1 /*
2  * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <net/neighbour.h>
36 #include <linux/notifier.h>
37 #include <linux/atomic.h>
38 #include <linux/proc_fs.h>
39 #include <linux/if_vlan.h>
40 #include <net/netevent.h>
41 #include <linux/highmem.h>
42 #include <linux/vmalloc.h>
43 #include <linux/export.h>
44 
45 #include "common.h"
46 #include "regs.h"
47 #include "cxgb3_ioctl.h"
48 #include "cxgb3_ctl_defs.h"
49 #include "cxgb3_defs.h"
50 #include "l2t.h"
51 #include "firmware_exports.h"
52 #include "cxgb3_offload.h"
53 
54 static LIST_HEAD(client_list);
55 static LIST_HEAD(ofld_dev_list);
56 static DEFINE_MUTEX(cxgb3_db_lock);
57 
58 static DEFINE_RWLOCK(adapter_list_lock);
59 static LIST_HEAD(adapter_list);
60 
61 static const unsigned int MAX_ATIDS = 64 * 1024;
62 static const unsigned int ATID_BASE = 0x10000;
63 
64 static void cxgb_neigh_update(struct neighbour *neigh);
65 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new);
66 
67 static inline int offload_activated(struct t3cdev *tdev)
68 {
69 	const struct adapter *adapter = tdev2adap(tdev);
70 
71 	return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
72 }
73 
74 /**
75  *	cxgb3_register_client - register an offload client
76  *	@client: the client
77  *
78  *	Add the client to the client list,
79  *	and call backs the client for each activated offload device
80  */
81 void cxgb3_register_client(struct cxgb3_client *client)
82 {
83 	struct t3cdev *tdev;
84 
85 	mutex_lock(&cxgb3_db_lock);
86 	list_add_tail(&client->client_list, &client_list);
87 
88 	if (client->add) {
89 		list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
90 			if (offload_activated(tdev))
91 				client->add(tdev);
92 		}
93 	}
94 	mutex_unlock(&cxgb3_db_lock);
95 }
96 
97 EXPORT_SYMBOL(cxgb3_register_client);
98 
99 /**
100  *	cxgb3_unregister_client - unregister an offload client
101  *	@client: the client
102  *
103  *	Remove the client to the client list,
104  *	and call backs the client for each activated offload device.
105  */
106 void cxgb3_unregister_client(struct cxgb3_client *client)
107 {
108 	struct t3cdev *tdev;
109 
110 	mutex_lock(&cxgb3_db_lock);
111 	list_del(&client->client_list);
112 
113 	if (client->remove) {
114 		list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
115 			if (offload_activated(tdev))
116 				client->remove(tdev);
117 		}
118 	}
119 	mutex_unlock(&cxgb3_db_lock);
120 }
121 
122 EXPORT_SYMBOL(cxgb3_unregister_client);
123 
124 /**
125  *	cxgb3_add_clients - activate registered clients for an offload device
126  *	@tdev: the offload device
127  *
128  *	Call backs all registered clients once a offload device is activated
129  */
130 void cxgb3_add_clients(struct t3cdev *tdev)
131 {
132 	struct cxgb3_client *client;
133 
134 	mutex_lock(&cxgb3_db_lock);
135 	list_for_each_entry(client, &client_list, client_list) {
136 		if (client->add)
137 			client->add(tdev);
138 	}
139 	mutex_unlock(&cxgb3_db_lock);
140 }
141 
142 /**
143  *	cxgb3_remove_clients - deactivates registered clients
144  *			       for an offload device
145  *	@tdev: the offload device
146  *
147  *	Call backs all registered clients once a offload device is deactivated
148  */
149 void cxgb3_remove_clients(struct t3cdev *tdev)
150 {
151 	struct cxgb3_client *client;
152 
153 	mutex_lock(&cxgb3_db_lock);
154 	list_for_each_entry(client, &client_list, client_list) {
155 		if (client->remove)
156 			client->remove(tdev);
157 	}
158 	mutex_unlock(&cxgb3_db_lock);
159 }
160 
161 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
162 {
163 	struct cxgb3_client *client;
164 
165 	mutex_lock(&cxgb3_db_lock);
166 	list_for_each_entry(client, &client_list, client_list) {
167 		if (client->event_handler)
168 			client->event_handler(tdev, event, port);
169 	}
170 	mutex_unlock(&cxgb3_db_lock);
171 }
172 
173 static struct net_device *get_iff_from_mac(struct adapter *adapter,
174 					   const unsigned char *mac,
175 					   unsigned int vlan)
176 {
177 	int i;
178 
179 	for_each_port(adapter, i) {
180 		struct net_device *dev = adapter->port[i];
181 
182 		if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
183 			if (vlan && vlan != VLAN_VID_MASK) {
184 				rcu_read_lock();
185 				dev = __vlan_find_dev_deep(dev, vlan);
186 				rcu_read_unlock();
187 			} else if (netif_is_bond_slave(dev)) {
188 				while (dev->master)
189 					dev = dev->master;
190 			}
191 			return dev;
192 		}
193 	}
194 	return NULL;
195 }
196 
197 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
198 			      void *data)
199 {
200 	int i;
201 	int ret = 0;
202 	unsigned int val = 0;
203 	struct ulp_iscsi_info *uiip = data;
204 
205 	switch (req) {
206 	case ULP_ISCSI_GET_PARAMS:
207 		uiip->pdev = adapter->pdev;
208 		uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
209 		uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
210 		uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
211 
212 		val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
213 		for (i = 0; i < 4; i++, val >>= 8)
214 			uiip->pgsz_factor[i] = val & 0xFF;
215 
216 		val = t3_read_reg(adapter, A_TP_PARA_REG7);
217 		uiip->max_txsz =
218 		uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
219 				     (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
220 		/*
221 		 * On tx, the iscsi pdu has to be <= tx page size and has to
222 		 * fit into the Tx PM FIFO.
223 		 */
224 		val = min(adapter->params.tp.tx_pg_size,
225 			  t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
226 		uiip->max_txsz = min(val, uiip->max_txsz);
227 
228 		/* set MaxRxData to 16224 */
229 		val = t3_read_reg(adapter, A_TP_PARA_REG2);
230 		if ((val >> S_MAXRXDATA) != 0x3f60) {
231 			val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
232 			val |= V_MAXRXDATA(0x3f60);
233 			printk(KERN_INFO
234 				"%s, iscsi set MaxRxData to 16224 (0x%x).\n",
235 				adapter->name, val);
236 			t3_write_reg(adapter, A_TP_PARA_REG2, val);
237 		}
238 
239 		/*
240 		 * on rx, the iscsi pdu has to be < rx page size and the
241 		 * the max rx data length programmed in TP
242 		 */
243 		val = min(adapter->params.tp.rx_pg_size,
244 			  ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
245 				S_MAXRXDATA) & M_MAXRXDATA);
246 		uiip->max_rxsz = min(val, uiip->max_rxsz);
247 		break;
248 	case ULP_ISCSI_SET_PARAMS:
249 		t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
250 		/* program the ddp page sizes */
251 		for (i = 0; i < 4; i++)
252 			val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
253 		if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
254 			printk(KERN_INFO
255 				"%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
256 				adapter->name, val, uiip->pgsz_factor[0],
257 				uiip->pgsz_factor[1], uiip->pgsz_factor[2],
258 				uiip->pgsz_factor[3]);
259 			t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
260 		}
261 		break;
262 	default:
263 		ret = -EOPNOTSUPP;
264 	}
265 	return ret;
266 }
267 
268 /* Response queue used for RDMA events. */
269 #define ASYNC_NOTIF_RSPQ 0
270 
271 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
272 {
273 	int ret = 0;
274 
275 	switch (req) {
276 	case RDMA_GET_PARAMS: {
277 		struct rdma_info *rdma = data;
278 		struct pci_dev *pdev = adapter->pdev;
279 
280 		rdma->udbell_physbase = pci_resource_start(pdev, 2);
281 		rdma->udbell_len = pci_resource_len(pdev, 2);
282 		rdma->tpt_base =
283 			t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
284 		rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
285 		rdma->pbl_base =
286 			t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
287 		rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
288 		rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
289 		rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
290 		rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
291 		rdma->pdev = pdev;
292 		break;
293 	}
294 	case RDMA_CQ_OP:{
295 		unsigned long flags;
296 		struct rdma_cq_op *rdma = data;
297 
298 		/* may be called in any context */
299 		spin_lock_irqsave(&adapter->sge.reg_lock, flags);
300 		ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
301 					rdma->credits);
302 		spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
303 		break;
304 	}
305 	case RDMA_GET_MEM:{
306 		struct ch_mem_range *t = data;
307 		struct mc7 *mem;
308 
309 		if ((t->addr & 7) || (t->len & 7))
310 			return -EINVAL;
311 		if (t->mem_id == MEM_CM)
312 			mem = &adapter->cm;
313 		else if (t->mem_id == MEM_PMRX)
314 			mem = &adapter->pmrx;
315 		else if (t->mem_id == MEM_PMTX)
316 			mem = &adapter->pmtx;
317 		else
318 			return -EINVAL;
319 
320 		ret =
321 			t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
322 					(u64 *) t->buf);
323 		if (ret)
324 			return ret;
325 		break;
326 	}
327 	case RDMA_CQ_SETUP:{
328 		struct rdma_cq_setup *rdma = data;
329 
330 		spin_lock_irq(&adapter->sge.reg_lock);
331 		ret =
332 			t3_sge_init_cqcntxt(adapter, rdma->id,
333 					rdma->base_addr, rdma->size,
334 					ASYNC_NOTIF_RSPQ,
335 					rdma->ovfl_mode, rdma->credits,
336 					rdma->credit_thres);
337 		spin_unlock_irq(&adapter->sge.reg_lock);
338 		break;
339 	}
340 	case RDMA_CQ_DISABLE:
341 		spin_lock_irq(&adapter->sge.reg_lock);
342 		ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
343 		spin_unlock_irq(&adapter->sge.reg_lock);
344 		break;
345 	case RDMA_CTRL_QP_SETUP:{
346 		struct rdma_ctrlqp_setup *rdma = data;
347 
348 		spin_lock_irq(&adapter->sge.reg_lock);
349 		ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
350 						SGE_CNTXT_RDMA,
351 						ASYNC_NOTIF_RSPQ,
352 						rdma->base_addr, rdma->size,
353 						FW_RI_TID_START, 1, 0);
354 		spin_unlock_irq(&adapter->sge.reg_lock);
355 		break;
356 	}
357 	case RDMA_GET_MIB: {
358 		spin_lock(&adapter->stats_lock);
359 		t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
360 		spin_unlock(&adapter->stats_lock);
361 		break;
362 	}
363 	default:
364 		ret = -EOPNOTSUPP;
365 	}
366 	return ret;
367 }
368 
369 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
370 {
371 	struct adapter *adapter = tdev2adap(tdev);
372 	struct tid_range *tid;
373 	struct mtutab *mtup;
374 	struct iff_mac *iffmacp;
375 	struct ddp_params *ddpp;
376 	struct adap_ports *ports;
377 	struct ofld_page_info *rx_page_info;
378 	struct tp_params *tp = &adapter->params.tp;
379 	int i;
380 
381 	switch (req) {
382 	case GET_MAX_OUTSTANDING_WR:
383 		*(unsigned int *)data = FW_WR_NUM;
384 		break;
385 	case GET_WR_LEN:
386 		*(unsigned int *)data = WR_FLITS;
387 		break;
388 	case GET_TX_MAX_CHUNK:
389 		*(unsigned int *)data = 1 << 20;	/* 1MB */
390 		break;
391 	case GET_TID_RANGE:
392 		tid = data;
393 		tid->num = t3_mc5_size(&adapter->mc5) -
394 		    adapter->params.mc5.nroutes -
395 		    adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
396 		tid->base = 0;
397 		break;
398 	case GET_STID_RANGE:
399 		tid = data;
400 		tid->num = adapter->params.mc5.nservers;
401 		tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
402 		    adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
403 		break;
404 	case GET_L2T_CAPACITY:
405 		*(unsigned int *)data = 2048;
406 		break;
407 	case GET_MTUS:
408 		mtup = data;
409 		mtup->size = NMTUS;
410 		mtup->mtus = adapter->params.mtus;
411 		break;
412 	case GET_IFF_FROM_MAC:
413 		iffmacp = data;
414 		iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
415 						iffmacp->vlan_tag &
416 						VLAN_VID_MASK);
417 		break;
418 	case GET_DDP_PARAMS:
419 		ddpp = data;
420 		ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
421 		ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
422 		ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
423 		break;
424 	case GET_PORTS:
425 		ports = data;
426 		ports->nports = adapter->params.nports;
427 		for_each_port(adapter, i)
428 			ports->lldevs[i] = adapter->port[i];
429 		break;
430 	case ULP_ISCSI_GET_PARAMS:
431 	case ULP_ISCSI_SET_PARAMS:
432 		if (!offload_running(adapter))
433 			return -EAGAIN;
434 		return cxgb_ulp_iscsi_ctl(adapter, req, data);
435 	case RDMA_GET_PARAMS:
436 	case RDMA_CQ_OP:
437 	case RDMA_CQ_SETUP:
438 	case RDMA_CQ_DISABLE:
439 	case RDMA_CTRL_QP_SETUP:
440 	case RDMA_GET_MEM:
441 	case RDMA_GET_MIB:
442 		if (!offload_running(adapter))
443 			return -EAGAIN;
444 		return cxgb_rdma_ctl(adapter, req, data);
445 	case GET_RX_PAGE_INFO:
446 		rx_page_info = data;
447 		rx_page_info->page_size = tp->rx_pg_size;
448 		rx_page_info->num = tp->rx_num_pgs;
449 		break;
450 	case GET_ISCSI_IPV4ADDR: {
451 		struct iscsi_ipv4addr *p = data;
452 		struct port_info *pi = netdev_priv(p->dev);
453 		p->ipv4addr = pi->iscsi_ipv4addr;
454 		break;
455 	}
456 	case GET_EMBEDDED_INFO: {
457 		struct ch_embedded_info *e = data;
458 
459 		spin_lock(&adapter->stats_lock);
460 		t3_get_fw_version(adapter, &e->fw_vers);
461 		t3_get_tp_version(adapter, &e->tp_vers);
462 		spin_unlock(&adapter->stats_lock);
463 		break;
464 	}
465 	default:
466 		return -EOPNOTSUPP;
467 	}
468 	return 0;
469 }
470 
471 /*
472  * Dummy handler for Rx offload packets in case we get an offload packet before
473  * proper processing is setup.  This complains and drops the packet as it isn't
474  * normal to get offload packets at this stage.
475  */
476 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
477 				int n)
478 {
479 	while (n--)
480 		dev_kfree_skb_any(skbs[n]);
481 	return 0;
482 }
483 
484 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
485 {
486 }
487 
488 void cxgb3_set_dummy_ops(struct t3cdev *dev)
489 {
490 	dev->recv = rx_offload_blackhole;
491 	dev->neigh_update = dummy_neigh_update;
492 }
493 
494 /*
495  * Free an active-open TID.
496  */
497 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
498 {
499 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
500 	union active_open_entry *p = atid2entry(t, atid);
501 	void *ctx = p->t3c_tid.ctx;
502 
503 	spin_lock_bh(&t->atid_lock);
504 	p->next = t->afree;
505 	t->afree = p;
506 	t->atids_in_use--;
507 	spin_unlock_bh(&t->atid_lock);
508 
509 	return ctx;
510 }
511 
512 EXPORT_SYMBOL(cxgb3_free_atid);
513 
514 /*
515  * Free a server TID and return it to the free pool.
516  */
517 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
518 {
519 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
520 	union listen_entry *p = stid2entry(t, stid);
521 
522 	spin_lock_bh(&t->stid_lock);
523 	p->next = t->sfree;
524 	t->sfree = p;
525 	t->stids_in_use--;
526 	spin_unlock_bh(&t->stid_lock);
527 }
528 
529 EXPORT_SYMBOL(cxgb3_free_stid);
530 
531 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
532 		      void *ctx, unsigned int tid)
533 {
534 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
535 
536 	t->tid_tab[tid].client = client;
537 	t->tid_tab[tid].ctx = ctx;
538 	atomic_inc(&t->tids_in_use);
539 }
540 
541 EXPORT_SYMBOL(cxgb3_insert_tid);
542 
543 /*
544  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
545  */
546 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
547 {
548 	struct cpl_tid_release *req;
549 
550 	skb->priority = CPL_PRIORITY_SETUP;
551 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
552 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
553 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
554 }
555 
556 static void t3_process_tid_release_list(struct work_struct *work)
557 {
558 	struct t3c_data *td = container_of(work, struct t3c_data,
559 					   tid_release_task);
560 	struct sk_buff *skb;
561 	struct t3cdev *tdev = td->dev;
562 
563 
564 	spin_lock_bh(&td->tid_release_lock);
565 	while (td->tid_release_list) {
566 		struct t3c_tid_entry *p = td->tid_release_list;
567 
568 		td->tid_release_list = p->ctx;
569 		spin_unlock_bh(&td->tid_release_lock);
570 
571 		skb = alloc_skb(sizeof(struct cpl_tid_release),
572 				GFP_KERNEL);
573 		if (!skb)
574 			skb = td->nofail_skb;
575 		if (!skb) {
576 			spin_lock_bh(&td->tid_release_lock);
577 			p->ctx = (void *)td->tid_release_list;
578 			td->tid_release_list = (struct t3c_tid_entry *)p;
579 			break;
580 		}
581 		mk_tid_release(skb, p - td->tid_maps.tid_tab);
582 		cxgb3_ofld_send(tdev, skb);
583 		p->ctx = NULL;
584 		if (skb == td->nofail_skb)
585 			td->nofail_skb =
586 				alloc_skb(sizeof(struct cpl_tid_release),
587 					GFP_KERNEL);
588 		spin_lock_bh(&td->tid_release_lock);
589 	}
590 	td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
591 	spin_unlock_bh(&td->tid_release_lock);
592 
593 	if (!td->nofail_skb)
594 		td->nofail_skb =
595 			alloc_skb(sizeof(struct cpl_tid_release),
596 				GFP_KERNEL);
597 }
598 
599 /* use ctx as a next pointer in the tid release list */
600 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
601 {
602 	struct t3c_data *td = T3C_DATA(tdev);
603 	struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
604 
605 	spin_lock_bh(&td->tid_release_lock);
606 	p->ctx = (void *)td->tid_release_list;
607 	p->client = NULL;
608 	td->tid_release_list = p;
609 	if (!p->ctx || td->release_list_incomplete)
610 		schedule_work(&td->tid_release_task);
611 	spin_unlock_bh(&td->tid_release_lock);
612 }
613 
614 EXPORT_SYMBOL(cxgb3_queue_tid_release);
615 
616 /*
617  * Remove a tid from the TID table.  A client may defer processing its last
618  * CPL message if it is locked at the time it arrives, and while the message
619  * sits in the client's backlog the TID may be reused for another connection.
620  * To handle this we atomically switch the TID association if it still points
621  * to the original client context.
622  */
623 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
624 {
625 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
626 
627 	BUG_ON(tid >= t->ntids);
628 	if (tdev->type == T3A)
629 		(void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
630 	else {
631 		struct sk_buff *skb;
632 
633 		skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
634 		if (likely(skb)) {
635 			mk_tid_release(skb, tid);
636 			cxgb3_ofld_send(tdev, skb);
637 			t->tid_tab[tid].ctx = NULL;
638 		} else
639 			cxgb3_queue_tid_release(tdev, tid);
640 	}
641 	atomic_dec(&t->tids_in_use);
642 }
643 
644 EXPORT_SYMBOL(cxgb3_remove_tid);
645 
646 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
647 		     void *ctx)
648 {
649 	int atid = -1;
650 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
651 
652 	spin_lock_bh(&t->atid_lock);
653 	if (t->afree &&
654 	    t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
655 	    t->ntids) {
656 		union active_open_entry *p = t->afree;
657 
658 		atid = (p - t->atid_tab) + t->atid_base;
659 		t->afree = p->next;
660 		p->t3c_tid.ctx = ctx;
661 		p->t3c_tid.client = client;
662 		t->atids_in_use++;
663 	}
664 	spin_unlock_bh(&t->atid_lock);
665 	return atid;
666 }
667 
668 EXPORT_SYMBOL(cxgb3_alloc_atid);
669 
670 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
671 		     void *ctx)
672 {
673 	int stid = -1;
674 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
675 
676 	spin_lock_bh(&t->stid_lock);
677 	if (t->sfree) {
678 		union listen_entry *p = t->sfree;
679 
680 		stid = (p - t->stid_tab) + t->stid_base;
681 		t->sfree = p->next;
682 		p->t3c_tid.ctx = ctx;
683 		p->t3c_tid.client = client;
684 		t->stids_in_use++;
685 	}
686 	spin_unlock_bh(&t->stid_lock);
687 	return stid;
688 }
689 
690 EXPORT_SYMBOL(cxgb3_alloc_stid);
691 
692 /* Get the t3cdev associated with a net_device */
693 struct t3cdev *dev2t3cdev(struct net_device *dev)
694 {
695 	const struct port_info *pi = netdev_priv(dev);
696 
697 	return (struct t3cdev *)pi->adapter;
698 }
699 
700 EXPORT_SYMBOL(dev2t3cdev);
701 
702 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
703 {
704 	struct cpl_smt_write_rpl *rpl = cplhdr(skb);
705 
706 	if (rpl->status != CPL_ERR_NONE)
707 		printk(KERN_ERR
708 		       "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
709 		       rpl->status, GET_TID(rpl));
710 
711 	return CPL_RET_BUF_DONE;
712 }
713 
714 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
715 {
716 	struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
717 
718 	if (rpl->status != CPL_ERR_NONE)
719 		printk(KERN_ERR
720 		       "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
721 		       rpl->status, GET_TID(rpl));
722 
723 	return CPL_RET_BUF_DONE;
724 }
725 
726 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
727 {
728 	struct cpl_rte_write_rpl *rpl = cplhdr(skb);
729 
730 	if (rpl->status != CPL_ERR_NONE)
731 		printk(KERN_ERR
732 		       "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
733 		       rpl->status, GET_TID(rpl));
734 
735 	return CPL_RET_BUF_DONE;
736 }
737 
738 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
739 {
740 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
741 	unsigned int atid = G_TID(ntohl(rpl->atid));
742 	struct t3c_tid_entry *t3c_tid;
743 
744 	t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
745 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
746 	    t3c_tid->client->handlers &&
747 	    t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
748 		return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
749 								    t3c_tid->
750 								    ctx);
751 	} else {
752 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
753 		       dev->name, CPL_ACT_OPEN_RPL);
754 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
755 	}
756 }
757 
758 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
759 {
760 	union opcode_tid *p = cplhdr(skb);
761 	unsigned int stid = G_TID(ntohl(p->opcode_tid));
762 	struct t3c_tid_entry *t3c_tid;
763 
764 	t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
765 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
766 	    t3c_tid->client->handlers[p->opcode]) {
767 		return t3c_tid->client->handlers[p->opcode] (dev, skb,
768 							     t3c_tid->ctx);
769 	} else {
770 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
771 		       dev->name, p->opcode);
772 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
773 	}
774 }
775 
776 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
777 {
778 	union opcode_tid *p = cplhdr(skb);
779 	unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
780 	struct t3c_tid_entry *t3c_tid;
781 
782 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
783 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
784 	    t3c_tid->client->handlers[p->opcode]) {
785 		return t3c_tid->client->handlers[p->opcode]
786 		    (dev, skb, t3c_tid->ctx);
787 	} else {
788 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
789 		       dev->name, p->opcode);
790 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
791 	}
792 }
793 
794 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
795 {
796 	struct cpl_pass_accept_req *req = cplhdr(skb);
797 	unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
798 	struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
799 	struct t3c_tid_entry *t3c_tid;
800 	unsigned int tid = GET_TID(req);
801 
802 	if (unlikely(tid >= t->ntids)) {
803 		printk("%s: passive open TID %u too large\n",
804 		       dev->name, tid);
805 		t3_fatal_err(tdev2adap(dev));
806 		return CPL_RET_BUF_DONE;
807 	}
808 
809 	t3c_tid = lookup_stid(t, stid);
810 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
811 	    t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
812 		return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
813 		    (dev, skb, t3c_tid->ctx);
814 	} else {
815 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
816 		       dev->name, CPL_PASS_ACCEPT_REQ);
817 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
818 	}
819 }
820 
821 /*
822  * Returns an sk_buff for a reply CPL message of size len.  If the input
823  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
824  * is allocated.  The input skb must be of size at least len.  Note that this
825  * operation does not destroy the original skb data even if it decides to reuse
826  * the buffer.
827  */
828 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
829 					       gfp_t gfp)
830 {
831 	if (likely(!skb_cloned(skb))) {
832 		BUG_ON(skb->len < len);
833 		__skb_trim(skb, len);
834 		skb_get(skb);
835 	} else {
836 		skb = alloc_skb(len, gfp);
837 		if (skb)
838 			__skb_put(skb, len);
839 	}
840 	return skb;
841 }
842 
843 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
844 {
845 	union opcode_tid *p = cplhdr(skb);
846 	unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
847 	struct t3c_tid_entry *t3c_tid;
848 
849 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
850 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
851 	    t3c_tid->client->handlers[p->opcode]) {
852 		return t3c_tid->client->handlers[p->opcode]
853 		    (dev, skb, t3c_tid->ctx);
854 	} else {
855 		struct cpl_abort_req_rss *req = cplhdr(skb);
856 		struct cpl_abort_rpl *rpl;
857 		struct sk_buff *reply_skb;
858 		unsigned int tid = GET_TID(req);
859 		u8 cmd = req->status;
860 
861 		if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
862 		    req->status == CPL_ERR_PERSIST_NEG_ADVICE)
863 			goto out;
864 
865 		reply_skb = cxgb3_get_cpl_reply_skb(skb,
866 						    sizeof(struct
867 							   cpl_abort_rpl),
868 						    GFP_ATOMIC);
869 
870 		if (!reply_skb) {
871 			printk("do_abort_req_rss: couldn't get skb!\n");
872 			goto out;
873 		}
874 		reply_skb->priority = CPL_PRIORITY_DATA;
875 		__skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
876 		rpl = cplhdr(reply_skb);
877 		rpl->wr.wr_hi =
878 		    htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
879 		rpl->wr.wr_lo = htonl(V_WR_TID(tid));
880 		OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
881 		rpl->cmd = cmd;
882 		cxgb3_ofld_send(dev, reply_skb);
883 out:
884 		return CPL_RET_BUF_DONE;
885 	}
886 }
887 
888 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
889 {
890 	struct cpl_act_establish *req = cplhdr(skb);
891 	unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
892 	struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
893 	struct t3c_tid_entry *t3c_tid;
894 	unsigned int tid = GET_TID(req);
895 
896 	if (unlikely(tid >= t->ntids)) {
897 		printk("%s: active establish TID %u too large\n",
898 		       dev->name, tid);
899 		t3_fatal_err(tdev2adap(dev));
900 		return CPL_RET_BUF_DONE;
901 	}
902 
903 	t3c_tid = lookup_atid(t, atid);
904 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
905 	    t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
906 		return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
907 		    (dev, skb, t3c_tid->ctx);
908 	} else {
909 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
910 		       dev->name, CPL_ACT_ESTABLISH);
911 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
912 	}
913 }
914 
915 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
916 {
917 	struct cpl_trace_pkt *p = cplhdr(skb);
918 
919 	skb->protocol = htons(0xffff);
920 	skb->dev = dev->lldev;
921 	skb_pull(skb, sizeof(*p));
922 	skb_reset_mac_header(skb);
923 	netif_receive_skb(skb);
924 	return 0;
925 }
926 
927 /*
928  * That skb would better have come from process_responses() where we abuse
929  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
930  * ->csum, the things might get really interesting here.
931  */
932 
933 static inline u32 get_hwtid(struct sk_buff *skb)
934 {
935 	return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
936 }
937 
938 static inline u32 get_opcode(struct sk_buff *skb)
939 {
940 	return G_OPCODE(ntohl((__force __be32)skb->csum));
941 }
942 
943 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
944 {
945 	unsigned int hwtid = get_hwtid(skb);
946 	unsigned int opcode = get_opcode(skb);
947 	struct t3c_tid_entry *t3c_tid;
948 
949 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
950 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
951 	    t3c_tid->client->handlers[opcode]) {
952 		return t3c_tid->client->handlers[opcode] (dev, skb,
953 							  t3c_tid->ctx);
954 	} else {
955 		printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
956 		       dev->name, opcode);
957 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
958 	}
959 }
960 
961 static int nb_callback(struct notifier_block *self, unsigned long event,
962 		       void *ctx)
963 {
964 	switch (event) {
965 	case (NETEVENT_NEIGH_UPDATE):{
966 		cxgb_neigh_update((struct neighbour *)ctx);
967 		break;
968 	}
969 	case (NETEVENT_REDIRECT):{
970 		struct netevent_redirect *nr = ctx;
971 		cxgb_redirect(nr->old, nr->new);
972 		cxgb_neigh_update(dst_get_neighbour_noref(nr->new));
973 		break;
974 	}
975 	default:
976 		break;
977 	}
978 	return 0;
979 }
980 
981 static struct notifier_block nb = {
982 	.notifier_call = nb_callback
983 };
984 
985 /*
986  * Process a received packet with an unknown/unexpected CPL opcode.
987  */
988 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
989 {
990 	printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
991 	       *skb->data);
992 	return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
993 }
994 
995 /*
996  * Handlers for each CPL opcode
997  */
998 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
999 
1000 /*
1001  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
1002  * to unregister an existing handler.
1003  */
1004 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1005 {
1006 	if (opcode < NUM_CPL_CMDS)
1007 		cpl_handlers[opcode] = h ? h : do_bad_cpl;
1008 	else
1009 		printk(KERN_ERR "T3C: handler registration for "
1010 		       "opcode %x failed\n", opcode);
1011 }
1012 
1013 EXPORT_SYMBOL(t3_register_cpl_handler);
1014 
1015 /*
1016  * T3CDEV's receive method.
1017  */
1018 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1019 {
1020 	while (n--) {
1021 		struct sk_buff *skb = *skbs++;
1022 		unsigned int opcode = get_opcode(skb);
1023 		int ret = cpl_handlers[opcode] (dev, skb);
1024 
1025 #if VALIDATE_TID
1026 		if (ret & CPL_RET_UNKNOWN_TID) {
1027 			union opcode_tid *p = cplhdr(skb);
1028 
1029 			printk(KERN_ERR "%s: CPL message (opcode %u) had "
1030 			       "unknown TID %u\n", dev->name, opcode,
1031 			       G_TID(ntohl(p->opcode_tid)));
1032 		}
1033 #endif
1034 		if (ret & CPL_RET_BUF_DONE)
1035 			kfree_skb(skb);
1036 	}
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1042  */
1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1044 {
1045 	int r;
1046 
1047 	local_bh_disable();
1048 	r = dev->send(dev, skb);
1049 	local_bh_enable();
1050 	return r;
1051 }
1052 
1053 EXPORT_SYMBOL(cxgb3_ofld_send);
1054 
1055 static int is_offloading(struct net_device *dev)
1056 {
1057 	struct adapter *adapter;
1058 	int i;
1059 
1060 	read_lock_bh(&adapter_list_lock);
1061 	list_for_each_entry(adapter, &adapter_list, adapter_list) {
1062 		for_each_port(adapter, i) {
1063 			if (dev == adapter->port[i]) {
1064 				read_unlock_bh(&adapter_list_lock);
1065 				return 1;
1066 			}
1067 		}
1068 	}
1069 	read_unlock_bh(&adapter_list_lock);
1070 	return 0;
1071 }
1072 
1073 static void cxgb_neigh_update(struct neighbour *neigh)
1074 {
1075 	struct net_device *dev = neigh->dev;
1076 
1077 	if (dev && (is_offloading(dev))) {
1078 		struct t3cdev *tdev = dev2t3cdev(dev);
1079 
1080 		BUG_ON(!tdev);
1081 		t3_l2t_update(tdev, neigh);
1082 	}
1083 }
1084 
1085 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1086 {
1087 	struct sk_buff *skb;
1088 	struct cpl_set_tcb_field *req;
1089 
1090 	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1091 	if (!skb) {
1092 		printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1093 		return;
1094 	}
1095 	skb->priority = CPL_PRIORITY_CONTROL;
1096 	req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1097 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1098 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1099 	req->reply = 0;
1100 	req->cpu_idx = 0;
1101 	req->word = htons(W_TCB_L2T_IX);
1102 	req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1103 	req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1104 	tdev->send(tdev, skb);
1105 }
1106 
1107 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1108 {
1109 	struct net_device *olddev, *newdev;
1110 	struct tid_info *ti;
1111 	struct t3cdev *tdev;
1112 	u32 tid;
1113 	int update_tcb;
1114 	struct l2t_entry *e;
1115 	struct t3c_tid_entry *te;
1116 
1117 	olddev = dst_get_neighbour_noref(old)->dev;
1118 	newdev = dst_get_neighbour_noref(new)->dev;
1119 	if (!is_offloading(olddev))
1120 		return;
1121 	if (!is_offloading(newdev)) {
1122 		printk(KERN_WARNING "%s: Redirect to non-offload "
1123 		       "device ignored.\n", __func__);
1124 		return;
1125 	}
1126 	tdev = dev2t3cdev(olddev);
1127 	BUG_ON(!tdev);
1128 	if (tdev != dev2t3cdev(newdev)) {
1129 		printk(KERN_WARNING "%s: Redirect to different "
1130 		       "offload device ignored.\n", __func__);
1131 		return;
1132 	}
1133 
1134 	/* Add new L2T entry */
1135 	e = t3_l2t_get(tdev, dst_get_neighbour_noref(new), newdev);
1136 	if (!e) {
1137 		printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1138 		       __func__);
1139 		return;
1140 	}
1141 
1142 	/* Walk tid table and notify clients of dst change. */
1143 	ti = &(T3C_DATA(tdev))->tid_maps;
1144 	for (tid = 0; tid < ti->ntids; tid++) {
1145 		te = lookup_tid(ti, tid);
1146 		BUG_ON(!te);
1147 		if (te && te->ctx && te->client && te->client->redirect) {
1148 			update_tcb = te->client->redirect(te->ctx, old, new, e);
1149 			if (update_tcb) {
1150 				rcu_read_lock();
1151 				l2t_hold(L2DATA(tdev), e);
1152 				rcu_read_unlock();
1153 				set_l2t_ix(tdev, tid, e);
1154 			}
1155 		}
1156 	}
1157 	l2t_release(tdev, e);
1158 }
1159 
1160 /*
1161  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1162  * The allocated memory is cleared.
1163  */
1164 void *cxgb_alloc_mem(unsigned long size)
1165 {
1166 	void *p = kzalloc(size, GFP_KERNEL);
1167 
1168 	if (!p)
1169 		p = vzalloc(size);
1170 	return p;
1171 }
1172 
1173 /*
1174  * Free memory allocated through t3_alloc_mem().
1175  */
1176 void cxgb_free_mem(void *addr)
1177 {
1178 	if (is_vmalloc_addr(addr))
1179 		vfree(addr);
1180 	else
1181 		kfree(addr);
1182 }
1183 
1184 /*
1185  * Allocate and initialize the TID tables.  Returns 0 on success.
1186  */
1187 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1188 			 unsigned int natids, unsigned int nstids,
1189 			 unsigned int atid_base, unsigned int stid_base)
1190 {
1191 	unsigned long size = ntids * sizeof(*t->tid_tab) +
1192 	    natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1193 
1194 	t->tid_tab = cxgb_alloc_mem(size);
1195 	if (!t->tid_tab)
1196 		return -ENOMEM;
1197 
1198 	t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1199 	t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1200 	t->ntids = ntids;
1201 	t->nstids = nstids;
1202 	t->stid_base = stid_base;
1203 	t->sfree = NULL;
1204 	t->natids = natids;
1205 	t->atid_base = atid_base;
1206 	t->afree = NULL;
1207 	t->stids_in_use = t->atids_in_use = 0;
1208 	atomic_set(&t->tids_in_use, 0);
1209 	spin_lock_init(&t->stid_lock);
1210 	spin_lock_init(&t->atid_lock);
1211 
1212 	/*
1213 	 * Setup the free lists for stid_tab and atid_tab.
1214 	 */
1215 	if (nstids) {
1216 		while (--nstids)
1217 			t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1218 		t->sfree = t->stid_tab;
1219 	}
1220 	if (natids) {
1221 		while (--natids)
1222 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1223 		t->afree = t->atid_tab;
1224 	}
1225 	return 0;
1226 }
1227 
1228 static void free_tid_maps(struct tid_info *t)
1229 {
1230 	cxgb_free_mem(t->tid_tab);
1231 }
1232 
1233 static inline void add_adapter(struct adapter *adap)
1234 {
1235 	write_lock_bh(&adapter_list_lock);
1236 	list_add_tail(&adap->adapter_list, &adapter_list);
1237 	write_unlock_bh(&adapter_list_lock);
1238 }
1239 
1240 static inline void remove_adapter(struct adapter *adap)
1241 {
1242 	write_lock_bh(&adapter_list_lock);
1243 	list_del(&adap->adapter_list);
1244 	write_unlock_bh(&adapter_list_lock);
1245 }
1246 
1247 int cxgb3_offload_activate(struct adapter *adapter)
1248 {
1249 	struct t3cdev *dev = &adapter->tdev;
1250 	int natids, err;
1251 	struct t3c_data *t;
1252 	struct tid_range stid_range, tid_range;
1253 	struct mtutab mtutab;
1254 	unsigned int l2t_capacity;
1255 
1256 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1257 	if (!t)
1258 		return -ENOMEM;
1259 
1260 	err = -EOPNOTSUPP;
1261 	if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1262 	    dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1263 	    dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1264 	    dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1265 	    dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1266 	    dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1267 		goto out_free;
1268 
1269 	err = -ENOMEM;
1270 	RCU_INIT_POINTER(dev->l2opt, t3_init_l2t(l2t_capacity));
1271 	if (!L2DATA(dev))
1272 		goto out_free;
1273 
1274 	natids = min(tid_range.num / 2, MAX_ATIDS);
1275 	err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1276 			    stid_range.num, ATID_BASE, stid_range.base);
1277 	if (err)
1278 		goto out_free_l2t;
1279 
1280 	t->mtus = mtutab.mtus;
1281 	t->nmtus = mtutab.size;
1282 
1283 	INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1284 	spin_lock_init(&t->tid_release_lock);
1285 	INIT_LIST_HEAD(&t->list_node);
1286 	t->dev = dev;
1287 
1288 	T3C_DATA(dev) = t;
1289 	dev->recv = process_rx;
1290 	dev->neigh_update = t3_l2t_update;
1291 
1292 	/* Register netevent handler once */
1293 	if (list_empty(&adapter_list))
1294 		register_netevent_notifier(&nb);
1295 
1296 	t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1297 	t->release_list_incomplete = 0;
1298 
1299 	add_adapter(adapter);
1300 	return 0;
1301 
1302 out_free_l2t:
1303 	t3_free_l2t(L2DATA(dev));
1304 	RCU_INIT_POINTER(dev->l2opt, NULL);
1305 out_free:
1306 	kfree(t);
1307 	return err;
1308 }
1309 
1310 static void clean_l2_data(struct rcu_head *head)
1311 {
1312 	struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
1313 	t3_free_l2t(d);
1314 }
1315 
1316 
1317 void cxgb3_offload_deactivate(struct adapter *adapter)
1318 {
1319 	struct t3cdev *tdev = &adapter->tdev;
1320 	struct t3c_data *t = T3C_DATA(tdev);
1321 	struct l2t_data *d;
1322 
1323 	remove_adapter(adapter);
1324 	if (list_empty(&adapter_list))
1325 		unregister_netevent_notifier(&nb);
1326 
1327 	free_tid_maps(&t->tid_maps);
1328 	T3C_DATA(tdev) = NULL;
1329 	rcu_read_lock();
1330 	d = L2DATA(tdev);
1331 	rcu_read_unlock();
1332 	RCU_INIT_POINTER(tdev->l2opt, NULL);
1333 	call_rcu(&d->rcu_head, clean_l2_data);
1334 	if (t->nofail_skb)
1335 		kfree_skb(t->nofail_skb);
1336 	kfree(t);
1337 }
1338 
1339 static inline void register_tdev(struct t3cdev *tdev)
1340 {
1341 	static int unit;
1342 
1343 	mutex_lock(&cxgb3_db_lock);
1344 	snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1345 	list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1346 	mutex_unlock(&cxgb3_db_lock);
1347 }
1348 
1349 static inline void unregister_tdev(struct t3cdev *tdev)
1350 {
1351 	mutex_lock(&cxgb3_db_lock);
1352 	list_del(&tdev->ofld_dev_list);
1353 	mutex_unlock(&cxgb3_db_lock);
1354 }
1355 
1356 static inline int adap2type(struct adapter *adapter)
1357 {
1358 	int type = 0;
1359 
1360 	switch (adapter->params.rev) {
1361 	case T3_REV_A:
1362 		type = T3A;
1363 		break;
1364 	case T3_REV_B:
1365 	case T3_REV_B2:
1366 		type = T3B;
1367 		break;
1368 	case T3_REV_C:
1369 		type = T3C;
1370 		break;
1371 	}
1372 	return type;
1373 }
1374 
1375 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1376 {
1377 	struct t3cdev *tdev = &adapter->tdev;
1378 
1379 	INIT_LIST_HEAD(&tdev->ofld_dev_list);
1380 
1381 	cxgb3_set_dummy_ops(tdev);
1382 	tdev->send = t3_offload_tx;
1383 	tdev->ctl = cxgb_offload_ctl;
1384 	tdev->type = adap2type(adapter);
1385 
1386 	register_tdev(tdev);
1387 }
1388 
1389 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1390 {
1391 	struct t3cdev *tdev = &adapter->tdev;
1392 
1393 	tdev->recv = NULL;
1394 	tdev->neigh_update = NULL;
1395 
1396 	unregister_tdev(tdev);
1397 }
1398 
1399 void __init cxgb3_offload_init(void)
1400 {
1401 	int i;
1402 
1403 	for (i = 0; i < NUM_CPL_CMDS; ++i)
1404 		cpl_handlers[i] = do_bad_cpl;
1405 
1406 	t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1407 	t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1408 	t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1409 	t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1410 	t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1411 	t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1412 	t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1413 	t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1414 	t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1415 	t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1416 	t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1417 	t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1418 	t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1419 	t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1420 	t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1421 	t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1422 	t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1423 	t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1424 	t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1425 	t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1426 	t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1427 	t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1428 	t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1429 	t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1430 	t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1431 	t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1432 }
1433