1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/skbuff.h> 33 #include <linux/netdevice.h> 34 #include <linux/if.h> 35 #include <linux/if_vlan.h> 36 #include <linux/jhash.h> 37 #include <linux/slab.h> 38 #include <linux/export.h> 39 #include <net/neighbour.h> 40 #include "common.h" 41 #include "t3cdev.h" 42 #include "cxgb3_defs.h" 43 #include "l2t.h" 44 #include "t3_cpl.h" 45 #include "firmware_exports.h" 46 47 #define VLAN_NONE 0xfff 48 49 /* 50 * Module locking notes: There is a RW lock protecting the L2 table as a 51 * whole plus a spinlock per L2T entry. Entry lookups and allocations happen 52 * under the protection of the table lock, individual entry changes happen 53 * while holding that entry's spinlock. The table lock nests outside the 54 * entry locks. Allocations of new entries take the table lock as writers so 55 * no other lookups can happen while allocating new entries. Entry updates 56 * take the table lock as readers so multiple entries can be updated in 57 * parallel. An L2T entry can be dropped by decrementing its reference count 58 * and therefore can happen in parallel with entry allocation but no entry 59 * can change state or increment its ref count during allocation as both of 60 * these perform lookups. 61 */ 62 63 static inline unsigned int vlan_prio(const struct l2t_entry *e) 64 { 65 return e->vlan >> 13; 66 } 67 68 static inline unsigned int arp_hash(u32 key, int ifindex, 69 const struct l2t_data *d) 70 { 71 return jhash_2words(key, ifindex, 0) & (d->nentries - 1); 72 } 73 74 static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n) 75 { 76 neigh_hold(n); 77 if (e->neigh) 78 neigh_release(e->neigh); 79 e->neigh = n; 80 } 81 82 /* 83 * Set up an L2T entry and send any packets waiting in the arp queue. The 84 * supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the 85 * entry locked. 86 */ 87 static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb, 88 struct l2t_entry *e) 89 { 90 struct cpl_l2t_write_req *req; 91 struct sk_buff *tmp; 92 93 if (!skb) { 94 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 95 if (!skb) 96 return -ENOMEM; 97 } 98 99 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 100 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 101 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx)); 102 req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) | 103 V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) | 104 V_L2T_W_PRIO(vlan_prio(e))); 105 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); 106 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); 107 skb->priority = CPL_PRIORITY_CONTROL; 108 cxgb3_ofld_send(dev, skb); 109 110 skb_queue_walk_safe(&e->arpq, skb, tmp) { 111 __skb_unlink(skb, &e->arpq); 112 cxgb3_ofld_send(dev, skb); 113 } 114 e->state = L2T_STATE_VALID; 115 116 return 0; 117 } 118 119 /* 120 * Add a packet to the an L2T entry's queue of packets awaiting resolution. 121 * Must be called with the entry's lock held. 122 */ 123 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) 124 { 125 __skb_queue_tail(&e->arpq, skb); 126 } 127 128 int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb, 129 struct l2t_entry *e) 130 { 131 again: 132 switch (e->state) { 133 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 134 neigh_event_send(e->neigh, NULL); 135 spin_lock_bh(&e->lock); 136 if (e->state == L2T_STATE_STALE) 137 e->state = L2T_STATE_VALID; 138 spin_unlock_bh(&e->lock); 139 case L2T_STATE_VALID: /* fast-path, send the packet on */ 140 return cxgb3_ofld_send(dev, skb); 141 case L2T_STATE_RESOLVING: 142 spin_lock_bh(&e->lock); 143 if (e->state != L2T_STATE_RESOLVING) { 144 /* ARP already completed */ 145 spin_unlock_bh(&e->lock); 146 goto again; 147 } 148 arpq_enqueue(e, skb); 149 spin_unlock_bh(&e->lock); 150 151 /* 152 * Only the first packet added to the arpq should kick off 153 * resolution. However, because the alloc_skb below can fail, 154 * we allow each packet added to the arpq to retry resolution 155 * as a way of recovering from transient memory exhaustion. 156 * A better way would be to use a work request to retry L2T 157 * entries when there's no memory. 158 */ 159 if (!neigh_event_send(e->neigh, NULL)) { 160 skb = alloc_skb(sizeof(struct cpl_l2t_write_req), 161 GFP_ATOMIC); 162 if (!skb) 163 break; 164 165 spin_lock_bh(&e->lock); 166 if (!skb_queue_empty(&e->arpq)) 167 setup_l2e_send_pending(dev, skb, e); 168 else /* we lost the race */ 169 __kfree_skb(skb); 170 spin_unlock_bh(&e->lock); 171 } 172 } 173 return 0; 174 } 175 176 EXPORT_SYMBOL(t3_l2t_send_slow); 177 178 void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e) 179 { 180 again: 181 switch (e->state) { 182 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 183 neigh_event_send(e->neigh, NULL); 184 spin_lock_bh(&e->lock); 185 if (e->state == L2T_STATE_STALE) { 186 e->state = L2T_STATE_VALID; 187 } 188 spin_unlock_bh(&e->lock); 189 return; 190 case L2T_STATE_VALID: /* fast-path, send the packet on */ 191 return; 192 case L2T_STATE_RESOLVING: 193 spin_lock_bh(&e->lock); 194 if (e->state != L2T_STATE_RESOLVING) { 195 /* ARP already completed */ 196 spin_unlock_bh(&e->lock); 197 goto again; 198 } 199 spin_unlock_bh(&e->lock); 200 201 /* 202 * Only the first packet added to the arpq should kick off 203 * resolution. However, because the alloc_skb below can fail, 204 * we allow each packet added to the arpq to retry resolution 205 * as a way of recovering from transient memory exhaustion. 206 * A better way would be to use a work request to retry L2T 207 * entries when there's no memory. 208 */ 209 neigh_event_send(e->neigh, NULL); 210 } 211 } 212 213 EXPORT_SYMBOL(t3_l2t_send_event); 214 215 /* 216 * Allocate a free L2T entry. Must be called with l2t_data.lock held. 217 */ 218 static struct l2t_entry *alloc_l2e(struct l2t_data *d) 219 { 220 struct l2t_entry *end, *e, **p; 221 222 if (!atomic_read(&d->nfree)) 223 return NULL; 224 225 /* there's definitely a free entry */ 226 for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e) 227 if (atomic_read(&e->refcnt) == 0) 228 goto found; 229 230 for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ; 231 found: 232 d->rover = e + 1; 233 atomic_dec(&d->nfree); 234 235 /* 236 * The entry we found may be an inactive entry that is 237 * presently in the hash table. We need to remove it. 238 */ 239 if (e->state != L2T_STATE_UNUSED) { 240 int hash = arp_hash(e->addr, e->ifindex, d); 241 242 for (p = &d->l2tab[hash].first; *p; p = &(*p)->next) 243 if (*p == e) { 244 *p = e->next; 245 break; 246 } 247 e->state = L2T_STATE_UNUSED; 248 } 249 return e; 250 } 251 252 /* 253 * Called when an L2T entry has no more users. The entry is left in the hash 254 * table since it is likely to be reused but we also bump nfree to indicate 255 * that the entry can be reallocated for a different neighbor. We also drop 256 * the existing neighbor reference in case the neighbor is going away and is 257 * waiting on our reference. 258 * 259 * Because entries can be reallocated to other neighbors once their ref count 260 * drops to 0 we need to take the entry's lock to avoid races with a new 261 * incarnation. 262 */ 263 void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e) 264 { 265 spin_lock_bh(&e->lock); 266 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 267 if (e->neigh) { 268 neigh_release(e->neigh); 269 e->neigh = NULL; 270 } 271 } 272 spin_unlock_bh(&e->lock); 273 atomic_inc(&d->nfree); 274 } 275 276 EXPORT_SYMBOL(t3_l2e_free); 277 278 /* 279 * Update an L2T entry that was previously used for the same next hop as neigh. 280 * Must be called with softirqs disabled. 281 */ 282 static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) 283 { 284 unsigned int nud_state; 285 286 spin_lock(&e->lock); /* avoid race with t3_l2t_free */ 287 288 if (neigh != e->neigh) 289 neigh_replace(e, neigh); 290 nud_state = neigh->nud_state; 291 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || 292 !(nud_state & NUD_VALID)) 293 e->state = L2T_STATE_RESOLVING; 294 else if (nud_state & NUD_CONNECTED) 295 e->state = L2T_STATE_VALID; 296 else 297 e->state = L2T_STATE_STALE; 298 spin_unlock(&e->lock); 299 } 300 301 struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct dst_entry *dst, 302 struct net_device *dev) 303 { 304 struct l2t_entry *e = NULL; 305 struct neighbour *neigh; 306 struct port_info *p; 307 struct l2t_data *d; 308 int hash; 309 u32 addr; 310 int ifidx; 311 int smt_idx; 312 313 rcu_read_lock(); 314 neigh = dst_get_neighbour_noref(dst); 315 if (!neigh) 316 goto done_rcu; 317 318 addr = *(u32 *) neigh->primary_key; 319 ifidx = neigh->dev->ifindex; 320 321 if (!dev) 322 dev = neigh->dev; 323 p = netdev_priv(dev); 324 smt_idx = p->port_id; 325 326 d = L2DATA(cdev); 327 if (!d) 328 goto done_rcu; 329 330 hash = arp_hash(addr, ifidx, d); 331 332 write_lock_bh(&d->lock); 333 for (e = d->l2tab[hash].first; e; e = e->next) 334 if (e->addr == addr && e->ifindex == ifidx && 335 e->smt_idx == smt_idx) { 336 l2t_hold(d, e); 337 if (atomic_read(&e->refcnt) == 1) 338 reuse_entry(e, neigh); 339 goto done_unlock; 340 } 341 342 /* Need to allocate a new entry */ 343 e = alloc_l2e(d); 344 if (e) { 345 spin_lock(&e->lock); /* avoid race with t3_l2t_free */ 346 e->next = d->l2tab[hash].first; 347 d->l2tab[hash].first = e; 348 e->state = L2T_STATE_RESOLVING; 349 e->addr = addr; 350 e->ifindex = ifidx; 351 e->smt_idx = smt_idx; 352 atomic_set(&e->refcnt, 1); 353 neigh_replace(e, neigh); 354 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) 355 e->vlan = vlan_dev_vlan_id(neigh->dev); 356 else 357 e->vlan = VLAN_NONE; 358 spin_unlock(&e->lock); 359 } 360 done_unlock: 361 write_unlock_bh(&d->lock); 362 done_rcu: 363 rcu_read_unlock(); 364 return e; 365 } 366 367 EXPORT_SYMBOL(t3_l2t_get); 368 369 /* 370 * Called when address resolution fails for an L2T entry to handle packets 371 * on the arpq head. If a packet specifies a failure handler it is invoked, 372 * otherwise the packets is sent to the offload device. 373 * 374 * XXX: maybe we should abandon the latter behavior and just require a failure 375 * handler. 376 */ 377 static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq) 378 { 379 struct sk_buff *skb, *tmp; 380 381 skb_queue_walk_safe(arpq, skb, tmp) { 382 struct l2t_skb_cb *cb = L2T_SKB_CB(skb); 383 384 __skb_unlink(skb, arpq); 385 if (cb->arp_failure_handler) 386 cb->arp_failure_handler(dev, skb); 387 else 388 cxgb3_ofld_send(dev, skb); 389 } 390 } 391 392 /* 393 * Called when the host's ARP layer makes a change to some entry that is 394 * loaded into the HW L2 table. 395 */ 396 void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh) 397 { 398 struct sk_buff_head arpq; 399 struct l2t_entry *e; 400 struct l2t_data *d = L2DATA(dev); 401 u32 addr = *(u32 *) neigh->primary_key; 402 int ifidx = neigh->dev->ifindex; 403 int hash = arp_hash(addr, ifidx, d); 404 405 read_lock_bh(&d->lock); 406 for (e = d->l2tab[hash].first; e; e = e->next) 407 if (e->addr == addr && e->ifindex == ifidx) { 408 spin_lock(&e->lock); 409 goto found; 410 } 411 read_unlock_bh(&d->lock); 412 return; 413 414 found: 415 __skb_queue_head_init(&arpq); 416 417 read_unlock(&d->lock); 418 if (atomic_read(&e->refcnt)) { 419 if (neigh != e->neigh) 420 neigh_replace(e, neigh); 421 422 if (e->state == L2T_STATE_RESOLVING) { 423 if (neigh->nud_state & NUD_FAILED) { 424 skb_queue_splice_init(&e->arpq, &arpq); 425 } else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE)) 426 setup_l2e_send_pending(dev, NULL, e); 427 } else { 428 e->state = neigh->nud_state & NUD_CONNECTED ? 429 L2T_STATE_VALID : L2T_STATE_STALE; 430 if (memcmp(e->dmac, neigh->ha, 6)) 431 setup_l2e_send_pending(dev, NULL, e); 432 } 433 } 434 spin_unlock_bh(&e->lock); 435 436 if (!skb_queue_empty(&arpq)) 437 handle_failed_resolution(dev, &arpq); 438 } 439 440 struct l2t_data *t3_init_l2t(unsigned int l2t_capacity) 441 { 442 struct l2t_data *d; 443 int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry); 444 445 d = cxgb_alloc_mem(size); 446 if (!d) 447 return NULL; 448 449 d->nentries = l2t_capacity; 450 d->rover = &d->l2tab[1]; /* entry 0 is not used */ 451 atomic_set(&d->nfree, l2t_capacity - 1); 452 rwlock_init(&d->lock); 453 454 for (i = 0; i < l2t_capacity; ++i) { 455 d->l2tab[i].idx = i; 456 d->l2tab[i].state = L2T_STATE_UNUSED; 457 __skb_queue_head_init(&d->l2tab[i].arpq); 458 spin_lock_init(&d->l2tab[i].lock); 459 atomic_set(&d->l2tab[i].refcnt, 0); 460 } 461 return d; 462 } 463 464 void t3_free_l2t(struct l2t_data *d) 465 { 466 cxgb_free_mem(d); 467 } 468 469