xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb3/sge.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 /*
2  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48 
49 #define USE_GTS 0
50 
51 #define SGE_RX_SM_BUF_SIZE 1536
52 
53 #define SGE_RX_COPY_THRES  256
54 #define SGE_RX_PULL_LEN    128
55 
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
60  * directly.
61  */
62 #define FL0_PG_CHUNK_SIZE  2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68 
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71 
72 /*
73  * Max number of Rx buffers we replenish at a time.
74  */
75 #define MAX_RX_REFILL 16U
76 /*
77  * Period of the Tx buffer reclaim timer.  This timer does not need to run
78  * frequently as Tx buffers are usually reclaimed by new Tx packets.
79  */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83 
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86 
87 /*
88  * Types of Tx queues in each queue set.  Order here matters, do not change.
89  */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91 
92 /* Values for sge_txq.flags */
93 enum {
94 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
95 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
96 };
97 
98 struct tx_desc {
99 	__be64 flit[TX_DESC_FLITS];
100 };
101 
102 struct rx_desc {
103 	__be32 addr_lo;
104 	__be32 len_gen;
105 	__be32 gen2;
106 	__be32 addr_hi;
107 };
108 
109 struct tx_sw_desc {		/* SW state per Tx descriptor */
110 	struct sk_buff *skb;
111 	u8 eop;       /* set if last descriptor for packet */
112 	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
113 	u8 fragidx;   /* first page fragment associated with descriptor */
114 	s8 sflit;     /* start flit of first SGL entry in descriptor */
115 };
116 
117 struct rx_sw_desc {                /* SW state per Rx descriptor */
118 	union {
119 		struct sk_buff *skb;
120 		struct fl_pg_chunk pg_chunk;
121 	};
122 	DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124 
125 struct rsp_desc {		/* response queue descriptor */
126 	struct rss_header rss_hdr;
127 	__be32 flags;
128 	__be32 len_cq;
129 	struct_group(immediate,
130 		u8 imm_data[47];
131 		u8 intr_gen;
132 	);
133 };
134 
135 /*
136  * Holds unmapping information for Tx packets that need deferred unmapping.
137  * This structure lives at skb->head and must be allocated by callers.
138  */
139 struct deferred_unmap_info {
140 	struct pci_dev *pdev;
141 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
142 };
143 
144 /*
145  * Maps a number of flits to the number of Tx descriptors that can hold them.
146  * The formula is
147  *
148  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
149  *
150  * HW allows up to 4 descriptors to be combined into a WR.
151  */
152 static u8 flit_desc_map[] = {
153 	0,
154 #if SGE_NUM_GENBITS == 1
155 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
159 #elif SGE_NUM_GENBITS == 2
160 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
161 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
162 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
163 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
164 #else
165 # error "SGE_NUM_GENBITS must be 1 or 2"
166 #endif
167 };
168 
169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
170 {
171 	return container_of(q, struct sge_qset, rspq);
172 }
173 
174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
175 {
176 	return container_of(q, struct sge_qset, txq[qidx]);
177 }
178 
179 /**
180  *	refill_rspq - replenish an SGE response queue
181  *	@adapter: the adapter
182  *	@q: the response queue to replenish
183  *	@credits: how many new responses to make available
184  *
185  *	Replenishes a response queue by making the supplied number of responses
186  *	available to HW.
187  */
188 static inline void refill_rspq(struct adapter *adapter,
189 			       const struct sge_rspq *q, unsigned int credits)
190 {
191 	rmb();
192 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
194 }
195 
196 /**
197  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
198  *
199  *	Returns true if the platform needs sk_buff unmapping.  The compiler
200  *	optimizes away unnecessary code if this returns true.
201  */
202 static inline int need_skb_unmap(void)
203 {
204 #ifdef CONFIG_NEED_DMA_MAP_STATE
205 	return 1;
206 #else
207 	return 0;
208 #endif
209 }
210 
211 /**
212  *	unmap_skb - unmap a packet main body and its page fragments
213  *	@skb: the packet
214  *	@q: the Tx queue containing Tx descriptors for the packet
215  *	@cidx: index of Tx descriptor
216  *	@pdev: the PCI device
217  *
218  *	Unmap the main body of an sk_buff and its page fragments, if any.
219  *	Because of the fairly complicated structure of our SGLs and the desire
220  *	to conserve space for metadata, the information necessary to unmap an
221  *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
222  *	descriptors (the physical addresses of the various data buffers), and
223  *	the SW descriptor state (assorted indices).  The send functions
224  *	initialize the indices for the first packet descriptor so we can unmap
225  *	the buffers held in the first Tx descriptor here, and we have enough
226  *	information at this point to set the state for the next Tx descriptor.
227  *
228  *	Note that it is possible to clean up the first descriptor of a packet
229  *	before the send routines have written the next descriptors, but this
230  *	race does not cause any problem.  We just end up writing the unmapping
231  *	info for the descriptor first.
232  */
233 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
234 			     unsigned int cidx, struct pci_dev *pdev)
235 {
236 	const struct sg_ent *sgp;
237 	struct tx_sw_desc *d = &q->sdesc[cidx];
238 	int nfrags, frag_idx, curflit, j = d->addr_idx;
239 
240 	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
241 	frag_idx = d->fragidx;
242 
243 	if (frag_idx == 0 && skb_headlen(skb)) {
244 		dma_unmap_single(&pdev->dev, be64_to_cpu(sgp->addr[0]),
245 				 skb_headlen(skb), DMA_TO_DEVICE);
246 		j = 1;
247 	}
248 
249 	curflit = d->sflit + 1 + j;
250 	nfrags = skb_shinfo(skb)->nr_frags;
251 
252 	while (frag_idx < nfrags && curflit < WR_FLITS) {
253 		dma_unmap_page(&pdev->dev, be64_to_cpu(sgp->addr[j]),
254 			       skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
255 			       DMA_TO_DEVICE);
256 		j ^= 1;
257 		if (j == 0) {
258 			sgp++;
259 			curflit++;
260 		}
261 		curflit++;
262 		frag_idx++;
263 	}
264 
265 	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
266 		d = cidx + 1 == q->size ? q->sdesc : d + 1;
267 		d->fragidx = frag_idx;
268 		d->addr_idx = j;
269 		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
270 	}
271 }
272 
273 /**
274  *	free_tx_desc - reclaims Tx descriptors and their buffers
275  *	@adapter: the adapter
276  *	@q: the Tx queue to reclaim descriptors from
277  *	@n: the number of descriptors to reclaim
278  *
279  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
280  *	Tx buffers.  Called with the Tx queue lock held.
281  */
282 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
283 			 unsigned int n)
284 {
285 	struct tx_sw_desc *d;
286 	struct pci_dev *pdev = adapter->pdev;
287 	unsigned int cidx = q->cidx;
288 
289 	const int need_unmap = need_skb_unmap() &&
290 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
291 
292 	d = &q->sdesc[cidx];
293 	while (n--) {
294 		if (d->skb) {	/* an SGL is present */
295 			if (need_unmap)
296 				unmap_skb(d->skb, q, cidx, pdev);
297 			if (d->eop) {
298 				dev_consume_skb_any(d->skb);
299 				d->skb = NULL;
300 			}
301 		}
302 		++d;
303 		if (++cidx == q->size) {
304 			cidx = 0;
305 			d = q->sdesc;
306 		}
307 	}
308 	q->cidx = cidx;
309 }
310 
311 /**
312  *	reclaim_completed_tx - reclaims completed Tx descriptors
313  *	@adapter: the adapter
314  *	@q: the Tx queue to reclaim completed descriptors from
315  *	@chunk: maximum number of descriptors to reclaim
316  *
317  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
318  *	and frees the associated buffers if possible.  Called with the Tx
319  *	queue's lock held.
320  */
321 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
322 						struct sge_txq *q,
323 						unsigned int chunk)
324 {
325 	unsigned int reclaim = q->processed - q->cleaned;
326 
327 	reclaim = min(chunk, reclaim);
328 	if (reclaim) {
329 		free_tx_desc(adapter, q, reclaim);
330 		q->cleaned += reclaim;
331 		q->in_use -= reclaim;
332 	}
333 	return q->processed - q->cleaned;
334 }
335 
336 /**
337  *	should_restart_tx - are there enough resources to restart a Tx queue?
338  *	@q: the Tx queue
339  *
340  *	Checks if there are enough descriptors to restart a suspended Tx queue.
341  */
342 static inline int should_restart_tx(const struct sge_txq *q)
343 {
344 	unsigned int r = q->processed - q->cleaned;
345 
346 	return q->in_use - r < (q->size >> 1);
347 }
348 
349 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
350 			  struct rx_sw_desc *d)
351 {
352 	if (q->use_pages && d->pg_chunk.page) {
353 		(*d->pg_chunk.p_cnt)--;
354 		if (!*d->pg_chunk.p_cnt)
355 			dma_unmap_page(&pdev->dev, d->pg_chunk.mapping,
356 				       q->alloc_size, DMA_FROM_DEVICE);
357 
358 		put_page(d->pg_chunk.page);
359 		d->pg_chunk.page = NULL;
360 	} else {
361 		dma_unmap_single(&pdev->dev, dma_unmap_addr(d, dma_addr),
362 				 q->buf_size, DMA_FROM_DEVICE);
363 		kfree_skb(d->skb);
364 		d->skb = NULL;
365 	}
366 }
367 
368 /**
369  *	free_rx_bufs - free the Rx buffers on an SGE free list
370  *	@pdev: the PCI device associated with the adapter
371  *	@q: the SGE free list to clean up
372  *
373  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
374  *	this queue should be stopped before calling this function.
375  */
376 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
377 {
378 	unsigned int cidx = q->cidx;
379 
380 	while (q->credits--) {
381 		struct rx_sw_desc *d = &q->sdesc[cidx];
382 
383 
384 		clear_rx_desc(pdev, q, d);
385 		if (++cidx == q->size)
386 			cidx = 0;
387 	}
388 
389 	if (q->pg_chunk.page) {
390 		__free_pages(q->pg_chunk.page, q->order);
391 		q->pg_chunk.page = NULL;
392 	}
393 }
394 
395 /**
396  *	add_one_rx_buf - add a packet buffer to a free-buffer list
397  *	@va:  buffer start VA
398  *	@len: the buffer length
399  *	@d: the HW Rx descriptor to write
400  *	@sd: the SW Rx descriptor to write
401  *	@gen: the generation bit value
402  *	@pdev: the PCI device associated with the adapter
403  *
404  *	Add a buffer of the given length to the supplied HW and SW Rx
405  *	descriptors.
406  */
407 static inline int add_one_rx_buf(void *va, unsigned int len,
408 				 struct rx_desc *d, struct rx_sw_desc *sd,
409 				 unsigned int gen, struct pci_dev *pdev)
410 {
411 	dma_addr_t mapping;
412 
413 	mapping = dma_map_single(&pdev->dev, va, len, DMA_FROM_DEVICE);
414 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
415 		return -ENOMEM;
416 
417 	dma_unmap_addr_set(sd, dma_addr, mapping);
418 
419 	d->addr_lo = cpu_to_be32(mapping);
420 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
421 	dma_wmb();
422 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
423 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
424 	return 0;
425 }
426 
427 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
428 				   unsigned int gen)
429 {
430 	d->addr_lo = cpu_to_be32(mapping);
431 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
432 	dma_wmb();
433 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
434 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
435 	return 0;
436 }
437 
438 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
439 			  struct rx_sw_desc *sd, gfp_t gfp,
440 			  unsigned int order)
441 {
442 	if (!q->pg_chunk.page) {
443 		dma_addr_t mapping;
444 
445 		q->pg_chunk.page = alloc_pages(gfp, order);
446 		if (unlikely(!q->pg_chunk.page))
447 			return -ENOMEM;
448 		q->pg_chunk.va = page_address(q->pg_chunk.page);
449 		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
450 				    SGE_PG_RSVD;
451 		q->pg_chunk.offset = 0;
452 		mapping = dma_map_page(&adapter->pdev->dev, q->pg_chunk.page,
453 				       0, q->alloc_size, DMA_FROM_DEVICE);
454 		if (unlikely(dma_mapping_error(&adapter->pdev->dev, mapping))) {
455 			__free_pages(q->pg_chunk.page, order);
456 			q->pg_chunk.page = NULL;
457 			return -EIO;
458 		}
459 		q->pg_chunk.mapping = mapping;
460 	}
461 	sd->pg_chunk = q->pg_chunk;
462 
463 	prefetch(sd->pg_chunk.p_cnt);
464 
465 	q->pg_chunk.offset += q->buf_size;
466 	if (q->pg_chunk.offset == (PAGE_SIZE << order))
467 		q->pg_chunk.page = NULL;
468 	else {
469 		q->pg_chunk.va += q->buf_size;
470 		get_page(q->pg_chunk.page);
471 	}
472 
473 	if (sd->pg_chunk.offset == 0)
474 		*sd->pg_chunk.p_cnt = 1;
475 	else
476 		*sd->pg_chunk.p_cnt += 1;
477 
478 	return 0;
479 }
480 
481 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
482 {
483 	if (q->pend_cred >= q->credits / 4) {
484 		q->pend_cred = 0;
485 		wmb();
486 		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
487 	}
488 }
489 
490 /**
491  *	refill_fl - refill an SGE free-buffer list
492  *	@adap: the adapter
493  *	@q: the free-list to refill
494  *	@n: the number of new buffers to allocate
495  *	@gfp: the gfp flags for allocating new buffers
496  *
497  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
498  *	allocated with the supplied gfp flags.  The caller must assure that
499  *	@n does not exceed the queue's capacity.
500  */
501 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
502 {
503 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
504 	struct rx_desc *d = &q->desc[q->pidx];
505 	unsigned int count = 0;
506 
507 	while (n--) {
508 		dma_addr_t mapping;
509 		int err;
510 
511 		if (q->use_pages) {
512 			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
513 						    q->order))) {
514 nomem:				q->alloc_failed++;
515 				break;
516 			}
517 			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
518 			dma_unmap_addr_set(sd, dma_addr, mapping);
519 
520 			add_one_rx_chunk(mapping, d, q->gen);
521 			dma_sync_single_for_device(&adap->pdev->dev, mapping,
522 						   q->buf_size - SGE_PG_RSVD,
523 						   DMA_FROM_DEVICE);
524 		} else {
525 			void *buf_start;
526 
527 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
528 			if (!skb)
529 				goto nomem;
530 
531 			sd->skb = skb;
532 			buf_start = skb->data;
533 			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
534 					     q->gen, adap->pdev);
535 			if (unlikely(err)) {
536 				clear_rx_desc(adap->pdev, q, sd);
537 				break;
538 			}
539 		}
540 
541 		d++;
542 		sd++;
543 		if (++q->pidx == q->size) {
544 			q->pidx = 0;
545 			q->gen ^= 1;
546 			sd = q->sdesc;
547 			d = q->desc;
548 		}
549 		count++;
550 	}
551 
552 	q->credits += count;
553 	q->pend_cred += count;
554 	ring_fl_db(adap, q);
555 
556 	return count;
557 }
558 
559 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
560 {
561 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
562 		  GFP_ATOMIC | __GFP_COMP);
563 }
564 
565 /**
566  *	recycle_rx_buf - recycle a receive buffer
567  *	@adap: the adapter
568  *	@q: the SGE free list
569  *	@idx: index of buffer to recycle
570  *
571  *	Recycles the specified buffer on the given free list by adding it at
572  *	the next available slot on the list.
573  */
574 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
575 			   unsigned int idx)
576 {
577 	struct rx_desc *from = &q->desc[idx];
578 	struct rx_desc *to = &q->desc[q->pidx];
579 
580 	q->sdesc[q->pidx] = q->sdesc[idx];
581 	to->addr_lo = from->addr_lo;	/* already big endian */
582 	to->addr_hi = from->addr_hi;	/* likewise */
583 	dma_wmb();
584 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
585 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
586 
587 	if (++q->pidx == q->size) {
588 		q->pidx = 0;
589 		q->gen ^= 1;
590 	}
591 
592 	q->credits++;
593 	q->pend_cred++;
594 	ring_fl_db(adap, q);
595 }
596 
597 /**
598  *	alloc_ring - allocate resources for an SGE descriptor ring
599  *	@pdev: the PCI device
600  *	@nelem: the number of descriptors
601  *	@elem_size: the size of each descriptor
602  *	@sw_size: the size of the SW state associated with each ring element
603  *	@phys: the physical address of the allocated ring
604  *	@metadata: address of the array holding the SW state for the ring
605  *
606  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
607  *	free buffer lists, or response queues.  Each SGE ring requires
608  *	space for its HW descriptors plus, optionally, space for the SW state
609  *	associated with each HW entry (the metadata).  The function returns
610  *	three values: the virtual address for the HW ring (the return value
611  *	of the function), the physical address of the HW ring, and the address
612  *	of the SW ring.
613  */
614 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
615 			size_t sw_size, dma_addr_t * phys, void *metadata)
616 {
617 	size_t len = nelem * elem_size;
618 	void *s = NULL;
619 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
620 
621 	if (!p)
622 		return NULL;
623 	if (sw_size && metadata) {
624 		s = kcalloc(nelem, sw_size, GFP_KERNEL);
625 
626 		if (!s) {
627 			dma_free_coherent(&pdev->dev, len, p, *phys);
628 			return NULL;
629 		}
630 		*(void **)metadata = s;
631 	}
632 	return p;
633 }
634 
635 /**
636  *	t3_reset_qset - reset a sge qset
637  *	@q: the queue set
638  *
639  *	Reset the qset structure.
640  *	the NAPI structure is preserved in the event of
641  *	the qset's reincarnation, for example during EEH recovery.
642  */
643 static void t3_reset_qset(struct sge_qset *q)
644 {
645 	if (q->adap &&
646 	    !(q->adap->flags & NAPI_INIT)) {
647 		memset(q, 0, sizeof(*q));
648 		return;
649 	}
650 
651 	q->adap = NULL;
652 	memset(&q->rspq, 0, sizeof(q->rspq));
653 	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654 	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 	q->txq_stopped = 0;
656 	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657 	q->rx_reclaim_timer.function = NULL;
658 	q->nomem = 0;
659 	napi_free_frags(&q->napi);
660 }
661 
662 
663 /**
664  *	t3_free_qset - free the resources of an SGE queue set
665  *	@adapter: the adapter owning the queue set
666  *	@q: the queue set
667  *
668  *	Release the HW and SW resources associated with an SGE queue set, such
669  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
670  *	queue set must be quiesced prior to calling this.
671  */
672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
673 {
674 	int i;
675 	struct pci_dev *pdev = adapter->pdev;
676 
677 	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678 		if (q->fl[i].desc) {
679 			spin_lock_irq(&adapter->sge.reg_lock);
680 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681 			spin_unlock_irq(&adapter->sge.reg_lock);
682 			free_rx_bufs(pdev, &q->fl[i]);
683 			kfree(q->fl[i].sdesc);
684 			dma_free_coherent(&pdev->dev,
685 					  q->fl[i].size *
686 					  sizeof(struct rx_desc), q->fl[i].desc,
687 					  q->fl[i].phys_addr);
688 		}
689 
690 	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691 		if (q->txq[i].desc) {
692 			spin_lock_irq(&adapter->sge.reg_lock);
693 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694 			spin_unlock_irq(&adapter->sge.reg_lock);
695 			if (q->txq[i].sdesc) {
696 				free_tx_desc(adapter, &q->txq[i],
697 					     q->txq[i].in_use);
698 				kfree(q->txq[i].sdesc);
699 			}
700 			dma_free_coherent(&pdev->dev,
701 					  q->txq[i].size *
702 					  sizeof(struct tx_desc),
703 					  q->txq[i].desc, q->txq[i].phys_addr);
704 			__skb_queue_purge(&q->txq[i].sendq);
705 		}
706 
707 	if (q->rspq.desc) {
708 		spin_lock_irq(&adapter->sge.reg_lock);
709 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710 		spin_unlock_irq(&adapter->sge.reg_lock);
711 		dma_free_coherent(&pdev->dev,
712 				  q->rspq.size * sizeof(struct rsp_desc),
713 				  q->rspq.desc, q->rspq.phys_addr);
714 	}
715 
716 	t3_reset_qset(q);
717 }
718 
719 /**
720  *	init_qset_cntxt - initialize an SGE queue set context info
721  *	@qs: the queue set
722  *	@id: the queue set id
723  *
724  *	Initializes the TIDs and context ids for the queues of a queue set.
725  */
726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
727 {
728 	qs->rspq.cntxt_id = id;
729 	qs->fl[0].cntxt_id = 2 * id;
730 	qs->fl[1].cntxt_id = 2 * id + 1;
731 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
736 }
737 
738 /**
739  *	sgl_len - calculates the size of an SGL of the given capacity
740  *	@n: the number of SGL entries
741  *
742  *	Calculates the number of flits needed for a scatter/gather list that
743  *	can hold the given number of entries.
744  */
745 static inline unsigned int sgl_len(unsigned int n)
746 {
747 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748 	return (3 * n) / 2 + (n & 1);
749 }
750 
751 /**
752  *	flits_to_desc - returns the num of Tx descriptors for the given flits
753  *	@n: the number of flits
754  *
755  *	Calculates the number of Tx descriptors needed for the supplied number
756  *	of flits.
757  */
758 static inline unsigned int flits_to_desc(unsigned int n)
759 {
760 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761 	return flit_desc_map[n];
762 }
763 
764 /**
765  *	get_packet - return the next ingress packet buffer from a free list
766  *	@adap: the adapter that received the packet
767  *	@fl: the SGE free list holding the packet
768  *	@len: the packet length including any SGE padding
769  *	@drop_thres: # of remaining buffers before we start dropping packets
770  *
771  *	Get the next packet from a free list and complete setup of the
772  *	sk_buff.  If the packet is small we make a copy and recycle the
773  *	original buffer, otherwise we use the original buffer itself.  If a
774  *	positive drop threshold is supplied packets are dropped and their
775  *	buffers recycled if (a) the number of remaining buffers is under the
776  *	threshold and the packet is too big to copy, or (b) the packet should
777  *	be copied but there is no memory for the copy.
778  */
779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780 				  unsigned int len, unsigned int drop_thres)
781 {
782 	struct sk_buff *skb = NULL;
783 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
784 
785 	prefetch(sd->skb->data);
786 	fl->credits--;
787 
788 	if (len <= SGE_RX_COPY_THRES) {
789 		skb = alloc_skb(len, GFP_ATOMIC);
790 		if (likely(skb != NULL)) {
791 			__skb_put(skb, len);
792 			dma_sync_single_for_cpu(&adap->pdev->dev,
793 						dma_unmap_addr(sd, dma_addr),
794 						len, DMA_FROM_DEVICE);
795 			memcpy(skb->data, sd->skb->data, len);
796 			dma_sync_single_for_device(&adap->pdev->dev,
797 						   dma_unmap_addr(sd, dma_addr),
798 						   len, DMA_FROM_DEVICE);
799 		} else if (!drop_thres)
800 			goto use_orig_buf;
801 recycle:
802 		recycle_rx_buf(adap, fl, fl->cidx);
803 		return skb;
804 	}
805 
806 	if (unlikely(fl->credits < drop_thres) &&
807 	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808 		      GFP_ATOMIC | __GFP_COMP) == 0)
809 		goto recycle;
810 
811 use_orig_buf:
812 	dma_unmap_single(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr),
813 			 fl->buf_size, DMA_FROM_DEVICE);
814 	skb = sd->skb;
815 	skb_put(skb, len);
816 	__refill_fl(adap, fl);
817 	return skb;
818 }
819 
820 /**
821  *	get_packet_pg - return the next ingress packet buffer from a free list
822  *	@adap: the adapter that received the packet
823  *	@fl: the SGE free list holding the packet
824  *	@q: the queue
825  *	@len: the packet length including any SGE padding
826  *	@drop_thres: # of remaining buffers before we start dropping packets
827  *
828  *	Get the next packet from a free list populated with page chunks.
829  *	If the packet is small we make a copy and recycle the original buffer,
830  *	otherwise we attach the original buffer as a page fragment to a fresh
831  *	sk_buff.  If a positive drop threshold is supplied packets are dropped
832  *	and their buffers recycled if (a) the number of remaining buffers is
833  *	under the threshold and the packet is too big to copy, or (b) there's
834  *	no system memory.
835  *
836  * 	Note: this function is similar to @get_packet but deals with Rx buffers
837  * 	that are page chunks rather than sk_buffs.
838  */
839 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
840 				     struct sge_rspq *q, unsigned int len,
841 				     unsigned int drop_thres)
842 {
843 	struct sk_buff *newskb, *skb;
844 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
845 
846 	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
847 
848 	newskb = skb = q->pg_skb;
849 	if (!skb && (len <= SGE_RX_COPY_THRES)) {
850 		newskb = alloc_skb(len, GFP_ATOMIC);
851 		if (likely(newskb != NULL)) {
852 			__skb_put(newskb, len);
853 			dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr,
854 						len, DMA_FROM_DEVICE);
855 			memcpy(newskb->data, sd->pg_chunk.va, len);
856 			dma_sync_single_for_device(&adap->pdev->dev, dma_addr,
857 						   len, DMA_FROM_DEVICE);
858 		} else if (!drop_thres)
859 			return NULL;
860 recycle:
861 		fl->credits--;
862 		recycle_rx_buf(adap, fl, fl->cidx);
863 		q->rx_recycle_buf++;
864 		return newskb;
865 	}
866 
867 	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 		goto recycle;
869 
870 	prefetch(sd->pg_chunk.p_cnt);
871 
872 	if (!skb)
873 		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
874 
875 	if (unlikely(!newskb)) {
876 		if (!drop_thres)
877 			return NULL;
878 		goto recycle;
879 	}
880 
881 	dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len,
882 				DMA_FROM_DEVICE);
883 	(*sd->pg_chunk.p_cnt)--;
884 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885 		dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
886 			       fl->alloc_size, DMA_FROM_DEVICE);
887 	if (!skb) {
888 		__skb_put(newskb, SGE_RX_PULL_LEN);
889 		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
890 		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
891 				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
892 				   len - SGE_RX_PULL_LEN);
893 		newskb->len = len;
894 		newskb->data_len = len - SGE_RX_PULL_LEN;
895 		newskb->truesize += newskb->data_len;
896 	} else {
897 		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
898 				   sd->pg_chunk.page,
899 				   sd->pg_chunk.offset, len);
900 		newskb->len += len;
901 		newskb->data_len += len;
902 		newskb->truesize += len;
903 	}
904 
905 	fl->credits--;
906 	/*
907 	 * We do not refill FLs here, we let the caller do it to overlap a
908 	 * prefetch.
909 	 */
910 	return newskb;
911 }
912 
913 /**
914  *	get_imm_packet - return the next ingress packet buffer from a response
915  *	@resp: the response descriptor containing the packet data
916  *
917  *	Return a packet containing the immediate data of the given response.
918  */
919 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
920 {
921 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
922 
923 	if (skb) {
924 		__skb_put(skb, IMMED_PKT_SIZE);
925 		BUILD_BUG_ON(IMMED_PKT_SIZE != sizeof(resp->immediate));
926 		skb_copy_to_linear_data(skb, &resp->immediate, IMMED_PKT_SIZE);
927 	}
928 	return skb;
929 }
930 
931 /**
932  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
933  *	@skb: the packet
934  *
935  * 	Returns the number of Tx descriptors needed for the given Ethernet
936  * 	packet.  Ethernet packets require addition of WR and CPL headers.
937  */
938 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
939 {
940 	unsigned int flits;
941 
942 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
943 		return 1;
944 
945 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
946 	if (skb_shinfo(skb)->gso_size)
947 		flits++;
948 	return flits_to_desc(flits);
949 }
950 
951 /*	map_skb - map a packet main body and its page fragments
952  *	@pdev: the PCI device
953  *	@skb: the packet
954  *	@addr: placeholder to save the mapped addresses
955  *
956  *	map the main body of an sk_buff and its page fragments, if any.
957  */
958 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
959 		   dma_addr_t *addr)
960 {
961 	const skb_frag_t *fp, *end;
962 	const struct skb_shared_info *si;
963 
964 	if (skb_headlen(skb)) {
965 		*addr = dma_map_single(&pdev->dev, skb->data,
966 				       skb_headlen(skb), DMA_TO_DEVICE);
967 		if (dma_mapping_error(&pdev->dev, *addr))
968 			goto out_err;
969 		addr++;
970 	}
971 
972 	si = skb_shinfo(skb);
973 	end = &si->frags[si->nr_frags];
974 
975 	for (fp = si->frags; fp < end; fp++) {
976 		*addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
977 					 DMA_TO_DEVICE);
978 		if (dma_mapping_error(&pdev->dev, *addr))
979 			goto unwind;
980 		addr++;
981 	}
982 	return 0;
983 
984 unwind:
985 	while (fp-- > si->frags)
986 		dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
987 			       DMA_TO_DEVICE);
988 
989 	dma_unmap_single(&pdev->dev, addr[-1], skb_headlen(skb),
990 			 DMA_TO_DEVICE);
991 out_err:
992 	return -ENOMEM;
993 }
994 
995 /**
996  *	write_sgl - populate a scatter/gather list for a packet
997  *	@skb: the packet
998  *	@sgp: the SGL to populate
999  *	@start: start address of skb main body data to include in the SGL
1000  *	@len: length of skb main body data to include in the SGL
1001  *	@addr: the list of the mapped addresses
1002  *
1003  *	Copies the scatter/gather list for the buffers that make up a packet
1004  *	and returns the SGL size in 8-byte words.  The caller must size the SGL
1005  *	appropriately.
1006  */
1007 static inline unsigned int write_sgl(const struct sk_buff *skb,
1008 				     struct sg_ent *sgp, unsigned char *start,
1009 				     unsigned int len, const dma_addr_t *addr)
1010 {
1011 	unsigned int i, j = 0, k = 0, nfrags;
1012 
1013 	if (len) {
1014 		sgp->len[0] = cpu_to_be32(len);
1015 		sgp->addr[j++] = cpu_to_be64(addr[k++]);
1016 	}
1017 
1018 	nfrags = skb_shinfo(skb)->nr_frags;
1019 	for (i = 0; i < nfrags; i++) {
1020 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1021 
1022 		sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1023 		sgp->addr[j] = cpu_to_be64(addr[k++]);
1024 		j ^= 1;
1025 		if (j == 0)
1026 			++sgp;
1027 	}
1028 	if (j)
1029 		sgp->len[j] = 0;
1030 	return ((nfrags + (len != 0)) * 3) / 2 + j;
1031 }
1032 
1033 /**
1034  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1035  *	@adap: the adapter
1036  *	@q: the Tx queue
1037  *
1038  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1039  *	where the HW is going to sleep just after we checked, however,
1040  *	then the interrupt handler will detect the outstanding TX packet
1041  *	and ring the doorbell for us.
1042  *
1043  *	When GTS is disabled we unconditionally ring the doorbell.
1044  */
1045 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1046 {
1047 #if USE_GTS
1048 	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1049 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1050 		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1051 		t3_write_reg(adap, A_SG_KDOORBELL,
1052 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1053 	}
1054 #else
1055 	wmb();			/* write descriptors before telling HW */
1056 	t3_write_reg(adap, A_SG_KDOORBELL,
1057 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1058 #endif
1059 }
1060 
1061 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1062 {
1063 #if SGE_NUM_GENBITS == 2
1064 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1065 #endif
1066 }
1067 
1068 /**
1069  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1070  *	@ndesc: number of Tx descriptors spanned by the SGL
1071  *	@skb: the packet corresponding to the WR
1072  *	@d: first Tx descriptor to be written
1073  *	@pidx: index of above descriptors
1074  *	@q: the SGE Tx queue
1075  *	@sgl: the SGL
1076  *	@flits: number of flits to the start of the SGL in the first descriptor
1077  *	@sgl_flits: the SGL size in flits
1078  *	@gen: the Tx descriptor generation
1079  *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1080  *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1081  *
1082  *	Write a work request header and an associated SGL.  If the SGL is
1083  *	small enough to fit into one Tx descriptor it has already been written
1084  *	and we just need to write the WR header.  Otherwise we distribute the
1085  *	SGL across the number of descriptors it spans.
1086  */
1087 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1088 			     struct tx_desc *d, unsigned int pidx,
1089 			     const struct sge_txq *q,
1090 			     const struct sg_ent *sgl,
1091 			     unsigned int flits, unsigned int sgl_flits,
1092 			     unsigned int gen, __be32 wr_hi,
1093 			     __be32 wr_lo)
1094 {
1095 	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1096 	struct tx_sw_desc *sd = &q->sdesc[pidx];
1097 
1098 	sd->skb = skb;
1099 	if (need_skb_unmap()) {
1100 		sd->fragidx = 0;
1101 		sd->addr_idx = 0;
1102 		sd->sflit = flits;
1103 	}
1104 
1105 	if (likely(ndesc == 1)) {
1106 		sd->eop = 1;
1107 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1108 				   V_WR_SGLSFLT(flits)) | wr_hi;
1109 		dma_wmb();
1110 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1111 				   V_WR_GEN(gen)) | wr_lo;
1112 		wr_gen2(d, gen);
1113 	} else {
1114 		unsigned int ogen = gen;
1115 		const u64 *fp = (const u64 *)sgl;
1116 		struct work_request_hdr *wp = wrp;
1117 
1118 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1119 				   V_WR_SGLSFLT(flits)) | wr_hi;
1120 
1121 		while (sgl_flits) {
1122 			unsigned int avail = WR_FLITS - flits;
1123 
1124 			if (avail > sgl_flits)
1125 				avail = sgl_flits;
1126 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1127 			sgl_flits -= avail;
1128 			ndesc--;
1129 			if (!sgl_flits)
1130 				break;
1131 
1132 			fp += avail;
1133 			d++;
1134 			sd->eop = 0;
1135 			sd++;
1136 			if (++pidx == q->size) {
1137 				pidx = 0;
1138 				gen ^= 1;
1139 				d = q->desc;
1140 				sd = q->sdesc;
1141 			}
1142 
1143 			sd->skb = skb;
1144 			wrp = (struct work_request_hdr *)d;
1145 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1146 					   V_WR_SGLSFLT(1)) | wr_hi;
1147 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1148 							sgl_flits + 1)) |
1149 					   V_WR_GEN(gen)) | wr_lo;
1150 			wr_gen2(d, gen);
1151 			flits = 1;
1152 		}
1153 		sd->eop = 1;
1154 		wrp->wr_hi |= htonl(F_WR_EOP);
1155 		dma_wmb();
1156 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1157 		wr_gen2((struct tx_desc *)wp, ogen);
1158 		WARN_ON(ndesc != 0);
1159 	}
1160 }
1161 
1162 /**
1163  *	write_tx_pkt_wr - write a TX_PKT work request
1164  *	@adap: the adapter
1165  *	@skb: the packet to send
1166  *	@pi: the egress interface
1167  *	@pidx: index of the first Tx descriptor to write
1168  *	@gen: the generation value to use
1169  *	@q: the Tx queue
1170  *	@ndesc: number of descriptors the packet will occupy
1171  *	@compl: the value of the COMPL bit to use
1172  *	@addr: address
1173  *
1174  *	Generate a TX_PKT work request to send the supplied packet.
1175  */
1176 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1177 			    const struct port_info *pi,
1178 			    unsigned int pidx, unsigned int gen,
1179 			    struct sge_txq *q, unsigned int ndesc,
1180 			    unsigned int compl, const dma_addr_t *addr)
1181 {
1182 	unsigned int flits, sgl_flits, cntrl, tso_info;
1183 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1184 	struct tx_desc *d = &q->desc[pidx];
1185 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1186 
1187 	cpl->len = htonl(skb->len);
1188 	cntrl = V_TXPKT_INTF(pi->port_id);
1189 
1190 	if (skb_vlan_tag_present(skb))
1191 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1192 
1193 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1194 	if (tso_info) {
1195 		int eth_type;
1196 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1197 
1198 		d->flit[2] = 0;
1199 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1200 		hdr->cntrl = htonl(cntrl);
1201 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1202 		    CPL_ETH_II : CPL_ETH_II_VLAN;
1203 		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1204 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1205 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1206 		hdr->lso_info = htonl(tso_info);
1207 		flits = 3;
1208 	} else {
1209 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1210 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1211 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1212 		cpl->cntrl = htonl(cntrl);
1213 
1214 		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1215 			q->sdesc[pidx].skb = NULL;
1216 			if (!skb->data_len)
1217 				skb_copy_from_linear_data(skb, &d->flit[2],
1218 							  skb->len);
1219 			else
1220 				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1221 
1222 			flits = (skb->len + 7) / 8 + 2;
1223 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1224 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1225 					      | F_WR_SOP | F_WR_EOP | compl);
1226 			dma_wmb();
1227 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1228 					      V_WR_TID(q->token));
1229 			wr_gen2(d, gen);
1230 			dev_consume_skb_any(skb);
1231 			return;
1232 		}
1233 
1234 		flits = 2;
1235 	}
1236 
1237 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1238 	sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1239 
1240 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1241 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1242 			 htonl(V_WR_TID(q->token)));
1243 }
1244 
1245 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1246 				    struct sge_qset *qs, struct sge_txq *q)
1247 {
1248 	netif_tx_stop_queue(txq);
1249 	set_bit(TXQ_ETH, &qs->txq_stopped);
1250 	q->stops++;
1251 }
1252 
1253 /**
1254  *	t3_eth_xmit - add a packet to the Ethernet Tx queue
1255  *	@skb: the packet
1256  *	@dev: the egress net device
1257  *
1258  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1259  */
1260 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1261 {
1262 	int qidx;
1263 	unsigned int ndesc, pidx, credits, gen, compl;
1264 	const struct port_info *pi = netdev_priv(dev);
1265 	struct adapter *adap = pi->adapter;
1266 	struct netdev_queue *txq;
1267 	struct sge_qset *qs;
1268 	struct sge_txq *q;
1269 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1270 
1271 	/*
1272 	 * The chip min packet length is 9 octets but play safe and reject
1273 	 * anything shorter than an Ethernet header.
1274 	 */
1275 	if (unlikely(skb->len < ETH_HLEN)) {
1276 		dev_kfree_skb_any(skb);
1277 		return NETDEV_TX_OK;
1278 	}
1279 
1280 	qidx = skb_get_queue_mapping(skb);
1281 	qs = &pi->qs[qidx];
1282 	q = &qs->txq[TXQ_ETH];
1283 	txq = netdev_get_tx_queue(dev, qidx);
1284 
1285 	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1286 
1287 	credits = q->size - q->in_use;
1288 	ndesc = calc_tx_descs(skb);
1289 
1290 	if (unlikely(credits < ndesc)) {
1291 		t3_stop_tx_queue(txq, qs, q);
1292 		dev_err(&adap->pdev->dev,
1293 			"%s: Tx ring %u full while queue awake!\n",
1294 			dev->name, q->cntxt_id & 7);
1295 		return NETDEV_TX_BUSY;
1296 	}
1297 
1298 	/* Check if ethernet packet can't be sent as immediate data */
1299 	if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1300 		if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1301 			dev_kfree_skb(skb);
1302 			return NETDEV_TX_OK;
1303 		}
1304 	}
1305 
1306 	q->in_use += ndesc;
1307 	if (unlikely(credits - ndesc < q->stop_thres)) {
1308 		t3_stop_tx_queue(txq, qs, q);
1309 
1310 		if (should_restart_tx(q) &&
1311 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1312 			q->restarts++;
1313 			netif_tx_start_queue(txq);
1314 		}
1315 	}
1316 
1317 	gen = q->gen;
1318 	q->unacked += ndesc;
1319 	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1320 	q->unacked &= 7;
1321 	pidx = q->pidx;
1322 	q->pidx += ndesc;
1323 	if (q->pidx >= q->size) {
1324 		q->pidx -= q->size;
1325 		q->gen ^= 1;
1326 	}
1327 
1328 	/* update port statistics */
1329 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1330 		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1331 	if (skb_shinfo(skb)->gso_size)
1332 		qs->port_stats[SGE_PSTAT_TSO]++;
1333 	if (skb_vlan_tag_present(skb))
1334 		qs->port_stats[SGE_PSTAT_VLANINS]++;
1335 
1336 	/*
1337 	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1338 	 * This is good for performance but means that we rely on new Tx
1339 	 * packets arriving to run the destructors of completed packets,
1340 	 * which open up space in their sockets' send queues.  Sometimes
1341 	 * we do not get such new packets causing Tx to stall.  A single
1342 	 * UDP transmitter is a good example of this situation.  We have
1343 	 * a clean up timer that periodically reclaims completed packets
1344 	 * but it doesn't run often enough (nor do we want it to) to prevent
1345 	 * lengthy stalls.  A solution to this problem is to run the
1346 	 * destructor early, after the packet is queued but before it's DMAd.
1347 	 * A cons is that we lie to socket memory accounting, but the amount
1348 	 * of extra memory is reasonable (limited by the number of Tx
1349 	 * descriptors), the packets do actually get freed quickly by new
1350 	 * packets almost always, and for protocols like TCP that wait for
1351 	 * acks to really free up the data the extra memory is even less.
1352 	 * On the positive side we run the destructors on the sending CPU
1353 	 * rather than on a potentially different completing CPU, usually a
1354 	 * good thing.  We also run them without holding our Tx queue lock,
1355 	 * unlike what reclaim_completed_tx() would otherwise do.
1356 	 *
1357 	 * Run the destructor before telling the DMA engine about the packet
1358 	 * to make sure it doesn't complete and get freed prematurely.
1359 	 */
1360 	if (likely(!skb_shared(skb)))
1361 		skb_orphan(skb);
1362 
1363 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1364 	check_ring_tx_db(adap, q);
1365 	return NETDEV_TX_OK;
1366 }
1367 
1368 /**
1369  *	write_imm - write a packet into a Tx descriptor as immediate data
1370  *	@d: the Tx descriptor to write
1371  *	@skb: the packet
1372  *	@len: the length of packet data to write as immediate data
1373  *	@gen: the generation bit value to write
1374  *
1375  *	Writes a packet as immediate data into a Tx descriptor.  The packet
1376  *	contains a work request at its beginning.  We must write the packet
1377  *	carefully so the SGE doesn't read it accidentally before it's written
1378  *	in its entirety.
1379  */
1380 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1381 			     unsigned int len, unsigned int gen)
1382 {
1383 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1384 	struct work_request_hdr *to = (struct work_request_hdr *)d;
1385 
1386 	if (likely(!skb->data_len))
1387 		memcpy(&to[1], &from[1], len - sizeof(*from));
1388 	else
1389 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1390 
1391 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1392 					V_WR_BCNTLFLT(len & 7));
1393 	dma_wmb();
1394 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1395 					V_WR_LEN((len + 7) / 8));
1396 	wr_gen2(d, gen);
1397 	kfree_skb(skb);
1398 }
1399 
1400 /**
1401  *	check_desc_avail - check descriptor availability on a send queue
1402  *	@adap: the adapter
1403  *	@q: the send queue
1404  *	@skb: the packet needing the descriptors
1405  *	@ndesc: the number of Tx descriptors needed
1406  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1407  *
1408  *	Checks if the requested number of Tx descriptors is available on an
1409  *	SGE send queue.  If the queue is already suspended or not enough
1410  *	descriptors are available the packet is queued for later transmission.
1411  *	Must be called with the Tx queue locked.
1412  *
1413  *	Returns 0 if enough descriptors are available, 1 if there aren't
1414  *	enough descriptors and the packet has been queued, and 2 if the caller
1415  *	needs to retry because there weren't enough descriptors at the
1416  *	beginning of the call but some freed up in the mean time.
1417  */
1418 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1419 				   struct sk_buff *skb, unsigned int ndesc,
1420 				   unsigned int qid)
1421 {
1422 	if (unlikely(!skb_queue_empty(&q->sendq))) {
1423 	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1424 		return 1;
1425 	}
1426 	if (unlikely(q->size - q->in_use < ndesc)) {
1427 		struct sge_qset *qs = txq_to_qset(q, qid);
1428 
1429 		set_bit(qid, &qs->txq_stopped);
1430 		smp_mb__after_atomic();
1431 
1432 		if (should_restart_tx(q) &&
1433 		    test_and_clear_bit(qid, &qs->txq_stopped))
1434 			return 2;
1435 
1436 		q->stops++;
1437 		goto addq_exit;
1438 	}
1439 	return 0;
1440 }
1441 
1442 /**
1443  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1444  *	@q: the SGE control Tx queue
1445  *
1446  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1447  *	that send only immediate data (presently just the control queues) and
1448  *	thus do not have any sk_buffs to release.
1449  */
1450 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1451 {
1452 	unsigned int reclaim = q->processed - q->cleaned;
1453 
1454 	q->in_use -= reclaim;
1455 	q->cleaned += reclaim;
1456 }
1457 
1458 static inline int immediate(const struct sk_buff *skb)
1459 {
1460 	return skb->len <= WR_LEN;
1461 }
1462 
1463 /**
1464  *	ctrl_xmit - send a packet through an SGE control Tx queue
1465  *	@adap: the adapter
1466  *	@q: the control queue
1467  *	@skb: the packet
1468  *
1469  *	Send a packet through an SGE control Tx queue.  Packets sent through
1470  *	a control queue must fit entirely as immediate data in a single Tx
1471  *	descriptor and have no page fragments.
1472  */
1473 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1474 		     struct sk_buff *skb)
1475 {
1476 	int ret;
1477 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1478 
1479 	if (unlikely(!immediate(skb))) {
1480 		WARN_ON(1);
1481 		dev_kfree_skb(skb);
1482 		return NET_XMIT_SUCCESS;
1483 	}
1484 
1485 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1486 	wrp->wr_lo = htonl(V_WR_TID(q->token));
1487 
1488 	spin_lock(&q->lock);
1489       again:reclaim_completed_tx_imm(q);
1490 
1491 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1492 	if (unlikely(ret)) {
1493 		if (ret == 1) {
1494 			spin_unlock(&q->lock);
1495 			return NET_XMIT_CN;
1496 		}
1497 		goto again;
1498 	}
1499 
1500 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1501 
1502 	q->in_use++;
1503 	if (++q->pidx >= q->size) {
1504 		q->pidx = 0;
1505 		q->gen ^= 1;
1506 	}
1507 	spin_unlock(&q->lock);
1508 	wmb();
1509 	t3_write_reg(adap, A_SG_KDOORBELL,
1510 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1511 	return NET_XMIT_SUCCESS;
1512 }
1513 
1514 /**
1515  *	restart_ctrlq - restart a suspended control queue
1516  *	@w: pointer to the work associated with this handler
1517  *
1518  *	Resumes transmission on a suspended Tx control queue.
1519  */
1520 static void restart_ctrlq(struct work_struct *w)
1521 {
1522 	struct sk_buff *skb;
1523 	struct sge_qset *qs = container_of(w, struct sge_qset,
1524 					   txq[TXQ_CTRL].qresume_task);
1525 	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1526 
1527 	spin_lock(&q->lock);
1528       again:reclaim_completed_tx_imm(q);
1529 
1530 	while (q->in_use < q->size &&
1531 	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1532 
1533 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1534 
1535 		if (++q->pidx >= q->size) {
1536 			q->pidx = 0;
1537 			q->gen ^= 1;
1538 		}
1539 		q->in_use++;
1540 	}
1541 
1542 	if (!skb_queue_empty(&q->sendq)) {
1543 		set_bit(TXQ_CTRL, &qs->txq_stopped);
1544 		smp_mb__after_atomic();
1545 
1546 		if (should_restart_tx(q) &&
1547 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1548 			goto again;
1549 		q->stops++;
1550 	}
1551 
1552 	spin_unlock(&q->lock);
1553 	wmb();
1554 	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1555 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1556 }
1557 
1558 /*
1559  * Send a management message through control queue 0
1560  */
1561 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1562 {
1563 	int ret;
1564 	local_bh_disable();
1565 	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1566 	local_bh_enable();
1567 
1568 	return ret;
1569 }
1570 
1571 /**
1572  *	deferred_unmap_destructor - unmap a packet when it is freed
1573  *	@skb: the packet
1574  *
1575  *	This is the packet destructor used for Tx packets that need to remain
1576  *	mapped until they are freed rather than until their Tx descriptors are
1577  *	freed.
1578  */
1579 static void deferred_unmap_destructor(struct sk_buff *skb)
1580 {
1581 	int i;
1582 	const dma_addr_t *p;
1583 	const struct skb_shared_info *si;
1584 	const struct deferred_unmap_info *dui;
1585 
1586 	dui = (struct deferred_unmap_info *)skb->head;
1587 	p = dui->addr;
1588 
1589 	if (skb_tail_pointer(skb) - skb_transport_header(skb))
1590 		dma_unmap_single(&dui->pdev->dev, *p++,
1591 				 skb_tail_pointer(skb) - skb_transport_header(skb),
1592 				 DMA_TO_DEVICE);
1593 
1594 	si = skb_shinfo(skb);
1595 	for (i = 0; i < si->nr_frags; i++)
1596 		dma_unmap_page(&dui->pdev->dev, *p++,
1597 			       skb_frag_size(&si->frags[i]), DMA_TO_DEVICE);
1598 }
1599 
1600 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1601 				     const struct sg_ent *sgl, int sgl_flits)
1602 {
1603 	dma_addr_t *p;
1604 	struct deferred_unmap_info *dui;
1605 
1606 	dui = (struct deferred_unmap_info *)skb->head;
1607 	dui->pdev = pdev;
1608 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1609 		*p++ = be64_to_cpu(sgl->addr[0]);
1610 		*p++ = be64_to_cpu(sgl->addr[1]);
1611 	}
1612 	if (sgl_flits)
1613 		*p = be64_to_cpu(sgl->addr[0]);
1614 }
1615 
1616 /**
1617  *	write_ofld_wr - write an offload work request
1618  *	@adap: the adapter
1619  *	@skb: the packet to send
1620  *	@q: the Tx queue
1621  *	@pidx: index of the first Tx descriptor to write
1622  *	@gen: the generation value to use
1623  *	@ndesc: number of descriptors the packet will occupy
1624  *	@addr: the address
1625  *
1626  *	Write an offload work request to send the supplied packet.  The packet
1627  *	data already carry the work request with most fields populated.
1628  */
1629 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1630 			  struct sge_txq *q, unsigned int pidx,
1631 			  unsigned int gen, unsigned int ndesc,
1632 			  const dma_addr_t *addr)
1633 {
1634 	unsigned int sgl_flits, flits;
1635 	struct work_request_hdr *from;
1636 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1637 	struct tx_desc *d = &q->desc[pidx];
1638 
1639 	if (immediate(skb)) {
1640 		q->sdesc[pidx].skb = NULL;
1641 		write_imm(d, skb, skb->len, gen);
1642 		return;
1643 	}
1644 
1645 	/* Only TX_DATA builds SGLs */
1646 
1647 	from = (struct work_request_hdr *)skb->data;
1648 	memcpy(&d->flit[1], &from[1],
1649 	       skb_transport_offset(skb) - sizeof(*from));
1650 
1651 	flits = skb_transport_offset(skb) / 8;
1652 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1653 	sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1654 			      skb_tail_pointer(skb) - skb_transport_header(skb),
1655 			      addr);
1656 	if (need_skb_unmap()) {
1657 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1658 		skb->destructor = deferred_unmap_destructor;
1659 	}
1660 
1661 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1662 			 gen, from->wr_hi, from->wr_lo);
1663 }
1664 
1665 /**
1666  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1667  *	@skb: the packet
1668  *
1669  * 	Returns the number of Tx descriptors needed for the given offload
1670  * 	packet.  These packets are already fully constructed.
1671  */
1672 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1673 {
1674 	unsigned int flits, cnt;
1675 
1676 	if (skb->len <= WR_LEN)
1677 		return 1;	/* packet fits as immediate data */
1678 
1679 	flits = skb_transport_offset(skb) / 8;	/* headers */
1680 	cnt = skb_shinfo(skb)->nr_frags;
1681 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1682 		cnt++;
1683 	return flits_to_desc(flits + sgl_len(cnt));
1684 }
1685 
1686 /**
1687  *	ofld_xmit - send a packet through an offload queue
1688  *	@adap: the adapter
1689  *	@q: the Tx offload queue
1690  *	@skb: the packet
1691  *
1692  *	Send an offload packet through an SGE offload queue.
1693  */
1694 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1695 		     struct sk_buff *skb)
1696 {
1697 	int ret;
1698 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1699 
1700 	spin_lock(&q->lock);
1701 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1702 
1703 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1704 	if (unlikely(ret)) {
1705 		if (ret == 1) {
1706 			skb->priority = ndesc;	/* save for restart */
1707 			spin_unlock(&q->lock);
1708 			return NET_XMIT_CN;
1709 		}
1710 		goto again;
1711 	}
1712 
1713 	if (!immediate(skb) &&
1714 	    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1715 		spin_unlock(&q->lock);
1716 		return NET_XMIT_SUCCESS;
1717 	}
1718 
1719 	gen = q->gen;
1720 	q->in_use += ndesc;
1721 	pidx = q->pidx;
1722 	q->pidx += ndesc;
1723 	if (q->pidx >= q->size) {
1724 		q->pidx -= q->size;
1725 		q->gen ^= 1;
1726 	}
1727 	spin_unlock(&q->lock);
1728 
1729 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1730 	check_ring_tx_db(adap, q);
1731 	return NET_XMIT_SUCCESS;
1732 }
1733 
1734 /**
1735  *	restart_offloadq - restart a suspended offload queue
1736  *	@w: pointer to the work associated with this handler
1737  *
1738  *	Resumes transmission on a suspended Tx offload queue.
1739  */
1740 static void restart_offloadq(struct work_struct *w)
1741 {
1742 	struct sk_buff *skb;
1743 	struct sge_qset *qs = container_of(w, struct sge_qset,
1744 					   txq[TXQ_OFLD].qresume_task);
1745 	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1746 	const struct port_info *pi = netdev_priv(qs->netdev);
1747 	struct adapter *adap = pi->adapter;
1748 	unsigned int written = 0;
1749 
1750 	spin_lock(&q->lock);
1751 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1752 
1753 	while ((skb = skb_peek(&q->sendq)) != NULL) {
1754 		unsigned int gen, pidx;
1755 		unsigned int ndesc = skb->priority;
1756 
1757 		if (unlikely(q->size - q->in_use < ndesc)) {
1758 			set_bit(TXQ_OFLD, &qs->txq_stopped);
1759 			smp_mb__after_atomic();
1760 
1761 			if (should_restart_tx(q) &&
1762 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1763 				goto again;
1764 			q->stops++;
1765 			break;
1766 		}
1767 
1768 		if (!immediate(skb) &&
1769 		    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1770 			break;
1771 
1772 		gen = q->gen;
1773 		q->in_use += ndesc;
1774 		pidx = q->pidx;
1775 		q->pidx += ndesc;
1776 		written += ndesc;
1777 		if (q->pidx >= q->size) {
1778 			q->pidx -= q->size;
1779 			q->gen ^= 1;
1780 		}
1781 		__skb_unlink(skb, &q->sendq);
1782 		spin_unlock(&q->lock);
1783 
1784 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1785 			      (dma_addr_t *)skb->head);
1786 		spin_lock(&q->lock);
1787 	}
1788 	spin_unlock(&q->lock);
1789 
1790 #if USE_GTS
1791 	set_bit(TXQ_RUNNING, &q->flags);
1792 	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1793 #endif
1794 	wmb();
1795 	if (likely(written))
1796 		t3_write_reg(adap, A_SG_KDOORBELL,
1797 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1798 }
1799 
1800 /**
1801  *	queue_set - return the queue set a packet should use
1802  *	@skb: the packet
1803  *
1804  *	Maps a packet to the SGE queue set it should use.  The desired queue
1805  *	set is carried in bits 1-3 in the packet's priority.
1806  */
1807 static inline int queue_set(const struct sk_buff *skb)
1808 {
1809 	return skb->priority >> 1;
1810 }
1811 
1812 /**
1813  *	is_ctrl_pkt - return whether an offload packet is a control packet
1814  *	@skb: the packet
1815  *
1816  *	Determines whether an offload packet should use an OFLD or a CTRL
1817  *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1818  */
1819 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1820 {
1821 	return skb->priority & 1;
1822 }
1823 
1824 /**
1825  *	t3_offload_tx - send an offload packet
1826  *	@tdev: the offload device to send to
1827  *	@skb: the packet
1828  *
1829  *	Sends an offload packet.  We use the packet priority to select the
1830  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1831  *	should be sent as regular or control, bits 1-3 select the queue set.
1832  */
1833 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1834 {
1835 	struct adapter *adap = tdev2adap(tdev);
1836 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1837 
1838 	if (unlikely(is_ctrl_pkt(skb)))
1839 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1840 
1841 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1842 }
1843 
1844 /**
1845  *	offload_enqueue - add an offload packet to an SGE offload receive queue
1846  *	@q: the SGE response queue
1847  *	@skb: the packet
1848  *
1849  *	Add a new offload packet to an SGE response queue's offload packet
1850  *	queue.  If the packet is the first on the queue it schedules the RX
1851  *	softirq to process the queue.
1852  */
1853 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1854 {
1855 	int was_empty = skb_queue_empty(&q->rx_queue);
1856 
1857 	__skb_queue_tail(&q->rx_queue, skb);
1858 
1859 	if (was_empty) {
1860 		struct sge_qset *qs = rspq_to_qset(q);
1861 
1862 		napi_schedule(&qs->napi);
1863 	}
1864 }
1865 
1866 /**
1867  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1868  *	@tdev: the offload device that will be receiving the packets
1869  *	@q: the SGE response queue that assembled the bundle
1870  *	@skbs: the partial bundle
1871  *	@n: the number of packets in the bundle
1872  *
1873  *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1874  */
1875 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1876 					  struct sge_rspq *q,
1877 					  struct sk_buff *skbs[], int n)
1878 {
1879 	if (n) {
1880 		q->offload_bundles++;
1881 		tdev->recv(tdev, skbs, n);
1882 	}
1883 }
1884 
1885 /**
1886  *	ofld_poll - NAPI handler for offload packets in interrupt mode
1887  *	@napi: the network device doing the polling
1888  *	@budget: polling budget
1889  *
1890  *	The NAPI handler for offload packets when a response queue is serviced
1891  *	by the hard interrupt handler, i.e., when it's operating in non-polling
1892  *	mode.  Creates small packet batches and sends them through the offload
1893  *	receive handler.  Batches need to be of modest size as we do prefetches
1894  *	on the packets in each.
1895  */
1896 static int ofld_poll(struct napi_struct *napi, int budget)
1897 {
1898 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1899 	struct sge_rspq *q = &qs->rspq;
1900 	struct adapter *adapter = qs->adap;
1901 	int work_done = 0;
1902 
1903 	while (work_done < budget) {
1904 		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1905 		struct sk_buff_head queue;
1906 		int ngathered;
1907 
1908 		spin_lock_irq(&q->lock);
1909 		__skb_queue_head_init(&queue);
1910 		skb_queue_splice_init(&q->rx_queue, &queue);
1911 		if (skb_queue_empty(&queue)) {
1912 			napi_complete_done(napi, work_done);
1913 			spin_unlock_irq(&q->lock);
1914 			return work_done;
1915 		}
1916 		spin_unlock_irq(&q->lock);
1917 
1918 		ngathered = 0;
1919 		skb_queue_walk_safe(&queue, skb, tmp) {
1920 			if (work_done >= budget)
1921 				break;
1922 			work_done++;
1923 
1924 			__skb_unlink(skb, &queue);
1925 			prefetch(skb->data);
1926 			skbs[ngathered] = skb;
1927 			if (++ngathered == RX_BUNDLE_SIZE) {
1928 				q->offload_bundles++;
1929 				adapter->tdev.recv(&adapter->tdev, skbs,
1930 						   ngathered);
1931 				ngathered = 0;
1932 			}
1933 		}
1934 		if (!skb_queue_empty(&queue)) {
1935 			/* splice remaining packets back onto Rx queue */
1936 			spin_lock_irq(&q->lock);
1937 			skb_queue_splice(&queue, &q->rx_queue);
1938 			spin_unlock_irq(&q->lock);
1939 		}
1940 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1941 	}
1942 
1943 	return work_done;
1944 }
1945 
1946 /**
1947  *	rx_offload - process a received offload packet
1948  *	@tdev: the offload device receiving the packet
1949  *	@rq: the response queue that received the packet
1950  *	@skb: the packet
1951  *	@rx_gather: a gather list of packets if we are building a bundle
1952  *	@gather_idx: index of the next available slot in the bundle
1953  *
1954  *	Process an ingress offload packet and add it to the offload ingress
1955  *	queue. 	Returns the index of the next available slot in the bundle.
1956  */
1957 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1958 			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1959 			     unsigned int gather_idx)
1960 {
1961 	skb_reset_mac_header(skb);
1962 	skb_reset_network_header(skb);
1963 	skb_reset_transport_header(skb);
1964 
1965 	if (rq->polling) {
1966 		rx_gather[gather_idx++] = skb;
1967 		if (gather_idx == RX_BUNDLE_SIZE) {
1968 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1969 			gather_idx = 0;
1970 			rq->offload_bundles++;
1971 		}
1972 	} else
1973 		offload_enqueue(rq, skb);
1974 
1975 	return gather_idx;
1976 }
1977 
1978 /**
1979  *	restart_tx - check whether to restart suspended Tx queues
1980  *	@qs: the queue set to resume
1981  *
1982  *	Restarts suspended Tx queues of an SGE queue set if they have enough
1983  *	free resources to resume operation.
1984  */
1985 static void restart_tx(struct sge_qset *qs)
1986 {
1987 	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1988 	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1989 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1990 		qs->txq[TXQ_ETH].restarts++;
1991 		if (netif_running(qs->netdev))
1992 			netif_tx_wake_queue(qs->tx_q);
1993 	}
1994 
1995 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1996 	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1997 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1998 		qs->txq[TXQ_OFLD].restarts++;
1999 
2000 		/* The work can be quite lengthy so we use driver's own queue */
2001 		queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task);
2002 	}
2003 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2004 	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2005 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2006 		qs->txq[TXQ_CTRL].restarts++;
2007 
2008 		/* The work can be quite lengthy so we use driver's own queue */
2009 		queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task);
2010 	}
2011 }
2012 
2013 /**
2014  *	cxgb3_arp_process - process an ARP request probing a private IP address
2015  *	@pi: the port info
2016  *	@skb: the skbuff containing the ARP request
2017  *
2018  *	Check if the ARP request is probing the private IP address
2019  *	dedicated to iSCSI, generate an ARP reply if so.
2020  */
2021 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2022 {
2023 	struct net_device *dev = skb->dev;
2024 	struct arphdr *arp;
2025 	unsigned char *arp_ptr;
2026 	unsigned char *sha;
2027 	__be32 sip, tip;
2028 
2029 	if (!dev)
2030 		return;
2031 
2032 	skb_reset_network_header(skb);
2033 	arp = arp_hdr(skb);
2034 
2035 	if (arp->ar_op != htons(ARPOP_REQUEST))
2036 		return;
2037 
2038 	arp_ptr = (unsigned char *)(arp + 1);
2039 	sha = arp_ptr;
2040 	arp_ptr += dev->addr_len;
2041 	memcpy(&sip, arp_ptr, sizeof(sip));
2042 	arp_ptr += sizeof(sip);
2043 	arp_ptr += dev->addr_len;
2044 	memcpy(&tip, arp_ptr, sizeof(tip));
2045 
2046 	if (tip != pi->iscsi_ipv4addr)
2047 		return;
2048 
2049 	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2050 		 pi->iscsic.mac_addr, sha);
2051 
2052 }
2053 
2054 static inline int is_arp(struct sk_buff *skb)
2055 {
2056 	return skb->protocol == htons(ETH_P_ARP);
2057 }
2058 
2059 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2060 					struct sk_buff *skb)
2061 {
2062 	if (is_arp(skb)) {
2063 		cxgb3_arp_process(pi, skb);
2064 		return;
2065 	}
2066 
2067 	if (pi->iscsic.recv)
2068 		pi->iscsic.recv(pi, skb);
2069 
2070 }
2071 
2072 /**
2073  *	rx_eth - process an ingress ethernet packet
2074  *	@adap: the adapter
2075  *	@rq: the response queue that received the packet
2076  *	@skb: the packet
2077  *	@pad: padding
2078  *	@lro: large receive offload
2079  *
2080  *	Process an ingress ethernet packet and deliver it to the stack.
2081  *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2082  *	if it was immediate data in a response.
2083  */
2084 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2085 		   struct sk_buff *skb, int pad, int lro)
2086 {
2087 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2088 	struct sge_qset *qs = rspq_to_qset(rq);
2089 	struct port_info *pi;
2090 
2091 	skb_pull(skb, sizeof(*p) + pad);
2092 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2093 	pi = netdev_priv(skb->dev);
2094 	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2095 	    p->csum == htons(0xffff) && !p->fragment) {
2096 		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2097 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2098 	} else
2099 		skb_checksum_none_assert(skb);
2100 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2101 
2102 	if (p->vlan_valid) {
2103 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2104 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2105 	}
2106 	if (rq->polling) {
2107 		if (lro)
2108 			napi_gro_receive(&qs->napi, skb);
2109 		else {
2110 			if (unlikely(pi->iscsic.flags))
2111 				cxgb3_process_iscsi_prov_pack(pi, skb);
2112 			netif_receive_skb(skb);
2113 		}
2114 	} else
2115 		netif_rx(skb);
2116 }
2117 
2118 static inline int is_eth_tcp(u32 rss)
2119 {
2120 	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2121 }
2122 
2123 /**
2124  *	lro_add_page - add a page chunk to an LRO session
2125  *	@adap: the adapter
2126  *	@qs: the associated queue set
2127  *	@fl: the free list containing the page chunk to add
2128  *	@len: packet length
2129  *	@complete: Indicates the last fragment of a frame
2130  *
2131  *	Add a received packet contained in a page chunk to an existing LRO
2132  *	session.
2133  */
2134 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2135 			 struct sge_fl *fl, int len, int complete)
2136 {
2137 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2138 	struct port_info *pi = netdev_priv(qs->netdev);
2139 	struct sk_buff *skb = NULL;
2140 	struct cpl_rx_pkt *cpl;
2141 	skb_frag_t *rx_frag;
2142 	int nr_frags;
2143 	int offset = 0;
2144 
2145 	if (!qs->nomem) {
2146 		skb = napi_get_frags(&qs->napi);
2147 		qs->nomem = !skb;
2148 	}
2149 
2150 	fl->credits--;
2151 
2152 	dma_sync_single_for_cpu(&adap->pdev->dev,
2153 				dma_unmap_addr(sd, dma_addr),
2154 				fl->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE);
2155 
2156 	(*sd->pg_chunk.p_cnt)--;
2157 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2158 		dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
2159 			       fl->alloc_size, DMA_FROM_DEVICE);
2160 
2161 	if (!skb) {
2162 		put_page(sd->pg_chunk.page);
2163 		if (complete)
2164 			qs->nomem = 0;
2165 		return;
2166 	}
2167 
2168 	rx_frag = skb_shinfo(skb)->frags;
2169 	nr_frags = skb_shinfo(skb)->nr_frags;
2170 
2171 	if (!nr_frags) {
2172 		offset = 2 + sizeof(struct cpl_rx_pkt);
2173 		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2174 
2175 		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2176 		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2177 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2178 			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2179 		} else
2180 			skb->ip_summed = CHECKSUM_NONE;
2181 	} else
2182 		cpl = qs->lro_va;
2183 
2184 	len -= offset;
2185 
2186 	rx_frag += nr_frags;
2187 	skb_frag_fill_page_desc(rx_frag, sd->pg_chunk.page,
2188 				sd->pg_chunk.offset + offset, len);
2189 
2190 	skb->len += len;
2191 	skb->data_len += len;
2192 	skb->truesize += len;
2193 	skb_shinfo(skb)->nr_frags++;
2194 
2195 	if (!complete)
2196 		return;
2197 
2198 	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2199 
2200 	if (cpl->vlan_valid) {
2201 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2202 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2203 	}
2204 	napi_gro_frags(&qs->napi);
2205 }
2206 
2207 /**
2208  *	handle_rsp_cntrl_info - handles control information in a response
2209  *	@qs: the queue set corresponding to the response
2210  *	@flags: the response control flags
2211  *
2212  *	Handles the control information of an SGE response, such as GTS
2213  *	indications and completion credits for the queue set's Tx queues.
2214  *	HW coalesces credits, we don't do any extra SW coalescing.
2215  */
2216 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2217 {
2218 	unsigned int credits;
2219 
2220 #if USE_GTS
2221 	if (flags & F_RSPD_TXQ0_GTS)
2222 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2223 #endif
2224 
2225 	credits = G_RSPD_TXQ0_CR(flags);
2226 	if (credits)
2227 		qs->txq[TXQ_ETH].processed += credits;
2228 
2229 	credits = G_RSPD_TXQ2_CR(flags);
2230 	if (credits)
2231 		qs->txq[TXQ_CTRL].processed += credits;
2232 
2233 # if USE_GTS
2234 	if (flags & F_RSPD_TXQ1_GTS)
2235 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2236 # endif
2237 	credits = G_RSPD_TXQ1_CR(flags);
2238 	if (credits)
2239 		qs->txq[TXQ_OFLD].processed += credits;
2240 }
2241 
2242 /**
2243  *	check_ring_db - check if we need to ring any doorbells
2244  *	@adap: the adapter
2245  *	@qs: the queue set whose Tx queues are to be examined
2246  *	@sleeping: indicates which Tx queue sent GTS
2247  *
2248  *	Checks if some of a queue set's Tx queues need to ring their doorbells
2249  *	to resume transmission after idling while they still have unprocessed
2250  *	descriptors.
2251  */
2252 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2253 			  unsigned int sleeping)
2254 {
2255 	if (sleeping & F_RSPD_TXQ0_GTS) {
2256 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2257 
2258 		if (txq->cleaned + txq->in_use != txq->processed &&
2259 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2260 			set_bit(TXQ_RUNNING, &txq->flags);
2261 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2262 				     V_EGRCNTX(txq->cntxt_id));
2263 		}
2264 	}
2265 
2266 	if (sleeping & F_RSPD_TXQ1_GTS) {
2267 		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2268 
2269 		if (txq->cleaned + txq->in_use != txq->processed &&
2270 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2271 			set_bit(TXQ_RUNNING, &txq->flags);
2272 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2273 				     V_EGRCNTX(txq->cntxt_id));
2274 		}
2275 	}
2276 }
2277 
2278 /**
2279  *	is_new_response - check if a response is newly written
2280  *	@r: the response descriptor
2281  *	@q: the response queue
2282  *
2283  *	Returns true if a response descriptor contains a yet unprocessed
2284  *	response.
2285  */
2286 static inline int is_new_response(const struct rsp_desc *r,
2287 				  const struct sge_rspq *q)
2288 {
2289 	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2290 }
2291 
2292 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2293 {
2294 	q->pg_skb = NULL;
2295 	q->rx_recycle_buf = 0;
2296 }
2297 
2298 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2299 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2300 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2301 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2302 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2303 
2304 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2305 #define NOMEM_INTR_DELAY 2500
2306 
2307 /**
2308  *	process_responses - process responses from an SGE response queue
2309  *	@adap: the adapter
2310  *	@qs: the queue set to which the response queue belongs
2311  *	@budget: how many responses can be processed in this round
2312  *
2313  *	Process responses from an SGE response queue up to the supplied budget.
2314  *	Responses include received packets as well as credits and other events
2315  *	for the queues that belong to the response queue's queue set.
2316  *	A negative budget is effectively unlimited.
2317  *
2318  *	Additionally choose the interrupt holdoff time for the next interrupt
2319  *	on this queue.  If the system is under memory shortage use a fairly
2320  *	long delay to help recovery.
2321  */
2322 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2323 			     int budget)
2324 {
2325 	struct sge_rspq *q = &qs->rspq;
2326 	struct rsp_desc *r = &q->desc[q->cidx];
2327 	int budget_left = budget;
2328 	unsigned int sleeping = 0;
2329 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2330 	int ngathered = 0;
2331 
2332 	q->next_holdoff = q->holdoff_tmr;
2333 
2334 	while (likely(budget_left && is_new_response(r, q))) {
2335 		int packet_complete, eth, ethpad = 2;
2336 		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2337 		struct sk_buff *skb = NULL;
2338 		u32 len, flags;
2339 		__be32 rss_hi, rss_lo;
2340 
2341 		dma_rmb();
2342 		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2343 		rss_hi = *(const __be32 *)r;
2344 		rss_lo = r->rss_hdr.rss_hash_val;
2345 		flags = ntohl(r->flags);
2346 
2347 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2348 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2349 			if (!skb)
2350 				goto no_mem;
2351 
2352 			__skb_put_data(skb, r, AN_PKT_SIZE);
2353 			skb->data[0] = CPL_ASYNC_NOTIF;
2354 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2355 			q->async_notif++;
2356 		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2357 			skb = get_imm_packet(r);
2358 			if (unlikely(!skb)) {
2359 no_mem:
2360 				q->next_holdoff = NOMEM_INTR_DELAY;
2361 				q->nomem++;
2362 				/* consume one credit since we tried */
2363 				budget_left--;
2364 				break;
2365 			}
2366 			q->imm_data++;
2367 			ethpad = 0;
2368 		} else if ((len = ntohl(r->len_cq)) != 0) {
2369 			struct sge_fl *fl;
2370 
2371 			lro &= eth && is_eth_tcp(rss_hi);
2372 
2373 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2374 			if (fl->use_pages) {
2375 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2376 
2377 				net_prefetch(addr);
2378 				__refill_fl(adap, fl);
2379 				if (lro > 0) {
2380 					lro_add_page(adap, qs, fl,
2381 						     G_RSPD_LEN(len),
2382 						     flags & F_RSPD_EOP);
2383 					goto next_fl;
2384 				}
2385 
2386 				skb = get_packet_pg(adap, fl, q,
2387 						    G_RSPD_LEN(len),
2388 						    eth ?
2389 						    SGE_RX_DROP_THRES : 0);
2390 				q->pg_skb = skb;
2391 			} else
2392 				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2393 						 eth ? SGE_RX_DROP_THRES : 0);
2394 			if (unlikely(!skb)) {
2395 				if (!eth)
2396 					goto no_mem;
2397 				q->rx_drops++;
2398 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2399 				__skb_pull(skb, 2);
2400 next_fl:
2401 			if (++fl->cidx == fl->size)
2402 				fl->cidx = 0;
2403 		} else
2404 			q->pure_rsps++;
2405 
2406 		if (flags & RSPD_CTRL_MASK) {
2407 			sleeping |= flags & RSPD_GTS_MASK;
2408 			handle_rsp_cntrl_info(qs, flags);
2409 		}
2410 
2411 		r++;
2412 		if (unlikely(++q->cidx == q->size)) {
2413 			q->cidx = 0;
2414 			q->gen ^= 1;
2415 			r = q->desc;
2416 		}
2417 		prefetch(r);
2418 
2419 		if (++q->credits >= (q->size / 4)) {
2420 			refill_rspq(adap, q, q->credits);
2421 			q->credits = 0;
2422 		}
2423 
2424 		packet_complete = flags &
2425 				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2426 				   F_RSPD_ASYNC_NOTIF);
2427 
2428 		if (skb != NULL && packet_complete) {
2429 			if (eth)
2430 				rx_eth(adap, q, skb, ethpad, lro);
2431 			else {
2432 				q->offload_pkts++;
2433 				/* Preserve the RSS info in csum & priority */
2434 				skb->csum = rss_hi;
2435 				skb->priority = rss_lo;
2436 				ngathered = rx_offload(&adap->tdev, q, skb,
2437 						       offload_skbs,
2438 						       ngathered);
2439 			}
2440 
2441 			if (flags & F_RSPD_EOP)
2442 				clear_rspq_bufstate(q);
2443 		}
2444 		--budget_left;
2445 	}
2446 
2447 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2448 
2449 	if (sleeping)
2450 		check_ring_db(adap, qs, sleeping);
2451 
2452 	smp_mb();		/* commit Tx queue .processed updates */
2453 	if (unlikely(qs->txq_stopped != 0))
2454 		restart_tx(qs);
2455 
2456 	budget -= budget_left;
2457 	return budget;
2458 }
2459 
2460 static inline int is_pure_response(const struct rsp_desc *r)
2461 {
2462 	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2463 
2464 	return (n | r->len_cq) == 0;
2465 }
2466 
2467 /**
2468  *	napi_rx_handler - the NAPI handler for Rx processing
2469  *	@napi: the napi instance
2470  *	@budget: how many packets we can process in this round
2471  *
2472  *	Handler for new data events when using NAPI.
2473  */
2474 static int napi_rx_handler(struct napi_struct *napi, int budget)
2475 {
2476 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2477 	struct adapter *adap = qs->adap;
2478 	int work_done = process_responses(adap, qs, budget);
2479 
2480 	if (likely(work_done < budget)) {
2481 		napi_complete_done(napi, work_done);
2482 
2483 		/*
2484 		 * Because we don't atomically flush the following
2485 		 * write it is possible that in very rare cases it can
2486 		 * reach the device in a way that races with a new
2487 		 * response being written plus an error interrupt
2488 		 * causing the NAPI interrupt handler below to return
2489 		 * unhandled status to the OS.  To protect against
2490 		 * this would require flushing the write and doing
2491 		 * both the write and the flush with interrupts off.
2492 		 * Way too expensive and unjustifiable given the
2493 		 * rarity of the race.
2494 		 *
2495 		 * The race cannot happen at all with MSI-X.
2496 		 */
2497 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2498 			     V_NEWTIMER(qs->rspq.next_holdoff) |
2499 			     V_NEWINDEX(qs->rspq.cidx));
2500 	}
2501 	return work_done;
2502 }
2503 
2504 /*
2505  * Returns true if the device is already scheduled for polling.
2506  */
2507 static inline int napi_is_scheduled(struct napi_struct *napi)
2508 {
2509 	return test_bit(NAPI_STATE_SCHED, &napi->state);
2510 }
2511 
2512 /**
2513  *	process_pure_responses - process pure responses from a response queue
2514  *	@adap: the adapter
2515  *	@qs: the queue set owning the response queue
2516  *	@r: the first pure response to process
2517  *
2518  *	A simpler version of process_responses() that handles only pure (i.e.,
2519  *	non data-carrying) responses.  Such respones are too light-weight to
2520  *	justify calling a softirq under NAPI, so we handle them specially in
2521  *	the interrupt handler.  The function is called with a pointer to a
2522  *	response, which the caller must ensure is a valid pure response.
2523  *
2524  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2525  */
2526 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2527 				  struct rsp_desc *r)
2528 {
2529 	struct sge_rspq *q = &qs->rspq;
2530 	unsigned int sleeping = 0;
2531 
2532 	do {
2533 		u32 flags = ntohl(r->flags);
2534 
2535 		r++;
2536 		if (unlikely(++q->cidx == q->size)) {
2537 			q->cidx = 0;
2538 			q->gen ^= 1;
2539 			r = q->desc;
2540 		}
2541 		prefetch(r);
2542 
2543 		if (flags & RSPD_CTRL_MASK) {
2544 			sleeping |= flags & RSPD_GTS_MASK;
2545 			handle_rsp_cntrl_info(qs, flags);
2546 		}
2547 
2548 		q->pure_rsps++;
2549 		if (++q->credits >= (q->size / 4)) {
2550 			refill_rspq(adap, q, q->credits);
2551 			q->credits = 0;
2552 		}
2553 		if (!is_new_response(r, q))
2554 			break;
2555 		dma_rmb();
2556 	} while (is_pure_response(r));
2557 
2558 	if (sleeping)
2559 		check_ring_db(adap, qs, sleeping);
2560 
2561 	smp_mb();		/* commit Tx queue .processed updates */
2562 	if (unlikely(qs->txq_stopped != 0))
2563 		restart_tx(qs);
2564 
2565 	return is_new_response(r, q);
2566 }
2567 
2568 /**
2569  *	handle_responses - decide what to do with new responses in NAPI mode
2570  *	@adap: the adapter
2571  *	@q: the response queue
2572  *
2573  *	This is used by the NAPI interrupt handlers to decide what to do with
2574  *	new SGE responses.  If there are no new responses it returns -1.  If
2575  *	there are new responses and they are pure (i.e., non-data carrying)
2576  *	it handles them straight in hard interrupt context as they are very
2577  *	cheap and don't deliver any packets.  Finally, if there are any data
2578  *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2579  *	schedules NAPI, 0 if all new responses were pure.
2580  *
2581  *	The caller must ascertain NAPI is not already running.
2582  */
2583 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2584 {
2585 	struct sge_qset *qs = rspq_to_qset(q);
2586 	struct rsp_desc *r = &q->desc[q->cidx];
2587 
2588 	if (!is_new_response(r, q))
2589 		return -1;
2590 	dma_rmb();
2591 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2592 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2593 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2594 		return 0;
2595 	}
2596 	napi_schedule(&qs->napi);
2597 	return 1;
2598 }
2599 
2600 /*
2601  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2602  * (i.e., response queue serviced in hard interrupt).
2603  */
2604 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2605 {
2606 	struct sge_qset *qs = cookie;
2607 	struct adapter *adap = qs->adap;
2608 	struct sge_rspq *q = &qs->rspq;
2609 
2610 	spin_lock(&q->lock);
2611 	if (process_responses(adap, qs, -1) == 0)
2612 		q->unhandled_irqs++;
2613 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2614 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2615 	spin_unlock(&q->lock);
2616 	return IRQ_HANDLED;
2617 }
2618 
2619 /*
2620  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2621  * (i.e., response queue serviced by NAPI polling).
2622  */
2623 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2624 {
2625 	struct sge_qset *qs = cookie;
2626 	struct sge_rspq *q = &qs->rspq;
2627 
2628 	spin_lock(&q->lock);
2629 
2630 	if (handle_responses(qs->adap, q) < 0)
2631 		q->unhandled_irqs++;
2632 	spin_unlock(&q->lock);
2633 	return IRQ_HANDLED;
2634 }
2635 
2636 /*
2637  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2638  * SGE response queues as well as error and other async events as they all use
2639  * the same MSI vector.  We use one SGE response queue per port in this mode
2640  * and protect all response queues with queue 0's lock.
2641  */
2642 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2643 {
2644 	int new_packets = 0;
2645 	struct adapter *adap = cookie;
2646 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2647 
2648 	spin_lock(&q->lock);
2649 
2650 	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2651 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2652 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2653 		new_packets = 1;
2654 	}
2655 
2656 	if (adap->params.nports == 2 &&
2657 	    process_responses(adap, &adap->sge.qs[1], -1)) {
2658 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2659 
2660 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2661 			     V_NEWTIMER(q1->next_holdoff) |
2662 			     V_NEWINDEX(q1->cidx));
2663 		new_packets = 1;
2664 	}
2665 
2666 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2667 		q->unhandled_irqs++;
2668 
2669 	spin_unlock(&q->lock);
2670 	return IRQ_HANDLED;
2671 }
2672 
2673 static int rspq_check_napi(struct sge_qset *qs)
2674 {
2675 	struct sge_rspq *q = &qs->rspq;
2676 
2677 	if (!napi_is_scheduled(&qs->napi) &&
2678 	    is_new_response(&q->desc[q->cidx], q)) {
2679 		napi_schedule(&qs->napi);
2680 		return 1;
2681 	}
2682 	return 0;
2683 }
2684 
2685 /*
2686  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2687  * by NAPI polling).  Handles data events from SGE response queues as well as
2688  * error and other async events as they all use the same MSI vector.  We use
2689  * one SGE response queue per port in this mode and protect all response
2690  * queues with queue 0's lock.
2691  */
2692 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2693 {
2694 	int new_packets;
2695 	struct adapter *adap = cookie;
2696 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2697 
2698 	spin_lock(&q->lock);
2699 
2700 	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2701 	if (adap->params.nports == 2)
2702 		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2703 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2704 		q->unhandled_irqs++;
2705 
2706 	spin_unlock(&q->lock);
2707 	return IRQ_HANDLED;
2708 }
2709 
2710 /*
2711  * A helper function that processes responses and issues GTS.
2712  */
2713 static inline int process_responses_gts(struct adapter *adap,
2714 					struct sge_rspq *rq)
2715 {
2716 	int work;
2717 
2718 	work = process_responses(adap, rspq_to_qset(rq), -1);
2719 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2720 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2721 	return work;
2722 }
2723 
2724 /*
2725  * The legacy INTx interrupt handler.  This needs to handle data events from
2726  * SGE response queues as well as error and other async events as they all use
2727  * the same interrupt pin.  We use one SGE response queue per port in this mode
2728  * and protect all response queues with queue 0's lock.
2729  */
2730 static irqreturn_t t3_intr(int irq, void *cookie)
2731 {
2732 	int work_done, w0, w1;
2733 	struct adapter *adap = cookie;
2734 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2735 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2736 
2737 	spin_lock(&q0->lock);
2738 
2739 	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2740 	w1 = adap->params.nports == 2 &&
2741 	    is_new_response(&q1->desc[q1->cidx], q1);
2742 
2743 	if (likely(w0 | w1)) {
2744 		t3_write_reg(adap, A_PL_CLI, 0);
2745 		t3_read_reg(adap, A_PL_CLI);	/* flush */
2746 
2747 		if (likely(w0))
2748 			process_responses_gts(adap, q0);
2749 
2750 		if (w1)
2751 			process_responses_gts(adap, q1);
2752 
2753 		work_done = w0 | w1;
2754 	} else
2755 		work_done = t3_slow_intr_handler(adap);
2756 
2757 	spin_unlock(&q0->lock);
2758 	return IRQ_RETVAL(work_done != 0);
2759 }
2760 
2761 /*
2762  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2763  * Handles data events from SGE response queues as well as error and other
2764  * async events as they all use the same interrupt pin.  We use one SGE
2765  * response queue per port in this mode and protect all response queues with
2766  * queue 0's lock.
2767  */
2768 static irqreturn_t t3b_intr(int irq, void *cookie)
2769 {
2770 	u32 map;
2771 	struct adapter *adap = cookie;
2772 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2773 
2774 	t3_write_reg(adap, A_PL_CLI, 0);
2775 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2776 
2777 	if (unlikely(!map))	/* shared interrupt, most likely */
2778 		return IRQ_NONE;
2779 
2780 	spin_lock(&q0->lock);
2781 
2782 	if (unlikely(map & F_ERRINTR))
2783 		t3_slow_intr_handler(adap);
2784 
2785 	if (likely(map & 1))
2786 		process_responses_gts(adap, q0);
2787 
2788 	if (map & 2)
2789 		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2790 
2791 	spin_unlock(&q0->lock);
2792 	return IRQ_HANDLED;
2793 }
2794 
2795 /*
2796  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2797  * Handles data events from SGE response queues as well as error and other
2798  * async events as they all use the same interrupt pin.  We use one SGE
2799  * response queue per port in this mode and protect all response queues with
2800  * queue 0's lock.
2801  */
2802 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2803 {
2804 	u32 map;
2805 	struct adapter *adap = cookie;
2806 	struct sge_qset *qs0 = &adap->sge.qs[0];
2807 	struct sge_rspq *q0 = &qs0->rspq;
2808 
2809 	t3_write_reg(adap, A_PL_CLI, 0);
2810 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2811 
2812 	if (unlikely(!map))	/* shared interrupt, most likely */
2813 		return IRQ_NONE;
2814 
2815 	spin_lock(&q0->lock);
2816 
2817 	if (unlikely(map & F_ERRINTR))
2818 		t3_slow_intr_handler(adap);
2819 
2820 	if (likely(map & 1))
2821 		napi_schedule(&qs0->napi);
2822 
2823 	if (map & 2)
2824 		napi_schedule(&adap->sge.qs[1].napi);
2825 
2826 	spin_unlock(&q0->lock);
2827 	return IRQ_HANDLED;
2828 }
2829 
2830 /**
2831  *	t3_intr_handler - select the top-level interrupt handler
2832  *	@adap: the adapter
2833  *	@polling: whether using NAPI to service response queues
2834  *
2835  *	Selects the top-level interrupt handler based on the type of interrupts
2836  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2837  *	response queues.
2838  */
2839 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2840 {
2841 	if (adap->flags & USING_MSIX)
2842 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2843 	if (adap->flags & USING_MSI)
2844 		return polling ? t3_intr_msi_napi : t3_intr_msi;
2845 	if (adap->params.rev > 0)
2846 		return polling ? t3b_intr_napi : t3b_intr;
2847 	return t3_intr;
2848 }
2849 
2850 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2851 		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2852 		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2853 		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2854 		    F_HIRCQPARITYERROR)
2855 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2856 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2857 		      F_RSPQDISABLED)
2858 
2859 /**
2860  *	t3_sge_err_intr_handler - SGE async event interrupt handler
2861  *	@adapter: the adapter
2862  *
2863  *	Interrupt handler for SGE asynchronous (non-data) events.
2864  */
2865 void t3_sge_err_intr_handler(struct adapter *adapter)
2866 {
2867 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2868 				 ~F_FLEMPTY;
2869 
2870 	if (status & SGE_PARERR)
2871 		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2872 			 status & SGE_PARERR);
2873 	if (status & SGE_FRAMINGERR)
2874 		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2875 			 status & SGE_FRAMINGERR);
2876 
2877 	if (status & F_RSPQCREDITOVERFOW)
2878 		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2879 
2880 	if (status & F_RSPQDISABLED) {
2881 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2882 
2883 		CH_ALERT(adapter,
2884 			 "packet delivered to disabled response queue "
2885 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2886 	}
2887 
2888 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2889 		queue_work(cxgb3_wq, &adapter->db_drop_task);
2890 
2891 	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2892 		queue_work(cxgb3_wq, &adapter->db_full_task);
2893 
2894 	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2895 		queue_work(cxgb3_wq, &adapter->db_empty_task);
2896 
2897 	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2898 	if (status &  SGE_FATALERR)
2899 		t3_fatal_err(adapter);
2900 }
2901 
2902 /**
2903  *	sge_timer_tx - perform periodic maintenance of an SGE qset
2904  *	@t: a timer list containing the SGE queue set to maintain
2905  *
2906  *	Runs periodically from a timer to perform maintenance of an SGE queue
2907  *	set.  It performs two tasks:
2908  *
2909  *	Cleans up any completed Tx descriptors that may still be pending.
2910  *	Normal descriptor cleanup happens when new packets are added to a Tx
2911  *	queue so this timer is relatively infrequent and does any cleanup only
2912  *	if the Tx queue has not seen any new packets in a while.  We make a
2913  *	best effort attempt to reclaim descriptors, in that we don't wait
2914  *	around if we cannot get a queue's lock (which most likely is because
2915  *	someone else is queueing new packets and so will also handle the clean
2916  *	up).  Since control queues use immediate data exclusively we don't
2917  *	bother cleaning them up here.
2918  *
2919  */
2920 static void sge_timer_tx(struct timer_list *t)
2921 {
2922 	struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2923 	struct port_info *pi = netdev_priv(qs->netdev);
2924 	struct adapter *adap = pi->adapter;
2925 	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2926 	unsigned long next_period;
2927 
2928 	if (__netif_tx_trylock(qs->tx_q)) {
2929                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2930                                                      TX_RECLAIM_TIMER_CHUNK);
2931 		__netif_tx_unlock(qs->tx_q);
2932 	}
2933 
2934 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2935 		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2936 						     TX_RECLAIM_TIMER_CHUNK);
2937 		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2938 	}
2939 
2940 	next_period = TX_RECLAIM_PERIOD >>
2941                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2942                       TX_RECLAIM_TIMER_CHUNK);
2943 	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2944 }
2945 
2946 /**
2947  *	sge_timer_rx - perform periodic maintenance of an SGE qset
2948  *	@t: the timer list containing the SGE queue set to maintain
2949  *
2950  *	a) Replenishes Rx queues that have run out due to memory shortage.
2951  *	Normally new Rx buffers are added when existing ones are consumed but
2952  *	when out of memory a queue can become empty.  We try to add only a few
2953  *	buffers here, the queue will be replenished fully as these new buffers
2954  *	are used up if memory shortage has subsided.
2955  *
2956  *	b) Return coalesced response queue credits in case a response queue is
2957  *	starved.
2958  *
2959  */
2960 static void sge_timer_rx(struct timer_list *t)
2961 {
2962 	spinlock_t *lock;
2963 	struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2964 	struct port_info *pi = netdev_priv(qs->netdev);
2965 	struct adapter *adap = pi->adapter;
2966 	u32 status;
2967 
2968 	lock = adap->params.rev > 0 ?
2969 	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2970 
2971 	if (!spin_trylock_irq(lock))
2972 		goto out;
2973 
2974 	if (napi_is_scheduled(&qs->napi))
2975 		goto unlock;
2976 
2977 	if (adap->params.rev < 4) {
2978 		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2979 
2980 		if (status & (1 << qs->rspq.cntxt_id)) {
2981 			qs->rspq.starved++;
2982 			if (qs->rspq.credits) {
2983 				qs->rspq.credits--;
2984 				refill_rspq(adap, &qs->rspq, 1);
2985 				qs->rspq.restarted++;
2986 				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2987 					     1 << qs->rspq.cntxt_id);
2988 			}
2989 		}
2990 	}
2991 
2992 	if (qs->fl[0].credits < qs->fl[0].size)
2993 		__refill_fl(adap, &qs->fl[0]);
2994 	if (qs->fl[1].credits < qs->fl[1].size)
2995 		__refill_fl(adap, &qs->fl[1]);
2996 
2997 unlock:
2998 	spin_unlock_irq(lock);
2999 out:
3000 	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3001 }
3002 
3003 /**
3004  *	t3_update_qset_coalesce - update coalescing settings for a queue set
3005  *	@qs: the SGE queue set
3006  *	@p: new queue set parameters
3007  *
3008  *	Update the coalescing settings for an SGE queue set.  Nothing is done
3009  *	if the queue set is not initialized yet.
3010  */
3011 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3012 {
3013 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3014 	qs->rspq.polling = p->polling;
3015 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3016 }
3017 
3018 /**
3019  *	t3_sge_alloc_qset - initialize an SGE queue set
3020  *	@adapter: the adapter
3021  *	@id: the queue set id
3022  *	@nports: how many Ethernet ports will be using this queue set
3023  *	@irq_vec_idx: the IRQ vector index for response queue interrupts
3024  *	@p: configuration parameters for this queue set
3025  *	@ntxq: number of Tx queues for the queue set
3026  *	@dev: net device associated with this queue set
3027  *	@netdevq: net device TX queue associated with this queue set
3028  *
3029  *	Allocate resources and initialize an SGE queue set.  A queue set
3030  *	comprises a response queue, two Rx free-buffer queues, and up to 3
3031  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
3032  *	queue, offload queue, and control queue.
3033  */
3034 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3035 		      int irq_vec_idx, const struct qset_params *p,
3036 		      int ntxq, struct net_device *dev,
3037 		      struct netdev_queue *netdevq)
3038 {
3039 	int i, avail, ret = -ENOMEM;
3040 	struct sge_qset *q = &adapter->sge.qs[id];
3041 
3042 	init_qset_cntxt(q, id);
3043 	timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3044 	timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3045 
3046 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3047 				   sizeof(struct rx_desc),
3048 				   sizeof(struct rx_sw_desc),
3049 				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3050 	if (!q->fl[0].desc)
3051 		goto err;
3052 
3053 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3054 				   sizeof(struct rx_desc),
3055 				   sizeof(struct rx_sw_desc),
3056 				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3057 	if (!q->fl[1].desc)
3058 		goto err;
3059 
3060 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3061 				  sizeof(struct rsp_desc), 0,
3062 				  &q->rspq.phys_addr, NULL);
3063 	if (!q->rspq.desc)
3064 		goto err;
3065 
3066 	for (i = 0; i < ntxq; ++i) {
3067 		/*
3068 		 * The control queue always uses immediate data so does not
3069 		 * need to keep track of any sk_buffs.
3070 		 */
3071 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3072 
3073 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3074 					    sizeof(struct tx_desc), sz,
3075 					    &q->txq[i].phys_addr,
3076 					    &q->txq[i].sdesc);
3077 		if (!q->txq[i].desc)
3078 			goto err;
3079 
3080 		q->txq[i].gen = 1;
3081 		q->txq[i].size = p->txq_size[i];
3082 		spin_lock_init(&q->txq[i].lock);
3083 		skb_queue_head_init(&q->txq[i].sendq);
3084 	}
3085 
3086 	INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq);
3087 	INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq);
3088 
3089 	q->fl[0].gen = q->fl[1].gen = 1;
3090 	q->fl[0].size = p->fl_size;
3091 	q->fl[1].size = p->jumbo_size;
3092 
3093 	q->rspq.gen = 1;
3094 	q->rspq.size = p->rspq_size;
3095 	spin_lock_init(&q->rspq.lock);
3096 	skb_queue_head_init(&q->rspq.rx_queue);
3097 
3098 	q->txq[TXQ_ETH].stop_thres = nports *
3099 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3100 
3101 #if FL0_PG_CHUNK_SIZE > 0
3102 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3103 #else
3104 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3105 #endif
3106 #if FL1_PG_CHUNK_SIZE > 0
3107 	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3108 #else
3109 	q->fl[1].buf_size = is_offload(adapter) ?
3110 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3111 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3112 #endif
3113 
3114 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3115 	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3116 	q->fl[0].order = FL0_PG_ORDER;
3117 	q->fl[1].order = FL1_PG_ORDER;
3118 	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3119 	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3120 
3121 	spin_lock_irq(&adapter->sge.reg_lock);
3122 
3123 	/* FL threshold comparison uses < */
3124 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3125 				   q->rspq.phys_addr, q->rspq.size,
3126 				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3127 	if (ret)
3128 		goto err_unlock;
3129 
3130 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3131 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3132 					  q->fl[i].phys_addr, q->fl[i].size,
3133 					  q->fl[i].buf_size - SGE_PG_RSVD,
3134 					  p->cong_thres, 1, 0);
3135 		if (ret)
3136 			goto err_unlock;
3137 	}
3138 
3139 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3140 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3141 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3142 				 1, 0);
3143 	if (ret)
3144 		goto err_unlock;
3145 
3146 	if (ntxq > 1) {
3147 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3148 					 USE_GTS, SGE_CNTXT_OFLD, id,
3149 					 q->txq[TXQ_OFLD].phys_addr,
3150 					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3151 		if (ret)
3152 			goto err_unlock;
3153 	}
3154 
3155 	if (ntxq > 2) {
3156 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3157 					 SGE_CNTXT_CTRL, id,
3158 					 q->txq[TXQ_CTRL].phys_addr,
3159 					 q->txq[TXQ_CTRL].size,
3160 					 q->txq[TXQ_CTRL].token, 1, 0);
3161 		if (ret)
3162 			goto err_unlock;
3163 	}
3164 
3165 	spin_unlock_irq(&adapter->sge.reg_lock);
3166 
3167 	q->adap = adapter;
3168 	q->netdev = dev;
3169 	q->tx_q = netdevq;
3170 	t3_update_qset_coalesce(q, p);
3171 
3172 	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3173 			  GFP_KERNEL | __GFP_COMP);
3174 	if (!avail) {
3175 		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3176 		ret = -ENOMEM;
3177 		goto err;
3178 	}
3179 	if (avail < q->fl[0].size)
3180 		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3181 			avail);
3182 
3183 	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3184 			  GFP_KERNEL | __GFP_COMP);
3185 	if (avail < q->fl[1].size)
3186 		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3187 			avail);
3188 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3189 
3190 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3191 		     V_NEWTIMER(q->rspq.holdoff_tmr));
3192 
3193 	return 0;
3194 
3195 err_unlock:
3196 	spin_unlock_irq(&adapter->sge.reg_lock);
3197 err:
3198 	t3_free_qset(adapter, q);
3199 	return ret;
3200 }
3201 
3202 /**
3203  *      t3_start_sge_timers - start SGE timer call backs
3204  *      @adap: the adapter
3205  *
3206  *      Starts each SGE queue set's timer call back
3207  */
3208 void t3_start_sge_timers(struct adapter *adap)
3209 {
3210 	int i;
3211 
3212 	for (i = 0; i < SGE_QSETS; ++i) {
3213 		struct sge_qset *q = &adap->sge.qs[i];
3214 
3215 		if (q->tx_reclaim_timer.function)
3216 			mod_timer(&q->tx_reclaim_timer,
3217 				  jiffies + TX_RECLAIM_PERIOD);
3218 
3219 		if (q->rx_reclaim_timer.function)
3220 			mod_timer(&q->rx_reclaim_timer,
3221 				  jiffies + RX_RECLAIM_PERIOD);
3222 	}
3223 }
3224 
3225 /**
3226  *	t3_stop_sge_timers - stop SGE timer call backs
3227  *	@adap: the adapter
3228  *
3229  *	Stops each SGE queue set's timer call back
3230  */
3231 void t3_stop_sge_timers(struct adapter *adap)
3232 {
3233 	int i;
3234 
3235 	for (i = 0; i < SGE_QSETS; ++i) {
3236 		struct sge_qset *q = &adap->sge.qs[i];
3237 
3238 		if (q->tx_reclaim_timer.function)
3239 			del_timer_sync(&q->tx_reclaim_timer);
3240 		if (q->rx_reclaim_timer.function)
3241 			del_timer_sync(&q->rx_reclaim_timer);
3242 	}
3243 }
3244 
3245 /**
3246  *	t3_free_sge_resources - free SGE resources
3247  *	@adap: the adapter
3248  *
3249  *	Frees resources used by the SGE queue sets.
3250  */
3251 void t3_free_sge_resources(struct adapter *adap)
3252 {
3253 	int i;
3254 
3255 	for (i = 0; i < SGE_QSETS; ++i)
3256 		t3_free_qset(adap, &adap->sge.qs[i]);
3257 }
3258 
3259 /**
3260  *	t3_sge_start - enable SGE
3261  *	@adap: the adapter
3262  *
3263  *	Enables the SGE for DMAs.  This is the last step in starting packet
3264  *	transfers.
3265  */
3266 void t3_sge_start(struct adapter *adap)
3267 {
3268 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3269 }
3270 
3271 /**
3272  *	t3_sge_stop_dma - Disable SGE DMA engine operation
3273  *	@adap: the adapter
3274  *
3275  *	Can be invoked from interrupt context e.g.  error handler.
3276  *
3277  *	Note that this function cannot disable the restart of works as
3278  *	it cannot wait if called from interrupt context, however the
3279  *	works will have no effect since the doorbells are disabled. The
3280  *	driver will call tg3_sge_stop() later from process context, at
3281  *	which time the works will be stopped if they are still running.
3282  */
3283 void t3_sge_stop_dma(struct adapter *adap)
3284 {
3285 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3286 }
3287 
3288 /**
3289  *	t3_sge_stop - disable SGE operation completly
3290  *	@adap: the adapter
3291  *
3292  *	Called from process context. Disables the DMA engine and any
3293  *	pending queue restart works.
3294  */
3295 void t3_sge_stop(struct adapter *adap)
3296 {
3297 	int i;
3298 
3299 	t3_sge_stop_dma(adap);
3300 
3301 	/* workqueues aren't initialized otherwise */
3302 	if (!(adap->flags & FULL_INIT_DONE))
3303 		return;
3304 	for (i = 0; i < SGE_QSETS; ++i) {
3305 		struct sge_qset *qs = &adap->sge.qs[i];
3306 
3307 		cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task);
3308 		cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task);
3309 	}
3310 }
3311 
3312 /**
3313  *	t3_sge_init - initialize SGE
3314  *	@adap: the adapter
3315  *	@p: the SGE parameters
3316  *
3317  *	Performs SGE initialization needed every time after a chip reset.
3318  *	We do not initialize any of the queue sets here, instead the driver
3319  *	top-level must request those individually.  We also do not enable DMA
3320  *	here, that should be done after the queues have been set up.
3321  */
3322 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3323 {
3324 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3325 
3326 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3327 	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3328 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3329 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3330 #if SGE_NUM_GENBITS == 1
3331 	ctrl |= F_EGRGENCTRL;
3332 #endif
3333 	if (adap->params.rev > 0) {
3334 		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3335 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3336 	}
3337 	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3338 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3339 		     V_LORCQDRBTHRSH(512));
3340 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3341 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3342 		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3343 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3344 		     adap->params.rev < T3_REV_C ? 1000 : 500);
3345 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3346 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3347 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3348 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3349 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3350 }
3351 
3352 /**
3353  *	t3_sge_prep - one-time SGE initialization
3354  *	@adap: the associated adapter
3355  *	@p: SGE parameters
3356  *
3357  *	Performs one-time initialization of SGE SW state.  Includes determining
3358  *	defaults for the assorted SGE parameters, which admins can change until
3359  *	they are used to initialize the SGE.
3360  */
3361 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3362 {
3363 	int i;
3364 
3365 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3366 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3367 
3368 	for (i = 0; i < SGE_QSETS; ++i) {
3369 		struct qset_params *q = p->qset + i;
3370 
3371 		q->polling = adap->params.rev > 0;
3372 		q->coalesce_usecs = 5;
3373 		q->rspq_size = 1024;
3374 		q->fl_size = 1024;
3375 		q->jumbo_size = 512;
3376 		q->txq_size[TXQ_ETH] = 1024;
3377 		q->txq_size[TXQ_OFLD] = 1024;
3378 		q->txq_size[TXQ_CTRL] = 256;
3379 		q->cong_thres = 0;
3380 	}
3381 
3382 	spin_lock_init(&adap->sge.reg_lock);
3383 }
3384