255 struct sge_txq *txq = &qs->txq[TXQ_ETH]; 2256 2257 if (txq->cleaned + txq->in_use != txq->processed && 2258 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2259 set_bit(TXQ_RUNNING, &txq->flags); 2260 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2261 V_EGRCNTX(txq->cntxt_id)); 2262 } 2263 } 2264 2265 if (sleeping & F_RSPD_TXQ1_GTS) { 2266 struct sge_txq *txq = &qs->txq[TXQ_OFLD]; 2267 2268 if (txq->cleaned + txq->in_use != txq->processed && 2269 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2270 set_bit(TXQ_RUNNING, &txq->flags); 2271 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2272 V_EGRCNTX(txq->cntxt_id)); 2273 } 2274 } 2275 } 2276 2277 /** 2278 * is_new_response - check if a response is newly written 2279 * @r: the response descriptor 2280 * @q: the response queue 2281 * 2282 * Returns true if a response descriptor contains a yet unprocessed 2283 * response. 2284 */ 2285 static inline int is_new_response(const struct rsp_desc *r, 2286 const struct sge_rspq *q) 2287 { 2288 return (r->intr_gen & F_RSPD_GEN2) == q->gen; 2289 } 2290 2291 static inline void clear_rspq_bufstate(struct sge_rspq * const q) 2292 { 2293 q->pg_skb = NULL; 2294 q->rx_recycle_buf = 0; 2295 } 2296 2297 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) 2298 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ 2299 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ 2300 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ 2301 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) 2302 2303 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ 2304 #define NOMEM_INTR_DELAY 2500 2305 2306 /** 2307 * process_responses - process responses from an SGE response queue 2308 * @adap: the adapter 2309 * @qs: the queue set to which the response queue belongs 2310 * @budget: how many responses can be processed in this round 2311 * 2312 * Process responses from an SGE response queue up to the supplied budget. 2313 * Responses include received packets as well as credits and other events 2314 * for the queues that belong to the response queue's queue set. 2315 * A negative budget is effectively unlimited. 2316 * 2317 * Additionally choose the interrupt holdoff time for the next interrupt 2318 * on this queue. If the system is under memory shortage use a fairly 2319 * long delay to help recovery. 2320 */ 2321 static int process_responses(struct adapter *adap, struct sge_qset *qs, 2322 int budget) 2323 { 2324 struct sge_rspq *q = &qs->rspq; 2325 struct rsp_desc *r = &q->desc[q->cidx]; 2326 int budget_left = budget; 2327 unsigned int sleeping = 0; 2328 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; 2329 int ngathered = 0; 2330 2331 q->next_holdoff = q->holdoff_tmr; 2332 2333 while (likely(budget_left && is_new_response(r, q))) { 2334 int packet_complete, eth, ethpad = 2; 2335 int lro = !!(qs->netdev->features & NETIF_F_GRO); 2336 struct sk_buff *skb = NULL; 2337 u32 len, flags; 2338 __be32 rss_hi, rss_lo; 2339 2340 dma_rmb(); 2341 eth = r->rss_hdr.opcode == CPL_RX_PKT; 2342 rss_hi = *(const __be32 *)r; 2343 rss_lo = r->rss_hdr.rss_hash_val; 2344 flags = ntohl(r->flags); 2345 2346 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { 2347 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); 2348 if (!skb) 2349 goto no_mem; 2350 2351 __skb_put_data(skb, r, AN_PKT_SIZE); 2352 skb->data[0] = CPL_ASYNC_NOTIF; 2353 rss_hi = htonl(CPL_ASYNC_NOTIF << 24); 2354 q->async_notif++; 2355 } else if (flags & F_RSPD_IMM_DATA_VALID) { 2356 skb = get_imm_packet(r); 2357 if (unlikely(!skb)) { 2358 no_mem: 2359 q->next_holdoff = NOMEM_INTR_DELAY; 2360 q->nomem++; 2361 /* consume one credit since we tried */ 2362 budget_left--; 2363 break; 2364 } 2365 q->imm_data++; 2366 ethpad = 0; 2367 } else if ((len = ntohl(r->len_cq)) != 0) { 2368 struct sge_fl *fl; 2369 2370 lro &= eth && is_eth_tcp(rss_hi); 2371 2372 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2373 if (fl->use_pages) { 2374 void *addr = fl->sdesc[fl->cidx].pg_chunk.va; 2375 2376 prefetch(addr); 2377 #if L1_CACHE_BYTES < 128 2378 prefetch(addr + L1_CACHE_BYTES); 2379 #endif 2380 __refill_fl(adap, fl); 2381 if (lro > 0) { 2382 lro_add_page(adap, qs, fl, 2383 G_RSPD_LEN(len), 2384 flags & F_RSPD_EOP); 2385 goto next_fl; 2386 } 2387 2388 skb = get_packet_pg(adap, fl, q, 2389 G_RSPD_LEN(len), 2390 eth ? 2391 SGE_RX_DROP_THRES : 0); 2392 q->pg_skb = skb; 2393 } else 2394 skb = get_packet(adap, fl, G_RSPD_LEN(len), 2395 eth ? SGE_RX_DROP_THRES : 0); 2396 if (unlikely(!skb)) { 2397 if (!eth) 2398 goto no_mem; 2399 q->rx_drops++; 2400 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) 2401 __skb_pull(skb, 2); 2402 next_fl: 2403 if (++fl->cidx == fl->size) 2404 fl->cidx = 0; 2405 } else 2406 q->pure_rsps++; 2407 2408 if (flags & RSPD_CTRL_MASK) { 2409 sleeping |= flags & RSPD_GTS_MASK; 2410 handle_rsp_cntrl_info(qs, flags); 2411 } 2412 2413 r++; 2414 if (unlikely(++q->cidx == q->size)) { 2415 q->cidx = 0; 2416 q->gen ^= 1; 2417 r = q->desc; 2418 } 2419 prefetch(r); 2420 2421 if (++q->credits >= (q->size / 4)) { 2422 refill_rspq(adap, q, q->credits); 2423 q->credits = 0; 2424 } 2425 2426 packet_complete = flags & 2427 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | 2428 F_RSPD_ASYNC_NOTIF); 2429 2430 if (skb != NULL && packet_complete) { 2431 if (eth) 2432 rx_eth(adap, q, skb, ethpad, lro); 2433 else { 2434 q->offload_pkts++; 2435 /* Preserve the RSS info in csum & priority */ 2436 skb->csum = rss_hi; 2437 skb->priority = rss_lo; 2438 ngathered = rx_offload(&adap->tdev, q, skb, 2439 offload_skbs, 2440 ngathered); 2441 } 2442 2443 if (flags & F_RSPD_EOP) 2444 clear_rspq_bufstate(q); 2445 } 2446 --budget_left; 2447 } 2448 2449 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); 2450 2451 if (sleeping) 2452 check_ring_db(adap, qs, sleeping); 2453 2454 smp_mb(); /* commit Tx queue .processed updates */ 2455 if (unlikely(qs->txq_stopped != 0)) 2456 restart_tx(qs); 2457 2458 budget -= budget_left; 2459 return budget; 2460 } 2461 2462 static inline int is_pure_response(const struct rsp_desc *r) 2463 { 2464 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); 2465 2466 return (n | r->len_cq) == 0; 2467 } 2468 2469 /** 2470 * napi_rx_handler - the NAPI handler for Rx processing 2471 * @napi: the napi instance 2472 * @budget: how many packets we can process in this round 2473 * 2474 * Handler for new data events when using NAPI. 2475 */ 2476 static int napi_rx_handler(struct napi_struct *napi, int budget) 2477 { 2478 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 2479 struct adapter *adap = qs->adap; 2480 int work_done = process_responses(adap, qs, budget); 2481 2482 if (likely(work_done < budget)) { 2483 napi_complete_done(napi, work_done); 2484 2485 /* 2486 * Because we don't atomically flush the following 2487 * write it is possible that in very rare cases it can 2488 * reach the device in a way that races with a new 2489 * response being written plus an error interrupt 2490 * causing the NAPI interrupt handler below to return 2491 * unhandled status to the OS. To protect against 2492 * this would require flushing the write and doing 2493 * both the write and the flush with interrupts off. 2494 * Way too expensive and unjustifiable given the 2495 * rarity of the race. 2496 * 2497 * The race cannot happen at all with MSI-X. 2498 */ 2499 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | 2500 V_NEWTIMER(qs->rspq.next_holdoff) | 2501 V_NEWINDEX(qs->rspq.cidx)); 2502 } 2503 return work_done; 2504 } 2505 2506 /* 2507 * Returns true if the device is already scheduled for polling. 2508 */ 2509 static inline int napi_is_scheduled(struct napi_struct *napi) 2510 { 2511 return test_bit(NAPI_STATE_SCHED, &napi->state); 2512 } 2513 2514 /** 2515 * process_pure_responses - process pure responses from a response queue 2516 * @adap: the adapter 2517 * @qs: the queue set owning the response queue 2518 * @r: the first pure response to process 2519 * 2520 * A simpler version of process_responses() that handles only pure (i.e., 2521 * non data-carrying) responses. Such respones are too light-weight to 2522 * justify calling a softirq under NAPI, so we handle them specially in 2523 * the interrupt handler. The function is called with a pointer to a 2524 * response, which the caller must ensure is a valid pure response. 2525 * 2526 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. 2527 */ 2528 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, 2529 struct rsp_desc *r) 2530 { 2531 struct sge_rspq *q = &qs->rspq; 2532 unsigned int sleeping = 0; 2533 2534 do { 2535 u32 flags = ntohl(r->flags); 2536 2537 r++; 2538 if (unlikely(++q->cidx == q->size)) { 2539 q->cidx = 0; 2540 q->gen ^= 1; 2541 r = q->desc; 2542 } 2543 prefetch(r); 2544 2545 if (flags & RSPD_CTRL_MASK) { 2546 sleeping |= flags & RSPD_GTS_MASK; 2547 handle_rsp_cntrl_info(qs, flags); 2548 } 2549 2550 q->pure_rsps++; 2551 if (++q->credits >= (q->size / 4)) { 2552 refill_rspq(adap, q, q->credits); 2553 q->credits = 0; 2554 } 2555 if (!is_new_response(r, q)) 2556 break; 2557 dma_rmb(); 2558 } while (is_pure_response(r)); 2559 2560 if (sleeping) 2561 check_ring_db(adap, qs, sleeping); 2562 2563 smp_mb(); /* commit Tx queue .processed updates */ 2564 if (unlikely(qs->txq_stopped != 0)) 2565 restart_tx(qs); 2566 2567 return is_new_response(r, q); 2568 } 2569 2570 /** 2571 * handle_responses - decide what to do with new responses in NAPI mode 2572 * @adap: the adapter 2573 * @q: the response queue 2574 * 2575 * This is used by the NAPI interrupt handlers to decide what to do with 2576 * new SGE responses. If there are no new responses it returns -1. If 2577 * there are new responses and they are pure (i.e., non-data carrying) 2578 * it handles them straight in hard interrupt context as they are very 2579 * cheap and don't deliver any packets. Finally, if there are any data 2580 * signaling responses it schedules the NAPI handler. Returns 1 if it 2581 * schedules NAPI, 0 if all new responses were pure. 2582 * 2583 * The caller must ascertain NAPI is not already running. 2584 */ 2585 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) 2586 { 2587 struct sge_qset *qs = rspq_to_qset(q); 2588 struct rsp_desc *r = &q->desc[q->cidx]; 2589 2590 if (!is_new_response(r, q)) 2591 return -1; 2592 dma_rmb(); 2593 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { 2594 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2595 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); 2596 return 0; 2597 } 2598 napi_schedule(&qs->napi); 2599 return 1; 2600 } 2601 2602 /* 2603 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case 2604 * (i.e., response queue serviced in hard interrupt). 2605 */ 2606 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) 2607 { 2608 struct sge_qset *qs = cookie; 2609 struct adapter *adap = qs->adap; 2610 struct sge_rspq *q = &qs->rspq; 2611 2612 spin_lock(&q->lock); 2613 if (process_responses(adap, qs, -1) == 0) 2614 q->unhandled_irqs++; 2615 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2616 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2617 spin_unlock(&q->lock); 2618 return IRQ_HANDLED; 2619 } 2620 2621 /* 2622 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 2623 * (i.e., response queue serviced by NAPI polling). 2624 */ 2625 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) 2626 { 2627 struct sge_qset *qs = cookie; 2628 struct sge_rspq *q = &qs->rspq; 2629 2630 spin_lock(&q->lock); 2631 2632 if (handle_responses(qs->adap, q) < 0) 2633 q->unhandled_irqs++; 2634 spin_unlock(&q->lock); 2635 return IRQ_HANDLED; 2636 } 2637 2638 /* 2639 * The non-NAPI MSI interrupt handler. This needs to handle data events from 2640 * SGE response queues as well as error and other async events as they all use 2641 * the same MSI vector. We use one SGE response queue per port in this mode 2642 * and protect all response queues with queue 0's lock. 2643 */ 2644 static irqreturn_t t3_intr_msi(int irq, void *cookie) 2645 { 2646 int new_packets = 0; 2647 struct adapter *adap = cookie; 2648 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2649 2650 spin_lock(&q->lock); 2651 2652 if (process_responses(adap, &adap->sge.qs[0], -1)) { 2653 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2654 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2655 new_packets = 1; 2656 } 2657 2658 if (adap->params.nports == 2 && 2659 process_responses(adap, &adap->sge.qs[1], -1)) { 2660 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2661 2662 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | 2663 V_NEWTIMER(q1->next_holdoff) | 2664 V_NEWINDEX(q1->cidx)); 2665 new_packets = 1; 2666 } 2667 2668 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2669 q->unhandled_irqs++; 2670 2671 spin_unlock(&q->lock); 2672 return IRQ_HANDLED; 2673 } 2674 2675 static int rspq_check_napi(struct sge_qset *qs) 2676 { 2677 struct sge_rspq *q = &qs->rspq; 2678 2679 if (!napi_is_scheduled(&qs->napi) && 2680 is_new_response(&q->desc[q->cidx], q)) { 2681 napi_schedule(&qs->napi); 2682 return 1; 2683 } 2684 return 0; 2685 } 2686 2687 /* 2688 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced 2689 * by NAPI polling). Handles data events from SGE response queues as well as 2690 * error and other async events as they all use the same MSI vector. We use 2691 * one SGE response queue per port in this mode and protect all response 2692 * queues with queue 0's lock. 2693 */ 2694 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) 2695 { 2696 int new_packets; 2697 struct adapter *adap = cookie; 2698 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2699 2700 spin_lock(&q->lock); 2701 2702 new_packets = rspq_check_napi(&adap->sge.qs[0]); 2703 if (adap->params.nports == 2) 2704 new_packets += rspq_check_napi(&adap->sge.qs[1]); 2705 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2706 q->unhandled_irqs++; 2707 2708 spin_unlock(&q->lock); 2709 return IRQ_HANDLED; 2710 } 2711 2712 /* 2713 * A helper function that processes responses and issues GTS. 2714 */ 2715 static inline int process_responses_gts(struct adapter *adap, 2716 struct sge_rspq *rq) 2717 { 2718 int work; 2719 2720 work = process_responses(adap, rspq_to_qset(rq), -1); 2721 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | 2722 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); 2723 return work; 2724 } 2725 2726 /* 2727 * The legacy INTx interrupt handler. This needs to handle data events from 2728 * SGE response queues as well as error and other async events as they all use 2729 * the same interrupt pin. We use one SGE response queue per port in this mode 2730 * and protect all response queues with queue 0's lock. 2731 */ 2732 static irqreturn_t t3_intr(int irq, void *cookie) 2733 { 2734 int work_done, w0, w1; 2735 struct adapter *adap = cookie; 2736 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2737 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2738 2739 spin_lock(&q0->lock); 2740 2741 w0 = is_new_response(&q0->desc[q0->cidx], q0); 2742 w1 = adap->params.nports == 2 && 2743 is_new_response(&q1->desc[q1->cidx], q1); 2744 2745 if (likely(w0 | w1)) { 2746 t3_write_reg(adap, A_PL_CLI, 0); 2747 t3_read_reg(adap, A_PL_CLI); /* flush */ 2748 2749 if (likely(w0)) 2750 process_responses_gts(adap, q0); 2751 2752 if (w1) 2753 process_responses_gts(adap, q1); 2754 2755 work_done = w0 | w1; 2756 } else 2757 work_done = t3_slow_intr_handler(adap); 2758 2759 spin_unlock(&q0->lock); 2760 return IRQ_RETVAL(work_done != 0); 2761 } 2762 2763 /* 2764 * Interrupt handler for legacy INTx interrupts for T3B-based cards. 2765 * Handles data events from SGE response queues as well as error and other 2766 * async events as they all use the same interrupt pin. We use one SGE 2767 * response queue per port in this mode and protect all response queues with 2768 * queue 0's lock. 2769 */ 2770 static irqreturn_t t3b_intr(int irq, void *cookie) 2771 { 2772 u32 map; 2773 struct adapter *adap = cookie; 2774 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2775 2776 t3_write_reg(adap, A_PL_CLI, 0); 2777 map = t3_read_reg(adap, A_SG_DATA_INTR); 2778 2779 if (unlikely(!map)) /* shared interrupt, most likely */ 2780 return IRQ_NONE; 2781 2782 spin_lock(&q0->lock); 2783 2784 if (unlikely(map & F_ERRINTR)) 2785 t3_slow_intr_handler(adap); 2786 2787 if (likely(map & 1)) 2788 process_responses_gts(adap, q0); 2789 2790 if (map & 2) 2791 process_responses_gts(adap, &adap->sge.qs[1].rspq); 2792 2793 spin_unlock(&q0->lock); 2794 return IRQ_HANDLED; 2795 } 2796 2797 /* 2798 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. 2799 * Handles data events from SGE response queues as well as error and other 2800 * async events as they all use the same interrupt pin. We use one SGE 2801 * response queue per port in this mode and protect all response queues with 2802 * queue 0's lock. 2803 */ 2804 static irqreturn_t t3b_intr_napi(int irq, void *cookie) 2805 { 2806 u32 map; 2807 struct adapter *adap = cookie; 2808 struct sge_qset *qs0 = &adap->sge.qs[0]; 2809 struct sge_rspq *q0 = &qs0->rspq; 2810 2811 t3_write_reg(adap, A_PL_CLI, 0); 2812 map = t3_read_reg(adap, A_SG_DATA_INTR); 2813 2814 if (unlikely(!map)) /* shared interrupt, most likely */ 2815 return IRQ_NONE; 2816 2817 spin_lock(&q0->lock); 2818 2819 if (unlikely(map & F_ERRINTR)) 2820 t3_slow_intr_handler(adap); 2821 2822 if (likely(map & 1)) 2823 napi_schedule(&qs0->napi); 2824 2825 if (map & 2) 2826 napi_schedule(&adap->sge.qs[1].napi); 2827 2828 spin_unlock(&q0->lock); 2829 return IRQ_HANDLED; 2830 } 2831 2832 /** 2833 * t3_intr_handler - select the top-level interrupt handler 2834 * @adap: the adapter 2835 * @polling: whether using NAPI to service response queues 2836 * 2837 * Selects the top-level interrupt handler based on the type of interrupts 2838 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the 2839 * response queues. 2840 */ 2841 irq_handler_t t3_intr_handler(struct adapter *adap, int polling) 2842 { 2843 if (adap->flags & USING_MSIX) 2844 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; 2845 if (adap->flags & USING_MSI) 2846 return polling ? t3_intr_msi_napi : t3_intr_msi; 2847 if (adap->params.rev > 0) 2848 return polling ? t3b_intr_napi : t3b_intr; 2849 return t3_intr; 2850 } 2851 2852 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 2853 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 2854 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 2855 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 2856 F_HIRCQPARITYERROR) 2857 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) 2858 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ 2859 F_RSPQDISABLED) 2860 2861 /** 2862 * t3_sge_err_intr_handler - SGE async event interrupt handler 2863 * @adapter: the adapter 2864 * 2865 * Interrupt handler for SGE asynchronous (non-data) events. 2866 */ 2867 void t3_sge_err_intr_handler(struct adapter *adapter) 2868 { 2869 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & 2870 ~F_FLEMPTY; 2871 2872 if (status & SGE_PARERR) 2873 CH_ALERT(adapter, "SGE parity error (0x%x)\n", 2874 status & SGE_PARERR); 2875 if (status & SGE_FRAMINGERR) 2876 CH_ALERT(adapter, "SGE framing error (0x%x)\n", 2877 status & SGE_FRAMINGERR); 2878 2879 if (status & F_RSPQCREDITOVERFOW) 2880 CH_ALERT(adapter, "SGE response queue credit overflow\n"); 2881 2882 if (status & F_RSPQDISABLED) { 2883 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); 2884 2885 CH_ALERT(adapter, 2886 "packet delivered to disabled response queue " 2887 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); 2888 } 2889 2890 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) 2891 queue_work(cxgb3_wq, &adapter->db_drop_task); 2892 2893 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) 2894 queue_work(cxgb3_wq, &adapter->db_full_task); 2895 2896 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) 2897 queue_work(cxgb3_wq, &adapter->db_empty_task); 2898 2899 t3_write_reg(adapter, A_SG_INT_CAUSE, status); 2900 if (status & SGE_FATALERR) 2901 t3_fatal_err(adapter); 2902 } 2903 2904 /** 2905 * sge_timer_tx - perform periodic maintenance of an SGE qset 2906 * @data: the SGE queue set to maintain 2907 * 2908 * Runs periodically from a timer to perform maintenance of an SGE queue 2909 * set. It performs two tasks: 2910 * 2911 * Cleans up any completed Tx descriptors that may still be pending. 2912 * Normal descriptor cleanup happens when new packets are added to a Tx 2913 * queue so this timer is relatively infrequent and does any cleanup only 2914 * if the Tx queue has not seen any new packets in a while. We make a 2915 * best effort attempt to reclaim descriptors, in that we don't wait 2916 * around if we cannot get a queue's lock (which most likely is because 2917 * someone else is queueing new packets and so will also handle the clean 2918 * up). Since control queues use immediate data exclusively we don't 2919 * bother cleaning them up here. 2920 * 2921 */ 2922 static void sge_timer_tx(struct timer_list *t) 2923 { 2924 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer); 2925 struct port_info *pi = netdev_priv(qs->netdev); 2926 struct adapter *adap = pi->adapter; 2927 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; 2928 unsigned long next_period; 2929 2930 if (__netif_tx_trylock(qs->tx_q)) { 2931 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], 2932 TX_RECLAIM_TIMER_CHUNK); 2933 __netif_tx_unlock(qs->tx_q); 2934 } 2935 2936 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { 2937 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], 2938 TX_RECLAIM_TIMER_CHUNK); 2939 spin_unlock(&qs->txq[TXQ_OFLD].lock); 2940 } 2941 2942 next_period = TX_RECLAIM_PERIOD >> 2943 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / 2944 TX_RECLAIM_TIMER_CHUNK); 2945 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); 2946 } 2947 2948 /** 2949 * sge_timer_rx - perform periodic maintenance of an SGE qset 2950 * @data: the SGE queue set to maintain 2951 * 2952 * a) Replenishes Rx queues that have run out due to memory shortage. 2953 * Normally new Rx buffers are added when existing ones are consumed but 2954 * when out of memory a queue can become empty. We try to add only a few 2955 * buffers here, the queue will be replenished fully as these new buffers 2956 * are used up if memory shortage has subsided. 2957 * 2958 * b) Return coalesced response queue credits in case a response queue is 2959 * starved. 2960 * 2961 */ 2962 static void sge_timer_rx(struct timer_list *t) 2963 { 2964 spinlock_t *lock; 2965 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer); 2966 struct port_info *pi = netdev_priv(qs->netdev); 2967 struct adapter *adap = pi->adapter; 2968 u32 status; 2969 2970 lock = adap->params.rev > 0 ? 2971 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; 2972 2973 if (!spin_trylock_irq(lock)) 2974 goto out; 2975 2976 if (napi_is_scheduled(&qs->napi)) 2977 goto unlock; 2978 2979 if (adap->params.rev < 4) { 2980 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); 2981 2982 if (status & (1 << qs->rspq.cntxt_id)) { 2983 qs->rspq.starved++; 2984 if (qs->rspq.credits) { 2985 qs->rspq.credits--; 2986 refill_rspq(adap, &qs->rspq, 1); 2987 qs->rspq.restarted++; 2988 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, 2989 1 << qs->rspq.cntxt_id); 2990 } 2991 } 2992 } 2993 2994 if (qs->fl[0].credits < qs->fl[0].size) 2995 __refill_fl(adap, &qs->fl[0]); 2996 if (qs->fl[1].credits < qs->fl[1].size) 2997 __refill_fl(adap, &qs->fl[1]); 2998 2999 unlock: 3000 spin_unlock_irq(lock); 3001 out: 3002 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 3003 } 3004 3005 /** 3006 * t3_update_qset_coalesce - update coalescing settings for a queue set 3007 * @qs: the SGE queue set 3008 * @p: new queue set parameters 3009 * 3010 * Update the coalescing settings for an SGE queue set. Nothing is done 3011 * if the queue set is not initialized yet. 3012 */ 3013 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) 3014 { 3015 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ 3016 qs->rspq.polling = p->polling; 3017 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; 3018 } 3019 3020 /** 3021 * t3_sge_alloc_qset - initialize an SGE queue set 3022 * @adapter: the adapter 3023 * @id: the queue set id 3024 * @nports: how many Ethernet ports will be using this queue set 3025 * @irq_vec_idx: the IRQ vector index for response queue interrupts 3026 * @p: configuration parameters for this queue set 3027 * @ntxq: number of Tx queues for the queue set 3028 * @netdev: net device associated with this queue set 3029 * @netdevq: net device TX queue associated with this queue set 3030 * 3031 * Allocate resources and initialize an SGE queue set. A queue set 3032 * comprises a response queue, two Rx free-buffer queues, and up to 3 3033 * Tx queues. The Tx queues are assigned roles in the order Ethernet 3034 * queue, offload queue, and control queue. 3035 */ 3036 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, 3037 int irq_vec_idx, const struct qset_params *p, 3038 int ntxq, struct net_device *dev, 3039 struct netdev_queue *netdevq) 3040 { 3041 int i, avail, ret = -ENOMEM; 3042 struct sge_qset *q = &adapter->sge.qs[id]; 3043 3044 init_qset_cntxt(q, id); 3045 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0); 3046 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0); 3047 3048 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, 3049 sizeof(struct rx_desc), 3050 sizeof(struct rx_sw_desc), 3051 &q->fl[0].phys_addr, &q->fl[0].sdesc); 3052 if (!q->fl[0].desc) 3053 goto err; 3054 3055 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, 3056 sizeof(struct rx_desc), 3057 sizeof(struct rx_sw_desc), 3058 &q->fl[1].phys_addr, &q->fl[1].sdesc); 3059 if (!q->fl[1].desc) 3060 goto err; 3061 3062 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, 3063 sizeof(struct rsp_desc), 0, 3064 &q->rspq.phys_addr, NULL); 3065 if (!q->rspq.desc) 3066 goto err; 3067 3068 for (i = 0; i < ntxq; ++i) { 3069 /* 3070 * The control queue always uses immediate data so does not 3071 * need to keep track of any sk_buffs. 3072 */ 3073 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); 3074 3075 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], 3076 sizeof(struct tx_desc), sz, 3077 &q->txq[i].phys_addr, 3078 &q->txq[i].sdesc); 3079 if (!q->txq[i].desc) 3080 goto err; 3081 3082 q->txq[i].gen = 1; 3083 q->txq[i].size = p->txq_size[i]; 3084 spin_lock_init(&q->txq[i].lock); 3085 skb_queue_head_init(&q->txq[i].sendq); 3086 } 3087 3088 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq, 3089 (unsigned long)q); 3090 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq, 3091 (unsigned long)q); 3092 3093 q->fl[0].gen = q->fl[1].gen = 1; 3094 q->fl[0].size = p->fl_size; 3095 q->fl[1].size = p->jumbo_size; 3096 3097 q->rspq.gen = 1; 3098 q->rspq.size = p->rspq_size; 3099 spin_lock_init(&q->rspq.lock); 3100 skb_queue_head_init(&q->rspq.rx_queue); 3101 3102 q->txq[TXQ_ETH].stop_thres = nports * 3103 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); 3104 3105 #if FL0_PG_CHUNK_SIZE > 0 3106 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; 3107 #else 3108 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); 3109 #endif 3110 #if FL1_PG_CHUNK_SIZE > 0 3111 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; 3112 #else 3113 q->fl[1].buf_size = is_offload(adapter) ? 3114 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 3115 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); 3116 #endif 3117 3118 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; 3119 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; 3120 q->fl[0].order = FL0_PG_ORDER; 3121 q->fl[1].order = FL1_PG_ORDER; 3122 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; 3123 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; 3124 3125 spin_lock_irq(&adapter->sge.reg_lock); 3126 3127 /* FL threshold comparison uses < */ 3128 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, 3129 q->rspq.phys_addr, q->rspq.size, 3130 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); 3131 if (ret) 3132 goto err_unlock; 3133 3134 for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 3135 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, 3136 q->fl[i].phys_addr, q->fl[i].size, 3137 q->fl[i].buf_size - SGE_PG_RSVD, 3138 p->cong_thres, 1, 0); 3139 if (ret) 3140 goto err_unlock; 3141 } 3142 3143 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, 3144 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, 3145 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 3146 1, 0); 3147 if (ret) 3148 goto err_unlock; 3149 3150 if (ntxq > 1) { 3151 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, 3152 USE_GTS, SGE_CNTXT_OFLD, id, 3153 q->txq[TXQ_OFLD].phys_addr, 3154 q->txq[TXQ_OFLD].size, 0, 1, 0); 3155 if (ret) 3156 goto err_unlock; 3157 } 3158 3159 if (ntxq > 2) { 3160 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, 3161 SGE_CNTXT_CTRL, id, 3162 q->txq[TXQ_CTRL].phys_addr, 3163 q->txq[TXQ_CTRL].size, 3164 q->txq[TXQ_CTRL].token, 1, 0); 3165 if (ret) 3166 goto err_unlock; 3167 } 3168 3169 spin_unlock_irq(&adapter->sge.reg_lock); 3170 3171 q->adap = adapter; 3172 q->netdev = dev; 3173 q->tx_q = netdevq; 3174 t3_update_qset_coalesce(q, p); 3175 3176 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, 3177 GFP_KERNEL | __GFP_COMP); 3178 if (!avail) { 3179 CH_ALERT(adapter, "free list queue 0 initialization failed\n"); 3180 goto err; 3181 } 3182 if (avail < q->fl[0].size) 3183 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", 3184 avail); 3185 3186 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, 3187 GFP_KERNEL | __GFP_COMP); 3188 if (avail < q->fl[1].size) 3189 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", 3190 avail); 3191 refill_rspq(adapter, &q->rspq, q->rspq.size - 1); 3192 3193 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | 3194 V_NEWTIMER(q->rspq.holdoff_tmr)); 3195 3196 return 0; 3197 3198 err_unlock: 3199 spin_unlock_irq(&adapter->sge.reg_lock); 3200 err: 3201 t3_free_qset(adapter, q); 3202 return ret; 3203 } 3204 3205 /** 3206 * t3_start_sge_timers - start SGE timer call backs 3207 * @adap: the adapter 3208 * 3209 * Starts each SGE queue set's timer call back 3210 */ 3211 void t3_start_sge_timers(struct adapter *adap) 3212 { 3213 int i; 3214 3215 for (i = 0; i < SGE_QSETS; ++i) { 3216 struct sge_qset *q = &adap->sge.qs[i]; 3217 3218 if (q->tx_reclaim_timer.function) 3219 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 3220 3221 if (q->rx_reclaim_timer.function) 3222 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 3223 } 3224 } 3225 3226 /** 3227 * t3_stop_sge_timers - stop SGE timer call backs 3228 * @adap: the adapter 3229 * 3230 * Stops each SGE queue set's timer call back 3231 */ 3232 void t3_stop_sge_timers(struct adapter *adap) 3233 { 3234 int i; 3235 3236 for (i = 0; i < SGE_QSETS; ++i) { 3237 struct sge_qset *q = &adap->sge.qs[i]; 3238 3239 if (q->tx_reclaim_timer.function) 3240 del_timer_sync(&q->tx_reclaim_timer); 3241 if (q->rx_reclaim_timer.function) 3242 del_timer_sync(&q->rx_reclaim_timer); 3243 } 3244 } 3245 3246 /** 3247 * t3_free_sge_resources - free SGE resources 3248 * @adap: the adapter 3249 * 3250 * Frees resources used by the SGE queue sets. 3251 */ 3252 void t3_free_sge_resources(struct adapter *adap) 3253 { 3254 int i; 3255 3256 for (i = 0; i < SGE_QSETS; ++i) 3257 t3_free_qset(adap, &adap->sge.qs[i]); 3258 } 3259 3260 /** 3261 * t3_sge_start - enable SGE 3262 * @adap: the adapter 3263 * 3264 * Enables the SGE for DMAs. This is the last step in starting packet 3265 * transfers. 3266 */ 3267 void t3_sge_start(struct adapter *adap) 3268 { 3269 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); 3270 } 3271 3272 /** 3273 * t3_sge_stop - disable SGE operation 3274 * @adap: the adapter 3275 * 3276 * Disables the DMA engine. This can be called in emeregencies (e.g., 3277 * from error interrupts) or from normal process context. In the latter 3278 * case it also disables any pending queue restart tasklets. Note that 3279 * if it is called in interrupt context it cannot disable the restart 3280 * tasklets as it cannot wait, however the tasklets will have no effect 3281 * since the doorbells are disabled and the driver will call this again 3282 * later from process context, at which time the tasklets will be stopped 3283 * if they are still running. 3284 */ 3285 void t3_sge_stop(struct adapter *adap) 3286 { 3287 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); 3288 if (!in_interrupt()) { 3289 int i; 3290 3291 for (i = 0; i < SGE_QSETS; ++i) { 3292 struct sge_qset *qs = &adap->sge.qs[i]; 3293 3294 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); 3295 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); 3296 } 3297 } 3298 } 3299 3300 /** 3301 * t3_sge_init - initialize SGE 3302 * @adap: the adapter 3303 * @p: the SGE parameters 3304 * 3305 * Performs SGE initialization needed every time after a chip reset. 3306 * We do not initialize any of the queue sets here, instead the driver 3307 * top-level must request those individually. We also do not enable DMA 3308 * here, that should be done after the queues have been set up. 3309 */ 3310 void t3_sge_init(struct adapter *adap, struct sge_params *p) 3311 { 3312 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); 3313 3314 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | 3315 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | 3316 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | 3317 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; 3318 #if SGE_NUM_GENBITS == 1 3319 ctrl |= F_EGRGENCTRL; 3320 #endif 3321 if (adap->params.rev > 0) { 3322 if (!(adap->flags & (USING_MSIX | USING_MSI))) 3323 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; 3324 } 3325 t3_write_reg(adap, A_SG_CONTROL, ctrl); 3326 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | 3327 V_LORCQDRBTHRSH(512)); 3328 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); 3329 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | 3330 V_TIMEOUT(200 * core_ticks_per_usec(adap))); 3331 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 3332 adap->params.rev < T3_REV_C ? 1000 : 500); 3333 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); 3334 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); 3335 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); 3336 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); 3337 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); 3338 } 3339 3340 /** 3341 * t3_sge_prep - one-time SGE initialization 3342 * @adap: the associated adapter 3343 * @p: SGE parameters 3344 * 3345 * Performs one-time initialization of SGE SW state. Includes determining 3346 * defaults for the assorted SGE parameters, which admins can change until 3347 * they are used to initialize the SGE. 3348 */ 3349 void t3_sge_prep(struct adapter *adap, struct sge_params *p) 3350 { 3351 int i; 3352 3353 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - 3354 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3355 3356 for (i = 0; i < SGE_QSETS; ++i) { 3357 struct qset_params *q = p->qset + i; 3358 3359 q->polling = adap->params.rev > 0; 3360 q->coalesce_usecs = 5; 3361 q->rspq_size = 1024; 3362 q->fl_size = 1024; 3363 q->jumbo_size = 512; 3364 q->txq_size[TXQ_ETH] = 1024; 3365 q->txq_size[TXQ_OFLD] = 1024; 3366 q->txq_size[TXQ_CTRL] = 256; 3367 q->cong_thres = 0; 3368 } 3369 3370 spin_lock_init(&adap->sge.reg_lock); 3371 } 3372