xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb3/sge.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48 
49 #define USE_GTS 0
50 
51 #define SGE_RX_SM_BUF_SIZE 1536
52 
53 #define SGE_RX_COPY_THRES  256
54 #define SGE_RX_PULL_LEN    128
55 
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
60  * directly.
61  */
62 #define FL0_PG_CHUNK_SIZE  2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68 
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71 
72 /*
73  * Max number of Rx buffers we replenish at a time.
74  */
75 #define MAX_RX_REFILL 16U
76 /*
77  * Period of the Tx buffer reclaim timer.  This timer does not need to run
78  * frequently as Tx buffers are usually reclaimed by new Tx packets.
79  */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83 
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86 
87 /*
88  * Types of Tx queues in each queue set.  Order here matters, do not change.
89  */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91 
92 /* Values for sge_txq.flags */
93 enum {
94 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
95 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
96 };
97 
98 struct tx_desc {
99 	__be64 flit[TX_DESC_FLITS];
100 };
101 
102 struct rx_desc {
103 	__be32 addr_lo;
104 	__be32 len_gen;
105 	__be32 gen2;
106 	__be32 addr_hi;
107 };
108 
109 struct tx_sw_desc {		/* SW state per Tx descriptor */
110 	struct sk_buff *skb;
111 	u8 eop;       /* set if last descriptor for packet */
112 	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
113 	u8 fragidx;   /* first page fragment associated with descriptor */
114 	s8 sflit;     /* start flit of first SGL entry in descriptor */
115 };
116 
117 struct rx_sw_desc {                /* SW state per Rx descriptor */
118 	union {
119 		struct sk_buff *skb;
120 		struct fl_pg_chunk pg_chunk;
121 	};
122 	DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124 
125 struct rsp_desc {		/* response queue descriptor */
126 	struct rss_header rss_hdr;
127 	__be32 flags;
128 	__be32 len_cq;
129 	u8 imm_data[47];
130 	u8 intr_gen;
131 };
132 
133 /*
134  * Holds unmapping information for Tx packets that need deferred unmapping.
135  * This structure lives at skb->head and must be allocated by callers.
136  */
137 struct deferred_unmap_info {
138 	struct pci_dev *pdev;
139 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
140 };
141 
142 /*
143  * Maps a number of flits to the number of Tx descriptors that can hold them.
144  * The formula is
145  *
146  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147  *
148  * HW allows up to 4 descriptors to be combined into a WR.
149  */
150 static u8 flit_desc_map[] = {
151 	0,
152 #if SGE_NUM_GENBITS == 1
153 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 #else
163 # error "SGE_NUM_GENBITS must be 1 or 2"
164 #endif
165 };
166 
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
168 {
169 	return container_of(q, struct sge_qset, fl[qidx]);
170 }
171 
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
173 {
174 	return container_of(q, struct sge_qset, rspq);
175 }
176 
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
178 {
179 	return container_of(q, struct sge_qset, txq[qidx]);
180 }
181 
182 /**
183  *	refill_rspq - replenish an SGE response queue
184  *	@adapter: the adapter
185  *	@q: the response queue to replenish
186  *	@credits: how many new responses to make available
187  *
188  *	Replenishes a response queue by making the supplied number of responses
189  *	available to HW.
190  */
191 static inline void refill_rspq(struct adapter *adapter,
192 			       const struct sge_rspq *q, unsigned int credits)
193 {
194 	rmb();
195 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197 }
198 
199 /**
200  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
201  *
202  *	Returns true if the platform needs sk_buff unmapping.  The compiler
203  *	optimizes away unnecessary code if this returns true.
204  */
205 static inline int need_skb_unmap(void)
206 {
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
208 	return 1;
209 #else
210 	return 0;
211 #endif
212 }
213 
214 /**
215  *	unmap_skb - unmap a packet main body and its page fragments
216  *	@skb: the packet
217  *	@q: the Tx queue containing Tx descriptors for the packet
218  *	@cidx: index of Tx descriptor
219  *	@pdev: the PCI device
220  *
221  *	Unmap the main body of an sk_buff and its page fragments, if any.
222  *	Because of the fairly complicated structure of our SGLs and the desire
223  *	to conserve space for metadata, the information necessary to unmap an
224  *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225  *	descriptors (the physical addresses of the various data buffers), and
226  *	the SW descriptor state (assorted indices).  The send functions
227  *	initialize the indices for the first packet descriptor so we can unmap
228  *	the buffers held in the first Tx descriptor here, and we have enough
229  *	information at this point to set the state for the next Tx descriptor.
230  *
231  *	Note that it is possible to clean up the first descriptor of a packet
232  *	before the send routines have written the next descriptors, but this
233  *	race does not cause any problem.  We just end up writing the unmapping
234  *	info for the descriptor first.
235  */
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 			     unsigned int cidx, struct pci_dev *pdev)
238 {
239 	const struct sg_ent *sgp;
240 	struct tx_sw_desc *d = &q->sdesc[cidx];
241 	int nfrags, frag_idx, curflit, j = d->addr_idx;
242 
243 	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 	frag_idx = d->fragidx;
245 
246 	if (frag_idx == 0 && skb_headlen(skb)) {
247 		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 				 skb_headlen(skb), PCI_DMA_TODEVICE);
249 		j = 1;
250 	}
251 
252 	curflit = d->sflit + 1 + j;
253 	nfrags = skb_shinfo(skb)->nr_frags;
254 
255 	while (frag_idx < nfrags && curflit < WR_FLITS) {
256 		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 			       skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258 			       PCI_DMA_TODEVICE);
259 		j ^= 1;
260 		if (j == 0) {
261 			sgp++;
262 			curflit++;
263 		}
264 		curflit++;
265 		frag_idx++;
266 	}
267 
268 	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
269 		d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 		d->fragidx = frag_idx;
271 		d->addr_idx = j;
272 		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
273 	}
274 }
275 
276 /**
277  *	free_tx_desc - reclaims Tx descriptors and their buffers
278  *	@adapter: the adapter
279  *	@q: the Tx queue to reclaim descriptors from
280  *	@n: the number of descriptors to reclaim
281  *
282  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283  *	Tx buffers.  Called with the Tx queue lock held.
284  */
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 			 unsigned int n)
287 {
288 	struct tx_sw_desc *d;
289 	struct pci_dev *pdev = adapter->pdev;
290 	unsigned int cidx = q->cidx;
291 
292 	const int need_unmap = need_skb_unmap() &&
293 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
294 
295 	d = &q->sdesc[cidx];
296 	while (n--) {
297 		if (d->skb) {	/* an SGL is present */
298 			if (need_unmap)
299 				unmap_skb(d->skb, q, cidx, pdev);
300 			if (d->eop) {
301 				dev_consume_skb_any(d->skb);
302 				d->skb = NULL;
303 			}
304 		}
305 		++d;
306 		if (++cidx == q->size) {
307 			cidx = 0;
308 			d = q->sdesc;
309 		}
310 	}
311 	q->cidx = cidx;
312 }
313 
314 /**
315  *	reclaim_completed_tx - reclaims completed Tx descriptors
316  *	@adapter: the adapter
317  *	@q: the Tx queue to reclaim completed descriptors from
318  *	@chunk: maximum number of descriptors to reclaim
319  *
320  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
321  *	and frees the associated buffers if possible.  Called with the Tx
322  *	queue's lock held.
323  */
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 						struct sge_txq *q,
326 						unsigned int chunk)
327 {
328 	unsigned int reclaim = q->processed - q->cleaned;
329 
330 	reclaim = min(chunk, reclaim);
331 	if (reclaim) {
332 		free_tx_desc(adapter, q, reclaim);
333 		q->cleaned += reclaim;
334 		q->in_use -= reclaim;
335 	}
336 	return q->processed - q->cleaned;
337 }
338 
339 /**
340  *	should_restart_tx - are there enough resources to restart a Tx queue?
341  *	@q: the Tx queue
342  *
343  *	Checks if there are enough descriptors to restart a suspended Tx queue.
344  */
345 static inline int should_restart_tx(const struct sge_txq *q)
346 {
347 	unsigned int r = q->processed - q->cleaned;
348 
349 	return q->in_use - r < (q->size >> 1);
350 }
351 
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 			  struct rx_sw_desc *d)
354 {
355 	if (q->use_pages && d->pg_chunk.page) {
356 		(*d->pg_chunk.p_cnt)--;
357 		if (!*d->pg_chunk.p_cnt)
358 			pci_unmap_page(pdev,
359 				       d->pg_chunk.mapping,
360 				       q->alloc_size, PCI_DMA_FROMDEVICE);
361 
362 		put_page(d->pg_chunk.page);
363 		d->pg_chunk.page = NULL;
364 	} else {
365 		pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 				 q->buf_size, PCI_DMA_FROMDEVICE);
367 		kfree_skb(d->skb);
368 		d->skb = NULL;
369 	}
370 }
371 
372 /**
373  *	free_rx_bufs - free the Rx buffers on an SGE free list
374  *	@pdev: the PCI device associated with the adapter
375  *	@rxq: the SGE free list to clean up
376  *
377  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
378  *	this queue should be stopped before calling this function.
379  */
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381 {
382 	unsigned int cidx = q->cidx;
383 
384 	while (q->credits--) {
385 		struct rx_sw_desc *d = &q->sdesc[cidx];
386 
387 
388 		clear_rx_desc(pdev, q, d);
389 		if (++cidx == q->size)
390 			cidx = 0;
391 	}
392 
393 	if (q->pg_chunk.page) {
394 		__free_pages(q->pg_chunk.page, q->order);
395 		q->pg_chunk.page = NULL;
396 	}
397 }
398 
399 /**
400  *	add_one_rx_buf - add a packet buffer to a free-buffer list
401  *	@va:  buffer start VA
402  *	@len: the buffer length
403  *	@d: the HW Rx descriptor to write
404  *	@sd: the SW Rx descriptor to write
405  *	@gen: the generation bit value
406  *	@pdev: the PCI device associated with the adapter
407  *
408  *	Add a buffer of the given length to the supplied HW and SW Rx
409  *	descriptors.
410  */
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 				 struct rx_desc *d, struct rx_sw_desc *sd,
413 				 unsigned int gen, struct pci_dev *pdev)
414 {
415 	dma_addr_t mapping;
416 
417 	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 	if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 		return -ENOMEM;
420 
421 	dma_unmap_addr_set(sd, dma_addr, mapping);
422 
423 	d->addr_lo = cpu_to_be32(mapping);
424 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 	dma_wmb();
426 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 	return 0;
429 }
430 
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 				   unsigned int gen)
433 {
434 	d->addr_lo = cpu_to_be32(mapping);
435 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 	dma_wmb();
437 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 	return 0;
440 }
441 
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 			  struct rx_sw_desc *sd, gfp_t gfp,
444 			  unsigned int order)
445 {
446 	if (!q->pg_chunk.page) {
447 		dma_addr_t mapping;
448 
449 		q->pg_chunk.page = alloc_pages(gfp, order);
450 		if (unlikely(!q->pg_chunk.page))
451 			return -ENOMEM;
452 		q->pg_chunk.va = page_address(q->pg_chunk.page);
453 		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 				    SGE_PG_RSVD;
455 		q->pg_chunk.offset = 0;
456 		mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 				       0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 		if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
459 			__free_pages(q->pg_chunk.page, order);
460 			q->pg_chunk.page = NULL;
461 			return -EIO;
462 		}
463 		q->pg_chunk.mapping = mapping;
464 	}
465 	sd->pg_chunk = q->pg_chunk;
466 
467 	prefetch(sd->pg_chunk.p_cnt);
468 
469 	q->pg_chunk.offset += q->buf_size;
470 	if (q->pg_chunk.offset == (PAGE_SIZE << order))
471 		q->pg_chunk.page = NULL;
472 	else {
473 		q->pg_chunk.va += q->buf_size;
474 		get_page(q->pg_chunk.page);
475 	}
476 
477 	if (sd->pg_chunk.offset == 0)
478 		*sd->pg_chunk.p_cnt = 1;
479 	else
480 		*sd->pg_chunk.p_cnt += 1;
481 
482 	return 0;
483 }
484 
485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
486 {
487 	if (q->pend_cred >= q->credits / 4) {
488 		q->pend_cred = 0;
489 		wmb();
490 		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
491 	}
492 }
493 
494 /**
495  *	refill_fl - refill an SGE free-buffer list
496  *	@adapter: the adapter
497  *	@q: the free-list to refill
498  *	@n: the number of new buffers to allocate
499  *	@gfp: the gfp flags for allocating new buffers
500  *
501  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
502  *	allocated with the supplied gfp flags.  The caller must assure that
503  *	@n does not exceed the queue's capacity.
504  */
505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
506 {
507 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
508 	struct rx_desc *d = &q->desc[q->pidx];
509 	unsigned int count = 0;
510 
511 	while (n--) {
512 		dma_addr_t mapping;
513 		int err;
514 
515 		if (q->use_pages) {
516 			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
517 						    q->order))) {
518 nomem:				q->alloc_failed++;
519 				break;
520 			}
521 			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
522 			dma_unmap_addr_set(sd, dma_addr, mapping);
523 
524 			add_one_rx_chunk(mapping, d, q->gen);
525 			pci_dma_sync_single_for_device(adap->pdev, mapping,
526 						q->buf_size - SGE_PG_RSVD,
527 						PCI_DMA_FROMDEVICE);
528 		} else {
529 			void *buf_start;
530 
531 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
532 			if (!skb)
533 				goto nomem;
534 
535 			sd->skb = skb;
536 			buf_start = skb->data;
537 			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
538 					     q->gen, adap->pdev);
539 			if (unlikely(err)) {
540 				clear_rx_desc(adap->pdev, q, sd);
541 				break;
542 			}
543 		}
544 
545 		d++;
546 		sd++;
547 		if (++q->pidx == q->size) {
548 			q->pidx = 0;
549 			q->gen ^= 1;
550 			sd = q->sdesc;
551 			d = q->desc;
552 		}
553 		count++;
554 	}
555 
556 	q->credits += count;
557 	q->pend_cred += count;
558 	ring_fl_db(adap, q);
559 
560 	return count;
561 }
562 
563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
564 {
565 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
566 		  GFP_ATOMIC | __GFP_COMP);
567 }
568 
569 /**
570  *	recycle_rx_buf - recycle a receive buffer
571  *	@adapter: the adapter
572  *	@q: the SGE free list
573  *	@idx: index of buffer to recycle
574  *
575  *	Recycles the specified buffer on the given free list by adding it at
576  *	the next available slot on the list.
577  */
578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
579 			   unsigned int idx)
580 {
581 	struct rx_desc *from = &q->desc[idx];
582 	struct rx_desc *to = &q->desc[q->pidx];
583 
584 	q->sdesc[q->pidx] = q->sdesc[idx];
585 	to->addr_lo = from->addr_lo;	/* already big endian */
586 	to->addr_hi = from->addr_hi;	/* likewise */
587 	dma_wmb();
588 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
589 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
590 
591 	if (++q->pidx == q->size) {
592 		q->pidx = 0;
593 		q->gen ^= 1;
594 	}
595 
596 	q->credits++;
597 	q->pend_cred++;
598 	ring_fl_db(adap, q);
599 }
600 
601 /**
602  *	alloc_ring - allocate resources for an SGE descriptor ring
603  *	@pdev: the PCI device
604  *	@nelem: the number of descriptors
605  *	@elem_size: the size of each descriptor
606  *	@sw_size: the size of the SW state associated with each ring element
607  *	@phys: the physical address of the allocated ring
608  *	@metadata: address of the array holding the SW state for the ring
609  *
610  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
611  *	free buffer lists, or response queues.  Each SGE ring requires
612  *	space for its HW descriptors plus, optionally, space for the SW state
613  *	associated with each HW entry (the metadata).  The function returns
614  *	three values: the virtual address for the HW ring (the return value
615  *	of the function), the physical address of the HW ring, and the address
616  *	of the SW ring.
617  */
618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
619 			size_t sw_size, dma_addr_t * phys, void *metadata)
620 {
621 	size_t len = nelem * elem_size;
622 	void *s = NULL;
623 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
624 
625 	if (!p)
626 		return NULL;
627 	if (sw_size && metadata) {
628 		s = kcalloc(nelem, sw_size, GFP_KERNEL);
629 
630 		if (!s) {
631 			dma_free_coherent(&pdev->dev, len, p, *phys);
632 			return NULL;
633 		}
634 		*(void **)metadata = s;
635 	}
636 	return p;
637 }
638 
639 /**
640  *	t3_reset_qset - reset a sge qset
641  *	@q: the queue set
642  *
643  *	Reset the qset structure.
644  *	the NAPI structure is preserved in the event of
645  *	the qset's reincarnation, for example during EEH recovery.
646  */
647 static void t3_reset_qset(struct sge_qset *q)
648 {
649 	if (q->adap &&
650 	    !(q->adap->flags & NAPI_INIT)) {
651 		memset(q, 0, sizeof(*q));
652 		return;
653 	}
654 
655 	q->adap = NULL;
656 	memset(&q->rspq, 0, sizeof(q->rspq));
657 	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
658 	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
659 	q->txq_stopped = 0;
660 	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
661 	q->rx_reclaim_timer.function = NULL;
662 	q->nomem = 0;
663 	napi_free_frags(&q->napi);
664 }
665 
666 
667 /**
668  *	free_qset - free the resources of an SGE queue set
669  *	@adapter: the adapter owning the queue set
670  *	@q: the queue set
671  *
672  *	Release the HW and SW resources associated with an SGE queue set, such
673  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
674  *	queue set must be quiesced prior to calling this.
675  */
676 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
677 {
678 	int i;
679 	struct pci_dev *pdev = adapter->pdev;
680 
681 	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
682 		if (q->fl[i].desc) {
683 			spin_lock_irq(&adapter->sge.reg_lock);
684 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
685 			spin_unlock_irq(&adapter->sge.reg_lock);
686 			free_rx_bufs(pdev, &q->fl[i]);
687 			kfree(q->fl[i].sdesc);
688 			dma_free_coherent(&pdev->dev,
689 					  q->fl[i].size *
690 					  sizeof(struct rx_desc), q->fl[i].desc,
691 					  q->fl[i].phys_addr);
692 		}
693 
694 	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
695 		if (q->txq[i].desc) {
696 			spin_lock_irq(&adapter->sge.reg_lock);
697 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
698 			spin_unlock_irq(&adapter->sge.reg_lock);
699 			if (q->txq[i].sdesc) {
700 				free_tx_desc(adapter, &q->txq[i],
701 					     q->txq[i].in_use);
702 				kfree(q->txq[i].sdesc);
703 			}
704 			dma_free_coherent(&pdev->dev,
705 					  q->txq[i].size *
706 					  sizeof(struct tx_desc),
707 					  q->txq[i].desc, q->txq[i].phys_addr);
708 			__skb_queue_purge(&q->txq[i].sendq);
709 		}
710 
711 	if (q->rspq.desc) {
712 		spin_lock_irq(&adapter->sge.reg_lock);
713 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
714 		spin_unlock_irq(&adapter->sge.reg_lock);
715 		dma_free_coherent(&pdev->dev,
716 				  q->rspq.size * sizeof(struct rsp_desc),
717 				  q->rspq.desc, q->rspq.phys_addr);
718 	}
719 
720 	t3_reset_qset(q);
721 }
722 
723 /**
724  *	init_qset_cntxt - initialize an SGE queue set context info
725  *	@qs: the queue set
726  *	@id: the queue set id
727  *
728  *	Initializes the TIDs and context ids for the queues of a queue set.
729  */
730 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
731 {
732 	qs->rspq.cntxt_id = id;
733 	qs->fl[0].cntxt_id = 2 * id;
734 	qs->fl[1].cntxt_id = 2 * id + 1;
735 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
736 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
737 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
738 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
739 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
740 }
741 
742 /**
743  *	sgl_len - calculates the size of an SGL of the given capacity
744  *	@n: the number of SGL entries
745  *
746  *	Calculates the number of flits needed for a scatter/gather list that
747  *	can hold the given number of entries.
748  */
749 static inline unsigned int sgl_len(unsigned int n)
750 {
751 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
752 	return (3 * n) / 2 + (n & 1);
753 }
754 
755 /**
756  *	flits_to_desc - returns the num of Tx descriptors for the given flits
757  *	@n: the number of flits
758  *
759  *	Calculates the number of Tx descriptors needed for the supplied number
760  *	of flits.
761  */
762 static inline unsigned int flits_to_desc(unsigned int n)
763 {
764 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
765 	return flit_desc_map[n];
766 }
767 
768 /**
769  *	get_packet - return the next ingress packet buffer from a free list
770  *	@adap: the adapter that received the packet
771  *	@fl: the SGE free list holding the packet
772  *	@len: the packet length including any SGE padding
773  *	@drop_thres: # of remaining buffers before we start dropping packets
774  *
775  *	Get the next packet from a free list and complete setup of the
776  *	sk_buff.  If the packet is small we make a copy and recycle the
777  *	original buffer, otherwise we use the original buffer itself.  If a
778  *	positive drop threshold is supplied packets are dropped and their
779  *	buffers recycled if (a) the number of remaining buffers is under the
780  *	threshold and the packet is too big to copy, or (b) the packet should
781  *	be copied but there is no memory for the copy.
782  */
783 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
784 				  unsigned int len, unsigned int drop_thres)
785 {
786 	struct sk_buff *skb = NULL;
787 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
788 
789 	prefetch(sd->skb->data);
790 	fl->credits--;
791 
792 	if (len <= SGE_RX_COPY_THRES) {
793 		skb = alloc_skb(len, GFP_ATOMIC);
794 		if (likely(skb != NULL)) {
795 			__skb_put(skb, len);
796 			pci_dma_sync_single_for_cpu(adap->pdev,
797 					    dma_unmap_addr(sd, dma_addr), len,
798 					    PCI_DMA_FROMDEVICE);
799 			memcpy(skb->data, sd->skb->data, len);
800 			pci_dma_sync_single_for_device(adap->pdev,
801 					    dma_unmap_addr(sd, dma_addr), len,
802 					    PCI_DMA_FROMDEVICE);
803 		} else if (!drop_thres)
804 			goto use_orig_buf;
805 recycle:
806 		recycle_rx_buf(adap, fl, fl->cidx);
807 		return skb;
808 	}
809 
810 	if (unlikely(fl->credits < drop_thres) &&
811 	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
812 		      GFP_ATOMIC | __GFP_COMP) == 0)
813 		goto recycle;
814 
815 use_orig_buf:
816 	pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
817 			 fl->buf_size, PCI_DMA_FROMDEVICE);
818 	skb = sd->skb;
819 	skb_put(skb, len);
820 	__refill_fl(adap, fl);
821 	return skb;
822 }
823 
824 /**
825  *	get_packet_pg - return the next ingress packet buffer from a free list
826  *	@adap: the adapter that received the packet
827  *	@fl: the SGE free list holding the packet
828  *	@len: the packet length including any SGE padding
829  *	@drop_thres: # of remaining buffers before we start dropping packets
830  *
831  *	Get the next packet from a free list populated with page chunks.
832  *	If the packet is small we make a copy and recycle the original buffer,
833  *	otherwise we attach the original buffer as a page fragment to a fresh
834  *	sk_buff.  If a positive drop threshold is supplied packets are dropped
835  *	and their buffers recycled if (a) the number of remaining buffers is
836  *	under the threshold and the packet is too big to copy, or (b) there's
837  *	no system memory.
838  *
839  * 	Note: this function is similar to @get_packet but deals with Rx buffers
840  * 	that are page chunks rather than sk_buffs.
841  */
842 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
843 				     struct sge_rspq *q, unsigned int len,
844 				     unsigned int drop_thres)
845 {
846 	struct sk_buff *newskb, *skb;
847 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
848 
849 	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
850 
851 	newskb = skb = q->pg_skb;
852 	if (!skb && (len <= SGE_RX_COPY_THRES)) {
853 		newskb = alloc_skb(len, GFP_ATOMIC);
854 		if (likely(newskb != NULL)) {
855 			__skb_put(newskb, len);
856 			pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
857 					    PCI_DMA_FROMDEVICE);
858 			memcpy(newskb->data, sd->pg_chunk.va, len);
859 			pci_dma_sync_single_for_device(adap->pdev, dma_addr,
860 						       len,
861 						       PCI_DMA_FROMDEVICE);
862 		} else if (!drop_thres)
863 			return NULL;
864 recycle:
865 		fl->credits--;
866 		recycle_rx_buf(adap, fl, fl->cidx);
867 		q->rx_recycle_buf++;
868 		return newskb;
869 	}
870 
871 	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
872 		goto recycle;
873 
874 	prefetch(sd->pg_chunk.p_cnt);
875 
876 	if (!skb)
877 		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
878 
879 	if (unlikely(!newskb)) {
880 		if (!drop_thres)
881 			return NULL;
882 		goto recycle;
883 	}
884 
885 	pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
886 				    PCI_DMA_FROMDEVICE);
887 	(*sd->pg_chunk.p_cnt)--;
888 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
889 		pci_unmap_page(adap->pdev,
890 			       sd->pg_chunk.mapping,
891 			       fl->alloc_size,
892 			       PCI_DMA_FROMDEVICE);
893 	if (!skb) {
894 		__skb_put(newskb, SGE_RX_PULL_LEN);
895 		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
896 		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
897 				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
898 				   len - SGE_RX_PULL_LEN);
899 		newskb->len = len;
900 		newskb->data_len = len - SGE_RX_PULL_LEN;
901 		newskb->truesize += newskb->data_len;
902 	} else {
903 		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
904 				   sd->pg_chunk.page,
905 				   sd->pg_chunk.offset, len);
906 		newskb->len += len;
907 		newskb->data_len += len;
908 		newskb->truesize += len;
909 	}
910 
911 	fl->credits--;
912 	/*
913 	 * We do not refill FLs here, we let the caller do it to overlap a
914 	 * prefetch.
915 	 */
916 	return newskb;
917 }
918 
919 /**
920  *	get_imm_packet - return the next ingress packet buffer from a response
921  *	@resp: the response descriptor containing the packet data
922  *
923  *	Return a packet containing the immediate data of the given response.
924  */
925 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
926 {
927 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
928 
929 	if (skb) {
930 		__skb_put(skb, IMMED_PKT_SIZE);
931 		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
932 	}
933 	return skb;
934 }
935 
936 /**
937  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
938  *	@skb: the packet
939  *
940  * 	Returns the number of Tx descriptors needed for the given Ethernet
941  * 	packet.  Ethernet packets require addition of WR and CPL headers.
942  */
943 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
944 {
945 	unsigned int flits;
946 
947 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
948 		return 1;
949 
950 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
951 	if (skb_shinfo(skb)->gso_size)
952 		flits++;
953 	return flits_to_desc(flits);
954 }
955 
956 /*	map_skb - map a packet main body and its page fragments
957  *	@pdev: the PCI device
958  *	@skb: the packet
959  *	@addr: placeholder to save the mapped addresses
960  *
961  *	map the main body of an sk_buff and its page fragments, if any.
962  */
963 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
964 		   dma_addr_t *addr)
965 {
966 	const skb_frag_t *fp, *end;
967 	const struct skb_shared_info *si;
968 
969 	if (skb_headlen(skb)) {
970 		*addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
971 				       PCI_DMA_TODEVICE);
972 		if (pci_dma_mapping_error(pdev, *addr))
973 			goto out_err;
974 		addr++;
975 	}
976 
977 	si = skb_shinfo(skb);
978 	end = &si->frags[si->nr_frags];
979 
980 	for (fp = si->frags; fp < end; fp++) {
981 		*addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
982 					 DMA_TO_DEVICE);
983 		if (pci_dma_mapping_error(pdev, *addr))
984 			goto unwind;
985 		addr++;
986 	}
987 	return 0;
988 
989 unwind:
990 	while (fp-- > si->frags)
991 		dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
992 			       DMA_TO_DEVICE);
993 
994 	pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
995 out_err:
996 	return -ENOMEM;
997 }
998 
999 /**
1000  *	write_sgl - populate a scatter/gather list for a packet
1001  *	@skb: the packet
1002  *	@sgp: the SGL to populate
1003  *	@start: start address of skb main body data to include in the SGL
1004  *	@len: length of skb main body data to include in the SGL
1005  *	@addr: the list of the mapped addresses
1006  *
1007  *	Copies the scatter/gather list for the buffers that make up a packet
1008  *	and returns the SGL size in 8-byte words.  The caller must size the SGL
1009  *	appropriately.
1010  */
1011 static inline unsigned int write_sgl(const struct sk_buff *skb,
1012 				     struct sg_ent *sgp, unsigned char *start,
1013 				     unsigned int len, const dma_addr_t *addr)
1014 {
1015 	unsigned int i, j = 0, k = 0, nfrags;
1016 
1017 	if (len) {
1018 		sgp->len[0] = cpu_to_be32(len);
1019 		sgp->addr[j++] = cpu_to_be64(addr[k++]);
1020 	}
1021 
1022 	nfrags = skb_shinfo(skb)->nr_frags;
1023 	for (i = 0; i < nfrags; i++) {
1024 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1025 
1026 		sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1027 		sgp->addr[j] = cpu_to_be64(addr[k++]);
1028 		j ^= 1;
1029 		if (j == 0)
1030 			++sgp;
1031 	}
1032 	if (j)
1033 		sgp->len[j] = 0;
1034 	return ((nfrags + (len != 0)) * 3) / 2 + j;
1035 }
1036 
1037 /**
1038  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1039  *	@adap: the adapter
1040  *	@q: the Tx queue
1041  *
1042  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1043  *	where the HW is going to sleep just after we checked, however,
1044  *	then the interrupt handler will detect the outstanding TX packet
1045  *	and ring the doorbell for us.
1046  *
1047  *	When GTS is disabled we unconditionally ring the doorbell.
1048  */
1049 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1050 {
1051 #if USE_GTS
1052 	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1053 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1054 		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1055 		t3_write_reg(adap, A_SG_KDOORBELL,
1056 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1057 	}
1058 #else
1059 	wmb();			/* write descriptors before telling HW */
1060 	t3_write_reg(adap, A_SG_KDOORBELL,
1061 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1062 #endif
1063 }
1064 
1065 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1066 {
1067 #if SGE_NUM_GENBITS == 2
1068 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1069 #endif
1070 }
1071 
1072 /**
1073  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1074  *	@ndesc: number of Tx descriptors spanned by the SGL
1075  *	@skb: the packet corresponding to the WR
1076  *	@d: first Tx descriptor to be written
1077  *	@pidx: index of above descriptors
1078  *	@q: the SGE Tx queue
1079  *	@sgl: the SGL
1080  *	@flits: number of flits to the start of the SGL in the first descriptor
1081  *	@sgl_flits: the SGL size in flits
1082  *	@gen: the Tx descriptor generation
1083  *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1084  *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1085  *
1086  *	Write a work request header and an associated SGL.  If the SGL is
1087  *	small enough to fit into one Tx descriptor it has already been written
1088  *	and we just need to write the WR header.  Otherwise we distribute the
1089  *	SGL across the number of descriptors it spans.
1090  */
1091 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1092 			     struct tx_desc *d, unsigned int pidx,
1093 			     const struct sge_txq *q,
1094 			     const struct sg_ent *sgl,
1095 			     unsigned int flits, unsigned int sgl_flits,
1096 			     unsigned int gen, __be32 wr_hi,
1097 			     __be32 wr_lo)
1098 {
1099 	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1100 	struct tx_sw_desc *sd = &q->sdesc[pidx];
1101 
1102 	sd->skb = skb;
1103 	if (need_skb_unmap()) {
1104 		sd->fragidx = 0;
1105 		sd->addr_idx = 0;
1106 		sd->sflit = flits;
1107 	}
1108 
1109 	if (likely(ndesc == 1)) {
1110 		sd->eop = 1;
1111 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1112 				   V_WR_SGLSFLT(flits)) | wr_hi;
1113 		dma_wmb();
1114 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1115 				   V_WR_GEN(gen)) | wr_lo;
1116 		wr_gen2(d, gen);
1117 	} else {
1118 		unsigned int ogen = gen;
1119 		const u64 *fp = (const u64 *)sgl;
1120 		struct work_request_hdr *wp = wrp;
1121 
1122 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1123 				   V_WR_SGLSFLT(flits)) | wr_hi;
1124 
1125 		while (sgl_flits) {
1126 			unsigned int avail = WR_FLITS - flits;
1127 
1128 			if (avail > sgl_flits)
1129 				avail = sgl_flits;
1130 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1131 			sgl_flits -= avail;
1132 			ndesc--;
1133 			if (!sgl_flits)
1134 				break;
1135 
1136 			fp += avail;
1137 			d++;
1138 			sd->eop = 0;
1139 			sd++;
1140 			if (++pidx == q->size) {
1141 				pidx = 0;
1142 				gen ^= 1;
1143 				d = q->desc;
1144 				sd = q->sdesc;
1145 			}
1146 
1147 			sd->skb = skb;
1148 			wrp = (struct work_request_hdr *)d;
1149 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1150 					   V_WR_SGLSFLT(1)) | wr_hi;
1151 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1152 							sgl_flits + 1)) |
1153 					   V_WR_GEN(gen)) | wr_lo;
1154 			wr_gen2(d, gen);
1155 			flits = 1;
1156 		}
1157 		sd->eop = 1;
1158 		wrp->wr_hi |= htonl(F_WR_EOP);
1159 		dma_wmb();
1160 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1161 		wr_gen2((struct tx_desc *)wp, ogen);
1162 		WARN_ON(ndesc != 0);
1163 	}
1164 }
1165 
1166 /**
1167  *	write_tx_pkt_wr - write a TX_PKT work request
1168  *	@adap: the adapter
1169  *	@skb: the packet to send
1170  *	@pi: the egress interface
1171  *	@pidx: index of the first Tx descriptor to write
1172  *	@gen: the generation value to use
1173  *	@q: the Tx queue
1174  *	@ndesc: number of descriptors the packet will occupy
1175  *	@compl: the value of the COMPL bit to use
1176  *
1177  *	Generate a TX_PKT work request to send the supplied packet.
1178  */
1179 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1180 			    const struct port_info *pi,
1181 			    unsigned int pidx, unsigned int gen,
1182 			    struct sge_txq *q, unsigned int ndesc,
1183 			    unsigned int compl, const dma_addr_t *addr)
1184 {
1185 	unsigned int flits, sgl_flits, cntrl, tso_info;
1186 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1187 	struct tx_desc *d = &q->desc[pidx];
1188 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1189 
1190 	cpl->len = htonl(skb->len);
1191 	cntrl = V_TXPKT_INTF(pi->port_id);
1192 
1193 	if (skb_vlan_tag_present(skb))
1194 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1195 
1196 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1197 	if (tso_info) {
1198 		int eth_type;
1199 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1200 
1201 		d->flit[2] = 0;
1202 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1203 		hdr->cntrl = htonl(cntrl);
1204 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1205 		    CPL_ETH_II : CPL_ETH_II_VLAN;
1206 		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1207 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1208 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1209 		hdr->lso_info = htonl(tso_info);
1210 		flits = 3;
1211 	} else {
1212 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1213 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1214 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1215 		cpl->cntrl = htonl(cntrl);
1216 
1217 		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1218 			q->sdesc[pidx].skb = NULL;
1219 			if (!skb->data_len)
1220 				skb_copy_from_linear_data(skb, &d->flit[2],
1221 							  skb->len);
1222 			else
1223 				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1224 
1225 			flits = (skb->len + 7) / 8 + 2;
1226 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1227 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1228 					      | F_WR_SOP | F_WR_EOP | compl);
1229 			dma_wmb();
1230 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1231 					      V_WR_TID(q->token));
1232 			wr_gen2(d, gen);
1233 			dev_consume_skb_any(skb);
1234 			return;
1235 		}
1236 
1237 		flits = 2;
1238 	}
1239 
1240 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1241 	sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1242 
1243 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1244 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1245 			 htonl(V_WR_TID(q->token)));
1246 }
1247 
1248 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1249 				    struct sge_qset *qs, struct sge_txq *q)
1250 {
1251 	netif_tx_stop_queue(txq);
1252 	set_bit(TXQ_ETH, &qs->txq_stopped);
1253 	q->stops++;
1254 }
1255 
1256 /**
1257  *	eth_xmit - add a packet to the Ethernet Tx queue
1258  *	@skb: the packet
1259  *	@dev: the egress net device
1260  *
1261  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1262  */
1263 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1264 {
1265 	int qidx;
1266 	unsigned int ndesc, pidx, credits, gen, compl;
1267 	const struct port_info *pi = netdev_priv(dev);
1268 	struct adapter *adap = pi->adapter;
1269 	struct netdev_queue *txq;
1270 	struct sge_qset *qs;
1271 	struct sge_txq *q;
1272 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1273 
1274 	/*
1275 	 * The chip min packet length is 9 octets but play safe and reject
1276 	 * anything shorter than an Ethernet header.
1277 	 */
1278 	if (unlikely(skb->len < ETH_HLEN)) {
1279 		dev_kfree_skb_any(skb);
1280 		return NETDEV_TX_OK;
1281 	}
1282 
1283 	qidx = skb_get_queue_mapping(skb);
1284 	qs = &pi->qs[qidx];
1285 	q = &qs->txq[TXQ_ETH];
1286 	txq = netdev_get_tx_queue(dev, qidx);
1287 
1288 	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1289 
1290 	credits = q->size - q->in_use;
1291 	ndesc = calc_tx_descs(skb);
1292 
1293 	if (unlikely(credits < ndesc)) {
1294 		t3_stop_tx_queue(txq, qs, q);
1295 		dev_err(&adap->pdev->dev,
1296 			"%s: Tx ring %u full while queue awake!\n",
1297 			dev->name, q->cntxt_id & 7);
1298 		return NETDEV_TX_BUSY;
1299 	}
1300 
1301 	/* Check if ethernet packet can't be sent as immediate data */
1302 	if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1303 		if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1304 			dev_kfree_skb(skb);
1305 			return NETDEV_TX_OK;
1306 		}
1307 	}
1308 
1309 	q->in_use += ndesc;
1310 	if (unlikely(credits - ndesc < q->stop_thres)) {
1311 		t3_stop_tx_queue(txq, qs, q);
1312 
1313 		if (should_restart_tx(q) &&
1314 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1315 			q->restarts++;
1316 			netif_tx_start_queue(txq);
1317 		}
1318 	}
1319 
1320 	gen = q->gen;
1321 	q->unacked += ndesc;
1322 	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1323 	q->unacked &= 7;
1324 	pidx = q->pidx;
1325 	q->pidx += ndesc;
1326 	if (q->pidx >= q->size) {
1327 		q->pidx -= q->size;
1328 		q->gen ^= 1;
1329 	}
1330 
1331 	/* update port statistics */
1332 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1333 		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1334 	if (skb_shinfo(skb)->gso_size)
1335 		qs->port_stats[SGE_PSTAT_TSO]++;
1336 	if (skb_vlan_tag_present(skb))
1337 		qs->port_stats[SGE_PSTAT_VLANINS]++;
1338 
1339 	/*
1340 	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1341 	 * This is good for performance but means that we rely on new Tx
1342 	 * packets arriving to run the destructors of completed packets,
1343 	 * which open up space in their sockets' send queues.  Sometimes
1344 	 * we do not get such new packets causing Tx to stall.  A single
1345 	 * UDP transmitter is a good example of this situation.  We have
1346 	 * a clean up timer that periodically reclaims completed packets
1347 	 * but it doesn't run often enough (nor do we want it to) to prevent
1348 	 * lengthy stalls.  A solution to this problem is to run the
1349 	 * destructor early, after the packet is queued but before it's DMAd.
1350 	 * A cons is that we lie to socket memory accounting, but the amount
1351 	 * of extra memory is reasonable (limited by the number of Tx
1352 	 * descriptors), the packets do actually get freed quickly by new
1353 	 * packets almost always, and for protocols like TCP that wait for
1354 	 * acks to really free up the data the extra memory is even less.
1355 	 * On the positive side we run the destructors on the sending CPU
1356 	 * rather than on a potentially different completing CPU, usually a
1357 	 * good thing.  We also run them without holding our Tx queue lock,
1358 	 * unlike what reclaim_completed_tx() would otherwise do.
1359 	 *
1360 	 * Run the destructor before telling the DMA engine about the packet
1361 	 * to make sure it doesn't complete and get freed prematurely.
1362 	 */
1363 	if (likely(!skb_shared(skb)))
1364 		skb_orphan(skb);
1365 
1366 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1367 	check_ring_tx_db(adap, q);
1368 	return NETDEV_TX_OK;
1369 }
1370 
1371 /**
1372  *	write_imm - write a packet into a Tx descriptor as immediate data
1373  *	@d: the Tx descriptor to write
1374  *	@skb: the packet
1375  *	@len: the length of packet data to write as immediate data
1376  *	@gen: the generation bit value to write
1377  *
1378  *	Writes a packet as immediate data into a Tx descriptor.  The packet
1379  *	contains a work request at its beginning.  We must write the packet
1380  *	carefully so the SGE doesn't read it accidentally before it's written
1381  *	in its entirety.
1382  */
1383 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1384 			     unsigned int len, unsigned int gen)
1385 {
1386 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1387 	struct work_request_hdr *to = (struct work_request_hdr *)d;
1388 
1389 	if (likely(!skb->data_len))
1390 		memcpy(&to[1], &from[1], len - sizeof(*from));
1391 	else
1392 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1393 
1394 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1395 					V_WR_BCNTLFLT(len & 7));
1396 	dma_wmb();
1397 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1398 					V_WR_LEN((len + 7) / 8));
1399 	wr_gen2(d, gen);
1400 	kfree_skb(skb);
1401 }
1402 
1403 /**
1404  *	check_desc_avail - check descriptor availability on a send queue
1405  *	@adap: the adapter
1406  *	@q: the send queue
1407  *	@skb: the packet needing the descriptors
1408  *	@ndesc: the number of Tx descriptors needed
1409  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1410  *
1411  *	Checks if the requested number of Tx descriptors is available on an
1412  *	SGE send queue.  If the queue is already suspended or not enough
1413  *	descriptors are available the packet is queued for later transmission.
1414  *	Must be called with the Tx queue locked.
1415  *
1416  *	Returns 0 if enough descriptors are available, 1 if there aren't
1417  *	enough descriptors and the packet has been queued, and 2 if the caller
1418  *	needs to retry because there weren't enough descriptors at the
1419  *	beginning of the call but some freed up in the mean time.
1420  */
1421 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1422 				   struct sk_buff *skb, unsigned int ndesc,
1423 				   unsigned int qid)
1424 {
1425 	if (unlikely(!skb_queue_empty(&q->sendq))) {
1426 	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1427 		return 1;
1428 	}
1429 	if (unlikely(q->size - q->in_use < ndesc)) {
1430 		struct sge_qset *qs = txq_to_qset(q, qid);
1431 
1432 		set_bit(qid, &qs->txq_stopped);
1433 		smp_mb__after_atomic();
1434 
1435 		if (should_restart_tx(q) &&
1436 		    test_and_clear_bit(qid, &qs->txq_stopped))
1437 			return 2;
1438 
1439 		q->stops++;
1440 		goto addq_exit;
1441 	}
1442 	return 0;
1443 }
1444 
1445 /**
1446  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1447  *	@q: the SGE control Tx queue
1448  *
1449  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1450  *	that send only immediate data (presently just the control queues) and
1451  *	thus do not have any sk_buffs to release.
1452  */
1453 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1454 {
1455 	unsigned int reclaim = q->processed - q->cleaned;
1456 
1457 	q->in_use -= reclaim;
1458 	q->cleaned += reclaim;
1459 }
1460 
1461 static inline int immediate(const struct sk_buff *skb)
1462 {
1463 	return skb->len <= WR_LEN;
1464 }
1465 
1466 /**
1467  *	ctrl_xmit - send a packet through an SGE control Tx queue
1468  *	@adap: the adapter
1469  *	@q: the control queue
1470  *	@skb: the packet
1471  *
1472  *	Send a packet through an SGE control Tx queue.  Packets sent through
1473  *	a control queue must fit entirely as immediate data in a single Tx
1474  *	descriptor and have no page fragments.
1475  */
1476 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1477 		     struct sk_buff *skb)
1478 {
1479 	int ret;
1480 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1481 
1482 	if (unlikely(!immediate(skb))) {
1483 		WARN_ON(1);
1484 		dev_kfree_skb(skb);
1485 		return NET_XMIT_SUCCESS;
1486 	}
1487 
1488 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1489 	wrp->wr_lo = htonl(V_WR_TID(q->token));
1490 
1491 	spin_lock(&q->lock);
1492       again:reclaim_completed_tx_imm(q);
1493 
1494 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1495 	if (unlikely(ret)) {
1496 		if (ret == 1) {
1497 			spin_unlock(&q->lock);
1498 			return NET_XMIT_CN;
1499 		}
1500 		goto again;
1501 	}
1502 
1503 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1504 
1505 	q->in_use++;
1506 	if (++q->pidx >= q->size) {
1507 		q->pidx = 0;
1508 		q->gen ^= 1;
1509 	}
1510 	spin_unlock(&q->lock);
1511 	wmb();
1512 	t3_write_reg(adap, A_SG_KDOORBELL,
1513 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1514 	return NET_XMIT_SUCCESS;
1515 }
1516 
1517 /**
1518  *	restart_ctrlq - restart a suspended control queue
1519  *	@qs: the queue set cotaining the control queue
1520  *
1521  *	Resumes transmission on a suspended Tx control queue.
1522  */
1523 static void restart_ctrlq(unsigned long data)
1524 {
1525 	struct sk_buff *skb;
1526 	struct sge_qset *qs = (struct sge_qset *)data;
1527 	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1528 
1529 	spin_lock(&q->lock);
1530       again:reclaim_completed_tx_imm(q);
1531 
1532 	while (q->in_use < q->size &&
1533 	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1534 
1535 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1536 
1537 		if (++q->pidx >= q->size) {
1538 			q->pidx = 0;
1539 			q->gen ^= 1;
1540 		}
1541 		q->in_use++;
1542 	}
1543 
1544 	if (!skb_queue_empty(&q->sendq)) {
1545 		set_bit(TXQ_CTRL, &qs->txq_stopped);
1546 		smp_mb__after_atomic();
1547 
1548 		if (should_restart_tx(q) &&
1549 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1550 			goto again;
1551 		q->stops++;
1552 	}
1553 
1554 	spin_unlock(&q->lock);
1555 	wmb();
1556 	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1557 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1558 }
1559 
1560 /*
1561  * Send a management message through control queue 0
1562  */
1563 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1564 {
1565 	int ret;
1566 	local_bh_disable();
1567 	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1568 	local_bh_enable();
1569 
1570 	return ret;
1571 }
1572 
1573 /**
1574  *	deferred_unmap_destructor - unmap a packet when it is freed
1575  *	@skb: the packet
1576  *
1577  *	This is the packet destructor used for Tx packets that need to remain
1578  *	mapped until they are freed rather than until their Tx descriptors are
1579  *	freed.
1580  */
1581 static void deferred_unmap_destructor(struct sk_buff *skb)
1582 {
1583 	int i;
1584 	const dma_addr_t *p;
1585 	const struct skb_shared_info *si;
1586 	const struct deferred_unmap_info *dui;
1587 
1588 	dui = (struct deferred_unmap_info *)skb->head;
1589 	p = dui->addr;
1590 
1591 	if (skb_tail_pointer(skb) - skb_transport_header(skb))
1592 		pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1593 				 skb_transport_header(skb), PCI_DMA_TODEVICE);
1594 
1595 	si = skb_shinfo(skb);
1596 	for (i = 0; i < si->nr_frags; i++)
1597 		pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1598 			       PCI_DMA_TODEVICE);
1599 }
1600 
1601 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1602 				     const struct sg_ent *sgl, int sgl_flits)
1603 {
1604 	dma_addr_t *p;
1605 	struct deferred_unmap_info *dui;
1606 
1607 	dui = (struct deferred_unmap_info *)skb->head;
1608 	dui->pdev = pdev;
1609 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1610 		*p++ = be64_to_cpu(sgl->addr[0]);
1611 		*p++ = be64_to_cpu(sgl->addr[1]);
1612 	}
1613 	if (sgl_flits)
1614 		*p = be64_to_cpu(sgl->addr[0]);
1615 }
1616 
1617 /**
1618  *	write_ofld_wr - write an offload work request
1619  *	@adap: the adapter
1620  *	@skb: the packet to send
1621  *	@q: the Tx queue
1622  *	@pidx: index of the first Tx descriptor to write
1623  *	@gen: the generation value to use
1624  *	@ndesc: number of descriptors the packet will occupy
1625  *
1626  *	Write an offload work request to send the supplied packet.  The packet
1627  *	data already carry the work request with most fields populated.
1628  */
1629 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1630 			  struct sge_txq *q, unsigned int pidx,
1631 			  unsigned int gen, unsigned int ndesc,
1632 			  const dma_addr_t *addr)
1633 {
1634 	unsigned int sgl_flits, flits;
1635 	struct work_request_hdr *from;
1636 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1637 	struct tx_desc *d = &q->desc[pidx];
1638 
1639 	if (immediate(skb)) {
1640 		q->sdesc[pidx].skb = NULL;
1641 		write_imm(d, skb, skb->len, gen);
1642 		return;
1643 	}
1644 
1645 	/* Only TX_DATA builds SGLs */
1646 
1647 	from = (struct work_request_hdr *)skb->data;
1648 	memcpy(&d->flit[1], &from[1],
1649 	       skb_transport_offset(skb) - sizeof(*from));
1650 
1651 	flits = skb_transport_offset(skb) / 8;
1652 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1653 	sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1654 			      skb_tail_pointer(skb) - skb_transport_header(skb),
1655 			      addr);
1656 	if (need_skb_unmap()) {
1657 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1658 		skb->destructor = deferred_unmap_destructor;
1659 	}
1660 
1661 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1662 			 gen, from->wr_hi, from->wr_lo);
1663 }
1664 
1665 /**
1666  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1667  *	@skb: the packet
1668  *
1669  * 	Returns the number of Tx descriptors needed for the given offload
1670  * 	packet.  These packets are already fully constructed.
1671  */
1672 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1673 {
1674 	unsigned int flits, cnt;
1675 
1676 	if (skb->len <= WR_LEN)
1677 		return 1;	/* packet fits as immediate data */
1678 
1679 	flits = skb_transport_offset(skb) / 8;	/* headers */
1680 	cnt = skb_shinfo(skb)->nr_frags;
1681 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1682 		cnt++;
1683 	return flits_to_desc(flits + sgl_len(cnt));
1684 }
1685 
1686 /**
1687  *	ofld_xmit - send a packet through an offload queue
1688  *	@adap: the adapter
1689  *	@q: the Tx offload queue
1690  *	@skb: the packet
1691  *
1692  *	Send an offload packet through an SGE offload queue.
1693  */
1694 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1695 		     struct sk_buff *skb)
1696 {
1697 	int ret;
1698 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1699 
1700 	spin_lock(&q->lock);
1701 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1702 
1703 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1704 	if (unlikely(ret)) {
1705 		if (ret == 1) {
1706 			skb->priority = ndesc;	/* save for restart */
1707 			spin_unlock(&q->lock);
1708 			return NET_XMIT_CN;
1709 		}
1710 		goto again;
1711 	}
1712 
1713 	if (!immediate(skb) &&
1714 	    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1715 		spin_unlock(&q->lock);
1716 		return NET_XMIT_SUCCESS;
1717 	}
1718 
1719 	gen = q->gen;
1720 	q->in_use += ndesc;
1721 	pidx = q->pidx;
1722 	q->pidx += ndesc;
1723 	if (q->pidx >= q->size) {
1724 		q->pidx -= q->size;
1725 		q->gen ^= 1;
1726 	}
1727 	spin_unlock(&q->lock);
1728 
1729 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1730 	check_ring_tx_db(adap, q);
1731 	return NET_XMIT_SUCCESS;
1732 }
1733 
1734 /**
1735  *	restart_offloadq - restart a suspended offload queue
1736  *	@qs: the queue set cotaining the offload queue
1737  *
1738  *	Resumes transmission on a suspended Tx offload queue.
1739  */
1740 static void restart_offloadq(unsigned long data)
1741 {
1742 	struct sk_buff *skb;
1743 	struct sge_qset *qs = (struct sge_qset *)data;
1744 	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1745 	const struct port_info *pi = netdev_priv(qs->netdev);
1746 	struct adapter *adap = pi->adapter;
1747 	unsigned int written = 0;
1748 
1749 	spin_lock(&q->lock);
1750 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1751 
1752 	while ((skb = skb_peek(&q->sendq)) != NULL) {
1753 		unsigned int gen, pidx;
1754 		unsigned int ndesc = skb->priority;
1755 
1756 		if (unlikely(q->size - q->in_use < ndesc)) {
1757 			set_bit(TXQ_OFLD, &qs->txq_stopped);
1758 			smp_mb__after_atomic();
1759 
1760 			if (should_restart_tx(q) &&
1761 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1762 				goto again;
1763 			q->stops++;
1764 			break;
1765 		}
1766 
1767 		if (!immediate(skb) &&
1768 		    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1769 			break;
1770 
1771 		gen = q->gen;
1772 		q->in_use += ndesc;
1773 		pidx = q->pidx;
1774 		q->pidx += ndesc;
1775 		written += ndesc;
1776 		if (q->pidx >= q->size) {
1777 			q->pidx -= q->size;
1778 			q->gen ^= 1;
1779 		}
1780 		__skb_unlink(skb, &q->sendq);
1781 		spin_unlock(&q->lock);
1782 
1783 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1784 			      (dma_addr_t *)skb->head);
1785 		spin_lock(&q->lock);
1786 	}
1787 	spin_unlock(&q->lock);
1788 
1789 #if USE_GTS
1790 	set_bit(TXQ_RUNNING, &q->flags);
1791 	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1792 #endif
1793 	wmb();
1794 	if (likely(written))
1795 		t3_write_reg(adap, A_SG_KDOORBELL,
1796 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1797 }
1798 
1799 /**
1800  *	queue_set - return the queue set a packet should use
1801  *	@skb: the packet
1802  *
1803  *	Maps a packet to the SGE queue set it should use.  The desired queue
1804  *	set is carried in bits 1-3 in the packet's priority.
1805  */
1806 static inline int queue_set(const struct sk_buff *skb)
1807 {
1808 	return skb->priority >> 1;
1809 }
1810 
1811 /**
1812  *	is_ctrl_pkt - return whether an offload packet is a control packet
1813  *	@skb: the packet
1814  *
1815  *	Determines whether an offload packet should use an OFLD or a CTRL
1816  *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1817  */
1818 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1819 {
1820 	return skb->priority & 1;
1821 }
1822 
1823 /**
1824  *	t3_offload_tx - send an offload packet
1825  *	@tdev: the offload device to send to
1826  *	@skb: the packet
1827  *
1828  *	Sends an offload packet.  We use the packet priority to select the
1829  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1830  *	should be sent as regular or control, bits 1-3 select the queue set.
1831  */
1832 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1833 {
1834 	struct adapter *adap = tdev2adap(tdev);
1835 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1836 
1837 	if (unlikely(is_ctrl_pkt(skb)))
1838 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1839 
1840 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1841 }
1842 
1843 /**
1844  *	offload_enqueue - add an offload packet to an SGE offload receive queue
1845  *	@q: the SGE response queue
1846  *	@skb: the packet
1847  *
1848  *	Add a new offload packet to an SGE response queue's offload packet
1849  *	queue.  If the packet is the first on the queue it schedules the RX
1850  *	softirq to process the queue.
1851  */
1852 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1853 {
1854 	int was_empty = skb_queue_empty(&q->rx_queue);
1855 
1856 	__skb_queue_tail(&q->rx_queue, skb);
1857 
1858 	if (was_empty) {
1859 		struct sge_qset *qs = rspq_to_qset(q);
1860 
1861 		napi_schedule(&qs->napi);
1862 	}
1863 }
1864 
1865 /**
1866  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1867  *	@tdev: the offload device that will be receiving the packets
1868  *	@q: the SGE response queue that assembled the bundle
1869  *	@skbs: the partial bundle
1870  *	@n: the number of packets in the bundle
1871  *
1872  *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1873  */
1874 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1875 					  struct sge_rspq *q,
1876 					  struct sk_buff *skbs[], int n)
1877 {
1878 	if (n) {
1879 		q->offload_bundles++;
1880 		tdev->recv(tdev, skbs, n);
1881 	}
1882 }
1883 
1884 /**
1885  *	ofld_poll - NAPI handler for offload packets in interrupt mode
1886  *	@dev: the network device doing the polling
1887  *	@budget: polling budget
1888  *
1889  *	The NAPI handler for offload packets when a response queue is serviced
1890  *	by the hard interrupt handler, i.e., when it's operating in non-polling
1891  *	mode.  Creates small packet batches and sends them through the offload
1892  *	receive handler.  Batches need to be of modest size as we do prefetches
1893  *	on the packets in each.
1894  */
1895 static int ofld_poll(struct napi_struct *napi, int budget)
1896 {
1897 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1898 	struct sge_rspq *q = &qs->rspq;
1899 	struct adapter *adapter = qs->adap;
1900 	int work_done = 0;
1901 
1902 	while (work_done < budget) {
1903 		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1904 		struct sk_buff_head queue;
1905 		int ngathered;
1906 
1907 		spin_lock_irq(&q->lock);
1908 		__skb_queue_head_init(&queue);
1909 		skb_queue_splice_init(&q->rx_queue, &queue);
1910 		if (skb_queue_empty(&queue)) {
1911 			napi_complete_done(napi, work_done);
1912 			spin_unlock_irq(&q->lock);
1913 			return work_done;
1914 		}
1915 		spin_unlock_irq(&q->lock);
1916 
1917 		ngathered = 0;
1918 		skb_queue_walk_safe(&queue, skb, tmp) {
1919 			if (work_done >= budget)
1920 				break;
1921 			work_done++;
1922 
1923 			__skb_unlink(skb, &queue);
1924 			prefetch(skb->data);
1925 			skbs[ngathered] = skb;
1926 			if (++ngathered == RX_BUNDLE_SIZE) {
1927 				q->offload_bundles++;
1928 				adapter->tdev.recv(&adapter->tdev, skbs,
1929 						   ngathered);
1930 				ngathered = 0;
1931 			}
1932 		}
1933 		if (!skb_queue_empty(&queue)) {
1934 			/* splice remaining packets back onto Rx queue */
1935 			spin_lock_irq(&q->lock);
1936 			skb_queue_splice(&queue, &q->rx_queue);
1937 			spin_unlock_irq(&q->lock);
1938 		}
1939 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1940 	}
1941 
1942 	return work_done;
1943 }
1944 
1945 /**
1946  *	rx_offload - process a received offload packet
1947  *	@tdev: the offload device receiving the packet
1948  *	@rq: the response queue that received the packet
1949  *	@skb: the packet
1950  *	@rx_gather: a gather list of packets if we are building a bundle
1951  *	@gather_idx: index of the next available slot in the bundle
1952  *
1953  *	Process an ingress offload pakcet and add it to the offload ingress
1954  *	queue. 	Returns the index of the next available slot in the bundle.
1955  */
1956 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1957 			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1958 			     unsigned int gather_idx)
1959 {
1960 	skb_reset_mac_header(skb);
1961 	skb_reset_network_header(skb);
1962 	skb_reset_transport_header(skb);
1963 
1964 	if (rq->polling) {
1965 		rx_gather[gather_idx++] = skb;
1966 		if (gather_idx == RX_BUNDLE_SIZE) {
1967 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1968 			gather_idx = 0;
1969 			rq->offload_bundles++;
1970 		}
1971 	} else
1972 		offload_enqueue(rq, skb);
1973 
1974 	return gather_idx;
1975 }
1976 
1977 /**
1978  *	restart_tx - check whether to restart suspended Tx queues
1979  *	@qs: the queue set to resume
1980  *
1981  *	Restarts suspended Tx queues of an SGE queue set if they have enough
1982  *	free resources to resume operation.
1983  */
1984 static void restart_tx(struct sge_qset *qs)
1985 {
1986 	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1987 	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1988 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1989 		qs->txq[TXQ_ETH].restarts++;
1990 		if (netif_running(qs->netdev))
1991 			netif_tx_wake_queue(qs->tx_q);
1992 	}
1993 
1994 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1995 	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1996 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1997 		qs->txq[TXQ_OFLD].restarts++;
1998 		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1999 	}
2000 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2001 	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2002 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2003 		qs->txq[TXQ_CTRL].restarts++;
2004 		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
2005 	}
2006 }
2007 
2008 /**
2009  *	cxgb3_arp_process - process an ARP request probing a private IP address
2010  *	@adapter: the adapter
2011  *	@skb: the skbuff containing the ARP request
2012  *
2013  *	Check if the ARP request is probing the private IP address
2014  *	dedicated to iSCSI, generate an ARP reply if so.
2015  */
2016 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2017 {
2018 	struct net_device *dev = skb->dev;
2019 	struct arphdr *arp;
2020 	unsigned char *arp_ptr;
2021 	unsigned char *sha;
2022 	__be32 sip, tip;
2023 
2024 	if (!dev)
2025 		return;
2026 
2027 	skb_reset_network_header(skb);
2028 	arp = arp_hdr(skb);
2029 
2030 	if (arp->ar_op != htons(ARPOP_REQUEST))
2031 		return;
2032 
2033 	arp_ptr = (unsigned char *)(arp + 1);
2034 	sha = arp_ptr;
2035 	arp_ptr += dev->addr_len;
2036 	memcpy(&sip, arp_ptr, sizeof(sip));
2037 	arp_ptr += sizeof(sip);
2038 	arp_ptr += dev->addr_len;
2039 	memcpy(&tip, arp_ptr, sizeof(tip));
2040 
2041 	if (tip != pi->iscsi_ipv4addr)
2042 		return;
2043 
2044 	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2045 		 pi->iscsic.mac_addr, sha);
2046 
2047 }
2048 
2049 static inline int is_arp(struct sk_buff *skb)
2050 {
2051 	return skb->protocol == htons(ETH_P_ARP);
2052 }
2053 
2054 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2055 					struct sk_buff *skb)
2056 {
2057 	if (is_arp(skb)) {
2058 		cxgb3_arp_process(pi, skb);
2059 		return;
2060 	}
2061 
2062 	if (pi->iscsic.recv)
2063 		pi->iscsic.recv(pi, skb);
2064 
2065 }
2066 
2067 /**
2068  *	rx_eth - process an ingress ethernet packet
2069  *	@adap: the adapter
2070  *	@rq: the response queue that received the packet
2071  *	@skb: the packet
2072  *	@pad: amount of padding at the start of the buffer
2073  *
2074  *	Process an ingress ethernet pakcet and deliver it to the stack.
2075  *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2076  *	if it was immediate data in a response.
2077  */
2078 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2079 		   struct sk_buff *skb, int pad, int lro)
2080 {
2081 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2082 	struct sge_qset *qs = rspq_to_qset(rq);
2083 	struct port_info *pi;
2084 
2085 	skb_pull(skb, sizeof(*p) + pad);
2086 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2087 	pi = netdev_priv(skb->dev);
2088 	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2089 	    p->csum == htons(0xffff) && !p->fragment) {
2090 		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2091 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2092 	} else
2093 		skb_checksum_none_assert(skb);
2094 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2095 
2096 	if (p->vlan_valid) {
2097 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2098 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2099 	}
2100 	if (rq->polling) {
2101 		if (lro)
2102 			napi_gro_receive(&qs->napi, skb);
2103 		else {
2104 			if (unlikely(pi->iscsic.flags))
2105 				cxgb3_process_iscsi_prov_pack(pi, skb);
2106 			netif_receive_skb(skb);
2107 		}
2108 	} else
2109 		netif_rx(skb);
2110 }
2111 
2112 static inline int is_eth_tcp(u32 rss)
2113 {
2114 	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2115 }
2116 
2117 /**
2118  *	lro_add_page - add a page chunk to an LRO session
2119  *	@adap: the adapter
2120  *	@qs: the associated queue set
2121  *	@fl: the free list containing the page chunk to add
2122  *	@len: packet length
2123  *	@complete: Indicates the last fragment of a frame
2124  *
2125  *	Add a received packet contained in a page chunk to an existing LRO
2126  *	session.
2127  */
2128 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2129 			 struct sge_fl *fl, int len, int complete)
2130 {
2131 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2132 	struct port_info *pi = netdev_priv(qs->netdev);
2133 	struct sk_buff *skb = NULL;
2134 	struct cpl_rx_pkt *cpl;
2135 	struct skb_frag_struct *rx_frag;
2136 	int nr_frags;
2137 	int offset = 0;
2138 
2139 	if (!qs->nomem) {
2140 		skb = napi_get_frags(&qs->napi);
2141 		qs->nomem = !skb;
2142 	}
2143 
2144 	fl->credits--;
2145 
2146 	pci_dma_sync_single_for_cpu(adap->pdev,
2147 				    dma_unmap_addr(sd, dma_addr),
2148 				    fl->buf_size - SGE_PG_RSVD,
2149 				    PCI_DMA_FROMDEVICE);
2150 
2151 	(*sd->pg_chunk.p_cnt)--;
2152 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2153 		pci_unmap_page(adap->pdev,
2154 			       sd->pg_chunk.mapping,
2155 			       fl->alloc_size,
2156 			       PCI_DMA_FROMDEVICE);
2157 
2158 	if (!skb) {
2159 		put_page(sd->pg_chunk.page);
2160 		if (complete)
2161 			qs->nomem = 0;
2162 		return;
2163 	}
2164 
2165 	rx_frag = skb_shinfo(skb)->frags;
2166 	nr_frags = skb_shinfo(skb)->nr_frags;
2167 
2168 	if (!nr_frags) {
2169 		offset = 2 + sizeof(struct cpl_rx_pkt);
2170 		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2171 
2172 		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2173 		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2174 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2175 			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2176 		} else
2177 			skb->ip_summed = CHECKSUM_NONE;
2178 	} else
2179 		cpl = qs->lro_va;
2180 
2181 	len -= offset;
2182 
2183 	rx_frag += nr_frags;
2184 	__skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2185 	rx_frag->page_offset = sd->pg_chunk.offset + offset;
2186 	skb_frag_size_set(rx_frag, len);
2187 
2188 	skb->len += len;
2189 	skb->data_len += len;
2190 	skb->truesize += len;
2191 	skb_shinfo(skb)->nr_frags++;
2192 
2193 	if (!complete)
2194 		return;
2195 
2196 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2197 
2198 	if (cpl->vlan_valid) {
2199 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2200 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2201 	}
2202 	napi_gro_frags(&qs->napi);
2203 }
2204 
2205 /**
2206  *	handle_rsp_cntrl_info - handles control information in a response
2207  *	@qs: the queue set corresponding to the response
2208  *	@flags: the response control flags
2209  *
2210  *	Handles the control information of an SGE response, such as GTS
2211  *	indications and completion credits for the queue set's Tx queues.
2212  *	HW coalesces credits, we don't do any extra SW coalescing.
2213  */
2214 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2215 {
2216 	unsigned int credits;
2217 
2218 #if USE_GTS
2219 	if (flags & F_RSPD_TXQ0_GTS)
2220 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2221 #endif
2222 
2223 	credits = G_RSPD_TXQ0_CR(flags);
2224 	if (credits)
2225 		qs->txq[TXQ_ETH].processed += credits;
2226 
2227 	credits = G_RSPD_TXQ2_CR(flags);
2228 	if (credits)
2229 		qs->txq[TXQ_CTRL].processed += credits;
2230 
2231 # if USE_GTS
2232 	if (flags & F_RSPD_TXQ1_GTS)
2233 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2234 # endif
2235 	credits = G_RSPD_TXQ1_CR(flags);
2236 	if (credits)
2237 		qs->txq[TXQ_OFLD].processed += credits;
2238 }
2239 
2240 /**
2241  *	check_ring_db - check if we need to ring any doorbells
2242  *	@adapter: the adapter
2243  *	@qs: the queue set whose Tx queues are to be examined
2244  *	@sleeping: indicates which Tx queue sent GTS
2245  *
2246  *	Checks if some of a queue set's Tx queues need to ring their doorbells
2247  *	to resume transmission after idling while they still have unprocessed
2248  *	descriptors.
2249  */
2250 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2251 			  unsigned int sleeping)
2252 {
2253 	if (sleeping & F_RSPD_TXQ0_GTS) {
2254 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2255 
2256 		if (txq->cleaned + txq->in_use != txq->processed &&
2257 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2258 			set_bit(TXQ_RUNNING, &txq->flags);
2259 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2260 				     V_EGRCNTX(txq->cntxt_id));
2261 		}
2262 	}
2263 
2264 	if (sleeping & F_RSPD_TXQ1_GTS) {
2265 		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2266 
2267 		if (txq->cleaned + txq->in_use != txq->processed &&
2268 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2269 			set_bit(TXQ_RUNNING, &txq->flags);
2270 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2271 				     V_EGRCNTX(txq->cntxt_id));
2272 		}
2273 	}
2274 }
2275 
2276 /**
2277  *	is_new_response - check if a response is newly written
2278  *	@r: the response descriptor
2279  *	@q: the response queue
2280  *
2281  *	Returns true if a response descriptor contains a yet unprocessed
2282  *	response.
2283  */
2284 static inline int is_new_response(const struct rsp_desc *r,
2285 				  const struct sge_rspq *q)
2286 {
2287 	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2288 }
2289 
2290 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2291 {
2292 	q->pg_skb = NULL;
2293 	q->rx_recycle_buf = 0;
2294 }
2295 
2296 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2297 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2298 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2299 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2300 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2301 
2302 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2303 #define NOMEM_INTR_DELAY 2500
2304 
2305 /**
2306  *	process_responses - process responses from an SGE response queue
2307  *	@adap: the adapter
2308  *	@qs: the queue set to which the response queue belongs
2309  *	@budget: how many responses can be processed in this round
2310  *
2311  *	Process responses from an SGE response queue up to the supplied budget.
2312  *	Responses include received packets as well as credits and other events
2313  *	for the queues that belong to the response queue's queue set.
2314  *	A negative budget is effectively unlimited.
2315  *
2316  *	Additionally choose the interrupt holdoff time for the next interrupt
2317  *	on this queue.  If the system is under memory shortage use a fairly
2318  *	long delay to help recovery.
2319  */
2320 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2321 			     int budget)
2322 {
2323 	struct sge_rspq *q = &qs->rspq;
2324 	struct rsp_desc *r = &q->desc[q->cidx];
2325 	int budget_left = budget;
2326 	unsigned int sleeping = 0;
2327 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2328 	int ngathered = 0;
2329 
2330 	q->next_holdoff = q->holdoff_tmr;
2331 
2332 	while (likely(budget_left && is_new_response(r, q))) {
2333 		int packet_complete, eth, ethpad = 2;
2334 		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2335 		struct sk_buff *skb = NULL;
2336 		u32 len, flags;
2337 		__be32 rss_hi, rss_lo;
2338 
2339 		dma_rmb();
2340 		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2341 		rss_hi = *(const __be32 *)r;
2342 		rss_lo = r->rss_hdr.rss_hash_val;
2343 		flags = ntohl(r->flags);
2344 
2345 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2346 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2347 			if (!skb)
2348 				goto no_mem;
2349 
2350 			__skb_put_data(skb, r, AN_PKT_SIZE);
2351 			skb->data[0] = CPL_ASYNC_NOTIF;
2352 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2353 			q->async_notif++;
2354 		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2355 			skb = get_imm_packet(r);
2356 			if (unlikely(!skb)) {
2357 no_mem:
2358 				q->next_holdoff = NOMEM_INTR_DELAY;
2359 				q->nomem++;
2360 				/* consume one credit since we tried */
2361 				budget_left--;
2362 				break;
2363 			}
2364 			q->imm_data++;
2365 			ethpad = 0;
2366 		} else if ((len = ntohl(r->len_cq)) != 0) {
2367 			struct sge_fl *fl;
2368 
2369 			lro &= eth && is_eth_tcp(rss_hi);
2370 
2371 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2372 			if (fl->use_pages) {
2373 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2374 
2375 				prefetch(addr);
2376 #if L1_CACHE_BYTES < 128
2377 				prefetch(addr + L1_CACHE_BYTES);
2378 #endif
2379 				__refill_fl(adap, fl);
2380 				if (lro > 0) {
2381 					lro_add_page(adap, qs, fl,
2382 						     G_RSPD_LEN(len),
2383 						     flags & F_RSPD_EOP);
2384 					goto next_fl;
2385 				}
2386 
2387 				skb = get_packet_pg(adap, fl, q,
2388 						    G_RSPD_LEN(len),
2389 						    eth ?
2390 						    SGE_RX_DROP_THRES : 0);
2391 				q->pg_skb = skb;
2392 			} else
2393 				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2394 						 eth ? SGE_RX_DROP_THRES : 0);
2395 			if (unlikely(!skb)) {
2396 				if (!eth)
2397 					goto no_mem;
2398 				q->rx_drops++;
2399 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2400 				__skb_pull(skb, 2);
2401 next_fl:
2402 			if (++fl->cidx == fl->size)
2403 				fl->cidx = 0;
2404 		} else
2405 			q->pure_rsps++;
2406 
2407 		if (flags & RSPD_CTRL_MASK) {
2408 			sleeping |= flags & RSPD_GTS_MASK;
2409 			handle_rsp_cntrl_info(qs, flags);
2410 		}
2411 
2412 		r++;
2413 		if (unlikely(++q->cidx == q->size)) {
2414 			q->cidx = 0;
2415 			q->gen ^= 1;
2416 			r = q->desc;
2417 		}
2418 		prefetch(r);
2419 
2420 		if (++q->credits >= (q->size / 4)) {
2421 			refill_rspq(adap, q, q->credits);
2422 			q->credits = 0;
2423 		}
2424 
2425 		packet_complete = flags &
2426 				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2427 				   F_RSPD_ASYNC_NOTIF);
2428 
2429 		if (skb != NULL && packet_complete) {
2430 			if (eth)
2431 				rx_eth(adap, q, skb, ethpad, lro);
2432 			else {
2433 				q->offload_pkts++;
2434 				/* Preserve the RSS info in csum & priority */
2435 				skb->csum = rss_hi;
2436 				skb->priority = rss_lo;
2437 				ngathered = rx_offload(&adap->tdev, q, skb,
2438 						       offload_skbs,
2439 						       ngathered);
2440 			}
2441 
2442 			if (flags & F_RSPD_EOP)
2443 				clear_rspq_bufstate(q);
2444 		}
2445 		--budget_left;
2446 	}
2447 
2448 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2449 
2450 	if (sleeping)
2451 		check_ring_db(adap, qs, sleeping);
2452 
2453 	smp_mb();		/* commit Tx queue .processed updates */
2454 	if (unlikely(qs->txq_stopped != 0))
2455 		restart_tx(qs);
2456 
2457 	budget -= budget_left;
2458 	return budget;
2459 }
2460 
2461 static inline int is_pure_response(const struct rsp_desc *r)
2462 {
2463 	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2464 
2465 	return (n | r->len_cq) == 0;
2466 }
2467 
2468 /**
2469  *	napi_rx_handler - the NAPI handler for Rx processing
2470  *	@napi: the napi instance
2471  *	@budget: how many packets we can process in this round
2472  *
2473  *	Handler for new data events when using NAPI.
2474  */
2475 static int napi_rx_handler(struct napi_struct *napi, int budget)
2476 {
2477 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2478 	struct adapter *adap = qs->adap;
2479 	int work_done = process_responses(adap, qs, budget);
2480 
2481 	if (likely(work_done < budget)) {
2482 		napi_complete_done(napi, work_done);
2483 
2484 		/*
2485 		 * Because we don't atomically flush the following
2486 		 * write it is possible that in very rare cases it can
2487 		 * reach the device in a way that races with a new
2488 		 * response being written plus an error interrupt
2489 		 * causing the NAPI interrupt handler below to return
2490 		 * unhandled status to the OS.  To protect against
2491 		 * this would require flushing the write and doing
2492 		 * both the write and the flush with interrupts off.
2493 		 * Way too expensive and unjustifiable given the
2494 		 * rarity of the race.
2495 		 *
2496 		 * The race cannot happen at all with MSI-X.
2497 		 */
2498 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2499 			     V_NEWTIMER(qs->rspq.next_holdoff) |
2500 			     V_NEWINDEX(qs->rspq.cidx));
2501 	}
2502 	return work_done;
2503 }
2504 
2505 /*
2506  * Returns true if the device is already scheduled for polling.
2507  */
2508 static inline int napi_is_scheduled(struct napi_struct *napi)
2509 {
2510 	return test_bit(NAPI_STATE_SCHED, &napi->state);
2511 }
2512 
2513 /**
2514  *	process_pure_responses - process pure responses from a response queue
2515  *	@adap: the adapter
2516  *	@qs: the queue set owning the response queue
2517  *	@r: the first pure response to process
2518  *
2519  *	A simpler version of process_responses() that handles only pure (i.e.,
2520  *	non data-carrying) responses.  Such respones are too light-weight to
2521  *	justify calling a softirq under NAPI, so we handle them specially in
2522  *	the interrupt handler.  The function is called with a pointer to a
2523  *	response, which the caller must ensure is a valid pure response.
2524  *
2525  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2526  */
2527 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2528 				  struct rsp_desc *r)
2529 {
2530 	struct sge_rspq *q = &qs->rspq;
2531 	unsigned int sleeping = 0;
2532 
2533 	do {
2534 		u32 flags = ntohl(r->flags);
2535 
2536 		r++;
2537 		if (unlikely(++q->cidx == q->size)) {
2538 			q->cidx = 0;
2539 			q->gen ^= 1;
2540 			r = q->desc;
2541 		}
2542 		prefetch(r);
2543 
2544 		if (flags & RSPD_CTRL_MASK) {
2545 			sleeping |= flags & RSPD_GTS_MASK;
2546 			handle_rsp_cntrl_info(qs, flags);
2547 		}
2548 
2549 		q->pure_rsps++;
2550 		if (++q->credits >= (q->size / 4)) {
2551 			refill_rspq(adap, q, q->credits);
2552 			q->credits = 0;
2553 		}
2554 		if (!is_new_response(r, q))
2555 			break;
2556 		dma_rmb();
2557 	} while (is_pure_response(r));
2558 
2559 	if (sleeping)
2560 		check_ring_db(adap, qs, sleeping);
2561 
2562 	smp_mb();		/* commit Tx queue .processed updates */
2563 	if (unlikely(qs->txq_stopped != 0))
2564 		restart_tx(qs);
2565 
2566 	return is_new_response(r, q);
2567 }
2568 
2569 /**
2570  *	handle_responses - decide what to do with new responses in NAPI mode
2571  *	@adap: the adapter
2572  *	@q: the response queue
2573  *
2574  *	This is used by the NAPI interrupt handlers to decide what to do with
2575  *	new SGE responses.  If there are no new responses it returns -1.  If
2576  *	there are new responses and they are pure (i.e., non-data carrying)
2577  *	it handles them straight in hard interrupt context as they are very
2578  *	cheap and don't deliver any packets.  Finally, if there are any data
2579  *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2580  *	schedules NAPI, 0 if all new responses were pure.
2581  *
2582  *	The caller must ascertain NAPI is not already running.
2583  */
2584 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2585 {
2586 	struct sge_qset *qs = rspq_to_qset(q);
2587 	struct rsp_desc *r = &q->desc[q->cidx];
2588 
2589 	if (!is_new_response(r, q))
2590 		return -1;
2591 	dma_rmb();
2592 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2593 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2594 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2595 		return 0;
2596 	}
2597 	napi_schedule(&qs->napi);
2598 	return 1;
2599 }
2600 
2601 /*
2602  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2603  * (i.e., response queue serviced in hard interrupt).
2604  */
2605 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2606 {
2607 	struct sge_qset *qs = cookie;
2608 	struct adapter *adap = qs->adap;
2609 	struct sge_rspq *q = &qs->rspq;
2610 
2611 	spin_lock(&q->lock);
2612 	if (process_responses(adap, qs, -1) == 0)
2613 		q->unhandled_irqs++;
2614 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2615 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2616 	spin_unlock(&q->lock);
2617 	return IRQ_HANDLED;
2618 }
2619 
2620 /*
2621  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2622  * (i.e., response queue serviced by NAPI polling).
2623  */
2624 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2625 {
2626 	struct sge_qset *qs = cookie;
2627 	struct sge_rspq *q = &qs->rspq;
2628 
2629 	spin_lock(&q->lock);
2630 
2631 	if (handle_responses(qs->adap, q) < 0)
2632 		q->unhandled_irqs++;
2633 	spin_unlock(&q->lock);
2634 	return IRQ_HANDLED;
2635 }
2636 
2637 /*
2638  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2639  * SGE response queues as well as error and other async events as they all use
2640  * the same MSI vector.  We use one SGE response queue per port in this mode
2641  * and protect all response queues with queue 0's lock.
2642  */
2643 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2644 {
2645 	int new_packets = 0;
2646 	struct adapter *adap = cookie;
2647 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2648 
2649 	spin_lock(&q->lock);
2650 
2651 	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2652 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2653 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2654 		new_packets = 1;
2655 	}
2656 
2657 	if (adap->params.nports == 2 &&
2658 	    process_responses(adap, &adap->sge.qs[1], -1)) {
2659 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2660 
2661 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2662 			     V_NEWTIMER(q1->next_holdoff) |
2663 			     V_NEWINDEX(q1->cidx));
2664 		new_packets = 1;
2665 	}
2666 
2667 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2668 		q->unhandled_irqs++;
2669 
2670 	spin_unlock(&q->lock);
2671 	return IRQ_HANDLED;
2672 }
2673 
2674 static int rspq_check_napi(struct sge_qset *qs)
2675 {
2676 	struct sge_rspq *q = &qs->rspq;
2677 
2678 	if (!napi_is_scheduled(&qs->napi) &&
2679 	    is_new_response(&q->desc[q->cidx], q)) {
2680 		napi_schedule(&qs->napi);
2681 		return 1;
2682 	}
2683 	return 0;
2684 }
2685 
2686 /*
2687  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2688  * by NAPI polling).  Handles data events from SGE response queues as well as
2689  * error and other async events as they all use the same MSI vector.  We use
2690  * one SGE response queue per port in this mode and protect all response
2691  * queues with queue 0's lock.
2692  */
2693 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2694 {
2695 	int new_packets;
2696 	struct adapter *adap = cookie;
2697 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2698 
2699 	spin_lock(&q->lock);
2700 
2701 	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2702 	if (adap->params.nports == 2)
2703 		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2704 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2705 		q->unhandled_irqs++;
2706 
2707 	spin_unlock(&q->lock);
2708 	return IRQ_HANDLED;
2709 }
2710 
2711 /*
2712  * A helper function that processes responses and issues GTS.
2713  */
2714 static inline int process_responses_gts(struct adapter *adap,
2715 					struct sge_rspq *rq)
2716 {
2717 	int work;
2718 
2719 	work = process_responses(adap, rspq_to_qset(rq), -1);
2720 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2721 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2722 	return work;
2723 }
2724 
2725 /*
2726  * The legacy INTx interrupt handler.  This needs to handle data events from
2727  * SGE response queues as well as error and other async events as they all use
2728  * the same interrupt pin.  We use one SGE response queue per port in this mode
2729  * and protect all response queues with queue 0's lock.
2730  */
2731 static irqreturn_t t3_intr(int irq, void *cookie)
2732 {
2733 	int work_done, w0, w1;
2734 	struct adapter *adap = cookie;
2735 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2736 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2737 
2738 	spin_lock(&q0->lock);
2739 
2740 	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2741 	w1 = adap->params.nports == 2 &&
2742 	    is_new_response(&q1->desc[q1->cidx], q1);
2743 
2744 	if (likely(w0 | w1)) {
2745 		t3_write_reg(adap, A_PL_CLI, 0);
2746 		t3_read_reg(adap, A_PL_CLI);	/* flush */
2747 
2748 		if (likely(w0))
2749 			process_responses_gts(adap, q0);
2750 
2751 		if (w1)
2752 			process_responses_gts(adap, q1);
2753 
2754 		work_done = w0 | w1;
2755 	} else
2756 		work_done = t3_slow_intr_handler(adap);
2757 
2758 	spin_unlock(&q0->lock);
2759 	return IRQ_RETVAL(work_done != 0);
2760 }
2761 
2762 /*
2763  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2764  * Handles data events from SGE response queues as well as error and other
2765  * async events as they all use the same interrupt pin.  We use one SGE
2766  * response queue per port in this mode and protect all response queues with
2767  * queue 0's lock.
2768  */
2769 static irqreturn_t t3b_intr(int irq, void *cookie)
2770 {
2771 	u32 map;
2772 	struct adapter *adap = cookie;
2773 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2774 
2775 	t3_write_reg(adap, A_PL_CLI, 0);
2776 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2777 
2778 	if (unlikely(!map))	/* shared interrupt, most likely */
2779 		return IRQ_NONE;
2780 
2781 	spin_lock(&q0->lock);
2782 
2783 	if (unlikely(map & F_ERRINTR))
2784 		t3_slow_intr_handler(adap);
2785 
2786 	if (likely(map & 1))
2787 		process_responses_gts(adap, q0);
2788 
2789 	if (map & 2)
2790 		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2791 
2792 	spin_unlock(&q0->lock);
2793 	return IRQ_HANDLED;
2794 }
2795 
2796 /*
2797  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2798  * Handles data events from SGE response queues as well as error and other
2799  * async events as they all use the same interrupt pin.  We use one SGE
2800  * response queue per port in this mode and protect all response queues with
2801  * queue 0's lock.
2802  */
2803 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2804 {
2805 	u32 map;
2806 	struct adapter *adap = cookie;
2807 	struct sge_qset *qs0 = &adap->sge.qs[0];
2808 	struct sge_rspq *q0 = &qs0->rspq;
2809 
2810 	t3_write_reg(adap, A_PL_CLI, 0);
2811 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2812 
2813 	if (unlikely(!map))	/* shared interrupt, most likely */
2814 		return IRQ_NONE;
2815 
2816 	spin_lock(&q0->lock);
2817 
2818 	if (unlikely(map & F_ERRINTR))
2819 		t3_slow_intr_handler(adap);
2820 
2821 	if (likely(map & 1))
2822 		napi_schedule(&qs0->napi);
2823 
2824 	if (map & 2)
2825 		napi_schedule(&adap->sge.qs[1].napi);
2826 
2827 	spin_unlock(&q0->lock);
2828 	return IRQ_HANDLED;
2829 }
2830 
2831 /**
2832  *	t3_intr_handler - select the top-level interrupt handler
2833  *	@adap: the adapter
2834  *	@polling: whether using NAPI to service response queues
2835  *
2836  *	Selects the top-level interrupt handler based on the type of interrupts
2837  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2838  *	response queues.
2839  */
2840 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2841 {
2842 	if (adap->flags & USING_MSIX)
2843 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2844 	if (adap->flags & USING_MSI)
2845 		return polling ? t3_intr_msi_napi : t3_intr_msi;
2846 	if (adap->params.rev > 0)
2847 		return polling ? t3b_intr_napi : t3b_intr;
2848 	return t3_intr;
2849 }
2850 
2851 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2852 		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2853 		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2854 		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2855 		    F_HIRCQPARITYERROR)
2856 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2857 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2858 		      F_RSPQDISABLED)
2859 
2860 /**
2861  *	t3_sge_err_intr_handler - SGE async event interrupt handler
2862  *	@adapter: the adapter
2863  *
2864  *	Interrupt handler for SGE asynchronous (non-data) events.
2865  */
2866 void t3_sge_err_intr_handler(struct adapter *adapter)
2867 {
2868 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2869 				 ~F_FLEMPTY;
2870 
2871 	if (status & SGE_PARERR)
2872 		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2873 			 status & SGE_PARERR);
2874 	if (status & SGE_FRAMINGERR)
2875 		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2876 			 status & SGE_FRAMINGERR);
2877 
2878 	if (status & F_RSPQCREDITOVERFOW)
2879 		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2880 
2881 	if (status & F_RSPQDISABLED) {
2882 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2883 
2884 		CH_ALERT(adapter,
2885 			 "packet delivered to disabled response queue "
2886 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2887 	}
2888 
2889 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2890 		queue_work(cxgb3_wq, &adapter->db_drop_task);
2891 
2892 	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2893 		queue_work(cxgb3_wq, &adapter->db_full_task);
2894 
2895 	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2896 		queue_work(cxgb3_wq, &adapter->db_empty_task);
2897 
2898 	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2899 	if (status &  SGE_FATALERR)
2900 		t3_fatal_err(adapter);
2901 }
2902 
2903 /**
2904  *	sge_timer_tx - perform periodic maintenance of an SGE qset
2905  *	@data: the SGE queue set to maintain
2906  *
2907  *	Runs periodically from a timer to perform maintenance of an SGE queue
2908  *	set.  It performs two tasks:
2909  *
2910  *	Cleans up any completed Tx descriptors that may still be pending.
2911  *	Normal descriptor cleanup happens when new packets are added to a Tx
2912  *	queue so this timer is relatively infrequent and does any cleanup only
2913  *	if the Tx queue has not seen any new packets in a while.  We make a
2914  *	best effort attempt to reclaim descriptors, in that we don't wait
2915  *	around if we cannot get a queue's lock (which most likely is because
2916  *	someone else is queueing new packets and so will also handle the clean
2917  *	up).  Since control queues use immediate data exclusively we don't
2918  *	bother cleaning them up here.
2919  *
2920  */
2921 static void sge_timer_tx(struct timer_list *t)
2922 {
2923 	struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2924 	struct port_info *pi = netdev_priv(qs->netdev);
2925 	struct adapter *adap = pi->adapter;
2926 	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2927 	unsigned long next_period;
2928 
2929 	if (__netif_tx_trylock(qs->tx_q)) {
2930                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2931                                                      TX_RECLAIM_TIMER_CHUNK);
2932 		__netif_tx_unlock(qs->tx_q);
2933 	}
2934 
2935 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2936 		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2937 						     TX_RECLAIM_TIMER_CHUNK);
2938 		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2939 	}
2940 
2941 	next_period = TX_RECLAIM_PERIOD >>
2942                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2943                       TX_RECLAIM_TIMER_CHUNK);
2944 	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2945 }
2946 
2947 /**
2948  *	sge_timer_rx - perform periodic maintenance of an SGE qset
2949  *	@data: the SGE queue set to maintain
2950  *
2951  *	a) Replenishes Rx queues that have run out due to memory shortage.
2952  *	Normally new Rx buffers are added when existing ones are consumed but
2953  *	when out of memory a queue can become empty.  We try to add only a few
2954  *	buffers here, the queue will be replenished fully as these new buffers
2955  *	are used up if memory shortage has subsided.
2956  *
2957  *	b) Return coalesced response queue credits in case a response queue is
2958  *	starved.
2959  *
2960  */
2961 static void sge_timer_rx(struct timer_list *t)
2962 {
2963 	spinlock_t *lock;
2964 	struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2965 	struct port_info *pi = netdev_priv(qs->netdev);
2966 	struct adapter *adap = pi->adapter;
2967 	u32 status;
2968 
2969 	lock = adap->params.rev > 0 ?
2970 	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2971 
2972 	if (!spin_trylock_irq(lock))
2973 		goto out;
2974 
2975 	if (napi_is_scheduled(&qs->napi))
2976 		goto unlock;
2977 
2978 	if (adap->params.rev < 4) {
2979 		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2980 
2981 		if (status & (1 << qs->rspq.cntxt_id)) {
2982 			qs->rspq.starved++;
2983 			if (qs->rspq.credits) {
2984 				qs->rspq.credits--;
2985 				refill_rspq(adap, &qs->rspq, 1);
2986 				qs->rspq.restarted++;
2987 				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2988 					     1 << qs->rspq.cntxt_id);
2989 			}
2990 		}
2991 	}
2992 
2993 	if (qs->fl[0].credits < qs->fl[0].size)
2994 		__refill_fl(adap, &qs->fl[0]);
2995 	if (qs->fl[1].credits < qs->fl[1].size)
2996 		__refill_fl(adap, &qs->fl[1]);
2997 
2998 unlock:
2999 	spin_unlock_irq(lock);
3000 out:
3001 	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3002 }
3003 
3004 /**
3005  *	t3_update_qset_coalesce - update coalescing settings for a queue set
3006  *	@qs: the SGE queue set
3007  *	@p: new queue set parameters
3008  *
3009  *	Update the coalescing settings for an SGE queue set.  Nothing is done
3010  *	if the queue set is not initialized yet.
3011  */
3012 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3013 {
3014 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3015 	qs->rspq.polling = p->polling;
3016 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3017 }
3018 
3019 /**
3020  *	t3_sge_alloc_qset - initialize an SGE queue set
3021  *	@adapter: the adapter
3022  *	@id: the queue set id
3023  *	@nports: how many Ethernet ports will be using this queue set
3024  *	@irq_vec_idx: the IRQ vector index for response queue interrupts
3025  *	@p: configuration parameters for this queue set
3026  *	@ntxq: number of Tx queues for the queue set
3027  *	@netdev: net device associated with this queue set
3028  *	@netdevq: net device TX queue associated with this queue set
3029  *
3030  *	Allocate resources and initialize an SGE queue set.  A queue set
3031  *	comprises a response queue, two Rx free-buffer queues, and up to 3
3032  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
3033  *	queue, offload queue, and control queue.
3034  */
3035 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3036 		      int irq_vec_idx, const struct qset_params *p,
3037 		      int ntxq, struct net_device *dev,
3038 		      struct netdev_queue *netdevq)
3039 {
3040 	int i, avail, ret = -ENOMEM;
3041 	struct sge_qset *q = &adapter->sge.qs[id];
3042 
3043 	init_qset_cntxt(q, id);
3044 	timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3045 	timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3046 
3047 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3048 				   sizeof(struct rx_desc),
3049 				   sizeof(struct rx_sw_desc),
3050 				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3051 	if (!q->fl[0].desc)
3052 		goto err;
3053 
3054 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3055 				   sizeof(struct rx_desc),
3056 				   sizeof(struct rx_sw_desc),
3057 				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3058 	if (!q->fl[1].desc)
3059 		goto err;
3060 
3061 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3062 				  sizeof(struct rsp_desc), 0,
3063 				  &q->rspq.phys_addr, NULL);
3064 	if (!q->rspq.desc)
3065 		goto err;
3066 
3067 	for (i = 0; i < ntxq; ++i) {
3068 		/*
3069 		 * The control queue always uses immediate data so does not
3070 		 * need to keep track of any sk_buffs.
3071 		 */
3072 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3073 
3074 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3075 					    sizeof(struct tx_desc), sz,
3076 					    &q->txq[i].phys_addr,
3077 					    &q->txq[i].sdesc);
3078 		if (!q->txq[i].desc)
3079 			goto err;
3080 
3081 		q->txq[i].gen = 1;
3082 		q->txq[i].size = p->txq_size[i];
3083 		spin_lock_init(&q->txq[i].lock);
3084 		skb_queue_head_init(&q->txq[i].sendq);
3085 	}
3086 
3087 	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3088 		     (unsigned long)q);
3089 	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3090 		     (unsigned long)q);
3091 
3092 	q->fl[0].gen = q->fl[1].gen = 1;
3093 	q->fl[0].size = p->fl_size;
3094 	q->fl[1].size = p->jumbo_size;
3095 
3096 	q->rspq.gen = 1;
3097 	q->rspq.size = p->rspq_size;
3098 	spin_lock_init(&q->rspq.lock);
3099 	skb_queue_head_init(&q->rspq.rx_queue);
3100 
3101 	q->txq[TXQ_ETH].stop_thres = nports *
3102 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3103 
3104 #if FL0_PG_CHUNK_SIZE > 0
3105 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3106 #else
3107 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3108 #endif
3109 #if FL1_PG_CHUNK_SIZE > 0
3110 	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3111 #else
3112 	q->fl[1].buf_size = is_offload(adapter) ?
3113 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3114 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3115 #endif
3116 
3117 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3118 	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3119 	q->fl[0].order = FL0_PG_ORDER;
3120 	q->fl[1].order = FL1_PG_ORDER;
3121 	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3122 	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3123 
3124 	spin_lock_irq(&adapter->sge.reg_lock);
3125 
3126 	/* FL threshold comparison uses < */
3127 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3128 				   q->rspq.phys_addr, q->rspq.size,
3129 				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3130 	if (ret)
3131 		goto err_unlock;
3132 
3133 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3134 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3135 					  q->fl[i].phys_addr, q->fl[i].size,
3136 					  q->fl[i].buf_size - SGE_PG_RSVD,
3137 					  p->cong_thres, 1, 0);
3138 		if (ret)
3139 			goto err_unlock;
3140 	}
3141 
3142 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3143 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3144 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3145 				 1, 0);
3146 	if (ret)
3147 		goto err_unlock;
3148 
3149 	if (ntxq > 1) {
3150 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3151 					 USE_GTS, SGE_CNTXT_OFLD, id,
3152 					 q->txq[TXQ_OFLD].phys_addr,
3153 					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3154 		if (ret)
3155 			goto err_unlock;
3156 	}
3157 
3158 	if (ntxq > 2) {
3159 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3160 					 SGE_CNTXT_CTRL, id,
3161 					 q->txq[TXQ_CTRL].phys_addr,
3162 					 q->txq[TXQ_CTRL].size,
3163 					 q->txq[TXQ_CTRL].token, 1, 0);
3164 		if (ret)
3165 			goto err_unlock;
3166 	}
3167 
3168 	spin_unlock_irq(&adapter->sge.reg_lock);
3169 
3170 	q->adap = adapter;
3171 	q->netdev = dev;
3172 	q->tx_q = netdevq;
3173 	t3_update_qset_coalesce(q, p);
3174 
3175 	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3176 			  GFP_KERNEL | __GFP_COMP);
3177 	if (!avail) {
3178 		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3179 		goto err;
3180 	}
3181 	if (avail < q->fl[0].size)
3182 		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3183 			avail);
3184 
3185 	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3186 			  GFP_KERNEL | __GFP_COMP);
3187 	if (avail < q->fl[1].size)
3188 		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3189 			avail);
3190 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3191 
3192 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3193 		     V_NEWTIMER(q->rspq.holdoff_tmr));
3194 
3195 	return 0;
3196 
3197 err_unlock:
3198 	spin_unlock_irq(&adapter->sge.reg_lock);
3199 err:
3200 	t3_free_qset(adapter, q);
3201 	return ret;
3202 }
3203 
3204 /**
3205  *      t3_start_sge_timers - start SGE timer call backs
3206  *      @adap: the adapter
3207  *
3208  *      Starts each SGE queue set's timer call back
3209  */
3210 void t3_start_sge_timers(struct adapter *adap)
3211 {
3212 	int i;
3213 
3214 	for (i = 0; i < SGE_QSETS; ++i) {
3215 		struct sge_qset *q = &adap->sge.qs[i];
3216 
3217 		if (q->tx_reclaim_timer.function)
3218 			mod_timer(&q->tx_reclaim_timer,
3219 				  jiffies + TX_RECLAIM_PERIOD);
3220 
3221 		if (q->rx_reclaim_timer.function)
3222 			mod_timer(&q->rx_reclaim_timer,
3223 				  jiffies + RX_RECLAIM_PERIOD);
3224 	}
3225 }
3226 
3227 /**
3228  *	t3_stop_sge_timers - stop SGE timer call backs
3229  *	@adap: the adapter
3230  *
3231  *	Stops each SGE queue set's timer call back
3232  */
3233 void t3_stop_sge_timers(struct adapter *adap)
3234 {
3235 	int i;
3236 
3237 	for (i = 0; i < SGE_QSETS; ++i) {
3238 		struct sge_qset *q = &adap->sge.qs[i];
3239 
3240 		if (q->tx_reclaim_timer.function)
3241 			del_timer_sync(&q->tx_reclaim_timer);
3242 		if (q->rx_reclaim_timer.function)
3243 			del_timer_sync(&q->rx_reclaim_timer);
3244 	}
3245 }
3246 
3247 /**
3248  *	t3_free_sge_resources - free SGE resources
3249  *	@adap: the adapter
3250  *
3251  *	Frees resources used by the SGE queue sets.
3252  */
3253 void t3_free_sge_resources(struct adapter *adap)
3254 {
3255 	int i;
3256 
3257 	for (i = 0; i < SGE_QSETS; ++i)
3258 		t3_free_qset(adap, &adap->sge.qs[i]);
3259 }
3260 
3261 /**
3262  *	t3_sge_start - enable SGE
3263  *	@adap: the adapter
3264  *
3265  *	Enables the SGE for DMAs.  This is the last step in starting packet
3266  *	transfers.
3267  */
3268 void t3_sge_start(struct adapter *adap)
3269 {
3270 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3271 }
3272 
3273 /**
3274  *	t3_sge_stop - disable SGE operation
3275  *	@adap: the adapter
3276  *
3277  *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
3278  *	from error interrupts) or from normal process context.  In the latter
3279  *	case it also disables any pending queue restart tasklets.  Note that
3280  *	if it is called in interrupt context it cannot disable the restart
3281  *	tasklets as it cannot wait, however the tasklets will have no effect
3282  *	since the doorbells are disabled and the driver will call this again
3283  *	later from process context, at which time the tasklets will be stopped
3284  *	if they are still running.
3285  */
3286 void t3_sge_stop(struct adapter *adap)
3287 {
3288 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3289 	if (!in_interrupt()) {
3290 		int i;
3291 
3292 		for (i = 0; i < SGE_QSETS; ++i) {
3293 			struct sge_qset *qs = &adap->sge.qs[i];
3294 
3295 			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3296 			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3297 		}
3298 	}
3299 }
3300 
3301 /**
3302  *	t3_sge_init - initialize SGE
3303  *	@adap: the adapter
3304  *	@p: the SGE parameters
3305  *
3306  *	Performs SGE initialization needed every time after a chip reset.
3307  *	We do not initialize any of the queue sets here, instead the driver
3308  *	top-level must request those individually.  We also do not enable DMA
3309  *	here, that should be done after the queues have been set up.
3310  */
3311 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3312 {
3313 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3314 
3315 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3316 	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3317 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3318 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3319 #if SGE_NUM_GENBITS == 1
3320 	ctrl |= F_EGRGENCTRL;
3321 #endif
3322 	if (adap->params.rev > 0) {
3323 		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3324 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3325 	}
3326 	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3327 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3328 		     V_LORCQDRBTHRSH(512));
3329 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3330 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3331 		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3332 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3333 		     adap->params.rev < T3_REV_C ? 1000 : 500);
3334 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3335 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3336 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3337 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3338 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3339 }
3340 
3341 /**
3342  *	t3_sge_prep - one-time SGE initialization
3343  *	@adap: the associated adapter
3344  *	@p: SGE parameters
3345  *
3346  *	Performs one-time initialization of SGE SW state.  Includes determining
3347  *	defaults for the assorted SGE parameters, which admins can change until
3348  *	they are used to initialize the SGE.
3349  */
3350 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3351 {
3352 	int i;
3353 
3354 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3355 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3356 
3357 	for (i = 0; i < SGE_QSETS; ++i) {
3358 		struct qset_params *q = p->qset + i;
3359 
3360 		q->polling = adap->params.rev > 0;
3361 		q->coalesce_usecs = 5;
3362 		q->rspq_size = 1024;
3363 		q->fl_size = 1024;
3364  		q->jumbo_size = 512;
3365 		q->txq_size[TXQ_ETH] = 1024;
3366 		q->txq_size[TXQ_OFLD] = 1024;
3367 		q->txq_size[TXQ_CTRL] = 256;
3368 		q->cong_thres = 0;
3369 	}
3370 
3371 	spin_lock_init(&adap->sge.reg_lock);
3372 }
3373