xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb3/sge.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 /*
2  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48 
49 #define USE_GTS 0
50 
51 #define SGE_RX_SM_BUF_SIZE 1536
52 
53 #define SGE_RX_COPY_THRES  256
54 #define SGE_RX_PULL_LEN    128
55 
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
60  * directly.
61  */
62 #define FL0_PG_CHUNK_SIZE  2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68 
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71 
72 /*
73  * Max number of Rx buffers we replenish at a time.
74  */
75 #define MAX_RX_REFILL 16U
76 /*
77  * Period of the Tx buffer reclaim timer.  This timer does not need to run
78  * frequently as Tx buffers are usually reclaimed by new Tx packets.
79  */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83 
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86 
87 /*
88  * Types of Tx queues in each queue set.  Order here matters, do not change.
89  */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91 
92 /* Values for sge_txq.flags */
93 enum {
94 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
95 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
96 };
97 
98 struct tx_desc {
99 	__be64 flit[TX_DESC_FLITS];
100 };
101 
102 struct rx_desc {
103 	__be32 addr_lo;
104 	__be32 len_gen;
105 	__be32 gen2;
106 	__be32 addr_hi;
107 };
108 
109 struct tx_sw_desc {		/* SW state per Tx descriptor */
110 	struct sk_buff *skb;
111 	u8 eop;       /* set if last descriptor for packet */
112 	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
113 	u8 fragidx;   /* first page fragment associated with descriptor */
114 	s8 sflit;     /* start flit of first SGL entry in descriptor */
115 };
116 
117 struct rx_sw_desc {                /* SW state per Rx descriptor */
118 	union {
119 		struct sk_buff *skb;
120 		struct fl_pg_chunk pg_chunk;
121 	};
122 	DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124 
125 struct rsp_desc {		/* response queue descriptor */
126 	struct rss_header rss_hdr;
127 	__be32 flags;
128 	__be32 len_cq;
129 	u8 imm_data[47];
130 	u8 intr_gen;
131 };
132 
133 /*
134  * Holds unmapping information for Tx packets that need deferred unmapping.
135  * This structure lives at skb->head and must be allocated by callers.
136  */
137 struct deferred_unmap_info {
138 	struct pci_dev *pdev;
139 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
140 };
141 
142 /*
143  * Maps a number of flits to the number of Tx descriptors that can hold them.
144  * The formula is
145  *
146  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147  *
148  * HW allows up to 4 descriptors to be combined into a WR.
149  */
150 static u8 flit_desc_map[] = {
151 	0,
152 #if SGE_NUM_GENBITS == 1
153 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 #else
163 # error "SGE_NUM_GENBITS must be 1 or 2"
164 #endif
165 };
166 
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
168 {
169 	return container_of(q, struct sge_qset, fl[qidx]);
170 }
171 
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
173 {
174 	return container_of(q, struct sge_qset, rspq);
175 }
176 
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
178 {
179 	return container_of(q, struct sge_qset, txq[qidx]);
180 }
181 
182 /**
183  *	refill_rspq - replenish an SGE response queue
184  *	@adapter: the adapter
185  *	@q: the response queue to replenish
186  *	@credits: how many new responses to make available
187  *
188  *	Replenishes a response queue by making the supplied number of responses
189  *	available to HW.
190  */
191 static inline void refill_rspq(struct adapter *adapter,
192 			       const struct sge_rspq *q, unsigned int credits)
193 {
194 	rmb();
195 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197 }
198 
199 /**
200  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
201  *
202  *	Returns true if the platform needs sk_buff unmapping.  The compiler
203  *	optimizes away unnecessary code if this returns true.
204  */
205 static inline int need_skb_unmap(void)
206 {
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
208 	return 1;
209 #else
210 	return 0;
211 #endif
212 }
213 
214 /**
215  *	unmap_skb - unmap a packet main body and its page fragments
216  *	@skb: the packet
217  *	@q: the Tx queue containing Tx descriptors for the packet
218  *	@cidx: index of Tx descriptor
219  *	@pdev: the PCI device
220  *
221  *	Unmap the main body of an sk_buff and its page fragments, if any.
222  *	Because of the fairly complicated structure of our SGLs and the desire
223  *	to conserve space for metadata, the information necessary to unmap an
224  *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225  *	descriptors (the physical addresses of the various data buffers), and
226  *	the SW descriptor state (assorted indices).  The send functions
227  *	initialize the indices for the first packet descriptor so we can unmap
228  *	the buffers held in the first Tx descriptor here, and we have enough
229  *	information at this point to set the state for the next Tx descriptor.
230  *
231  *	Note that it is possible to clean up the first descriptor of a packet
232  *	before the send routines have written the next descriptors, but this
233  *	race does not cause any problem.  We just end up writing the unmapping
234  *	info for the descriptor first.
235  */
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 			     unsigned int cidx, struct pci_dev *pdev)
238 {
239 	const struct sg_ent *sgp;
240 	struct tx_sw_desc *d = &q->sdesc[cidx];
241 	int nfrags, frag_idx, curflit, j = d->addr_idx;
242 
243 	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 	frag_idx = d->fragidx;
245 
246 	if (frag_idx == 0 && skb_headlen(skb)) {
247 		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 				 skb_headlen(skb), PCI_DMA_TODEVICE);
249 		j = 1;
250 	}
251 
252 	curflit = d->sflit + 1 + j;
253 	nfrags = skb_shinfo(skb)->nr_frags;
254 
255 	while (frag_idx < nfrags && curflit < WR_FLITS) {
256 		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 			       skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258 			       PCI_DMA_TODEVICE);
259 		j ^= 1;
260 		if (j == 0) {
261 			sgp++;
262 			curflit++;
263 		}
264 		curflit++;
265 		frag_idx++;
266 	}
267 
268 	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
269 		d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 		d->fragidx = frag_idx;
271 		d->addr_idx = j;
272 		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
273 	}
274 }
275 
276 /**
277  *	free_tx_desc - reclaims Tx descriptors and their buffers
278  *	@adapter: the adapter
279  *	@q: the Tx queue to reclaim descriptors from
280  *	@n: the number of descriptors to reclaim
281  *
282  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283  *	Tx buffers.  Called with the Tx queue lock held.
284  */
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 			 unsigned int n)
287 {
288 	struct tx_sw_desc *d;
289 	struct pci_dev *pdev = adapter->pdev;
290 	unsigned int cidx = q->cidx;
291 
292 	const int need_unmap = need_skb_unmap() &&
293 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
294 
295 	d = &q->sdesc[cidx];
296 	while (n--) {
297 		if (d->skb) {	/* an SGL is present */
298 			if (need_unmap)
299 				unmap_skb(d->skb, q, cidx, pdev);
300 			if (d->eop) {
301 				dev_consume_skb_any(d->skb);
302 				d->skb = NULL;
303 			}
304 		}
305 		++d;
306 		if (++cidx == q->size) {
307 			cidx = 0;
308 			d = q->sdesc;
309 		}
310 	}
311 	q->cidx = cidx;
312 }
313 
314 /**
315  *	reclaim_completed_tx - reclaims completed Tx descriptors
316  *	@adapter: the adapter
317  *	@q: the Tx queue to reclaim completed descriptors from
318  *	@chunk: maximum number of descriptors to reclaim
319  *
320  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
321  *	and frees the associated buffers if possible.  Called with the Tx
322  *	queue's lock held.
323  */
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 						struct sge_txq *q,
326 						unsigned int chunk)
327 {
328 	unsigned int reclaim = q->processed - q->cleaned;
329 
330 	reclaim = min(chunk, reclaim);
331 	if (reclaim) {
332 		free_tx_desc(adapter, q, reclaim);
333 		q->cleaned += reclaim;
334 		q->in_use -= reclaim;
335 	}
336 	return q->processed - q->cleaned;
337 }
338 
339 /**
340  *	should_restart_tx - are there enough resources to restart a Tx queue?
341  *	@q: the Tx queue
342  *
343  *	Checks if there are enough descriptors to restart a suspended Tx queue.
344  */
345 static inline int should_restart_tx(const struct sge_txq *q)
346 {
347 	unsigned int r = q->processed - q->cleaned;
348 
349 	return q->in_use - r < (q->size >> 1);
350 }
351 
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 			  struct rx_sw_desc *d)
354 {
355 	if (q->use_pages && d->pg_chunk.page) {
356 		(*d->pg_chunk.p_cnt)--;
357 		if (!*d->pg_chunk.p_cnt)
358 			pci_unmap_page(pdev,
359 				       d->pg_chunk.mapping,
360 				       q->alloc_size, PCI_DMA_FROMDEVICE);
361 
362 		put_page(d->pg_chunk.page);
363 		d->pg_chunk.page = NULL;
364 	} else {
365 		pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 				 q->buf_size, PCI_DMA_FROMDEVICE);
367 		kfree_skb(d->skb);
368 		d->skb = NULL;
369 	}
370 }
371 
372 /**
373  *	free_rx_bufs - free the Rx buffers on an SGE free list
374  *	@pdev: the PCI device associated with the adapter
375  *	@q: the SGE free list to clean up
376  *
377  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
378  *	this queue should be stopped before calling this function.
379  */
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381 {
382 	unsigned int cidx = q->cidx;
383 
384 	while (q->credits--) {
385 		struct rx_sw_desc *d = &q->sdesc[cidx];
386 
387 
388 		clear_rx_desc(pdev, q, d);
389 		if (++cidx == q->size)
390 			cidx = 0;
391 	}
392 
393 	if (q->pg_chunk.page) {
394 		__free_pages(q->pg_chunk.page, q->order);
395 		q->pg_chunk.page = NULL;
396 	}
397 }
398 
399 /**
400  *	add_one_rx_buf - add a packet buffer to a free-buffer list
401  *	@va:  buffer start VA
402  *	@len: the buffer length
403  *	@d: the HW Rx descriptor to write
404  *	@sd: the SW Rx descriptor to write
405  *	@gen: the generation bit value
406  *	@pdev: the PCI device associated with the adapter
407  *
408  *	Add a buffer of the given length to the supplied HW and SW Rx
409  *	descriptors.
410  */
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 				 struct rx_desc *d, struct rx_sw_desc *sd,
413 				 unsigned int gen, struct pci_dev *pdev)
414 {
415 	dma_addr_t mapping;
416 
417 	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 	if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 		return -ENOMEM;
420 
421 	dma_unmap_addr_set(sd, dma_addr, mapping);
422 
423 	d->addr_lo = cpu_to_be32(mapping);
424 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 	dma_wmb();
426 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 	return 0;
429 }
430 
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 				   unsigned int gen)
433 {
434 	d->addr_lo = cpu_to_be32(mapping);
435 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 	dma_wmb();
437 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 	return 0;
440 }
441 
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 			  struct rx_sw_desc *sd, gfp_t gfp,
444 			  unsigned int order)
445 {
446 	if (!q->pg_chunk.page) {
447 		dma_addr_t mapping;
448 
449 		q->pg_chunk.page = alloc_pages(gfp, order);
450 		if (unlikely(!q->pg_chunk.page))
451 			return -ENOMEM;
452 		q->pg_chunk.va = page_address(q->pg_chunk.page);
453 		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 				    SGE_PG_RSVD;
455 		q->pg_chunk.offset = 0;
456 		mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 				       0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 		if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
459 			__free_pages(q->pg_chunk.page, order);
460 			q->pg_chunk.page = NULL;
461 			return -EIO;
462 		}
463 		q->pg_chunk.mapping = mapping;
464 	}
465 	sd->pg_chunk = q->pg_chunk;
466 
467 	prefetch(sd->pg_chunk.p_cnt);
468 
469 	q->pg_chunk.offset += q->buf_size;
470 	if (q->pg_chunk.offset == (PAGE_SIZE << order))
471 		q->pg_chunk.page = NULL;
472 	else {
473 		q->pg_chunk.va += q->buf_size;
474 		get_page(q->pg_chunk.page);
475 	}
476 
477 	if (sd->pg_chunk.offset == 0)
478 		*sd->pg_chunk.p_cnt = 1;
479 	else
480 		*sd->pg_chunk.p_cnt += 1;
481 
482 	return 0;
483 }
484 
485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
486 {
487 	if (q->pend_cred >= q->credits / 4) {
488 		q->pend_cred = 0;
489 		wmb();
490 		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
491 	}
492 }
493 
494 /**
495  *	refill_fl - refill an SGE free-buffer list
496  *	@adap: the adapter
497  *	@q: the free-list to refill
498  *	@n: the number of new buffers to allocate
499  *	@gfp: the gfp flags for allocating new buffers
500  *
501  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
502  *	allocated with the supplied gfp flags.  The caller must assure that
503  *	@n does not exceed the queue's capacity.
504  */
505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
506 {
507 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
508 	struct rx_desc *d = &q->desc[q->pidx];
509 	unsigned int count = 0;
510 
511 	while (n--) {
512 		dma_addr_t mapping;
513 		int err;
514 
515 		if (q->use_pages) {
516 			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
517 						    q->order))) {
518 nomem:				q->alloc_failed++;
519 				break;
520 			}
521 			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
522 			dma_unmap_addr_set(sd, dma_addr, mapping);
523 
524 			add_one_rx_chunk(mapping, d, q->gen);
525 			pci_dma_sync_single_for_device(adap->pdev, mapping,
526 						q->buf_size - SGE_PG_RSVD,
527 						PCI_DMA_FROMDEVICE);
528 		} else {
529 			void *buf_start;
530 
531 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
532 			if (!skb)
533 				goto nomem;
534 
535 			sd->skb = skb;
536 			buf_start = skb->data;
537 			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
538 					     q->gen, adap->pdev);
539 			if (unlikely(err)) {
540 				clear_rx_desc(adap->pdev, q, sd);
541 				break;
542 			}
543 		}
544 
545 		d++;
546 		sd++;
547 		if (++q->pidx == q->size) {
548 			q->pidx = 0;
549 			q->gen ^= 1;
550 			sd = q->sdesc;
551 			d = q->desc;
552 		}
553 		count++;
554 	}
555 
556 	q->credits += count;
557 	q->pend_cred += count;
558 	ring_fl_db(adap, q);
559 
560 	return count;
561 }
562 
563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
564 {
565 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
566 		  GFP_ATOMIC | __GFP_COMP);
567 }
568 
569 /**
570  *	recycle_rx_buf - recycle a receive buffer
571  *	@adap: the adapter
572  *	@q: the SGE free list
573  *	@idx: index of buffer to recycle
574  *
575  *	Recycles the specified buffer on the given free list by adding it at
576  *	the next available slot on the list.
577  */
578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
579 			   unsigned int idx)
580 {
581 	struct rx_desc *from = &q->desc[idx];
582 	struct rx_desc *to = &q->desc[q->pidx];
583 
584 	q->sdesc[q->pidx] = q->sdesc[idx];
585 	to->addr_lo = from->addr_lo;	/* already big endian */
586 	to->addr_hi = from->addr_hi;	/* likewise */
587 	dma_wmb();
588 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
589 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
590 
591 	if (++q->pidx == q->size) {
592 		q->pidx = 0;
593 		q->gen ^= 1;
594 	}
595 
596 	q->credits++;
597 	q->pend_cred++;
598 	ring_fl_db(adap, q);
599 }
600 
601 /**
602  *	alloc_ring - allocate resources for an SGE descriptor ring
603  *	@pdev: the PCI device
604  *	@nelem: the number of descriptors
605  *	@elem_size: the size of each descriptor
606  *	@sw_size: the size of the SW state associated with each ring element
607  *	@phys: the physical address of the allocated ring
608  *	@metadata: address of the array holding the SW state for the ring
609  *
610  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
611  *	free buffer lists, or response queues.  Each SGE ring requires
612  *	space for its HW descriptors plus, optionally, space for the SW state
613  *	associated with each HW entry (the metadata).  The function returns
614  *	three values: the virtual address for the HW ring (the return value
615  *	of the function), the physical address of the HW ring, and the address
616  *	of the SW ring.
617  */
618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
619 			size_t sw_size, dma_addr_t * phys, void *metadata)
620 {
621 	size_t len = nelem * elem_size;
622 	void *s = NULL;
623 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
624 
625 	if (!p)
626 		return NULL;
627 	if (sw_size && metadata) {
628 		s = kcalloc(nelem, sw_size, GFP_KERNEL);
629 
630 		if (!s) {
631 			dma_free_coherent(&pdev->dev, len, p, *phys);
632 			return NULL;
633 		}
634 		*(void **)metadata = s;
635 	}
636 	return p;
637 }
638 
639 /**
640  *	t3_reset_qset - reset a sge qset
641  *	@q: the queue set
642  *
643  *	Reset the qset structure.
644  *	the NAPI structure is preserved in the event of
645  *	the qset's reincarnation, for example during EEH recovery.
646  */
647 static void t3_reset_qset(struct sge_qset *q)
648 {
649 	if (q->adap &&
650 	    !(q->adap->flags & NAPI_INIT)) {
651 		memset(q, 0, sizeof(*q));
652 		return;
653 	}
654 
655 	q->adap = NULL;
656 	memset(&q->rspq, 0, sizeof(q->rspq));
657 	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
658 	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
659 	q->txq_stopped = 0;
660 	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
661 	q->rx_reclaim_timer.function = NULL;
662 	q->nomem = 0;
663 	napi_free_frags(&q->napi);
664 }
665 
666 
667 /**
668  *	free_qset - free the resources of an SGE queue set
669  *	@adapter: the adapter owning the queue set
670  *	@q: the queue set
671  *
672  *	Release the HW and SW resources associated with an SGE queue set, such
673  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
674  *	queue set must be quiesced prior to calling this.
675  */
676 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
677 {
678 	int i;
679 	struct pci_dev *pdev = adapter->pdev;
680 
681 	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
682 		if (q->fl[i].desc) {
683 			spin_lock_irq(&adapter->sge.reg_lock);
684 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
685 			spin_unlock_irq(&adapter->sge.reg_lock);
686 			free_rx_bufs(pdev, &q->fl[i]);
687 			kfree(q->fl[i].sdesc);
688 			dma_free_coherent(&pdev->dev,
689 					  q->fl[i].size *
690 					  sizeof(struct rx_desc), q->fl[i].desc,
691 					  q->fl[i].phys_addr);
692 		}
693 
694 	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
695 		if (q->txq[i].desc) {
696 			spin_lock_irq(&adapter->sge.reg_lock);
697 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
698 			spin_unlock_irq(&adapter->sge.reg_lock);
699 			if (q->txq[i].sdesc) {
700 				free_tx_desc(adapter, &q->txq[i],
701 					     q->txq[i].in_use);
702 				kfree(q->txq[i].sdesc);
703 			}
704 			dma_free_coherent(&pdev->dev,
705 					  q->txq[i].size *
706 					  sizeof(struct tx_desc),
707 					  q->txq[i].desc, q->txq[i].phys_addr);
708 			__skb_queue_purge(&q->txq[i].sendq);
709 		}
710 
711 	if (q->rspq.desc) {
712 		spin_lock_irq(&adapter->sge.reg_lock);
713 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
714 		spin_unlock_irq(&adapter->sge.reg_lock);
715 		dma_free_coherent(&pdev->dev,
716 				  q->rspq.size * sizeof(struct rsp_desc),
717 				  q->rspq.desc, q->rspq.phys_addr);
718 	}
719 
720 	t3_reset_qset(q);
721 }
722 
723 /**
724  *	init_qset_cntxt - initialize an SGE queue set context info
725  *	@qs: the queue set
726  *	@id: the queue set id
727  *
728  *	Initializes the TIDs and context ids for the queues of a queue set.
729  */
730 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
731 {
732 	qs->rspq.cntxt_id = id;
733 	qs->fl[0].cntxt_id = 2 * id;
734 	qs->fl[1].cntxt_id = 2 * id + 1;
735 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
736 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
737 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
738 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
739 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
740 }
741 
742 /**
743  *	sgl_len - calculates the size of an SGL of the given capacity
744  *	@n: the number of SGL entries
745  *
746  *	Calculates the number of flits needed for a scatter/gather list that
747  *	can hold the given number of entries.
748  */
749 static inline unsigned int sgl_len(unsigned int n)
750 {
751 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
752 	return (3 * n) / 2 + (n & 1);
753 }
754 
755 /**
756  *	flits_to_desc - returns the num of Tx descriptors for the given flits
757  *	@n: the number of flits
758  *
759  *	Calculates the number of Tx descriptors needed for the supplied number
760  *	of flits.
761  */
762 static inline unsigned int flits_to_desc(unsigned int n)
763 {
764 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
765 	return flit_desc_map[n];
766 }
767 
768 /**
769  *	get_packet - return the next ingress packet buffer from a free list
770  *	@adap: the adapter that received the packet
771  *	@fl: the SGE free list holding the packet
772  *	@len: the packet length including any SGE padding
773  *	@drop_thres: # of remaining buffers before we start dropping packets
774  *
775  *	Get the next packet from a free list and complete setup of the
776  *	sk_buff.  If the packet is small we make a copy and recycle the
777  *	original buffer, otherwise we use the original buffer itself.  If a
778  *	positive drop threshold is supplied packets are dropped and their
779  *	buffers recycled if (a) the number of remaining buffers is under the
780  *	threshold and the packet is too big to copy, or (b) the packet should
781  *	be copied but there is no memory for the copy.
782  */
783 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
784 				  unsigned int len, unsigned int drop_thres)
785 {
786 	struct sk_buff *skb = NULL;
787 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
788 
789 	prefetch(sd->skb->data);
790 	fl->credits--;
791 
792 	if (len <= SGE_RX_COPY_THRES) {
793 		skb = alloc_skb(len, GFP_ATOMIC);
794 		if (likely(skb != NULL)) {
795 			__skb_put(skb, len);
796 			pci_dma_sync_single_for_cpu(adap->pdev,
797 					    dma_unmap_addr(sd, dma_addr), len,
798 					    PCI_DMA_FROMDEVICE);
799 			memcpy(skb->data, sd->skb->data, len);
800 			pci_dma_sync_single_for_device(adap->pdev,
801 					    dma_unmap_addr(sd, dma_addr), len,
802 					    PCI_DMA_FROMDEVICE);
803 		} else if (!drop_thres)
804 			goto use_orig_buf;
805 recycle:
806 		recycle_rx_buf(adap, fl, fl->cidx);
807 		return skb;
808 	}
809 
810 	if (unlikely(fl->credits < drop_thres) &&
811 	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
812 		      GFP_ATOMIC | __GFP_COMP) == 0)
813 		goto recycle;
814 
815 use_orig_buf:
816 	pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
817 			 fl->buf_size, PCI_DMA_FROMDEVICE);
818 	skb = sd->skb;
819 	skb_put(skb, len);
820 	__refill_fl(adap, fl);
821 	return skb;
822 }
823 
824 /**
825  *	get_packet_pg - return the next ingress packet buffer from a free list
826  *	@adap: the adapter that received the packet
827  *	@fl: the SGE free list holding the packet
828  *	@q: the queue
829  *	@len: the packet length including any SGE padding
830  *	@drop_thres: # of remaining buffers before we start dropping packets
831  *
832  *	Get the next packet from a free list populated with page chunks.
833  *	If the packet is small we make a copy and recycle the original buffer,
834  *	otherwise we attach the original buffer as a page fragment to a fresh
835  *	sk_buff.  If a positive drop threshold is supplied packets are dropped
836  *	and their buffers recycled if (a) the number of remaining buffers is
837  *	under the threshold and the packet is too big to copy, or (b) there's
838  *	no system memory.
839  *
840  * 	Note: this function is similar to @get_packet but deals with Rx buffers
841  * 	that are page chunks rather than sk_buffs.
842  */
843 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
844 				     struct sge_rspq *q, unsigned int len,
845 				     unsigned int drop_thres)
846 {
847 	struct sk_buff *newskb, *skb;
848 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
849 
850 	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
851 
852 	newskb = skb = q->pg_skb;
853 	if (!skb && (len <= SGE_RX_COPY_THRES)) {
854 		newskb = alloc_skb(len, GFP_ATOMIC);
855 		if (likely(newskb != NULL)) {
856 			__skb_put(newskb, len);
857 			pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
858 					    PCI_DMA_FROMDEVICE);
859 			memcpy(newskb->data, sd->pg_chunk.va, len);
860 			pci_dma_sync_single_for_device(adap->pdev, dma_addr,
861 						       len,
862 						       PCI_DMA_FROMDEVICE);
863 		} else if (!drop_thres)
864 			return NULL;
865 recycle:
866 		fl->credits--;
867 		recycle_rx_buf(adap, fl, fl->cidx);
868 		q->rx_recycle_buf++;
869 		return newskb;
870 	}
871 
872 	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
873 		goto recycle;
874 
875 	prefetch(sd->pg_chunk.p_cnt);
876 
877 	if (!skb)
878 		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
879 
880 	if (unlikely(!newskb)) {
881 		if (!drop_thres)
882 			return NULL;
883 		goto recycle;
884 	}
885 
886 	pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
887 				    PCI_DMA_FROMDEVICE);
888 	(*sd->pg_chunk.p_cnt)--;
889 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
890 		pci_unmap_page(adap->pdev,
891 			       sd->pg_chunk.mapping,
892 			       fl->alloc_size,
893 			       PCI_DMA_FROMDEVICE);
894 	if (!skb) {
895 		__skb_put(newskb, SGE_RX_PULL_LEN);
896 		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
897 		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
898 				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
899 				   len - SGE_RX_PULL_LEN);
900 		newskb->len = len;
901 		newskb->data_len = len - SGE_RX_PULL_LEN;
902 		newskb->truesize += newskb->data_len;
903 	} else {
904 		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
905 				   sd->pg_chunk.page,
906 				   sd->pg_chunk.offset, len);
907 		newskb->len += len;
908 		newskb->data_len += len;
909 		newskb->truesize += len;
910 	}
911 
912 	fl->credits--;
913 	/*
914 	 * We do not refill FLs here, we let the caller do it to overlap a
915 	 * prefetch.
916 	 */
917 	return newskb;
918 }
919 
920 /**
921  *	get_imm_packet - return the next ingress packet buffer from a response
922  *	@resp: the response descriptor containing the packet data
923  *
924  *	Return a packet containing the immediate data of the given response.
925  */
926 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
927 {
928 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
929 
930 	if (skb) {
931 		__skb_put(skb, IMMED_PKT_SIZE);
932 		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
933 	}
934 	return skb;
935 }
936 
937 /**
938  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
939  *	@skb: the packet
940  *
941  * 	Returns the number of Tx descriptors needed for the given Ethernet
942  * 	packet.  Ethernet packets require addition of WR and CPL headers.
943  */
944 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
945 {
946 	unsigned int flits;
947 
948 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
949 		return 1;
950 
951 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
952 	if (skb_shinfo(skb)->gso_size)
953 		flits++;
954 	return flits_to_desc(flits);
955 }
956 
957 /*	map_skb - map a packet main body and its page fragments
958  *	@pdev: the PCI device
959  *	@skb: the packet
960  *	@addr: placeholder to save the mapped addresses
961  *
962  *	map the main body of an sk_buff and its page fragments, if any.
963  */
964 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
965 		   dma_addr_t *addr)
966 {
967 	const skb_frag_t *fp, *end;
968 	const struct skb_shared_info *si;
969 
970 	if (skb_headlen(skb)) {
971 		*addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
972 				       PCI_DMA_TODEVICE);
973 		if (pci_dma_mapping_error(pdev, *addr))
974 			goto out_err;
975 		addr++;
976 	}
977 
978 	si = skb_shinfo(skb);
979 	end = &si->frags[si->nr_frags];
980 
981 	for (fp = si->frags; fp < end; fp++) {
982 		*addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
983 					 DMA_TO_DEVICE);
984 		if (pci_dma_mapping_error(pdev, *addr))
985 			goto unwind;
986 		addr++;
987 	}
988 	return 0;
989 
990 unwind:
991 	while (fp-- > si->frags)
992 		dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
993 			       DMA_TO_DEVICE);
994 
995 	pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
996 out_err:
997 	return -ENOMEM;
998 }
999 
1000 /**
1001  *	write_sgl - populate a scatter/gather list for a packet
1002  *	@skb: the packet
1003  *	@sgp: the SGL to populate
1004  *	@start: start address of skb main body data to include in the SGL
1005  *	@len: length of skb main body data to include in the SGL
1006  *	@addr: the list of the mapped addresses
1007  *
1008  *	Copies the scatter/gather list for the buffers that make up a packet
1009  *	and returns the SGL size in 8-byte words.  The caller must size the SGL
1010  *	appropriately.
1011  */
1012 static inline unsigned int write_sgl(const struct sk_buff *skb,
1013 				     struct sg_ent *sgp, unsigned char *start,
1014 				     unsigned int len, const dma_addr_t *addr)
1015 {
1016 	unsigned int i, j = 0, k = 0, nfrags;
1017 
1018 	if (len) {
1019 		sgp->len[0] = cpu_to_be32(len);
1020 		sgp->addr[j++] = cpu_to_be64(addr[k++]);
1021 	}
1022 
1023 	nfrags = skb_shinfo(skb)->nr_frags;
1024 	for (i = 0; i < nfrags; i++) {
1025 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1026 
1027 		sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1028 		sgp->addr[j] = cpu_to_be64(addr[k++]);
1029 		j ^= 1;
1030 		if (j == 0)
1031 			++sgp;
1032 	}
1033 	if (j)
1034 		sgp->len[j] = 0;
1035 	return ((nfrags + (len != 0)) * 3) / 2 + j;
1036 }
1037 
1038 /**
1039  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1040  *	@adap: the adapter
1041  *	@q: the Tx queue
1042  *
1043  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1044  *	where the HW is going to sleep just after we checked, however,
1045  *	then the interrupt handler will detect the outstanding TX packet
1046  *	and ring the doorbell for us.
1047  *
1048  *	When GTS is disabled we unconditionally ring the doorbell.
1049  */
1050 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1051 {
1052 #if USE_GTS
1053 	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1054 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1055 		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1056 		t3_write_reg(adap, A_SG_KDOORBELL,
1057 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1058 	}
1059 #else
1060 	wmb();			/* write descriptors before telling HW */
1061 	t3_write_reg(adap, A_SG_KDOORBELL,
1062 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1063 #endif
1064 }
1065 
1066 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1067 {
1068 #if SGE_NUM_GENBITS == 2
1069 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1070 #endif
1071 }
1072 
1073 /**
1074  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1075  *	@ndesc: number of Tx descriptors spanned by the SGL
1076  *	@skb: the packet corresponding to the WR
1077  *	@d: first Tx descriptor to be written
1078  *	@pidx: index of above descriptors
1079  *	@q: the SGE Tx queue
1080  *	@sgl: the SGL
1081  *	@flits: number of flits to the start of the SGL in the first descriptor
1082  *	@sgl_flits: the SGL size in flits
1083  *	@gen: the Tx descriptor generation
1084  *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1085  *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1086  *
1087  *	Write a work request header and an associated SGL.  If the SGL is
1088  *	small enough to fit into one Tx descriptor it has already been written
1089  *	and we just need to write the WR header.  Otherwise we distribute the
1090  *	SGL across the number of descriptors it spans.
1091  */
1092 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1093 			     struct tx_desc *d, unsigned int pidx,
1094 			     const struct sge_txq *q,
1095 			     const struct sg_ent *sgl,
1096 			     unsigned int flits, unsigned int sgl_flits,
1097 			     unsigned int gen, __be32 wr_hi,
1098 			     __be32 wr_lo)
1099 {
1100 	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1101 	struct tx_sw_desc *sd = &q->sdesc[pidx];
1102 
1103 	sd->skb = skb;
1104 	if (need_skb_unmap()) {
1105 		sd->fragidx = 0;
1106 		sd->addr_idx = 0;
1107 		sd->sflit = flits;
1108 	}
1109 
1110 	if (likely(ndesc == 1)) {
1111 		sd->eop = 1;
1112 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1113 				   V_WR_SGLSFLT(flits)) | wr_hi;
1114 		dma_wmb();
1115 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1116 				   V_WR_GEN(gen)) | wr_lo;
1117 		wr_gen2(d, gen);
1118 	} else {
1119 		unsigned int ogen = gen;
1120 		const u64 *fp = (const u64 *)sgl;
1121 		struct work_request_hdr *wp = wrp;
1122 
1123 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1124 				   V_WR_SGLSFLT(flits)) | wr_hi;
1125 
1126 		while (sgl_flits) {
1127 			unsigned int avail = WR_FLITS - flits;
1128 
1129 			if (avail > sgl_flits)
1130 				avail = sgl_flits;
1131 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1132 			sgl_flits -= avail;
1133 			ndesc--;
1134 			if (!sgl_flits)
1135 				break;
1136 
1137 			fp += avail;
1138 			d++;
1139 			sd->eop = 0;
1140 			sd++;
1141 			if (++pidx == q->size) {
1142 				pidx = 0;
1143 				gen ^= 1;
1144 				d = q->desc;
1145 				sd = q->sdesc;
1146 			}
1147 
1148 			sd->skb = skb;
1149 			wrp = (struct work_request_hdr *)d;
1150 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1151 					   V_WR_SGLSFLT(1)) | wr_hi;
1152 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1153 							sgl_flits + 1)) |
1154 					   V_WR_GEN(gen)) | wr_lo;
1155 			wr_gen2(d, gen);
1156 			flits = 1;
1157 		}
1158 		sd->eop = 1;
1159 		wrp->wr_hi |= htonl(F_WR_EOP);
1160 		dma_wmb();
1161 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1162 		wr_gen2((struct tx_desc *)wp, ogen);
1163 		WARN_ON(ndesc != 0);
1164 	}
1165 }
1166 
1167 /**
1168  *	write_tx_pkt_wr - write a TX_PKT work request
1169  *	@adap: the adapter
1170  *	@skb: the packet to send
1171  *	@pi: the egress interface
1172  *	@pidx: index of the first Tx descriptor to write
1173  *	@gen: the generation value to use
1174  *	@q: the Tx queue
1175  *	@ndesc: number of descriptors the packet will occupy
1176  *	@compl: the value of the COMPL bit to use
1177  *	@addr: address
1178  *
1179  *	Generate a TX_PKT work request to send the supplied packet.
1180  */
1181 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1182 			    const struct port_info *pi,
1183 			    unsigned int pidx, unsigned int gen,
1184 			    struct sge_txq *q, unsigned int ndesc,
1185 			    unsigned int compl, const dma_addr_t *addr)
1186 {
1187 	unsigned int flits, sgl_flits, cntrl, tso_info;
1188 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1189 	struct tx_desc *d = &q->desc[pidx];
1190 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1191 
1192 	cpl->len = htonl(skb->len);
1193 	cntrl = V_TXPKT_INTF(pi->port_id);
1194 
1195 	if (skb_vlan_tag_present(skb))
1196 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1197 
1198 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1199 	if (tso_info) {
1200 		int eth_type;
1201 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1202 
1203 		d->flit[2] = 0;
1204 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1205 		hdr->cntrl = htonl(cntrl);
1206 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1207 		    CPL_ETH_II : CPL_ETH_II_VLAN;
1208 		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1209 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1210 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1211 		hdr->lso_info = htonl(tso_info);
1212 		flits = 3;
1213 	} else {
1214 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1215 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1216 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1217 		cpl->cntrl = htonl(cntrl);
1218 
1219 		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1220 			q->sdesc[pidx].skb = NULL;
1221 			if (!skb->data_len)
1222 				skb_copy_from_linear_data(skb, &d->flit[2],
1223 							  skb->len);
1224 			else
1225 				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1226 
1227 			flits = (skb->len + 7) / 8 + 2;
1228 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1229 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1230 					      | F_WR_SOP | F_WR_EOP | compl);
1231 			dma_wmb();
1232 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1233 					      V_WR_TID(q->token));
1234 			wr_gen2(d, gen);
1235 			dev_consume_skb_any(skb);
1236 			return;
1237 		}
1238 
1239 		flits = 2;
1240 	}
1241 
1242 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1243 	sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1244 
1245 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1246 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1247 			 htonl(V_WR_TID(q->token)));
1248 }
1249 
1250 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1251 				    struct sge_qset *qs, struct sge_txq *q)
1252 {
1253 	netif_tx_stop_queue(txq);
1254 	set_bit(TXQ_ETH, &qs->txq_stopped);
1255 	q->stops++;
1256 }
1257 
1258 /**
1259  *	eth_xmit - add a packet to the Ethernet Tx queue
1260  *	@skb: the packet
1261  *	@dev: the egress net device
1262  *
1263  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1264  */
1265 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1266 {
1267 	int qidx;
1268 	unsigned int ndesc, pidx, credits, gen, compl;
1269 	const struct port_info *pi = netdev_priv(dev);
1270 	struct adapter *adap = pi->adapter;
1271 	struct netdev_queue *txq;
1272 	struct sge_qset *qs;
1273 	struct sge_txq *q;
1274 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1275 
1276 	/*
1277 	 * The chip min packet length is 9 octets but play safe and reject
1278 	 * anything shorter than an Ethernet header.
1279 	 */
1280 	if (unlikely(skb->len < ETH_HLEN)) {
1281 		dev_kfree_skb_any(skb);
1282 		return NETDEV_TX_OK;
1283 	}
1284 
1285 	qidx = skb_get_queue_mapping(skb);
1286 	qs = &pi->qs[qidx];
1287 	q = &qs->txq[TXQ_ETH];
1288 	txq = netdev_get_tx_queue(dev, qidx);
1289 
1290 	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1291 
1292 	credits = q->size - q->in_use;
1293 	ndesc = calc_tx_descs(skb);
1294 
1295 	if (unlikely(credits < ndesc)) {
1296 		t3_stop_tx_queue(txq, qs, q);
1297 		dev_err(&adap->pdev->dev,
1298 			"%s: Tx ring %u full while queue awake!\n",
1299 			dev->name, q->cntxt_id & 7);
1300 		return NETDEV_TX_BUSY;
1301 	}
1302 
1303 	/* Check if ethernet packet can't be sent as immediate data */
1304 	if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1305 		if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1306 			dev_kfree_skb(skb);
1307 			return NETDEV_TX_OK;
1308 		}
1309 	}
1310 
1311 	q->in_use += ndesc;
1312 	if (unlikely(credits - ndesc < q->stop_thres)) {
1313 		t3_stop_tx_queue(txq, qs, q);
1314 
1315 		if (should_restart_tx(q) &&
1316 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1317 			q->restarts++;
1318 			netif_tx_start_queue(txq);
1319 		}
1320 	}
1321 
1322 	gen = q->gen;
1323 	q->unacked += ndesc;
1324 	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1325 	q->unacked &= 7;
1326 	pidx = q->pidx;
1327 	q->pidx += ndesc;
1328 	if (q->pidx >= q->size) {
1329 		q->pidx -= q->size;
1330 		q->gen ^= 1;
1331 	}
1332 
1333 	/* update port statistics */
1334 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1335 		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1336 	if (skb_shinfo(skb)->gso_size)
1337 		qs->port_stats[SGE_PSTAT_TSO]++;
1338 	if (skb_vlan_tag_present(skb))
1339 		qs->port_stats[SGE_PSTAT_VLANINS]++;
1340 
1341 	/*
1342 	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1343 	 * This is good for performance but means that we rely on new Tx
1344 	 * packets arriving to run the destructors of completed packets,
1345 	 * which open up space in their sockets' send queues.  Sometimes
1346 	 * we do not get such new packets causing Tx to stall.  A single
1347 	 * UDP transmitter is a good example of this situation.  We have
1348 	 * a clean up timer that periodically reclaims completed packets
1349 	 * but it doesn't run often enough (nor do we want it to) to prevent
1350 	 * lengthy stalls.  A solution to this problem is to run the
1351 	 * destructor early, after the packet is queued but before it's DMAd.
1352 	 * A cons is that we lie to socket memory accounting, but the amount
1353 	 * of extra memory is reasonable (limited by the number of Tx
1354 	 * descriptors), the packets do actually get freed quickly by new
1355 	 * packets almost always, and for protocols like TCP that wait for
1356 	 * acks to really free up the data the extra memory is even less.
1357 	 * On the positive side we run the destructors on the sending CPU
1358 	 * rather than on a potentially different completing CPU, usually a
1359 	 * good thing.  We also run them without holding our Tx queue lock,
1360 	 * unlike what reclaim_completed_tx() would otherwise do.
1361 	 *
1362 	 * Run the destructor before telling the DMA engine about the packet
1363 	 * to make sure it doesn't complete and get freed prematurely.
1364 	 */
1365 	if (likely(!skb_shared(skb)))
1366 		skb_orphan(skb);
1367 
1368 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1369 	check_ring_tx_db(adap, q);
1370 	return NETDEV_TX_OK;
1371 }
1372 
1373 /**
1374  *	write_imm - write a packet into a Tx descriptor as immediate data
1375  *	@d: the Tx descriptor to write
1376  *	@skb: the packet
1377  *	@len: the length of packet data to write as immediate data
1378  *	@gen: the generation bit value to write
1379  *
1380  *	Writes a packet as immediate data into a Tx descriptor.  The packet
1381  *	contains a work request at its beginning.  We must write the packet
1382  *	carefully so the SGE doesn't read it accidentally before it's written
1383  *	in its entirety.
1384  */
1385 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1386 			     unsigned int len, unsigned int gen)
1387 {
1388 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1389 	struct work_request_hdr *to = (struct work_request_hdr *)d;
1390 
1391 	if (likely(!skb->data_len))
1392 		memcpy(&to[1], &from[1], len - sizeof(*from));
1393 	else
1394 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1395 
1396 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1397 					V_WR_BCNTLFLT(len & 7));
1398 	dma_wmb();
1399 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1400 					V_WR_LEN((len + 7) / 8));
1401 	wr_gen2(d, gen);
1402 	kfree_skb(skb);
1403 }
1404 
1405 /**
1406  *	check_desc_avail - check descriptor availability on a send queue
1407  *	@adap: the adapter
1408  *	@q: the send queue
1409  *	@skb: the packet needing the descriptors
1410  *	@ndesc: the number of Tx descriptors needed
1411  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1412  *
1413  *	Checks if the requested number of Tx descriptors is available on an
1414  *	SGE send queue.  If the queue is already suspended or not enough
1415  *	descriptors are available the packet is queued for later transmission.
1416  *	Must be called with the Tx queue locked.
1417  *
1418  *	Returns 0 if enough descriptors are available, 1 if there aren't
1419  *	enough descriptors and the packet has been queued, and 2 if the caller
1420  *	needs to retry because there weren't enough descriptors at the
1421  *	beginning of the call but some freed up in the mean time.
1422  */
1423 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1424 				   struct sk_buff *skb, unsigned int ndesc,
1425 				   unsigned int qid)
1426 {
1427 	if (unlikely(!skb_queue_empty(&q->sendq))) {
1428 	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1429 		return 1;
1430 	}
1431 	if (unlikely(q->size - q->in_use < ndesc)) {
1432 		struct sge_qset *qs = txq_to_qset(q, qid);
1433 
1434 		set_bit(qid, &qs->txq_stopped);
1435 		smp_mb__after_atomic();
1436 
1437 		if (should_restart_tx(q) &&
1438 		    test_and_clear_bit(qid, &qs->txq_stopped))
1439 			return 2;
1440 
1441 		q->stops++;
1442 		goto addq_exit;
1443 	}
1444 	return 0;
1445 }
1446 
1447 /**
1448  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1449  *	@q: the SGE control Tx queue
1450  *
1451  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1452  *	that send only immediate data (presently just the control queues) and
1453  *	thus do not have any sk_buffs to release.
1454  */
1455 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1456 {
1457 	unsigned int reclaim = q->processed - q->cleaned;
1458 
1459 	q->in_use -= reclaim;
1460 	q->cleaned += reclaim;
1461 }
1462 
1463 static inline int immediate(const struct sk_buff *skb)
1464 {
1465 	return skb->len <= WR_LEN;
1466 }
1467 
1468 /**
1469  *	ctrl_xmit - send a packet through an SGE control Tx queue
1470  *	@adap: the adapter
1471  *	@q: the control queue
1472  *	@skb: the packet
1473  *
1474  *	Send a packet through an SGE control Tx queue.  Packets sent through
1475  *	a control queue must fit entirely as immediate data in a single Tx
1476  *	descriptor and have no page fragments.
1477  */
1478 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1479 		     struct sk_buff *skb)
1480 {
1481 	int ret;
1482 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1483 
1484 	if (unlikely(!immediate(skb))) {
1485 		WARN_ON(1);
1486 		dev_kfree_skb(skb);
1487 		return NET_XMIT_SUCCESS;
1488 	}
1489 
1490 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1491 	wrp->wr_lo = htonl(V_WR_TID(q->token));
1492 
1493 	spin_lock(&q->lock);
1494       again:reclaim_completed_tx_imm(q);
1495 
1496 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1497 	if (unlikely(ret)) {
1498 		if (ret == 1) {
1499 			spin_unlock(&q->lock);
1500 			return NET_XMIT_CN;
1501 		}
1502 		goto again;
1503 	}
1504 
1505 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1506 
1507 	q->in_use++;
1508 	if (++q->pidx >= q->size) {
1509 		q->pidx = 0;
1510 		q->gen ^= 1;
1511 	}
1512 	spin_unlock(&q->lock);
1513 	wmb();
1514 	t3_write_reg(adap, A_SG_KDOORBELL,
1515 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1516 	return NET_XMIT_SUCCESS;
1517 }
1518 
1519 /**
1520  *	restart_ctrlq - restart a suspended control queue
1521  *	@t: pointer to the tasklet associated with this handler
1522  *
1523  *	Resumes transmission on a suspended Tx control queue.
1524  */
1525 static void restart_ctrlq(struct tasklet_struct *t)
1526 {
1527 	struct sk_buff *skb;
1528 	struct sge_qset *qs = from_tasklet(qs, t, txq[TXQ_CTRL].qresume_tsk);
1529 	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1530 
1531 	spin_lock(&q->lock);
1532       again:reclaim_completed_tx_imm(q);
1533 
1534 	while (q->in_use < q->size &&
1535 	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1536 
1537 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1538 
1539 		if (++q->pidx >= q->size) {
1540 			q->pidx = 0;
1541 			q->gen ^= 1;
1542 		}
1543 		q->in_use++;
1544 	}
1545 
1546 	if (!skb_queue_empty(&q->sendq)) {
1547 		set_bit(TXQ_CTRL, &qs->txq_stopped);
1548 		smp_mb__after_atomic();
1549 
1550 		if (should_restart_tx(q) &&
1551 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1552 			goto again;
1553 		q->stops++;
1554 	}
1555 
1556 	spin_unlock(&q->lock);
1557 	wmb();
1558 	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1559 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1560 }
1561 
1562 /*
1563  * Send a management message through control queue 0
1564  */
1565 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1566 {
1567 	int ret;
1568 	local_bh_disable();
1569 	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1570 	local_bh_enable();
1571 
1572 	return ret;
1573 }
1574 
1575 /**
1576  *	deferred_unmap_destructor - unmap a packet when it is freed
1577  *	@skb: the packet
1578  *
1579  *	This is the packet destructor used for Tx packets that need to remain
1580  *	mapped until they are freed rather than until their Tx descriptors are
1581  *	freed.
1582  */
1583 static void deferred_unmap_destructor(struct sk_buff *skb)
1584 {
1585 	int i;
1586 	const dma_addr_t *p;
1587 	const struct skb_shared_info *si;
1588 	const struct deferred_unmap_info *dui;
1589 
1590 	dui = (struct deferred_unmap_info *)skb->head;
1591 	p = dui->addr;
1592 
1593 	if (skb_tail_pointer(skb) - skb_transport_header(skb))
1594 		pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1595 				 skb_transport_header(skb), PCI_DMA_TODEVICE);
1596 
1597 	si = skb_shinfo(skb);
1598 	for (i = 0; i < si->nr_frags; i++)
1599 		pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1600 			       PCI_DMA_TODEVICE);
1601 }
1602 
1603 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1604 				     const struct sg_ent *sgl, int sgl_flits)
1605 {
1606 	dma_addr_t *p;
1607 	struct deferred_unmap_info *dui;
1608 
1609 	dui = (struct deferred_unmap_info *)skb->head;
1610 	dui->pdev = pdev;
1611 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1612 		*p++ = be64_to_cpu(sgl->addr[0]);
1613 		*p++ = be64_to_cpu(sgl->addr[1]);
1614 	}
1615 	if (sgl_flits)
1616 		*p = be64_to_cpu(sgl->addr[0]);
1617 }
1618 
1619 /**
1620  *	write_ofld_wr - write an offload work request
1621  *	@adap: the adapter
1622  *	@skb: the packet to send
1623  *	@q: the Tx queue
1624  *	@pidx: index of the first Tx descriptor to write
1625  *	@gen: the generation value to use
1626  *	@ndesc: number of descriptors the packet will occupy
1627  *	@addr: the address
1628  *
1629  *	Write an offload work request to send the supplied packet.  The packet
1630  *	data already carry the work request with most fields populated.
1631  */
1632 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1633 			  struct sge_txq *q, unsigned int pidx,
1634 			  unsigned int gen, unsigned int ndesc,
1635 			  const dma_addr_t *addr)
1636 {
1637 	unsigned int sgl_flits, flits;
1638 	struct work_request_hdr *from;
1639 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1640 	struct tx_desc *d = &q->desc[pidx];
1641 
1642 	if (immediate(skb)) {
1643 		q->sdesc[pidx].skb = NULL;
1644 		write_imm(d, skb, skb->len, gen);
1645 		return;
1646 	}
1647 
1648 	/* Only TX_DATA builds SGLs */
1649 
1650 	from = (struct work_request_hdr *)skb->data;
1651 	memcpy(&d->flit[1], &from[1],
1652 	       skb_transport_offset(skb) - sizeof(*from));
1653 
1654 	flits = skb_transport_offset(skb) / 8;
1655 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1656 	sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1657 			      skb_tail_pointer(skb) - skb_transport_header(skb),
1658 			      addr);
1659 	if (need_skb_unmap()) {
1660 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1661 		skb->destructor = deferred_unmap_destructor;
1662 	}
1663 
1664 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1665 			 gen, from->wr_hi, from->wr_lo);
1666 }
1667 
1668 /**
1669  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1670  *	@skb: the packet
1671  *
1672  * 	Returns the number of Tx descriptors needed for the given offload
1673  * 	packet.  These packets are already fully constructed.
1674  */
1675 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1676 {
1677 	unsigned int flits, cnt;
1678 
1679 	if (skb->len <= WR_LEN)
1680 		return 1;	/* packet fits as immediate data */
1681 
1682 	flits = skb_transport_offset(skb) / 8;	/* headers */
1683 	cnt = skb_shinfo(skb)->nr_frags;
1684 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1685 		cnt++;
1686 	return flits_to_desc(flits + sgl_len(cnt));
1687 }
1688 
1689 /**
1690  *	ofld_xmit - send a packet through an offload queue
1691  *	@adap: the adapter
1692  *	@q: the Tx offload queue
1693  *	@skb: the packet
1694  *
1695  *	Send an offload packet through an SGE offload queue.
1696  */
1697 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1698 		     struct sk_buff *skb)
1699 {
1700 	int ret;
1701 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1702 
1703 	spin_lock(&q->lock);
1704 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1705 
1706 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1707 	if (unlikely(ret)) {
1708 		if (ret == 1) {
1709 			skb->priority = ndesc;	/* save for restart */
1710 			spin_unlock(&q->lock);
1711 			return NET_XMIT_CN;
1712 		}
1713 		goto again;
1714 	}
1715 
1716 	if (!immediate(skb) &&
1717 	    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1718 		spin_unlock(&q->lock);
1719 		return NET_XMIT_SUCCESS;
1720 	}
1721 
1722 	gen = q->gen;
1723 	q->in_use += ndesc;
1724 	pidx = q->pidx;
1725 	q->pidx += ndesc;
1726 	if (q->pidx >= q->size) {
1727 		q->pidx -= q->size;
1728 		q->gen ^= 1;
1729 	}
1730 	spin_unlock(&q->lock);
1731 
1732 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1733 	check_ring_tx_db(adap, q);
1734 	return NET_XMIT_SUCCESS;
1735 }
1736 
1737 /**
1738  *	restart_offloadq - restart a suspended offload queue
1739  *	@t: pointer to the tasklet associated with this handler
1740  *
1741  *	Resumes transmission on a suspended Tx offload queue.
1742  */
1743 static void restart_offloadq(struct tasklet_struct *t)
1744 {
1745 	struct sk_buff *skb;
1746 	struct sge_qset *qs = from_tasklet(qs, t, txq[TXQ_OFLD].qresume_tsk);
1747 	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1748 	const struct port_info *pi = netdev_priv(qs->netdev);
1749 	struct adapter *adap = pi->adapter;
1750 	unsigned int written = 0;
1751 
1752 	spin_lock(&q->lock);
1753 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1754 
1755 	while ((skb = skb_peek(&q->sendq)) != NULL) {
1756 		unsigned int gen, pidx;
1757 		unsigned int ndesc = skb->priority;
1758 
1759 		if (unlikely(q->size - q->in_use < ndesc)) {
1760 			set_bit(TXQ_OFLD, &qs->txq_stopped);
1761 			smp_mb__after_atomic();
1762 
1763 			if (should_restart_tx(q) &&
1764 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1765 				goto again;
1766 			q->stops++;
1767 			break;
1768 		}
1769 
1770 		if (!immediate(skb) &&
1771 		    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1772 			break;
1773 
1774 		gen = q->gen;
1775 		q->in_use += ndesc;
1776 		pidx = q->pidx;
1777 		q->pidx += ndesc;
1778 		written += ndesc;
1779 		if (q->pidx >= q->size) {
1780 			q->pidx -= q->size;
1781 			q->gen ^= 1;
1782 		}
1783 		__skb_unlink(skb, &q->sendq);
1784 		spin_unlock(&q->lock);
1785 
1786 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1787 			      (dma_addr_t *)skb->head);
1788 		spin_lock(&q->lock);
1789 	}
1790 	spin_unlock(&q->lock);
1791 
1792 #if USE_GTS
1793 	set_bit(TXQ_RUNNING, &q->flags);
1794 	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1795 #endif
1796 	wmb();
1797 	if (likely(written))
1798 		t3_write_reg(adap, A_SG_KDOORBELL,
1799 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1800 }
1801 
1802 /**
1803  *	queue_set - return the queue set a packet should use
1804  *	@skb: the packet
1805  *
1806  *	Maps a packet to the SGE queue set it should use.  The desired queue
1807  *	set is carried in bits 1-3 in the packet's priority.
1808  */
1809 static inline int queue_set(const struct sk_buff *skb)
1810 {
1811 	return skb->priority >> 1;
1812 }
1813 
1814 /**
1815  *	is_ctrl_pkt - return whether an offload packet is a control packet
1816  *	@skb: the packet
1817  *
1818  *	Determines whether an offload packet should use an OFLD or a CTRL
1819  *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1820  */
1821 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1822 {
1823 	return skb->priority & 1;
1824 }
1825 
1826 /**
1827  *	t3_offload_tx - send an offload packet
1828  *	@tdev: the offload device to send to
1829  *	@skb: the packet
1830  *
1831  *	Sends an offload packet.  We use the packet priority to select the
1832  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1833  *	should be sent as regular or control, bits 1-3 select the queue set.
1834  */
1835 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1836 {
1837 	struct adapter *adap = tdev2adap(tdev);
1838 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1839 
1840 	if (unlikely(is_ctrl_pkt(skb)))
1841 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1842 
1843 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1844 }
1845 
1846 /**
1847  *	offload_enqueue - add an offload packet to an SGE offload receive queue
1848  *	@q: the SGE response queue
1849  *	@skb: the packet
1850  *
1851  *	Add a new offload packet to an SGE response queue's offload packet
1852  *	queue.  If the packet is the first on the queue it schedules the RX
1853  *	softirq to process the queue.
1854  */
1855 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1856 {
1857 	int was_empty = skb_queue_empty(&q->rx_queue);
1858 
1859 	__skb_queue_tail(&q->rx_queue, skb);
1860 
1861 	if (was_empty) {
1862 		struct sge_qset *qs = rspq_to_qset(q);
1863 
1864 		napi_schedule(&qs->napi);
1865 	}
1866 }
1867 
1868 /**
1869  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1870  *	@tdev: the offload device that will be receiving the packets
1871  *	@q: the SGE response queue that assembled the bundle
1872  *	@skbs: the partial bundle
1873  *	@n: the number of packets in the bundle
1874  *
1875  *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1876  */
1877 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1878 					  struct sge_rspq *q,
1879 					  struct sk_buff *skbs[], int n)
1880 {
1881 	if (n) {
1882 		q->offload_bundles++;
1883 		tdev->recv(tdev, skbs, n);
1884 	}
1885 }
1886 
1887 /**
1888  *	ofld_poll - NAPI handler for offload packets in interrupt mode
1889  *	@napi: the network device doing the polling
1890  *	@budget: polling budget
1891  *
1892  *	The NAPI handler for offload packets when a response queue is serviced
1893  *	by the hard interrupt handler, i.e., when it's operating in non-polling
1894  *	mode.  Creates small packet batches and sends them through the offload
1895  *	receive handler.  Batches need to be of modest size as we do prefetches
1896  *	on the packets in each.
1897  */
1898 static int ofld_poll(struct napi_struct *napi, int budget)
1899 {
1900 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1901 	struct sge_rspq *q = &qs->rspq;
1902 	struct adapter *adapter = qs->adap;
1903 	int work_done = 0;
1904 
1905 	while (work_done < budget) {
1906 		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1907 		struct sk_buff_head queue;
1908 		int ngathered;
1909 
1910 		spin_lock_irq(&q->lock);
1911 		__skb_queue_head_init(&queue);
1912 		skb_queue_splice_init(&q->rx_queue, &queue);
1913 		if (skb_queue_empty(&queue)) {
1914 			napi_complete_done(napi, work_done);
1915 			spin_unlock_irq(&q->lock);
1916 			return work_done;
1917 		}
1918 		spin_unlock_irq(&q->lock);
1919 
1920 		ngathered = 0;
1921 		skb_queue_walk_safe(&queue, skb, tmp) {
1922 			if (work_done >= budget)
1923 				break;
1924 			work_done++;
1925 
1926 			__skb_unlink(skb, &queue);
1927 			prefetch(skb->data);
1928 			skbs[ngathered] = skb;
1929 			if (++ngathered == RX_BUNDLE_SIZE) {
1930 				q->offload_bundles++;
1931 				adapter->tdev.recv(&adapter->tdev, skbs,
1932 						   ngathered);
1933 				ngathered = 0;
1934 			}
1935 		}
1936 		if (!skb_queue_empty(&queue)) {
1937 			/* splice remaining packets back onto Rx queue */
1938 			spin_lock_irq(&q->lock);
1939 			skb_queue_splice(&queue, &q->rx_queue);
1940 			spin_unlock_irq(&q->lock);
1941 		}
1942 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1943 	}
1944 
1945 	return work_done;
1946 }
1947 
1948 /**
1949  *	rx_offload - process a received offload packet
1950  *	@tdev: the offload device receiving the packet
1951  *	@rq: the response queue that received the packet
1952  *	@skb: the packet
1953  *	@rx_gather: a gather list of packets if we are building a bundle
1954  *	@gather_idx: index of the next available slot in the bundle
1955  *
1956  *	Process an ingress offload pakcet and add it to the offload ingress
1957  *	queue. 	Returns the index of the next available slot in the bundle.
1958  */
1959 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1960 			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1961 			     unsigned int gather_idx)
1962 {
1963 	skb_reset_mac_header(skb);
1964 	skb_reset_network_header(skb);
1965 	skb_reset_transport_header(skb);
1966 
1967 	if (rq->polling) {
1968 		rx_gather[gather_idx++] = skb;
1969 		if (gather_idx == RX_BUNDLE_SIZE) {
1970 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1971 			gather_idx = 0;
1972 			rq->offload_bundles++;
1973 		}
1974 	} else
1975 		offload_enqueue(rq, skb);
1976 
1977 	return gather_idx;
1978 }
1979 
1980 /**
1981  *	restart_tx - check whether to restart suspended Tx queues
1982  *	@qs: the queue set to resume
1983  *
1984  *	Restarts suspended Tx queues of an SGE queue set if they have enough
1985  *	free resources to resume operation.
1986  */
1987 static void restart_tx(struct sge_qset *qs)
1988 {
1989 	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1990 	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1991 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1992 		qs->txq[TXQ_ETH].restarts++;
1993 		if (netif_running(qs->netdev))
1994 			netif_tx_wake_queue(qs->tx_q);
1995 	}
1996 
1997 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1998 	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1999 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
2000 		qs->txq[TXQ_OFLD].restarts++;
2001 		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
2002 	}
2003 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2004 	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2005 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2006 		qs->txq[TXQ_CTRL].restarts++;
2007 		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
2008 	}
2009 }
2010 
2011 /**
2012  *	cxgb3_arp_process - process an ARP request probing a private IP address
2013  *	@pi: the port info
2014  *	@skb: the skbuff containing the ARP request
2015  *
2016  *	Check if the ARP request is probing the private IP address
2017  *	dedicated to iSCSI, generate an ARP reply if so.
2018  */
2019 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2020 {
2021 	struct net_device *dev = skb->dev;
2022 	struct arphdr *arp;
2023 	unsigned char *arp_ptr;
2024 	unsigned char *sha;
2025 	__be32 sip, tip;
2026 
2027 	if (!dev)
2028 		return;
2029 
2030 	skb_reset_network_header(skb);
2031 	arp = arp_hdr(skb);
2032 
2033 	if (arp->ar_op != htons(ARPOP_REQUEST))
2034 		return;
2035 
2036 	arp_ptr = (unsigned char *)(arp + 1);
2037 	sha = arp_ptr;
2038 	arp_ptr += dev->addr_len;
2039 	memcpy(&sip, arp_ptr, sizeof(sip));
2040 	arp_ptr += sizeof(sip);
2041 	arp_ptr += dev->addr_len;
2042 	memcpy(&tip, arp_ptr, sizeof(tip));
2043 
2044 	if (tip != pi->iscsi_ipv4addr)
2045 		return;
2046 
2047 	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2048 		 pi->iscsic.mac_addr, sha);
2049 
2050 }
2051 
2052 static inline int is_arp(struct sk_buff *skb)
2053 {
2054 	return skb->protocol == htons(ETH_P_ARP);
2055 }
2056 
2057 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2058 					struct sk_buff *skb)
2059 {
2060 	if (is_arp(skb)) {
2061 		cxgb3_arp_process(pi, skb);
2062 		return;
2063 	}
2064 
2065 	if (pi->iscsic.recv)
2066 		pi->iscsic.recv(pi, skb);
2067 
2068 }
2069 
2070 /**
2071  *	rx_eth - process an ingress ethernet packet
2072  *	@adap: the adapter
2073  *	@rq: the response queue that received the packet
2074  *	@skb: the packet
2075  *	@pad: padding
2076  *	@lro: large receive offload
2077  *
2078  *	Process an ingress ethernet pakcet and deliver it to the stack.
2079  *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2080  *	if it was immediate data in a response.
2081  */
2082 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2083 		   struct sk_buff *skb, int pad, int lro)
2084 {
2085 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2086 	struct sge_qset *qs = rspq_to_qset(rq);
2087 	struct port_info *pi;
2088 
2089 	skb_pull(skb, sizeof(*p) + pad);
2090 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2091 	pi = netdev_priv(skb->dev);
2092 	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2093 	    p->csum == htons(0xffff) && !p->fragment) {
2094 		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2095 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2096 	} else
2097 		skb_checksum_none_assert(skb);
2098 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2099 
2100 	if (p->vlan_valid) {
2101 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2102 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2103 	}
2104 	if (rq->polling) {
2105 		if (lro)
2106 			napi_gro_receive(&qs->napi, skb);
2107 		else {
2108 			if (unlikely(pi->iscsic.flags))
2109 				cxgb3_process_iscsi_prov_pack(pi, skb);
2110 			netif_receive_skb(skb);
2111 		}
2112 	} else
2113 		netif_rx(skb);
2114 }
2115 
2116 static inline int is_eth_tcp(u32 rss)
2117 {
2118 	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2119 }
2120 
2121 /**
2122  *	lro_add_page - add a page chunk to an LRO session
2123  *	@adap: the adapter
2124  *	@qs: the associated queue set
2125  *	@fl: the free list containing the page chunk to add
2126  *	@len: packet length
2127  *	@complete: Indicates the last fragment of a frame
2128  *
2129  *	Add a received packet contained in a page chunk to an existing LRO
2130  *	session.
2131  */
2132 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2133 			 struct sge_fl *fl, int len, int complete)
2134 {
2135 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2136 	struct port_info *pi = netdev_priv(qs->netdev);
2137 	struct sk_buff *skb = NULL;
2138 	struct cpl_rx_pkt *cpl;
2139 	skb_frag_t *rx_frag;
2140 	int nr_frags;
2141 	int offset = 0;
2142 
2143 	if (!qs->nomem) {
2144 		skb = napi_get_frags(&qs->napi);
2145 		qs->nomem = !skb;
2146 	}
2147 
2148 	fl->credits--;
2149 
2150 	pci_dma_sync_single_for_cpu(adap->pdev,
2151 				    dma_unmap_addr(sd, dma_addr),
2152 				    fl->buf_size - SGE_PG_RSVD,
2153 				    PCI_DMA_FROMDEVICE);
2154 
2155 	(*sd->pg_chunk.p_cnt)--;
2156 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2157 		pci_unmap_page(adap->pdev,
2158 			       sd->pg_chunk.mapping,
2159 			       fl->alloc_size,
2160 			       PCI_DMA_FROMDEVICE);
2161 
2162 	if (!skb) {
2163 		put_page(sd->pg_chunk.page);
2164 		if (complete)
2165 			qs->nomem = 0;
2166 		return;
2167 	}
2168 
2169 	rx_frag = skb_shinfo(skb)->frags;
2170 	nr_frags = skb_shinfo(skb)->nr_frags;
2171 
2172 	if (!nr_frags) {
2173 		offset = 2 + sizeof(struct cpl_rx_pkt);
2174 		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2175 
2176 		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2177 		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2178 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2179 			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2180 		} else
2181 			skb->ip_summed = CHECKSUM_NONE;
2182 	} else
2183 		cpl = qs->lro_va;
2184 
2185 	len -= offset;
2186 
2187 	rx_frag += nr_frags;
2188 	__skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2189 	skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset);
2190 	skb_frag_size_set(rx_frag, len);
2191 
2192 	skb->len += len;
2193 	skb->data_len += len;
2194 	skb->truesize += len;
2195 	skb_shinfo(skb)->nr_frags++;
2196 
2197 	if (!complete)
2198 		return;
2199 
2200 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2201 
2202 	if (cpl->vlan_valid) {
2203 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2204 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2205 	}
2206 	napi_gro_frags(&qs->napi);
2207 }
2208 
2209 /**
2210  *	handle_rsp_cntrl_info - handles control information in a response
2211  *	@qs: the queue set corresponding to the response
2212  *	@flags: the response control flags
2213  *
2214  *	Handles the control information of an SGE response, such as GTS
2215  *	indications and completion credits for the queue set's Tx queues.
2216  *	HW coalesces credits, we don't do any extra SW coalescing.
2217  */
2218 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2219 {
2220 	unsigned int credits;
2221 
2222 #if USE_GTS
2223 	if (flags & F_RSPD_TXQ0_GTS)
2224 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2225 #endif
2226 
2227 	credits = G_RSPD_TXQ0_CR(flags);
2228 	if (credits)
2229 		qs->txq[TXQ_ETH].processed += credits;
2230 
2231 	credits = G_RSPD_TXQ2_CR(flags);
2232 	if (credits)
2233 		qs->txq[TXQ_CTRL].processed += credits;
2234 
2235 # if USE_GTS
2236 	if (flags & F_RSPD_TXQ1_GTS)
2237 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2238 # endif
2239 	credits = G_RSPD_TXQ1_CR(flags);
2240 	if (credits)
2241 		qs->txq[TXQ_OFLD].processed += credits;
2242 }
2243 
2244 /**
2245  *	check_ring_db - check if we need to ring any doorbells
2246  *	@adap: the adapter
2247  *	@qs: the queue set whose Tx queues are to be examined
2248  *	@sleeping: indicates which Tx queue sent GTS
2249  *
2250  *	Checks if some of a queue set's Tx queues need to ring their doorbells
2251  *	to resume transmission after idling while they still have unprocessed
2252  *	descriptors.
2253  */
2254 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2255 			  unsigned int sleeping)
2256 {
2257 	if (sleeping & F_RSPD_TXQ0_GTS) {
2258 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2259 
2260 		if (txq->cleaned + txq->in_use != txq->processed &&
2261 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2262 			set_bit(TXQ_RUNNING, &txq->flags);
2263 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2264 				     V_EGRCNTX(txq->cntxt_id));
2265 		}
2266 	}
2267 
2268 	if (sleeping & F_RSPD_TXQ1_GTS) {
2269 		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2270 
2271 		if (txq->cleaned + txq->in_use != txq->processed &&
2272 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2273 			set_bit(TXQ_RUNNING, &txq->flags);
2274 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2275 				     V_EGRCNTX(txq->cntxt_id));
2276 		}
2277 	}
2278 }
2279 
2280 /**
2281  *	is_new_response - check if a response is newly written
2282  *	@r: the response descriptor
2283  *	@q: the response queue
2284  *
2285  *	Returns true if a response descriptor contains a yet unprocessed
2286  *	response.
2287  */
2288 static inline int is_new_response(const struct rsp_desc *r,
2289 				  const struct sge_rspq *q)
2290 {
2291 	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2292 }
2293 
2294 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2295 {
2296 	q->pg_skb = NULL;
2297 	q->rx_recycle_buf = 0;
2298 }
2299 
2300 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2301 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2302 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2303 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2304 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2305 
2306 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2307 #define NOMEM_INTR_DELAY 2500
2308 
2309 /**
2310  *	process_responses - process responses from an SGE response queue
2311  *	@adap: the adapter
2312  *	@qs: the queue set to which the response queue belongs
2313  *	@budget: how many responses can be processed in this round
2314  *
2315  *	Process responses from an SGE response queue up to the supplied budget.
2316  *	Responses include received packets as well as credits and other events
2317  *	for the queues that belong to the response queue's queue set.
2318  *	A negative budget is effectively unlimited.
2319  *
2320  *	Additionally choose the interrupt holdoff time for the next interrupt
2321  *	on this queue.  If the system is under memory shortage use a fairly
2322  *	long delay to help recovery.
2323  */
2324 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2325 			     int budget)
2326 {
2327 	struct sge_rspq *q = &qs->rspq;
2328 	struct rsp_desc *r = &q->desc[q->cidx];
2329 	int budget_left = budget;
2330 	unsigned int sleeping = 0;
2331 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2332 	int ngathered = 0;
2333 
2334 	q->next_holdoff = q->holdoff_tmr;
2335 
2336 	while (likely(budget_left && is_new_response(r, q))) {
2337 		int packet_complete, eth, ethpad = 2;
2338 		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2339 		struct sk_buff *skb = NULL;
2340 		u32 len, flags;
2341 		__be32 rss_hi, rss_lo;
2342 
2343 		dma_rmb();
2344 		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2345 		rss_hi = *(const __be32 *)r;
2346 		rss_lo = r->rss_hdr.rss_hash_val;
2347 		flags = ntohl(r->flags);
2348 
2349 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2350 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2351 			if (!skb)
2352 				goto no_mem;
2353 
2354 			__skb_put_data(skb, r, AN_PKT_SIZE);
2355 			skb->data[0] = CPL_ASYNC_NOTIF;
2356 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2357 			q->async_notif++;
2358 		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2359 			skb = get_imm_packet(r);
2360 			if (unlikely(!skb)) {
2361 no_mem:
2362 				q->next_holdoff = NOMEM_INTR_DELAY;
2363 				q->nomem++;
2364 				/* consume one credit since we tried */
2365 				budget_left--;
2366 				break;
2367 			}
2368 			q->imm_data++;
2369 			ethpad = 0;
2370 		} else if ((len = ntohl(r->len_cq)) != 0) {
2371 			struct sge_fl *fl;
2372 
2373 			lro &= eth && is_eth_tcp(rss_hi);
2374 
2375 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2376 			if (fl->use_pages) {
2377 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2378 
2379 				net_prefetch(addr);
2380 				__refill_fl(adap, fl);
2381 				if (lro > 0) {
2382 					lro_add_page(adap, qs, fl,
2383 						     G_RSPD_LEN(len),
2384 						     flags & F_RSPD_EOP);
2385 					goto next_fl;
2386 				}
2387 
2388 				skb = get_packet_pg(adap, fl, q,
2389 						    G_RSPD_LEN(len),
2390 						    eth ?
2391 						    SGE_RX_DROP_THRES : 0);
2392 				q->pg_skb = skb;
2393 			} else
2394 				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2395 						 eth ? SGE_RX_DROP_THRES : 0);
2396 			if (unlikely(!skb)) {
2397 				if (!eth)
2398 					goto no_mem;
2399 				q->rx_drops++;
2400 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2401 				__skb_pull(skb, 2);
2402 next_fl:
2403 			if (++fl->cidx == fl->size)
2404 				fl->cidx = 0;
2405 		} else
2406 			q->pure_rsps++;
2407 
2408 		if (flags & RSPD_CTRL_MASK) {
2409 			sleeping |= flags & RSPD_GTS_MASK;
2410 			handle_rsp_cntrl_info(qs, flags);
2411 		}
2412 
2413 		r++;
2414 		if (unlikely(++q->cidx == q->size)) {
2415 			q->cidx = 0;
2416 			q->gen ^= 1;
2417 			r = q->desc;
2418 		}
2419 		prefetch(r);
2420 
2421 		if (++q->credits >= (q->size / 4)) {
2422 			refill_rspq(adap, q, q->credits);
2423 			q->credits = 0;
2424 		}
2425 
2426 		packet_complete = flags &
2427 				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2428 				   F_RSPD_ASYNC_NOTIF);
2429 
2430 		if (skb != NULL && packet_complete) {
2431 			if (eth)
2432 				rx_eth(adap, q, skb, ethpad, lro);
2433 			else {
2434 				q->offload_pkts++;
2435 				/* Preserve the RSS info in csum & priority */
2436 				skb->csum = rss_hi;
2437 				skb->priority = rss_lo;
2438 				ngathered = rx_offload(&adap->tdev, q, skb,
2439 						       offload_skbs,
2440 						       ngathered);
2441 			}
2442 
2443 			if (flags & F_RSPD_EOP)
2444 				clear_rspq_bufstate(q);
2445 		}
2446 		--budget_left;
2447 	}
2448 
2449 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2450 
2451 	if (sleeping)
2452 		check_ring_db(adap, qs, sleeping);
2453 
2454 	smp_mb();		/* commit Tx queue .processed updates */
2455 	if (unlikely(qs->txq_stopped != 0))
2456 		restart_tx(qs);
2457 
2458 	budget -= budget_left;
2459 	return budget;
2460 }
2461 
2462 static inline int is_pure_response(const struct rsp_desc *r)
2463 {
2464 	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2465 
2466 	return (n | r->len_cq) == 0;
2467 }
2468 
2469 /**
2470  *	napi_rx_handler - the NAPI handler for Rx processing
2471  *	@napi: the napi instance
2472  *	@budget: how many packets we can process in this round
2473  *
2474  *	Handler for new data events when using NAPI.
2475  */
2476 static int napi_rx_handler(struct napi_struct *napi, int budget)
2477 {
2478 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2479 	struct adapter *adap = qs->adap;
2480 	int work_done = process_responses(adap, qs, budget);
2481 
2482 	if (likely(work_done < budget)) {
2483 		napi_complete_done(napi, work_done);
2484 
2485 		/*
2486 		 * Because we don't atomically flush the following
2487 		 * write it is possible that in very rare cases it can
2488 		 * reach the device in a way that races with a new
2489 		 * response being written plus an error interrupt
2490 		 * causing the NAPI interrupt handler below to return
2491 		 * unhandled status to the OS.  To protect against
2492 		 * this would require flushing the write and doing
2493 		 * both the write and the flush with interrupts off.
2494 		 * Way too expensive and unjustifiable given the
2495 		 * rarity of the race.
2496 		 *
2497 		 * The race cannot happen at all with MSI-X.
2498 		 */
2499 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2500 			     V_NEWTIMER(qs->rspq.next_holdoff) |
2501 			     V_NEWINDEX(qs->rspq.cidx));
2502 	}
2503 	return work_done;
2504 }
2505 
2506 /*
2507  * Returns true if the device is already scheduled for polling.
2508  */
2509 static inline int napi_is_scheduled(struct napi_struct *napi)
2510 {
2511 	return test_bit(NAPI_STATE_SCHED, &napi->state);
2512 }
2513 
2514 /**
2515  *	process_pure_responses - process pure responses from a response queue
2516  *	@adap: the adapter
2517  *	@qs: the queue set owning the response queue
2518  *	@r: the first pure response to process
2519  *
2520  *	A simpler version of process_responses() that handles only pure (i.e.,
2521  *	non data-carrying) responses.  Such respones are too light-weight to
2522  *	justify calling a softirq under NAPI, so we handle them specially in
2523  *	the interrupt handler.  The function is called with a pointer to a
2524  *	response, which the caller must ensure is a valid pure response.
2525  *
2526  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2527  */
2528 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2529 				  struct rsp_desc *r)
2530 {
2531 	struct sge_rspq *q = &qs->rspq;
2532 	unsigned int sleeping = 0;
2533 
2534 	do {
2535 		u32 flags = ntohl(r->flags);
2536 
2537 		r++;
2538 		if (unlikely(++q->cidx == q->size)) {
2539 			q->cidx = 0;
2540 			q->gen ^= 1;
2541 			r = q->desc;
2542 		}
2543 		prefetch(r);
2544 
2545 		if (flags & RSPD_CTRL_MASK) {
2546 			sleeping |= flags & RSPD_GTS_MASK;
2547 			handle_rsp_cntrl_info(qs, flags);
2548 		}
2549 
2550 		q->pure_rsps++;
2551 		if (++q->credits >= (q->size / 4)) {
2552 			refill_rspq(adap, q, q->credits);
2553 			q->credits = 0;
2554 		}
2555 		if (!is_new_response(r, q))
2556 			break;
2557 		dma_rmb();
2558 	} while (is_pure_response(r));
2559 
2560 	if (sleeping)
2561 		check_ring_db(adap, qs, sleeping);
2562 
2563 	smp_mb();		/* commit Tx queue .processed updates */
2564 	if (unlikely(qs->txq_stopped != 0))
2565 		restart_tx(qs);
2566 
2567 	return is_new_response(r, q);
2568 }
2569 
2570 /**
2571  *	handle_responses - decide what to do with new responses in NAPI mode
2572  *	@adap: the adapter
2573  *	@q: the response queue
2574  *
2575  *	This is used by the NAPI interrupt handlers to decide what to do with
2576  *	new SGE responses.  If there are no new responses it returns -1.  If
2577  *	there are new responses and they are pure (i.e., non-data carrying)
2578  *	it handles them straight in hard interrupt context as they are very
2579  *	cheap and don't deliver any packets.  Finally, if there are any data
2580  *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2581  *	schedules NAPI, 0 if all new responses were pure.
2582  *
2583  *	The caller must ascertain NAPI is not already running.
2584  */
2585 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2586 {
2587 	struct sge_qset *qs = rspq_to_qset(q);
2588 	struct rsp_desc *r = &q->desc[q->cidx];
2589 
2590 	if (!is_new_response(r, q))
2591 		return -1;
2592 	dma_rmb();
2593 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2594 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2595 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2596 		return 0;
2597 	}
2598 	napi_schedule(&qs->napi);
2599 	return 1;
2600 }
2601 
2602 /*
2603  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2604  * (i.e., response queue serviced in hard interrupt).
2605  */
2606 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2607 {
2608 	struct sge_qset *qs = cookie;
2609 	struct adapter *adap = qs->adap;
2610 	struct sge_rspq *q = &qs->rspq;
2611 
2612 	spin_lock(&q->lock);
2613 	if (process_responses(adap, qs, -1) == 0)
2614 		q->unhandled_irqs++;
2615 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2616 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2617 	spin_unlock(&q->lock);
2618 	return IRQ_HANDLED;
2619 }
2620 
2621 /*
2622  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2623  * (i.e., response queue serviced by NAPI polling).
2624  */
2625 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2626 {
2627 	struct sge_qset *qs = cookie;
2628 	struct sge_rspq *q = &qs->rspq;
2629 
2630 	spin_lock(&q->lock);
2631 
2632 	if (handle_responses(qs->adap, q) < 0)
2633 		q->unhandled_irqs++;
2634 	spin_unlock(&q->lock);
2635 	return IRQ_HANDLED;
2636 }
2637 
2638 /*
2639  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2640  * SGE response queues as well as error and other async events as they all use
2641  * the same MSI vector.  We use one SGE response queue per port in this mode
2642  * and protect all response queues with queue 0's lock.
2643  */
2644 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2645 {
2646 	int new_packets = 0;
2647 	struct adapter *adap = cookie;
2648 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2649 
2650 	spin_lock(&q->lock);
2651 
2652 	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2653 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2654 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2655 		new_packets = 1;
2656 	}
2657 
2658 	if (adap->params.nports == 2 &&
2659 	    process_responses(adap, &adap->sge.qs[1], -1)) {
2660 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2661 
2662 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2663 			     V_NEWTIMER(q1->next_holdoff) |
2664 			     V_NEWINDEX(q1->cidx));
2665 		new_packets = 1;
2666 	}
2667 
2668 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2669 		q->unhandled_irqs++;
2670 
2671 	spin_unlock(&q->lock);
2672 	return IRQ_HANDLED;
2673 }
2674 
2675 static int rspq_check_napi(struct sge_qset *qs)
2676 {
2677 	struct sge_rspq *q = &qs->rspq;
2678 
2679 	if (!napi_is_scheduled(&qs->napi) &&
2680 	    is_new_response(&q->desc[q->cidx], q)) {
2681 		napi_schedule(&qs->napi);
2682 		return 1;
2683 	}
2684 	return 0;
2685 }
2686 
2687 /*
2688  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2689  * by NAPI polling).  Handles data events from SGE response queues as well as
2690  * error and other async events as they all use the same MSI vector.  We use
2691  * one SGE response queue per port in this mode and protect all response
2692  * queues with queue 0's lock.
2693  */
2694 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2695 {
2696 	int new_packets;
2697 	struct adapter *adap = cookie;
2698 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2699 
2700 	spin_lock(&q->lock);
2701 
2702 	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2703 	if (adap->params.nports == 2)
2704 		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2705 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2706 		q->unhandled_irqs++;
2707 
2708 	spin_unlock(&q->lock);
2709 	return IRQ_HANDLED;
2710 }
2711 
2712 /*
2713  * A helper function that processes responses and issues GTS.
2714  */
2715 static inline int process_responses_gts(struct adapter *adap,
2716 					struct sge_rspq *rq)
2717 {
2718 	int work;
2719 
2720 	work = process_responses(adap, rspq_to_qset(rq), -1);
2721 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2722 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2723 	return work;
2724 }
2725 
2726 /*
2727  * The legacy INTx interrupt handler.  This needs to handle data events from
2728  * SGE response queues as well as error and other async events as they all use
2729  * the same interrupt pin.  We use one SGE response queue per port in this mode
2730  * and protect all response queues with queue 0's lock.
2731  */
2732 static irqreturn_t t3_intr(int irq, void *cookie)
2733 {
2734 	int work_done, w0, w1;
2735 	struct adapter *adap = cookie;
2736 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2737 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2738 
2739 	spin_lock(&q0->lock);
2740 
2741 	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2742 	w1 = adap->params.nports == 2 &&
2743 	    is_new_response(&q1->desc[q1->cidx], q1);
2744 
2745 	if (likely(w0 | w1)) {
2746 		t3_write_reg(adap, A_PL_CLI, 0);
2747 		t3_read_reg(adap, A_PL_CLI);	/* flush */
2748 
2749 		if (likely(w0))
2750 			process_responses_gts(adap, q0);
2751 
2752 		if (w1)
2753 			process_responses_gts(adap, q1);
2754 
2755 		work_done = w0 | w1;
2756 	} else
2757 		work_done = t3_slow_intr_handler(adap);
2758 
2759 	spin_unlock(&q0->lock);
2760 	return IRQ_RETVAL(work_done != 0);
2761 }
2762 
2763 /*
2764  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2765  * Handles data events from SGE response queues as well as error and other
2766  * async events as they all use the same interrupt pin.  We use one SGE
2767  * response queue per port in this mode and protect all response queues with
2768  * queue 0's lock.
2769  */
2770 static irqreturn_t t3b_intr(int irq, void *cookie)
2771 {
2772 	u32 map;
2773 	struct adapter *adap = cookie;
2774 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2775 
2776 	t3_write_reg(adap, A_PL_CLI, 0);
2777 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2778 
2779 	if (unlikely(!map))	/* shared interrupt, most likely */
2780 		return IRQ_NONE;
2781 
2782 	spin_lock(&q0->lock);
2783 
2784 	if (unlikely(map & F_ERRINTR))
2785 		t3_slow_intr_handler(adap);
2786 
2787 	if (likely(map & 1))
2788 		process_responses_gts(adap, q0);
2789 
2790 	if (map & 2)
2791 		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2792 
2793 	spin_unlock(&q0->lock);
2794 	return IRQ_HANDLED;
2795 }
2796 
2797 /*
2798  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2799  * Handles data events from SGE response queues as well as error and other
2800  * async events as they all use the same interrupt pin.  We use one SGE
2801  * response queue per port in this mode and protect all response queues with
2802  * queue 0's lock.
2803  */
2804 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2805 {
2806 	u32 map;
2807 	struct adapter *adap = cookie;
2808 	struct sge_qset *qs0 = &adap->sge.qs[0];
2809 	struct sge_rspq *q0 = &qs0->rspq;
2810 
2811 	t3_write_reg(adap, A_PL_CLI, 0);
2812 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2813 
2814 	if (unlikely(!map))	/* shared interrupt, most likely */
2815 		return IRQ_NONE;
2816 
2817 	spin_lock(&q0->lock);
2818 
2819 	if (unlikely(map & F_ERRINTR))
2820 		t3_slow_intr_handler(adap);
2821 
2822 	if (likely(map & 1))
2823 		napi_schedule(&qs0->napi);
2824 
2825 	if (map & 2)
2826 		napi_schedule(&adap->sge.qs[1].napi);
2827 
2828 	spin_unlock(&q0->lock);
2829 	return IRQ_HANDLED;
2830 }
2831 
2832 /**
2833  *	t3_intr_handler - select the top-level interrupt handler
2834  *	@adap: the adapter
2835  *	@polling: whether using NAPI to service response queues
2836  *
2837  *	Selects the top-level interrupt handler based on the type of interrupts
2838  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2839  *	response queues.
2840  */
2841 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2842 {
2843 	if (adap->flags & USING_MSIX)
2844 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2845 	if (adap->flags & USING_MSI)
2846 		return polling ? t3_intr_msi_napi : t3_intr_msi;
2847 	if (adap->params.rev > 0)
2848 		return polling ? t3b_intr_napi : t3b_intr;
2849 	return t3_intr;
2850 }
2851 
2852 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2853 		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2854 		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2855 		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2856 		    F_HIRCQPARITYERROR)
2857 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2858 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2859 		      F_RSPQDISABLED)
2860 
2861 /**
2862  *	t3_sge_err_intr_handler - SGE async event interrupt handler
2863  *	@adapter: the adapter
2864  *
2865  *	Interrupt handler for SGE asynchronous (non-data) events.
2866  */
2867 void t3_sge_err_intr_handler(struct adapter *adapter)
2868 {
2869 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2870 				 ~F_FLEMPTY;
2871 
2872 	if (status & SGE_PARERR)
2873 		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2874 			 status & SGE_PARERR);
2875 	if (status & SGE_FRAMINGERR)
2876 		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2877 			 status & SGE_FRAMINGERR);
2878 
2879 	if (status & F_RSPQCREDITOVERFOW)
2880 		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2881 
2882 	if (status & F_RSPQDISABLED) {
2883 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2884 
2885 		CH_ALERT(adapter,
2886 			 "packet delivered to disabled response queue "
2887 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2888 	}
2889 
2890 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2891 		queue_work(cxgb3_wq, &adapter->db_drop_task);
2892 
2893 	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2894 		queue_work(cxgb3_wq, &adapter->db_full_task);
2895 
2896 	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2897 		queue_work(cxgb3_wq, &adapter->db_empty_task);
2898 
2899 	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2900 	if (status &  SGE_FATALERR)
2901 		t3_fatal_err(adapter);
2902 }
2903 
2904 /**
2905  *	sge_timer_tx - perform periodic maintenance of an SGE qset
2906  *	@t: a timer list containing the SGE queue set to maintain
2907  *
2908  *	Runs periodically from a timer to perform maintenance of an SGE queue
2909  *	set.  It performs two tasks:
2910  *
2911  *	Cleans up any completed Tx descriptors that may still be pending.
2912  *	Normal descriptor cleanup happens when new packets are added to a Tx
2913  *	queue so this timer is relatively infrequent and does any cleanup only
2914  *	if the Tx queue has not seen any new packets in a while.  We make a
2915  *	best effort attempt to reclaim descriptors, in that we don't wait
2916  *	around if we cannot get a queue's lock (which most likely is because
2917  *	someone else is queueing new packets and so will also handle the clean
2918  *	up).  Since control queues use immediate data exclusively we don't
2919  *	bother cleaning them up here.
2920  *
2921  */
2922 static void sge_timer_tx(struct timer_list *t)
2923 {
2924 	struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2925 	struct port_info *pi = netdev_priv(qs->netdev);
2926 	struct adapter *adap = pi->adapter;
2927 	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2928 	unsigned long next_period;
2929 
2930 	if (__netif_tx_trylock(qs->tx_q)) {
2931                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2932                                                      TX_RECLAIM_TIMER_CHUNK);
2933 		__netif_tx_unlock(qs->tx_q);
2934 	}
2935 
2936 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2937 		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2938 						     TX_RECLAIM_TIMER_CHUNK);
2939 		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2940 	}
2941 
2942 	next_period = TX_RECLAIM_PERIOD >>
2943                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2944                       TX_RECLAIM_TIMER_CHUNK);
2945 	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2946 }
2947 
2948 /**
2949  *	sge_timer_rx - perform periodic maintenance of an SGE qset
2950  *	@t: the timer list containing the SGE queue set to maintain
2951  *
2952  *	a) Replenishes Rx queues that have run out due to memory shortage.
2953  *	Normally new Rx buffers are added when existing ones are consumed but
2954  *	when out of memory a queue can become empty.  We try to add only a few
2955  *	buffers here, the queue will be replenished fully as these new buffers
2956  *	are used up if memory shortage has subsided.
2957  *
2958  *	b) Return coalesced response queue credits in case a response queue is
2959  *	starved.
2960  *
2961  */
2962 static void sge_timer_rx(struct timer_list *t)
2963 {
2964 	spinlock_t *lock;
2965 	struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2966 	struct port_info *pi = netdev_priv(qs->netdev);
2967 	struct adapter *adap = pi->adapter;
2968 	u32 status;
2969 
2970 	lock = adap->params.rev > 0 ?
2971 	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2972 
2973 	if (!spin_trylock_irq(lock))
2974 		goto out;
2975 
2976 	if (napi_is_scheduled(&qs->napi))
2977 		goto unlock;
2978 
2979 	if (adap->params.rev < 4) {
2980 		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2981 
2982 		if (status & (1 << qs->rspq.cntxt_id)) {
2983 			qs->rspq.starved++;
2984 			if (qs->rspq.credits) {
2985 				qs->rspq.credits--;
2986 				refill_rspq(adap, &qs->rspq, 1);
2987 				qs->rspq.restarted++;
2988 				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2989 					     1 << qs->rspq.cntxt_id);
2990 			}
2991 		}
2992 	}
2993 
2994 	if (qs->fl[0].credits < qs->fl[0].size)
2995 		__refill_fl(adap, &qs->fl[0]);
2996 	if (qs->fl[1].credits < qs->fl[1].size)
2997 		__refill_fl(adap, &qs->fl[1]);
2998 
2999 unlock:
3000 	spin_unlock_irq(lock);
3001 out:
3002 	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3003 }
3004 
3005 /**
3006  *	t3_update_qset_coalesce - update coalescing settings for a queue set
3007  *	@qs: the SGE queue set
3008  *	@p: new queue set parameters
3009  *
3010  *	Update the coalescing settings for an SGE queue set.  Nothing is done
3011  *	if the queue set is not initialized yet.
3012  */
3013 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3014 {
3015 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3016 	qs->rspq.polling = p->polling;
3017 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3018 }
3019 
3020 /**
3021  *	t3_sge_alloc_qset - initialize an SGE queue set
3022  *	@adapter: the adapter
3023  *	@id: the queue set id
3024  *	@nports: how many Ethernet ports will be using this queue set
3025  *	@irq_vec_idx: the IRQ vector index for response queue interrupts
3026  *	@p: configuration parameters for this queue set
3027  *	@ntxq: number of Tx queues for the queue set
3028  *	@dev: net device associated with this queue set
3029  *	@netdevq: net device TX queue associated with this queue set
3030  *
3031  *	Allocate resources and initialize an SGE queue set.  A queue set
3032  *	comprises a response queue, two Rx free-buffer queues, and up to 3
3033  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
3034  *	queue, offload queue, and control queue.
3035  */
3036 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3037 		      int irq_vec_idx, const struct qset_params *p,
3038 		      int ntxq, struct net_device *dev,
3039 		      struct netdev_queue *netdevq)
3040 {
3041 	int i, avail, ret = -ENOMEM;
3042 	struct sge_qset *q = &adapter->sge.qs[id];
3043 
3044 	init_qset_cntxt(q, id);
3045 	timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3046 	timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3047 
3048 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3049 				   sizeof(struct rx_desc),
3050 				   sizeof(struct rx_sw_desc),
3051 				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3052 	if (!q->fl[0].desc)
3053 		goto err;
3054 
3055 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3056 				   sizeof(struct rx_desc),
3057 				   sizeof(struct rx_sw_desc),
3058 				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3059 	if (!q->fl[1].desc)
3060 		goto err;
3061 
3062 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3063 				  sizeof(struct rsp_desc), 0,
3064 				  &q->rspq.phys_addr, NULL);
3065 	if (!q->rspq.desc)
3066 		goto err;
3067 
3068 	for (i = 0; i < ntxq; ++i) {
3069 		/*
3070 		 * The control queue always uses immediate data so does not
3071 		 * need to keep track of any sk_buffs.
3072 		 */
3073 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3074 
3075 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3076 					    sizeof(struct tx_desc), sz,
3077 					    &q->txq[i].phys_addr,
3078 					    &q->txq[i].sdesc);
3079 		if (!q->txq[i].desc)
3080 			goto err;
3081 
3082 		q->txq[i].gen = 1;
3083 		q->txq[i].size = p->txq_size[i];
3084 		spin_lock_init(&q->txq[i].lock);
3085 		skb_queue_head_init(&q->txq[i].sendq);
3086 	}
3087 
3088 	tasklet_setup(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq);
3089 	tasklet_setup(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq);
3090 
3091 	q->fl[0].gen = q->fl[1].gen = 1;
3092 	q->fl[0].size = p->fl_size;
3093 	q->fl[1].size = p->jumbo_size;
3094 
3095 	q->rspq.gen = 1;
3096 	q->rspq.size = p->rspq_size;
3097 	spin_lock_init(&q->rspq.lock);
3098 	skb_queue_head_init(&q->rspq.rx_queue);
3099 
3100 	q->txq[TXQ_ETH].stop_thres = nports *
3101 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3102 
3103 #if FL0_PG_CHUNK_SIZE > 0
3104 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3105 #else
3106 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3107 #endif
3108 #if FL1_PG_CHUNK_SIZE > 0
3109 	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3110 #else
3111 	q->fl[1].buf_size = is_offload(adapter) ?
3112 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3113 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3114 #endif
3115 
3116 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3117 	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3118 	q->fl[0].order = FL0_PG_ORDER;
3119 	q->fl[1].order = FL1_PG_ORDER;
3120 	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3121 	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3122 
3123 	spin_lock_irq(&adapter->sge.reg_lock);
3124 
3125 	/* FL threshold comparison uses < */
3126 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3127 				   q->rspq.phys_addr, q->rspq.size,
3128 				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3129 	if (ret)
3130 		goto err_unlock;
3131 
3132 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3133 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3134 					  q->fl[i].phys_addr, q->fl[i].size,
3135 					  q->fl[i].buf_size - SGE_PG_RSVD,
3136 					  p->cong_thres, 1, 0);
3137 		if (ret)
3138 			goto err_unlock;
3139 	}
3140 
3141 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3142 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3143 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3144 				 1, 0);
3145 	if (ret)
3146 		goto err_unlock;
3147 
3148 	if (ntxq > 1) {
3149 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3150 					 USE_GTS, SGE_CNTXT_OFLD, id,
3151 					 q->txq[TXQ_OFLD].phys_addr,
3152 					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3153 		if (ret)
3154 			goto err_unlock;
3155 	}
3156 
3157 	if (ntxq > 2) {
3158 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3159 					 SGE_CNTXT_CTRL, id,
3160 					 q->txq[TXQ_CTRL].phys_addr,
3161 					 q->txq[TXQ_CTRL].size,
3162 					 q->txq[TXQ_CTRL].token, 1, 0);
3163 		if (ret)
3164 			goto err_unlock;
3165 	}
3166 
3167 	spin_unlock_irq(&adapter->sge.reg_lock);
3168 
3169 	q->adap = adapter;
3170 	q->netdev = dev;
3171 	q->tx_q = netdevq;
3172 	t3_update_qset_coalesce(q, p);
3173 
3174 	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3175 			  GFP_KERNEL | __GFP_COMP);
3176 	if (!avail) {
3177 		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3178 		goto err;
3179 	}
3180 	if (avail < q->fl[0].size)
3181 		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3182 			avail);
3183 
3184 	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3185 			  GFP_KERNEL | __GFP_COMP);
3186 	if (avail < q->fl[1].size)
3187 		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3188 			avail);
3189 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3190 
3191 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3192 		     V_NEWTIMER(q->rspq.holdoff_tmr));
3193 
3194 	return 0;
3195 
3196 err_unlock:
3197 	spin_unlock_irq(&adapter->sge.reg_lock);
3198 err:
3199 	t3_free_qset(adapter, q);
3200 	return ret;
3201 }
3202 
3203 /**
3204  *      t3_start_sge_timers - start SGE timer call backs
3205  *      @adap: the adapter
3206  *
3207  *      Starts each SGE queue set's timer call back
3208  */
3209 void t3_start_sge_timers(struct adapter *adap)
3210 {
3211 	int i;
3212 
3213 	for (i = 0; i < SGE_QSETS; ++i) {
3214 		struct sge_qset *q = &adap->sge.qs[i];
3215 
3216 		if (q->tx_reclaim_timer.function)
3217 			mod_timer(&q->tx_reclaim_timer,
3218 				  jiffies + TX_RECLAIM_PERIOD);
3219 
3220 		if (q->rx_reclaim_timer.function)
3221 			mod_timer(&q->rx_reclaim_timer,
3222 				  jiffies + RX_RECLAIM_PERIOD);
3223 	}
3224 }
3225 
3226 /**
3227  *	t3_stop_sge_timers - stop SGE timer call backs
3228  *	@adap: the adapter
3229  *
3230  *	Stops each SGE queue set's timer call back
3231  */
3232 void t3_stop_sge_timers(struct adapter *adap)
3233 {
3234 	int i;
3235 
3236 	for (i = 0; i < SGE_QSETS; ++i) {
3237 		struct sge_qset *q = &adap->sge.qs[i];
3238 
3239 		if (q->tx_reclaim_timer.function)
3240 			del_timer_sync(&q->tx_reclaim_timer);
3241 		if (q->rx_reclaim_timer.function)
3242 			del_timer_sync(&q->rx_reclaim_timer);
3243 	}
3244 }
3245 
3246 /**
3247  *	t3_free_sge_resources - free SGE resources
3248  *	@adap: the adapter
3249  *
3250  *	Frees resources used by the SGE queue sets.
3251  */
3252 void t3_free_sge_resources(struct adapter *adap)
3253 {
3254 	int i;
3255 
3256 	for (i = 0; i < SGE_QSETS; ++i)
3257 		t3_free_qset(adap, &adap->sge.qs[i]);
3258 }
3259 
3260 /**
3261  *	t3_sge_start - enable SGE
3262  *	@adap: the adapter
3263  *
3264  *	Enables the SGE for DMAs.  This is the last step in starting packet
3265  *	transfers.
3266  */
3267 void t3_sge_start(struct adapter *adap)
3268 {
3269 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3270 }
3271 
3272 /**
3273  *	t3_sge_stop_dma - Disable SGE DMA engine operation
3274  *	@adap: the adapter
3275  *
3276  *	Can be invoked from interrupt context e.g.  error handler.
3277  *
3278  *	Note that this function cannot disable the restart of tasklets as
3279  *	it cannot wait if called from interrupt context, however the
3280  *	tasklets will have no effect since the doorbells are disabled. The
3281  *	driver will call tg3_sge_stop() later from process context, at
3282  *	which time the tasklets will be stopped if they are still running.
3283  */
3284 void t3_sge_stop_dma(struct adapter *adap)
3285 {
3286 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3287 }
3288 
3289 /**
3290  *	t3_sge_stop - disable SGE operation completly
3291  *	@adap: the adapter
3292  *
3293  *	Called from process context. Disables the DMA engine and any
3294  *	pending queue restart tasklets.
3295  */
3296 void t3_sge_stop(struct adapter *adap)
3297 {
3298 	int i;
3299 
3300 	t3_sge_stop_dma(adap);
3301 
3302 	for (i = 0; i < SGE_QSETS; ++i) {
3303 		struct sge_qset *qs = &adap->sge.qs[i];
3304 
3305 		tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3306 		tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3307 	}
3308 }
3309 
3310 /**
3311  *	t3_sge_init - initialize SGE
3312  *	@adap: the adapter
3313  *	@p: the SGE parameters
3314  *
3315  *	Performs SGE initialization needed every time after a chip reset.
3316  *	We do not initialize any of the queue sets here, instead the driver
3317  *	top-level must request those individually.  We also do not enable DMA
3318  *	here, that should be done after the queues have been set up.
3319  */
3320 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3321 {
3322 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3323 
3324 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3325 	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3326 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3327 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3328 #if SGE_NUM_GENBITS == 1
3329 	ctrl |= F_EGRGENCTRL;
3330 #endif
3331 	if (adap->params.rev > 0) {
3332 		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3333 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3334 	}
3335 	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3336 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3337 		     V_LORCQDRBTHRSH(512));
3338 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3339 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3340 		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3341 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3342 		     adap->params.rev < T3_REV_C ? 1000 : 500);
3343 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3344 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3345 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3346 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3347 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3348 }
3349 
3350 /**
3351  *	t3_sge_prep - one-time SGE initialization
3352  *	@adap: the associated adapter
3353  *	@p: SGE parameters
3354  *
3355  *	Performs one-time initialization of SGE SW state.  Includes determining
3356  *	defaults for the assorted SGE parameters, which admins can change until
3357  *	they are used to initialize the SGE.
3358  */
3359 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3360 {
3361 	int i;
3362 
3363 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3364 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3365 
3366 	for (i = 0; i < SGE_QSETS; ++i) {
3367 		struct qset_params *q = p->qset + i;
3368 
3369 		q->polling = adap->params.rev > 0;
3370 		q->coalesce_usecs = 5;
3371 		q->rspq_size = 1024;
3372 		q->fl_size = 1024;
3373  		q->jumbo_size = 512;
3374 		q->txq_size[TXQ_ETH] = 1024;
3375 		q->txq_size[TXQ_OFLD] = 1024;
3376 		q->txq_size[TXQ_CTRL] = 256;
3377 		q->cong_thres = 0;
3378 	}
3379 
3380 	spin_lock_init(&adap->sge.reg_lock);
3381 }
3382