1 /* 2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/list.h> 36 #include <linux/slab.h> 37 #include <net/neighbour.h> 38 #include <linux/notifier.h> 39 #include <linux/atomic.h> 40 #include <linux/proc_fs.h> 41 #include <linux/if_vlan.h> 42 #include <net/netevent.h> 43 #include <linux/highmem.h> 44 #include <linux/vmalloc.h> 45 #include <linux/export.h> 46 47 #include "common.h" 48 #include "regs.h" 49 #include "cxgb3_ioctl.h" 50 #include "cxgb3_ctl_defs.h" 51 #include "cxgb3_defs.h" 52 #include "l2t.h" 53 #include "firmware_exports.h" 54 #include "cxgb3_offload.h" 55 56 static LIST_HEAD(client_list); 57 static LIST_HEAD(ofld_dev_list); 58 static DEFINE_MUTEX(cxgb3_db_lock); 59 60 static DEFINE_RWLOCK(adapter_list_lock); 61 static LIST_HEAD(adapter_list); 62 63 static const unsigned int MAX_ATIDS = 64 * 1024; 64 static const unsigned int ATID_BASE = 0x10000; 65 66 static void cxgb_neigh_update(struct neighbour *neigh); 67 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new, 68 struct neighbour *neigh, const void *daddr); 69 70 static inline int offload_activated(struct t3cdev *tdev) 71 { 72 const struct adapter *adapter = tdev2adap(tdev); 73 74 return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 75 } 76 77 /** 78 * cxgb3_register_client - register an offload client 79 * @client: the client 80 * 81 * Add the client to the client list, 82 * and call backs the client for each activated offload device 83 */ 84 void cxgb3_register_client(struct cxgb3_client *client) 85 { 86 struct t3cdev *tdev; 87 88 mutex_lock(&cxgb3_db_lock); 89 list_add_tail(&client->client_list, &client_list); 90 91 if (client->add) { 92 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { 93 if (offload_activated(tdev)) 94 client->add(tdev); 95 } 96 } 97 mutex_unlock(&cxgb3_db_lock); 98 } 99 100 EXPORT_SYMBOL(cxgb3_register_client); 101 102 /** 103 * cxgb3_unregister_client - unregister an offload client 104 * @client: the client 105 * 106 * Remove the client to the client list, 107 * and call backs the client for each activated offload device. 108 */ 109 void cxgb3_unregister_client(struct cxgb3_client *client) 110 { 111 struct t3cdev *tdev; 112 113 mutex_lock(&cxgb3_db_lock); 114 list_del(&client->client_list); 115 116 if (client->remove) { 117 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { 118 if (offload_activated(tdev)) 119 client->remove(tdev); 120 } 121 } 122 mutex_unlock(&cxgb3_db_lock); 123 } 124 125 EXPORT_SYMBOL(cxgb3_unregister_client); 126 127 /** 128 * cxgb3_add_clients - activate registered clients for an offload device 129 * @tdev: the offload device 130 * 131 * Call backs all registered clients once a offload device is activated 132 */ 133 void cxgb3_add_clients(struct t3cdev *tdev) 134 { 135 struct cxgb3_client *client; 136 137 mutex_lock(&cxgb3_db_lock); 138 list_for_each_entry(client, &client_list, client_list) { 139 if (client->add) 140 client->add(tdev); 141 } 142 mutex_unlock(&cxgb3_db_lock); 143 } 144 145 /** 146 * cxgb3_remove_clients - deactivates registered clients 147 * for an offload device 148 * @tdev: the offload device 149 * 150 * Call backs all registered clients once a offload device is deactivated 151 */ 152 void cxgb3_remove_clients(struct t3cdev *tdev) 153 { 154 struct cxgb3_client *client; 155 156 mutex_lock(&cxgb3_db_lock); 157 list_for_each_entry(client, &client_list, client_list) { 158 if (client->remove) 159 client->remove(tdev); 160 } 161 mutex_unlock(&cxgb3_db_lock); 162 } 163 164 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port) 165 { 166 struct cxgb3_client *client; 167 168 mutex_lock(&cxgb3_db_lock); 169 list_for_each_entry(client, &client_list, client_list) { 170 if (client->event_handler) 171 client->event_handler(tdev, event, port); 172 } 173 mutex_unlock(&cxgb3_db_lock); 174 } 175 176 static struct net_device *get_iff_from_mac(struct adapter *adapter, 177 const unsigned char *mac, 178 unsigned int vlan) 179 { 180 int i; 181 182 for_each_port(adapter, i) { 183 struct net_device *dev = adapter->port[i]; 184 185 if (ether_addr_equal(dev->dev_addr, mac)) { 186 rcu_read_lock(); 187 if (vlan && vlan != VLAN_VID_MASK) { 188 dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), vlan); 189 } else if (netif_is_bond_slave(dev)) { 190 struct net_device *upper_dev; 191 192 while ((upper_dev = 193 netdev_master_upper_dev_get_rcu(dev))) 194 dev = upper_dev; 195 } 196 rcu_read_unlock(); 197 return dev; 198 } 199 } 200 return NULL; 201 } 202 203 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req, 204 void *data) 205 { 206 int i; 207 int ret = 0; 208 unsigned int val = 0; 209 struct ulp_iscsi_info *uiip = data; 210 211 switch (req) { 212 case ULP_ISCSI_GET_PARAMS: 213 uiip->pdev = adapter->pdev; 214 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT); 215 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT); 216 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK); 217 218 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ); 219 for (i = 0; i < 4; i++, val >>= 8) 220 uiip->pgsz_factor[i] = val & 0xFF; 221 222 val = t3_read_reg(adapter, A_TP_PARA_REG7); 223 uiip->max_txsz = 224 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0, 225 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1); 226 /* 227 * On tx, the iscsi pdu has to be <= tx page size and has to 228 * fit into the Tx PM FIFO. 229 */ 230 val = min(adapter->params.tp.tx_pg_size, 231 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17); 232 uiip->max_txsz = min(val, uiip->max_txsz); 233 234 /* set MaxRxData to 16224 */ 235 val = t3_read_reg(adapter, A_TP_PARA_REG2); 236 if ((val >> S_MAXRXDATA) != 0x3f60) { 237 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE); 238 val |= V_MAXRXDATA(0x3f60); 239 pr_info("%s, iscsi set MaxRxData to 16224 (0x%x)\n", 240 adapter->name, val); 241 t3_write_reg(adapter, A_TP_PARA_REG2, val); 242 } 243 244 /* 245 * on rx, the iscsi pdu has to be < rx page size and the 246 * the max rx data length programmed in TP 247 */ 248 val = min(adapter->params.tp.rx_pg_size, 249 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >> 250 S_MAXRXDATA) & M_MAXRXDATA); 251 uiip->max_rxsz = min(val, uiip->max_rxsz); 252 break; 253 case ULP_ISCSI_SET_PARAMS: 254 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask); 255 /* program the ddp page sizes */ 256 for (i = 0; i < 4; i++) 257 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i); 258 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) { 259 pr_info("%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u\n", 260 adapter->name, val, uiip->pgsz_factor[0], 261 uiip->pgsz_factor[1], uiip->pgsz_factor[2], 262 uiip->pgsz_factor[3]); 263 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val); 264 } 265 break; 266 default: 267 ret = -EOPNOTSUPP; 268 } 269 return ret; 270 } 271 272 /* Response queue used for RDMA events. */ 273 #define ASYNC_NOTIF_RSPQ 0 274 275 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data) 276 { 277 int ret = 0; 278 279 switch (req) { 280 case RDMA_GET_PARAMS: { 281 struct rdma_info *rdma = data; 282 struct pci_dev *pdev = adapter->pdev; 283 284 rdma->udbell_physbase = pci_resource_start(pdev, 2); 285 rdma->udbell_len = pci_resource_len(pdev, 2); 286 rdma->tpt_base = 287 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT); 288 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT); 289 rdma->pbl_base = 290 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT); 291 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT); 292 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT); 293 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT); 294 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL; 295 rdma->pdev = pdev; 296 break; 297 } 298 case RDMA_CQ_OP:{ 299 unsigned long flags; 300 struct rdma_cq_op *rdma = data; 301 302 /* may be called in any context */ 303 spin_lock_irqsave(&adapter->sge.reg_lock, flags); 304 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op, 305 rdma->credits); 306 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags); 307 break; 308 } 309 case RDMA_GET_MEM:{ 310 struct ch_mem_range *t = data; 311 struct mc7 *mem; 312 313 if ((t->addr & 7) || (t->len & 7)) 314 return -EINVAL; 315 if (t->mem_id == MEM_CM) 316 mem = &adapter->cm; 317 else if (t->mem_id == MEM_PMRX) 318 mem = &adapter->pmrx; 319 else if (t->mem_id == MEM_PMTX) 320 mem = &adapter->pmtx; 321 else 322 return -EINVAL; 323 324 ret = 325 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8, 326 (u64 *) t->buf); 327 if (ret) 328 return ret; 329 break; 330 } 331 case RDMA_CQ_SETUP:{ 332 struct rdma_cq_setup *rdma = data; 333 334 spin_lock_irq(&adapter->sge.reg_lock); 335 ret = 336 t3_sge_init_cqcntxt(adapter, rdma->id, 337 rdma->base_addr, rdma->size, 338 ASYNC_NOTIF_RSPQ, 339 rdma->ovfl_mode, rdma->credits, 340 rdma->credit_thres); 341 spin_unlock_irq(&adapter->sge.reg_lock); 342 break; 343 } 344 case RDMA_CQ_DISABLE: 345 spin_lock_irq(&adapter->sge.reg_lock); 346 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data); 347 spin_unlock_irq(&adapter->sge.reg_lock); 348 break; 349 case RDMA_CTRL_QP_SETUP:{ 350 struct rdma_ctrlqp_setup *rdma = data; 351 352 spin_lock_irq(&adapter->sge.reg_lock); 353 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0, 354 SGE_CNTXT_RDMA, 355 ASYNC_NOTIF_RSPQ, 356 rdma->base_addr, rdma->size, 357 FW_RI_TID_START, 1, 0); 358 spin_unlock_irq(&adapter->sge.reg_lock); 359 break; 360 } 361 case RDMA_GET_MIB: { 362 spin_lock(&adapter->stats_lock); 363 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data); 364 spin_unlock(&adapter->stats_lock); 365 break; 366 } 367 default: 368 ret = -EOPNOTSUPP; 369 } 370 return ret; 371 } 372 373 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data) 374 { 375 struct adapter *adapter = tdev2adap(tdev); 376 struct tid_range *tid; 377 struct mtutab *mtup; 378 struct iff_mac *iffmacp; 379 struct ddp_params *ddpp; 380 struct adap_ports *ports; 381 struct ofld_page_info *rx_page_info; 382 struct tp_params *tp = &adapter->params.tp; 383 int i; 384 385 switch (req) { 386 case GET_MAX_OUTSTANDING_WR: 387 *(unsigned int *)data = FW_WR_NUM; 388 break; 389 case GET_WR_LEN: 390 *(unsigned int *)data = WR_FLITS; 391 break; 392 case GET_TX_MAX_CHUNK: 393 *(unsigned int *)data = 1 << 20; /* 1MB */ 394 break; 395 case GET_TID_RANGE: 396 tid = data; 397 tid->num = t3_mc5_size(&adapter->mc5) - 398 adapter->params.mc5.nroutes - 399 adapter->params.mc5.nfilters - adapter->params.mc5.nservers; 400 tid->base = 0; 401 break; 402 case GET_STID_RANGE: 403 tid = data; 404 tid->num = adapter->params.mc5.nservers; 405 tid->base = t3_mc5_size(&adapter->mc5) - tid->num - 406 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes; 407 break; 408 case GET_L2T_CAPACITY: 409 *(unsigned int *)data = 2048; 410 break; 411 case GET_MTUS: 412 mtup = data; 413 mtup->size = NMTUS; 414 mtup->mtus = adapter->params.mtus; 415 break; 416 case GET_IFF_FROM_MAC: 417 iffmacp = data; 418 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr, 419 iffmacp->vlan_tag & 420 VLAN_VID_MASK); 421 break; 422 case GET_DDP_PARAMS: 423 ddpp = data; 424 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT); 425 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT); 426 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK); 427 break; 428 case GET_PORTS: 429 ports = data; 430 ports->nports = adapter->params.nports; 431 for_each_port(adapter, i) 432 ports->lldevs[i] = adapter->port[i]; 433 break; 434 case ULP_ISCSI_GET_PARAMS: 435 case ULP_ISCSI_SET_PARAMS: 436 if (!offload_running(adapter)) 437 return -EAGAIN; 438 return cxgb_ulp_iscsi_ctl(adapter, req, data); 439 case RDMA_GET_PARAMS: 440 case RDMA_CQ_OP: 441 case RDMA_CQ_SETUP: 442 case RDMA_CQ_DISABLE: 443 case RDMA_CTRL_QP_SETUP: 444 case RDMA_GET_MEM: 445 case RDMA_GET_MIB: 446 if (!offload_running(adapter)) 447 return -EAGAIN; 448 return cxgb_rdma_ctl(adapter, req, data); 449 case GET_RX_PAGE_INFO: 450 rx_page_info = data; 451 rx_page_info->page_size = tp->rx_pg_size; 452 rx_page_info->num = tp->rx_num_pgs; 453 break; 454 case GET_ISCSI_IPV4ADDR: { 455 struct iscsi_ipv4addr *p = data; 456 struct port_info *pi = netdev_priv(p->dev); 457 p->ipv4addr = pi->iscsi_ipv4addr; 458 break; 459 } 460 case GET_EMBEDDED_INFO: { 461 struct ch_embedded_info *e = data; 462 463 spin_lock(&adapter->stats_lock); 464 t3_get_fw_version(adapter, &e->fw_vers); 465 t3_get_tp_version(adapter, &e->tp_vers); 466 spin_unlock(&adapter->stats_lock); 467 break; 468 } 469 default: 470 return -EOPNOTSUPP; 471 } 472 return 0; 473 } 474 475 /* 476 * Dummy handler for Rx offload packets in case we get an offload packet before 477 * proper processing is setup. This complains and drops the packet as it isn't 478 * normal to get offload packets at this stage. 479 */ 480 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs, 481 int n) 482 { 483 while (n--) 484 dev_kfree_skb_any(skbs[n]); 485 return 0; 486 } 487 488 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh) 489 { 490 } 491 492 void cxgb3_set_dummy_ops(struct t3cdev *dev) 493 { 494 dev->recv = rx_offload_blackhole; 495 dev->neigh_update = dummy_neigh_update; 496 } 497 498 /* 499 * Free an active-open TID. 500 */ 501 void *cxgb3_free_atid(struct t3cdev *tdev, int atid) 502 { 503 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 504 union active_open_entry *p = atid2entry(t, atid); 505 void *ctx = p->t3c_tid.ctx; 506 507 spin_lock_bh(&t->atid_lock); 508 p->next = t->afree; 509 t->afree = p; 510 t->atids_in_use--; 511 spin_unlock_bh(&t->atid_lock); 512 513 return ctx; 514 } 515 516 EXPORT_SYMBOL(cxgb3_free_atid); 517 518 /* 519 * Free a server TID and return it to the free pool. 520 */ 521 void cxgb3_free_stid(struct t3cdev *tdev, int stid) 522 { 523 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 524 union listen_entry *p = stid2entry(t, stid); 525 526 spin_lock_bh(&t->stid_lock); 527 p->next = t->sfree; 528 t->sfree = p; 529 t->stids_in_use--; 530 spin_unlock_bh(&t->stid_lock); 531 } 532 533 EXPORT_SYMBOL(cxgb3_free_stid); 534 535 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client, 536 void *ctx, unsigned int tid) 537 { 538 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 539 540 t->tid_tab[tid].client = client; 541 t->tid_tab[tid].ctx = ctx; 542 atomic_inc(&t->tids_in_use); 543 } 544 545 EXPORT_SYMBOL(cxgb3_insert_tid); 546 547 /* 548 * Populate a TID_RELEASE WR. The skb must be already propely sized. 549 */ 550 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid) 551 { 552 struct cpl_tid_release *req; 553 554 skb->priority = CPL_PRIORITY_SETUP; 555 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 556 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 557 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 558 } 559 560 static void t3_process_tid_release_list(struct work_struct *work) 561 { 562 struct t3c_data *td = container_of(work, struct t3c_data, 563 tid_release_task); 564 struct sk_buff *skb; 565 struct t3cdev *tdev = td->dev; 566 567 568 spin_lock_bh(&td->tid_release_lock); 569 while (td->tid_release_list) { 570 struct t3c_tid_entry *p = td->tid_release_list; 571 572 td->tid_release_list = p->ctx; 573 spin_unlock_bh(&td->tid_release_lock); 574 575 skb = alloc_skb(sizeof(struct cpl_tid_release), 576 GFP_KERNEL); 577 if (!skb) 578 skb = td->nofail_skb; 579 if (!skb) { 580 spin_lock_bh(&td->tid_release_lock); 581 p->ctx = (void *)td->tid_release_list; 582 td->tid_release_list = p; 583 break; 584 } 585 mk_tid_release(skb, p - td->tid_maps.tid_tab); 586 cxgb3_ofld_send(tdev, skb); 587 p->ctx = NULL; 588 if (skb == td->nofail_skb) 589 td->nofail_skb = 590 alloc_skb(sizeof(struct cpl_tid_release), 591 GFP_KERNEL); 592 spin_lock_bh(&td->tid_release_lock); 593 } 594 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1; 595 spin_unlock_bh(&td->tid_release_lock); 596 597 if (!td->nofail_skb) 598 td->nofail_skb = 599 alloc_skb(sizeof(struct cpl_tid_release), 600 GFP_KERNEL); 601 } 602 603 /* use ctx as a next pointer in the tid release list */ 604 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid) 605 { 606 struct t3c_data *td = T3C_DATA(tdev); 607 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid]; 608 609 spin_lock_bh(&td->tid_release_lock); 610 p->ctx = (void *)td->tid_release_list; 611 p->client = NULL; 612 td->tid_release_list = p; 613 if (!p->ctx || td->release_list_incomplete) 614 schedule_work(&td->tid_release_task); 615 spin_unlock_bh(&td->tid_release_lock); 616 } 617 618 EXPORT_SYMBOL(cxgb3_queue_tid_release); 619 620 /* 621 * Remove a tid from the TID table. A client may defer processing its last 622 * CPL message if it is locked at the time it arrives, and while the message 623 * sits in the client's backlog the TID may be reused for another connection. 624 * To handle this we atomically switch the TID association if it still points 625 * to the original client context. 626 */ 627 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid) 628 { 629 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 630 631 BUG_ON(tid >= t->ntids); 632 if (tdev->type == T3A) 633 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL); 634 else { 635 struct sk_buff *skb; 636 637 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 638 if (likely(skb)) { 639 mk_tid_release(skb, tid); 640 cxgb3_ofld_send(tdev, skb); 641 t->tid_tab[tid].ctx = NULL; 642 } else 643 cxgb3_queue_tid_release(tdev, tid); 644 } 645 atomic_dec(&t->tids_in_use); 646 } 647 648 EXPORT_SYMBOL(cxgb3_remove_tid); 649 650 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client, 651 void *ctx) 652 { 653 int atid = -1; 654 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 655 656 spin_lock_bh(&t->atid_lock); 657 if (t->afree && 658 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <= 659 t->ntids) { 660 union active_open_entry *p = t->afree; 661 662 atid = (p - t->atid_tab) + t->atid_base; 663 t->afree = p->next; 664 p->t3c_tid.ctx = ctx; 665 p->t3c_tid.client = client; 666 t->atids_in_use++; 667 } 668 spin_unlock_bh(&t->atid_lock); 669 return atid; 670 } 671 672 EXPORT_SYMBOL(cxgb3_alloc_atid); 673 674 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client, 675 void *ctx) 676 { 677 int stid = -1; 678 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; 679 680 spin_lock_bh(&t->stid_lock); 681 if (t->sfree) { 682 union listen_entry *p = t->sfree; 683 684 stid = (p - t->stid_tab) + t->stid_base; 685 t->sfree = p->next; 686 p->t3c_tid.ctx = ctx; 687 p->t3c_tid.client = client; 688 t->stids_in_use++; 689 } 690 spin_unlock_bh(&t->stid_lock); 691 return stid; 692 } 693 694 EXPORT_SYMBOL(cxgb3_alloc_stid); 695 696 /* Get the t3cdev associated with a net_device */ 697 struct t3cdev *dev2t3cdev(struct net_device *dev) 698 { 699 const struct port_info *pi = netdev_priv(dev); 700 701 return (struct t3cdev *)pi->adapter; 702 } 703 704 EXPORT_SYMBOL(dev2t3cdev); 705 706 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb) 707 { 708 struct cpl_smt_write_rpl *rpl = cplhdr(skb); 709 710 if (rpl->status != CPL_ERR_NONE) 711 pr_err("Unexpected SMT_WRITE_RPL status %u for entry %u\n", 712 rpl->status, GET_TID(rpl)); 713 714 return CPL_RET_BUF_DONE; 715 } 716 717 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb) 718 { 719 struct cpl_l2t_write_rpl *rpl = cplhdr(skb); 720 721 if (rpl->status != CPL_ERR_NONE) 722 pr_err("Unexpected L2T_WRITE_RPL status %u for entry %u\n", 723 rpl->status, GET_TID(rpl)); 724 725 return CPL_RET_BUF_DONE; 726 } 727 728 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb) 729 { 730 struct cpl_rte_write_rpl *rpl = cplhdr(skb); 731 732 if (rpl->status != CPL_ERR_NONE) 733 pr_err("Unexpected RTE_WRITE_RPL status %u for entry %u\n", 734 rpl->status, GET_TID(rpl)); 735 736 return CPL_RET_BUF_DONE; 737 } 738 739 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb) 740 { 741 struct cpl_act_open_rpl *rpl = cplhdr(skb); 742 unsigned int atid = G_TID(ntohl(rpl->atid)); 743 struct t3c_tid_entry *t3c_tid; 744 745 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid); 746 if (t3c_tid && t3c_tid->ctx && t3c_tid->client && 747 t3c_tid->client->handlers && 748 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) { 749 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb, 750 t3c_tid-> 751 ctx); 752 } else { 753 pr_err("%s: received clientless CPL command 0x%x\n", 754 dev->name, CPL_ACT_OPEN_RPL); 755 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 756 } 757 } 758 759 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb) 760 { 761 union opcode_tid *p = cplhdr(skb); 762 unsigned int stid = G_TID(ntohl(p->opcode_tid)); 763 struct t3c_tid_entry *t3c_tid; 764 765 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid); 766 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 767 t3c_tid->client->handlers[p->opcode]) { 768 return t3c_tid->client->handlers[p->opcode] (dev, skb, 769 t3c_tid->ctx); 770 } else { 771 pr_err("%s: received clientless CPL command 0x%x\n", 772 dev->name, p->opcode); 773 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 774 } 775 } 776 777 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb) 778 { 779 union opcode_tid *p = cplhdr(skb); 780 unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); 781 struct t3c_tid_entry *t3c_tid; 782 783 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); 784 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 785 t3c_tid->client->handlers[p->opcode]) { 786 return t3c_tid->client->handlers[p->opcode] 787 (dev, skb, t3c_tid->ctx); 788 } else { 789 pr_err("%s: received clientless CPL command 0x%x\n", 790 dev->name, p->opcode); 791 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 792 } 793 } 794 795 static int do_cr(struct t3cdev *dev, struct sk_buff *skb) 796 { 797 struct cpl_pass_accept_req *req = cplhdr(skb); 798 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); 799 struct tid_info *t = &(T3C_DATA(dev))->tid_maps; 800 struct t3c_tid_entry *t3c_tid; 801 unsigned int tid = GET_TID(req); 802 803 if (unlikely(tid >= t->ntids)) { 804 printk("%s: passive open TID %u too large\n", 805 dev->name, tid); 806 t3_fatal_err(tdev2adap(dev)); 807 return CPL_RET_BUF_DONE; 808 } 809 810 t3c_tid = lookup_stid(t, stid); 811 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 812 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) { 813 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ] 814 (dev, skb, t3c_tid->ctx); 815 } else { 816 pr_err("%s: received clientless CPL command 0x%x\n", 817 dev->name, CPL_PASS_ACCEPT_REQ); 818 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 819 } 820 } 821 822 /* 823 * Returns an sk_buff for a reply CPL message of size len. If the input 824 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer 825 * is allocated. The input skb must be of size at least len. Note that this 826 * operation does not destroy the original skb data even if it decides to reuse 827 * the buffer. 828 */ 829 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len, 830 gfp_t gfp) 831 { 832 if (likely(!skb_cloned(skb))) { 833 BUG_ON(skb->len < len); 834 __skb_trim(skb, len); 835 skb_get(skb); 836 } else { 837 skb = alloc_skb(len, gfp); 838 if (skb) 839 __skb_put(skb, len); 840 } 841 return skb; 842 } 843 844 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb) 845 { 846 union opcode_tid *p = cplhdr(skb); 847 unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); 848 struct t3c_tid_entry *t3c_tid; 849 850 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); 851 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 852 t3c_tid->client->handlers[p->opcode]) { 853 return t3c_tid->client->handlers[p->opcode] 854 (dev, skb, t3c_tid->ctx); 855 } else { 856 struct cpl_abort_req_rss *req = cplhdr(skb); 857 struct cpl_abort_rpl *rpl; 858 struct sk_buff *reply_skb; 859 unsigned int tid = GET_TID(req); 860 u8 cmd = req->status; 861 862 if (req->status == CPL_ERR_RTX_NEG_ADVICE || 863 req->status == CPL_ERR_PERSIST_NEG_ADVICE) 864 goto out; 865 866 reply_skb = cxgb3_get_cpl_reply_skb(skb, 867 sizeof(struct 868 cpl_abort_rpl), 869 GFP_ATOMIC); 870 871 if (!reply_skb) { 872 printk("do_abort_req_rss: couldn't get skb!\n"); 873 goto out; 874 } 875 reply_skb->priority = CPL_PRIORITY_DATA; 876 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl)); 877 rpl = cplhdr(reply_skb); 878 rpl->wr.wr_hi = 879 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL)); 880 rpl->wr.wr_lo = htonl(V_WR_TID(tid)); 881 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid)); 882 rpl->cmd = cmd; 883 cxgb3_ofld_send(dev, reply_skb); 884 out: 885 return CPL_RET_BUF_DONE; 886 } 887 } 888 889 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb) 890 { 891 struct cpl_act_establish *req = cplhdr(skb); 892 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); 893 struct tid_info *t = &(T3C_DATA(dev))->tid_maps; 894 struct t3c_tid_entry *t3c_tid; 895 unsigned int tid = GET_TID(req); 896 897 if (unlikely(tid >= t->ntids)) { 898 printk("%s: active establish TID %u too large\n", 899 dev->name, tid); 900 t3_fatal_err(tdev2adap(dev)); 901 return CPL_RET_BUF_DONE; 902 } 903 904 t3c_tid = lookup_atid(t, atid); 905 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 906 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) { 907 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH] 908 (dev, skb, t3c_tid->ctx); 909 } else { 910 pr_err("%s: received clientless CPL command 0x%x\n", 911 dev->name, CPL_ACT_ESTABLISH); 912 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 913 } 914 } 915 916 static int do_trace(struct t3cdev *dev, struct sk_buff *skb) 917 { 918 struct cpl_trace_pkt *p = cplhdr(skb); 919 920 skb->protocol = htons(0xffff); 921 skb->dev = dev->lldev; 922 skb_pull(skb, sizeof(*p)); 923 skb_reset_mac_header(skb); 924 netif_receive_skb(skb); 925 return 0; 926 } 927 928 /* 929 * That skb would better have come from process_responses() where we abuse 930 * ->priority and ->csum to carry our data. NB: if we get to per-arch 931 * ->csum, the things might get really interesting here. 932 */ 933 934 static inline u32 get_hwtid(struct sk_buff *skb) 935 { 936 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff; 937 } 938 939 static inline u32 get_opcode(struct sk_buff *skb) 940 { 941 return G_OPCODE(ntohl((__force __be32)skb->csum)); 942 } 943 944 static int do_term(struct t3cdev *dev, struct sk_buff *skb) 945 { 946 unsigned int hwtid = get_hwtid(skb); 947 unsigned int opcode = get_opcode(skb); 948 struct t3c_tid_entry *t3c_tid; 949 950 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); 951 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers && 952 t3c_tid->client->handlers[opcode]) { 953 return t3c_tid->client->handlers[opcode] (dev, skb, 954 t3c_tid->ctx); 955 } else { 956 pr_err("%s: received clientless CPL command 0x%x\n", 957 dev->name, opcode); 958 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 959 } 960 } 961 962 static int nb_callback(struct notifier_block *self, unsigned long event, 963 void *ctx) 964 { 965 switch (event) { 966 case (NETEVENT_NEIGH_UPDATE):{ 967 cxgb_neigh_update((struct neighbour *)ctx); 968 break; 969 } 970 case (NETEVENT_REDIRECT):{ 971 struct netevent_redirect *nr = ctx; 972 cxgb_redirect(nr->old, nr->new, nr->neigh, 973 nr->daddr); 974 cxgb_neigh_update(nr->neigh); 975 break; 976 } 977 default: 978 break; 979 } 980 return 0; 981 } 982 983 static struct notifier_block nb = { 984 .notifier_call = nb_callback 985 }; 986 987 /* 988 * Process a received packet with an unknown/unexpected CPL opcode. 989 */ 990 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb) 991 { 992 pr_err("%s: received bad CPL command 0x%x\n", dev->name, *skb->data); 993 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; 994 } 995 996 /* 997 * Handlers for each CPL opcode 998 */ 999 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS]; 1000 1001 /* 1002 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied 1003 * to unregister an existing handler. 1004 */ 1005 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h) 1006 { 1007 if (opcode < NUM_CPL_CMDS) 1008 cpl_handlers[opcode] = h ? h : do_bad_cpl; 1009 else 1010 pr_err("T3C: handler registration for opcode %x failed\n", 1011 opcode); 1012 } 1013 1014 EXPORT_SYMBOL(t3_register_cpl_handler); 1015 1016 /* 1017 * T3CDEV's receive method. 1018 */ 1019 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n) 1020 { 1021 while (n--) { 1022 struct sk_buff *skb = *skbs++; 1023 unsigned int opcode = get_opcode(skb); 1024 int ret = cpl_handlers[opcode] (dev, skb); 1025 1026 #if VALIDATE_TID 1027 if (ret & CPL_RET_UNKNOWN_TID) { 1028 union opcode_tid *p = cplhdr(skb); 1029 1030 pr_err("%s: CPL message (opcode %u) had unknown TID %u\n", 1031 dev->name, opcode, G_TID(ntohl(p->opcode_tid))); 1032 } 1033 #endif 1034 if (ret & CPL_RET_BUF_DONE) 1035 kfree_skb(skb); 1036 } 1037 return 0; 1038 } 1039 1040 /* 1041 * Sends an sk_buff to a T3C driver after dealing with any active network taps. 1042 */ 1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb) 1044 { 1045 int r; 1046 1047 local_bh_disable(); 1048 r = dev->send(dev, skb); 1049 local_bh_enable(); 1050 return r; 1051 } 1052 1053 EXPORT_SYMBOL(cxgb3_ofld_send); 1054 1055 static int is_offloading(struct net_device *dev) 1056 { 1057 struct adapter *adapter; 1058 int i; 1059 1060 read_lock_bh(&adapter_list_lock); 1061 list_for_each_entry(adapter, &adapter_list, adapter_list) { 1062 for_each_port(adapter, i) { 1063 if (dev == adapter->port[i]) { 1064 read_unlock_bh(&adapter_list_lock); 1065 return 1; 1066 } 1067 } 1068 } 1069 read_unlock_bh(&adapter_list_lock); 1070 return 0; 1071 } 1072 1073 static void cxgb_neigh_update(struct neighbour *neigh) 1074 { 1075 struct net_device *dev; 1076 1077 if (!neigh) 1078 return; 1079 dev = neigh->dev; 1080 if (dev && (is_offloading(dev))) { 1081 struct t3cdev *tdev = dev2t3cdev(dev); 1082 1083 BUG_ON(!tdev); 1084 t3_l2t_update(tdev, neigh); 1085 } 1086 } 1087 1088 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e) 1089 { 1090 struct sk_buff *skb; 1091 struct cpl_set_tcb_field *req; 1092 1093 skb = alloc_skb(sizeof(*req), GFP_ATOMIC); 1094 if (!skb) { 1095 pr_err("%s: cannot allocate skb!\n", __func__); 1096 return; 1097 } 1098 skb->priority = CPL_PRIORITY_CONTROL; 1099 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req)); 1100 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 1101 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); 1102 req->reply = 0; 1103 req->cpu_idx = 0; 1104 req->word = htons(W_TCB_L2T_IX); 1105 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX)); 1106 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx)); 1107 tdev->send(tdev, skb); 1108 } 1109 1110 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new, 1111 struct neighbour *neigh, 1112 const void *daddr) 1113 { 1114 struct net_device *dev; 1115 struct tid_info *ti; 1116 struct t3cdev *tdev; 1117 u32 tid; 1118 int update_tcb; 1119 struct l2t_entry *e; 1120 struct t3c_tid_entry *te; 1121 1122 dev = neigh->dev; 1123 1124 if (!is_offloading(dev)) 1125 return; 1126 tdev = dev2t3cdev(dev); 1127 BUG_ON(!tdev); 1128 1129 /* Add new L2T entry */ 1130 e = t3_l2t_get(tdev, new, dev, daddr); 1131 if (!e) { 1132 pr_err("%s: couldn't allocate new l2t entry!\n", __func__); 1133 return; 1134 } 1135 1136 /* Walk tid table and notify clients of dst change. */ 1137 ti = &(T3C_DATA(tdev))->tid_maps; 1138 for (tid = 0; tid < ti->ntids; tid++) { 1139 te = lookup_tid(ti, tid); 1140 BUG_ON(!te); 1141 if (te && te->ctx && te->client && te->client->redirect) { 1142 update_tcb = te->client->redirect(te->ctx, old, new, e); 1143 if (update_tcb) { 1144 rcu_read_lock(); 1145 l2t_hold(L2DATA(tdev), e); 1146 rcu_read_unlock(); 1147 set_l2t_ix(tdev, tid, e); 1148 } 1149 } 1150 } 1151 l2t_release(tdev, e); 1152 } 1153 1154 /* 1155 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1156 * The allocated memory is cleared. 1157 */ 1158 void *cxgb_alloc_mem(unsigned long size) 1159 { 1160 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1161 1162 if (!p) 1163 p = vzalloc(size); 1164 return p; 1165 } 1166 1167 /* 1168 * Free memory allocated through t3_alloc_mem(). 1169 */ 1170 void cxgb_free_mem(void *addr) 1171 { 1172 if (is_vmalloc_addr(addr)) 1173 vfree(addr); 1174 else 1175 kfree(addr); 1176 } 1177 1178 /* 1179 * Allocate and initialize the TID tables. Returns 0 on success. 1180 */ 1181 static int init_tid_tabs(struct tid_info *t, unsigned int ntids, 1182 unsigned int natids, unsigned int nstids, 1183 unsigned int atid_base, unsigned int stid_base) 1184 { 1185 unsigned long size = ntids * sizeof(*t->tid_tab) + 1186 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab); 1187 1188 t->tid_tab = cxgb_alloc_mem(size); 1189 if (!t->tid_tab) 1190 return -ENOMEM; 1191 1192 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids]; 1193 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids]; 1194 t->ntids = ntids; 1195 t->nstids = nstids; 1196 t->stid_base = stid_base; 1197 t->sfree = NULL; 1198 t->natids = natids; 1199 t->atid_base = atid_base; 1200 t->afree = NULL; 1201 t->stids_in_use = t->atids_in_use = 0; 1202 atomic_set(&t->tids_in_use, 0); 1203 spin_lock_init(&t->stid_lock); 1204 spin_lock_init(&t->atid_lock); 1205 1206 /* 1207 * Setup the free lists for stid_tab and atid_tab. 1208 */ 1209 if (nstids) { 1210 while (--nstids) 1211 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids]; 1212 t->sfree = t->stid_tab; 1213 } 1214 if (natids) { 1215 while (--natids) 1216 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1217 t->afree = t->atid_tab; 1218 } 1219 return 0; 1220 } 1221 1222 static void free_tid_maps(struct tid_info *t) 1223 { 1224 cxgb_free_mem(t->tid_tab); 1225 } 1226 1227 static inline void add_adapter(struct adapter *adap) 1228 { 1229 write_lock_bh(&adapter_list_lock); 1230 list_add_tail(&adap->adapter_list, &adapter_list); 1231 write_unlock_bh(&adapter_list_lock); 1232 } 1233 1234 static inline void remove_adapter(struct adapter *adap) 1235 { 1236 write_lock_bh(&adapter_list_lock); 1237 list_del(&adap->adapter_list); 1238 write_unlock_bh(&adapter_list_lock); 1239 } 1240 1241 int cxgb3_offload_activate(struct adapter *adapter) 1242 { 1243 struct t3cdev *dev = &adapter->tdev; 1244 int natids, err; 1245 struct t3c_data *t; 1246 struct tid_range stid_range, tid_range; 1247 struct mtutab mtutab; 1248 unsigned int l2t_capacity; 1249 struct l2t_data *l2td; 1250 1251 t = kzalloc(sizeof(*t), GFP_KERNEL); 1252 if (!t) 1253 return -ENOMEM; 1254 1255 err = -EOPNOTSUPP; 1256 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 || 1257 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 || 1258 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 || 1259 dev->ctl(dev, GET_MTUS, &mtutab) < 0 || 1260 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 || 1261 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0) 1262 goto out_free; 1263 1264 err = -ENOMEM; 1265 l2td = t3_init_l2t(l2t_capacity); 1266 if (!l2td) 1267 goto out_free; 1268 1269 natids = min(tid_range.num / 2, MAX_ATIDS); 1270 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids, 1271 stid_range.num, ATID_BASE, stid_range.base); 1272 if (err) 1273 goto out_free_l2t; 1274 1275 t->mtus = mtutab.mtus; 1276 t->nmtus = mtutab.size; 1277 1278 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list); 1279 spin_lock_init(&t->tid_release_lock); 1280 INIT_LIST_HEAD(&t->list_node); 1281 t->dev = dev; 1282 1283 RCU_INIT_POINTER(dev->l2opt, l2td); 1284 T3C_DATA(dev) = t; 1285 dev->recv = process_rx; 1286 dev->neigh_update = t3_l2t_update; 1287 1288 /* Register netevent handler once */ 1289 if (list_empty(&adapter_list)) 1290 register_netevent_notifier(&nb); 1291 1292 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL); 1293 t->release_list_incomplete = 0; 1294 1295 add_adapter(adapter); 1296 return 0; 1297 1298 out_free_l2t: 1299 t3_free_l2t(l2td); 1300 out_free: 1301 kfree(t); 1302 return err; 1303 } 1304 1305 static void clean_l2_data(struct rcu_head *head) 1306 { 1307 struct l2t_data *d = container_of(head, struct l2t_data, rcu_head); 1308 t3_free_l2t(d); 1309 } 1310 1311 1312 void cxgb3_offload_deactivate(struct adapter *adapter) 1313 { 1314 struct t3cdev *tdev = &adapter->tdev; 1315 struct t3c_data *t = T3C_DATA(tdev); 1316 struct l2t_data *d; 1317 1318 remove_adapter(adapter); 1319 if (list_empty(&adapter_list)) 1320 unregister_netevent_notifier(&nb); 1321 1322 free_tid_maps(&t->tid_maps); 1323 T3C_DATA(tdev) = NULL; 1324 rcu_read_lock(); 1325 d = L2DATA(tdev); 1326 rcu_read_unlock(); 1327 RCU_INIT_POINTER(tdev->l2opt, NULL); 1328 call_rcu(&d->rcu_head, clean_l2_data); 1329 if (t->nofail_skb) 1330 kfree_skb(t->nofail_skb); 1331 kfree(t); 1332 } 1333 1334 static inline void register_tdev(struct t3cdev *tdev) 1335 { 1336 static int unit; 1337 1338 mutex_lock(&cxgb3_db_lock); 1339 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++); 1340 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list); 1341 mutex_unlock(&cxgb3_db_lock); 1342 } 1343 1344 static inline void unregister_tdev(struct t3cdev *tdev) 1345 { 1346 mutex_lock(&cxgb3_db_lock); 1347 list_del(&tdev->ofld_dev_list); 1348 mutex_unlock(&cxgb3_db_lock); 1349 } 1350 1351 static inline int adap2type(struct adapter *adapter) 1352 { 1353 int type = 0; 1354 1355 switch (adapter->params.rev) { 1356 case T3_REV_A: 1357 type = T3A; 1358 break; 1359 case T3_REV_B: 1360 case T3_REV_B2: 1361 type = T3B; 1362 break; 1363 case T3_REV_C: 1364 type = T3C; 1365 break; 1366 } 1367 return type; 1368 } 1369 1370 void cxgb3_adapter_ofld(struct adapter *adapter) 1371 { 1372 struct t3cdev *tdev = &adapter->tdev; 1373 1374 INIT_LIST_HEAD(&tdev->ofld_dev_list); 1375 1376 cxgb3_set_dummy_ops(tdev); 1377 tdev->send = t3_offload_tx; 1378 tdev->ctl = cxgb_offload_ctl; 1379 tdev->type = adap2type(adapter); 1380 1381 register_tdev(tdev); 1382 } 1383 1384 void cxgb3_adapter_unofld(struct adapter *adapter) 1385 { 1386 struct t3cdev *tdev = &adapter->tdev; 1387 1388 tdev->recv = NULL; 1389 tdev->neigh_update = NULL; 1390 1391 unregister_tdev(tdev); 1392 } 1393 1394 void __init cxgb3_offload_init(void) 1395 { 1396 int i; 1397 1398 for (i = 0; i < NUM_CPL_CMDS; ++i) 1399 cpl_handlers[i] = do_bad_cpl; 1400 1401 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl); 1402 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl); 1403 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl); 1404 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl); 1405 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl); 1406 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr); 1407 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl); 1408 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl); 1409 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl); 1410 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl); 1411 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl); 1412 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl); 1413 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl); 1414 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl); 1415 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl); 1416 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl); 1417 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss); 1418 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish); 1419 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl); 1420 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl); 1421 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term); 1422 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl); 1423 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace); 1424 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl); 1425 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl); 1426 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl); 1427 } 1428