1 /* 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/skbuff.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/if_vlan.h> 36 #include <linux/ip.h> 37 #include <linux/tcp.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/slab.h> 40 #include <linux/prefetch.h> 41 #include <net/arp.h> 42 #include "common.h" 43 #include "regs.h" 44 #include "sge_defs.h" 45 #include "t3_cpl.h" 46 #include "firmware_exports.h" 47 #include "cxgb3_offload.h" 48 49 #define USE_GTS 0 50 51 #define SGE_RX_SM_BUF_SIZE 1536 52 53 #define SGE_RX_COPY_THRES 256 54 #define SGE_RX_PULL_LEN 128 55 56 #define SGE_PG_RSVD SMP_CACHE_BYTES 57 /* 58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. 59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs 60 * directly. 61 */ 62 #define FL0_PG_CHUNK_SIZE 2048 63 #define FL0_PG_ORDER 0 64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) 65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) 66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) 67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) 68 69 #define SGE_RX_DROP_THRES 16 70 #define RX_RECLAIM_PERIOD (HZ/4) 71 72 /* 73 * Max number of Rx buffers we replenish at a time. 74 */ 75 #define MAX_RX_REFILL 16U 76 /* 77 * Period of the Tx buffer reclaim timer. This timer does not need to run 78 * frequently as Tx buffers are usually reclaimed by new Tx packets. 79 */ 80 #define TX_RECLAIM_PERIOD (HZ / 4) 81 #define TX_RECLAIM_TIMER_CHUNK 64U 82 #define TX_RECLAIM_CHUNK 16U 83 84 /* WR size in bytes */ 85 #define WR_LEN (WR_FLITS * 8) 86 87 /* 88 * Types of Tx queues in each queue set. Order here matters, do not change. 89 */ 90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; 91 92 /* Values for sge_txq.flags */ 93 enum { 94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */ 95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ 96 }; 97 98 struct tx_desc { 99 __be64 flit[TX_DESC_FLITS]; 100 }; 101 102 struct rx_desc { 103 __be32 addr_lo; 104 __be32 len_gen; 105 __be32 gen2; 106 __be32 addr_hi; 107 }; 108 109 struct tx_sw_desc { /* SW state per Tx descriptor */ 110 struct sk_buff *skb; 111 u8 eop; /* set if last descriptor for packet */ 112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */ 113 u8 fragidx; /* first page fragment associated with descriptor */ 114 s8 sflit; /* start flit of first SGL entry in descriptor */ 115 }; 116 117 struct rx_sw_desc { /* SW state per Rx descriptor */ 118 union { 119 struct sk_buff *skb; 120 struct fl_pg_chunk pg_chunk; 121 }; 122 DEFINE_DMA_UNMAP_ADDR(dma_addr); 123 }; 124 125 struct rsp_desc { /* response queue descriptor */ 126 struct rss_header rss_hdr; 127 __be32 flags; 128 __be32 len_cq; 129 struct_group(immediate, 130 u8 imm_data[47]; 131 u8 intr_gen; 132 ); 133 }; 134 135 /* 136 * Holds unmapping information for Tx packets that need deferred unmapping. 137 * This structure lives at skb->head and must be allocated by callers. 138 */ 139 struct deferred_unmap_info { 140 struct pci_dev *pdev; 141 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 142 }; 143 144 /* 145 * Maps a number of flits to the number of Tx descriptors that can hold them. 146 * The formula is 147 * 148 * desc = 1 + (flits - 2) / (WR_FLITS - 1). 149 * 150 * HW allows up to 4 descriptors to be combined into a WR. 151 */ 152 static u8 flit_desc_map[] = { 153 0, 154 #if SGE_NUM_GENBITS == 1 155 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 156 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 157 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 158 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 159 #elif SGE_NUM_GENBITS == 2 160 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 161 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 162 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 163 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 164 #else 165 # error "SGE_NUM_GENBITS must be 1 or 2" 166 #endif 167 }; 168 169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) 170 { 171 return container_of(q, struct sge_qset, rspq); 172 } 173 174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) 175 { 176 return container_of(q, struct sge_qset, txq[qidx]); 177 } 178 179 /** 180 * refill_rspq - replenish an SGE response queue 181 * @adapter: the adapter 182 * @q: the response queue to replenish 183 * @credits: how many new responses to make available 184 * 185 * Replenishes a response queue by making the supplied number of responses 186 * available to HW. 187 */ 188 static inline void refill_rspq(struct adapter *adapter, 189 const struct sge_rspq *q, unsigned int credits) 190 { 191 rmb(); 192 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, 193 V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); 194 } 195 196 /** 197 * need_skb_unmap - does the platform need unmapping of sk_buffs? 198 * 199 * Returns true if the platform needs sk_buff unmapping. The compiler 200 * optimizes away unnecessary code if this returns true. 201 */ 202 static inline int need_skb_unmap(void) 203 { 204 #ifdef CONFIG_NEED_DMA_MAP_STATE 205 return 1; 206 #else 207 return 0; 208 #endif 209 } 210 211 /** 212 * unmap_skb - unmap a packet main body and its page fragments 213 * @skb: the packet 214 * @q: the Tx queue containing Tx descriptors for the packet 215 * @cidx: index of Tx descriptor 216 * @pdev: the PCI device 217 * 218 * Unmap the main body of an sk_buff and its page fragments, if any. 219 * Because of the fairly complicated structure of our SGLs and the desire 220 * to conserve space for metadata, the information necessary to unmap an 221 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx 222 * descriptors (the physical addresses of the various data buffers), and 223 * the SW descriptor state (assorted indices). The send functions 224 * initialize the indices for the first packet descriptor so we can unmap 225 * the buffers held in the first Tx descriptor here, and we have enough 226 * information at this point to set the state for the next Tx descriptor. 227 * 228 * Note that it is possible to clean up the first descriptor of a packet 229 * before the send routines have written the next descriptors, but this 230 * race does not cause any problem. We just end up writing the unmapping 231 * info for the descriptor first. 232 */ 233 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, 234 unsigned int cidx, struct pci_dev *pdev) 235 { 236 const struct sg_ent *sgp; 237 struct tx_sw_desc *d = &q->sdesc[cidx]; 238 int nfrags, frag_idx, curflit, j = d->addr_idx; 239 240 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; 241 frag_idx = d->fragidx; 242 243 if (frag_idx == 0 && skb_headlen(skb)) { 244 dma_unmap_single(&pdev->dev, be64_to_cpu(sgp->addr[0]), 245 skb_headlen(skb), DMA_TO_DEVICE); 246 j = 1; 247 } 248 249 curflit = d->sflit + 1 + j; 250 nfrags = skb_shinfo(skb)->nr_frags; 251 252 while (frag_idx < nfrags && curflit < WR_FLITS) { 253 dma_unmap_page(&pdev->dev, be64_to_cpu(sgp->addr[j]), 254 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), 255 DMA_TO_DEVICE); 256 j ^= 1; 257 if (j == 0) { 258 sgp++; 259 curflit++; 260 } 261 curflit++; 262 frag_idx++; 263 } 264 265 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ 266 d = cidx + 1 == q->size ? q->sdesc : d + 1; 267 d->fragidx = frag_idx; 268 d->addr_idx = j; 269 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ 270 } 271 } 272 273 /** 274 * free_tx_desc - reclaims Tx descriptors and their buffers 275 * @adapter: the adapter 276 * @q: the Tx queue to reclaim descriptors from 277 * @n: the number of descriptors to reclaim 278 * 279 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 280 * Tx buffers. Called with the Tx queue lock held. 281 */ 282 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, 283 unsigned int n) 284 { 285 struct tx_sw_desc *d; 286 struct pci_dev *pdev = adapter->pdev; 287 unsigned int cidx = q->cidx; 288 289 const int need_unmap = need_skb_unmap() && 290 q->cntxt_id >= FW_TUNNEL_SGEEC_START; 291 292 d = &q->sdesc[cidx]; 293 while (n--) { 294 if (d->skb) { /* an SGL is present */ 295 if (need_unmap) 296 unmap_skb(d->skb, q, cidx, pdev); 297 if (d->eop) { 298 dev_consume_skb_any(d->skb); 299 d->skb = NULL; 300 } 301 } 302 ++d; 303 if (++cidx == q->size) { 304 cidx = 0; 305 d = q->sdesc; 306 } 307 } 308 q->cidx = cidx; 309 } 310 311 /** 312 * reclaim_completed_tx - reclaims completed Tx descriptors 313 * @adapter: the adapter 314 * @q: the Tx queue to reclaim completed descriptors from 315 * @chunk: maximum number of descriptors to reclaim 316 * 317 * Reclaims Tx descriptors that the SGE has indicated it has processed, 318 * and frees the associated buffers if possible. Called with the Tx 319 * queue's lock held. 320 */ 321 static inline unsigned int reclaim_completed_tx(struct adapter *adapter, 322 struct sge_txq *q, 323 unsigned int chunk) 324 { 325 unsigned int reclaim = q->processed - q->cleaned; 326 327 reclaim = min(chunk, reclaim); 328 if (reclaim) { 329 free_tx_desc(adapter, q, reclaim); 330 q->cleaned += reclaim; 331 q->in_use -= reclaim; 332 } 333 return q->processed - q->cleaned; 334 } 335 336 /** 337 * should_restart_tx - are there enough resources to restart a Tx queue? 338 * @q: the Tx queue 339 * 340 * Checks if there are enough descriptors to restart a suspended Tx queue. 341 */ 342 static inline int should_restart_tx(const struct sge_txq *q) 343 { 344 unsigned int r = q->processed - q->cleaned; 345 346 return q->in_use - r < (q->size >> 1); 347 } 348 349 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, 350 struct rx_sw_desc *d) 351 { 352 if (q->use_pages && d->pg_chunk.page) { 353 (*d->pg_chunk.p_cnt)--; 354 if (!*d->pg_chunk.p_cnt) 355 dma_unmap_page(&pdev->dev, d->pg_chunk.mapping, 356 q->alloc_size, DMA_FROM_DEVICE); 357 358 put_page(d->pg_chunk.page); 359 d->pg_chunk.page = NULL; 360 } else { 361 dma_unmap_single(&pdev->dev, dma_unmap_addr(d, dma_addr), 362 q->buf_size, DMA_FROM_DEVICE); 363 kfree_skb(d->skb); 364 d->skb = NULL; 365 } 366 } 367 368 /** 369 * free_rx_bufs - free the Rx buffers on an SGE free list 370 * @pdev: the PCI device associated with the adapter 371 * @q: the SGE free list to clean up 372 * 373 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from 374 * this queue should be stopped before calling this function. 375 */ 376 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) 377 { 378 unsigned int cidx = q->cidx; 379 380 while (q->credits--) { 381 struct rx_sw_desc *d = &q->sdesc[cidx]; 382 383 384 clear_rx_desc(pdev, q, d); 385 if (++cidx == q->size) 386 cidx = 0; 387 } 388 389 if (q->pg_chunk.page) { 390 __free_pages(q->pg_chunk.page, q->order); 391 q->pg_chunk.page = NULL; 392 } 393 } 394 395 /** 396 * add_one_rx_buf - add a packet buffer to a free-buffer list 397 * @va: buffer start VA 398 * @len: the buffer length 399 * @d: the HW Rx descriptor to write 400 * @sd: the SW Rx descriptor to write 401 * @gen: the generation bit value 402 * @pdev: the PCI device associated with the adapter 403 * 404 * Add a buffer of the given length to the supplied HW and SW Rx 405 * descriptors. 406 */ 407 static inline int add_one_rx_buf(void *va, unsigned int len, 408 struct rx_desc *d, struct rx_sw_desc *sd, 409 unsigned int gen, struct pci_dev *pdev) 410 { 411 dma_addr_t mapping; 412 413 mapping = dma_map_single(&pdev->dev, va, len, DMA_FROM_DEVICE); 414 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 415 return -ENOMEM; 416 417 dma_unmap_addr_set(sd, dma_addr, mapping); 418 419 d->addr_lo = cpu_to_be32(mapping); 420 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 421 dma_wmb(); 422 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 423 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 424 return 0; 425 } 426 427 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, 428 unsigned int gen) 429 { 430 d->addr_lo = cpu_to_be32(mapping); 431 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 432 dma_wmb(); 433 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 434 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 435 return 0; 436 } 437 438 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, 439 struct rx_sw_desc *sd, gfp_t gfp, 440 unsigned int order) 441 { 442 if (!q->pg_chunk.page) { 443 dma_addr_t mapping; 444 445 q->pg_chunk.page = alloc_pages(gfp, order); 446 if (unlikely(!q->pg_chunk.page)) 447 return -ENOMEM; 448 q->pg_chunk.va = page_address(q->pg_chunk.page); 449 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - 450 SGE_PG_RSVD; 451 q->pg_chunk.offset = 0; 452 mapping = dma_map_page(&adapter->pdev->dev, q->pg_chunk.page, 453 0, q->alloc_size, DMA_FROM_DEVICE); 454 if (unlikely(dma_mapping_error(&adapter->pdev->dev, mapping))) { 455 __free_pages(q->pg_chunk.page, order); 456 q->pg_chunk.page = NULL; 457 return -EIO; 458 } 459 q->pg_chunk.mapping = mapping; 460 } 461 sd->pg_chunk = q->pg_chunk; 462 463 prefetch(sd->pg_chunk.p_cnt); 464 465 q->pg_chunk.offset += q->buf_size; 466 if (q->pg_chunk.offset == (PAGE_SIZE << order)) 467 q->pg_chunk.page = NULL; 468 else { 469 q->pg_chunk.va += q->buf_size; 470 get_page(q->pg_chunk.page); 471 } 472 473 if (sd->pg_chunk.offset == 0) 474 *sd->pg_chunk.p_cnt = 1; 475 else 476 *sd->pg_chunk.p_cnt += 1; 477 478 return 0; 479 } 480 481 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 482 { 483 if (q->pend_cred >= q->credits / 4) { 484 q->pend_cred = 0; 485 wmb(); 486 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 487 } 488 } 489 490 /** 491 * refill_fl - refill an SGE free-buffer list 492 * @adap: the adapter 493 * @q: the free-list to refill 494 * @n: the number of new buffers to allocate 495 * @gfp: the gfp flags for allocating new buffers 496 * 497 * (Re)populate an SGE free-buffer list with up to @n new packet buffers, 498 * allocated with the supplied gfp flags. The caller must assure that 499 * @n does not exceed the queue's capacity. 500 */ 501 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) 502 { 503 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 504 struct rx_desc *d = &q->desc[q->pidx]; 505 unsigned int count = 0; 506 507 while (n--) { 508 dma_addr_t mapping; 509 int err; 510 511 if (q->use_pages) { 512 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, 513 q->order))) { 514 nomem: q->alloc_failed++; 515 break; 516 } 517 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; 518 dma_unmap_addr_set(sd, dma_addr, mapping); 519 520 add_one_rx_chunk(mapping, d, q->gen); 521 dma_sync_single_for_device(&adap->pdev->dev, mapping, 522 q->buf_size - SGE_PG_RSVD, 523 DMA_FROM_DEVICE); 524 } else { 525 void *buf_start; 526 527 struct sk_buff *skb = alloc_skb(q->buf_size, gfp); 528 if (!skb) 529 goto nomem; 530 531 sd->skb = skb; 532 buf_start = skb->data; 533 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, 534 q->gen, adap->pdev); 535 if (unlikely(err)) { 536 clear_rx_desc(adap->pdev, q, sd); 537 break; 538 } 539 } 540 541 d++; 542 sd++; 543 if (++q->pidx == q->size) { 544 q->pidx = 0; 545 q->gen ^= 1; 546 sd = q->sdesc; 547 d = q->desc; 548 } 549 count++; 550 } 551 552 q->credits += count; 553 q->pend_cred += count; 554 ring_fl_db(adap, q); 555 556 return count; 557 } 558 559 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 560 { 561 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), 562 GFP_ATOMIC | __GFP_COMP); 563 } 564 565 /** 566 * recycle_rx_buf - recycle a receive buffer 567 * @adap: the adapter 568 * @q: the SGE free list 569 * @idx: index of buffer to recycle 570 * 571 * Recycles the specified buffer on the given free list by adding it at 572 * the next available slot on the list. 573 */ 574 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, 575 unsigned int idx) 576 { 577 struct rx_desc *from = &q->desc[idx]; 578 struct rx_desc *to = &q->desc[q->pidx]; 579 580 q->sdesc[q->pidx] = q->sdesc[idx]; 581 to->addr_lo = from->addr_lo; /* already big endian */ 582 to->addr_hi = from->addr_hi; /* likewise */ 583 dma_wmb(); 584 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); 585 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); 586 587 if (++q->pidx == q->size) { 588 q->pidx = 0; 589 q->gen ^= 1; 590 } 591 592 q->credits++; 593 q->pend_cred++; 594 ring_fl_db(adap, q); 595 } 596 597 /** 598 * alloc_ring - allocate resources for an SGE descriptor ring 599 * @pdev: the PCI device 600 * @nelem: the number of descriptors 601 * @elem_size: the size of each descriptor 602 * @sw_size: the size of the SW state associated with each ring element 603 * @phys: the physical address of the allocated ring 604 * @metadata: address of the array holding the SW state for the ring 605 * 606 * Allocates resources for an SGE descriptor ring, such as Tx queues, 607 * free buffer lists, or response queues. Each SGE ring requires 608 * space for its HW descriptors plus, optionally, space for the SW state 609 * associated with each HW entry (the metadata). The function returns 610 * three values: the virtual address for the HW ring (the return value 611 * of the function), the physical address of the HW ring, and the address 612 * of the SW ring. 613 */ 614 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, 615 size_t sw_size, dma_addr_t * phys, void *metadata) 616 { 617 size_t len = nelem * elem_size; 618 void *s = NULL; 619 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); 620 621 if (!p) 622 return NULL; 623 if (sw_size && metadata) { 624 s = kcalloc(nelem, sw_size, GFP_KERNEL); 625 626 if (!s) { 627 dma_free_coherent(&pdev->dev, len, p, *phys); 628 return NULL; 629 } 630 *(void **)metadata = s; 631 } 632 return p; 633 } 634 635 /** 636 * t3_reset_qset - reset a sge qset 637 * @q: the queue set 638 * 639 * Reset the qset structure. 640 * the NAPI structure is preserved in the event of 641 * the qset's reincarnation, for example during EEH recovery. 642 */ 643 static void t3_reset_qset(struct sge_qset *q) 644 { 645 if (q->adap && 646 !(q->adap->flags & NAPI_INIT)) { 647 memset(q, 0, sizeof(*q)); 648 return; 649 } 650 651 q->adap = NULL; 652 memset(&q->rspq, 0, sizeof(q->rspq)); 653 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); 654 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); 655 q->txq_stopped = 0; 656 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ 657 q->rx_reclaim_timer.function = NULL; 658 q->nomem = 0; 659 napi_free_frags(&q->napi); 660 } 661 662 663 /** 664 * t3_free_qset - free the resources of an SGE queue set 665 * @adapter: the adapter owning the queue set 666 * @q: the queue set 667 * 668 * Release the HW and SW resources associated with an SGE queue set, such 669 * as HW contexts, packet buffers, and descriptor rings. Traffic to the 670 * queue set must be quiesced prior to calling this. 671 */ 672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) 673 { 674 int i; 675 struct pci_dev *pdev = adapter->pdev; 676 677 for (i = 0; i < SGE_RXQ_PER_SET; ++i) 678 if (q->fl[i].desc) { 679 spin_lock_irq(&adapter->sge.reg_lock); 680 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); 681 spin_unlock_irq(&adapter->sge.reg_lock); 682 free_rx_bufs(pdev, &q->fl[i]); 683 kfree(q->fl[i].sdesc); 684 dma_free_coherent(&pdev->dev, 685 q->fl[i].size * 686 sizeof(struct rx_desc), q->fl[i].desc, 687 q->fl[i].phys_addr); 688 } 689 690 for (i = 0; i < SGE_TXQ_PER_SET; ++i) 691 if (q->txq[i].desc) { 692 spin_lock_irq(&adapter->sge.reg_lock); 693 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); 694 spin_unlock_irq(&adapter->sge.reg_lock); 695 if (q->txq[i].sdesc) { 696 free_tx_desc(adapter, &q->txq[i], 697 q->txq[i].in_use); 698 kfree(q->txq[i].sdesc); 699 } 700 dma_free_coherent(&pdev->dev, 701 q->txq[i].size * 702 sizeof(struct tx_desc), 703 q->txq[i].desc, q->txq[i].phys_addr); 704 __skb_queue_purge(&q->txq[i].sendq); 705 } 706 707 if (q->rspq.desc) { 708 spin_lock_irq(&adapter->sge.reg_lock); 709 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); 710 spin_unlock_irq(&adapter->sge.reg_lock); 711 dma_free_coherent(&pdev->dev, 712 q->rspq.size * sizeof(struct rsp_desc), 713 q->rspq.desc, q->rspq.phys_addr); 714 } 715 716 t3_reset_qset(q); 717 } 718 719 /** 720 * init_qset_cntxt - initialize an SGE queue set context info 721 * @qs: the queue set 722 * @id: the queue set id 723 * 724 * Initializes the TIDs and context ids for the queues of a queue set. 725 */ 726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) 727 { 728 qs->rspq.cntxt_id = id; 729 qs->fl[0].cntxt_id = 2 * id; 730 qs->fl[1].cntxt_id = 2 * id + 1; 731 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; 732 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; 733 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; 734 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; 735 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; 736 } 737 738 /** 739 * sgl_len - calculates the size of an SGL of the given capacity 740 * @n: the number of SGL entries 741 * 742 * Calculates the number of flits needed for a scatter/gather list that 743 * can hold the given number of entries. 744 */ 745 static inline unsigned int sgl_len(unsigned int n) 746 { 747 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ 748 return (3 * n) / 2 + (n & 1); 749 } 750 751 /** 752 * flits_to_desc - returns the num of Tx descriptors for the given flits 753 * @n: the number of flits 754 * 755 * Calculates the number of Tx descriptors needed for the supplied number 756 * of flits. 757 */ 758 static inline unsigned int flits_to_desc(unsigned int n) 759 { 760 BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); 761 return flit_desc_map[n]; 762 } 763 764 /** 765 * get_packet - return the next ingress packet buffer from a free list 766 * @adap: the adapter that received the packet 767 * @fl: the SGE free list holding the packet 768 * @len: the packet length including any SGE padding 769 * @drop_thres: # of remaining buffers before we start dropping packets 770 * 771 * Get the next packet from a free list and complete setup of the 772 * sk_buff. If the packet is small we make a copy and recycle the 773 * original buffer, otherwise we use the original buffer itself. If a 774 * positive drop threshold is supplied packets are dropped and their 775 * buffers recycled if (a) the number of remaining buffers is under the 776 * threshold and the packet is too big to copy, or (b) the packet should 777 * be copied but there is no memory for the copy. 778 */ 779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, 780 unsigned int len, unsigned int drop_thres) 781 { 782 struct sk_buff *skb = NULL; 783 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 784 785 prefetch(sd->skb->data); 786 fl->credits--; 787 788 if (len <= SGE_RX_COPY_THRES) { 789 skb = alloc_skb(len, GFP_ATOMIC); 790 if (likely(skb != NULL)) { 791 __skb_put(skb, len); 792 dma_sync_single_for_cpu(&adap->pdev->dev, 793 dma_unmap_addr(sd, dma_addr), 794 len, DMA_FROM_DEVICE); 795 memcpy(skb->data, sd->skb->data, len); 796 dma_sync_single_for_device(&adap->pdev->dev, 797 dma_unmap_addr(sd, dma_addr), 798 len, DMA_FROM_DEVICE); 799 } else if (!drop_thres) 800 goto use_orig_buf; 801 recycle: 802 recycle_rx_buf(adap, fl, fl->cidx); 803 return skb; 804 } 805 806 if (unlikely(fl->credits < drop_thres) && 807 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), 808 GFP_ATOMIC | __GFP_COMP) == 0) 809 goto recycle; 810 811 use_orig_buf: 812 dma_unmap_single(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr), 813 fl->buf_size, DMA_FROM_DEVICE); 814 skb = sd->skb; 815 skb_put(skb, len); 816 __refill_fl(adap, fl); 817 return skb; 818 } 819 820 /** 821 * get_packet_pg - return the next ingress packet buffer from a free list 822 * @adap: the adapter that received the packet 823 * @fl: the SGE free list holding the packet 824 * @q: the queue 825 * @len: the packet length including any SGE padding 826 * @drop_thres: # of remaining buffers before we start dropping packets 827 * 828 * Get the next packet from a free list populated with page chunks. 829 * If the packet is small we make a copy and recycle the original buffer, 830 * otherwise we attach the original buffer as a page fragment to a fresh 831 * sk_buff. If a positive drop threshold is supplied packets are dropped 832 * and their buffers recycled if (a) the number of remaining buffers is 833 * under the threshold and the packet is too big to copy, or (b) there's 834 * no system memory. 835 * 836 * Note: this function is similar to @get_packet but deals with Rx buffers 837 * that are page chunks rather than sk_buffs. 838 */ 839 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, 840 struct sge_rspq *q, unsigned int len, 841 unsigned int drop_thres) 842 { 843 struct sk_buff *newskb, *skb; 844 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 845 846 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); 847 848 newskb = skb = q->pg_skb; 849 if (!skb && (len <= SGE_RX_COPY_THRES)) { 850 newskb = alloc_skb(len, GFP_ATOMIC); 851 if (likely(newskb != NULL)) { 852 __skb_put(newskb, len); 853 dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, 854 len, DMA_FROM_DEVICE); 855 memcpy(newskb->data, sd->pg_chunk.va, len); 856 dma_sync_single_for_device(&adap->pdev->dev, dma_addr, 857 len, DMA_FROM_DEVICE); 858 } else if (!drop_thres) 859 return NULL; 860 recycle: 861 fl->credits--; 862 recycle_rx_buf(adap, fl, fl->cidx); 863 q->rx_recycle_buf++; 864 return newskb; 865 } 866 867 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) 868 goto recycle; 869 870 prefetch(sd->pg_chunk.p_cnt); 871 872 if (!skb) 873 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); 874 875 if (unlikely(!newskb)) { 876 if (!drop_thres) 877 return NULL; 878 goto recycle; 879 } 880 881 dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len, 882 DMA_FROM_DEVICE); 883 (*sd->pg_chunk.p_cnt)--; 884 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 885 dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping, 886 fl->alloc_size, DMA_FROM_DEVICE); 887 if (!skb) { 888 __skb_put(newskb, SGE_RX_PULL_LEN); 889 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); 890 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, 891 sd->pg_chunk.offset + SGE_RX_PULL_LEN, 892 len - SGE_RX_PULL_LEN); 893 newskb->len = len; 894 newskb->data_len = len - SGE_RX_PULL_LEN; 895 newskb->truesize += newskb->data_len; 896 } else { 897 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, 898 sd->pg_chunk.page, 899 sd->pg_chunk.offset, len); 900 newskb->len += len; 901 newskb->data_len += len; 902 newskb->truesize += len; 903 } 904 905 fl->credits--; 906 /* 907 * We do not refill FLs here, we let the caller do it to overlap a 908 * prefetch. 909 */ 910 return newskb; 911 } 912 913 /** 914 * get_imm_packet - return the next ingress packet buffer from a response 915 * @resp: the response descriptor containing the packet data 916 * 917 * Return a packet containing the immediate data of the given response. 918 */ 919 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) 920 { 921 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); 922 923 if (skb) { 924 __skb_put(skb, IMMED_PKT_SIZE); 925 BUILD_BUG_ON(IMMED_PKT_SIZE != sizeof(resp->immediate)); 926 skb_copy_to_linear_data(skb, &resp->immediate, IMMED_PKT_SIZE); 927 } 928 return skb; 929 } 930 931 /** 932 * calc_tx_descs - calculate the number of Tx descriptors for a packet 933 * @skb: the packet 934 * 935 * Returns the number of Tx descriptors needed for the given Ethernet 936 * packet. Ethernet packets require addition of WR and CPL headers. 937 */ 938 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 939 { 940 unsigned int flits; 941 942 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) 943 return 1; 944 945 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; 946 if (skb_shinfo(skb)->gso_size) 947 flits++; 948 return flits_to_desc(flits); 949 } 950 951 /* map_skb - map a packet main body and its page fragments 952 * @pdev: the PCI device 953 * @skb: the packet 954 * @addr: placeholder to save the mapped addresses 955 * 956 * map the main body of an sk_buff and its page fragments, if any. 957 */ 958 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb, 959 dma_addr_t *addr) 960 { 961 const skb_frag_t *fp, *end; 962 const struct skb_shared_info *si; 963 964 if (skb_headlen(skb)) { 965 *addr = dma_map_single(&pdev->dev, skb->data, 966 skb_headlen(skb), DMA_TO_DEVICE); 967 if (dma_mapping_error(&pdev->dev, *addr)) 968 goto out_err; 969 addr++; 970 } 971 972 si = skb_shinfo(skb); 973 end = &si->frags[si->nr_frags]; 974 975 for (fp = si->frags; fp < end; fp++) { 976 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp), 977 DMA_TO_DEVICE); 978 if (dma_mapping_error(&pdev->dev, *addr)) 979 goto unwind; 980 addr++; 981 } 982 return 0; 983 984 unwind: 985 while (fp-- > si->frags) 986 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp), 987 DMA_TO_DEVICE); 988 989 dma_unmap_single(&pdev->dev, addr[-1], skb_headlen(skb), 990 DMA_TO_DEVICE); 991 out_err: 992 return -ENOMEM; 993 } 994 995 /** 996 * write_sgl - populate a scatter/gather list for a packet 997 * @skb: the packet 998 * @sgp: the SGL to populate 999 * @start: start address of skb main body data to include in the SGL 1000 * @len: length of skb main body data to include in the SGL 1001 * @addr: the list of the mapped addresses 1002 * 1003 * Copies the scatter/gather list for the buffers that make up a packet 1004 * and returns the SGL size in 8-byte words. The caller must size the SGL 1005 * appropriately. 1006 */ 1007 static inline unsigned int write_sgl(const struct sk_buff *skb, 1008 struct sg_ent *sgp, unsigned char *start, 1009 unsigned int len, const dma_addr_t *addr) 1010 { 1011 unsigned int i, j = 0, k = 0, nfrags; 1012 1013 if (len) { 1014 sgp->len[0] = cpu_to_be32(len); 1015 sgp->addr[j++] = cpu_to_be64(addr[k++]); 1016 } 1017 1018 nfrags = skb_shinfo(skb)->nr_frags; 1019 for (i = 0; i < nfrags; i++) { 1020 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1021 1022 sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); 1023 sgp->addr[j] = cpu_to_be64(addr[k++]); 1024 j ^= 1; 1025 if (j == 0) 1026 ++sgp; 1027 } 1028 if (j) 1029 sgp->len[j] = 0; 1030 return ((nfrags + (len != 0)) * 3) / 2 + j; 1031 } 1032 1033 /** 1034 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell 1035 * @adap: the adapter 1036 * @q: the Tx queue 1037 * 1038 * Ring the doorbel if a Tx queue is asleep. There is a natural race, 1039 * where the HW is going to sleep just after we checked, however, 1040 * then the interrupt handler will detect the outstanding TX packet 1041 * and ring the doorbell for us. 1042 * 1043 * When GTS is disabled we unconditionally ring the doorbell. 1044 */ 1045 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) 1046 { 1047 #if USE_GTS 1048 clear_bit(TXQ_LAST_PKT_DB, &q->flags); 1049 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { 1050 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1051 t3_write_reg(adap, A_SG_KDOORBELL, 1052 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1053 } 1054 #else 1055 wmb(); /* write descriptors before telling HW */ 1056 t3_write_reg(adap, A_SG_KDOORBELL, 1057 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1058 #endif 1059 } 1060 1061 static inline void wr_gen2(struct tx_desc *d, unsigned int gen) 1062 { 1063 #if SGE_NUM_GENBITS == 2 1064 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); 1065 #endif 1066 } 1067 1068 /** 1069 * write_wr_hdr_sgl - write a WR header and, optionally, SGL 1070 * @ndesc: number of Tx descriptors spanned by the SGL 1071 * @skb: the packet corresponding to the WR 1072 * @d: first Tx descriptor to be written 1073 * @pidx: index of above descriptors 1074 * @q: the SGE Tx queue 1075 * @sgl: the SGL 1076 * @flits: number of flits to the start of the SGL in the first descriptor 1077 * @sgl_flits: the SGL size in flits 1078 * @gen: the Tx descriptor generation 1079 * @wr_hi: top 32 bits of WR header based on WR type (big endian) 1080 * @wr_lo: low 32 bits of WR header based on WR type (big endian) 1081 * 1082 * Write a work request header and an associated SGL. If the SGL is 1083 * small enough to fit into one Tx descriptor it has already been written 1084 * and we just need to write the WR header. Otherwise we distribute the 1085 * SGL across the number of descriptors it spans. 1086 */ 1087 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, 1088 struct tx_desc *d, unsigned int pidx, 1089 const struct sge_txq *q, 1090 const struct sg_ent *sgl, 1091 unsigned int flits, unsigned int sgl_flits, 1092 unsigned int gen, __be32 wr_hi, 1093 __be32 wr_lo) 1094 { 1095 struct work_request_hdr *wrp = (struct work_request_hdr *)d; 1096 struct tx_sw_desc *sd = &q->sdesc[pidx]; 1097 1098 sd->skb = skb; 1099 if (need_skb_unmap()) { 1100 sd->fragidx = 0; 1101 sd->addr_idx = 0; 1102 sd->sflit = flits; 1103 } 1104 1105 if (likely(ndesc == 1)) { 1106 sd->eop = 1; 1107 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | 1108 V_WR_SGLSFLT(flits)) | wr_hi; 1109 dma_wmb(); 1110 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | 1111 V_WR_GEN(gen)) | wr_lo; 1112 wr_gen2(d, gen); 1113 } else { 1114 unsigned int ogen = gen; 1115 const u64 *fp = (const u64 *)sgl; 1116 struct work_request_hdr *wp = wrp; 1117 1118 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | 1119 V_WR_SGLSFLT(flits)) | wr_hi; 1120 1121 while (sgl_flits) { 1122 unsigned int avail = WR_FLITS - flits; 1123 1124 if (avail > sgl_flits) 1125 avail = sgl_flits; 1126 memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); 1127 sgl_flits -= avail; 1128 ndesc--; 1129 if (!sgl_flits) 1130 break; 1131 1132 fp += avail; 1133 d++; 1134 sd->eop = 0; 1135 sd++; 1136 if (++pidx == q->size) { 1137 pidx = 0; 1138 gen ^= 1; 1139 d = q->desc; 1140 sd = q->sdesc; 1141 } 1142 1143 sd->skb = skb; 1144 wrp = (struct work_request_hdr *)d; 1145 wrp->wr_hi = htonl(V_WR_DATATYPE(1) | 1146 V_WR_SGLSFLT(1)) | wr_hi; 1147 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, 1148 sgl_flits + 1)) | 1149 V_WR_GEN(gen)) | wr_lo; 1150 wr_gen2(d, gen); 1151 flits = 1; 1152 } 1153 sd->eop = 1; 1154 wrp->wr_hi |= htonl(F_WR_EOP); 1155 dma_wmb(); 1156 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; 1157 wr_gen2((struct tx_desc *)wp, ogen); 1158 WARN_ON(ndesc != 0); 1159 } 1160 } 1161 1162 /** 1163 * write_tx_pkt_wr - write a TX_PKT work request 1164 * @adap: the adapter 1165 * @skb: the packet to send 1166 * @pi: the egress interface 1167 * @pidx: index of the first Tx descriptor to write 1168 * @gen: the generation value to use 1169 * @q: the Tx queue 1170 * @ndesc: number of descriptors the packet will occupy 1171 * @compl: the value of the COMPL bit to use 1172 * @addr: address 1173 * 1174 * Generate a TX_PKT work request to send the supplied packet. 1175 */ 1176 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, 1177 const struct port_info *pi, 1178 unsigned int pidx, unsigned int gen, 1179 struct sge_txq *q, unsigned int ndesc, 1180 unsigned int compl, const dma_addr_t *addr) 1181 { 1182 unsigned int flits, sgl_flits, cntrl, tso_info; 1183 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1184 struct tx_desc *d = &q->desc[pidx]; 1185 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; 1186 1187 cpl->len = htonl(skb->len); 1188 cntrl = V_TXPKT_INTF(pi->port_id); 1189 1190 if (skb_vlan_tag_present(skb)) 1191 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); 1192 1193 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); 1194 if (tso_info) { 1195 int eth_type; 1196 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; 1197 1198 d->flit[2] = 0; 1199 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); 1200 hdr->cntrl = htonl(cntrl); 1201 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1202 CPL_ETH_II : CPL_ETH_II_VLAN; 1203 tso_info |= V_LSO_ETH_TYPE(eth_type) | 1204 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | 1205 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); 1206 hdr->lso_info = htonl(tso_info); 1207 flits = 3; 1208 } else { 1209 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); 1210 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ 1211 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); 1212 cpl->cntrl = htonl(cntrl); 1213 1214 if (skb->len <= WR_LEN - sizeof(*cpl)) { 1215 q->sdesc[pidx].skb = NULL; 1216 if (!skb->data_len) 1217 skb_copy_from_linear_data(skb, &d->flit[2], 1218 skb->len); 1219 else 1220 skb_copy_bits(skb, 0, &d->flit[2], skb->len); 1221 1222 flits = (skb->len + 7) / 8 + 2; 1223 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | 1224 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) 1225 | F_WR_SOP | F_WR_EOP | compl); 1226 dma_wmb(); 1227 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | 1228 V_WR_TID(q->token)); 1229 wr_gen2(d, gen); 1230 dev_consume_skb_any(skb); 1231 return; 1232 } 1233 1234 flits = 2; 1235 } 1236 1237 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1238 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr); 1239 1240 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, 1241 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), 1242 htonl(V_WR_TID(q->token))); 1243 } 1244 1245 static inline void t3_stop_tx_queue(struct netdev_queue *txq, 1246 struct sge_qset *qs, struct sge_txq *q) 1247 { 1248 netif_tx_stop_queue(txq); 1249 set_bit(TXQ_ETH, &qs->txq_stopped); 1250 q->stops++; 1251 } 1252 1253 /** 1254 * t3_eth_xmit - add a packet to the Ethernet Tx queue 1255 * @skb: the packet 1256 * @dev: the egress net device 1257 * 1258 * Add a packet to an SGE Tx queue. Runs with softirqs disabled. 1259 */ 1260 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1261 { 1262 int qidx; 1263 unsigned int ndesc, pidx, credits, gen, compl; 1264 const struct port_info *pi = netdev_priv(dev); 1265 struct adapter *adap = pi->adapter; 1266 struct netdev_queue *txq; 1267 struct sge_qset *qs; 1268 struct sge_txq *q; 1269 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1270 1271 /* 1272 * The chip min packet length is 9 octets but play safe and reject 1273 * anything shorter than an Ethernet header. 1274 */ 1275 if (unlikely(skb->len < ETH_HLEN)) { 1276 dev_kfree_skb_any(skb); 1277 return NETDEV_TX_OK; 1278 } 1279 1280 qidx = skb_get_queue_mapping(skb); 1281 qs = &pi->qs[qidx]; 1282 q = &qs->txq[TXQ_ETH]; 1283 txq = netdev_get_tx_queue(dev, qidx); 1284 1285 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1286 1287 credits = q->size - q->in_use; 1288 ndesc = calc_tx_descs(skb); 1289 1290 if (unlikely(credits < ndesc)) { 1291 t3_stop_tx_queue(txq, qs, q); 1292 dev_err(&adap->pdev->dev, 1293 "%s: Tx ring %u full while queue awake!\n", 1294 dev->name, q->cntxt_id & 7); 1295 return NETDEV_TX_BUSY; 1296 } 1297 1298 /* Check if ethernet packet can't be sent as immediate data */ 1299 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) { 1300 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) { 1301 dev_kfree_skb(skb); 1302 return NETDEV_TX_OK; 1303 } 1304 } 1305 1306 q->in_use += ndesc; 1307 if (unlikely(credits - ndesc < q->stop_thres)) { 1308 t3_stop_tx_queue(txq, qs, q); 1309 1310 if (should_restart_tx(q) && 1311 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1312 q->restarts++; 1313 netif_tx_start_queue(txq); 1314 } 1315 } 1316 1317 gen = q->gen; 1318 q->unacked += ndesc; 1319 compl = (q->unacked & 8) << (S_WR_COMPL - 3); 1320 q->unacked &= 7; 1321 pidx = q->pidx; 1322 q->pidx += ndesc; 1323 if (q->pidx >= q->size) { 1324 q->pidx -= q->size; 1325 q->gen ^= 1; 1326 } 1327 1328 /* update port statistics */ 1329 if (skb->ip_summed == CHECKSUM_PARTIAL) 1330 qs->port_stats[SGE_PSTAT_TX_CSUM]++; 1331 if (skb_shinfo(skb)->gso_size) 1332 qs->port_stats[SGE_PSTAT_TSO]++; 1333 if (skb_vlan_tag_present(skb)) 1334 qs->port_stats[SGE_PSTAT_VLANINS]++; 1335 1336 /* 1337 * We do not use Tx completion interrupts to free DMAd Tx packets. 1338 * This is good for performance but means that we rely on new Tx 1339 * packets arriving to run the destructors of completed packets, 1340 * which open up space in their sockets' send queues. Sometimes 1341 * we do not get such new packets causing Tx to stall. A single 1342 * UDP transmitter is a good example of this situation. We have 1343 * a clean up timer that periodically reclaims completed packets 1344 * but it doesn't run often enough (nor do we want it to) to prevent 1345 * lengthy stalls. A solution to this problem is to run the 1346 * destructor early, after the packet is queued but before it's DMAd. 1347 * A cons is that we lie to socket memory accounting, but the amount 1348 * of extra memory is reasonable (limited by the number of Tx 1349 * descriptors), the packets do actually get freed quickly by new 1350 * packets almost always, and for protocols like TCP that wait for 1351 * acks to really free up the data the extra memory is even less. 1352 * On the positive side we run the destructors on the sending CPU 1353 * rather than on a potentially different completing CPU, usually a 1354 * good thing. We also run them without holding our Tx queue lock, 1355 * unlike what reclaim_completed_tx() would otherwise do. 1356 * 1357 * Run the destructor before telling the DMA engine about the packet 1358 * to make sure it doesn't complete and get freed prematurely. 1359 */ 1360 if (likely(!skb_shared(skb))) 1361 skb_orphan(skb); 1362 1363 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr); 1364 check_ring_tx_db(adap, q); 1365 return NETDEV_TX_OK; 1366 } 1367 1368 /** 1369 * write_imm - write a packet into a Tx descriptor as immediate data 1370 * @d: the Tx descriptor to write 1371 * @skb: the packet 1372 * @len: the length of packet data to write as immediate data 1373 * @gen: the generation bit value to write 1374 * 1375 * Writes a packet as immediate data into a Tx descriptor. The packet 1376 * contains a work request at its beginning. We must write the packet 1377 * carefully so the SGE doesn't read it accidentally before it's written 1378 * in its entirety. 1379 */ 1380 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, 1381 unsigned int len, unsigned int gen) 1382 { 1383 struct work_request_hdr *from = (struct work_request_hdr *)skb->data; 1384 struct work_request_hdr *to = (struct work_request_hdr *)d; 1385 1386 if (likely(!skb->data_len)) 1387 memcpy(&to[1], &from[1], len - sizeof(*from)); 1388 else 1389 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); 1390 1391 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | 1392 V_WR_BCNTLFLT(len & 7)); 1393 dma_wmb(); 1394 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | 1395 V_WR_LEN((len + 7) / 8)); 1396 wr_gen2(d, gen); 1397 kfree_skb(skb); 1398 } 1399 1400 /** 1401 * check_desc_avail - check descriptor availability on a send queue 1402 * @adap: the adapter 1403 * @q: the send queue 1404 * @skb: the packet needing the descriptors 1405 * @ndesc: the number of Tx descriptors needed 1406 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) 1407 * 1408 * Checks if the requested number of Tx descriptors is available on an 1409 * SGE send queue. If the queue is already suspended or not enough 1410 * descriptors are available the packet is queued for later transmission. 1411 * Must be called with the Tx queue locked. 1412 * 1413 * Returns 0 if enough descriptors are available, 1 if there aren't 1414 * enough descriptors and the packet has been queued, and 2 if the caller 1415 * needs to retry because there weren't enough descriptors at the 1416 * beginning of the call but some freed up in the mean time. 1417 */ 1418 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, 1419 struct sk_buff *skb, unsigned int ndesc, 1420 unsigned int qid) 1421 { 1422 if (unlikely(!skb_queue_empty(&q->sendq))) { 1423 addq_exit:__skb_queue_tail(&q->sendq, skb); 1424 return 1; 1425 } 1426 if (unlikely(q->size - q->in_use < ndesc)) { 1427 struct sge_qset *qs = txq_to_qset(q, qid); 1428 1429 set_bit(qid, &qs->txq_stopped); 1430 smp_mb__after_atomic(); 1431 1432 if (should_restart_tx(q) && 1433 test_and_clear_bit(qid, &qs->txq_stopped)) 1434 return 2; 1435 1436 q->stops++; 1437 goto addq_exit; 1438 } 1439 return 0; 1440 } 1441 1442 /** 1443 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1444 * @q: the SGE control Tx queue 1445 * 1446 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1447 * that send only immediate data (presently just the control queues) and 1448 * thus do not have any sk_buffs to release. 1449 */ 1450 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1451 { 1452 unsigned int reclaim = q->processed - q->cleaned; 1453 1454 q->in_use -= reclaim; 1455 q->cleaned += reclaim; 1456 } 1457 1458 static inline int immediate(const struct sk_buff *skb) 1459 { 1460 return skb->len <= WR_LEN; 1461 } 1462 1463 /** 1464 * ctrl_xmit - send a packet through an SGE control Tx queue 1465 * @adap: the adapter 1466 * @q: the control queue 1467 * @skb: the packet 1468 * 1469 * Send a packet through an SGE control Tx queue. Packets sent through 1470 * a control queue must fit entirely as immediate data in a single Tx 1471 * descriptor and have no page fragments. 1472 */ 1473 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, 1474 struct sk_buff *skb) 1475 { 1476 int ret; 1477 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; 1478 1479 if (unlikely(!immediate(skb))) { 1480 WARN_ON(1); 1481 dev_kfree_skb(skb); 1482 return NET_XMIT_SUCCESS; 1483 } 1484 1485 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); 1486 wrp->wr_lo = htonl(V_WR_TID(q->token)); 1487 1488 spin_lock(&q->lock); 1489 again:reclaim_completed_tx_imm(q); 1490 1491 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); 1492 if (unlikely(ret)) { 1493 if (ret == 1) { 1494 spin_unlock(&q->lock); 1495 return NET_XMIT_CN; 1496 } 1497 goto again; 1498 } 1499 1500 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1501 1502 q->in_use++; 1503 if (++q->pidx >= q->size) { 1504 q->pidx = 0; 1505 q->gen ^= 1; 1506 } 1507 spin_unlock(&q->lock); 1508 wmb(); 1509 t3_write_reg(adap, A_SG_KDOORBELL, 1510 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1511 return NET_XMIT_SUCCESS; 1512 } 1513 1514 /** 1515 * restart_ctrlq - restart a suspended control queue 1516 * @w: pointer to the work associated with this handler 1517 * 1518 * Resumes transmission on a suspended Tx control queue. 1519 */ 1520 static void restart_ctrlq(struct work_struct *w) 1521 { 1522 struct sk_buff *skb; 1523 struct sge_qset *qs = container_of(w, struct sge_qset, 1524 txq[TXQ_CTRL].qresume_task); 1525 struct sge_txq *q = &qs->txq[TXQ_CTRL]; 1526 1527 spin_lock(&q->lock); 1528 again:reclaim_completed_tx_imm(q); 1529 1530 while (q->in_use < q->size && 1531 (skb = __skb_dequeue(&q->sendq)) != NULL) { 1532 1533 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1534 1535 if (++q->pidx >= q->size) { 1536 q->pidx = 0; 1537 q->gen ^= 1; 1538 } 1539 q->in_use++; 1540 } 1541 1542 if (!skb_queue_empty(&q->sendq)) { 1543 set_bit(TXQ_CTRL, &qs->txq_stopped); 1544 smp_mb__after_atomic(); 1545 1546 if (should_restart_tx(q) && 1547 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) 1548 goto again; 1549 q->stops++; 1550 } 1551 1552 spin_unlock(&q->lock); 1553 wmb(); 1554 t3_write_reg(qs->adap, A_SG_KDOORBELL, 1555 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1556 } 1557 1558 /* 1559 * Send a management message through control queue 0 1560 */ 1561 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1562 { 1563 int ret; 1564 local_bh_disable(); 1565 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); 1566 local_bh_enable(); 1567 1568 return ret; 1569 } 1570 1571 /** 1572 * deferred_unmap_destructor - unmap a packet when it is freed 1573 * @skb: the packet 1574 * 1575 * This is the packet destructor used for Tx packets that need to remain 1576 * mapped until they are freed rather than until their Tx descriptors are 1577 * freed. 1578 */ 1579 static void deferred_unmap_destructor(struct sk_buff *skb) 1580 { 1581 int i; 1582 const dma_addr_t *p; 1583 const struct skb_shared_info *si; 1584 const struct deferred_unmap_info *dui; 1585 1586 dui = (struct deferred_unmap_info *)skb->head; 1587 p = dui->addr; 1588 1589 if (skb_tail_pointer(skb) - skb_transport_header(skb)) 1590 dma_unmap_single(&dui->pdev->dev, *p++, 1591 skb_tail_pointer(skb) - skb_transport_header(skb), 1592 DMA_TO_DEVICE); 1593 1594 si = skb_shinfo(skb); 1595 for (i = 0; i < si->nr_frags; i++) 1596 dma_unmap_page(&dui->pdev->dev, *p++, 1597 skb_frag_size(&si->frags[i]), DMA_TO_DEVICE); 1598 } 1599 1600 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, 1601 const struct sg_ent *sgl, int sgl_flits) 1602 { 1603 dma_addr_t *p; 1604 struct deferred_unmap_info *dui; 1605 1606 dui = (struct deferred_unmap_info *)skb->head; 1607 dui->pdev = pdev; 1608 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { 1609 *p++ = be64_to_cpu(sgl->addr[0]); 1610 *p++ = be64_to_cpu(sgl->addr[1]); 1611 } 1612 if (sgl_flits) 1613 *p = be64_to_cpu(sgl->addr[0]); 1614 } 1615 1616 /** 1617 * write_ofld_wr - write an offload work request 1618 * @adap: the adapter 1619 * @skb: the packet to send 1620 * @q: the Tx queue 1621 * @pidx: index of the first Tx descriptor to write 1622 * @gen: the generation value to use 1623 * @ndesc: number of descriptors the packet will occupy 1624 * @addr: the address 1625 * 1626 * Write an offload work request to send the supplied packet. The packet 1627 * data already carry the work request with most fields populated. 1628 */ 1629 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, 1630 struct sge_txq *q, unsigned int pidx, 1631 unsigned int gen, unsigned int ndesc, 1632 const dma_addr_t *addr) 1633 { 1634 unsigned int sgl_flits, flits; 1635 struct work_request_hdr *from; 1636 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1637 struct tx_desc *d = &q->desc[pidx]; 1638 1639 if (immediate(skb)) { 1640 q->sdesc[pidx].skb = NULL; 1641 write_imm(d, skb, skb->len, gen); 1642 return; 1643 } 1644 1645 /* Only TX_DATA builds SGLs */ 1646 1647 from = (struct work_request_hdr *)skb->data; 1648 memcpy(&d->flit[1], &from[1], 1649 skb_transport_offset(skb) - sizeof(*from)); 1650 1651 flits = skb_transport_offset(skb) / 8; 1652 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1653 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb), 1654 skb_tail_pointer(skb) - skb_transport_header(skb), 1655 addr); 1656 if (need_skb_unmap()) { 1657 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); 1658 skb->destructor = deferred_unmap_destructor; 1659 } 1660 1661 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, 1662 gen, from->wr_hi, from->wr_lo); 1663 } 1664 1665 /** 1666 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet 1667 * @skb: the packet 1668 * 1669 * Returns the number of Tx descriptors needed for the given offload 1670 * packet. These packets are already fully constructed. 1671 */ 1672 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) 1673 { 1674 unsigned int flits, cnt; 1675 1676 if (skb->len <= WR_LEN) 1677 return 1; /* packet fits as immediate data */ 1678 1679 flits = skb_transport_offset(skb) / 8; /* headers */ 1680 cnt = skb_shinfo(skb)->nr_frags; 1681 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1682 cnt++; 1683 return flits_to_desc(flits + sgl_len(cnt)); 1684 } 1685 1686 /** 1687 * ofld_xmit - send a packet through an offload queue 1688 * @adap: the adapter 1689 * @q: the Tx offload queue 1690 * @skb: the packet 1691 * 1692 * Send an offload packet through an SGE offload queue. 1693 */ 1694 static int ofld_xmit(struct adapter *adap, struct sge_txq *q, 1695 struct sk_buff *skb) 1696 { 1697 int ret; 1698 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; 1699 1700 spin_lock(&q->lock); 1701 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1702 1703 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); 1704 if (unlikely(ret)) { 1705 if (ret == 1) { 1706 skb->priority = ndesc; /* save for restart */ 1707 spin_unlock(&q->lock); 1708 return NET_XMIT_CN; 1709 } 1710 goto again; 1711 } 1712 1713 if (!immediate(skb) && 1714 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) { 1715 spin_unlock(&q->lock); 1716 return NET_XMIT_SUCCESS; 1717 } 1718 1719 gen = q->gen; 1720 q->in_use += ndesc; 1721 pidx = q->pidx; 1722 q->pidx += ndesc; 1723 if (q->pidx >= q->size) { 1724 q->pidx -= q->size; 1725 q->gen ^= 1; 1726 } 1727 spin_unlock(&q->lock); 1728 1729 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head); 1730 check_ring_tx_db(adap, q); 1731 return NET_XMIT_SUCCESS; 1732 } 1733 1734 /** 1735 * restart_offloadq - restart a suspended offload queue 1736 * @w: pointer to the work associated with this handler 1737 * 1738 * Resumes transmission on a suspended Tx offload queue. 1739 */ 1740 static void restart_offloadq(struct work_struct *w) 1741 { 1742 struct sk_buff *skb; 1743 struct sge_qset *qs = container_of(w, struct sge_qset, 1744 txq[TXQ_OFLD].qresume_task); 1745 struct sge_txq *q = &qs->txq[TXQ_OFLD]; 1746 const struct port_info *pi = netdev_priv(qs->netdev); 1747 struct adapter *adap = pi->adapter; 1748 unsigned int written = 0; 1749 1750 spin_lock(&q->lock); 1751 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1752 1753 while ((skb = skb_peek(&q->sendq)) != NULL) { 1754 unsigned int gen, pidx; 1755 unsigned int ndesc = skb->priority; 1756 1757 if (unlikely(q->size - q->in_use < ndesc)) { 1758 set_bit(TXQ_OFLD, &qs->txq_stopped); 1759 smp_mb__after_atomic(); 1760 1761 if (should_restart_tx(q) && 1762 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) 1763 goto again; 1764 q->stops++; 1765 break; 1766 } 1767 1768 if (!immediate(skb) && 1769 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) 1770 break; 1771 1772 gen = q->gen; 1773 q->in_use += ndesc; 1774 pidx = q->pidx; 1775 q->pidx += ndesc; 1776 written += ndesc; 1777 if (q->pidx >= q->size) { 1778 q->pidx -= q->size; 1779 q->gen ^= 1; 1780 } 1781 __skb_unlink(skb, &q->sendq); 1782 spin_unlock(&q->lock); 1783 1784 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, 1785 (dma_addr_t *)skb->head); 1786 spin_lock(&q->lock); 1787 } 1788 spin_unlock(&q->lock); 1789 1790 #if USE_GTS 1791 set_bit(TXQ_RUNNING, &q->flags); 1792 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1793 #endif 1794 wmb(); 1795 if (likely(written)) 1796 t3_write_reg(adap, A_SG_KDOORBELL, 1797 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1798 } 1799 1800 /** 1801 * queue_set - return the queue set a packet should use 1802 * @skb: the packet 1803 * 1804 * Maps a packet to the SGE queue set it should use. The desired queue 1805 * set is carried in bits 1-3 in the packet's priority. 1806 */ 1807 static inline int queue_set(const struct sk_buff *skb) 1808 { 1809 return skb->priority >> 1; 1810 } 1811 1812 /** 1813 * is_ctrl_pkt - return whether an offload packet is a control packet 1814 * @skb: the packet 1815 * 1816 * Determines whether an offload packet should use an OFLD or a CTRL 1817 * Tx queue. This is indicated by bit 0 in the packet's priority. 1818 */ 1819 static inline int is_ctrl_pkt(const struct sk_buff *skb) 1820 { 1821 return skb->priority & 1; 1822 } 1823 1824 /** 1825 * t3_offload_tx - send an offload packet 1826 * @tdev: the offload device to send to 1827 * @skb: the packet 1828 * 1829 * Sends an offload packet. We use the packet priority to select the 1830 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1831 * should be sent as regular or control, bits 1-3 select the queue set. 1832 */ 1833 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 1834 { 1835 struct adapter *adap = tdev2adap(tdev); 1836 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; 1837 1838 if (unlikely(is_ctrl_pkt(skb))) 1839 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); 1840 1841 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); 1842 } 1843 1844 /** 1845 * offload_enqueue - add an offload packet to an SGE offload receive queue 1846 * @q: the SGE response queue 1847 * @skb: the packet 1848 * 1849 * Add a new offload packet to an SGE response queue's offload packet 1850 * queue. If the packet is the first on the queue it schedules the RX 1851 * softirq to process the queue. 1852 */ 1853 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) 1854 { 1855 int was_empty = skb_queue_empty(&q->rx_queue); 1856 1857 __skb_queue_tail(&q->rx_queue, skb); 1858 1859 if (was_empty) { 1860 struct sge_qset *qs = rspq_to_qset(q); 1861 1862 napi_schedule(&qs->napi); 1863 } 1864 } 1865 1866 /** 1867 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts 1868 * @tdev: the offload device that will be receiving the packets 1869 * @q: the SGE response queue that assembled the bundle 1870 * @skbs: the partial bundle 1871 * @n: the number of packets in the bundle 1872 * 1873 * Delivers a (partial) bundle of Rx offload packets to an offload device. 1874 */ 1875 static inline void deliver_partial_bundle(struct t3cdev *tdev, 1876 struct sge_rspq *q, 1877 struct sk_buff *skbs[], int n) 1878 { 1879 if (n) { 1880 q->offload_bundles++; 1881 tdev->recv(tdev, skbs, n); 1882 } 1883 } 1884 1885 /** 1886 * ofld_poll - NAPI handler for offload packets in interrupt mode 1887 * @napi: the network device doing the polling 1888 * @budget: polling budget 1889 * 1890 * The NAPI handler for offload packets when a response queue is serviced 1891 * by the hard interrupt handler, i.e., when it's operating in non-polling 1892 * mode. Creates small packet batches and sends them through the offload 1893 * receive handler. Batches need to be of modest size as we do prefetches 1894 * on the packets in each. 1895 */ 1896 static int ofld_poll(struct napi_struct *napi, int budget) 1897 { 1898 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 1899 struct sge_rspq *q = &qs->rspq; 1900 struct adapter *adapter = qs->adap; 1901 int work_done = 0; 1902 1903 while (work_done < budget) { 1904 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; 1905 struct sk_buff_head queue; 1906 int ngathered; 1907 1908 spin_lock_irq(&q->lock); 1909 __skb_queue_head_init(&queue); 1910 skb_queue_splice_init(&q->rx_queue, &queue); 1911 if (skb_queue_empty(&queue)) { 1912 napi_complete_done(napi, work_done); 1913 spin_unlock_irq(&q->lock); 1914 return work_done; 1915 } 1916 spin_unlock_irq(&q->lock); 1917 1918 ngathered = 0; 1919 skb_queue_walk_safe(&queue, skb, tmp) { 1920 if (work_done >= budget) 1921 break; 1922 work_done++; 1923 1924 __skb_unlink(skb, &queue); 1925 prefetch(skb->data); 1926 skbs[ngathered] = skb; 1927 if (++ngathered == RX_BUNDLE_SIZE) { 1928 q->offload_bundles++; 1929 adapter->tdev.recv(&adapter->tdev, skbs, 1930 ngathered); 1931 ngathered = 0; 1932 } 1933 } 1934 if (!skb_queue_empty(&queue)) { 1935 /* splice remaining packets back onto Rx queue */ 1936 spin_lock_irq(&q->lock); 1937 skb_queue_splice(&queue, &q->rx_queue); 1938 spin_unlock_irq(&q->lock); 1939 } 1940 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); 1941 } 1942 1943 return work_done; 1944 } 1945 1946 /** 1947 * rx_offload - process a received offload packet 1948 * @tdev: the offload device receiving the packet 1949 * @rq: the response queue that received the packet 1950 * @skb: the packet 1951 * @rx_gather: a gather list of packets if we are building a bundle 1952 * @gather_idx: index of the next available slot in the bundle 1953 * 1954 * Process an ingress offload packet and add it to the offload ingress 1955 * queue. Returns the index of the next available slot in the bundle. 1956 */ 1957 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, 1958 struct sk_buff *skb, struct sk_buff *rx_gather[], 1959 unsigned int gather_idx) 1960 { 1961 skb_reset_mac_header(skb); 1962 skb_reset_network_header(skb); 1963 skb_reset_transport_header(skb); 1964 1965 if (rq->polling) { 1966 rx_gather[gather_idx++] = skb; 1967 if (gather_idx == RX_BUNDLE_SIZE) { 1968 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); 1969 gather_idx = 0; 1970 rq->offload_bundles++; 1971 } 1972 } else 1973 offload_enqueue(rq, skb); 1974 1975 return gather_idx; 1976 } 1977 1978 /** 1979 * restart_tx - check whether to restart suspended Tx queues 1980 * @qs: the queue set to resume 1981 * 1982 * Restarts suspended Tx queues of an SGE queue set if they have enough 1983 * free resources to resume operation. 1984 */ 1985 static void restart_tx(struct sge_qset *qs) 1986 { 1987 if (test_bit(TXQ_ETH, &qs->txq_stopped) && 1988 should_restart_tx(&qs->txq[TXQ_ETH]) && 1989 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1990 qs->txq[TXQ_ETH].restarts++; 1991 if (netif_running(qs->netdev)) 1992 netif_tx_wake_queue(qs->tx_q); 1993 } 1994 1995 if (test_bit(TXQ_OFLD, &qs->txq_stopped) && 1996 should_restart_tx(&qs->txq[TXQ_OFLD]) && 1997 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { 1998 qs->txq[TXQ_OFLD].restarts++; 1999 2000 /* The work can be quite lengthy so we use driver's own queue */ 2001 queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task); 2002 } 2003 if (test_bit(TXQ_CTRL, &qs->txq_stopped) && 2004 should_restart_tx(&qs->txq[TXQ_CTRL]) && 2005 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { 2006 qs->txq[TXQ_CTRL].restarts++; 2007 2008 /* The work can be quite lengthy so we use driver's own queue */ 2009 queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task); 2010 } 2011 } 2012 2013 /** 2014 * cxgb3_arp_process - process an ARP request probing a private IP address 2015 * @pi: the port info 2016 * @skb: the skbuff containing the ARP request 2017 * 2018 * Check if the ARP request is probing the private IP address 2019 * dedicated to iSCSI, generate an ARP reply if so. 2020 */ 2021 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) 2022 { 2023 struct net_device *dev = skb->dev; 2024 struct arphdr *arp; 2025 unsigned char *arp_ptr; 2026 unsigned char *sha; 2027 __be32 sip, tip; 2028 2029 if (!dev) 2030 return; 2031 2032 skb_reset_network_header(skb); 2033 arp = arp_hdr(skb); 2034 2035 if (arp->ar_op != htons(ARPOP_REQUEST)) 2036 return; 2037 2038 arp_ptr = (unsigned char *)(arp + 1); 2039 sha = arp_ptr; 2040 arp_ptr += dev->addr_len; 2041 memcpy(&sip, arp_ptr, sizeof(sip)); 2042 arp_ptr += sizeof(sip); 2043 arp_ptr += dev->addr_len; 2044 memcpy(&tip, arp_ptr, sizeof(tip)); 2045 2046 if (tip != pi->iscsi_ipv4addr) 2047 return; 2048 2049 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, 2050 pi->iscsic.mac_addr, sha); 2051 2052 } 2053 2054 static inline int is_arp(struct sk_buff *skb) 2055 { 2056 return skb->protocol == htons(ETH_P_ARP); 2057 } 2058 2059 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, 2060 struct sk_buff *skb) 2061 { 2062 if (is_arp(skb)) { 2063 cxgb3_arp_process(pi, skb); 2064 return; 2065 } 2066 2067 if (pi->iscsic.recv) 2068 pi->iscsic.recv(pi, skb); 2069 2070 } 2071 2072 /** 2073 * rx_eth - process an ingress ethernet packet 2074 * @adap: the adapter 2075 * @rq: the response queue that received the packet 2076 * @skb: the packet 2077 * @pad: padding 2078 * @lro: large receive offload 2079 * 2080 * Process an ingress ethernet packet and deliver it to the stack. 2081 * The padding is 2 if the packet was delivered in an Rx buffer and 0 2082 * if it was immediate data in a response. 2083 */ 2084 static void rx_eth(struct adapter *adap, struct sge_rspq *rq, 2085 struct sk_buff *skb, int pad, int lro) 2086 { 2087 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); 2088 struct sge_qset *qs = rspq_to_qset(rq); 2089 struct port_info *pi; 2090 2091 skb_pull(skb, sizeof(*p) + pad); 2092 skb->protocol = eth_type_trans(skb, adap->port[p->iff]); 2093 pi = netdev_priv(skb->dev); 2094 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && 2095 p->csum == htons(0xffff) && !p->fragment) { 2096 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2097 skb->ip_summed = CHECKSUM_UNNECESSARY; 2098 } else 2099 skb_checksum_none_assert(skb); 2100 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2101 2102 if (p->vlan_valid) { 2103 qs->port_stats[SGE_PSTAT_VLANEX]++; 2104 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 2105 } 2106 if (rq->polling) { 2107 if (lro) 2108 napi_gro_receive(&qs->napi, skb); 2109 else { 2110 if (unlikely(pi->iscsic.flags)) 2111 cxgb3_process_iscsi_prov_pack(pi, skb); 2112 netif_receive_skb(skb); 2113 } 2114 } else 2115 netif_rx(skb); 2116 } 2117 2118 static inline int is_eth_tcp(u32 rss) 2119 { 2120 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; 2121 } 2122 2123 /** 2124 * lro_add_page - add a page chunk to an LRO session 2125 * @adap: the adapter 2126 * @qs: the associated queue set 2127 * @fl: the free list containing the page chunk to add 2128 * @len: packet length 2129 * @complete: Indicates the last fragment of a frame 2130 * 2131 * Add a received packet contained in a page chunk to an existing LRO 2132 * session. 2133 */ 2134 static void lro_add_page(struct adapter *adap, struct sge_qset *qs, 2135 struct sge_fl *fl, int len, int complete) 2136 { 2137 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2138 struct port_info *pi = netdev_priv(qs->netdev); 2139 struct sk_buff *skb = NULL; 2140 struct cpl_rx_pkt *cpl; 2141 skb_frag_t *rx_frag; 2142 int nr_frags; 2143 int offset = 0; 2144 2145 if (!qs->nomem) { 2146 skb = napi_get_frags(&qs->napi); 2147 qs->nomem = !skb; 2148 } 2149 2150 fl->credits--; 2151 2152 dma_sync_single_for_cpu(&adap->pdev->dev, 2153 dma_unmap_addr(sd, dma_addr), 2154 fl->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE); 2155 2156 (*sd->pg_chunk.p_cnt)--; 2157 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 2158 dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping, 2159 fl->alloc_size, DMA_FROM_DEVICE); 2160 2161 if (!skb) { 2162 put_page(sd->pg_chunk.page); 2163 if (complete) 2164 qs->nomem = 0; 2165 return; 2166 } 2167 2168 rx_frag = skb_shinfo(skb)->frags; 2169 nr_frags = skb_shinfo(skb)->nr_frags; 2170 2171 if (!nr_frags) { 2172 offset = 2 + sizeof(struct cpl_rx_pkt); 2173 cpl = qs->lro_va = sd->pg_chunk.va + 2; 2174 2175 if ((qs->netdev->features & NETIF_F_RXCSUM) && 2176 cpl->csum_valid && cpl->csum == htons(0xffff)) { 2177 skb->ip_summed = CHECKSUM_UNNECESSARY; 2178 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2179 } else 2180 skb->ip_summed = CHECKSUM_NONE; 2181 } else 2182 cpl = qs->lro_va; 2183 2184 len -= offset; 2185 2186 rx_frag += nr_frags; 2187 __skb_frag_set_page(rx_frag, sd->pg_chunk.page); 2188 skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset); 2189 skb_frag_size_set(rx_frag, len); 2190 2191 skb->len += len; 2192 skb->data_len += len; 2193 skb->truesize += len; 2194 skb_shinfo(skb)->nr_frags++; 2195 2196 if (!complete) 2197 return; 2198 2199 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2200 2201 if (cpl->vlan_valid) { 2202 qs->port_stats[SGE_PSTAT_VLANEX]++; 2203 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 2204 } 2205 napi_gro_frags(&qs->napi); 2206 } 2207 2208 /** 2209 * handle_rsp_cntrl_info - handles control information in a response 2210 * @qs: the queue set corresponding to the response 2211 * @flags: the response control flags 2212 * 2213 * Handles the control information of an SGE response, such as GTS 2214 * indications and completion credits for the queue set's Tx queues. 2215 * HW coalesces credits, we don't do any extra SW coalescing. 2216 */ 2217 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) 2218 { 2219 unsigned int credits; 2220 2221 #if USE_GTS 2222 if (flags & F_RSPD_TXQ0_GTS) 2223 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); 2224 #endif 2225 2226 credits = G_RSPD_TXQ0_CR(flags); 2227 if (credits) 2228 qs->txq[TXQ_ETH].processed += credits; 2229 2230 credits = G_RSPD_TXQ2_CR(flags); 2231 if (credits) 2232 qs->txq[TXQ_CTRL].processed += credits; 2233 2234 # if USE_GTS 2235 if (flags & F_RSPD_TXQ1_GTS) 2236 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); 2237 # endif 2238 credits = G_RSPD_TXQ1_CR(flags); 2239 if (credits) 2240 qs->txq[TXQ_OFLD].processed += credits; 2241 } 2242 2243 /** 2244 * check_ring_db - check if we need to ring any doorbells 2245 * @adap: the adapter 2246 * @qs: the queue set whose Tx queues are to be examined 2247 * @sleeping: indicates which Tx queue sent GTS 2248 * 2249 * Checks if some of a queue set's Tx queues need to ring their doorbells 2250 * to resume transmission after idling while they still have unprocessed 2251 * descriptors. 2252 */ 2253 static void check_ring_db(struct adapter *adap, struct sge_qset *qs, 2254 unsigned int sleeping) 2255 { 2256 if (sleeping & F_RSPD_TXQ0_GTS) { 2257 struct sge_txq *txq = &qs->txq[TXQ_ETH]; 2258 2259 if (txq->cleaned + txq->in_use != txq->processed && 2260 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2261 set_bit(TXQ_RUNNING, &txq->flags); 2262 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2263 V_EGRCNTX(txq->cntxt_id)); 2264 } 2265 } 2266 2267 if (sleeping & F_RSPD_TXQ1_GTS) { 2268 struct sge_txq *txq = &qs->txq[TXQ_OFLD]; 2269 2270 if (txq->cleaned + txq->in_use != txq->processed && 2271 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2272 set_bit(TXQ_RUNNING, &txq->flags); 2273 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2274 V_EGRCNTX(txq->cntxt_id)); 2275 } 2276 } 2277 } 2278 2279 /** 2280 * is_new_response - check if a response is newly written 2281 * @r: the response descriptor 2282 * @q: the response queue 2283 * 2284 * Returns true if a response descriptor contains a yet unprocessed 2285 * response. 2286 */ 2287 static inline int is_new_response(const struct rsp_desc *r, 2288 const struct sge_rspq *q) 2289 { 2290 return (r->intr_gen & F_RSPD_GEN2) == q->gen; 2291 } 2292 2293 static inline void clear_rspq_bufstate(struct sge_rspq * const q) 2294 { 2295 q->pg_skb = NULL; 2296 q->rx_recycle_buf = 0; 2297 } 2298 2299 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) 2300 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ 2301 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ 2302 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ 2303 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) 2304 2305 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ 2306 #define NOMEM_INTR_DELAY 2500 2307 2308 /** 2309 * process_responses - process responses from an SGE response queue 2310 * @adap: the adapter 2311 * @qs: the queue set to which the response queue belongs 2312 * @budget: how many responses can be processed in this round 2313 * 2314 * Process responses from an SGE response queue up to the supplied budget. 2315 * Responses include received packets as well as credits and other events 2316 * for the queues that belong to the response queue's queue set. 2317 * A negative budget is effectively unlimited. 2318 * 2319 * Additionally choose the interrupt holdoff time for the next interrupt 2320 * on this queue. If the system is under memory shortage use a fairly 2321 * long delay to help recovery. 2322 */ 2323 static int process_responses(struct adapter *adap, struct sge_qset *qs, 2324 int budget) 2325 { 2326 struct sge_rspq *q = &qs->rspq; 2327 struct rsp_desc *r = &q->desc[q->cidx]; 2328 int budget_left = budget; 2329 unsigned int sleeping = 0; 2330 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; 2331 int ngathered = 0; 2332 2333 q->next_holdoff = q->holdoff_tmr; 2334 2335 while (likely(budget_left && is_new_response(r, q))) { 2336 int packet_complete, eth, ethpad = 2; 2337 int lro = !!(qs->netdev->features & NETIF_F_GRO); 2338 struct sk_buff *skb = NULL; 2339 u32 len, flags; 2340 __be32 rss_hi, rss_lo; 2341 2342 dma_rmb(); 2343 eth = r->rss_hdr.opcode == CPL_RX_PKT; 2344 rss_hi = *(const __be32 *)r; 2345 rss_lo = r->rss_hdr.rss_hash_val; 2346 flags = ntohl(r->flags); 2347 2348 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { 2349 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); 2350 if (!skb) 2351 goto no_mem; 2352 2353 __skb_put_data(skb, r, AN_PKT_SIZE); 2354 skb->data[0] = CPL_ASYNC_NOTIF; 2355 rss_hi = htonl(CPL_ASYNC_NOTIF << 24); 2356 q->async_notif++; 2357 } else if (flags & F_RSPD_IMM_DATA_VALID) { 2358 skb = get_imm_packet(r); 2359 if (unlikely(!skb)) { 2360 no_mem: 2361 q->next_holdoff = NOMEM_INTR_DELAY; 2362 q->nomem++; 2363 /* consume one credit since we tried */ 2364 budget_left--; 2365 break; 2366 } 2367 q->imm_data++; 2368 ethpad = 0; 2369 } else if ((len = ntohl(r->len_cq)) != 0) { 2370 struct sge_fl *fl; 2371 2372 lro &= eth && is_eth_tcp(rss_hi); 2373 2374 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2375 if (fl->use_pages) { 2376 void *addr = fl->sdesc[fl->cidx].pg_chunk.va; 2377 2378 net_prefetch(addr); 2379 __refill_fl(adap, fl); 2380 if (lro > 0) { 2381 lro_add_page(adap, qs, fl, 2382 G_RSPD_LEN(len), 2383 flags & F_RSPD_EOP); 2384 goto next_fl; 2385 } 2386 2387 skb = get_packet_pg(adap, fl, q, 2388 G_RSPD_LEN(len), 2389 eth ? 2390 SGE_RX_DROP_THRES : 0); 2391 q->pg_skb = skb; 2392 } else 2393 skb = get_packet(adap, fl, G_RSPD_LEN(len), 2394 eth ? SGE_RX_DROP_THRES : 0); 2395 if (unlikely(!skb)) { 2396 if (!eth) 2397 goto no_mem; 2398 q->rx_drops++; 2399 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) 2400 __skb_pull(skb, 2); 2401 next_fl: 2402 if (++fl->cidx == fl->size) 2403 fl->cidx = 0; 2404 } else 2405 q->pure_rsps++; 2406 2407 if (flags & RSPD_CTRL_MASK) { 2408 sleeping |= flags & RSPD_GTS_MASK; 2409 handle_rsp_cntrl_info(qs, flags); 2410 } 2411 2412 r++; 2413 if (unlikely(++q->cidx == q->size)) { 2414 q->cidx = 0; 2415 q->gen ^= 1; 2416 r = q->desc; 2417 } 2418 prefetch(r); 2419 2420 if (++q->credits >= (q->size / 4)) { 2421 refill_rspq(adap, q, q->credits); 2422 q->credits = 0; 2423 } 2424 2425 packet_complete = flags & 2426 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | 2427 F_RSPD_ASYNC_NOTIF); 2428 2429 if (skb != NULL && packet_complete) { 2430 if (eth) 2431 rx_eth(adap, q, skb, ethpad, lro); 2432 else { 2433 q->offload_pkts++; 2434 /* Preserve the RSS info in csum & priority */ 2435 skb->csum = rss_hi; 2436 skb->priority = rss_lo; 2437 ngathered = rx_offload(&adap->tdev, q, skb, 2438 offload_skbs, 2439 ngathered); 2440 } 2441 2442 if (flags & F_RSPD_EOP) 2443 clear_rspq_bufstate(q); 2444 } 2445 --budget_left; 2446 } 2447 2448 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); 2449 2450 if (sleeping) 2451 check_ring_db(adap, qs, sleeping); 2452 2453 smp_mb(); /* commit Tx queue .processed updates */ 2454 if (unlikely(qs->txq_stopped != 0)) 2455 restart_tx(qs); 2456 2457 budget -= budget_left; 2458 return budget; 2459 } 2460 2461 static inline int is_pure_response(const struct rsp_desc *r) 2462 { 2463 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); 2464 2465 return (n | r->len_cq) == 0; 2466 } 2467 2468 /** 2469 * napi_rx_handler - the NAPI handler for Rx processing 2470 * @napi: the napi instance 2471 * @budget: how many packets we can process in this round 2472 * 2473 * Handler for new data events when using NAPI. 2474 */ 2475 static int napi_rx_handler(struct napi_struct *napi, int budget) 2476 { 2477 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 2478 struct adapter *adap = qs->adap; 2479 int work_done = process_responses(adap, qs, budget); 2480 2481 if (likely(work_done < budget)) { 2482 napi_complete_done(napi, work_done); 2483 2484 /* 2485 * Because we don't atomically flush the following 2486 * write it is possible that in very rare cases it can 2487 * reach the device in a way that races with a new 2488 * response being written plus an error interrupt 2489 * causing the NAPI interrupt handler below to return 2490 * unhandled status to the OS. To protect against 2491 * this would require flushing the write and doing 2492 * both the write and the flush with interrupts off. 2493 * Way too expensive and unjustifiable given the 2494 * rarity of the race. 2495 * 2496 * The race cannot happen at all with MSI-X. 2497 */ 2498 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | 2499 V_NEWTIMER(qs->rspq.next_holdoff) | 2500 V_NEWINDEX(qs->rspq.cidx)); 2501 } 2502 return work_done; 2503 } 2504 2505 /* 2506 * Returns true if the device is already scheduled for polling. 2507 */ 2508 static inline int napi_is_scheduled(struct napi_struct *napi) 2509 { 2510 return test_bit(NAPI_STATE_SCHED, &napi->state); 2511 } 2512 2513 /** 2514 * process_pure_responses - process pure responses from a response queue 2515 * @adap: the adapter 2516 * @qs: the queue set owning the response queue 2517 * @r: the first pure response to process 2518 * 2519 * A simpler version of process_responses() that handles only pure (i.e., 2520 * non data-carrying) responses. Such respones are too light-weight to 2521 * justify calling a softirq under NAPI, so we handle them specially in 2522 * the interrupt handler. The function is called with a pointer to a 2523 * response, which the caller must ensure is a valid pure response. 2524 * 2525 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. 2526 */ 2527 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, 2528 struct rsp_desc *r) 2529 { 2530 struct sge_rspq *q = &qs->rspq; 2531 unsigned int sleeping = 0; 2532 2533 do { 2534 u32 flags = ntohl(r->flags); 2535 2536 r++; 2537 if (unlikely(++q->cidx == q->size)) { 2538 q->cidx = 0; 2539 q->gen ^= 1; 2540 r = q->desc; 2541 } 2542 prefetch(r); 2543 2544 if (flags & RSPD_CTRL_MASK) { 2545 sleeping |= flags & RSPD_GTS_MASK; 2546 handle_rsp_cntrl_info(qs, flags); 2547 } 2548 2549 q->pure_rsps++; 2550 if (++q->credits >= (q->size / 4)) { 2551 refill_rspq(adap, q, q->credits); 2552 q->credits = 0; 2553 } 2554 if (!is_new_response(r, q)) 2555 break; 2556 dma_rmb(); 2557 } while (is_pure_response(r)); 2558 2559 if (sleeping) 2560 check_ring_db(adap, qs, sleeping); 2561 2562 smp_mb(); /* commit Tx queue .processed updates */ 2563 if (unlikely(qs->txq_stopped != 0)) 2564 restart_tx(qs); 2565 2566 return is_new_response(r, q); 2567 } 2568 2569 /** 2570 * handle_responses - decide what to do with new responses in NAPI mode 2571 * @adap: the adapter 2572 * @q: the response queue 2573 * 2574 * This is used by the NAPI interrupt handlers to decide what to do with 2575 * new SGE responses. If there are no new responses it returns -1. If 2576 * there are new responses and they are pure (i.e., non-data carrying) 2577 * it handles them straight in hard interrupt context as they are very 2578 * cheap and don't deliver any packets. Finally, if there are any data 2579 * signaling responses it schedules the NAPI handler. Returns 1 if it 2580 * schedules NAPI, 0 if all new responses were pure. 2581 * 2582 * The caller must ascertain NAPI is not already running. 2583 */ 2584 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) 2585 { 2586 struct sge_qset *qs = rspq_to_qset(q); 2587 struct rsp_desc *r = &q->desc[q->cidx]; 2588 2589 if (!is_new_response(r, q)) 2590 return -1; 2591 dma_rmb(); 2592 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { 2593 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2594 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); 2595 return 0; 2596 } 2597 napi_schedule(&qs->napi); 2598 return 1; 2599 } 2600 2601 /* 2602 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case 2603 * (i.e., response queue serviced in hard interrupt). 2604 */ 2605 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) 2606 { 2607 struct sge_qset *qs = cookie; 2608 struct adapter *adap = qs->adap; 2609 struct sge_rspq *q = &qs->rspq; 2610 2611 spin_lock(&q->lock); 2612 if (process_responses(adap, qs, -1) == 0) 2613 q->unhandled_irqs++; 2614 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2615 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2616 spin_unlock(&q->lock); 2617 return IRQ_HANDLED; 2618 } 2619 2620 /* 2621 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 2622 * (i.e., response queue serviced by NAPI polling). 2623 */ 2624 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) 2625 { 2626 struct sge_qset *qs = cookie; 2627 struct sge_rspq *q = &qs->rspq; 2628 2629 spin_lock(&q->lock); 2630 2631 if (handle_responses(qs->adap, q) < 0) 2632 q->unhandled_irqs++; 2633 spin_unlock(&q->lock); 2634 return IRQ_HANDLED; 2635 } 2636 2637 /* 2638 * The non-NAPI MSI interrupt handler. This needs to handle data events from 2639 * SGE response queues as well as error and other async events as they all use 2640 * the same MSI vector. We use one SGE response queue per port in this mode 2641 * and protect all response queues with queue 0's lock. 2642 */ 2643 static irqreturn_t t3_intr_msi(int irq, void *cookie) 2644 { 2645 int new_packets = 0; 2646 struct adapter *adap = cookie; 2647 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2648 2649 spin_lock(&q->lock); 2650 2651 if (process_responses(adap, &adap->sge.qs[0], -1)) { 2652 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2653 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2654 new_packets = 1; 2655 } 2656 2657 if (adap->params.nports == 2 && 2658 process_responses(adap, &adap->sge.qs[1], -1)) { 2659 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2660 2661 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | 2662 V_NEWTIMER(q1->next_holdoff) | 2663 V_NEWINDEX(q1->cidx)); 2664 new_packets = 1; 2665 } 2666 2667 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2668 q->unhandled_irqs++; 2669 2670 spin_unlock(&q->lock); 2671 return IRQ_HANDLED; 2672 } 2673 2674 static int rspq_check_napi(struct sge_qset *qs) 2675 { 2676 struct sge_rspq *q = &qs->rspq; 2677 2678 if (!napi_is_scheduled(&qs->napi) && 2679 is_new_response(&q->desc[q->cidx], q)) { 2680 napi_schedule(&qs->napi); 2681 return 1; 2682 } 2683 return 0; 2684 } 2685 2686 /* 2687 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced 2688 * by NAPI polling). Handles data events from SGE response queues as well as 2689 * error and other async events as they all use the same MSI vector. We use 2690 * one SGE response queue per port in this mode and protect all response 2691 * queues with queue 0's lock. 2692 */ 2693 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) 2694 { 2695 int new_packets; 2696 struct adapter *adap = cookie; 2697 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2698 2699 spin_lock(&q->lock); 2700 2701 new_packets = rspq_check_napi(&adap->sge.qs[0]); 2702 if (adap->params.nports == 2) 2703 new_packets += rspq_check_napi(&adap->sge.qs[1]); 2704 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2705 q->unhandled_irqs++; 2706 2707 spin_unlock(&q->lock); 2708 return IRQ_HANDLED; 2709 } 2710 2711 /* 2712 * A helper function that processes responses and issues GTS. 2713 */ 2714 static inline int process_responses_gts(struct adapter *adap, 2715 struct sge_rspq *rq) 2716 { 2717 int work; 2718 2719 work = process_responses(adap, rspq_to_qset(rq), -1); 2720 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | 2721 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); 2722 return work; 2723 } 2724 2725 /* 2726 * The legacy INTx interrupt handler. This needs to handle data events from 2727 * SGE response queues as well as error and other async events as they all use 2728 * the same interrupt pin. We use one SGE response queue per port in this mode 2729 * and protect all response queues with queue 0's lock. 2730 */ 2731 static irqreturn_t t3_intr(int irq, void *cookie) 2732 { 2733 int work_done, w0, w1; 2734 struct adapter *adap = cookie; 2735 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2736 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2737 2738 spin_lock(&q0->lock); 2739 2740 w0 = is_new_response(&q0->desc[q0->cidx], q0); 2741 w1 = adap->params.nports == 2 && 2742 is_new_response(&q1->desc[q1->cidx], q1); 2743 2744 if (likely(w0 | w1)) { 2745 t3_write_reg(adap, A_PL_CLI, 0); 2746 t3_read_reg(adap, A_PL_CLI); /* flush */ 2747 2748 if (likely(w0)) 2749 process_responses_gts(adap, q0); 2750 2751 if (w1) 2752 process_responses_gts(adap, q1); 2753 2754 work_done = w0 | w1; 2755 } else 2756 work_done = t3_slow_intr_handler(adap); 2757 2758 spin_unlock(&q0->lock); 2759 return IRQ_RETVAL(work_done != 0); 2760 } 2761 2762 /* 2763 * Interrupt handler for legacy INTx interrupts for T3B-based cards. 2764 * Handles data events from SGE response queues as well as error and other 2765 * async events as they all use the same interrupt pin. We use one SGE 2766 * response queue per port in this mode and protect all response queues with 2767 * queue 0's lock. 2768 */ 2769 static irqreturn_t t3b_intr(int irq, void *cookie) 2770 { 2771 u32 map; 2772 struct adapter *adap = cookie; 2773 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2774 2775 t3_write_reg(adap, A_PL_CLI, 0); 2776 map = t3_read_reg(adap, A_SG_DATA_INTR); 2777 2778 if (unlikely(!map)) /* shared interrupt, most likely */ 2779 return IRQ_NONE; 2780 2781 spin_lock(&q0->lock); 2782 2783 if (unlikely(map & F_ERRINTR)) 2784 t3_slow_intr_handler(adap); 2785 2786 if (likely(map & 1)) 2787 process_responses_gts(adap, q0); 2788 2789 if (map & 2) 2790 process_responses_gts(adap, &adap->sge.qs[1].rspq); 2791 2792 spin_unlock(&q0->lock); 2793 return IRQ_HANDLED; 2794 } 2795 2796 /* 2797 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. 2798 * Handles data events from SGE response queues as well as error and other 2799 * async events as they all use the same interrupt pin. We use one SGE 2800 * response queue per port in this mode and protect all response queues with 2801 * queue 0's lock. 2802 */ 2803 static irqreturn_t t3b_intr_napi(int irq, void *cookie) 2804 { 2805 u32 map; 2806 struct adapter *adap = cookie; 2807 struct sge_qset *qs0 = &adap->sge.qs[0]; 2808 struct sge_rspq *q0 = &qs0->rspq; 2809 2810 t3_write_reg(adap, A_PL_CLI, 0); 2811 map = t3_read_reg(adap, A_SG_DATA_INTR); 2812 2813 if (unlikely(!map)) /* shared interrupt, most likely */ 2814 return IRQ_NONE; 2815 2816 spin_lock(&q0->lock); 2817 2818 if (unlikely(map & F_ERRINTR)) 2819 t3_slow_intr_handler(adap); 2820 2821 if (likely(map & 1)) 2822 napi_schedule(&qs0->napi); 2823 2824 if (map & 2) 2825 napi_schedule(&adap->sge.qs[1].napi); 2826 2827 spin_unlock(&q0->lock); 2828 return IRQ_HANDLED; 2829 } 2830 2831 /** 2832 * t3_intr_handler - select the top-level interrupt handler 2833 * @adap: the adapter 2834 * @polling: whether using NAPI to service response queues 2835 * 2836 * Selects the top-level interrupt handler based on the type of interrupts 2837 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the 2838 * response queues. 2839 */ 2840 irq_handler_t t3_intr_handler(struct adapter *adap, int polling) 2841 { 2842 if (adap->flags & USING_MSIX) 2843 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; 2844 if (adap->flags & USING_MSI) 2845 return polling ? t3_intr_msi_napi : t3_intr_msi; 2846 if (adap->params.rev > 0) 2847 return polling ? t3b_intr_napi : t3b_intr; 2848 return t3_intr; 2849 } 2850 2851 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 2852 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 2853 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 2854 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 2855 F_HIRCQPARITYERROR) 2856 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) 2857 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ 2858 F_RSPQDISABLED) 2859 2860 /** 2861 * t3_sge_err_intr_handler - SGE async event interrupt handler 2862 * @adapter: the adapter 2863 * 2864 * Interrupt handler for SGE asynchronous (non-data) events. 2865 */ 2866 void t3_sge_err_intr_handler(struct adapter *adapter) 2867 { 2868 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & 2869 ~F_FLEMPTY; 2870 2871 if (status & SGE_PARERR) 2872 CH_ALERT(adapter, "SGE parity error (0x%x)\n", 2873 status & SGE_PARERR); 2874 if (status & SGE_FRAMINGERR) 2875 CH_ALERT(adapter, "SGE framing error (0x%x)\n", 2876 status & SGE_FRAMINGERR); 2877 2878 if (status & F_RSPQCREDITOVERFOW) 2879 CH_ALERT(adapter, "SGE response queue credit overflow\n"); 2880 2881 if (status & F_RSPQDISABLED) { 2882 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); 2883 2884 CH_ALERT(adapter, 2885 "packet delivered to disabled response queue " 2886 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); 2887 } 2888 2889 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) 2890 queue_work(cxgb3_wq, &adapter->db_drop_task); 2891 2892 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) 2893 queue_work(cxgb3_wq, &adapter->db_full_task); 2894 2895 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) 2896 queue_work(cxgb3_wq, &adapter->db_empty_task); 2897 2898 t3_write_reg(adapter, A_SG_INT_CAUSE, status); 2899 if (status & SGE_FATALERR) 2900 t3_fatal_err(adapter); 2901 } 2902 2903 /** 2904 * sge_timer_tx - perform periodic maintenance of an SGE qset 2905 * @t: a timer list containing the SGE queue set to maintain 2906 * 2907 * Runs periodically from a timer to perform maintenance of an SGE queue 2908 * set. It performs two tasks: 2909 * 2910 * Cleans up any completed Tx descriptors that may still be pending. 2911 * Normal descriptor cleanup happens when new packets are added to a Tx 2912 * queue so this timer is relatively infrequent and does any cleanup only 2913 * if the Tx queue has not seen any new packets in a while. We make a 2914 * best effort attempt to reclaim descriptors, in that we don't wait 2915 * around if we cannot get a queue's lock (which most likely is because 2916 * someone else is queueing new packets and so will also handle the clean 2917 * up). Since control queues use immediate data exclusively we don't 2918 * bother cleaning them up here. 2919 * 2920 */ 2921 static void sge_timer_tx(struct timer_list *t) 2922 { 2923 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer); 2924 struct port_info *pi = netdev_priv(qs->netdev); 2925 struct adapter *adap = pi->adapter; 2926 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; 2927 unsigned long next_period; 2928 2929 if (__netif_tx_trylock(qs->tx_q)) { 2930 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], 2931 TX_RECLAIM_TIMER_CHUNK); 2932 __netif_tx_unlock(qs->tx_q); 2933 } 2934 2935 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { 2936 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], 2937 TX_RECLAIM_TIMER_CHUNK); 2938 spin_unlock(&qs->txq[TXQ_OFLD].lock); 2939 } 2940 2941 next_period = TX_RECLAIM_PERIOD >> 2942 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / 2943 TX_RECLAIM_TIMER_CHUNK); 2944 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); 2945 } 2946 2947 /** 2948 * sge_timer_rx - perform periodic maintenance of an SGE qset 2949 * @t: the timer list containing the SGE queue set to maintain 2950 * 2951 * a) Replenishes Rx queues that have run out due to memory shortage. 2952 * Normally new Rx buffers are added when existing ones are consumed but 2953 * when out of memory a queue can become empty. We try to add only a few 2954 * buffers here, the queue will be replenished fully as these new buffers 2955 * are used up if memory shortage has subsided. 2956 * 2957 * b) Return coalesced response queue credits in case a response queue is 2958 * starved. 2959 * 2960 */ 2961 static void sge_timer_rx(struct timer_list *t) 2962 { 2963 spinlock_t *lock; 2964 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer); 2965 struct port_info *pi = netdev_priv(qs->netdev); 2966 struct adapter *adap = pi->adapter; 2967 u32 status; 2968 2969 lock = adap->params.rev > 0 ? 2970 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; 2971 2972 if (!spin_trylock_irq(lock)) 2973 goto out; 2974 2975 if (napi_is_scheduled(&qs->napi)) 2976 goto unlock; 2977 2978 if (adap->params.rev < 4) { 2979 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); 2980 2981 if (status & (1 << qs->rspq.cntxt_id)) { 2982 qs->rspq.starved++; 2983 if (qs->rspq.credits) { 2984 qs->rspq.credits--; 2985 refill_rspq(adap, &qs->rspq, 1); 2986 qs->rspq.restarted++; 2987 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, 2988 1 << qs->rspq.cntxt_id); 2989 } 2990 } 2991 } 2992 2993 if (qs->fl[0].credits < qs->fl[0].size) 2994 __refill_fl(adap, &qs->fl[0]); 2995 if (qs->fl[1].credits < qs->fl[1].size) 2996 __refill_fl(adap, &qs->fl[1]); 2997 2998 unlock: 2999 spin_unlock_irq(lock); 3000 out: 3001 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 3002 } 3003 3004 /** 3005 * t3_update_qset_coalesce - update coalescing settings for a queue set 3006 * @qs: the SGE queue set 3007 * @p: new queue set parameters 3008 * 3009 * Update the coalescing settings for an SGE queue set. Nothing is done 3010 * if the queue set is not initialized yet. 3011 */ 3012 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) 3013 { 3014 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ 3015 qs->rspq.polling = p->polling; 3016 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; 3017 } 3018 3019 /** 3020 * t3_sge_alloc_qset - initialize an SGE queue set 3021 * @adapter: the adapter 3022 * @id: the queue set id 3023 * @nports: how many Ethernet ports will be using this queue set 3024 * @irq_vec_idx: the IRQ vector index for response queue interrupts 3025 * @p: configuration parameters for this queue set 3026 * @ntxq: number of Tx queues for the queue set 3027 * @dev: net device associated with this queue set 3028 * @netdevq: net device TX queue associated with this queue set 3029 * 3030 * Allocate resources and initialize an SGE queue set. A queue set 3031 * comprises a response queue, two Rx free-buffer queues, and up to 3 3032 * Tx queues. The Tx queues are assigned roles in the order Ethernet 3033 * queue, offload queue, and control queue. 3034 */ 3035 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, 3036 int irq_vec_idx, const struct qset_params *p, 3037 int ntxq, struct net_device *dev, 3038 struct netdev_queue *netdevq) 3039 { 3040 int i, avail, ret = -ENOMEM; 3041 struct sge_qset *q = &adapter->sge.qs[id]; 3042 3043 init_qset_cntxt(q, id); 3044 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0); 3045 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0); 3046 3047 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, 3048 sizeof(struct rx_desc), 3049 sizeof(struct rx_sw_desc), 3050 &q->fl[0].phys_addr, &q->fl[0].sdesc); 3051 if (!q->fl[0].desc) 3052 goto err; 3053 3054 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, 3055 sizeof(struct rx_desc), 3056 sizeof(struct rx_sw_desc), 3057 &q->fl[1].phys_addr, &q->fl[1].sdesc); 3058 if (!q->fl[1].desc) 3059 goto err; 3060 3061 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, 3062 sizeof(struct rsp_desc), 0, 3063 &q->rspq.phys_addr, NULL); 3064 if (!q->rspq.desc) 3065 goto err; 3066 3067 for (i = 0; i < ntxq; ++i) { 3068 /* 3069 * The control queue always uses immediate data so does not 3070 * need to keep track of any sk_buffs. 3071 */ 3072 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); 3073 3074 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], 3075 sizeof(struct tx_desc), sz, 3076 &q->txq[i].phys_addr, 3077 &q->txq[i].sdesc); 3078 if (!q->txq[i].desc) 3079 goto err; 3080 3081 q->txq[i].gen = 1; 3082 q->txq[i].size = p->txq_size[i]; 3083 spin_lock_init(&q->txq[i].lock); 3084 skb_queue_head_init(&q->txq[i].sendq); 3085 } 3086 3087 INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq); 3088 INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq); 3089 3090 q->fl[0].gen = q->fl[1].gen = 1; 3091 q->fl[0].size = p->fl_size; 3092 q->fl[1].size = p->jumbo_size; 3093 3094 q->rspq.gen = 1; 3095 q->rspq.size = p->rspq_size; 3096 spin_lock_init(&q->rspq.lock); 3097 skb_queue_head_init(&q->rspq.rx_queue); 3098 3099 q->txq[TXQ_ETH].stop_thres = nports * 3100 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); 3101 3102 #if FL0_PG_CHUNK_SIZE > 0 3103 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; 3104 #else 3105 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); 3106 #endif 3107 #if FL1_PG_CHUNK_SIZE > 0 3108 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; 3109 #else 3110 q->fl[1].buf_size = is_offload(adapter) ? 3111 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 3112 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); 3113 #endif 3114 3115 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; 3116 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; 3117 q->fl[0].order = FL0_PG_ORDER; 3118 q->fl[1].order = FL1_PG_ORDER; 3119 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; 3120 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; 3121 3122 spin_lock_irq(&adapter->sge.reg_lock); 3123 3124 /* FL threshold comparison uses < */ 3125 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, 3126 q->rspq.phys_addr, q->rspq.size, 3127 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); 3128 if (ret) 3129 goto err_unlock; 3130 3131 for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 3132 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, 3133 q->fl[i].phys_addr, q->fl[i].size, 3134 q->fl[i].buf_size - SGE_PG_RSVD, 3135 p->cong_thres, 1, 0); 3136 if (ret) 3137 goto err_unlock; 3138 } 3139 3140 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, 3141 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, 3142 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 3143 1, 0); 3144 if (ret) 3145 goto err_unlock; 3146 3147 if (ntxq > 1) { 3148 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, 3149 USE_GTS, SGE_CNTXT_OFLD, id, 3150 q->txq[TXQ_OFLD].phys_addr, 3151 q->txq[TXQ_OFLD].size, 0, 1, 0); 3152 if (ret) 3153 goto err_unlock; 3154 } 3155 3156 if (ntxq > 2) { 3157 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, 3158 SGE_CNTXT_CTRL, id, 3159 q->txq[TXQ_CTRL].phys_addr, 3160 q->txq[TXQ_CTRL].size, 3161 q->txq[TXQ_CTRL].token, 1, 0); 3162 if (ret) 3163 goto err_unlock; 3164 } 3165 3166 spin_unlock_irq(&adapter->sge.reg_lock); 3167 3168 q->adap = adapter; 3169 q->netdev = dev; 3170 q->tx_q = netdevq; 3171 t3_update_qset_coalesce(q, p); 3172 3173 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, 3174 GFP_KERNEL | __GFP_COMP); 3175 if (!avail) { 3176 CH_ALERT(adapter, "free list queue 0 initialization failed\n"); 3177 ret = -ENOMEM; 3178 goto err; 3179 } 3180 if (avail < q->fl[0].size) 3181 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", 3182 avail); 3183 3184 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, 3185 GFP_KERNEL | __GFP_COMP); 3186 if (avail < q->fl[1].size) 3187 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", 3188 avail); 3189 refill_rspq(adapter, &q->rspq, q->rspq.size - 1); 3190 3191 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | 3192 V_NEWTIMER(q->rspq.holdoff_tmr)); 3193 3194 return 0; 3195 3196 err_unlock: 3197 spin_unlock_irq(&adapter->sge.reg_lock); 3198 err: 3199 t3_free_qset(adapter, q); 3200 return ret; 3201 } 3202 3203 /** 3204 * t3_start_sge_timers - start SGE timer call backs 3205 * @adap: the adapter 3206 * 3207 * Starts each SGE queue set's timer call back 3208 */ 3209 void t3_start_sge_timers(struct adapter *adap) 3210 { 3211 int i; 3212 3213 for (i = 0; i < SGE_QSETS; ++i) { 3214 struct sge_qset *q = &adap->sge.qs[i]; 3215 3216 if (q->tx_reclaim_timer.function) 3217 mod_timer(&q->tx_reclaim_timer, 3218 jiffies + TX_RECLAIM_PERIOD); 3219 3220 if (q->rx_reclaim_timer.function) 3221 mod_timer(&q->rx_reclaim_timer, 3222 jiffies + RX_RECLAIM_PERIOD); 3223 } 3224 } 3225 3226 /** 3227 * t3_stop_sge_timers - stop SGE timer call backs 3228 * @adap: the adapter 3229 * 3230 * Stops each SGE queue set's timer call back 3231 */ 3232 void t3_stop_sge_timers(struct adapter *adap) 3233 { 3234 int i; 3235 3236 for (i = 0; i < SGE_QSETS; ++i) { 3237 struct sge_qset *q = &adap->sge.qs[i]; 3238 3239 if (q->tx_reclaim_timer.function) 3240 del_timer_sync(&q->tx_reclaim_timer); 3241 if (q->rx_reclaim_timer.function) 3242 del_timer_sync(&q->rx_reclaim_timer); 3243 } 3244 } 3245 3246 /** 3247 * t3_free_sge_resources - free SGE resources 3248 * @adap: the adapter 3249 * 3250 * Frees resources used by the SGE queue sets. 3251 */ 3252 void t3_free_sge_resources(struct adapter *adap) 3253 { 3254 int i; 3255 3256 for (i = 0; i < SGE_QSETS; ++i) 3257 t3_free_qset(adap, &adap->sge.qs[i]); 3258 } 3259 3260 /** 3261 * t3_sge_start - enable SGE 3262 * @adap: the adapter 3263 * 3264 * Enables the SGE for DMAs. This is the last step in starting packet 3265 * transfers. 3266 */ 3267 void t3_sge_start(struct adapter *adap) 3268 { 3269 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); 3270 } 3271 3272 /** 3273 * t3_sge_stop_dma - Disable SGE DMA engine operation 3274 * @adap: the adapter 3275 * 3276 * Can be invoked from interrupt context e.g. error handler. 3277 * 3278 * Note that this function cannot disable the restart of works as 3279 * it cannot wait if called from interrupt context, however the 3280 * works will have no effect since the doorbells are disabled. The 3281 * driver will call tg3_sge_stop() later from process context, at 3282 * which time the works will be stopped if they are still running. 3283 */ 3284 void t3_sge_stop_dma(struct adapter *adap) 3285 { 3286 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); 3287 } 3288 3289 /** 3290 * t3_sge_stop - disable SGE operation completly 3291 * @adap: the adapter 3292 * 3293 * Called from process context. Disables the DMA engine and any 3294 * pending queue restart works. 3295 */ 3296 void t3_sge_stop(struct adapter *adap) 3297 { 3298 int i; 3299 3300 t3_sge_stop_dma(adap); 3301 3302 /* workqueues aren't initialized otherwise */ 3303 if (!(adap->flags & FULL_INIT_DONE)) 3304 return; 3305 for (i = 0; i < SGE_QSETS; ++i) { 3306 struct sge_qset *qs = &adap->sge.qs[i]; 3307 3308 cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task); 3309 cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task); 3310 } 3311 } 3312 3313 /** 3314 * t3_sge_init - initialize SGE 3315 * @adap: the adapter 3316 * @p: the SGE parameters 3317 * 3318 * Performs SGE initialization needed every time after a chip reset. 3319 * We do not initialize any of the queue sets here, instead the driver 3320 * top-level must request those individually. We also do not enable DMA 3321 * here, that should be done after the queues have been set up. 3322 */ 3323 void t3_sge_init(struct adapter *adap, struct sge_params *p) 3324 { 3325 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); 3326 3327 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | 3328 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | 3329 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | 3330 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; 3331 #if SGE_NUM_GENBITS == 1 3332 ctrl |= F_EGRGENCTRL; 3333 #endif 3334 if (adap->params.rev > 0) { 3335 if (!(adap->flags & (USING_MSIX | USING_MSI))) 3336 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; 3337 } 3338 t3_write_reg(adap, A_SG_CONTROL, ctrl); 3339 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | 3340 V_LORCQDRBTHRSH(512)); 3341 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); 3342 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | 3343 V_TIMEOUT(200 * core_ticks_per_usec(adap))); 3344 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 3345 adap->params.rev < T3_REV_C ? 1000 : 500); 3346 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); 3347 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); 3348 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); 3349 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); 3350 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); 3351 } 3352 3353 /** 3354 * t3_sge_prep - one-time SGE initialization 3355 * @adap: the associated adapter 3356 * @p: SGE parameters 3357 * 3358 * Performs one-time initialization of SGE SW state. Includes determining 3359 * defaults for the assorted SGE parameters, which admins can change until 3360 * they are used to initialize the SGE. 3361 */ 3362 void t3_sge_prep(struct adapter *adap, struct sge_params *p) 3363 { 3364 int i; 3365 3366 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - 3367 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3368 3369 for (i = 0; i < SGE_QSETS; ++i) { 3370 struct qset_params *q = p->qset + i; 3371 3372 q->polling = adap->params.rev > 0; 3373 q->coalesce_usecs = 5; 3374 q->rspq_size = 1024; 3375 q->fl_size = 1024; 3376 q->jumbo_size = 512; 3377 q->txq_size[TXQ_ETH] = 1024; 3378 q->txq_size[TXQ_OFLD] = 1024; 3379 q->txq_size[TXQ_CTRL] = 256; 3380 q->cong_thres = 0; 3381 } 3382 3383 spin_lock_init(&adap->sge.reg_lock); 3384 } 3385