1 /* 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/skbuff.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/if_vlan.h> 36 #include <linux/ip.h> 37 #include <linux/tcp.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/slab.h> 40 #include <linux/prefetch.h> 41 #include <net/arp.h> 42 #include "common.h" 43 #include "regs.h" 44 #include "sge_defs.h" 45 #include "t3_cpl.h" 46 #include "firmware_exports.h" 47 #include "cxgb3_offload.h" 48 49 #define USE_GTS 0 50 51 #define SGE_RX_SM_BUF_SIZE 1536 52 53 #define SGE_RX_COPY_THRES 256 54 #define SGE_RX_PULL_LEN 128 55 56 #define SGE_PG_RSVD SMP_CACHE_BYTES 57 /* 58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. 59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs 60 * directly. 61 */ 62 #define FL0_PG_CHUNK_SIZE 2048 63 #define FL0_PG_ORDER 0 64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) 65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) 66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) 67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) 68 69 #define SGE_RX_DROP_THRES 16 70 #define RX_RECLAIM_PERIOD (HZ/4) 71 72 /* 73 * Max number of Rx buffers we replenish at a time. 74 */ 75 #define MAX_RX_REFILL 16U 76 /* 77 * Period of the Tx buffer reclaim timer. This timer does not need to run 78 * frequently as Tx buffers are usually reclaimed by new Tx packets. 79 */ 80 #define TX_RECLAIM_PERIOD (HZ / 4) 81 #define TX_RECLAIM_TIMER_CHUNK 64U 82 #define TX_RECLAIM_CHUNK 16U 83 84 /* WR size in bytes */ 85 #define WR_LEN (WR_FLITS * 8) 86 87 /* 88 * Types of Tx queues in each queue set. Order here matters, do not change. 89 */ 90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; 91 92 /* Values for sge_txq.flags */ 93 enum { 94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */ 95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ 96 }; 97 98 struct tx_desc { 99 __be64 flit[TX_DESC_FLITS]; 100 }; 101 102 struct rx_desc { 103 __be32 addr_lo; 104 __be32 len_gen; 105 __be32 gen2; 106 __be32 addr_hi; 107 }; 108 109 struct tx_sw_desc { /* SW state per Tx descriptor */ 110 struct sk_buff *skb; 111 u8 eop; /* set if last descriptor for packet */ 112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */ 113 u8 fragidx; /* first page fragment associated with descriptor */ 114 s8 sflit; /* start flit of first SGL entry in descriptor */ 115 }; 116 117 struct rx_sw_desc { /* SW state per Rx descriptor */ 118 union { 119 struct sk_buff *skb; 120 struct fl_pg_chunk pg_chunk; 121 }; 122 DEFINE_DMA_UNMAP_ADDR(dma_addr); 123 }; 124 125 struct rsp_desc { /* response queue descriptor */ 126 struct rss_header rss_hdr; 127 __be32 flags; 128 __be32 len_cq; 129 u8 imm_data[47]; 130 u8 intr_gen; 131 }; 132 133 /* 134 * Holds unmapping information for Tx packets that need deferred unmapping. 135 * This structure lives at skb->head and must be allocated by callers. 136 */ 137 struct deferred_unmap_info { 138 struct pci_dev *pdev; 139 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 140 }; 141 142 /* 143 * Maps a number of flits to the number of Tx descriptors that can hold them. 144 * The formula is 145 * 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1). 147 * 148 * HW allows up to 4 descriptors to be combined into a WR. 149 */ 150 static u8 flit_desc_map[] = { 151 0, 152 #if SGE_NUM_GENBITS == 1 153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 157 #elif SGE_NUM_GENBITS == 2 158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 162 #else 163 # error "SGE_NUM_GENBITS must be 1 or 2" 164 #endif 165 }; 166 167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) 168 { 169 return container_of(q, struct sge_qset, fl[qidx]); 170 } 171 172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) 173 { 174 return container_of(q, struct sge_qset, rspq); 175 } 176 177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) 178 { 179 return container_of(q, struct sge_qset, txq[qidx]); 180 } 181 182 /** 183 * refill_rspq - replenish an SGE response queue 184 * @adapter: the adapter 185 * @q: the response queue to replenish 186 * @credits: how many new responses to make available 187 * 188 * Replenishes a response queue by making the supplied number of responses 189 * available to HW. 190 */ 191 static inline void refill_rspq(struct adapter *adapter, 192 const struct sge_rspq *q, unsigned int credits) 193 { 194 rmb(); 195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, 196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); 197 } 198 199 /** 200 * need_skb_unmap - does the platform need unmapping of sk_buffs? 201 * 202 * Returns true if the platform needs sk_buff unmapping. The compiler 203 * optimizes away unnecessary code if this returns true. 204 */ 205 static inline int need_skb_unmap(void) 206 { 207 #ifdef CONFIG_NEED_DMA_MAP_STATE 208 return 1; 209 #else 210 return 0; 211 #endif 212 } 213 214 /** 215 * unmap_skb - unmap a packet main body and its page fragments 216 * @skb: the packet 217 * @q: the Tx queue containing Tx descriptors for the packet 218 * @cidx: index of Tx descriptor 219 * @pdev: the PCI device 220 * 221 * Unmap the main body of an sk_buff and its page fragments, if any. 222 * Because of the fairly complicated structure of our SGLs and the desire 223 * to conserve space for metadata, the information necessary to unmap an 224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx 225 * descriptors (the physical addresses of the various data buffers), and 226 * the SW descriptor state (assorted indices). The send functions 227 * initialize the indices for the first packet descriptor so we can unmap 228 * the buffers held in the first Tx descriptor here, and we have enough 229 * information at this point to set the state for the next Tx descriptor. 230 * 231 * Note that it is possible to clean up the first descriptor of a packet 232 * before the send routines have written the next descriptors, but this 233 * race does not cause any problem. We just end up writing the unmapping 234 * info for the descriptor first. 235 */ 236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, 237 unsigned int cidx, struct pci_dev *pdev) 238 { 239 const struct sg_ent *sgp; 240 struct tx_sw_desc *d = &q->sdesc[cidx]; 241 int nfrags, frag_idx, curflit, j = d->addr_idx; 242 243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; 244 frag_idx = d->fragidx; 245 246 if (frag_idx == 0 && skb_headlen(skb)) { 247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), 248 skb_headlen(skb), PCI_DMA_TODEVICE); 249 j = 1; 250 } 251 252 curflit = d->sflit + 1 + j; 253 nfrags = skb_shinfo(skb)->nr_frags; 254 255 while (frag_idx < nfrags && curflit < WR_FLITS) { 256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), 257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), 258 PCI_DMA_TODEVICE); 259 j ^= 1; 260 if (j == 0) { 261 sgp++; 262 curflit++; 263 } 264 curflit++; 265 frag_idx++; 266 } 267 268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ 269 d = cidx + 1 == q->size ? q->sdesc : d + 1; 270 d->fragidx = frag_idx; 271 d->addr_idx = j; 272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ 273 } 274 } 275 276 /** 277 * free_tx_desc - reclaims Tx descriptors and their buffers 278 * @adapter: the adapter 279 * @q: the Tx queue to reclaim descriptors from 280 * @n: the number of descriptors to reclaim 281 * 282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 283 * Tx buffers. Called with the Tx queue lock held. 284 */ 285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, 286 unsigned int n) 287 { 288 struct tx_sw_desc *d; 289 struct pci_dev *pdev = adapter->pdev; 290 unsigned int cidx = q->cidx; 291 292 const int need_unmap = need_skb_unmap() && 293 q->cntxt_id >= FW_TUNNEL_SGEEC_START; 294 295 d = &q->sdesc[cidx]; 296 while (n--) { 297 if (d->skb) { /* an SGL is present */ 298 if (need_unmap) 299 unmap_skb(d->skb, q, cidx, pdev); 300 if (d->eop) { 301 dev_consume_skb_any(d->skb); 302 d->skb = NULL; 303 } 304 } 305 ++d; 306 if (++cidx == q->size) { 307 cidx = 0; 308 d = q->sdesc; 309 } 310 } 311 q->cidx = cidx; 312 } 313 314 /** 315 * reclaim_completed_tx - reclaims completed Tx descriptors 316 * @adapter: the adapter 317 * @q: the Tx queue to reclaim completed descriptors from 318 * @chunk: maximum number of descriptors to reclaim 319 * 320 * Reclaims Tx descriptors that the SGE has indicated it has processed, 321 * and frees the associated buffers if possible. Called with the Tx 322 * queue's lock held. 323 */ 324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter, 325 struct sge_txq *q, 326 unsigned int chunk) 327 { 328 unsigned int reclaim = q->processed - q->cleaned; 329 330 reclaim = min(chunk, reclaim); 331 if (reclaim) { 332 free_tx_desc(adapter, q, reclaim); 333 q->cleaned += reclaim; 334 q->in_use -= reclaim; 335 } 336 return q->processed - q->cleaned; 337 } 338 339 /** 340 * should_restart_tx - are there enough resources to restart a Tx queue? 341 * @q: the Tx queue 342 * 343 * Checks if there are enough descriptors to restart a suspended Tx queue. 344 */ 345 static inline int should_restart_tx(const struct sge_txq *q) 346 { 347 unsigned int r = q->processed - q->cleaned; 348 349 return q->in_use - r < (q->size >> 1); 350 } 351 352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, 353 struct rx_sw_desc *d) 354 { 355 if (q->use_pages && d->pg_chunk.page) { 356 (*d->pg_chunk.p_cnt)--; 357 if (!*d->pg_chunk.p_cnt) 358 pci_unmap_page(pdev, 359 d->pg_chunk.mapping, 360 q->alloc_size, PCI_DMA_FROMDEVICE); 361 362 put_page(d->pg_chunk.page); 363 d->pg_chunk.page = NULL; 364 } else { 365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr), 366 q->buf_size, PCI_DMA_FROMDEVICE); 367 kfree_skb(d->skb); 368 d->skb = NULL; 369 } 370 } 371 372 /** 373 * free_rx_bufs - free the Rx buffers on an SGE free list 374 * @pdev: the PCI device associated with the adapter 375 * @q: the SGE free list to clean up 376 * 377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from 378 * this queue should be stopped before calling this function. 379 */ 380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) 381 { 382 unsigned int cidx = q->cidx; 383 384 while (q->credits--) { 385 struct rx_sw_desc *d = &q->sdesc[cidx]; 386 387 388 clear_rx_desc(pdev, q, d); 389 if (++cidx == q->size) 390 cidx = 0; 391 } 392 393 if (q->pg_chunk.page) { 394 __free_pages(q->pg_chunk.page, q->order); 395 q->pg_chunk.page = NULL; 396 } 397 } 398 399 /** 400 * add_one_rx_buf - add a packet buffer to a free-buffer list 401 * @va: buffer start VA 402 * @len: the buffer length 403 * @d: the HW Rx descriptor to write 404 * @sd: the SW Rx descriptor to write 405 * @gen: the generation bit value 406 * @pdev: the PCI device associated with the adapter 407 * 408 * Add a buffer of the given length to the supplied HW and SW Rx 409 * descriptors. 410 */ 411 static inline int add_one_rx_buf(void *va, unsigned int len, 412 struct rx_desc *d, struct rx_sw_desc *sd, 413 unsigned int gen, struct pci_dev *pdev) 414 { 415 dma_addr_t mapping; 416 417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE); 418 if (unlikely(pci_dma_mapping_error(pdev, mapping))) 419 return -ENOMEM; 420 421 dma_unmap_addr_set(sd, dma_addr, mapping); 422 423 d->addr_lo = cpu_to_be32(mapping); 424 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 425 dma_wmb(); 426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 428 return 0; 429 } 430 431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, 432 unsigned int gen) 433 { 434 d->addr_lo = cpu_to_be32(mapping); 435 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 436 dma_wmb(); 437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 439 return 0; 440 } 441 442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, 443 struct rx_sw_desc *sd, gfp_t gfp, 444 unsigned int order) 445 { 446 if (!q->pg_chunk.page) { 447 dma_addr_t mapping; 448 449 q->pg_chunk.page = alloc_pages(gfp, order); 450 if (unlikely(!q->pg_chunk.page)) 451 return -ENOMEM; 452 q->pg_chunk.va = page_address(q->pg_chunk.page); 453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - 454 SGE_PG_RSVD; 455 q->pg_chunk.offset = 0; 456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page, 457 0, q->alloc_size, PCI_DMA_FROMDEVICE); 458 if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) { 459 __free_pages(q->pg_chunk.page, order); 460 q->pg_chunk.page = NULL; 461 return -EIO; 462 } 463 q->pg_chunk.mapping = mapping; 464 } 465 sd->pg_chunk = q->pg_chunk; 466 467 prefetch(sd->pg_chunk.p_cnt); 468 469 q->pg_chunk.offset += q->buf_size; 470 if (q->pg_chunk.offset == (PAGE_SIZE << order)) 471 q->pg_chunk.page = NULL; 472 else { 473 q->pg_chunk.va += q->buf_size; 474 get_page(q->pg_chunk.page); 475 } 476 477 if (sd->pg_chunk.offset == 0) 478 *sd->pg_chunk.p_cnt = 1; 479 else 480 *sd->pg_chunk.p_cnt += 1; 481 482 return 0; 483 } 484 485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 486 { 487 if (q->pend_cred >= q->credits / 4) { 488 q->pend_cred = 0; 489 wmb(); 490 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 491 } 492 } 493 494 /** 495 * refill_fl - refill an SGE free-buffer list 496 * @adap: the adapter 497 * @q: the free-list to refill 498 * @n: the number of new buffers to allocate 499 * @gfp: the gfp flags for allocating new buffers 500 * 501 * (Re)populate an SGE free-buffer list with up to @n new packet buffers, 502 * allocated with the supplied gfp flags. The caller must assure that 503 * @n does not exceed the queue's capacity. 504 */ 505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) 506 { 507 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 508 struct rx_desc *d = &q->desc[q->pidx]; 509 unsigned int count = 0; 510 511 while (n--) { 512 dma_addr_t mapping; 513 int err; 514 515 if (q->use_pages) { 516 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, 517 q->order))) { 518 nomem: q->alloc_failed++; 519 break; 520 } 521 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; 522 dma_unmap_addr_set(sd, dma_addr, mapping); 523 524 add_one_rx_chunk(mapping, d, q->gen); 525 pci_dma_sync_single_for_device(adap->pdev, mapping, 526 q->buf_size - SGE_PG_RSVD, 527 PCI_DMA_FROMDEVICE); 528 } else { 529 void *buf_start; 530 531 struct sk_buff *skb = alloc_skb(q->buf_size, gfp); 532 if (!skb) 533 goto nomem; 534 535 sd->skb = skb; 536 buf_start = skb->data; 537 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, 538 q->gen, adap->pdev); 539 if (unlikely(err)) { 540 clear_rx_desc(adap->pdev, q, sd); 541 break; 542 } 543 } 544 545 d++; 546 sd++; 547 if (++q->pidx == q->size) { 548 q->pidx = 0; 549 q->gen ^= 1; 550 sd = q->sdesc; 551 d = q->desc; 552 } 553 count++; 554 } 555 556 q->credits += count; 557 q->pend_cred += count; 558 ring_fl_db(adap, q); 559 560 return count; 561 } 562 563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 564 { 565 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), 566 GFP_ATOMIC | __GFP_COMP); 567 } 568 569 /** 570 * recycle_rx_buf - recycle a receive buffer 571 * @adap: the adapter 572 * @q: the SGE free list 573 * @idx: index of buffer to recycle 574 * 575 * Recycles the specified buffer on the given free list by adding it at 576 * the next available slot on the list. 577 */ 578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, 579 unsigned int idx) 580 { 581 struct rx_desc *from = &q->desc[idx]; 582 struct rx_desc *to = &q->desc[q->pidx]; 583 584 q->sdesc[q->pidx] = q->sdesc[idx]; 585 to->addr_lo = from->addr_lo; /* already big endian */ 586 to->addr_hi = from->addr_hi; /* likewise */ 587 dma_wmb(); 588 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); 589 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); 590 591 if (++q->pidx == q->size) { 592 q->pidx = 0; 593 q->gen ^= 1; 594 } 595 596 q->credits++; 597 q->pend_cred++; 598 ring_fl_db(adap, q); 599 } 600 601 /** 602 * alloc_ring - allocate resources for an SGE descriptor ring 603 * @pdev: the PCI device 604 * @nelem: the number of descriptors 605 * @elem_size: the size of each descriptor 606 * @sw_size: the size of the SW state associated with each ring element 607 * @phys: the physical address of the allocated ring 608 * @metadata: address of the array holding the SW state for the ring 609 * 610 * Allocates resources for an SGE descriptor ring, such as Tx queues, 611 * free buffer lists, or response queues. Each SGE ring requires 612 * space for its HW descriptors plus, optionally, space for the SW state 613 * associated with each HW entry (the metadata). The function returns 614 * three values: the virtual address for the HW ring (the return value 615 * of the function), the physical address of the HW ring, and the address 616 * of the SW ring. 617 */ 618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, 619 size_t sw_size, dma_addr_t * phys, void *metadata) 620 { 621 size_t len = nelem * elem_size; 622 void *s = NULL; 623 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); 624 625 if (!p) 626 return NULL; 627 if (sw_size && metadata) { 628 s = kcalloc(nelem, sw_size, GFP_KERNEL); 629 630 if (!s) { 631 dma_free_coherent(&pdev->dev, len, p, *phys); 632 return NULL; 633 } 634 *(void **)metadata = s; 635 } 636 return p; 637 } 638 639 /** 640 * t3_reset_qset - reset a sge qset 641 * @q: the queue set 642 * 643 * Reset the qset structure. 644 * the NAPI structure is preserved in the event of 645 * the qset's reincarnation, for example during EEH recovery. 646 */ 647 static void t3_reset_qset(struct sge_qset *q) 648 { 649 if (q->adap && 650 !(q->adap->flags & NAPI_INIT)) { 651 memset(q, 0, sizeof(*q)); 652 return; 653 } 654 655 q->adap = NULL; 656 memset(&q->rspq, 0, sizeof(q->rspq)); 657 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); 658 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); 659 q->txq_stopped = 0; 660 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ 661 q->rx_reclaim_timer.function = NULL; 662 q->nomem = 0; 663 napi_free_frags(&q->napi); 664 } 665 666 667 /** 668 * free_qset - free the resources of an SGE queue set 669 * @adapter: the adapter owning the queue set 670 * @q: the queue set 671 * 672 * Release the HW and SW resources associated with an SGE queue set, such 673 * as HW contexts, packet buffers, and descriptor rings. Traffic to the 674 * queue set must be quiesced prior to calling this. 675 */ 676 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) 677 { 678 int i; 679 struct pci_dev *pdev = adapter->pdev; 680 681 for (i = 0; i < SGE_RXQ_PER_SET; ++i) 682 if (q->fl[i].desc) { 683 spin_lock_irq(&adapter->sge.reg_lock); 684 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); 685 spin_unlock_irq(&adapter->sge.reg_lock); 686 free_rx_bufs(pdev, &q->fl[i]); 687 kfree(q->fl[i].sdesc); 688 dma_free_coherent(&pdev->dev, 689 q->fl[i].size * 690 sizeof(struct rx_desc), q->fl[i].desc, 691 q->fl[i].phys_addr); 692 } 693 694 for (i = 0; i < SGE_TXQ_PER_SET; ++i) 695 if (q->txq[i].desc) { 696 spin_lock_irq(&adapter->sge.reg_lock); 697 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); 698 spin_unlock_irq(&adapter->sge.reg_lock); 699 if (q->txq[i].sdesc) { 700 free_tx_desc(adapter, &q->txq[i], 701 q->txq[i].in_use); 702 kfree(q->txq[i].sdesc); 703 } 704 dma_free_coherent(&pdev->dev, 705 q->txq[i].size * 706 sizeof(struct tx_desc), 707 q->txq[i].desc, q->txq[i].phys_addr); 708 __skb_queue_purge(&q->txq[i].sendq); 709 } 710 711 if (q->rspq.desc) { 712 spin_lock_irq(&adapter->sge.reg_lock); 713 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); 714 spin_unlock_irq(&adapter->sge.reg_lock); 715 dma_free_coherent(&pdev->dev, 716 q->rspq.size * sizeof(struct rsp_desc), 717 q->rspq.desc, q->rspq.phys_addr); 718 } 719 720 t3_reset_qset(q); 721 } 722 723 /** 724 * init_qset_cntxt - initialize an SGE queue set context info 725 * @qs: the queue set 726 * @id: the queue set id 727 * 728 * Initializes the TIDs and context ids for the queues of a queue set. 729 */ 730 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) 731 { 732 qs->rspq.cntxt_id = id; 733 qs->fl[0].cntxt_id = 2 * id; 734 qs->fl[1].cntxt_id = 2 * id + 1; 735 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; 736 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; 737 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; 738 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; 739 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; 740 } 741 742 /** 743 * sgl_len - calculates the size of an SGL of the given capacity 744 * @n: the number of SGL entries 745 * 746 * Calculates the number of flits needed for a scatter/gather list that 747 * can hold the given number of entries. 748 */ 749 static inline unsigned int sgl_len(unsigned int n) 750 { 751 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ 752 return (3 * n) / 2 + (n & 1); 753 } 754 755 /** 756 * flits_to_desc - returns the num of Tx descriptors for the given flits 757 * @n: the number of flits 758 * 759 * Calculates the number of Tx descriptors needed for the supplied number 760 * of flits. 761 */ 762 static inline unsigned int flits_to_desc(unsigned int n) 763 { 764 BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); 765 return flit_desc_map[n]; 766 } 767 768 /** 769 * get_packet - return the next ingress packet buffer from a free list 770 * @adap: the adapter that received the packet 771 * @fl: the SGE free list holding the packet 772 * @len: the packet length including any SGE padding 773 * @drop_thres: # of remaining buffers before we start dropping packets 774 * 775 * Get the next packet from a free list and complete setup of the 776 * sk_buff. If the packet is small we make a copy and recycle the 777 * original buffer, otherwise we use the original buffer itself. If a 778 * positive drop threshold is supplied packets are dropped and their 779 * buffers recycled if (a) the number of remaining buffers is under the 780 * threshold and the packet is too big to copy, or (b) the packet should 781 * be copied but there is no memory for the copy. 782 */ 783 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, 784 unsigned int len, unsigned int drop_thres) 785 { 786 struct sk_buff *skb = NULL; 787 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 788 789 prefetch(sd->skb->data); 790 fl->credits--; 791 792 if (len <= SGE_RX_COPY_THRES) { 793 skb = alloc_skb(len, GFP_ATOMIC); 794 if (likely(skb != NULL)) { 795 __skb_put(skb, len); 796 pci_dma_sync_single_for_cpu(adap->pdev, 797 dma_unmap_addr(sd, dma_addr), len, 798 PCI_DMA_FROMDEVICE); 799 memcpy(skb->data, sd->skb->data, len); 800 pci_dma_sync_single_for_device(adap->pdev, 801 dma_unmap_addr(sd, dma_addr), len, 802 PCI_DMA_FROMDEVICE); 803 } else if (!drop_thres) 804 goto use_orig_buf; 805 recycle: 806 recycle_rx_buf(adap, fl, fl->cidx); 807 return skb; 808 } 809 810 if (unlikely(fl->credits < drop_thres) && 811 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), 812 GFP_ATOMIC | __GFP_COMP) == 0) 813 goto recycle; 814 815 use_orig_buf: 816 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr), 817 fl->buf_size, PCI_DMA_FROMDEVICE); 818 skb = sd->skb; 819 skb_put(skb, len); 820 __refill_fl(adap, fl); 821 return skb; 822 } 823 824 /** 825 * get_packet_pg - return the next ingress packet buffer from a free list 826 * @adap: the adapter that received the packet 827 * @fl: the SGE free list holding the packet 828 * @q: the queue 829 * @len: the packet length including any SGE padding 830 * @drop_thres: # of remaining buffers before we start dropping packets 831 * 832 * Get the next packet from a free list populated with page chunks. 833 * If the packet is small we make a copy and recycle the original buffer, 834 * otherwise we attach the original buffer as a page fragment to a fresh 835 * sk_buff. If a positive drop threshold is supplied packets are dropped 836 * and their buffers recycled if (a) the number of remaining buffers is 837 * under the threshold and the packet is too big to copy, or (b) there's 838 * no system memory. 839 * 840 * Note: this function is similar to @get_packet but deals with Rx buffers 841 * that are page chunks rather than sk_buffs. 842 */ 843 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, 844 struct sge_rspq *q, unsigned int len, 845 unsigned int drop_thres) 846 { 847 struct sk_buff *newskb, *skb; 848 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 849 850 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); 851 852 newskb = skb = q->pg_skb; 853 if (!skb && (len <= SGE_RX_COPY_THRES)) { 854 newskb = alloc_skb(len, GFP_ATOMIC); 855 if (likely(newskb != NULL)) { 856 __skb_put(newskb, len); 857 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 858 PCI_DMA_FROMDEVICE); 859 memcpy(newskb->data, sd->pg_chunk.va, len); 860 pci_dma_sync_single_for_device(adap->pdev, dma_addr, 861 len, 862 PCI_DMA_FROMDEVICE); 863 } else if (!drop_thres) 864 return NULL; 865 recycle: 866 fl->credits--; 867 recycle_rx_buf(adap, fl, fl->cidx); 868 q->rx_recycle_buf++; 869 return newskb; 870 } 871 872 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) 873 goto recycle; 874 875 prefetch(sd->pg_chunk.p_cnt); 876 877 if (!skb) 878 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); 879 880 if (unlikely(!newskb)) { 881 if (!drop_thres) 882 return NULL; 883 goto recycle; 884 } 885 886 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 887 PCI_DMA_FROMDEVICE); 888 (*sd->pg_chunk.p_cnt)--; 889 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 890 pci_unmap_page(adap->pdev, 891 sd->pg_chunk.mapping, 892 fl->alloc_size, 893 PCI_DMA_FROMDEVICE); 894 if (!skb) { 895 __skb_put(newskb, SGE_RX_PULL_LEN); 896 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); 897 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, 898 sd->pg_chunk.offset + SGE_RX_PULL_LEN, 899 len - SGE_RX_PULL_LEN); 900 newskb->len = len; 901 newskb->data_len = len - SGE_RX_PULL_LEN; 902 newskb->truesize += newskb->data_len; 903 } else { 904 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, 905 sd->pg_chunk.page, 906 sd->pg_chunk.offset, len); 907 newskb->len += len; 908 newskb->data_len += len; 909 newskb->truesize += len; 910 } 911 912 fl->credits--; 913 /* 914 * We do not refill FLs here, we let the caller do it to overlap a 915 * prefetch. 916 */ 917 return newskb; 918 } 919 920 /** 921 * get_imm_packet - return the next ingress packet buffer from a response 922 * @resp: the response descriptor containing the packet data 923 * 924 * Return a packet containing the immediate data of the given response. 925 */ 926 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) 927 { 928 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); 929 930 if (skb) { 931 __skb_put(skb, IMMED_PKT_SIZE); 932 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE); 933 } 934 return skb; 935 } 936 937 /** 938 * calc_tx_descs - calculate the number of Tx descriptors for a packet 939 * @skb: the packet 940 * 941 * Returns the number of Tx descriptors needed for the given Ethernet 942 * packet. Ethernet packets require addition of WR and CPL headers. 943 */ 944 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 945 { 946 unsigned int flits; 947 948 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) 949 return 1; 950 951 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; 952 if (skb_shinfo(skb)->gso_size) 953 flits++; 954 return flits_to_desc(flits); 955 } 956 957 /* map_skb - map a packet main body and its page fragments 958 * @pdev: the PCI device 959 * @skb: the packet 960 * @addr: placeholder to save the mapped addresses 961 * 962 * map the main body of an sk_buff and its page fragments, if any. 963 */ 964 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb, 965 dma_addr_t *addr) 966 { 967 const skb_frag_t *fp, *end; 968 const struct skb_shared_info *si; 969 970 if (skb_headlen(skb)) { 971 *addr = pci_map_single(pdev, skb->data, skb_headlen(skb), 972 PCI_DMA_TODEVICE); 973 if (pci_dma_mapping_error(pdev, *addr)) 974 goto out_err; 975 addr++; 976 } 977 978 si = skb_shinfo(skb); 979 end = &si->frags[si->nr_frags]; 980 981 for (fp = si->frags; fp < end; fp++) { 982 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp), 983 DMA_TO_DEVICE); 984 if (pci_dma_mapping_error(pdev, *addr)) 985 goto unwind; 986 addr++; 987 } 988 return 0; 989 990 unwind: 991 while (fp-- > si->frags) 992 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp), 993 DMA_TO_DEVICE); 994 995 pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE); 996 out_err: 997 return -ENOMEM; 998 } 999 1000 /** 1001 * write_sgl - populate a scatter/gather list for a packet 1002 * @skb: the packet 1003 * @sgp: the SGL to populate 1004 * @start: start address of skb main body data to include in the SGL 1005 * @len: length of skb main body data to include in the SGL 1006 * @addr: the list of the mapped addresses 1007 * 1008 * Copies the scatter/gather list for the buffers that make up a packet 1009 * and returns the SGL size in 8-byte words. The caller must size the SGL 1010 * appropriately. 1011 */ 1012 static inline unsigned int write_sgl(const struct sk_buff *skb, 1013 struct sg_ent *sgp, unsigned char *start, 1014 unsigned int len, const dma_addr_t *addr) 1015 { 1016 unsigned int i, j = 0, k = 0, nfrags; 1017 1018 if (len) { 1019 sgp->len[0] = cpu_to_be32(len); 1020 sgp->addr[j++] = cpu_to_be64(addr[k++]); 1021 } 1022 1023 nfrags = skb_shinfo(skb)->nr_frags; 1024 for (i = 0; i < nfrags; i++) { 1025 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1026 1027 sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); 1028 sgp->addr[j] = cpu_to_be64(addr[k++]); 1029 j ^= 1; 1030 if (j == 0) 1031 ++sgp; 1032 } 1033 if (j) 1034 sgp->len[j] = 0; 1035 return ((nfrags + (len != 0)) * 3) / 2 + j; 1036 } 1037 1038 /** 1039 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell 1040 * @adap: the adapter 1041 * @q: the Tx queue 1042 * 1043 * Ring the doorbel if a Tx queue is asleep. There is a natural race, 1044 * where the HW is going to sleep just after we checked, however, 1045 * then the interrupt handler will detect the outstanding TX packet 1046 * and ring the doorbell for us. 1047 * 1048 * When GTS is disabled we unconditionally ring the doorbell. 1049 */ 1050 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) 1051 { 1052 #if USE_GTS 1053 clear_bit(TXQ_LAST_PKT_DB, &q->flags); 1054 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { 1055 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1056 t3_write_reg(adap, A_SG_KDOORBELL, 1057 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1058 } 1059 #else 1060 wmb(); /* write descriptors before telling HW */ 1061 t3_write_reg(adap, A_SG_KDOORBELL, 1062 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1063 #endif 1064 } 1065 1066 static inline void wr_gen2(struct tx_desc *d, unsigned int gen) 1067 { 1068 #if SGE_NUM_GENBITS == 2 1069 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); 1070 #endif 1071 } 1072 1073 /** 1074 * write_wr_hdr_sgl - write a WR header and, optionally, SGL 1075 * @ndesc: number of Tx descriptors spanned by the SGL 1076 * @skb: the packet corresponding to the WR 1077 * @d: first Tx descriptor to be written 1078 * @pidx: index of above descriptors 1079 * @q: the SGE Tx queue 1080 * @sgl: the SGL 1081 * @flits: number of flits to the start of the SGL in the first descriptor 1082 * @sgl_flits: the SGL size in flits 1083 * @gen: the Tx descriptor generation 1084 * @wr_hi: top 32 bits of WR header based on WR type (big endian) 1085 * @wr_lo: low 32 bits of WR header based on WR type (big endian) 1086 * 1087 * Write a work request header and an associated SGL. If the SGL is 1088 * small enough to fit into one Tx descriptor it has already been written 1089 * and we just need to write the WR header. Otherwise we distribute the 1090 * SGL across the number of descriptors it spans. 1091 */ 1092 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, 1093 struct tx_desc *d, unsigned int pidx, 1094 const struct sge_txq *q, 1095 const struct sg_ent *sgl, 1096 unsigned int flits, unsigned int sgl_flits, 1097 unsigned int gen, __be32 wr_hi, 1098 __be32 wr_lo) 1099 { 1100 struct work_request_hdr *wrp = (struct work_request_hdr *)d; 1101 struct tx_sw_desc *sd = &q->sdesc[pidx]; 1102 1103 sd->skb = skb; 1104 if (need_skb_unmap()) { 1105 sd->fragidx = 0; 1106 sd->addr_idx = 0; 1107 sd->sflit = flits; 1108 } 1109 1110 if (likely(ndesc == 1)) { 1111 sd->eop = 1; 1112 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | 1113 V_WR_SGLSFLT(flits)) | wr_hi; 1114 dma_wmb(); 1115 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | 1116 V_WR_GEN(gen)) | wr_lo; 1117 wr_gen2(d, gen); 1118 } else { 1119 unsigned int ogen = gen; 1120 const u64 *fp = (const u64 *)sgl; 1121 struct work_request_hdr *wp = wrp; 1122 1123 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | 1124 V_WR_SGLSFLT(flits)) | wr_hi; 1125 1126 while (sgl_flits) { 1127 unsigned int avail = WR_FLITS - flits; 1128 1129 if (avail > sgl_flits) 1130 avail = sgl_flits; 1131 memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); 1132 sgl_flits -= avail; 1133 ndesc--; 1134 if (!sgl_flits) 1135 break; 1136 1137 fp += avail; 1138 d++; 1139 sd->eop = 0; 1140 sd++; 1141 if (++pidx == q->size) { 1142 pidx = 0; 1143 gen ^= 1; 1144 d = q->desc; 1145 sd = q->sdesc; 1146 } 1147 1148 sd->skb = skb; 1149 wrp = (struct work_request_hdr *)d; 1150 wrp->wr_hi = htonl(V_WR_DATATYPE(1) | 1151 V_WR_SGLSFLT(1)) | wr_hi; 1152 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, 1153 sgl_flits + 1)) | 1154 V_WR_GEN(gen)) | wr_lo; 1155 wr_gen2(d, gen); 1156 flits = 1; 1157 } 1158 sd->eop = 1; 1159 wrp->wr_hi |= htonl(F_WR_EOP); 1160 dma_wmb(); 1161 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; 1162 wr_gen2((struct tx_desc *)wp, ogen); 1163 WARN_ON(ndesc != 0); 1164 } 1165 } 1166 1167 /** 1168 * write_tx_pkt_wr - write a TX_PKT work request 1169 * @adap: the adapter 1170 * @skb: the packet to send 1171 * @pi: the egress interface 1172 * @pidx: index of the first Tx descriptor to write 1173 * @gen: the generation value to use 1174 * @q: the Tx queue 1175 * @ndesc: number of descriptors the packet will occupy 1176 * @compl: the value of the COMPL bit to use 1177 * @addr: address 1178 * 1179 * Generate a TX_PKT work request to send the supplied packet. 1180 */ 1181 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, 1182 const struct port_info *pi, 1183 unsigned int pidx, unsigned int gen, 1184 struct sge_txq *q, unsigned int ndesc, 1185 unsigned int compl, const dma_addr_t *addr) 1186 { 1187 unsigned int flits, sgl_flits, cntrl, tso_info; 1188 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1189 struct tx_desc *d = &q->desc[pidx]; 1190 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; 1191 1192 cpl->len = htonl(skb->len); 1193 cntrl = V_TXPKT_INTF(pi->port_id); 1194 1195 if (skb_vlan_tag_present(skb)) 1196 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); 1197 1198 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); 1199 if (tso_info) { 1200 int eth_type; 1201 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; 1202 1203 d->flit[2] = 0; 1204 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); 1205 hdr->cntrl = htonl(cntrl); 1206 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1207 CPL_ETH_II : CPL_ETH_II_VLAN; 1208 tso_info |= V_LSO_ETH_TYPE(eth_type) | 1209 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | 1210 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); 1211 hdr->lso_info = htonl(tso_info); 1212 flits = 3; 1213 } else { 1214 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); 1215 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ 1216 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); 1217 cpl->cntrl = htonl(cntrl); 1218 1219 if (skb->len <= WR_LEN - sizeof(*cpl)) { 1220 q->sdesc[pidx].skb = NULL; 1221 if (!skb->data_len) 1222 skb_copy_from_linear_data(skb, &d->flit[2], 1223 skb->len); 1224 else 1225 skb_copy_bits(skb, 0, &d->flit[2], skb->len); 1226 1227 flits = (skb->len + 7) / 8 + 2; 1228 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | 1229 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) 1230 | F_WR_SOP | F_WR_EOP | compl); 1231 dma_wmb(); 1232 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | 1233 V_WR_TID(q->token)); 1234 wr_gen2(d, gen); 1235 dev_consume_skb_any(skb); 1236 return; 1237 } 1238 1239 flits = 2; 1240 } 1241 1242 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1243 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr); 1244 1245 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, 1246 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), 1247 htonl(V_WR_TID(q->token))); 1248 } 1249 1250 static inline void t3_stop_tx_queue(struct netdev_queue *txq, 1251 struct sge_qset *qs, struct sge_txq *q) 1252 { 1253 netif_tx_stop_queue(txq); 1254 set_bit(TXQ_ETH, &qs->txq_stopped); 1255 q->stops++; 1256 } 1257 1258 /** 1259 * eth_xmit - add a packet to the Ethernet Tx queue 1260 * @skb: the packet 1261 * @dev: the egress net device 1262 * 1263 * Add a packet to an SGE Tx queue. Runs with softirqs disabled. 1264 */ 1265 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1266 { 1267 int qidx; 1268 unsigned int ndesc, pidx, credits, gen, compl; 1269 const struct port_info *pi = netdev_priv(dev); 1270 struct adapter *adap = pi->adapter; 1271 struct netdev_queue *txq; 1272 struct sge_qset *qs; 1273 struct sge_txq *q; 1274 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1275 1276 /* 1277 * The chip min packet length is 9 octets but play safe and reject 1278 * anything shorter than an Ethernet header. 1279 */ 1280 if (unlikely(skb->len < ETH_HLEN)) { 1281 dev_kfree_skb_any(skb); 1282 return NETDEV_TX_OK; 1283 } 1284 1285 qidx = skb_get_queue_mapping(skb); 1286 qs = &pi->qs[qidx]; 1287 q = &qs->txq[TXQ_ETH]; 1288 txq = netdev_get_tx_queue(dev, qidx); 1289 1290 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1291 1292 credits = q->size - q->in_use; 1293 ndesc = calc_tx_descs(skb); 1294 1295 if (unlikely(credits < ndesc)) { 1296 t3_stop_tx_queue(txq, qs, q); 1297 dev_err(&adap->pdev->dev, 1298 "%s: Tx ring %u full while queue awake!\n", 1299 dev->name, q->cntxt_id & 7); 1300 return NETDEV_TX_BUSY; 1301 } 1302 1303 /* Check if ethernet packet can't be sent as immediate data */ 1304 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) { 1305 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) { 1306 dev_kfree_skb(skb); 1307 return NETDEV_TX_OK; 1308 } 1309 } 1310 1311 q->in_use += ndesc; 1312 if (unlikely(credits - ndesc < q->stop_thres)) { 1313 t3_stop_tx_queue(txq, qs, q); 1314 1315 if (should_restart_tx(q) && 1316 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1317 q->restarts++; 1318 netif_tx_start_queue(txq); 1319 } 1320 } 1321 1322 gen = q->gen; 1323 q->unacked += ndesc; 1324 compl = (q->unacked & 8) << (S_WR_COMPL - 3); 1325 q->unacked &= 7; 1326 pidx = q->pidx; 1327 q->pidx += ndesc; 1328 if (q->pidx >= q->size) { 1329 q->pidx -= q->size; 1330 q->gen ^= 1; 1331 } 1332 1333 /* update port statistics */ 1334 if (skb->ip_summed == CHECKSUM_PARTIAL) 1335 qs->port_stats[SGE_PSTAT_TX_CSUM]++; 1336 if (skb_shinfo(skb)->gso_size) 1337 qs->port_stats[SGE_PSTAT_TSO]++; 1338 if (skb_vlan_tag_present(skb)) 1339 qs->port_stats[SGE_PSTAT_VLANINS]++; 1340 1341 /* 1342 * We do not use Tx completion interrupts to free DMAd Tx packets. 1343 * This is good for performance but means that we rely on new Tx 1344 * packets arriving to run the destructors of completed packets, 1345 * which open up space in their sockets' send queues. Sometimes 1346 * we do not get such new packets causing Tx to stall. A single 1347 * UDP transmitter is a good example of this situation. We have 1348 * a clean up timer that periodically reclaims completed packets 1349 * but it doesn't run often enough (nor do we want it to) to prevent 1350 * lengthy stalls. A solution to this problem is to run the 1351 * destructor early, after the packet is queued but before it's DMAd. 1352 * A cons is that we lie to socket memory accounting, but the amount 1353 * of extra memory is reasonable (limited by the number of Tx 1354 * descriptors), the packets do actually get freed quickly by new 1355 * packets almost always, and for protocols like TCP that wait for 1356 * acks to really free up the data the extra memory is even less. 1357 * On the positive side we run the destructors on the sending CPU 1358 * rather than on a potentially different completing CPU, usually a 1359 * good thing. We also run them without holding our Tx queue lock, 1360 * unlike what reclaim_completed_tx() would otherwise do. 1361 * 1362 * Run the destructor before telling the DMA engine about the packet 1363 * to make sure it doesn't complete and get freed prematurely. 1364 */ 1365 if (likely(!skb_shared(skb))) 1366 skb_orphan(skb); 1367 1368 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr); 1369 check_ring_tx_db(adap, q); 1370 return NETDEV_TX_OK; 1371 } 1372 1373 /** 1374 * write_imm - write a packet into a Tx descriptor as immediate data 1375 * @d: the Tx descriptor to write 1376 * @skb: the packet 1377 * @len: the length of packet data to write as immediate data 1378 * @gen: the generation bit value to write 1379 * 1380 * Writes a packet as immediate data into a Tx descriptor. The packet 1381 * contains a work request at its beginning. We must write the packet 1382 * carefully so the SGE doesn't read it accidentally before it's written 1383 * in its entirety. 1384 */ 1385 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, 1386 unsigned int len, unsigned int gen) 1387 { 1388 struct work_request_hdr *from = (struct work_request_hdr *)skb->data; 1389 struct work_request_hdr *to = (struct work_request_hdr *)d; 1390 1391 if (likely(!skb->data_len)) 1392 memcpy(&to[1], &from[1], len - sizeof(*from)); 1393 else 1394 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); 1395 1396 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | 1397 V_WR_BCNTLFLT(len & 7)); 1398 dma_wmb(); 1399 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | 1400 V_WR_LEN((len + 7) / 8)); 1401 wr_gen2(d, gen); 1402 kfree_skb(skb); 1403 } 1404 1405 /** 1406 * check_desc_avail - check descriptor availability on a send queue 1407 * @adap: the adapter 1408 * @q: the send queue 1409 * @skb: the packet needing the descriptors 1410 * @ndesc: the number of Tx descriptors needed 1411 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) 1412 * 1413 * Checks if the requested number of Tx descriptors is available on an 1414 * SGE send queue. If the queue is already suspended or not enough 1415 * descriptors are available the packet is queued for later transmission. 1416 * Must be called with the Tx queue locked. 1417 * 1418 * Returns 0 if enough descriptors are available, 1 if there aren't 1419 * enough descriptors and the packet has been queued, and 2 if the caller 1420 * needs to retry because there weren't enough descriptors at the 1421 * beginning of the call but some freed up in the mean time. 1422 */ 1423 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, 1424 struct sk_buff *skb, unsigned int ndesc, 1425 unsigned int qid) 1426 { 1427 if (unlikely(!skb_queue_empty(&q->sendq))) { 1428 addq_exit:__skb_queue_tail(&q->sendq, skb); 1429 return 1; 1430 } 1431 if (unlikely(q->size - q->in_use < ndesc)) { 1432 struct sge_qset *qs = txq_to_qset(q, qid); 1433 1434 set_bit(qid, &qs->txq_stopped); 1435 smp_mb__after_atomic(); 1436 1437 if (should_restart_tx(q) && 1438 test_and_clear_bit(qid, &qs->txq_stopped)) 1439 return 2; 1440 1441 q->stops++; 1442 goto addq_exit; 1443 } 1444 return 0; 1445 } 1446 1447 /** 1448 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1449 * @q: the SGE control Tx queue 1450 * 1451 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1452 * that send only immediate data (presently just the control queues) and 1453 * thus do not have any sk_buffs to release. 1454 */ 1455 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1456 { 1457 unsigned int reclaim = q->processed - q->cleaned; 1458 1459 q->in_use -= reclaim; 1460 q->cleaned += reclaim; 1461 } 1462 1463 static inline int immediate(const struct sk_buff *skb) 1464 { 1465 return skb->len <= WR_LEN; 1466 } 1467 1468 /** 1469 * ctrl_xmit - send a packet through an SGE control Tx queue 1470 * @adap: the adapter 1471 * @q: the control queue 1472 * @skb: the packet 1473 * 1474 * Send a packet through an SGE control Tx queue. Packets sent through 1475 * a control queue must fit entirely as immediate data in a single Tx 1476 * descriptor and have no page fragments. 1477 */ 1478 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, 1479 struct sk_buff *skb) 1480 { 1481 int ret; 1482 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; 1483 1484 if (unlikely(!immediate(skb))) { 1485 WARN_ON(1); 1486 dev_kfree_skb(skb); 1487 return NET_XMIT_SUCCESS; 1488 } 1489 1490 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); 1491 wrp->wr_lo = htonl(V_WR_TID(q->token)); 1492 1493 spin_lock(&q->lock); 1494 again:reclaim_completed_tx_imm(q); 1495 1496 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); 1497 if (unlikely(ret)) { 1498 if (ret == 1) { 1499 spin_unlock(&q->lock); 1500 return NET_XMIT_CN; 1501 } 1502 goto again; 1503 } 1504 1505 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1506 1507 q->in_use++; 1508 if (++q->pidx >= q->size) { 1509 q->pidx = 0; 1510 q->gen ^= 1; 1511 } 1512 spin_unlock(&q->lock); 1513 wmb(); 1514 t3_write_reg(adap, A_SG_KDOORBELL, 1515 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1516 return NET_XMIT_SUCCESS; 1517 } 1518 1519 /** 1520 * restart_ctrlq - restart a suspended control queue 1521 * @t: pointer to the tasklet associated with this handler 1522 * 1523 * Resumes transmission on a suspended Tx control queue. 1524 */ 1525 static void restart_ctrlq(struct tasklet_struct *t) 1526 { 1527 struct sk_buff *skb; 1528 struct sge_qset *qs = from_tasklet(qs, t, txq[TXQ_CTRL].qresume_tsk); 1529 struct sge_txq *q = &qs->txq[TXQ_CTRL]; 1530 1531 spin_lock(&q->lock); 1532 again:reclaim_completed_tx_imm(q); 1533 1534 while (q->in_use < q->size && 1535 (skb = __skb_dequeue(&q->sendq)) != NULL) { 1536 1537 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1538 1539 if (++q->pidx >= q->size) { 1540 q->pidx = 0; 1541 q->gen ^= 1; 1542 } 1543 q->in_use++; 1544 } 1545 1546 if (!skb_queue_empty(&q->sendq)) { 1547 set_bit(TXQ_CTRL, &qs->txq_stopped); 1548 smp_mb__after_atomic(); 1549 1550 if (should_restart_tx(q) && 1551 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) 1552 goto again; 1553 q->stops++; 1554 } 1555 1556 spin_unlock(&q->lock); 1557 wmb(); 1558 t3_write_reg(qs->adap, A_SG_KDOORBELL, 1559 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1560 } 1561 1562 /* 1563 * Send a management message through control queue 0 1564 */ 1565 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1566 { 1567 int ret; 1568 local_bh_disable(); 1569 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); 1570 local_bh_enable(); 1571 1572 return ret; 1573 } 1574 1575 /** 1576 * deferred_unmap_destructor - unmap a packet when it is freed 1577 * @skb: the packet 1578 * 1579 * This is the packet destructor used for Tx packets that need to remain 1580 * mapped until they are freed rather than until their Tx descriptors are 1581 * freed. 1582 */ 1583 static void deferred_unmap_destructor(struct sk_buff *skb) 1584 { 1585 int i; 1586 const dma_addr_t *p; 1587 const struct skb_shared_info *si; 1588 const struct deferred_unmap_info *dui; 1589 1590 dui = (struct deferred_unmap_info *)skb->head; 1591 p = dui->addr; 1592 1593 if (skb_tail_pointer(skb) - skb_transport_header(skb)) 1594 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) - 1595 skb_transport_header(skb), PCI_DMA_TODEVICE); 1596 1597 si = skb_shinfo(skb); 1598 for (i = 0; i < si->nr_frags; i++) 1599 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]), 1600 PCI_DMA_TODEVICE); 1601 } 1602 1603 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, 1604 const struct sg_ent *sgl, int sgl_flits) 1605 { 1606 dma_addr_t *p; 1607 struct deferred_unmap_info *dui; 1608 1609 dui = (struct deferred_unmap_info *)skb->head; 1610 dui->pdev = pdev; 1611 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { 1612 *p++ = be64_to_cpu(sgl->addr[0]); 1613 *p++ = be64_to_cpu(sgl->addr[1]); 1614 } 1615 if (sgl_flits) 1616 *p = be64_to_cpu(sgl->addr[0]); 1617 } 1618 1619 /** 1620 * write_ofld_wr - write an offload work request 1621 * @adap: the adapter 1622 * @skb: the packet to send 1623 * @q: the Tx queue 1624 * @pidx: index of the first Tx descriptor to write 1625 * @gen: the generation value to use 1626 * @ndesc: number of descriptors the packet will occupy 1627 * @addr: the address 1628 * 1629 * Write an offload work request to send the supplied packet. The packet 1630 * data already carry the work request with most fields populated. 1631 */ 1632 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, 1633 struct sge_txq *q, unsigned int pidx, 1634 unsigned int gen, unsigned int ndesc, 1635 const dma_addr_t *addr) 1636 { 1637 unsigned int sgl_flits, flits; 1638 struct work_request_hdr *from; 1639 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1640 struct tx_desc *d = &q->desc[pidx]; 1641 1642 if (immediate(skb)) { 1643 q->sdesc[pidx].skb = NULL; 1644 write_imm(d, skb, skb->len, gen); 1645 return; 1646 } 1647 1648 /* Only TX_DATA builds SGLs */ 1649 1650 from = (struct work_request_hdr *)skb->data; 1651 memcpy(&d->flit[1], &from[1], 1652 skb_transport_offset(skb) - sizeof(*from)); 1653 1654 flits = skb_transport_offset(skb) / 8; 1655 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1656 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb), 1657 skb_tail_pointer(skb) - skb_transport_header(skb), 1658 addr); 1659 if (need_skb_unmap()) { 1660 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); 1661 skb->destructor = deferred_unmap_destructor; 1662 } 1663 1664 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, 1665 gen, from->wr_hi, from->wr_lo); 1666 } 1667 1668 /** 1669 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet 1670 * @skb: the packet 1671 * 1672 * Returns the number of Tx descriptors needed for the given offload 1673 * packet. These packets are already fully constructed. 1674 */ 1675 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) 1676 { 1677 unsigned int flits, cnt; 1678 1679 if (skb->len <= WR_LEN) 1680 return 1; /* packet fits as immediate data */ 1681 1682 flits = skb_transport_offset(skb) / 8; /* headers */ 1683 cnt = skb_shinfo(skb)->nr_frags; 1684 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1685 cnt++; 1686 return flits_to_desc(flits + sgl_len(cnt)); 1687 } 1688 1689 /** 1690 * ofld_xmit - send a packet through an offload queue 1691 * @adap: the adapter 1692 * @q: the Tx offload queue 1693 * @skb: the packet 1694 * 1695 * Send an offload packet through an SGE offload queue. 1696 */ 1697 static int ofld_xmit(struct adapter *adap, struct sge_txq *q, 1698 struct sk_buff *skb) 1699 { 1700 int ret; 1701 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; 1702 1703 spin_lock(&q->lock); 1704 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1705 1706 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); 1707 if (unlikely(ret)) { 1708 if (ret == 1) { 1709 skb->priority = ndesc; /* save for restart */ 1710 spin_unlock(&q->lock); 1711 return NET_XMIT_CN; 1712 } 1713 goto again; 1714 } 1715 1716 if (!immediate(skb) && 1717 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) { 1718 spin_unlock(&q->lock); 1719 return NET_XMIT_SUCCESS; 1720 } 1721 1722 gen = q->gen; 1723 q->in_use += ndesc; 1724 pidx = q->pidx; 1725 q->pidx += ndesc; 1726 if (q->pidx >= q->size) { 1727 q->pidx -= q->size; 1728 q->gen ^= 1; 1729 } 1730 spin_unlock(&q->lock); 1731 1732 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head); 1733 check_ring_tx_db(adap, q); 1734 return NET_XMIT_SUCCESS; 1735 } 1736 1737 /** 1738 * restart_offloadq - restart a suspended offload queue 1739 * @t: pointer to the tasklet associated with this handler 1740 * 1741 * Resumes transmission on a suspended Tx offload queue. 1742 */ 1743 static void restart_offloadq(struct tasklet_struct *t) 1744 { 1745 struct sk_buff *skb; 1746 struct sge_qset *qs = from_tasklet(qs, t, txq[TXQ_OFLD].qresume_tsk); 1747 struct sge_txq *q = &qs->txq[TXQ_OFLD]; 1748 const struct port_info *pi = netdev_priv(qs->netdev); 1749 struct adapter *adap = pi->adapter; 1750 unsigned int written = 0; 1751 1752 spin_lock(&q->lock); 1753 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1754 1755 while ((skb = skb_peek(&q->sendq)) != NULL) { 1756 unsigned int gen, pidx; 1757 unsigned int ndesc = skb->priority; 1758 1759 if (unlikely(q->size - q->in_use < ndesc)) { 1760 set_bit(TXQ_OFLD, &qs->txq_stopped); 1761 smp_mb__after_atomic(); 1762 1763 if (should_restart_tx(q) && 1764 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) 1765 goto again; 1766 q->stops++; 1767 break; 1768 } 1769 1770 if (!immediate(skb) && 1771 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) 1772 break; 1773 1774 gen = q->gen; 1775 q->in_use += ndesc; 1776 pidx = q->pidx; 1777 q->pidx += ndesc; 1778 written += ndesc; 1779 if (q->pidx >= q->size) { 1780 q->pidx -= q->size; 1781 q->gen ^= 1; 1782 } 1783 __skb_unlink(skb, &q->sendq); 1784 spin_unlock(&q->lock); 1785 1786 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, 1787 (dma_addr_t *)skb->head); 1788 spin_lock(&q->lock); 1789 } 1790 spin_unlock(&q->lock); 1791 1792 #if USE_GTS 1793 set_bit(TXQ_RUNNING, &q->flags); 1794 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1795 #endif 1796 wmb(); 1797 if (likely(written)) 1798 t3_write_reg(adap, A_SG_KDOORBELL, 1799 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1800 } 1801 1802 /** 1803 * queue_set - return the queue set a packet should use 1804 * @skb: the packet 1805 * 1806 * Maps a packet to the SGE queue set it should use. The desired queue 1807 * set is carried in bits 1-3 in the packet's priority. 1808 */ 1809 static inline int queue_set(const struct sk_buff *skb) 1810 { 1811 return skb->priority >> 1; 1812 } 1813 1814 /** 1815 * is_ctrl_pkt - return whether an offload packet is a control packet 1816 * @skb: the packet 1817 * 1818 * Determines whether an offload packet should use an OFLD or a CTRL 1819 * Tx queue. This is indicated by bit 0 in the packet's priority. 1820 */ 1821 static inline int is_ctrl_pkt(const struct sk_buff *skb) 1822 { 1823 return skb->priority & 1; 1824 } 1825 1826 /** 1827 * t3_offload_tx - send an offload packet 1828 * @tdev: the offload device to send to 1829 * @skb: the packet 1830 * 1831 * Sends an offload packet. We use the packet priority to select the 1832 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1833 * should be sent as regular or control, bits 1-3 select the queue set. 1834 */ 1835 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 1836 { 1837 struct adapter *adap = tdev2adap(tdev); 1838 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; 1839 1840 if (unlikely(is_ctrl_pkt(skb))) 1841 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); 1842 1843 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); 1844 } 1845 1846 /** 1847 * offload_enqueue - add an offload packet to an SGE offload receive queue 1848 * @q: the SGE response queue 1849 * @skb: the packet 1850 * 1851 * Add a new offload packet to an SGE response queue's offload packet 1852 * queue. If the packet is the first on the queue it schedules the RX 1853 * softirq to process the queue. 1854 */ 1855 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) 1856 { 1857 int was_empty = skb_queue_empty(&q->rx_queue); 1858 1859 __skb_queue_tail(&q->rx_queue, skb); 1860 1861 if (was_empty) { 1862 struct sge_qset *qs = rspq_to_qset(q); 1863 1864 napi_schedule(&qs->napi); 1865 } 1866 } 1867 1868 /** 1869 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts 1870 * @tdev: the offload device that will be receiving the packets 1871 * @q: the SGE response queue that assembled the bundle 1872 * @skbs: the partial bundle 1873 * @n: the number of packets in the bundle 1874 * 1875 * Delivers a (partial) bundle of Rx offload packets to an offload device. 1876 */ 1877 static inline void deliver_partial_bundle(struct t3cdev *tdev, 1878 struct sge_rspq *q, 1879 struct sk_buff *skbs[], int n) 1880 { 1881 if (n) { 1882 q->offload_bundles++; 1883 tdev->recv(tdev, skbs, n); 1884 } 1885 } 1886 1887 /** 1888 * ofld_poll - NAPI handler for offload packets in interrupt mode 1889 * @napi: the network device doing the polling 1890 * @budget: polling budget 1891 * 1892 * The NAPI handler for offload packets when a response queue is serviced 1893 * by the hard interrupt handler, i.e., when it's operating in non-polling 1894 * mode. Creates small packet batches and sends them through the offload 1895 * receive handler. Batches need to be of modest size as we do prefetches 1896 * on the packets in each. 1897 */ 1898 static int ofld_poll(struct napi_struct *napi, int budget) 1899 { 1900 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 1901 struct sge_rspq *q = &qs->rspq; 1902 struct adapter *adapter = qs->adap; 1903 int work_done = 0; 1904 1905 while (work_done < budget) { 1906 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; 1907 struct sk_buff_head queue; 1908 int ngathered; 1909 1910 spin_lock_irq(&q->lock); 1911 __skb_queue_head_init(&queue); 1912 skb_queue_splice_init(&q->rx_queue, &queue); 1913 if (skb_queue_empty(&queue)) { 1914 napi_complete_done(napi, work_done); 1915 spin_unlock_irq(&q->lock); 1916 return work_done; 1917 } 1918 spin_unlock_irq(&q->lock); 1919 1920 ngathered = 0; 1921 skb_queue_walk_safe(&queue, skb, tmp) { 1922 if (work_done >= budget) 1923 break; 1924 work_done++; 1925 1926 __skb_unlink(skb, &queue); 1927 prefetch(skb->data); 1928 skbs[ngathered] = skb; 1929 if (++ngathered == RX_BUNDLE_SIZE) { 1930 q->offload_bundles++; 1931 adapter->tdev.recv(&adapter->tdev, skbs, 1932 ngathered); 1933 ngathered = 0; 1934 } 1935 } 1936 if (!skb_queue_empty(&queue)) { 1937 /* splice remaining packets back onto Rx queue */ 1938 spin_lock_irq(&q->lock); 1939 skb_queue_splice(&queue, &q->rx_queue); 1940 spin_unlock_irq(&q->lock); 1941 } 1942 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); 1943 } 1944 1945 return work_done; 1946 } 1947 1948 /** 1949 * rx_offload - process a received offload packet 1950 * @tdev: the offload device receiving the packet 1951 * @rq: the response queue that received the packet 1952 * @skb: the packet 1953 * @rx_gather: a gather list of packets if we are building a bundle 1954 * @gather_idx: index of the next available slot in the bundle 1955 * 1956 * Process an ingress offload pakcet and add it to the offload ingress 1957 * queue. Returns the index of the next available slot in the bundle. 1958 */ 1959 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, 1960 struct sk_buff *skb, struct sk_buff *rx_gather[], 1961 unsigned int gather_idx) 1962 { 1963 skb_reset_mac_header(skb); 1964 skb_reset_network_header(skb); 1965 skb_reset_transport_header(skb); 1966 1967 if (rq->polling) { 1968 rx_gather[gather_idx++] = skb; 1969 if (gather_idx == RX_BUNDLE_SIZE) { 1970 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); 1971 gather_idx = 0; 1972 rq->offload_bundles++; 1973 } 1974 } else 1975 offload_enqueue(rq, skb); 1976 1977 return gather_idx; 1978 } 1979 1980 /** 1981 * restart_tx - check whether to restart suspended Tx queues 1982 * @qs: the queue set to resume 1983 * 1984 * Restarts suspended Tx queues of an SGE queue set if they have enough 1985 * free resources to resume operation. 1986 */ 1987 static void restart_tx(struct sge_qset *qs) 1988 { 1989 if (test_bit(TXQ_ETH, &qs->txq_stopped) && 1990 should_restart_tx(&qs->txq[TXQ_ETH]) && 1991 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1992 qs->txq[TXQ_ETH].restarts++; 1993 if (netif_running(qs->netdev)) 1994 netif_tx_wake_queue(qs->tx_q); 1995 } 1996 1997 if (test_bit(TXQ_OFLD, &qs->txq_stopped) && 1998 should_restart_tx(&qs->txq[TXQ_OFLD]) && 1999 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { 2000 qs->txq[TXQ_OFLD].restarts++; 2001 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); 2002 } 2003 if (test_bit(TXQ_CTRL, &qs->txq_stopped) && 2004 should_restart_tx(&qs->txq[TXQ_CTRL]) && 2005 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { 2006 qs->txq[TXQ_CTRL].restarts++; 2007 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); 2008 } 2009 } 2010 2011 /** 2012 * cxgb3_arp_process - process an ARP request probing a private IP address 2013 * @pi: the port info 2014 * @skb: the skbuff containing the ARP request 2015 * 2016 * Check if the ARP request is probing the private IP address 2017 * dedicated to iSCSI, generate an ARP reply if so. 2018 */ 2019 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) 2020 { 2021 struct net_device *dev = skb->dev; 2022 struct arphdr *arp; 2023 unsigned char *arp_ptr; 2024 unsigned char *sha; 2025 __be32 sip, tip; 2026 2027 if (!dev) 2028 return; 2029 2030 skb_reset_network_header(skb); 2031 arp = arp_hdr(skb); 2032 2033 if (arp->ar_op != htons(ARPOP_REQUEST)) 2034 return; 2035 2036 arp_ptr = (unsigned char *)(arp + 1); 2037 sha = arp_ptr; 2038 arp_ptr += dev->addr_len; 2039 memcpy(&sip, arp_ptr, sizeof(sip)); 2040 arp_ptr += sizeof(sip); 2041 arp_ptr += dev->addr_len; 2042 memcpy(&tip, arp_ptr, sizeof(tip)); 2043 2044 if (tip != pi->iscsi_ipv4addr) 2045 return; 2046 2047 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, 2048 pi->iscsic.mac_addr, sha); 2049 2050 } 2051 2052 static inline int is_arp(struct sk_buff *skb) 2053 { 2054 return skb->protocol == htons(ETH_P_ARP); 2055 } 2056 2057 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, 2058 struct sk_buff *skb) 2059 { 2060 if (is_arp(skb)) { 2061 cxgb3_arp_process(pi, skb); 2062 return; 2063 } 2064 2065 if (pi->iscsic.recv) 2066 pi->iscsic.recv(pi, skb); 2067 2068 } 2069 2070 /** 2071 * rx_eth - process an ingress ethernet packet 2072 * @adap: the adapter 2073 * @rq: the response queue that received the packet 2074 * @skb: the packet 2075 * @pad: padding 2076 * @lro: large receive offload 2077 * 2078 * Process an ingress ethernet pakcet and deliver it to the stack. 2079 * The padding is 2 if the packet was delivered in an Rx buffer and 0 2080 * if it was immediate data in a response. 2081 */ 2082 static void rx_eth(struct adapter *adap, struct sge_rspq *rq, 2083 struct sk_buff *skb, int pad, int lro) 2084 { 2085 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); 2086 struct sge_qset *qs = rspq_to_qset(rq); 2087 struct port_info *pi; 2088 2089 skb_pull(skb, sizeof(*p) + pad); 2090 skb->protocol = eth_type_trans(skb, adap->port[p->iff]); 2091 pi = netdev_priv(skb->dev); 2092 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && 2093 p->csum == htons(0xffff) && !p->fragment) { 2094 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2095 skb->ip_summed = CHECKSUM_UNNECESSARY; 2096 } else 2097 skb_checksum_none_assert(skb); 2098 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2099 2100 if (p->vlan_valid) { 2101 qs->port_stats[SGE_PSTAT_VLANEX]++; 2102 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 2103 } 2104 if (rq->polling) { 2105 if (lro) 2106 napi_gro_receive(&qs->napi, skb); 2107 else { 2108 if (unlikely(pi->iscsic.flags)) 2109 cxgb3_process_iscsi_prov_pack(pi, skb); 2110 netif_receive_skb(skb); 2111 } 2112 } else 2113 netif_rx(skb); 2114 } 2115 2116 static inline int is_eth_tcp(u32 rss) 2117 { 2118 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; 2119 } 2120 2121 /** 2122 * lro_add_page - add a page chunk to an LRO session 2123 * @adap: the adapter 2124 * @qs: the associated queue set 2125 * @fl: the free list containing the page chunk to add 2126 * @len: packet length 2127 * @complete: Indicates the last fragment of a frame 2128 * 2129 * Add a received packet contained in a page chunk to an existing LRO 2130 * session. 2131 */ 2132 static void lro_add_page(struct adapter *adap, struct sge_qset *qs, 2133 struct sge_fl *fl, int len, int complete) 2134 { 2135 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2136 struct port_info *pi = netdev_priv(qs->netdev); 2137 struct sk_buff *skb = NULL; 2138 struct cpl_rx_pkt *cpl; 2139 skb_frag_t *rx_frag; 2140 int nr_frags; 2141 int offset = 0; 2142 2143 if (!qs->nomem) { 2144 skb = napi_get_frags(&qs->napi); 2145 qs->nomem = !skb; 2146 } 2147 2148 fl->credits--; 2149 2150 pci_dma_sync_single_for_cpu(adap->pdev, 2151 dma_unmap_addr(sd, dma_addr), 2152 fl->buf_size - SGE_PG_RSVD, 2153 PCI_DMA_FROMDEVICE); 2154 2155 (*sd->pg_chunk.p_cnt)--; 2156 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 2157 pci_unmap_page(adap->pdev, 2158 sd->pg_chunk.mapping, 2159 fl->alloc_size, 2160 PCI_DMA_FROMDEVICE); 2161 2162 if (!skb) { 2163 put_page(sd->pg_chunk.page); 2164 if (complete) 2165 qs->nomem = 0; 2166 return; 2167 } 2168 2169 rx_frag = skb_shinfo(skb)->frags; 2170 nr_frags = skb_shinfo(skb)->nr_frags; 2171 2172 if (!nr_frags) { 2173 offset = 2 + sizeof(struct cpl_rx_pkt); 2174 cpl = qs->lro_va = sd->pg_chunk.va + 2; 2175 2176 if ((qs->netdev->features & NETIF_F_RXCSUM) && 2177 cpl->csum_valid && cpl->csum == htons(0xffff)) { 2178 skb->ip_summed = CHECKSUM_UNNECESSARY; 2179 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2180 } else 2181 skb->ip_summed = CHECKSUM_NONE; 2182 } else 2183 cpl = qs->lro_va; 2184 2185 len -= offset; 2186 2187 rx_frag += nr_frags; 2188 __skb_frag_set_page(rx_frag, sd->pg_chunk.page); 2189 skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset); 2190 skb_frag_size_set(rx_frag, len); 2191 2192 skb->len += len; 2193 skb->data_len += len; 2194 skb->truesize += len; 2195 skb_shinfo(skb)->nr_frags++; 2196 2197 if (!complete) 2198 return; 2199 2200 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2201 2202 if (cpl->vlan_valid) { 2203 qs->port_stats[SGE_PSTAT_VLANEX]++; 2204 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 2205 } 2206 napi_gro_frags(&qs->napi); 2207 } 2208 2209 /** 2210 * handle_rsp_cntrl_info - handles control information in a response 2211 * @qs: the queue set corresponding to the response 2212 * @flags: the response control flags 2213 * 2214 * Handles the control information of an SGE response, such as GTS 2215 * indications and completion credits for the queue set's Tx queues. 2216 * HW coalesces credits, we don't do any extra SW coalescing. 2217 */ 2218 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) 2219 { 2220 unsigned int credits; 2221 2222 #if USE_GTS 2223 if (flags & F_RSPD_TXQ0_GTS) 2224 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); 2225 #endif 2226 2227 credits = G_RSPD_TXQ0_CR(flags); 2228 if (credits) 2229 qs->txq[TXQ_ETH].processed += credits; 2230 2231 credits = G_RSPD_TXQ2_CR(flags); 2232 if (credits) 2233 qs->txq[TXQ_CTRL].processed += credits; 2234 2235 # if USE_GTS 2236 if (flags & F_RSPD_TXQ1_GTS) 2237 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); 2238 # endif 2239 credits = G_RSPD_TXQ1_CR(flags); 2240 if (credits) 2241 qs->txq[TXQ_OFLD].processed += credits; 2242 } 2243 2244 /** 2245 * check_ring_db - check if we need to ring any doorbells 2246 * @adap: the adapter 2247 * @qs: the queue set whose Tx queues are to be examined 2248 * @sleeping: indicates which Tx queue sent GTS 2249 * 2250 * Checks if some of a queue set's Tx queues need to ring their doorbells 2251 * to resume transmission after idling while they still have unprocessed 2252 * descriptors. 2253 */ 2254 static void check_ring_db(struct adapter *adap, struct sge_qset *qs, 2255 unsigned int sleeping) 2256 { 2257 if (sleeping & F_RSPD_TXQ0_GTS) { 2258 struct sge_txq *txq = &qs->txq[TXQ_ETH]; 2259 2260 if (txq->cleaned + txq->in_use != txq->processed && 2261 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2262 set_bit(TXQ_RUNNING, &txq->flags); 2263 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2264 V_EGRCNTX(txq->cntxt_id)); 2265 } 2266 } 2267 2268 if (sleeping & F_RSPD_TXQ1_GTS) { 2269 struct sge_txq *txq = &qs->txq[TXQ_OFLD]; 2270 2271 if (txq->cleaned + txq->in_use != txq->processed && 2272 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2273 set_bit(TXQ_RUNNING, &txq->flags); 2274 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2275 V_EGRCNTX(txq->cntxt_id)); 2276 } 2277 } 2278 } 2279 2280 /** 2281 * is_new_response - check if a response is newly written 2282 * @r: the response descriptor 2283 * @q: the response queue 2284 * 2285 * Returns true if a response descriptor contains a yet unprocessed 2286 * response. 2287 */ 2288 static inline int is_new_response(const struct rsp_desc *r, 2289 const struct sge_rspq *q) 2290 { 2291 return (r->intr_gen & F_RSPD_GEN2) == q->gen; 2292 } 2293 2294 static inline void clear_rspq_bufstate(struct sge_rspq * const q) 2295 { 2296 q->pg_skb = NULL; 2297 q->rx_recycle_buf = 0; 2298 } 2299 2300 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) 2301 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ 2302 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ 2303 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ 2304 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) 2305 2306 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ 2307 #define NOMEM_INTR_DELAY 2500 2308 2309 /** 2310 * process_responses - process responses from an SGE response queue 2311 * @adap: the adapter 2312 * @qs: the queue set to which the response queue belongs 2313 * @budget: how many responses can be processed in this round 2314 * 2315 * Process responses from an SGE response queue up to the supplied budget. 2316 * Responses include received packets as well as credits and other events 2317 * for the queues that belong to the response queue's queue set. 2318 * A negative budget is effectively unlimited. 2319 * 2320 * Additionally choose the interrupt holdoff time for the next interrupt 2321 * on this queue. If the system is under memory shortage use a fairly 2322 * long delay to help recovery. 2323 */ 2324 static int process_responses(struct adapter *adap, struct sge_qset *qs, 2325 int budget) 2326 { 2327 struct sge_rspq *q = &qs->rspq; 2328 struct rsp_desc *r = &q->desc[q->cidx]; 2329 int budget_left = budget; 2330 unsigned int sleeping = 0; 2331 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; 2332 int ngathered = 0; 2333 2334 q->next_holdoff = q->holdoff_tmr; 2335 2336 while (likely(budget_left && is_new_response(r, q))) { 2337 int packet_complete, eth, ethpad = 2; 2338 int lro = !!(qs->netdev->features & NETIF_F_GRO); 2339 struct sk_buff *skb = NULL; 2340 u32 len, flags; 2341 __be32 rss_hi, rss_lo; 2342 2343 dma_rmb(); 2344 eth = r->rss_hdr.opcode == CPL_RX_PKT; 2345 rss_hi = *(const __be32 *)r; 2346 rss_lo = r->rss_hdr.rss_hash_val; 2347 flags = ntohl(r->flags); 2348 2349 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { 2350 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); 2351 if (!skb) 2352 goto no_mem; 2353 2354 __skb_put_data(skb, r, AN_PKT_SIZE); 2355 skb->data[0] = CPL_ASYNC_NOTIF; 2356 rss_hi = htonl(CPL_ASYNC_NOTIF << 24); 2357 q->async_notif++; 2358 } else if (flags & F_RSPD_IMM_DATA_VALID) { 2359 skb = get_imm_packet(r); 2360 if (unlikely(!skb)) { 2361 no_mem: 2362 q->next_holdoff = NOMEM_INTR_DELAY; 2363 q->nomem++; 2364 /* consume one credit since we tried */ 2365 budget_left--; 2366 break; 2367 } 2368 q->imm_data++; 2369 ethpad = 0; 2370 } else if ((len = ntohl(r->len_cq)) != 0) { 2371 struct sge_fl *fl; 2372 2373 lro &= eth && is_eth_tcp(rss_hi); 2374 2375 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2376 if (fl->use_pages) { 2377 void *addr = fl->sdesc[fl->cidx].pg_chunk.va; 2378 2379 net_prefetch(addr); 2380 __refill_fl(adap, fl); 2381 if (lro > 0) { 2382 lro_add_page(adap, qs, fl, 2383 G_RSPD_LEN(len), 2384 flags & F_RSPD_EOP); 2385 goto next_fl; 2386 } 2387 2388 skb = get_packet_pg(adap, fl, q, 2389 G_RSPD_LEN(len), 2390 eth ? 2391 SGE_RX_DROP_THRES : 0); 2392 q->pg_skb = skb; 2393 } else 2394 skb = get_packet(adap, fl, G_RSPD_LEN(len), 2395 eth ? SGE_RX_DROP_THRES : 0); 2396 if (unlikely(!skb)) { 2397 if (!eth) 2398 goto no_mem; 2399 q->rx_drops++; 2400 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) 2401 __skb_pull(skb, 2); 2402 next_fl: 2403 if (++fl->cidx == fl->size) 2404 fl->cidx = 0; 2405 } else 2406 q->pure_rsps++; 2407 2408 if (flags & RSPD_CTRL_MASK) { 2409 sleeping |= flags & RSPD_GTS_MASK; 2410 handle_rsp_cntrl_info(qs, flags); 2411 } 2412 2413 r++; 2414 if (unlikely(++q->cidx == q->size)) { 2415 q->cidx = 0; 2416 q->gen ^= 1; 2417 r = q->desc; 2418 } 2419 prefetch(r); 2420 2421 if (++q->credits >= (q->size / 4)) { 2422 refill_rspq(adap, q, q->credits); 2423 q->credits = 0; 2424 } 2425 2426 packet_complete = flags & 2427 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | 2428 F_RSPD_ASYNC_NOTIF); 2429 2430 if (skb != NULL && packet_complete) { 2431 if (eth) 2432 rx_eth(adap, q, skb, ethpad, lro); 2433 else { 2434 q->offload_pkts++; 2435 /* Preserve the RSS info in csum & priority */ 2436 skb->csum = rss_hi; 2437 skb->priority = rss_lo; 2438 ngathered = rx_offload(&adap->tdev, q, skb, 2439 offload_skbs, 2440 ngathered); 2441 } 2442 2443 if (flags & F_RSPD_EOP) 2444 clear_rspq_bufstate(q); 2445 } 2446 --budget_left; 2447 } 2448 2449 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); 2450 2451 if (sleeping) 2452 check_ring_db(adap, qs, sleeping); 2453 2454 smp_mb(); /* commit Tx queue .processed updates */ 2455 if (unlikely(qs->txq_stopped != 0)) 2456 restart_tx(qs); 2457 2458 budget -= budget_left; 2459 return budget; 2460 } 2461 2462 static inline int is_pure_response(const struct rsp_desc *r) 2463 { 2464 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); 2465 2466 return (n | r->len_cq) == 0; 2467 } 2468 2469 /** 2470 * napi_rx_handler - the NAPI handler for Rx processing 2471 * @napi: the napi instance 2472 * @budget: how many packets we can process in this round 2473 * 2474 * Handler for new data events when using NAPI. 2475 */ 2476 static int napi_rx_handler(struct napi_struct *napi, int budget) 2477 { 2478 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 2479 struct adapter *adap = qs->adap; 2480 int work_done = process_responses(adap, qs, budget); 2481 2482 if (likely(work_done < budget)) { 2483 napi_complete_done(napi, work_done); 2484 2485 /* 2486 * Because we don't atomically flush the following 2487 * write it is possible that in very rare cases it can 2488 * reach the device in a way that races with a new 2489 * response being written plus an error interrupt 2490 * causing the NAPI interrupt handler below to return 2491 * unhandled status to the OS. To protect against 2492 * this would require flushing the write and doing 2493 * both the write and the flush with interrupts off. 2494 * Way too expensive and unjustifiable given the 2495 * rarity of the race. 2496 * 2497 * The race cannot happen at all with MSI-X. 2498 */ 2499 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | 2500 V_NEWTIMER(qs->rspq.next_holdoff) | 2501 V_NEWINDEX(qs->rspq.cidx)); 2502 } 2503 return work_done; 2504 } 2505 2506 /* 2507 * Returns true if the device is already scheduled for polling. 2508 */ 2509 static inline int napi_is_scheduled(struct napi_struct *napi) 2510 { 2511 return test_bit(NAPI_STATE_SCHED, &napi->state); 2512 } 2513 2514 /** 2515 * process_pure_responses - process pure responses from a response queue 2516 * @adap: the adapter 2517 * @qs: the queue set owning the response queue 2518 * @r: the first pure response to process 2519 * 2520 * A simpler version of process_responses() that handles only pure (i.e., 2521 * non data-carrying) responses. Such respones are too light-weight to 2522 * justify calling a softirq under NAPI, so we handle them specially in 2523 * the interrupt handler. The function is called with a pointer to a 2524 * response, which the caller must ensure is a valid pure response. 2525 * 2526 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. 2527 */ 2528 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, 2529 struct rsp_desc *r) 2530 { 2531 struct sge_rspq *q = &qs->rspq; 2532 unsigned int sleeping = 0; 2533 2534 do { 2535 u32 flags = ntohl(r->flags); 2536 2537 r++; 2538 if (unlikely(++q->cidx == q->size)) { 2539 q->cidx = 0; 2540 q->gen ^= 1; 2541 r = q->desc; 2542 } 2543 prefetch(r); 2544 2545 if (flags & RSPD_CTRL_MASK) { 2546 sleeping |= flags & RSPD_GTS_MASK; 2547 handle_rsp_cntrl_info(qs, flags); 2548 } 2549 2550 q->pure_rsps++; 2551 if (++q->credits >= (q->size / 4)) { 2552 refill_rspq(adap, q, q->credits); 2553 q->credits = 0; 2554 } 2555 if (!is_new_response(r, q)) 2556 break; 2557 dma_rmb(); 2558 } while (is_pure_response(r)); 2559 2560 if (sleeping) 2561 check_ring_db(adap, qs, sleeping); 2562 2563 smp_mb(); /* commit Tx queue .processed updates */ 2564 if (unlikely(qs->txq_stopped != 0)) 2565 restart_tx(qs); 2566 2567 return is_new_response(r, q); 2568 } 2569 2570 /** 2571 * handle_responses - decide what to do with new responses in NAPI mode 2572 * @adap: the adapter 2573 * @q: the response queue 2574 * 2575 * This is used by the NAPI interrupt handlers to decide what to do with 2576 * new SGE responses. If there are no new responses it returns -1. If 2577 * there are new responses and they are pure (i.e., non-data carrying) 2578 * it handles them straight in hard interrupt context as they are very 2579 * cheap and don't deliver any packets. Finally, if there are any data 2580 * signaling responses it schedules the NAPI handler. Returns 1 if it 2581 * schedules NAPI, 0 if all new responses were pure. 2582 * 2583 * The caller must ascertain NAPI is not already running. 2584 */ 2585 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) 2586 { 2587 struct sge_qset *qs = rspq_to_qset(q); 2588 struct rsp_desc *r = &q->desc[q->cidx]; 2589 2590 if (!is_new_response(r, q)) 2591 return -1; 2592 dma_rmb(); 2593 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { 2594 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2595 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); 2596 return 0; 2597 } 2598 napi_schedule(&qs->napi); 2599 return 1; 2600 } 2601 2602 /* 2603 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case 2604 * (i.e., response queue serviced in hard interrupt). 2605 */ 2606 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) 2607 { 2608 struct sge_qset *qs = cookie; 2609 struct adapter *adap = qs->adap; 2610 struct sge_rspq *q = &qs->rspq; 2611 2612 spin_lock(&q->lock); 2613 if (process_responses(adap, qs, -1) == 0) 2614 q->unhandled_irqs++; 2615 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2616 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2617 spin_unlock(&q->lock); 2618 return IRQ_HANDLED; 2619 } 2620 2621 /* 2622 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 2623 * (i.e., response queue serviced by NAPI polling). 2624 */ 2625 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) 2626 { 2627 struct sge_qset *qs = cookie; 2628 struct sge_rspq *q = &qs->rspq; 2629 2630 spin_lock(&q->lock); 2631 2632 if (handle_responses(qs->adap, q) < 0) 2633 q->unhandled_irqs++; 2634 spin_unlock(&q->lock); 2635 return IRQ_HANDLED; 2636 } 2637 2638 /* 2639 * The non-NAPI MSI interrupt handler. This needs to handle data events from 2640 * SGE response queues as well as error and other async events as they all use 2641 * the same MSI vector. We use one SGE response queue per port in this mode 2642 * and protect all response queues with queue 0's lock. 2643 */ 2644 static irqreturn_t t3_intr_msi(int irq, void *cookie) 2645 { 2646 int new_packets = 0; 2647 struct adapter *adap = cookie; 2648 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2649 2650 spin_lock(&q->lock); 2651 2652 if (process_responses(adap, &adap->sge.qs[0], -1)) { 2653 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2654 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2655 new_packets = 1; 2656 } 2657 2658 if (adap->params.nports == 2 && 2659 process_responses(adap, &adap->sge.qs[1], -1)) { 2660 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2661 2662 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | 2663 V_NEWTIMER(q1->next_holdoff) | 2664 V_NEWINDEX(q1->cidx)); 2665 new_packets = 1; 2666 } 2667 2668 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2669 q->unhandled_irqs++; 2670 2671 spin_unlock(&q->lock); 2672 return IRQ_HANDLED; 2673 } 2674 2675 static int rspq_check_napi(struct sge_qset *qs) 2676 { 2677 struct sge_rspq *q = &qs->rspq; 2678 2679 if (!napi_is_scheduled(&qs->napi) && 2680 is_new_response(&q->desc[q->cidx], q)) { 2681 napi_schedule(&qs->napi); 2682 return 1; 2683 } 2684 return 0; 2685 } 2686 2687 /* 2688 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced 2689 * by NAPI polling). Handles data events from SGE response queues as well as 2690 * error and other async events as they all use the same MSI vector. We use 2691 * one SGE response queue per port in this mode and protect all response 2692 * queues with queue 0's lock. 2693 */ 2694 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) 2695 { 2696 int new_packets; 2697 struct adapter *adap = cookie; 2698 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2699 2700 spin_lock(&q->lock); 2701 2702 new_packets = rspq_check_napi(&adap->sge.qs[0]); 2703 if (adap->params.nports == 2) 2704 new_packets += rspq_check_napi(&adap->sge.qs[1]); 2705 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2706 q->unhandled_irqs++; 2707 2708 spin_unlock(&q->lock); 2709 return IRQ_HANDLED; 2710 } 2711 2712 /* 2713 * A helper function that processes responses and issues GTS. 2714 */ 2715 static inline int process_responses_gts(struct adapter *adap, 2716 struct sge_rspq *rq) 2717 { 2718 int work; 2719 2720 work = process_responses(adap, rspq_to_qset(rq), -1); 2721 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | 2722 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); 2723 return work; 2724 } 2725 2726 /* 2727 * The legacy INTx interrupt handler. This needs to handle data events from 2728 * SGE response queues as well as error and other async events as they all use 2729 * the same interrupt pin. We use one SGE response queue per port in this mode 2730 * and protect all response queues with queue 0's lock. 2731 */ 2732 static irqreturn_t t3_intr(int irq, void *cookie) 2733 { 2734 int work_done, w0, w1; 2735 struct adapter *adap = cookie; 2736 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2737 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2738 2739 spin_lock(&q0->lock); 2740 2741 w0 = is_new_response(&q0->desc[q0->cidx], q0); 2742 w1 = adap->params.nports == 2 && 2743 is_new_response(&q1->desc[q1->cidx], q1); 2744 2745 if (likely(w0 | w1)) { 2746 t3_write_reg(adap, A_PL_CLI, 0); 2747 t3_read_reg(adap, A_PL_CLI); /* flush */ 2748 2749 if (likely(w0)) 2750 process_responses_gts(adap, q0); 2751 2752 if (w1) 2753 process_responses_gts(adap, q1); 2754 2755 work_done = w0 | w1; 2756 } else 2757 work_done = t3_slow_intr_handler(adap); 2758 2759 spin_unlock(&q0->lock); 2760 return IRQ_RETVAL(work_done != 0); 2761 } 2762 2763 /* 2764 * Interrupt handler for legacy INTx interrupts for T3B-based cards. 2765 * Handles data events from SGE response queues as well as error and other 2766 * async events as they all use the same interrupt pin. We use one SGE 2767 * response queue per port in this mode and protect all response queues with 2768 * queue 0's lock. 2769 */ 2770 static irqreturn_t t3b_intr(int irq, void *cookie) 2771 { 2772 u32 map; 2773 struct adapter *adap = cookie; 2774 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2775 2776 t3_write_reg(adap, A_PL_CLI, 0); 2777 map = t3_read_reg(adap, A_SG_DATA_INTR); 2778 2779 if (unlikely(!map)) /* shared interrupt, most likely */ 2780 return IRQ_NONE; 2781 2782 spin_lock(&q0->lock); 2783 2784 if (unlikely(map & F_ERRINTR)) 2785 t3_slow_intr_handler(adap); 2786 2787 if (likely(map & 1)) 2788 process_responses_gts(adap, q0); 2789 2790 if (map & 2) 2791 process_responses_gts(adap, &adap->sge.qs[1].rspq); 2792 2793 spin_unlock(&q0->lock); 2794 return IRQ_HANDLED; 2795 } 2796 2797 /* 2798 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. 2799 * Handles data events from SGE response queues as well as error and other 2800 * async events as they all use the same interrupt pin. We use one SGE 2801 * response queue per port in this mode and protect all response queues with 2802 * queue 0's lock. 2803 */ 2804 static irqreturn_t t3b_intr_napi(int irq, void *cookie) 2805 { 2806 u32 map; 2807 struct adapter *adap = cookie; 2808 struct sge_qset *qs0 = &adap->sge.qs[0]; 2809 struct sge_rspq *q0 = &qs0->rspq; 2810 2811 t3_write_reg(adap, A_PL_CLI, 0); 2812 map = t3_read_reg(adap, A_SG_DATA_INTR); 2813 2814 if (unlikely(!map)) /* shared interrupt, most likely */ 2815 return IRQ_NONE; 2816 2817 spin_lock(&q0->lock); 2818 2819 if (unlikely(map & F_ERRINTR)) 2820 t3_slow_intr_handler(adap); 2821 2822 if (likely(map & 1)) 2823 napi_schedule(&qs0->napi); 2824 2825 if (map & 2) 2826 napi_schedule(&adap->sge.qs[1].napi); 2827 2828 spin_unlock(&q0->lock); 2829 return IRQ_HANDLED; 2830 } 2831 2832 /** 2833 * t3_intr_handler - select the top-level interrupt handler 2834 * @adap: the adapter 2835 * @polling: whether using NAPI to service response queues 2836 * 2837 * Selects the top-level interrupt handler based on the type of interrupts 2838 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the 2839 * response queues. 2840 */ 2841 irq_handler_t t3_intr_handler(struct adapter *adap, int polling) 2842 { 2843 if (adap->flags & USING_MSIX) 2844 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; 2845 if (adap->flags & USING_MSI) 2846 return polling ? t3_intr_msi_napi : t3_intr_msi; 2847 if (adap->params.rev > 0) 2848 return polling ? t3b_intr_napi : t3b_intr; 2849 return t3_intr; 2850 } 2851 2852 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 2853 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 2854 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 2855 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 2856 F_HIRCQPARITYERROR) 2857 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) 2858 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ 2859 F_RSPQDISABLED) 2860 2861 /** 2862 * t3_sge_err_intr_handler - SGE async event interrupt handler 2863 * @adapter: the adapter 2864 * 2865 * Interrupt handler for SGE asynchronous (non-data) events. 2866 */ 2867 void t3_sge_err_intr_handler(struct adapter *adapter) 2868 { 2869 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & 2870 ~F_FLEMPTY; 2871 2872 if (status & SGE_PARERR) 2873 CH_ALERT(adapter, "SGE parity error (0x%x)\n", 2874 status & SGE_PARERR); 2875 if (status & SGE_FRAMINGERR) 2876 CH_ALERT(adapter, "SGE framing error (0x%x)\n", 2877 status & SGE_FRAMINGERR); 2878 2879 if (status & F_RSPQCREDITOVERFOW) 2880 CH_ALERT(adapter, "SGE response queue credit overflow\n"); 2881 2882 if (status & F_RSPQDISABLED) { 2883 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); 2884 2885 CH_ALERT(adapter, 2886 "packet delivered to disabled response queue " 2887 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); 2888 } 2889 2890 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) 2891 queue_work(cxgb3_wq, &adapter->db_drop_task); 2892 2893 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) 2894 queue_work(cxgb3_wq, &adapter->db_full_task); 2895 2896 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) 2897 queue_work(cxgb3_wq, &adapter->db_empty_task); 2898 2899 t3_write_reg(adapter, A_SG_INT_CAUSE, status); 2900 if (status & SGE_FATALERR) 2901 t3_fatal_err(adapter); 2902 } 2903 2904 /** 2905 * sge_timer_tx - perform periodic maintenance of an SGE qset 2906 * @t: a timer list containing the SGE queue set to maintain 2907 * 2908 * Runs periodically from a timer to perform maintenance of an SGE queue 2909 * set. It performs two tasks: 2910 * 2911 * Cleans up any completed Tx descriptors that may still be pending. 2912 * Normal descriptor cleanup happens when new packets are added to a Tx 2913 * queue so this timer is relatively infrequent and does any cleanup only 2914 * if the Tx queue has not seen any new packets in a while. We make a 2915 * best effort attempt to reclaim descriptors, in that we don't wait 2916 * around if we cannot get a queue's lock (which most likely is because 2917 * someone else is queueing new packets and so will also handle the clean 2918 * up). Since control queues use immediate data exclusively we don't 2919 * bother cleaning them up here. 2920 * 2921 */ 2922 static void sge_timer_tx(struct timer_list *t) 2923 { 2924 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer); 2925 struct port_info *pi = netdev_priv(qs->netdev); 2926 struct adapter *adap = pi->adapter; 2927 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; 2928 unsigned long next_period; 2929 2930 if (__netif_tx_trylock(qs->tx_q)) { 2931 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], 2932 TX_RECLAIM_TIMER_CHUNK); 2933 __netif_tx_unlock(qs->tx_q); 2934 } 2935 2936 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { 2937 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], 2938 TX_RECLAIM_TIMER_CHUNK); 2939 spin_unlock(&qs->txq[TXQ_OFLD].lock); 2940 } 2941 2942 next_period = TX_RECLAIM_PERIOD >> 2943 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / 2944 TX_RECLAIM_TIMER_CHUNK); 2945 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); 2946 } 2947 2948 /** 2949 * sge_timer_rx - perform periodic maintenance of an SGE qset 2950 * @t: the timer list containing the SGE queue set to maintain 2951 * 2952 * a) Replenishes Rx queues that have run out due to memory shortage. 2953 * Normally new Rx buffers are added when existing ones are consumed but 2954 * when out of memory a queue can become empty. We try to add only a few 2955 * buffers here, the queue will be replenished fully as these new buffers 2956 * are used up if memory shortage has subsided. 2957 * 2958 * b) Return coalesced response queue credits in case a response queue is 2959 * starved. 2960 * 2961 */ 2962 static void sge_timer_rx(struct timer_list *t) 2963 { 2964 spinlock_t *lock; 2965 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer); 2966 struct port_info *pi = netdev_priv(qs->netdev); 2967 struct adapter *adap = pi->adapter; 2968 u32 status; 2969 2970 lock = adap->params.rev > 0 ? 2971 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; 2972 2973 if (!spin_trylock_irq(lock)) 2974 goto out; 2975 2976 if (napi_is_scheduled(&qs->napi)) 2977 goto unlock; 2978 2979 if (adap->params.rev < 4) { 2980 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); 2981 2982 if (status & (1 << qs->rspq.cntxt_id)) { 2983 qs->rspq.starved++; 2984 if (qs->rspq.credits) { 2985 qs->rspq.credits--; 2986 refill_rspq(adap, &qs->rspq, 1); 2987 qs->rspq.restarted++; 2988 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, 2989 1 << qs->rspq.cntxt_id); 2990 } 2991 } 2992 } 2993 2994 if (qs->fl[0].credits < qs->fl[0].size) 2995 __refill_fl(adap, &qs->fl[0]); 2996 if (qs->fl[1].credits < qs->fl[1].size) 2997 __refill_fl(adap, &qs->fl[1]); 2998 2999 unlock: 3000 spin_unlock_irq(lock); 3001 out: 3002 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 3003 } 3004 3005 /** 3006 * t3_update_qset_coalesce - update coalescing settings for a queue set 3007 * @qs: the SGE queue set 3008 * @p: new queue set parameters 3009 * 3010 * Update the coalescing settings for an SGE queue set. Nothing is done 3011 * if the queue set is not initialized yet. 3012 */ 3013 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) 3014 { 3015 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ 3016 qs->rspq.polling = p->polling; 3017 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; 3018 } 3019 3020 /** 3021 * t3_sge_alloc_qset - initialize an SGE queue set 3022 * @adapter: the adapter 3023 * @id: the queue set id 3024 * @nports: how many Ethernet ports will be using this queue set 3025 * @irq_vec_idx: the IRQ vector index for response queue interrupts 3026 * @p: configuration parameters for this queue set 3027 * @ntxq: number of Tx queues for the queue set 3028 * @dev: net device associated with this queue set 3029 * @netdevq: net device TX queue associated with this queue set 3030 * 3031 * Allocate resources and initialize an SGE queue set. A queue set 3032 * comprises a response queue, two Rx free-buffer queues, and up to 3 3033 * Tx queues. The Tx queues are assigned roles in the order Ethernet 3034 * queue, offload queue, and control queue. 3035 */ 3036 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, 3037 int irq_vec_idx, const struct qset_params *p, 3038 int ntxq, struct net_device *dev, 3039 struct netdev_queue *netdevq) 3040 { 3041 int i, avail, ret = -ENOMEM; 3042 struct sge_qset *q = &adapter->sge.qs[id]; 3043 3044 init_qset_cntxt(q, id); 3045 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0); 3046 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0); 3047 3048 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, 3049 sizeof(struct rx_desc), 3050 sizeof(struct rx_sw_desc), 3051 &q->fl[0].phys_addr, &q->fl[0].sdesc); 3052 if (!q->fl[0].desc) 3053 goto err; 3054 3055 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, 3056 sizeof(struct rx_desc), 3057 sizeof(struct rx_sw_desc), 3058 &q->fl[1].phys_addr, &q->fl[1].sdesc); 3059 if (!q->fl[1].desc) 3060 goto err; 3061 3062 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, 3063 sizeof(struct rsp_desc), 0, 3064 &q->rspq.phys_addr, NULL); 3065 if (!q->rspq.desc) 3066 goto err; 3067 3068 for (i = 0; i < ntxq; ++i) { 3069 /* 3070 * The control queue always uses immediate data so does not 3071 * need to keep track of any sk_buffs. 3072 */ 3073 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); 3074 3075 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], 3076 sizeof(struct tx_desc), sz, 3077 &q->txq[i].phys_addr, 3078 &q->txq[i].sdesc); 3079 if (!q->txq[i].desc) 3080 goto err; 3081 3082 q->txq[i].gen = 1; 3083 q->txq[i].size = p->txq_size[i]; 3084 spin_lock_init(&q->txq[i].lock); 3085 skb_queue_head_init(&q->txq[i].sendq); 3086 } 3087 3088 tasklet_setup(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq); 3089 tasklet_setup(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq); 3090 3091 q->fl[0].gen = q->fl[1].gen = 1; 3092 q->fl[0].size = p->fl_size; 3093 q->fl[1].size = p->jumbo_size; 3094 3095 q->rspq.gen = 1; 3096 q->rspq.size = p->rspq_size; 3097 spin_lock_init(&q->rspq.lock); 3098 skb_queue_head_init(&q->rspq.rx_queue); 3099 3100 q->txq[TXQ_ETH].stop_thres = nports * 3101 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); 3102 3103 #if FL0_PG_CHUNK_SIZE > 0 3104 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; 3105 #else 3106 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); 3107 #endif 3108 #if FL1_PG_CHUNK_SIZE > 0 3109 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; 3110 #else 3111 q->fl[1].buf_size = is_offload(adapter) ? 3112 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 3113 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); 3114 #endif 3115 3116 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; 3117 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; 3118 q->fl[0].order = FL0_PG_ORDER; 3119 q->fl[1].order = FL1_PG_ORDER; 3120 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; 3121 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; 3122 3123 spin_lock_irq(&adapter->sge.reg_lock); 3124 3125 /* FL threshold comparison uses < */ 3126 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, 3127 q->rspq.phys_addr, q->rspq.size, 3128 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); 3129 if (ret) 3130 goto err_unlock; 3131 3132 for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 3133 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, 3134 q->fl[i].phys_addr, q->fl[i].size, 3135 q->fl[i].buf_size - SGE_PG_RSVD, 3136 p->cong_thres, 1, 0); 3137 if (ret) 3138 goto err_unlock; 3139 } 3140 3141 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, 3142 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, 3143 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 3144 1, 0); 3145 if (ret) 3146 goto err_unlock; 3147 3148 if (ntxq > 1) { 3149 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, 3150 USE_GTS, SGE_CNTXT_OFLD, id, 3151 q->txq[TXQ_OFLD].phys_addr, 3152 q->txq[TXQ_OFLD].size, 0, 1, 0); 3153 if (ret) 3154 goto err_unlock; 3155 } 3156 3157 if (ntxq > 2) { 3158 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, 3159 SGE_CNTXT_CTRL, id, 3160 q->txq[TXQ_CTRL].phys_addr, 3161 q->txq[TXQ_CTRL].size, 3162 q->txq[TXQ_CTRL].token, 1, 0); 3163 if (ret) 3164 goto err_unlock; 3165 } 3166 3167 spin_unlock_irq(&adapter->sge.reg_lock); 3168 3169 q->adap = adapter; 3170 q->netdev = dev; 3171 q->tx_q = netdevq; 3172 t3_update_qset_coalesce(q, p); 3173 3174 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, 3175 GFP_KERNEL | __GFP_COMP); 3176 if (!avail) { 3177 CH_ALERT(adapter, "free list queue 0 initialization failed\n"); 3178 goto err; 3179 } 3180 if (avail < q->fl[0].size) 3181 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", 3182 avail); 3183 3184 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, 3185 GFP_KERNEL | __GFP_COMP); 3186 if (avail < q->fl[1].size) 3187 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", 3188 avail); 3189 refill_rspq(adapter, &q->rspq, q->rspq.size - 1); 3190 3191 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | 3192 V_NEWTIMER(q->rspq.holdoff_tmr)); 3193 3194 return 0; 3195 3196 err_unlock: 3197 spin_unlock_irq(&adapter->sge.reg_lock); 3198 err: 3199 t3_free_qset(adapter, q); 3200 return ret; 3201 } 3202 3203 /** 3204 * t3_start_sge_timers - start SGE timer call backs 3205 * @adap: the adapter 3206 * 3207 * Starts each SGE queue set's timer call back 3208 */ 3209 void t3_start_sge_timers(struct adapter *adap) 3210 { 3211 int i; 3212 3213 for (i = 0; i < SGE_QSETS; ++i) { 3214 struct sge_qset *q = &adap->sge.qs[i]; 3215 3216 if (q->tx_reclaim_timer.function) 3217 mod_timer(&q->tx_reclaim_timer, 3218 jiffies + TX_RECLAIM_PERIOD); 3219 3220 if (q->rx_reclaim_timer.function) 3221 mod_timer(&q->rx_reclaim_timer, 3222 jiffies + RX_RECLAIM_PERIOD); 3223 } 3224 } 3225 3226 /** 3227 * t3_stop_sge_timers - stop SGE timer call backs 3228 * @adap: the adapter 3229 * 3230 * Stops each SGE queue set's timer call back 3231 */ 3232 void t3_stop_sge_timers(struct adapter *adap) 3233 { 3234 int i; 3235 3236 for (i = 0; i < SGE_QSETS; ++i) { 3237 struct sge_qset *q = &adap->sge.qs[i]; 3238 3239 if (q->tx_reclaim_timer.function) 3240 del_timer_sync(&q->tx_reclaim_timer); 3241 if (q->rx_reclaim_timer.function) 3242 del_timer_sync(&q->rx_reclaim_timer); 3243 } 3244 } 3245 3246 /** 3247 * t3_free_sge_resources - free SGE resources 3248 * @adap: the adapter 3249 * 3250 * Frees resources used by the SGE queue sets. 3251 */ 3252 void t3_free_sge_resources(struct adapter *adap) 3253 { 3254 int i; 3255 3256 for (i = 0; i < SGE_QSETS; ++i) 3257 t3_free_qset(adap, &adap->sge.qs[i]); 3258 } 3259 3260 /** 3261 * t3_sge_start - enable SGE 3262 * @adap: the adapter 3263 * 3264 * Enables the SGE for DMAs. This is the last step in starting packet 3265 * transfers. 3266 */ 3267 void t3_sge_start(struct adapter *adap) 3268 { 3269 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); 3270 } 3271 3272 /** 3273 * t3_sge_stop_dma - Disable SGE DMA engine operation 3274 * @adap: the adapter 3275 * 3276 * Can be invoked from interrupt context e.g. error handler. 3277 * 3278 * Note that this function cannot disable the restart of tasklets as 3279 * it cannot wait if called from interrupt context, however the 3280 * tasklets will have no effect since the doorbells are disabled. The 3281 * driver will call tg3_sge_stop() later from process context, at 3282 * which time the tasklets will be stopped if they are still running. 3283 */ 3284 void t3_sge_stop_dma(struct adapter *adap) 3285 { 3286 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); 3287 } 3288 3289 /** 3290 * t3_sge_stop - disable SGE operation completly 3291 * @adap: the adapter 3292 * 3293 * Called from process context. Disables the DMA engine and any 3294 * pending queue restart tasklets. 3295 */ 3296 void t3_sge_stop(struct adapter *adap) 3297 { 3298 int i; 3299 3300 t3_sge_stop_dma(adap); 3301 3302 for (i = 0; i < SGE_QSETS; ++i) { 3303 struct sge_qset *qs = &adap->sge.qs[i]; 3304 3305 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); 3306 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); 3307 } 3308 } 3309 3310 /** 3311 * t3_sge_init - initialize SGE 3312 * @adap: the adapter 3313 * @p: the SGE parameters 3314 * 3315 * Performs SGE initialization needed every time after a chip reset. 3316 * We do not initialize any of the queue sets here, instead the driver 3317 * top-level must request those individually. We also do not enable DMA 3318 * here, that should be done after the queues have been set up. 3319 */ 3320 void t3_sge_init(struct adapter *adap, struct sge_params *p) 3321 { 3322 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); 3323 3324 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | 3325 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | 3326 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | 3327 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; 3328 #if SGE_NUM_GENBITS == 1 3329 ctrl |= F_EGRGENCTRL; 3330 #endif 3331 if (adap->params.rev > 0) { 3332 if (!(adap->flags & (USING_MSIX | USING_MSI))) 3333 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; 3334 } 3335 t3_write_reg(adap, A_SG_CONTROL, ctrl); 3336 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | 3337 V_LORCQDRBTHRSH(512)); 3338 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); 3339 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | 3340 V_TIMEOUT(200 * core_ticks_per_usec(adap))); 3341 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 3342 adap->params.rev < T3_REV_C ? 1000 : 500); 3343 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); 3344 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); 3345 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); 3346 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); 3347 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); 3348 } 3349 3350 /** 3351 * t3_sge_prep - one-time SGE initialization 3352 * @adap: the associated adapter 3353 * @p: SGE parameters 3354 * 3355 * Performs one-time initialization of SGE SW state. Includes determining 3356 * defaults for the assorted SGE parameters, which admins can change until 3357 * they are used to initialize the SGE. 3358 */ 3359 void t3_sge_prep(struct adapter *adap, struct sge_params *p) 3360 { 3361 int i; 3362 3363 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - 3364 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3365 3366 for (i = 0; i < SGE_QSETS; ++i) { 3367 struct qset_params *q = p->qset + i; 3368 3369 q->polling = adap->params.rev > 0; 3370 q->coalesce_usecs = 5; 3371 q->rspq_size = 1024; 3372 q->fl_size = 1024; 3373 q->jumbo_size = 512; 3374 q->txq_size[TXQ_ETH] = 1024; 3375 q->txq_size[TXQ_OFLD] = 1024; 3376 q->txq_size[TXQ_CTRL] = 256; 3377 q->cong_thres = 0; 3378 } 3379 3380 spin_lock_init(&adap->sge.reg_lock); 3381 } 3382