1 /* 2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/list.h> 34 #include <linux/slab.h> 35 #include <net/neighbour.h> 36 #include <linux/notifier.h> 37 #include <linux/atomic.h> 38 #include <linux/proc_fs.h> 39 #include <linux/if_vlan.h> 40 #include <net/netevent.h> 41 #include <linux/highmem.h> 42 #include <linux/vmalloc.h> 43 #include <linux/export.h> 44 45 #include "common.h" 46 #include "regs.h" 47 #include "cxgb3_ioctl.h" 48 #include "cxgb3_ctl_defs.h" 49 #include "cxgb3_defs.h" 50 #include "l2t.h" 51 #include "firmware_exports.h" 52 #include "cxgb3_offload.h" 53 54 static LIST_HEAD(client_list); 55 static LIST_HEAD(ofld_dev_list); 56 static DEFINE_MUTEX(cxgb3_db_lock); 57 58 static DEFINE_RWLOCK(adapter_list_lock); 59 static LIST_HEAD(adapter_list); 60 61 static const unsigned int MAX_ATIDS = 64 * 1024; 62 static const unsigned int ATID_BASE = 0x10000; 63 64 static void cxgb_neigh_update(struct neighbour *neigh); 65 static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh, 66 struct dst_entry *new, struct neighbour *new_neigh, 67 const void *daddr); 68 69 static inline int offload_activated(struct t3cdev *tdev) 70 { 71 const struct adapter *adapter = tdev2adap(tdev); 72 73 return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 74 } 75 76 /** 77 * cxgb3_register_client - register an offload client 78 * @client: the client 79 * 80 * Add the client to the client list, 81 * and call backs the client for each activated offload device 82 */ 83 void cxgb3_register_client(struct cxgb3_client *client) 84 { 85 struct t3cdev *tdev; 86 87 mutex_lock(&cxgb3_db_lock); 88 list_add_tail(&client->client_list, &client_list); 89 90 if (client->add) { 91 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { 92 if (offload_activated(tdev)) 93 client->add(tdev); 94 } 95 } 96 mutex_unlock(&cxgb3_db_lock); 97 } 98 99 EXPORT_SYMBOL(cxgb3_register_client); 100 101 /** 102 * cxgb3_unregister_client - unregister an offload client 103 * @client: the client 104 * 105 * Remove the client to the client list, 106 * and call backs the client for each activated offload device. 107 */ 108 void cxgb3_unregister_client(struct cxgb3_client *client) 109 { 110 struct t3cdev *tdev; 111 112 mutex_lock(&cxgb3_db_lock); 113 list_del(&client->client_list); 114 115 if (client->remove) { 116 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { 117 if (offload_activated(tdev)) 118 client->remove(tdev); 119 } 120 } 121 mutex_unlock(&cxgb3_db_lock); 122 } 123 124 EXPORT_SYMBOL(cxgb3_unregister_client); 125 126 /** 127 * cxgb3_add_clients - activate registered clients for an offload device 128 * @tdev: the offload device 129 * 130 * Call backs all registered clients once a offload device is activated 131 */ 132 void cxgb3_add_clients(struct t3cdev *tdev) 133 { 134 struct cxgb3_client *client; 135 136 mutex_lock(&cxgb3_db_lock); 137 list_for_each_entry(client, &client_list, client_list) { 138 if (client->add) 139 client->add(tdev); 140 } 141 mutex_unlock(&cxgb3_db_lock); 142 } 143 144 /** 145 * cxgb3_remove_clients - deactivates registered clients 146 * for an offload device 147 * @tdev: the offload device 148 * 149 * Call backs all registered clients once a offload device is deactivated 150 */ 151 void cxgb3_remove_clients(struct t3cdev *tdev) 152 { 153 struct cxgb3_client *client; 154 155 mutex_lock(&cxgb3_db_lock); 156 list_for_each_entry(client, &client_list, client_list) { 157 if (client->remove) 158 client->remove(tdev); 159 } 160 mutex_unlock(&cxgb3_db_lock); 161 } 162 163 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port) 164 { 165 struct cxgb3_client *client; 166 167 mutex_lock(&cxgb3_db_lock); 168 list_for_each_entry(client, &client_list, client_list) { 169 if (client->event_handler) 170 client->event_handler(tdev, event, port); 171 } 172 mutex_unlock(&cxgb3_db_lock); 173 } 174 175 static struct net_device *get_iff_from_mac(struct adapter *adapter, 176 const unsigned char *mac, 177 unsigned int vlan) 178 { 179 int i; 180 181 for_each_port(adapter, i) { 182 struct net_device *dev = adapter->port[i]; 183 184 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) { 185 if (vlan && vlan != VLAN_VID_MASK) { 186 rcu_read_lock(); 187 dev = __vlan_find_dev_deep(dev, vlan); 188 rcu_read_unlock(); 189 } else if (netif_is_bond_slave(dev)) { 190 while (dev->master) 191 dev = dev->master; 192 } 193 return dev; 194 } 195 } 196 return NULL; 197 } 198 199 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req, 200 void *data) 201 { 202 int i; 203 int ret = 0; 204 unsigned int val = 0; 205 struct ulp_iscsi_info *uiip = data; 206 207 switch (req) { 208 case ULP_ISCSI_GET_PARAMS: 209 uiip->pdev = adapter->pdev; 210 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT); 211 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT); 212 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK); 213 214 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ); 215 for (i = 0; i < 4; i++, val >>= 8) 216 uiip->pgsz_factor[i] = val & 0xFF; 217 218 val = t3_read_reg(adapter, A_TP_PARA_REG7); 219 uiip->max_txsz = 220 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0, 221 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1); 222 /* 223 * On tx, the iscsi pdu has to be <= tx page size and has to 224 * fit into the Tx PM FIFO. 225 */ 226 val = min(adapter->params.tp.tx_pg_size, 227 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17); 228 uiip->max_txsz = min(val, uiip->max_txsz); 229 230 /* set MaxRxData to 16224 */ 231 val = t3_read_reg(adapter, A_TP_PARA_REG2); 232 if ((val >> S_MAXRXDATA) != 0x3f60) { 233 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE); 234 val |= V_MAXRXDATA(0x3f60); 235 printk(KERN_INFO 236 "%s, iscsi set MaxRxData to 16224 (0x%x).\n", 237 adapter->name, val); 238 t3_write_reg(adapter, A_TP_PARA_REG2, val); 239 } 240 241 /* 242 * on rx, the iscsi pdu has to be < rx page size and the 243 * the max rx data length programmed in TP 244 */ 245 val = min(adapter->params.tp.rx_pg_size, 246 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >> 247 S_MAXRXDATA) & M_MAXRXDATA); 248 uiip->max_rxsz = min(val, uiip->max_rxsz); 249 break; 250 case ULP_ISCSI_SET_PARAMS: 251 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask); 252 /* program the ddp page sizes */ 253 for (i = 0; i < 4; i++) 254 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i); 255 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) { 256 printk(KERN_INFO 257 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n", 258 adapter->name, val, uiip->pgsz_factor[0], 259 uiip->pgsz_factor[1], uiip->pgsz_factor[2], 260 uiip->pgsz_factor[3]); 261 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val); 262 } 263 break; 264 default: 265 ret = -EOPNOTSUPP; 266 } 267 return ret; 268 } 269 270 /* Response queue used for RDMA events. */ 271 #define ASYNC_NOTIF_RSPQ 0 272 273 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data) 274 { 275 int ret = 0; 276 277 switch (req) { 278 case RDMA_GET_PARAMS: { 279 struct rdma_info *rdma = data; 280 struct pci_dev *pdev = adapter->pdev; 281 282 rdma->udbell_physbase = pci_resource_start(pdev, 2); 283 rdma->udbell_len = pci_resource_len(pdev, 2); 284 rdma->tpt_base = 285 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT); 286 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT); 287 rdma->pbl_base = 288 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT); 289 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT); 290 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT); 291 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT); 292 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL; 293 rdma->pdev = pdev; 294 break; 295 } 296 case RDMA_CQ_OP:{ 297 unsigned long flags; 298 struct rdma_cq_op *rdma = data; 299 300 /* may be called in any context */ 301 spin_lock_irqsave(&adapter->sge.reg_lock, flags); 302 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op, 303 rdma->credits); 304 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags); 305 break; 306 } 307 case RDMA_GET_MEM:{ 308 struct ch_mem_range *t = data; 309 struct mc7 *mem; 310 311 if ((t->addr & 7) || (t->len & 7)) 312 return -EINVAL; 313 if (t->mem_id == MEM_CM) 314 mem = &adapter->cm; 315 else if (t->mem_id == MEM_PMRX) 316 mem = &adapter->pmrx; 317 else if (t->mem_id == MEM_PMTX) 318 mem = &adapter->pmtx; 319 else 320 return -EINVAL; 321 322 ret = 323 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8, 324 (u64 *) t->buf); 325 if (ret) 326 return ret; 327 break; 328 } 329 case RDMA_CQ_SETUP:{ 330 struct rdma_cq_setup *rdma = data; 331 332 spin_lock_irq(&adapter->sge.reg_lock); 333 ret = 334 t3_sge_init_cqcntxt(adapter, rdma->id, 335 rdma->base_addr, rdma->size, 336 ASYNC_NOTIF_RSPQ, 337 rdma->ovfl_mode, rdma->credits, 338 rdma->credit_thres); 339 spin_unlock_irq(&adapter->sge.reg_lock); 340 break; 341 } 342 case RDMA_CQ_DISABLE: 343 spin_lock_irq(&adapter->sge.reg_lock); 344 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data); 345 spin_unlock_irq(&adapter->sge.reg_lock); 346 break; 347 case RDMA_CTRL_QP_SETUP:{ 348 struct rdma_ctrlqp_setup *rdma = data; 349 350 spin_lock_irq(&adapter->sge.reg_lock); 351 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0, 352 SGE_CNTXT_RDMA, 353 ASYNC_NOTIF_RSPQ, 354 rdma->base_addr, rdma->size, 355 FW_RI_TID_START, 1, 0); 356 spin_unlock_irq(&adapter->sge.reg_lock); 357 break; 358 } 359 case RDMA_GET_MIB: { 360 spin_lock(&adapter->stats_lock); 361 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data); 362 spin_unlock(&adapter->stats_lock); 363 break; 364 } 365 default: 366 ret = -EOPNOTSUPP; 367 } 368 return ret; 369 } 370 371 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data) 372 { 373 struct adapter *adapter = tdev2adap(tdev); 374 struct tid_range *tid; 375 struct mtutab *mtup; 376 struct iff_mac *iffmacp; 377 struct ddp_params *ddpp; 378 struct adap_ports *ports; 379 struct ofld_page_info *rx_page_info; 380 struct tp_params *tp = &adapter->params.tp; 381 int i; 382 383 switch (req) { 384 case GET_MAX_OUTSTANDING_WR: 385 *(unsigned int *)data = FW_WR_NUM; 386 break; 387 case GET_WR_LEN: 388 *(unsigned int *)data = WR_FLITS; 389 break; 390 case GET_TX_MAX_CHUNK: 391 *(unsigned int *)data = 1 << 20; /* 1MB */ 392 break; 393 case GET_TID_RANGE: 394 tid = data; 395 tid->num = t3_mc5_size(&adapter->mc5) - 396 adapter->params.mc5.nroutes - 397 adapter->params.mc5.nfilters - adapter->params.mc5.nservers; 398 tid->base = 0; 399 break; 400 case GET_STID_RANGE: 401 tid = data; 402 tid->num = adapter->params.mc5.nservers; 403 tid->base = t3_mc5_size(&adapter->mc5) - tid->num - 404 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes; 405 break; 406 case GET_L2T_CAPACITY: 407 *(unsigned int *)data = 2048; 408 break; 409 case GET_MTUS: 410 mtup = data; 411 mtup->size = NMTUS; 412 mtup->mtus = adapter->params.mtus; 413 break; 414 case GET_IFF_FROM_MAC: 415 iffmacp = data; 416 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr, 417 iffmacp->vlan_tag & 418 VLAN_VID_MASK); 419 break; 420 case GET_DDP_PARAMS: 421 ddpp = data; 422 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT); 423 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT); 424 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK); 425 break; 426 case GET_PORTS: 427 ports = data; 428 ports->nports = adapter->params.nports; 429 for_each_port(adapter, i) 430 ports->lldevs[i] = adapter->port[i]; 431 break; 432 case ULP_ISCSI_GET_PARAMS: 433 case ULP_ISCSI_SET_PARAMS: 434 if (!offload_running(adapter)) 435 return -EAGAIN; 436 return cxgb_ulp_iscsi_ctl(adapter, req, data); 437 case RDMA_GET_PARAMS: 438 case RDMA_CQ_OP: 439 case RDMA_CQ_SETUP: 440 case RDMA_CQ_DISABLE: 441 case RDMA_CTRL_QP_SETUP: 442 case RDMA_GET_MEM: 443 case RDMA_GET_MIB: 444 if (!offload_running(adapter)) 445 return -EAGAIN; 446 return cxgb_rdma_ctl(adapter, req, data); 447 case GET_RX_PAGE_INFO: 448 rx_page_info = data; 449 rx_page_info->page_size = tp->rx_pg_size; 450 rx_page_info->num = tp->rx_num_pgs; 451 break; 452 case GET_ISCSI_IPV4ADDR: { 453 struct iscsi_ipv4addr *p = data; 454 struct port_info *pi = netdev_priv(p->dev); 455 p->ipv4addr = pi->iscsi_ipv4addr; 456 break; 457 } 458 case GET_EMBEDDED_INFO: { 459 struct ch_embedded_info *e = data; 460 461 spin_lock(&adapter->stats_lock); 462 t3_get_fw_version(adapter, &e->fw_vers); 463 t3_get_tp_version(adapter, &e->tp_vers); 464 spin_unlock(&adapter->stats_lock); 465 break; 466 } 467 default: 468 return -EOPNOTSUPP; 469 } 470 return 0; 471 } 472 473 /* 474 * Dummy handler for Rx offload packets in case we get an offload packet before 475 * proper processing is setup. This complains and drops the packet as it isn't 476 * normal to get offload packets at this stage. 477 */ 478 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs, 479 int n) 480 { 481 while (n--) 482 dev_kfree_skb_any(skbs[n]); 483 return 0; 484 } 485 486 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh) 487 { 488 } 489 490 void cxgb3_set_dummy_ops(struct t3cdev *dev) 491 { 492 dev->recv = rx_offload_blackhole; 493 dev->neigh_update = dummy_neigh_update; 494 } 495 496 /* 497 * Free an active-open TID. 498 */ 499 void *cxgb3_free_atid(struct t3cdev *tdev, int atid) 500 { 501 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 502 union active_open_entry *p = atid2entry(t, atid); 503 void *ctx = p->t3c_tid.ctx; 504 505 spin_lock_bh(&t->atid_lock); 506 p->next = t->afree; 507 t->afree = p; 508 t->atids_in_use--; 509 spin_unlock_bh(&t->atid_lock); 510 511 return ctx; 512 } 513 514 EXPORT_SYMBOL(cxgb3_free_atid); 515 516 /* 517 * Free a server TID and return it to the free pool. 518 */ 519 void cxgb3_free_stid(struct t3cdev *tdev, int stid) 520 { 521 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 522 union listen_entry *p = stid2entry(t, stid); 523 524 spin_lock_bh(&t->stid_lock); 525 p->next = t->sfree; 526 t->sfree = p; 527 t->stids_in_use--; 528 spin_unlock_bh(&t->stid_lock); 529 } 530 531 EXPORT_SYMBOL(cxgb3_free_stid); 532 533 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client, 534 void *ctx, unsigned int tid) 535 { 536 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 537 538 t->tid_tab[tid].client = client; 539 t->tid_tab[tid].ctx = ctx; 540 atomic_inc(&t->tids_in_use); 541 } 542 543 EXPORT_SYMBOL(cxgb3_insert_tid); 544 545 /* 546 * Populate a TID_RELEASE WR. The skb must be already propely sized. 547 */ 548 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid) 549 { 550 struct cpl_tid_release *req; 551 552 skb->priority = CPL_PRIORITY_SETUP; 553 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 554 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 555 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 556 } 557 558 static void t3_process_tid_release_list(struct work_struct *work) 559 { 560 struct t3c_data *td = container_of(work, struct t3c_data, 561 tid_release_task); 562 struct sk_buff *skb; 563 struct t3cdev *tdev = td->dev; 564 565 566 spin_lock_bh(&td->tid_release_lock); 567 while (td->tid_release_list) { 568 struct t3c_tid_entry *p = td->tid_release_list; 569 570 td->tid_release_list = p->ctx; 571 spin_unlock_bh(&td->tid_release_lock); 572 573 skb = alloc_skb(sizeof(struct cpl_tid_release), 574 GFP_KERNEL); 575 if (!skb) 576 skb = td->nofail_skb; 577 if (!skb) { 578 spin_lock_bh(&td->tid_release_lock); 579 p->ctx = (void *)td->tid_release_list; 580 td->tid_release_list = p; 581 break; 582 } 583 mk_tid_release(skb, p - td->tid_maps.tid_tab); 584 cxgb3_ofld_send(tdev, skb); 585 p->ctx = NULL; 586 if (skb == td->nofail_skb) 587 td->nofail_skb = 588 alloc_skb(sizeof(struct cpl_tid_release), 589 GFP_KERNEL); 590 spin_lock_bh(&td->tid_release_lock); 591 } 592 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1; 593 spin_unlock_bh(&td->tid_release_lock); 594 595 if (!td->nofail_skb) 596 td->nofail_skb = 597 alloc_skb(sizeof(struct cpl_tid_release), 598 GFP_KERNEL); 599 } 600 601 /* use ctx as a next pointer in the tid release list */ 602 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid) 603 { 604 struct t3c_data *td = T3C_DATA(tdev); 605 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid]; 606 607 spin_lock_bh(&td->tid_release_lock); 608 p->ctx = (void *)td->tid_release_list; 609 p->client = NULL; 610 td->tid_release_list = p; 611 if (!p->ctx || td->release_list_incomplete) 612 schedule_work(&td->tid_release_task); 613 spin_unlock_bh(&td->tid_release_lock); 614 } 615 616 EXPORT_SYMBOL(cxgb3_queue_tid_release); 617 618 /* 619 * Remove a tid from the TID table. A client may defer processing its last 620 * CPL message if it is locked at the time it arrives, and while the message 621 * sits in the client's backlog the TID may be reused for another connection. 622 * To handle this we atomically switch the TID association if it still points 623 * to the original client context. 624 */ 625 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid) 626 { 627 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 628 629 BUG_ON(tid >= t->ntids); 630 if (tdev->type == T3A) 631 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL); 632 else { 633 struct sk_buff *skb; 634 635 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 636 if (likely(skb)) { 637 mk_tid_release(skb, tid); 638 cxgb3_ofld_send(tdev, skb); 639 t->tid_tab[tid].ctx = NULL; 640 } else 641 cxgb3_queue_tid_release(tdev, tid); 642 } 643 atomic_dec(&t->tids_in_use); 644 } 645 646 EXPORT_SYMBOL(cxgb3_remove_tid); 647 648 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client, 649 void *ctx) 650 { 651 int atid = -1; 652 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 653 654 spin_lock_bh(&t->atid_lock); 655 if (t->afree && 656 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <= 657 t->ntids) { 658 union active_open_entry *p = t->afree; 659 660 atid = (p - t->atid_tab) + t->atid_base; 661 t->afree = p->next; 662 p->t3c_tid.ctx = ctx; 663 p->t3c_tid.client = client; 664 t->atids_in_use++; 665 } 666 spin_unlock_bh(&t->atid_lock); 667 return atid; 668 } 669 670 EXPORT_SYMBOL(cxgb3_alloc_atid); 671 672 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client, 673 void *ctx) 674 { 675 int stid = -1; 676 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 677 678 spin_lock_bh(&t->stid_lock); 679 if (t->sfree) { 680 union listen_entry *p = t->sfree; 681 682 stid = (p - t->stid_tab) + t->stid_base; 683 t->sfree = p->next; 684 p->t3c_tid.ctx = ctx; 685 p->t3c_tid.client = client; 686 t->stids_in_use++; 687 } 688 spin_unlock_bh(&t->stid_lock); 689 return stid; 690 } 691 692 EXPORT_SYMBOL(cxgb3_alloc_stid); 693 694 /* Get the t3cdev associated with a net_device */ 695 struct t3cdev *dev2t3cdev(struct net_device *dev) 696 { 697 const struct port_info *pi = netdev_priv(dev); 698 699 return (struct t3cdev *)pi->adapter; 700 } 701 702 EXPORT_SYMBOL(dev2t3cdev); 703 704 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb) 705 { 706 struct cpl_smt_write_rpl *rpl = cplhdr(skb); 707 708 if (rpl->status != CPL_ERR_NONE) 709 printk(KERN_ERR 710 "Unexpected SMT_WRITE_RPL status %u for entry %u\n", 711 rpl->status, GET_TID(rpl)); 712 713 return CPL_RET_BUF_DONE; 714 } 715 716 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb) 717 { 718 struct cpl_l2t_write_rpl *rpl = cplhdr(skb); 719 720 if (rpl->status != CPL_ERR_NONE) 721 printk(KERN_ERR 722 "Unexpected L2T_WRITE_RPL status %u for entry %u\n", 723 rpl->status, GET_TID(rpl)); 724 725 return CPL_RET_BUF_DONE; 726 } 727 728 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb) 729 { 730 struct cpl_rte_write_rpl *rpl = cplhdr(skb); 731 732 if (rpl->status != CPL_ERR_NONE) 733 printk(KERN_ERR 734 "Unexpected RTE_WRITE_RPL status %u for entry %u\n", 735 rpl->status, GET_TID(rpl)); 736 737 return CPL_RET_BUF_DONE; 738 } 739 740 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb) 741 { 742 struct cpl_act_open_rpl *rpl = cplhdr(skb); 743 unsigned int atid = G_TID(ntohl(rpl->atid)); 744 struct t3c_tid_entry *t3c_tid; 745 746 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid); 747 if (t3c_tid && t3c_tid->ctx && t3c_tid->client && 748 t3c_tid->client->handlers && 749 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) { 750 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb, 751 t3c_tid-> 752 ctx); 753 } else { 754 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", 755 dev->name, CPL_ACT_OPEN_RPL); 756 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 757 } 758 } 759 760 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb) 761 { 762 union opcode_tid *p = cplhdr(skb); 763 unsigned int stid = G_TID(ntohl(p->opcode_tid)); 764 struct t3c_tid_entry *t3c_tid; 765 766 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid); 767 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 768 t3c_tid->client->handlers[p->opcode]) { 769 return t3c_tid->client->handlers[p->opcode] (dev, skb, 770 t3c_tid->ctx); 771 } else { 772 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", 773 dev->name, p->opcode); 774 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 775 } 776 } 777 778 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb) 779 { 780 union opcode_tid *p = cplhdr(skb); 781 unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); 782 struct t3c_tid_entry *t3c_tid; 783 784 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); 785 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 786 t3c_tid->client->handlers[p->opcode]) { 787 return t3c_tid->client->handlers[p->opcode] 788 (dev, skb, t3c_tid->ctx); 789 } else { 790 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", 791 dev->name, p->opcode); 792 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 793 } 794 } 795 796 static int do_cr(struct t3cdev *dev, struct sk_buff *skb) 797 { 798 struct cpl_pass_accept_req *req = cplhdr(skb); 799 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); 800 struct tid_info *t = &(T3C_DATA(dev))->tid_maps; 801 struct t3c_tid_entry *t3c_tid; 802 unsigned int tid = GET_TID(req); 803 804 if (unlikely(tid >= t->ntids)) { 805 printk("%s: passive open TID %u too large\n", 806 dev->name, tid); 807 t3_fatal_err(tdev2adap(dev)); 808 return CPL_RET_BUF_DONE; 809 } 810 811 t3c_tid = lookup_stid(t, stid); 812 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 813 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) { 814 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ] 815 (dev, skb, t3c_tid->ctx); 816 } else { 817 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", 818 dev->name, CPL_PASS_ACCEPT_REQ); 819 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 820 } 821 } 822 823 /* 824 * Returns an sk_buff for a reply CPL message of size len. If the input 825 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer 826 * is allocated. The input skb must be of size at least len. Note that this 827 * operation does not destroy the original skb data even if it decides to reuse 828 * the buffer. 829 */ 830 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len, 831 gfp_t gfp) 832 { 833 if (likely(!skb_cloned(skb))) { 834 BUG_ON(skb->len < len); 835 __skb_trim(skb, len); 836 skb_get(skb); 837 } else { 838 skb = alloc_skb(len, gfp); 839 if (skb) 840 __skb_put(skb, len); 841 } 842 return skb; 843 } 844 845 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb) 846 { 847 union opcode_tid *p = cplhdr(skb); 848 unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); 849 struct t3c_tid_entry *t3c_tid; 850 851 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); 852 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 853 t3c_tid->client->handlers[p->opcode]) { 854 return t3c_tid->client->handlers[p->opcode] 855 (dev, skb, t3c_tid->ctx); 856 } else { 857 struct cpl_abort_req_rss *req = cplhdr(skb); 858 struct cpl_abort_rpl *rpl; 859 struct sk_buff *reply_skb; 860 unsigned int tid = GET_TID(req); 861 u8 cmd = req->status; 862 863 if (req->status == CPL_ERR_RTX_NEG_ADVICE || 864 req->status == CPL_ERR_PERSIST_NEG_ADVICE) 865 goto out; 866 867 reply_skb = cxgb3_get_cpl_reply_skb(skb, 868 sizeof(struct 869 cpl_abort_rpl), 870 GFP_ATOMIC); 871 872 if (!reply_skb) { 873 printk("do_abort_req_rss: couldn't get skb!\n"); 874 goto out; 875 } 876 reply_skb->priority = CPL_PRIORITY_DATA; 877 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl)); 878 rpl = cplhdr(reply_skb); 879 rpl->wr.wr_hi = 880 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL)); 881 rpl->wr.wr_lo = htonl(V_WR_TID(tid)); 882 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid)); 883 rpl->cmd = cmd; 884 cxgb3_ofld_send(dev, reply_skb); 885 out: 886 return CPL_RET_BUF_DONE; 887 } 888 } 889 890 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb) 891 { 892 struct cpl_act_establish *req = cplhdr(skb); 893 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); 894 struct tid_info *t = &(T3C_DATA(dev))->tid_maps; 895 struct t3c_tid_entry *t3c_tid; 896 unsigned int tid = GET_TID(req); 897 898 if (unlikely(tid >= t->ntids)) { 899 printk("%s: active establish TID %u too large\n", 900 dev->name, tid); 901 t3_fatal_err(tdev2adap(dev)); 902 return CPL_RET_BUF_DONE; 903 } 904 905 t3c_tid = lookup_atid(t, atid); 906 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 907 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) { 908 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH] 909 (dev, skb, t3c_tid->ctx); 910 } else { 911 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", 912 dev->name, CPL_ACT_ESTABLISH); 913 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 914 } 915 } 916 917 static int do_trace(struct t3cdev *dev, struct sk_buff *skb) 918 { 919 struct cpl_trace_pkt *p = cplhdr(skb); 920 921 skb->protocol = htons(0xffff); 922 skb->dev = dev->lldev; 923 skb_pull(skb, sizeof(*p)); 924 skb_reset_mac_header(skb); 925 netif_receive_skb(skb); 926 return 0; 927 } 928 929 /* 930 * That skb would better have come from process_responses() where we abuse 931 * ->priority and ->csum to carry our data. NB: if we get to per-arch 932 * ->csum, the things might get really interesting here. 933 */ 934 935 static inline u32 get_hwtid(struct sk_buff *skb) 936 { 937 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff; 938 } 939 940 static inline u32 get_opcode(struct sk_buff *skb) 941 { 942 return G_OPCODE(ntohl((__force __be32)skb->csum)); 943 } 944 945 static int do_term(struct t3cdev *dev, struct sk_buff *skb) 946 { 947 unsigned int hwtid = get_hwtid(skb); 948 unsigned int opcode = get_opcode(skb); 949 struct t3c_tid_entry *t3c_tid; 950 951 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); 952 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 953 t3c_tid->client->handlers[opcode]) { 954 return t3c_tid->client->handlers[opcode] (dev, skb, 955 t3c_tid->ctx); 956 } else { 957 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", 958 dev->name, opcode); 959 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 960 } 961 } 962 963 static int nb_callback(struct notifier_block *self, unsigned long event, 964 void *ctx) 965 { 966 switch (event) { 967 case (NETEVENT_NEIGH_UPDATE):{ 968 cxgb_neigh_update((struct neighbour *)ctx); 969 break; 970 } 971 case (NETEVENT_REDIRECT):{ 972 struct netevent_redirect *nr = ctx; 973 cxgb_redirect(nr->old, nr->old_neigh, 974 nr->new, nr->new_neigh, 975 nr->daddr); 976 cxgb_neigh_update(nr->new_neigh); 977 break; 978 } 979 default: 980 break; 981 } 982 return 0; 983 } 984 985 static struct notifier_block nb = { 986 .notifier_call = nb_callback 987 }; 988 989 /* 990 * Process a received packet with an unknown/unexpected CPL opcode. 991 */ 992 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb) 993 { 994 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name, 995 *skb->data); 996 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 997 } 998 999 /* 1000 * Handlers for each CPL opcode 1001 */ 1002 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS]; 1003 1004 /* 1005 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied 1006 * to unregister an existing handler. 1007 */ 1008 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h) 1009 { 1010 if (opcode < NUM_CPL_CMDS) 1011 cpl_handlers[opcode] = h ? h : do_bad_cpl; 1012 else 1013 printk(KERN_ERR "T3C: handler registration for " 1014 "opcode %x failed\n", opcode); 1015 } 1016 1017 EXPORT_SYMBOL(t3_register_cpl_handler); 1018 1019 /* 1020 * T3CDEV's receive method. 1021 */ 1022 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n) 1023 { 1024 while (n--) { 1025 struct sk_buff *skb = *skbs++; 1026 unsigned int opcode = get_opcode(skb); 1027 int ret = cpl_handlers[opcode] (dev, skb); 1028 1029 #if VALIDATE_TID 1030 if (ret & CPL_RET_UNKNOWN_TID) { 1031 union opcode_tid *p = cplhdr(skb); 1032 1033 printk(KERN_ERR "%s: CPL message (opcode %u) had " 1034 "unknown TID %u\n", dev->name, opcode, 1035 G_TID(ntohl(p->opcode_tid))); 1036 } 1037 #endif 1038 if (ret & CPL_RET_BUF_DONE) 1039 kfree_skb(skb); 1040 } 1041 return 0; 1042 } 1043 1044 /* 1045 * Sends an sk_buff to a T3C driver after dealing with any active network taps. 1046 */ 1047 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb) 1048 { 1049 int r; 1050 1051 local_bh_disable(); 1052 r = dev->send(dev, skb); 1053 local_bh_enable(); 1054 return r; 1055 } 1056 1057 EXPORT_SYMBOL(cxgb3_ofld_send); 1058 1059 static int is_offloading(struct net_device *dev) 1060 { 1061 struct adapter *adapter; 1062 int i; 1063 1064 read_lock_bh(&adapter_list_lock); 1065 list_for_each_entry(adapter, &adapter_list, adapter_list) { 1066 for_each_port(adapter, i) { 1067 if (dev == adapter->port[i]) { 1068 read_unlock_bh(&adapter_list_lock); 1069 return 1; 1070 } 1071 } 1072 } 1073 read_unlock_bh(&adapter_list_lock); 1074 return 0; 1075 } 1076 1077 static void cxgb_neigh_update(struct neighbour *neigh) 1078 { 1079 struct net_device *dev; 1080 1081 if (!neigh) 1082 return; 1083 dev = neigh->dev; 1084 if (dev && (is_offloading(dev))) { 1085 struct t3cdev *tdev = dev2t3cdev(dev); 1086 1087 BUG_ON(!tdev); 1088 t3_l2t_update(tdev, neigh); 1089 } 1090 } 1091 1092 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e) 1093 { 1094 struct sk_buff *skb; 1095 struct cpl_set_tcb_field *req; 1096 1097 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 1098 if (!skb) { 1099 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__); 1100 return; 1101 } 1102 skb->priority = CPL_PRIORITY_CONTROL; 1103 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req)); 1104 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 1105 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); 1106 req->reply = 0; 1107 req->cpu_idx = 0; 1108 req->word = htons(W_TCB_L2T_IX); 1109 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX)); 1110 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx)); 1111 tdev->send(tdev, skb); 1112 } 1113 1114 static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh, 1115 struct dst_entry *new, struct neighbour *new_neigh, 1116 const void *daddr) 1117 { 1118 struct net_device *olddev, *newdev; 1119 struct tid_info *ti; 1120 struct t3cdev *tdev; 1121 u32 tid; 1122 int update_tcb; 1123 struct l2t_entry *e; 1124 struct t3c_tid_entry *te; 1125 1126 olddev = old_neigh->dev; 1127 newdev = new_neigh->dev; 1128 1129 if (!is_offloading(olddev)) 1130 return; 1131 if (!is_offloading(newdev)) { 1132 printk(KERN_WARNING "%s: Redirect to non-offload " 1133 "device ignored.\n", __func__); 1134 return; 1135 } 1136 tdev = dev2t3cdev(olddev); 1137 BUG_ON(!tdev); 1138 if (tdev != dev2t3cdev(newdev)) { 1139 printk(KERN_WARNING "%s: Redirect to different " 1140 "offload device ignored.\n", __func__); 1141 return; 1142 } 1143 1144 /* Add new L2T entry */ 1145 e = t3_l2t_get(tdev, new, newdev, daddr); 1146 if (!e) { 1147 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n", 1148 __func__); 1149 return; 1150 } 1151 1152 /* Walk tid table and notify clients of dst change. */ 1153 ti = &(T3C_DATA(tdev))->tid_maps; 1154 for (tid = 0; tid < ti->ntids; tid++) { 1155 te = lookup_tid(ti, tid); 1156 BUG_ON(!te); 1157 if (te && te->ctx && te->client && te->client->redirect) { 1158 update_tcb = te->client->redirect(te->ctx, old, new, e); 1159 if (update_tcb) { 1160 rcu_read_lock(); 1161 l2t_hold(L2DATA(tdev), e); 1162 rcu_read_unlock(); 1163 set_l2t_ix(tdev, tid, e); 1164 } 1165 } 1166 } 1167 l2t_release(tdev, e); 1168 } 1169 1170 /* 1171 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1172 * The allocated memory is cleared. 1173 */ 1174 void *cxgb_alloc_mem(unsigned long size) 1175 { 1176 void *p = kzalloc(size, GFP_KERNEL); 1177 1178 if (!p) 1179 p = vzalloc(size); 1180 return p; 1181 } 1182 1183 /* 1184 * Free memory allocated through t3_alloc_mem(). 1185 */ 1186 void cxgb_free_mem(void *addr) 1187 { 1188 if (is_vmalloc_addr(addr)) 1189 vfree(addr); 1190 else 1191 kfree(addr); 1192 } 1193 1194 /* 1195 * Allocate and initialize the TID tables. Returns 0 on success. 1196 */ 1197 static int init_tid_tabs(struct tid_info *t, unsigned int ntids, 1198 unsigned int natids, unsigned int nstids, 1199 unsigned int atid_base, unsigned int stid_base) 1200 { 1201 unsigned long size = ntids * sizeof(*t->tid_tab) + 1202 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab); 1203 1204 t->tid_tab = cxgb_alloc_mem(size); 1205 if (!t->tid_tab) 1206 return -ENOMEM; 1207 1208 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids]; 1209 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids]; 1210 t->ntids = ntids; 1211 t->nstids = nstids; 1212 t->stid_base = stid_base; 1213 t->sfree = NULL; 1214 t->natids = natids; 1215 t->atid_base = atid_base; 1216 t->afree = NULL; 1217 t->stids_in_use = t->atids_in_use = 0; 1218 atomic_set(&t->tids_in_use, 0); 1219 spin_lock_init(&t->stid_lock); 1220 spin_lock_init(&t->atid_lock); 1221 1222 /* 1223 * Setup the free lists for stid_tab and atid_tab. 1224 */ 1225 if (nstids) { 1226 while (--nstids) 1227 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids]; 1228 t->sfree = t->stid_tab; 1229 } 1230 if (natids) { 1231 while (--natids) 1232 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1233 t->afree = t->atid_tab; 1234 } 1235 return 0; 1236 } 1237 1238 static void free_tid_maps(struct tid_info *t) 1239 { 1240 cxgb_free_mem(t->tid_tab); 1241 } 1242 1243 static inline void add_adapter(struct adapter *adap) 1244 { 1245 write_lock_bh(&adapter_list_lock); 1246 list_add_tail(&adap->adapter_list, &adapter_list); 1247 write_unlock_bh(&adapter_list_lock); 1248 } 1249 1250 static inline void remove_adapter(struct adapter *adap) 1251 { 1252 write_lock_bh(&adapter_list_lock); 1253 list_del(&adap->adapter_list); 1254 write_unlock_bh(&adapter_list_lock); 1255 } 1256 1257 int cxgb3_offload_activate(struct adapter *adapter) 1258 { 1259 struct t3cdev *dev = &adapter->tdev; 1260 int natids, err; 1261 struct t3c_data *t; 1262 struct tid_range stid_range, tid_range; 1263 struct mtutab mtutab; 1264 unsigned int l2t_capacity; 1265 1266 t = kzalloc(sizeof(*t), GFP_KERNEL); 1267 if (!t) 1268 return -ENOMEM; 1269 1270 err = -EOPNOTSUPP; 1271 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 || 1272 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 || 1273 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 || 1274 dev->ctl(dev, GET_MTUS, &mtutab) < 0 || 1275 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 || 1276 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0) 1277 goto out_free; 1278 1279 err = -ENOMEM; 1280 RCU_INIT_POINTER(dev->l2opt, t3_init_l2t(l2t_capacity)); 1281 if (!L2DATA(dev)) 1282 goto out_free; 1283 1284 natids = min(tid_range.num / 2, MAX_ATIDS); 1285 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids, 1286 stid_range.num, ATID_BASE, stid_range.base); 1287 if (err) 1288 goto out_free_l2t; 1289 1290 t->mtus = mtutab.mtus; 1291 t->nmtus = mtutab.size; 1292 1293 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list); 1294 spin_lock_init(&t->tid_release_lock); 1295 INIT_LIST_HEAD(&t->list_node); 1296 t->dev = dev; 1297 1298 T3C_DATA(dev) = t; 1299 dev->recv = process_rx; 1300 dev->neigh_update = t3_l2t_update; 1301 1302 /* Register netevent handler once */ 1303 if (list_empty(&adapter_list)) 1304 register_netevent_notifier(&nb); 1305 1306 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL); 1307 t->release_list_incomplete = 0; 1308 1309 add_adapter(adapter); 1310 return 0; 1311 1312 out_free_l2t: 1313 t3_free_l2t(L2DATA(dev)); 1314 RCU_INIT_POINTER(dev->l2opt, NULL); 1315 out_free: 1316 kfree(t); 1317 return err; 1318 } 1319 1320 static void clean_l2_data(struct rcu_head *head) 1321 { 1322 struct l2t_data *d = container_of(head, struct l2t_data, rcu_head); 1323 t3_free_l2t(d); 1324 } 1325 1326 1327 void cxgb3_offload_deactivate(struct adapter *adapter) 1328 { 1329 struct t3cdev *tdev = &adapter->tdev; 1330 struct t3c_data *t = T3C_DATA(tdev); 1331 struct l2t_data *d; 1332 1333 remove_adapter(adapter); 1334 if (list_empty(&adapter_list)) 1335 unregister_netevent_notifier(&nb); 1336 1337 free_tid_maps(&t->tid_maps); 1338 T3C_DATA(tdev) = NULL; 1339 rcu_read_lock(); 1340 d = L2DATA(tdev); 1341 rcu_read_unlock(); 1342 RCU_INIT_POINTER(tdev->l2opt, NULL); 1343 call_rcu(&d->rcu_head, clean_l2_data); 1344 if (t->nofail_skb) 1345 kfree_skb(t->nofail_skb); 1346 kfree(t); 1347 } 1348 1349 static inline void register_tdev(struct t3cdev *tdev) 1350 { 1351 static int unit; 1352 1353 mutex_lock(&cxgb3_db_lock); 1354 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++); 1355 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list); 1356 mutex_unlock(&cxgb3_db_lock); 1357 } 1358 1359 static inline void unregister_tdev(struct t3cdev *tdev) 1360 { 1361 mutex_lock(&cxgb3_db_lock); 1362 list_del(&tdev->ofld_dev_list); 1363 mutex_unlock(&cxgb3_db_lock); 1364 } 1365 1366 static inline int adap2type(struct adapter *adapter) 1367 { 1368 int type = 0; 1369 1370 switch (adapter->params.rev) { 1371 case T3_REV_A: 1372 type = T3A; 1373 break; 1374 case T3_REV_B: 1375 case T3_REV_B2: 1376 type = T3B; 1377 break; 1378 case T3_REV_C: 1379 type = T3C; 1380 break; 1381 } 1382 return type; 1383 } 1384 1385 void __devinit cxgb3_adapter_ofld(struct adapter *adapter) 1386 { 1387 struct t3cdev *tdev = &adapter->tdev; 1388 1389 INIT_LIST_HEAD(&tdev->ofld_dev_list); 1390 1391 cxgb3_set_dummy_ops(tdev); 1392 tdev->send = t3_offload_tx; 1393 tdev->ctl = cxgb_offload_ctl; 1394 tdev->type = adap2type(adapter); 1395 1396 register_tdev(tdev); 1397 } 1398 1399 void __devexit cxgb3_adapter_unofld(struct adapter *adapter) 1400 { 1401 struct t3cdev *tdev = &adapter->tdev; 1402 1403 tdev->recv = NULL; 1404 tdev->neigh_update = NULL; 1405 1406 unregister_tdev(tdev); 1407 } 1408 1409 void __init cxgb3_offload_init(void) 1410 { 1411 int i; 1412 1413 for (i = 0; i < NUM_CPL_CMDS; ++i) 1414 cpl_handlers[i] = do_bad_cpl; 1415 1416 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl); 1417 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl); 1418 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl); 1419 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl); 1420 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl); 1421 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr); 1422 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl); 1423 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl); 1424 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl); 1425 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl); 1426 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl); 1427 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl); 1428 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl); 1429 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl); 1430 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl); 1431 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl); 1432 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss); 1433 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish); 1434 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl); 1435 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl); 1436 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term); 1437 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl); 1438 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace); 1439 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl); 1440 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl); 1441 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl); 1442 } 1443