1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/moduleparam.h> 37 #include <linux/init.h> 38 #include <linux/pci.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/netdevice.h> 41 #include <linux/etherdevice.h> 42 #include <linux/if_vlan.h> 43 #include <linux/mdio.h> 44 #include <linux/sockios.h> 45 #include <linux/workqueue.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rtnetlink.h> 48 #include <linux/firmware.h> 49 #include <linux/log2.h> 50 #include <linux/stringify.h> 51 #include <linux/sched.h> 52 #include <linux/slab.h> 53 #include <linux/uaccess.h> 54 55 #include "common.h" 56 #include "cxgb3_ioctl.h" 57 #include "regs.h" 58 #include "cxgb3_offload.h" 59 #include "version.h" 60 61 #include "cxgb3_ctl_defs.h" 62 #include "t3_cpl.h" 63 #include "firmware_exports.h" 64 65 enum { 66 MAX_TXQ_ENTRIES = 16384, 67 MAX_CTRL_TXQ_ENTRIES = 1024, 68 MAX_RSPQ_ENTRIES = 16384, 69 MAX_RX_BUFFERS = 16384, 70 MAX_RX_JUMBO_BUFFERS = 16384, 71 MIN_TXQ_ENTRIES = 4, 72 MIN_CTRL_TXQ_ENTRIES = 4, 73 MIN_RSPQ_ENTRIES = 32, 74 MIN_FL_ENTRIES = 32 75 }; 76 77 #define PORT_MASK ((1 << MAX_NPORTS) - 1) 78 79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 82 83 #define EEPROM_MAGIC 0x38E2F10C 84 85 #define CH_DEVICE(devid, idx) \ 86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 87 88 static const struct pci_device_id cxgb3_pci_tbl[] = { 89 CH_DEVICE(0x20, 0), /* PE9000 */ 90 CH_DEVICE(0x21, 1), /* T302E */ 91 CH_DEVICE(0x22, 2), /* T310E */ 92 CH_DEVICE(0x23, 3), /* T320X */ 93 CH_DEVICE(0x24, 1), /* T302X */ 94 CH_DEVICE(0x25, 3), /* T320E */ 95 CH_DEVICE(0x26, 2), /* T310X */ 96 CH_DEVICE(0x30, 2), /* T3B10 */ 97 CH_DEVICE(0x31, 3), /* T3B20 */ 98 CH_DEVICE(0x32, 1), /* T3B02 */ 99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */ 100 CH_DEVICE(0x36, 3), /* S320E-CR */ 101 CH_DEVICE(0x37, 7), /* N320E-G2 */ 102 {0,} 103 }; 104 105 MODULE_DESCRIPTION(DRV_DESC); 106 MODULE_AUTHOR("Chelsio Communications"); 107 MODULE_LICENSE("Dual BSD/GPL"); 108 MODULE_VERSION(DRV_VERSION); 109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); 110 111 static int dflt_msg_enable = DFLT_MSG_ENABLE; 112 113 module_param(dflt_msg_enable, int, 0644); 114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); 115 116 /* 117 * The driver uses the best interrupt scheme available on a platform in the 118 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which 119 * of these schemes the driver may consider as follows: 120 * 121 * msi = 2: choose from among all three options 122 * msi = 1: only consider MSI and pin interrupts 123 * msi = 0: force pin interrupts 124 */ 125 static int msi = 2; 126 127 module_param(msi, int, 0644); 128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); 129 130 /* 131 * The driver enables offload as a default. 132 * To disable it, use ofld_disable = 1. 133 */ 134 135 static int ofld_disable = 0; 136 137 module_param(ofld_disable, int, 0644); 138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); 139 140 /* 141 * We have work elements that we need to cancel when an interface is taken 142 * down. Normally the work elements would be executed by keventd but that 143 * can deadlock because of linkwatch. If our close method takes the rtnl 144 * lock and linkwatch is ahead of our work elements in keventd, linkwatch 145 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting 146 * for our work to complete. Get our own work queue to solve this. 147 */ 148 struct workqueue_struct *cxgb3_wq; 149 150 /** 151 * link_report - show link status and link speed/duplex 152 * @p: the port whose settings are to be reported 153 * 154 * Shows the link status, speed, and duplex of a port. 155 */ 156 static void link_report(struct net_device *dev) 157 { 158 if (!netif_carrier_ok(dev)) 159 netdev_info(dev, "link down\n"); 160 else { 161 const char *s = "10Mbps"; 162 const struct port_info *p = netdev_priv(dev); 163 164 switch (p->link_config.speed) { 165 case SPEED_10000: 166 s = "10Gbps"; 167 break; 168 case SPEED_1000: 169 s = "1000Mbps"; 170 break; 171 case SPEED_100: 172 s = "100Mbps"; 173 break; 174 } 175 176 netdev_info(dev, "link up, %s, %s-duplex\n", 177 s, p->link_config.duplex == DUPLEX_FULL 178 ? "full" : "half"); 179 } 180 } 181 182 static void enable_tx_fifo_drain(struct adapter *adapter, 183 struct port_info *pi) 184 { 185 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0, 186 F_ENDROPPKT); 187 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0); 188 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN); 189 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN); 190 } 191 192 static void disable_tx_fifo_drain(struct adapter *adapter, 193 struct port_info *pi) 194 { 195 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 196 F_ENDROPPKT, 0); 197 } 198 199 void t3_os_link_fault(struct adapter *adap, int port_id, int state) 200 { 201 struct net_device *dev = adap->port[port_id]; 202 struct port_info *pi = netdev_priv(dev); 203 204 if (state == netif_carrier_ok(dev)) 205 return; 206 207 if (state) { 208 struct cmac *mac = &pi->mac; 209 210 netif_carrier_on(dev); 211 212 disable_tx_fifo_drain(adap, pi); 213 214 /* Clear local faults */ 215 t3_xgm_intr_disable(adap, pi->port_id); 216 t3_read_reg(adap, A_XGM_INT_STATUS + 217 pi->mac.offset); 218 t3_write_reg(adap, 219 A_XGM_INT_CAUSE + pi->mac.offset, 220 F_XGM_INT); 221 222 t3_set_reg_field(adap, 223 A_XGM_INT_ENABLE + 224 pi->mac.offset, 225 F_XGM_INT, F_XGM_INT); 226 t3_xgm_intr_enable(adap, pi->port_id); 227 228 t3_mac_enable(mac, MAC_DIRECTION_TX); 229 } else { 230 netif_carrier_off(dev); 231 232 /* Flush TX FIFO */ 233 enable_tx_fifo_drain(adap, pi); 234 } 235 link_report(dev); 236 } 237 238 /** 239 * t3_os_link_changed - handle link status changes 240 * @adapter: the adapter associated with the link change 241 * @port_id: the port index whose limk status has changed 242 * @link_stat: the new status of the link 243 * @speed: the new speed setting 244 * @duplex: the new duplex setting 245 * @pause: the new flow-control setting 246 * 247 * This is the OS-dependent handler for link status changes. The OS 248 * neutral handler takes care of most of the processing for these events, 249 * then calls this handler for any OS-specific processing. 250 */ 251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, 252 int speed, int duplex, int pause) 253 { 254 struct net_device *dev = adapter->port[port_id]; 255 struct port_info *pi = netdev_priv(dev); 256 struct cmac *mac = &pi->mac; 257 258 /* Skip changes from disabled ports. */ 259 if (!netif_running(dev)) 260 return; 261 262 if (link_stat != netif_carrier_ok(dev)) { 263 if (link_stat) { 264 disable_tx_fifo_drain(adapter, pi); 265 266 t3_mac_enable(mac, MAC_DIRECTION_RX); 267 268 /* Clear local faults */ 269 t3_xgm_intr_disable(adapter, pi->port_id); 270 t3_read_reg(adapter, A_XGM_INT_STATUS + 271 pi->mac.offset); 272 t3_write_reg(adapter, 273 A_XGM_INT_CAUSE + pi->mac.offset, 274 F_XGM_INT); 275 276 t3_set_reg_field(adapter, 277 A_XGM_INT_ENABLE + pi->mac.offset, 278 F_XGM_INT, F_XGM_INT); 279 t3_xgm_intr_enable(adapter, pi->port_id); 280 281 netif_carrier_on(dev); 282 } else { 283 netif_carrier_off(dev); 284 285 t3_xgm_intr_disable(adapter, pi->port_id); 286 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 287 t3_set_reg_field(adapter, 288 A_XGM_INT_ENABLE + pi->mac.offset, 289 F_XGM_INT, 0); 290 291 if (is_10G(adapter)) 292 pi->phy.ops->power_down(&pi->phy, 1); 293 294 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 295 t3_mac_disable(mac, MAC_DIRECTION_RX); 296 t3_link_start(&pi->phy, mac, &pi->link_config); 297 298 /* Flush TX FIFO */ 299 enable_tx_fifo_drain(adapter, pi); 300 } 301 302 link_report(dev); 303 } 304 } 305 306 /** 307 * t3_os_phymod_changed - handle PHY module changes 308 * @phy: the PHY reporting the module change 309 * @mod_type: new module type 310 * 311 * This is the OS-dependent handler for PHY module changes. It is 312 * invoked when a PHY module is removed or inserted for any OS-specific 313 * processing. 314 */ 315 void t3_os_phymod_changed(struct adapter *adap, int port_id) 316 { 317 static const char *mod_str[] = { 318 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown" 319 }; 320 321 const struct net_device *dev = adap->port[port_id]; 322 const struct port_info *pi = netdev_priv(dev); 323 324 if (pi->phy.modtype == phy_modtype_none) 325 netdev_info(dev, "PHY module unplugged\n"); 326 else 327 netdev_info(dev, "%s PHY module inserted\n", 328 mod_str[pi->phy.modtype]); 329 } 330 331 static void cxgb_set_rxmode(struct net_device *dev) 332 { 333 struct port_info *pi = netdev_priv(dev); 334 335 t3_mac_set_rx_mode(&pi->mac, dev); 336 } 337 338 /** 339 * link_start - enable a port 340 * @dev: the device to enable 341 * 342 * Performs the MAC and PHY actions needed to enable a port. 343 */ 344 static void link_start(struct net_device *dev) 345 { 346 struct port_info *pi = netdev_priv(dev); 347 struct cmac *mac = &pi->mac; 348 349 t3_mac_reset(mac); 350 t3_mac_set_num_ucast(mac, MAX_MAC_IDX); 351 t3_mac_set_mtu(mac, dev->mtu); 352 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 353 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr); 354 t3_mac_set_rx_mode(mac, dev); 355 t3_link_start(&pi->phy, mac, &pi->link_config); 356 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 357 } 358 359 static inline void cxgb_disable_msi(struct adapter *adapter) 360 { 361 if (adapter->flags & USING_MSIX) { 362 pci_disable_msix(adapter->pdev); 363 adapter->flags &= ~USING_MSIX; 364 } else if (adapter->flags & USING_MSI) { 365 pci_disable_msi(adapter->pdev); 366 adapter->flags &= ~USING_MSI; 367 } 368 } 369 370 /* 371 * Interrupt handler for asynchronous events used with MSI-X. 372 */ 373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie) 374 { 375 t3_slow_intr_handler(cookie); 376 return IRQ_HANDLED; 377 } 378 379 /* 380 * Name the MSI-X interrupts. 381 */ 382 static void name_msix_vecs(struct adapter *adap) 383 { 384 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1; 385 386 snprintf(adap->msix_info[0].desc, n, "%s", adap->name); 387 adap->msix_info[0].desc[n] = 0; 388 389 for_each_port(adap, j) { 390 struct net_device *d = adap->port[j]; 391 const struct port_info *pi = netdev_priv(d); 392 393 for (i = 0; i < pi->nqsets; i++, msi_idx++) { 394 snprintf(adap->msix_info[msi_idx].desc, n, 395 "%s-%d", d->name, pi->first_qset + i); 396 adap->msix_info[msi_idx].desc[n] = 0; 397 } 398 } 399 } 400 401 static int request_msix_data_irqs(struct adapter *adap) 402 { 403 int i, j, err, qidx = 0; 404 405 for_each_port(adap, i) { 406 int nqsets = adap2pinfo(adap, i)->nqsets; 407 408 for (j = 0; j < nqsets; ++j) { 409 err = request_irq(adap->msix_info[qidx + 1].vec, 410 t3_intr_handler(adap, 411 adap->sge.qs[qidx]. 412 rspq.polling), 0, 413 adap->msix_info[qidx + 1].desc, 414 &adap->sge.qs[qidx]); 415 if (err) { 416 while (--qidx >= 0) 417 free_irq(adap->msix_info[qidx + 1].vec, 418 &adap->sge.qs[qidx]); 419 return err; 420 } 421 qidx++; 422 } 423 } 424 return 0; 425 } 426 427 static void free_irq_resources(struct adapter *adapter) 428 { 429 if (adapter->flags & USING_MSIX) { 430 int i, n = 0; 431 432 free_irq(adapter->msix_info[0].vec, adapter); 433 for_each_port(adapter, i) 434 n += adap2pinfo(adapter, i)->nqsets; 435 436 for (i = 0; i < n; ++i) 437 free_irq(adapter->msix_info[i + 1].vec, 438 &adapter->sge.qs[i]); 439 } else 440 free_irq(adapter->pdev->irq, adapter); 441 } 442 443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt, 444 unsigned long n) 445 { 446 int attempts = 10; 447 448 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) { 449 if (!--attempts) 450 return -ETIMEDOUT; 451 msleep(10); 452 } 453 return 0; 454 } 455 456 static int init_tp_parity(struct adapter *adap) 457 { 458 int i; 459 struct sk_buff *skb; 460 struct cpl_set_tcb_field *greq; 461 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts; 462 463 t3_tp_set_offload_mode(adap, 1); 464 465 for (i = 0; i < 16; i++) { 466 struct cpl_smt_write_req *req; 467 468 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 469 if (!skb) 470 skb = adap->nofail_skb; 471 if (!skb) 472 goto alloc_skb_fail; 473 474 req = __skb_put_zero(skb, sizeof(*req)); 475 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 476 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i)); 477 req->mtu_idx = NMTUS - 1; 478 req->iff = i; 479 t3_mgmt_tx(adap, skb); 480 if (skb == adap->nofail_skb) { 481 await_mgmt_replies(adap, cnt, i + 1); 482 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 483 if (!adap->nofail_skb) 484 goto alloc_skb_fail; 485 } 486 } 487 488 for (i = 0; i < 2048; i++) { 489 struct cpl_l2t_write_req *req; 490 491 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 492 if (!skb) 493 skb = adap->nofail_skb; 494 if (!skb) 495 goto alloc_skb_fail; 496 497 req = __skb_put_zero(skb, sizeof(*req)); 498 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 499 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i)); 500 req->params = htonl(V_L2T_W_IDX(i)); 501 t3_mgmt_tx(adap, skb); 502 if (skb == adap->nofail_skb) { 503 await_mgmt_replies(adap, cnt, 16 + i + 1); 504 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 505 if (!adap->nofail_skb) 506 goto alloc_skb_fail; 507 } 508 } 509 510 for (i = 0; i < 2048; i++) { 511 struct cpl_rte_write_req *req; 512 513 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 514 if (!skb) 515 skb = adap->nofail_skb; 516 if (!skb) 517 goto alloc_skb_fail; 518 519 req = __skb_put_zero(skb, sizeof(*req)); 520 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 521 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i)); 522 req->l2t_idx = htonl(V_L2T_W_IDX(i)); 523 t3_mgmt_tx(adap, skb); 524 if (skb == adap->nofail_skb) { 525 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1); 526 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 527 if (!adap->nofail_skb) 528 goto alloc_skb_fail; 529 } 530 } 531 532 skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 533 if (!skb) 534 skb = adap->nofail_skb; 535 if (!skb) 536 goto alloc_skb_fail; 537 538 greq = __skb_put_zero(skb, sizeof(*greq)); 539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0)); 541 greq->mask = cpu_to_be64(1); 542 t3_mgmt_tx(adap, skb); 543 544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 545 if (skb == adap->nofail_skb) { 546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 548 } 549 550 t3_tp_set_offload_mode(adap, 0); 551 return i; 552 553 alloc_skb_fail: 554 t3_tp_set_offload_mode(adap, 0); 555 return -ENOMEM; 556 } 557 558 /** 559 * setup_rss - configure RSS 560 * @adap: the adapter 561 * 562 * Sets up RSS to distribute packets to multiple receive queues. We 563 * configure the RSS CPU lookup table to distribute to the number of HW 564 * receive queues, and the response queue lookup table to narrow that 565 * down to the response queues actually configured for each port. 566 * We always configure the RSS mapping for two ports since the mapping 567 * table has plenty of entries. 568 */ 569 static void setup_rss(struct adapter *adap) 570 { 571 int i; 572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; 573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; 574 u8 cpus[SGE_QSETS + 1]; 575 u16 rspq_map[RSS_TABLE_SIZE + 1]; 576 577 for (i = 0; i < SGE_QSETS; ++i) 578 cpus[i] = i; 579 cpus[SGE_QSETS] = 0xff; /* terminator */ 580 581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { 582 rspq_map[i] = i % nq0; 583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; 584 } 585 rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */ 586 587 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | 588 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | 589 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map); 590 } 591 592 static void ring_dbs(struct adapter *adap) 593 { 594 int i, j; 595 596 for (i = 0; i < SGE_QSETS; i++) { 597 struct sge_qset *qs = &adap->sge.qs[i]; 598 599 if (qs->adap) 600 for (j = 0; j < SGE_TXQ_PER_SET; j++) 601 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id)); 602 } 603 } 604 605 static void init_napi(struct adapter *adap) 606 { 607 int i; 608 609 for (i = 0; i < SGE_QSETS; i++) { 610 struct sge_qset *qs = &adap->sge.qs[i]; 611 612 if (qs->adap) 613 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll, 614 64); 615 } 616 617 /* 618 * netif_napi_add() can be called only once per napi_struct because it 619 * adds each new napi_struct to a list. Be careful not to call it a 620 * second time, e.g., during EEH recovery, by making a note of it. 621 */ 622 adap->flags |= NAPI_INIT; 623 } 624 625 /* 626 * Wait until all NAPI handlers are descheduled. This includes the handlers of 627 * both netdevices representing interfaces and the dummy ones for the extra 628 * queues. 629 */ 630 static void quiesce_rx(struct adapter *adap) 631 { 632 int i; 633 634 for (i = 0; i < SGE_QSETS; i++) 635 if (adap->sge.qs[i].adap) 636 napi_disable(&adap->sge.qs[i].napi); 637 } 638 639 static void enable_all_napi(struct adapter *adap) 640 { 641 int i; 642 for (i = 0; i < SGE_QSETS; i++) 643 if (adap->sge.qs[i].adap) 644 napi_enable(&adap->sge.qs[i].napi); 645 } 646 647 /** 648 * setup_sge_qsets - configure SGE Tx/Rx/response queues 649 * @adap: the adapter 650 * 651 * Determines how many sets of SGE queues to use and initializes them. 652 * We support multiple queue sets per port if we have MSI-X, otherwise 653 * just one queue set per port. 654 */ 655 static int setup_sge_qsets(struct adapter *adap) 656 { 657 int i, j, err, irq_idx = 0, qset_idx = 0; 658 unsigned int ntxq = SGE_TXQ_PER_SET; 659 660 if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) 661 irq_idx = -1; 662 663 for_each_port(adap, i) { 664 struct net_device *dev = adap->port[i]; 665 struct port_info *pi = netdev_priv(dev); 666 667 pi->qs = &adap->sge.qs[pi->first_qset]; 668 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { 669 err = t3_sge_alloc_qset(adap, qset_idx, 1, 670 (adap->flags & USING_MSIX) ? qset_idx + 1 : 671 irq_idx, 672 &adap->params.sge.qset[qset_idx], ntxq, dev, 673 netdev_get_tx_queue(dev, j)); 674 if (err) { 675 t3_free_sge_resources(adap); 676 return err; 677 } 678 } 679 } 680 681 return 0; 682 } 683 684 static ssize_t attr_show(struct device *d, char *buf, 685 ssize_t(*format) (struct net_device *, char *)) 686 { 687 ssize_t len; 688 689 /* Synchronize with ioctls that may shut down the device */ 690 rtnl_lock(); 691 len = (*format) (to_net_dev(d), buf); 692 rtnl_unlock(); 693 return len; 694 } 695 696 static ssize_t attr_store(struct device *d, 697 const char *buf, size_t len, 698 ssize_t(*set) (struct net_device *, unsigned int), 699 unsigned int min_val, unsigned int max_val) 700 { 701 ssize_t ret; 702 unsigned int val; 703 704 if (!capable(CAP_NET_ADMIN)) 705 return -EPERM; 706 707 ret = kstrtouint(buf, 0, &val); 708 if (ret) 709 return ret; 710 if (val < min_val || val > max_val) 711 return -EINVAL; 712 713 rtnl_lock(); 714 ret = (*set) (to_net_dev(d), val); 715 if (!ret) 716 ret = len; 717 rtnl_unlock(); 718 return ret; 719 } 720 721 #define CXGB3_SHOW(name, val_expr) \ 722 static ssize_t format_##name(struct net_device *dev, char *buf) \ 723 { \ 724 struct port_info *pi = netdev_priv(dev); \ 725 struct adapter *adap = pi->adapter; \ 726 return sprintf(buf, "%u\n", val_expr); \ 727 } \ 728 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 729 char *buf) \ 730 { \ 731 return attr_show(d, buf, format_##name); \ 732 } 733 734 static ssize_t set_nfilters(struct net_device *dev, unsigned int val) 735 { 736 struct port_info *pi = netdev_priv(dev); 737 struct adapter *adap = pi->adapter; 738 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0; 739 740 if (adap->flags & FULL_INIT_DONE) 741 return -EBUSY; 742 if (val && adap->params.rev == 0) 743 return -EINVAL; 744 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 745 min_tids) 746 return -EINVAL; 747 adap->params.mc5.nfilters = val; 748 return 0; 749 } 750 751 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr, 752 const char *buf, size_t len) 753 { 754 return attr_store(d, buf, len, set_nfilters, 0, ~0); 755 } 756 757 static ssize_t set_nservers(struct net_device *dev, unsigned int val) 758 { 759 struct port_info *pi = netdev_priv(dev); 760 struct adapter *adap = pi->adapter; 761 762 if (adap->flags & FULL_INIT_DONE) 763 return -EBUSY; 764 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters - 765 MC5_MIN_TIDS) 766 return -EINVAL; 767 adap->params.mc5.nservers = val; 768 return 0; 769 } 770 771 static ssize_t store_nservers(struct device *d, struct device_attribute *attr, 772 const char *buf, size_t len) 773 { 774 return attr_store(d, buf, len, set_nservers, 0, ~0); 775 } 776 777 #define CXGB3_ATTR_R(name, val_expr) \ 778 CXGB3_SHOW(name, val_expr) \ 779 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL) 780 781 #define CXGB3_ATTR_RW(name, val_expr, store_method) \ 782 CXGB3_SHOW(name, val_expr) \ 783 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method) 784 785 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); 786 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); 787 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); 788 789 static struct attribute *cxgb3_attrs[] = { 790 &dev_attr_cam_size.attr, 791 &dev_attr_nfilters.attr, 792 &dev_attr_nservers.attr, 793 NULL 794 }; 795 796 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs }; 797 798 static ssize_t tm_attr_show(struct device *d, 799 char *buf, int sched) 800 { 801 struct port_info *pi = netdev_priv(to_net_dev(d)); 802 struct adapter *adap = pi->adapter; 803 unsigned int v, addr, bpt, cpt; 804 ssize_t len; 805 806 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 807 rtnl_lock(); 808 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 809 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 810 if (sched & 1) 811 v >>= 16; 812 bpt = (v >> 8) & 0xff; 813 cpt = v & 0xff; 814 if (!cpt) 815 len = sprintf(buf, "disabled\n"); 816 else { 817 v = (adap->params.vpd.cclk * 1000) / cpt; 818 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); 819 } 820 rtnl_unlock(); 821 return len; 822 } 823 824 static ssize_t tm_attr_store(struct device *d, 825 const char *buf, size_t len, int sched) 826 { 827 struct port_info *pi = netdev_priv(to_net_dev(d)); 828 struct adapter *adap = pi->adapter; 829 unsigned int val; 830 ssize_t ret; 831 832 if (!capable(CAP_NET_ADMIN)) 833 return -EPERM; 834 835 ret = kstrtouint(buf, 0, &val); 836 if (ret) 837 return ret; 838 if (val > 10000000) 839 return -EINVAL; 840 841 rtnl_lock(); 842 ret = t3_config_sched(adap, val, sched); 843 if (!ret) 844 ret = len; 845 rtnl_unlock(); 846 return ret; 847 } 848 849 #define TM_ATTR(name, sched) \ 850 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 851 char *buf) \ 852 { \ 853 return tm_attr_show(d, buf, sched); \ 854 } \ 855 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \ 856 const char *buf, size_t len) \ 857 { \ 858 return tm_attr_store(d, buf, len, sched); \ 859 } \ 860 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name) 861 862 TM_ATTR(sched0, 0); 863 TM_ATTR(sched1, 1); 864 TM_ATTR(sched2, 2); 865 TM_ATTR(sched3, 3); 866 TM_ATTR(sched4, 4); 867 TM_ATTR(sched5, 5); 868 TM_ATTR(sched6, 6); 869 TM_ATTR(sched7, 7); 870 871 static struct attribute *offload_attrs[] = { 872 &dev_attr_sched0.attr, 873 &dev_attr_sched1.attr, 874 &dev_attr_sched2.attr, 875 &dev_attr_sched3.attr, 876 &dev_attr_sched4.attr, 877 &dev_attr_sched5.attr, 878 &dev_attr_sched6.attr, 879 &dev_attr_sched7.attr, 880 NULL 881 }; 882 883 static struct attribute_group offload_attr_group = {.attrs = offload_attrs }; 884 885 /* 886 * Sends an sk_buff to an offload queue driver 887 * after dealing with any active network taps. 888 */ 889 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 890 { 891 int ret; 892 893 local_bh_disable(); 894 ret = t3_offload_tx(tdev, skb); 895 local_bh_enable(); 896 return ret; 897 } 898 899 static int write_smt_entry(struct adapter *adapter, int idx) 900 { 901 struct cpl_smt_write_req *req; 902 struct port_info *pi = netdev_priv(adapter->port[idx]); 903 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); 904 905 if (!skb) 906 return -ENOMEM; 907 908 req = __skb_put(skb, sizeof(*req)); 909 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 910 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); 911 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ 912 req->iff = idx; 913 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); 914 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN); 915 skb->priority = 1; 916 offload_tx(&adapter->tdev, skb); 917 return 0; 918 } 919 920 static int init_smt(struct adapter *adapter) 921 { 922 int i; 923 924 for_each_port(adapter, i) 925 write_smt_entry(adapter, i); 926 return 0; 927 } 928 929 static void init_port_mtus(struct adapter *adapter) 930 { 931 unsigned int mtus = adapter->port[0]->mtu; 932 933 if (adapter->port[1]) 934 mtus |= adapter->port[1]->mtu << 16; 935 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); 936 } 937 938 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo, 939 int hi, int port) 940 { 941 struct sk_buff *skb; 942 struct mngt_pktsched_wr *req; 943 int ret; 944 945 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 946 if (!skb) 947 skb = adap->nofail_skb; 948 if (!skb) 949 return -ENOMEM; 950 951 req = skb_put(skb, sizeof(*req)); 952 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); 953 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; 954 req->sched = sched; 955 req->idx = qidx; 956 req->min = lo; 957 req->max = hi; 958 req->binding = port; 959 ret = t3_mgmt_tx(adap, skb); 960 if (skb == adap->nofail_skb) { 961 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field), 962 GFP_KERNEL); 963 if (!adap->nofail_skb) 964 ret = -ENOMEM; 965 } 966 967 return ret; 968 } 969 970 static int bind_qsets(struct adapter *adap) 971 { 972 int i, j, err = 0; 973 974 for_each_port(adap, i) { 975 const struct port_info *pi = adap2pinfo(adap, i); 976 977 for (j = 0; j < pi->nqsets; ++j) { 978 int ret = send_pktsched_cmd(adap, 1, 979 pi->first_qset + j, -1, 980 -1, i); 981 if (ret) 982 err = ret; 983 } 984 } 985 986 return err; 987 } 988 989 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \ 990 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO) 991 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin" 992 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \ 993 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO) 994 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin" 995 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin" 996 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin" 997 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin" 998 MODULE_FIRMWARE(FW_FNAME); 999 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin"); 1000 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin"); 1001 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME); 1002 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME); 1003 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME); 1004 1005 static inline const char *get_edc_fw_name(int edc_idx) 1006 { 1007 const char *fw_name = NULL; 1008 1009 switch (edc_idx) { 1010 case EDC_OPT_AEL2005: 1011 fw_name = AEL2005_OPT_EDC_NAME; 1012 break; 1013 case EDC_TWX_AEL2005: 1014 fw_name = AEL2005_TWX_EDC_NAME; 1015 break; 1016 case EDC_TWX_AEL2020: 1017 fw_name = AEL2020_TWX_EDC_NAME; 1018 break; 1019 } 1020 return fw_name; 1021 } 1022 1023 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size) 1024 { 1025 struct adapter *adapter = phy->adapter; 1026 const struct firmware *fw; 1027 const char *fw_name; 1028 u32 csum; 1029 const __be32 *p; 1030 u16 *cache = phy->phy_cache; 1031 int i, ret = -EINVAL; 1032 1033 fw_name = get_edc_fw_name(edc_idx); 1034 if (fw_name) 1035 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev); 1036 if (ret < 0) { 1037 dev_err(&adapter->pdev->dev, 1038 "could not upgrade firmware: unable to load %s\n", 1039 fw_name); 1040 return ret; 1041 } 1042 1043 /* check size, take checksum in account */ 1044 if (fw->size > size + 4) { 1045 CH_ERR(adapter, "firmware image too large %u, expected %d\n", 1046 (unsigned int)fw->size, size + 4); 1047 ret = -EINVAL; 1048 } 1049 1050 /* compute checksum */ 1051 p = (const __be32 *)fw->data; 1052 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++) 1053 csum += ntohl(p[i]); 1054 1055 if (csum != 0xffffffff) { 1056 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1057 csum); 1058 ret = -EINVAL; 1059 } 1060 1061 for (i = 0; i < size / 4 ; i++) { 1062 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16; 1063 *cache++ = be32_to_cpu(p[i]) & 0xffff; 1064 } 1065 1066 release_firmware(fw); 1067 1068 return ret; 1069 } 1070 1071 static int upgrade_fw(struct adapter *adap) 1072 { 1073 int ret; 1074 const struct firmware *fw; 1075 struct device *dev = &adap->pdev->dev; 1076 1077 ret = request_firmware(&fw, FW_FNAME, dev); 1078 if (ret < 0) { 1079 dev_err(dev, "could not upgrade firmware: unable to load %s\n", 1080 FW_FNAME); 1081 return ret; 1082 } 1083 ret = t3_load_fw(adap, fw->data, fw->size); 1084 release_firmware(fw); 1085 1086 if (ret == 0) 1087 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n", 1088 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1089 else 1090 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n", 1091 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1092 1093 return ret; 1094 } 1095 1096 static inline char t3rev2char(struct adapter *adapter) 1097 { 1098 char rev = 0; 1099 1100 switch(adapter->params.rev) { 1101 case T3_REV_B: 1102 case T3_REV_B2: 1103 rev = 'b'; 1104 break; 1105 case T3_REV_C: 1106 rev = 'c'; 1107 break; 1108 } 1109 return rev; 1110 } 1111 1112 static int update_tpsram(struct adapter *adap) 1113 { 1114 const struct firmware *tpsram; 1115 char buf[64]; 1116 struct device *dev = &adap->pdev->dev; 1117 int ret; 1118 char rev; 1119 1120 rev = t3rev2char(adap); 1121 if (!rev) 1122 return 0; 1123 1124 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev); 1125 1126 ret = request_firmware(&tpsram, buf, dev); 1127 if (ret < 0) { 1128 dev_err(dev, "could not load TP SRAM: unable to load %s\n", 1129 buf); 1130 return ret; 1131 } 1132 1133 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size); 1134 if (ret) 1135 goto release_tpsram; 1136 1137 ret = t3_set_proto_sram(adap, tpsram->data); 1138 if (ret == 0) 1139 dev_info(dev, 1140 "successful update of protocol engine " 1141 "to %d.%d.%d\n", 1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1143 else 1144 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n", 1145 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1146 if (ret) 1147 dev_err(dev, "loading protocol SRAM failed\n"); 1148 1149 release_tpsram: 1150 release_firmware(tpsram); 1151 1152 return ret; 1153 } 1154 1155 /** 1156 * t3_synchronize_rx - wait for current Rx processing on a port to complete 1157 * @adap: the adapter 1158 * @p: the port 1159 * 1160 * Ensures that current Rx processing on any of the queues associated with 1161 * the given port completes before returning. We do this by acquiring and 1162 * releasing the locks of the response queues associated with the port. 1163 */ 1164 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) 1165 { 1166 int i; 1167 1168 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) { 1169 struct sge_rspq *q = &adap->sge.qs[i].rspq; 1170 1171 spin_lock_irq(&q->lock); 1172 spin_unlock_irq(&q->lock); 1173 } 1174 } 1175 1176 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features) 1177 { 1178 struct port_info *pi = netdev_priv(dev); 1179 struct adapter *adapter = pi->adapter; 1180 1181 if (adapter->params.rev > 0) { 1182 t3_set_vlan_accel(adapter, 1 << pi->port_id, 1183 features & NETIF_F_HW_VLAN_CTAG_RX); 1184 } else { 1185 /* single control for all ports */ 1186 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX; 1187 1188 for_each_port(adapter, i) 1189 have_vlans |= 1190 adapter->port[i]->features & 1191 NETIF_F_HW_VLAN_CTAG_RX; 1192 1193 t3_set_vlan_accel(adapter, 1, have_vlans); 1194 } 1195 t3_synchronize_rx(adapter, pi); 1196 } 1197 1198 /** 1199 * cxgb_up - enable the adapter 1200 * @adapter: adapter being enabled 1201 * 1202 * Called when the first port is enabled, this function performs the 1203 * actions necessary to make an adapter operational, such as completing 1204 * the initialization of HW modules, and enabling interrupts. 1205 * 1206 * Must be called with the rtnl lock held. 1207 */ 1208 static int cxgb_up(struct adapter *adap) 1209 { 1210 int i, err; 1211 1212 if (!(adap->flags & FULL_INIT_DONE)) { 1213 err = t3_check_fw_version(adap); 1214 if (err == -EINVAL) { 1215 err = upgrade_fw(adap); 1216 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n", 1217 FW_VERSION_MAJOR, FW_VERSION_MINOR, 1218 FW_VERSION_MICRO, err ? "failed" : "succeeded"); 1219 } 1220 1221 err = t3_check_tpsram_version(adap); 1222 if (err == -EINVAL) { 1223 err = update_tpsram(adap); 1224 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n", 1225 TP_VERSION_MAJOR, TP_VERSION_MINOR, 1226 TP_VERSION_MICRO, err ? "failed" : "succeeded"); 1227 } 1228 1229 /* 1230 * Clear interrupts now to catch errors if t3_init_hw fails. 1231 * We clear them again later as initialization may trigger 1232 * conditions that can interrupt. 1233 */ 1234 t3_intr_clear(adap); 1235 1236 err = t3_init_hw(adap, 0); 1237 if (err) 1238 goto out; 1239 1240 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT); 1241 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); 1242 1243 err = setup_sge_qsets(adap); 1244 if (err) 1245 goto out; 1246 1247 for_each_port(adap, i) 1248 cxgb_vlan_mode(adap->port[i], adap->port[i]->features); 1249 1250 setup_rss(adap); 1251 if (!(adap->flags & NAPI_INIT)) 1252 init_napi(adap); 1253 1254 t3_start_sge_timers(adap); 1255 adap->flags |= FULL_INIT_DONE; 1256 } 1257 1258 t3_intr_clear(adap); 1259 1260 if (adap->flags & USING_MSIX) { 1261 name_msix_vecs(adap); 1262 err = request_irq(adap->msix_info[0].vec, 1263 t3_async_intr_handler, 0, 1264 adap->msix_info[0].desc, adap); 1265 if (err) 1266 goto irq_err; 1267 1268 err = request_msix_data_irqs(adap); 1269 if (err) { 1270 free_irq(adap->msix_info[0].vec, adap); 1271 goto irq_err; 1272 } 1273 } else if ((err = request_irq(adap->pdev->irq, 1274 t3_intr_handler(adap, 1275 adap->sge.qs[0].rspq. 1276 polling), 1277 (adap->flags & USING_MSI) ? 1278 0 : IRQF_SHARED, 1279 adap->name, adap))) 1280 goto irq_err; 1281 1282 enable_all_napi(adap); 1283 t3_sge_start(adap); 1284 t3_intr_enable(adap); 1285 1286 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) && 1287 is_offload(adap) && init_tp_parity(adap) == 0) 1288 adap->flags |= TP_PARITY_INIT; 1289 1290 if (adap->flags & TP_PARITY_INIT) { 1291 t3_write_reg(adap, A_TP_INT_CAUSE, 1292 F_CMCACHEPERR | F_ARPLUTPERR); 1293 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff); 1294 } 1295 1296 if (!(adap->flags & QUEUES_BOUND)) { 1297 int ret = bind_qsets(adap); 1298 1299 if (ret < 0) { 1300 CH_ERR(adap, "failed to bind qsets, err %d\n", ret); 1301 t3_intr_disable(adap); 1302 free_irq_resources(adap); 1303 err = ret; 1304 goto out; 1305 } 1306 adap->flags |= QUEUES_BOUND; 1307 } 1308 1309 out: 1310 return err; 1311 irq_err: 1312 CH_ERR(adap, "request_irq failed, err %d\n", err); 1313 goto out; 1314 } 1315 1316 /* 1317 * Release resources when all the ports and offloading have been stopped. 1318 */ 1319 static void cxgb_down(struct adapter *adapter, int on_wq) 1320 { 1321 t3_sge_stop(adapter); 1322 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ 1323 t3_intr_disable(adapter); 1324 spin_unlock_irq(&adapter->work_lock); 1325 1326 free_irq_resources(adapter); 1327 quiesce_rx(adapter); 1328 t3_sge_stop(adapter); 1329 if (!on_wq) 1330 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */ 1331 } 1332 1333 static void schedule_chk_task(struct adapter *adap) 1334 { 1335 unsigned int timeo; 1336 1337 timeo = adap->params.linkpoll_period ? 1338 (HZ * adap->params.linkpoll_period) / 10 : 1339 adap->params.stats_update_period * HZ; 1340 if (timeo) 1341 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); 1342 } 1343 1344 static int offload_open(struct net_device *dev) 1345 { 1346 struct port_info *pi = netdev_priv(dev); 1347 struct adapter *adapter = pi->adapter; 1348 struct t3cdev *tdev = dev2t3cdev(dev); 1349 int adap_up = adapter->open_device_map & PORT_MASK; 1350 int err; 1351 1352 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1353 return 0; 1354 1355 if (!adap_up && (err = cxgb_up(adapter)) < 0) 1356 goto out; 1357 1358 t3_tp_set_offload_mode(adapter, 1); 1359 tdev->lldev = adapter->port[0]; 1360 err = cxgb3_offload_activate(adapter); 1361 if (err) 1362 goto out; 1363 1364 init_port_mtus(adapter); 1365 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, 1366 adapter->params.b_wnd, 1367 adapter->params.rev == 0 ? 1368 adapter->port[0]->mtu : 0xffff); 1369 init_smt(adapter); 1370 1371 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group)) 1372 dev_dbg(&dev->dev, "cannot create sysfs group\n"); 1373 1374 /* Call back all registered clients */ 1375 cxgb3_add_clients(tdev); 1376 1377 out: 1378 /* restore them in case the offload module has changed them */ 1379 if (err) { 1380 t3_tp_set_offload_mode(adapter, 0); 1381 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1382 cxgb3_set_dummy_ops(tdev); 1383 } 1384 return err; 1385 } 1386 1387 static int offload_close(struct t3cdev *tdev) 1388 { 1389 struct adapter *adapter = tdev2adap(tdev); 1390 struct t3c_data *td = T3C_DATA(tdev); 1391 1392 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1393 return 0; 1394 1395 /* Call back all registered clients */ 1396 cxgb3_remove_clients(tdev); 1397 1398 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group); 1399 1400 /* Flush work scheduled while releasing TIDs */ 1401 flush_work(&td->tid_release_task); 1402 1403 tdev->lldev = NULL; 1404 cxgb3_set_dummy_ops(tdev); 1405 t3_tp_set_offload_mode(adapter, 0); 1406 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1407 1408 if (!adapter->open_device_map) 1409 cxgb_down(adapter, 0); 1410 1411 cxgb3_offload_deactivate(adapter); 1412 return 0; 1413 } 1414 1415 static int cxgb_open(struct net_device *dev) 1416 { 1417 struct port_info *pi = netdev_priv(dev); 1418 struct adapter *adapter = pi->adapter; 1419 int other_ports = adapter->open_device_map & PORT_MASK; 1420 int err; 1421 1422 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) 1423 return err; 1424 1425 set_bit(pi->port_id, &adapter->open_device_map); 1426 if (is_offload(adapter) && !ofld_disable) { 1427 err = offload_open(dev); 1428 if (err) 1429 pr_warn("Could not initialize offload capabilities\n"); 1430 } 1431 1432 netif_set_real_num_tx_queues(dev, pi->nqsets); 1433 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 1434 if (err) 1435 return err; 1436 link_start(dev); 1437 t3_port_intr_enable(adapter, pi->port_id); 1438 netif_tx_start_all_queues(dev); 1439 if (!other_ports) 1440 schedule_chk_task(adapter); 1441 1442 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id); 1443 return 0; 1444 } 1445 1446 static int __cxgb_close(struct net_device *dev, int on_wq) 1447 { 1448 struct port_info *pi = netdev_priv(dev); 1449 struct adapter *adapter = pi->adapter; 1450 1451 1452 if (!adapter->open_device_map) 1453 return 0; 1454 1455 /* Stop link fault interrupts */ 1456 t3_xgm_intr_disable(adapter, pi->port_id); 1457 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 1458 1459 t3_port_intr_disable(adapter, pi->port_id); 1460 netif_tx_stop_all_queues(dev); 1461 pi->phy.ops->power_down(&pi->phy, 1); 1462 netif_carrier_off(dev); 1463 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1464 1465 spin_lock_irq(&adapter->work_lock); /* sync with update task */ 1466 clear_bit(pi->port_id, &adapter->open_device_map); 1467 spin_unlock_irq(&adapter->work_lock); 1468 1469 if (!(adapter->open_device_map & PORT_MASK)) 1470 cancel_delayed_work_sync(&adapter->adap_check_task); 1471 1472 if (!adapter->open_device_map) 1473 cxgb_down(adapter, on_wq); 1474 1475 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id); 1476 return 0; 1477 } 1478 1479 static int cxgb_close(struct net_device *dev) 1480 { 1481 return __cxgb_close(dev, 0); 1482 } 1483 1484 static struct net_device_stats *cxgb_get_stats(struct net_device *dev) 1485 { 1486 struct port_info *pi = netdev_priv(dev); 1487 struct adapter *adapter = pi->adapter; 1488 struct net_device_stats *ns = &dev->stats; 1489 const struct mac_stats *pstats; 1490 1491 spin_lock(&adapter->stats_lock); 1492 pstats = t3_mac_update_stats(&pi->mac); 1493 spin_unlock(&adapter->stats_lock); 1494 1495 ns->tx_bytes = pstats->tx_octets; 1496 ns->tx_packets = pstats->tx_frames; 1497 ns->rx_bytes = pstats->rx_octets; 1498 ns->rx_packets = pstats->rx_frames; 1499 ns->multicast = pstats->rx_mcast_frames; 1500 1501 ns->tx_errors = pstats->tx_underrun; 1502 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + 1503 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + 1504 pstats->rx_fifo_ovfl; 1505 1506 /* detailed rx_errors */ 1507 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; 1508 ns->rx_over_errors = 0; 1509 ns->rx_crc_errors = pstats->rx_fcs_errs; 1510 ns->rx_frame_errors = pstats->rx_symbol_errs; 1511 ns->rx_fifo_errors = pstats->rx_fifo_ovfl; 1512 ns->rx_missed_errors = pstats->rx_cong_drops; 1513 1514 /* detailed tx_errors */ 1515 ns->tx_aborted_errors = 0; 1516 ns->tx_carrier_errors = 0; 1517 ns->tx_fifo_errors = pstats->tx_underrun; 1518 ns->tx_heartbeat_errors = 0; 1519 ns->tx_window_errors = 0; 1520 return ns; 1521 } 1522 1523 static u32 get_msglevel(struct net_device *dev) 1524 { 1525 struct port_info *pi = netdev_priv(dev); 1526 struct adapter *adapter = pi->adapter; 1527 1528 return adapter->msg_enable; 1529 } 1530 1531 static void set_msglevel(struct net_device *dev, u32 val) 1532 { 1533 struct port_info *pi = netdev_priv(dev); 1534 struct adapter *adapter = pi->adapter; 1535 1536 adapter->msg_enable = val; 1537 } 1538 1539 static const char stats_strings[][ETH_GSTRING_LEN] = { 1540 "TxOctetsOK ", 1541 "TxFramesOK ", 1542 "TxMulticastFramesOK", 1543 "TxBroadcastFramesOK", 1544 "TxPauseFrames ", 1545 "TxUnderrun ", 1546 "TxExtUnderrun ", 1547 1548 "TxFrames64 ", 1549 "TxFrames65To127 ", 1550 "TxFrames128To255 ", 1551 "TxFrames256To511 ", 1552 "TxFrames512To1023 ", 1553 "TxFrames1024To1518 ", 1554 "TxFrames1519ToMax ", 1555 1556 "RxOctetsOK ", 1557 "RxFramesOK ", 1558 "RxMulticastFramesOK", 1559 "RxBroadcastFramesOK", 1560 "RxPauseFrames ", 1561 "RxFCSErrors ", 1562 "RxSymbolErrors ", 1563 "RxShortErrors ", 1564 "RxJabberErrors ", 1565 "RxLengthErrors ", 1566 "RxFIFOoverflow ", 1567 1568 "RxFrames64 ", 1569 "RxFrames65To127 ", 1570 "RxFrames128To255 ", 1571 "RxFrames256To511 ", 1572 "RxFrames512To1023 ", 1573 "RxFrames1024To1518 ", 1574 "RxFrames1519ToMax ", 1575 1576 "PhyFIFOErrors ", 1577 "TSO ", 1578 "VLANextractions ", 1579 "VLANinsertions ", 1580 "TxCsumOffload ", 1581 "RxCsumGood ", 1582 "LroAggregated ", 1583 "LroFlushed ", 1584 "LroNoDesc ", 1585 "RxDrops ", 1586 1587 "CheckTXEnToggled ", 1588 "CheckResets ", 1589 1590 "LinkFaults ", 1591 }; 1592 1593 static int get_sset_count(struct net_device *dev, int sset) 1594 { 1595 switch (sset) { 1596 case ETH_SS_STATS: 1597 return ARRAY_SIZE(stats_strings); 1598 default: 1599 return -EOPNOTSUPP; 1600 } 1601 } 1602 1603 #define T3_REGMAP_SIZE (3 * 1024) 1604 1605 static int get_regs_len(struct net_device *dev) 1606 { 1607 return T3_REGMAP_SIZE; 1608 } 1609 1610 static int get_eeprom_len(struct net_device *dev) 1611 { 1612 return EEPROMSIZE; 1613 } 1614 1615 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1616 { 1617 struct port_info *pi = netdev_priv(dev); 1618 struct adapter *adapter = pi->adapter; 1619 u32 fw_vers = 0; 1620 u32 tp_vers = 0; 1621 1622 spin_lock(&adapter->stats_lock); 1623 t3_get_fw_version(adapter, &fw_vers); 1624 t3_get_tp_version(adapter, &tp_vers); 1625 spin_unlock(&adapter->stats_lock); 1626 1627 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1628 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1629 strlcpy(info->bus_info, pci_name(adapter->pdev), 1630 sizeof(info->bus_info)); 1631 if (fw_vers) 1632 snprintf(info->fw_version, sizeof(info->fw_version), 1633 "%s %u.%u.%u TP %u.%u.%u", 1634 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N", 1635 G_FW_VERSION_MAJOR(fw_vers), 1636 G_FW_VERSION_MINOR(fw_vers), 1637 G_FW_VERSION_MICRO(fw_vers), 1638 G_TP_VERSION_MAJOR(tp_vers), 1639 G_TP_VERSION_MINOR(tp_vers), 1640 G_TP_VERSION_MICRO(tp_vers)); 1641 } 1642 1643 static void get_strings(struct net_device *dev, u32 stringset, u8 * data) 1644 { 1645 if (stringset == ETH_SS_STATS) 1646 memcpy(data, stats_strings, sizeof(stats_strings)); 1647 } 1648 1649 static unsigned long collect_sge_port_stats(struct adapter *adapter, 1650 struct port_info *p, int idx) 1651 { 1652 int i; 1653 unsigned long tot = 0; 1654 1655 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i) 1656 tot += adapter->sge.qs[i].port_stats[idx]; 1657 return tot; 1658 } 1659 1660 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1661 u64 *data) 1662 { 1663 struct port_info *pi = netdev_priv(dev); 1664 struct adapter *adapter = pi->adapter; 1665 const struct mac_stats *s; 1666 1667 spin_lock(&adapter->stats_lock); 1668 s = t3_mac_update_stats(&pi->mac); 1669 spin_unlock(&adapter->stats_lock); 1670 1671 *data++ = s->tx_octets; 1672 *data++ = s->tx_frames; 1673 *data++ = s->tx_mcast_frames; 1674 *data++ = s->tx_bcast_frames; 1675 *data++ = s->tx_pause; 1676 *data++ = s->tx_underrun; 1677 *data++ = s->tx_fifo_urun; 1678 1679 *data++ = s->tx_frames_64; 1680 *data++ = s->tx_frames_65_127; 1681 *data++ = s->tx_frames_128_255; 1682 *data++ = s->tx_frames_256_511; 1683 *data++ = s->tx_frames_512_1023; 1684 *data++ = s->tx_frames_1024_1518; 1685 *data++ = s->tx_frames_1519_max; 1686 1687 *data++ = s->rx_octets; 1688 *data++ = s->rx_frames; 1689 *data++ = s->rx_mcast_frames; 1690 *data++ = s->rx_bcast_frames; 1691 *data++ = s->rx_pause; 1692 *data++ = s->rx_fcs_errs; 1693 *data++ = s->rx_symbol_errs; 1694 *data++ = s->rx_short; 1695 *data++ = s->rx_jabber; 1696 *data++ = s->rx_too_long; 1697 *data++ = s->rx_fifo_ovfl; 1698 1699 *data++ = s->rx_frames_64; 1700 *data++ = s->rx_frames_65_127; 1701 *data++ = s->rx_frames_128_255; 1702 *data++ = s->rx_frames_256_511; 1703 *data++ = s->rx_frames_512_1023; 1704 *data++ = s->rx_frames_1024_1518; 1705 *data++ = s->rx_frames_1519_max; 1706 1707 *data++ = pi->phy.fifo_errors; 1708 1709 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); 1710 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); 1711 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); 1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); 1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); 1714 *data++ = 0; 1715 *data++ = 0; 1716 *data++ = 0; 1717 *data++ = s->rx_cong_drops; 1718 1719 *data++ = s->num_toggled; 1720 *data++ = s->num_resets; 1721 1722 *data++ = s->link_faults; 1723 } 1724 1725 static inline void reg_block_dump(struct adapter *ap, void *buf, 1726 unsigned int start, unsigned int end) 1727 { 1728 u32 *p = buf + start; 1729 1730 for (; start <= end; start += sizeof(u32)) 1731 *p++ = t3_read_reg(ap, start); 1732 } 1733 1734 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1735 void *buf) 1736 { 1737 struct port_info *pi = netdev_priv(dev); 1738 struct adapter *ap = pi->adapter; 1739 1740 /* 1741 * Version scheme: 1742 * bits 0..9: chip version 1743 * bits 10..15: chip revision 1744 * bit 31: set for PCIe cards 1745 */ 1746 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); 1747 1748 /* 1749 * We skip the MAC statistics registers because they are clear-on-read. 1750 * Also reading multi-register stats would need to synchronize with the 1751 * periodic mac stats accumulation. Hard to justify the complexity. 1752 */ 1753 memset(buf, 0, T3_REGMAP_SIZE); 1754 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); 1755 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); 1756 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); 1757 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); 1758 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); 1759 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, 1760 XGM_REG(A_XGM_SERDES_STAT3, 1)); 1761 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), 1762 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); 1763 } 1764 1765 static int restart_autoneg(struct net_device *dev) 1766 { 1767 struct port_info *p = netdev_priv(dev); 1768 1769 if (!netif_running(dev)) 1770 return -EAGAIN; 1771 if (p->link_config.autoneg != AUTONEG_ENABLE) 1772 return -EINVAL; 1773 p->phy.ops->autoneg_restart(&p->phy); 1774 return 0; 1775 } 1776 1777 static int set_phys_id(struct net_device *dev, 1778 enum ethtool_phys_id_state state) 1779 { 1780 struct port_info *pi = netdev_priv(dev); 1781 struct adapter *adapter = pi->adapter; 1782 1783 switch (state) { 1784 case ETHTOOL_ID_ACTIVE: 1785 return 1; /* cycle on/off once per second */ 1786 1787 case ETHTOOL_ID_OFF: 1788 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 1789 break; 1790 1791 case ETHTOOL_ID_ON: 1792 case ETHTOOL_ID_INACTIVE: 1793 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 1794 F_GPIO0_OUT_VAL); 1795 } 1796 1797 return 0; 1798 } 1799 1800 static int get_link_ksettings(struct net_device *dev, 1801 struct ethtool_link_ksettings *cmd) 1802 { 1803 struct port_info *p = netdev_priv(dev); 1804 u32 supported; 1805 1806 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 1807 p->link_config.supported); 1808 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 1809 p->link_config.advertising); 1810 1811 if (netif_carrier_ok(dev)) { 1812 cmd->base.speed = p->link_config.speed; 1813 cmd->base.duplex = p->link_config.duplex; 1814 } else { 1815 cmd->base.speed = SPEED_UNKNOWN; 1816 cmd->base.duplex = DUPLEX_UNKNOWN; 1817 } 1818 1819 ethtool_convert_link_mode_to_legacy_u32(&supported, 1820 cmd->link_modes.supported); 1821 1822 cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1823 cmd->base.phy_address = p->phy.mdio.prtad; 1824 cmd->base.autoneg = p->link_config.autoneg; 1825 return 0; 1826 } 1827 1828 static int speed_duplex_to_caps(int speed, int duplex) 1829 { 1830 int cap = 0; 1831 1832 switch (speed) { 1833 case SPEED_10: 1834 if (duplex == DUPLEX_FULL) 1835 cap = SUPPORTED_10baseT_Full; 1836 else 1837 cap = SUPPORTED_10baseT_Half; 1838 break; 1839 case SPEED_100: 1840 if (duplex == DUPLEX_FULL) 1841 cap = SUPPORTED_100baseT_Full; 1842 else 1843 cap = SUPPORTED_100baseT_Half; 1844 break; 1845 case SPEED_1000: 1846 if (duplex == DUPLEX_FULL) 1847 cap = SUPPORTED_1000baseT_Full; 1848 else 1849 cap = SUPPORTED_1000baseT_Half; 1850 break; 1851 case SPEED_10000: 1852 if (duplex == DUPLEX_FULL) 1853 cap = SUPPORTED_10000baseT_Full; 1854 } 1855 return cap; 1856 } 1857 1858 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1859 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1860 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ 1861 ADVERTISED_10000baseT_Full) 1862 1863 static int set_link_ksettings(struct net_device *dev, 1864 const struct ethtool_link_ksettings *cmd) 1865 { 1866 struct port_info *p = netdev_priv(dev); 1867 struct link_config *lc = &p->link_config; 1868 u32 advertising; 1869 1870 ethtool_convert_link_mode_to_legacy_u32(&advertising, 1871 cmd->link_modes.advertising); 1872 1873 if (!(lc->supported & SUPPORTED_Autoneg)) { 1874 /* 1875 * PHY offers a single speed/duplex. See if that's what's 1876 * being requested. 1877 */ 1878 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1879 u32 speed = cmd->base.speed; 1880 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1881 if (lc->supported & cap) 1882 return 0; 1883 } 1884 return -EINVAL; 1885 } 1886 1887 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1888 u32 speed = cmd->base.speed; 1889 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1890 1891 if (!(lc->supported & cap) || (speed == SPEED_1000)) 1892 return -EINVAL; 1893 lc->requested_speed = speed; 1894 lc->requested_duplex = cmd->base.duplex; 1895 lc->advertising = 0; 1896 } else { 1897 advertising &= ADVERTISED_MASK; 1898 advertising &= lc->supported; 1899 if (!advertising) 1900 return -EINVAL; 1901 lc->requested_speed = SPEED_INVALID; 1902 lc->requested_duplex = DUPLEX_INVALID; 1903 lc->advertising = advertising | ADVERTISED_Autoneg; 1904 } 1905 lc->autoneg = cmd->base.autoneg; 1906 if (netif_running(dev)) 1907 t3_link_start(&p->phy, &p->mac, lc); 1908 return 0; 1909 } 1910 1911 static void get_pauseparam(struct net_device *dev, 1912 struct ethtool_pauseparam *epause) 1913 { 1914 struct port_info *p = netdev_priv(dev); 1915 1916 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; 1917 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; 1918 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; 1919 } 1920 1921 static int set_pauseparam(struct net_device *dev, 1922 struct ethtool_pauseparam *epause) 1923 { 1924 struct port_info *p = netdev_priv(dev); 1925 struct link_config *lc = &p->link_config; 1926 1927 if (epause->autoneg == AUTONEG_DISABLE) 1928 lc->requested_fc = 0; 1929 else if (lc->supported & SUPPORTED_Autoneg) 1930 lc->requested_fc = PAUSE_AUTONEG; 1931 else 1932 return -EINVAL; 1933 1934 if (epause->rx_pause) 1935 lc->requested_fc |= PAUSE_RX; 1936 if (epause->tx_pause) 1937 lc->requested_fc |= PAUSE_TX; 1938 if (lc->autoneg == AUTONEG_ENABLE) { 1939 if (netif_running(dev)) 1940 t3_link_start(&p->phy, &p->mac, lc); 1941 } else { 1942 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1943 if (netif_running(dev)) 1944 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); 1945 } 1946 return 0; 1947 } 1948 1949 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1950 { 1951 struct port_info *pi = netdev_priv(dev); 1952 struct adapter *adapter = pi->adapter; 1953 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset]; 1954 1955 e->rx_max_pending = MAX_RX_BUFFERS; 1956 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; 1957 e->tx_max_pending = MAX_TXQ_ENTRIES; 1958 1959 e->rx_pending = q->fl_size; 1960 e->rx_mini_pending = q->rspq_size; 1961 e->rx_jumbo_pending = q->jumbo_size; 1962 e->tx_pending = q->txq_size[0]; 1963 } 1964 1965 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1966 { 1967 struct port_info *pi = netdev_priv(dev); 1968 struct adapter *adapter = pi->adapter; 1969 struct qset_params *q; 1970 int i; 1971 1972 if (e->rx_pending > MAX_RX_BUFFERS || 1973 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || 1974 e->tx_pending > MAX_TXQ_ENTRIES || 1975 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1976 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1977 e->rx_pending < MIN_FL_ENTRIES || 1978 e->rx_jumbo_pending < MIN_FL_ENTRIES || 1979 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) 1980 return -EINVAL; 1981 1982 if (adapter->flags & FULL_INIT_DONE) 1983 return -EBUSY; 1984 1985 q = &adapter->params.sge.qset[pi->first_qset]; 1986 for (i = 0; i < pi->nqsets; ++i, ++q) { 1987 q->rspq_size = e->rx_mini_pending; 1988 q->fl_size = e->rx_pending; 1989 q->jumbo_size = e->rx_jumbo_pending; 1990 q->txq_size[0] = e->tx_pending; 1991 q->txq_size[1] = e->tx_pending; 1992 q->txq_size[2] = e->tx_pending; 1993 } 1994 return 0; 1995 } 1996 1997 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1998 { 1999 struct port_info *pi = netdev_priv(dev); 2000 struct adapter *adapter = pi->adapter; 2001 struct qset_params *qsp; 2002 struct sge_qset *qs; 2003 int i; 2004 2005 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) 2006 return -EINVAL; 2007 2008 for (i = 0; i < pi->nqsets; i++) { 2009 qsp = &adapter->params.sge.qset[i]; 2010 qs = &adapter->sge.qs[i]; 2011 qsp->coalesce_usecs = c->rx_coalesce_usecs; 2012 t3_update_qset_coalesce(qs, qsp); 2013 } 2014 2015 return 0; 2016 } 2017 2018 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2019 { 2020 struct port_info *pi = netdev_priv(dev); 2021 struct adapter *adapter = pi->adapter; 2022 struct qset_params *q = adapter->params.sge.qset; 2023 2024 c->rx_coalesce_usecs = q->coalesce_usecs; 2025 return 0; 2026 } 2027 2028 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2029 u8 * data) 2030 { 2031 struct port_info *pi = netdev_priv(dev); 2032 struct adapter *adapter = pi->adapter; 2033 int i, err = 0; 2034 2035 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2036 if (!buf) 2037 return -ENOMEM; 2038 2039 e->magic = EEPROM_MAGIC; 2040 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2041 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]); 2042 2043 if (!err) 2044 memcpy(data, buf + e->offset, e->len); 2045 kfree(buf); 2046 return err; 2047 } 2048 2049 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2050 u8 * data) 2051 { 2052 struct port_info *pi = netdev_priv(dev); 2053 struct adapter *adapter = pi->adapter; 2054 u32 aligned_offset, aligned_len; 2055 __le32 *p; 2056 u8 *buf; 2057 int err; 2058 2059 if (eeprom->magic != EEPROM_MAGIC) 2060 return -EINVAL; 2061 2062 aligned_offset = eeprom->offset & ~3; 2063 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2064 2065 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2066 buf = kmalloc(aligned_len, GFP_KERNEL); 2067 if (!buf) 2068 return -ENOMEM; 2069 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf); 2070 if (!err && aligned_len > 4) 2071 err = t3_seeprom_read(adapter, 2072 aligned_offset + aligned_len - 4, 2073 (__le32 *) & buf[aligned_len - 4]); 2074 if (err) 2075 goto out; 2076 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2077 } else 2078 buf = data; 2079 2080 err = t3_seeprom_wp(adapter, 0); 2081 if (err) 2082 goto out; 2083 2084 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) { 2085 err = t3_seeprom_write(adapter, aligned_offset, *p); 2086 aligned_offset += 4; 2087 } 2088 2089 if (!err) 2090 err = t3_seeprom_wp(adapter, 1); 2091 out: 2092 if (buf != data) 2093 kfree(buf); 2094 return err; 2095 } 2096 2097 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2098 { 2099 wol->supported = 0; 2100 wol->wolopts = 0; 2101 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2102 } 2103 2104 static const struct ethtool_ops cxgb_ethtool_ops = { 2105 .get_drvinfo = get_drvinfo, 2106 .get_msglevel = get_msglevel, 2107 .set_msglevel = set_msglevel, 2108 .get_ringparam = get_sge_param, 2109 .set_ringparam = set_sge_param, 2110 .get_coalesce = get_coalesce, 2111 .set_coalesce = set_coalesce, 2112 .get_eeprom_len = get_eeprom_len, 2113 .get_eeprom = get_eeprom, 2114 .set_eeprom = set_eeprom, 2115 .get_pauseparam = get_pauseparam, 2116 .set_pauseparam = set_pauseparam, 2117 .get_link = ethtool_op_get_link, 2118 .get_strings = get_strings, 2119 .set_phys_id = set_phys_id, 2120 .nway_reset = restart_autoneg, 2121 .get_sset_count = get_sset_count, 2122 .get_ethtool_stats = get_stats, 2123 .get_regs_len = get_regs_len, 2124 .get_regs = get_regs, 2125 .get_wol = get_wol, 2126 .get_link_ksettings = get_link_ksettings, 2127 .set_link_ksettings = set_link_ksettings, 2128 }; 2129 2130 static int in_range(int val, int lo, int hi) 2131 { 2132 return val < 0 || (val <= hi && val >= lo); 2133 } 2134 2135 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr) 2136 { 2137 struct port_info *pi = netdev_priv(dev); 2138 struct adapter *adapter = pi->adapter; 2139 u32 cmd; 2140 int ret; 2141 2142 if (copy_from_user(&cmd, useraddr, sizeof(cmd))) 2143 return -EFAULT; 2144 2145 switch (cmd) { 2146 case CHELSIO_SET_QSET_PARAMS:{ 2147 int i; 2148 struct qset_params *q; 2149 struct ch_qset_params t; 2150 int q1 = pi->first_qset; 2151 int nqsets = pi->nqsets; 2152 2153 if (!capable(CAP_NET_ADMIN)) 2154 return -EPERM; 2155 if (copy_from_user(&t, useraddr, sizeof(t))) 2156 return -EFAULT; 2157 if (t.qset_idx >= SGE_QSETS) 2158 return -EINVAL; 2159 if (!in_range(t.intr_lat, 0, M_NEWTIMER) || 2160 !in_range(t.cong_thres, 0, 255) || 2161 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES, 2162 MAX_TXQ_ENTRIES) || 2163 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES, 2164 MAX_TXQ_ENTRIES) || 2165 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, 2166 MAX_CTRL_TXQ_ENTRIES) || 2167 !in_range(t.fl_size[0], MIN_FL_ENTRIES, 2168 MAX_RX_BUFFERS) || 2169 !in_range(t.fl_size[1], MIN_FL_ENTRIES, 2170 MAX_RX_JUMBO_BUFFERS) || 2171 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES, 2172 MAX_RSPQ_ENTRIES)) 2173 return -EINVAL; 2174 2175 if ((adapter->flags & FULL_INIT_DONE) && 2176 (t.rspq_size >= 0 || t.fl_size[0] >= 0 || 2177 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || 2178 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || 2179 t.polling >= 0 || t.cong_thres >= 0)) 2180 return -EBUSY; 2181 2182 /* Allow setting of any available qset when offload enabled */ 2183 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2184 q1 = 0; 2185 for_each_port(adapter, i) { 2186 pi = adap2pinfo(adapter, i); 2187 nqsets += pi->first_qset + pi->nqsets; 2188 } 2189 } 2190 2191 if (t.qset_idx < q1) 2192 return -EINVAL; 2193 if (t.qset_idx > q1 + nqsets - 1) 2194 return -EINVAL; 2195 2196 q = &adapter->params.sge.qset[t.qset_idx]; 2197 2198 if (t.rspq_size >= 0) 2199 q->rspq_size = t.rspq_size; 2200 if (t.fl_size[0] >= 0) 2201 q->fl_size = t.fl_size[0]; 2202 if (t.fl_size[1] >= 0) 2203 q->jumbo_size = t.fl_size[1]; 2204 if (t.txq_size[0] >= 0) 2205 q->txq_size[0] = t.txq_size[0]; 2206 if (t.txq_size[1] >= 0) 2207 q->txq_size[1] = t.txq_size[1]; 2208 if (t.txq_size[2] >= 0) 2209 q->txq_size[2] = t.txq_size[2]; 2210 if (t.cong_thres >= 0) 2211 q->cong_thres = t.cong_thres; 2212 if (t.intr_lat >= 0) { 2213 struct sge_qset *qs = 2214 &adapter->sge.qs[t.qset_idx]; 2215 2216 q->coalesce_usecs = t.intr_lat; 2217 t3_update_qset_coalesce(qs, q); 2218 } 2219 if (t.polling >= 0) { 2220 if (adapter->flags & USING_MSIX) 2221 q->polling = t.polling; 2222 else { 2223 /* No polling with INTx for T3A */ 2224 if (adapter->params.rev == 0 && 2225 !(adapter->flags & USING_MSI)) 2226 t.polling = 0; 2227 2228 for (i = 0; i < SGE_QSETS; i++) { 2229 q = &adapter->params.sge. 2230 qset[i]; 2231 q->polling = t.polling; 2232 } 2233 } 2234 } 2235 2236 if (t.lro >= 0) { 2237 if (t.lro) 2238 dev->wanted_features |= NETIF_F_GRO; 2239 else 2240 dev->wanted_features &= ~NETIF_F_GRO; 2241 netdev_update_features(dev); 2242 } 2243 2244 break; 2245 } 2246 case CHELSIO_GET_QSET_PARAMS:{ 2247 struct qset_params *q; 2248 struct ch_qset_params t; 2249 int q1 = pi->first_qset; 2250 int nqsets = pi->nqsets; 2251 int i; 2252 2253 if (copy_from_user(&t, useraddr, sizeof(t))) 2254 return -EFAULT; 2255 2256 /* Display qsets for all ports when offload enabled */ 2257 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2258 q1 = 0; 2259 for_each_port(adapter, i) { 2260 pi = adap2pinfo(adapter, i); 2261 nqsets = pi->first_qset + pi->nqsets; 2262 } 2263 } 2264 2265 if (t.qset_idx >= nqsets) 2266 return -EINVAL; 2267 2268 q = &adapter->params.sge.qset[q1 + t.qset_idx]; 2269 t.rspq_size = q->rspq_size; 2270 t.txq_size[0] = q->txq_size[0]; 2271 t.txq_size[1] = q->txq_size[1]; 2272 t.txq_size[2] = q->txq_size[2]; 2273 t.fl_size[0] = q->fl_size; 2274 t.fl_size[1] = q->jumbo_size; 2275 t.polling = q->polling; 2276 t.lro = !!(dev->features & NETIF_F_GRO); 2277 t.intr_lat = q->coalesce_usecs; 2278 t.cong_thres = q->cong_thres; 2279 t.qnum = q1; 2280 2281 if (adapter->flags & USING_MSIX) 2282 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec; 2283 else 2284 t.vector = adapter->pdev->irq; 2285 2286 if (copy_to_user(useraddr, &t, sizeof(t))) 2287 return -EFAULT; 2288 break; 2289 } 2290 case CHELSIO_SET_QSET_NUM:{ 2291 struct ch_reg edata; 2292 unsigned int i, first_qset = 0, other_qsets = 0; 2293 2294 if (!capable(CAP_NET_ADMIN)) 2295 return -EPERM; 2296 if (adapter->flags & FULL_INIT_DONE) 2297 return -EBUSY; 2298 if (copy_from_user(&edata, useraddr, sizeof(edata))) 2299 return -EFAULT; 2300 if (edata.val < 1 || 2301 (edata.val > 1 && !(adapter->flags & USING_MSIX))) 2302 return -EINVAL; 2303 2304 for_each_port(adapter, i) 2305 if (adapter->port[i] && adapter->port[i] != dev) 2306 other_qsets += adap2pinfo(adapter, i)->nqsets; 2307 2308 if (edata.val + other_qsets > SGE_QSETS) 2309 return -EINVAL; 2310 2311 pi->nqsets = edata.val; 2312 2313 for_each_port(adapter, i) 2314 if (adapter->port[i]) { 2315 pi = adap2pinfo(adapter, i); 2316 pi->first_qset = first_qset; 2317 first_qset += pi->nqsets; 2318 } 2319 break; 2320 } 2321 case CHELSIO_GET_QSET_NUM:{ 2322 struct ch_reg edata; 2323 2324 memset(&edata, 0, sizeof(struct ch_reg)); 2325 2326 edata.cmd = CHELSIO_GET_QSET_NUM; 2327 edata.val = pi->nqsets; 2328 if (copy_to_user(useraddr, &edata, sizeof(edata))) 2329 return -EFAULT; 2330 break; 2331 } 2332 case CHELSIO_LOAD_FW:{ 2333 u8 *fw_data; 2334 struct ch_mem_range t; 2335 2336 if (!capable(CAP_SYS_RAWIO)) 2337 return -EPERM; 2338 if (copy_from_user(&t, useraddr, sizeof(t))) 2339 return -EFAULT; 2340 /* Check t.len sanity ? */ 2341 fw_data = memdup_user(useraddr + sizeof(t), t.len); 2342 if (IS_ERR(fw_data)) 2343 return PTR_ERR(fw_data); 2344 2345 ret = t3_load_fw(adapter, fw_data, t.len); 2346 kfree(fw_data); 2347 if (ret) 2348 return ret; 2349 break; 2350 } 2351 case CHELSIO_SETMTUTAB:{ 2352 struct ch_mtus m; 2353 int i; 2354 2355 if (!is_offload(adapter)) 2356 return -EOPNOTSUPP; 2357 if (!capable(CAP_NET_ADMIN)) 2358 return -EPERM; 2359 if (offload_running(adapter)) 2360 return -EBUSY; 2361 if (copy_from_user(&m, useraddr, sizeof(m))) 2362 return -EFAULT; 2363 if (m.nmtus != NMTUS) 2364 return -EINVAL; 2365 if (m.mtus[0] < 81) /* accommodate SACK */ 2366 return -EINVAL; 2367 2368 /* MTUs must be in ascending order */ 2369 for (i = 1; i < NMTUS; ++i) 2370 if (m.mtus[i] < m.mtus[i - 1]) 2371 return -EINVAL; 2372 2373 memcpy(adapter->params.mtus, m.mtus, 2374 sizeof(adapter->params.mtus)); 2375 break; 2376 } 2377 case CHELSIO_GET_PM:{ 2378 struct tp_params *p = &adapter->params.tp; 2379 struct ch_pm m = {.cmd = CHELSIO_GET_PM }; 2380 2381 if (!is_offload(adapter)) 2382 return -EOPNOTSUPP; 2383 m.tx_pg_sz = p->tx_pg_size; 2384 m.tx_num_pg = p->tx_num_pgs; 2385 m.rx_pg_sz = p->rx_pg_size; 2386 m.rx_num_pg = p->rx_num_pgs; 2387 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; 2388 if (copy_to_user(useraddr, &m, sizeof(m))) 2389 return -EFAULT; 2390 break; 2391 } 2392 case CHELSIO_SET_PM:{ 2393 struct ch_pm m; 2394 struct tp_params *p = &adapter->params.tp; 2395 2396 if (!is_offload(adapter)) 2397 return -EOPNOTSUPP; 2398 if (!capable(CAP_NET_ADMIN)) 2399 return -EPERM; 2400 if (adapter->flags & FULL_INIT_DONE) 2401 return -EBUSY; 2402 if (copy_from_user(&m, useraddr, sizeof(m))) 2403 return -EFAULT; 2404 if (!is_power_of_2(m.rx_pg_sz) || 2405 !is_power_of_2(m.tx_pg_sz)) 2406 return -EINVAL; /* not power of 2 */ 2407 if (!(m.rx_pg_sz & 0x14000)) 2408 return -EINVAL; /* not 16KB or 64KB */ 2409 if (!(m.tx_pg_sz & 0x1554000)) 2410 return -EINVAL; 2411 if (m.tx_num_pg == -1) 2412 m.tx_num_pg = p->tx_num_pgs; 2413 if (m.rx_num_pg == -1) 2414 m.rx_num_pg = p->rx_num_pgs; 2415 if (m.tx_num_pg % 24 || m.rx_num_pg % 24) 2416 return -EINVAL; 2417 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || 2418 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) 2419 return -EINVAL; 2420 p->rx_pg_size = m.rx_pg_sz; 2421 p->tx_pg_size = m.tx_pg_sz; 2422 p->rx_num_pgs = m.rx_num_pg; 2423 p->tx_num_pgs = m.tx_num_pg; 2424 break; 2425 } 2426 case CHELSIO_GET_MEM:{ 2427 struct ch_mem_range t; 2428 struct mc7 *mem; 2429 u64 buf[32]; 2430 2431 if (!is_offload(adapter)) 2432 return -EOPNOTSUPP; 2433 if (!(adapter->flags & FULL_INIT_DONE)) 2434 return -EIO; /* need the memory controllers */ 2435 if (copy_from_user(&t, useraddr, sizeof(t))) 2436 return -EFAULT; 2437 if ((t.addr & 7) || (t.len & 7)) 2438 return -EINVAL; 2439 if (t.mem_id == MEM_CM) 2440 mem = &adapter->cm; 2441 else if (t.mem_id == MEM_PMRX) 2442 mem = &adapter->pmrx; 2443 else if (t.mem_id == MEM_PMTX) 2444 mem = &adapter->pmtx; 2445 else 2446 return -EINVAL; 2447 2448 /* 2449 * Version scheme: 2450 * bits 0..9: chip version 2451 * bits 10..15: chip revision 2452 */ 2453 t.version = 3 | (adapter->params.rev << 10); 2454 if (copy_to_user(useraddr, &t, sizeof(t))) 2455 return -EFAULT; 2456 2457 /* 2458 * Read 256 bytes at a time as len can be large and we don't 2459 * want to use huge intermediate buffers. 2460 */ 2461 useraddr += sizeof(t); /* advance to start of buffer */ 2462 while (t.len) { 2463 unsigned int chunk = 2464 min_t(unsigned int, t.len, sizeof(buf)); 2465 2466 ret = 2467 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, 2468 buf); 2469 if (ret) 2470 return ret; 2471 if (copy_to_user(useraddr, buf, chunk)) 2472 return -EFAULT; 2473 useraddr += chunk; 2474 t.addr += chunk; 2475 t.len -= chunk; 2476 } 2477 break; 2478 } 2479 case CHELSIO_SET_TRACE_FILTER:{ 2480 struct ch_trace t; 2481 const struct trace_params *tp; 2482 2483 if (!capable(CAP_NET_ADMIN)) 2484 return -EPERM; 2485 if (!offload_running(adapter)) 2486 return -EAGAIN; 2487 if (copy_from_user(&t, useraddr, sizeof(t))) 2488 return -EFAULT; 2489 2490 tp = (const struct trace_params *)&t.sip; 2491 if (t.config_tx) 2492 t3_config_trace_filter(adapter, tp, 0, 2493 t.invert_match, 2494 t.trace_tx); 2495 if (t.config_rx) 2496 t3_config_trace_filter(adapter, tp, 1, 2497 t.invert_match, 2498 t.trace_rx); 2499 break; 2500 } 2501 default: 2502 return -EOPNOTSUPP; 2503 } 2504 return 0; 2505 } 2506 2507 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2508 { 2509 struct mii_ioctl_data *data = if_mii(req); 2510 struct port_info *pi = netdev_priv(dev); 2511 struct adapter *adapter = pi->adapter; 2512 2513 switch (cmd) { 2514 case SIOCGMIIREG: 2515 case SIOCSMIIREG: 2516 /* Convert phy_id from older PRTAD/DEVAD format */ 2517 if (is_10G(adapter) && 2518 !mdio_phy_id_is_c45(data->phy_id) && 2519 (data->phy_id & 0x1f00) && 2520 !(data->phy_id & 0xe0e0)) 2521 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8, 2522 data->phy_id & 0x1f); 2523 /* FALLTHRU */ 2524 case SIOCGMIIPHY: 2525 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd); 2526 case SIOCCHIOCTL: 2527 return cxgb_extension_ioctl(dev, req->ifr_data); 2528 default: 2529 return -EOPNOTSUPP; 2530 } 2531 } 2532 2533 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2534 { 2535 struct port_info *pi = netdev_priv(dev); 2536 struct adapter *adapter = pi->adapter; 2537 int ret; 2538 2539 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) 2540 return ret; 2541 dev->mtu = new_mtu; 2542 init_port_mtus(adapter); 2543 if (adapter->params.rev == 0 && offload_running(adapter)) 2544 t3_load_mtus(adapter, adapter->params.mtus, 2545 adapter->params.a_wnd, adapter->params.b_wnd, 2546 adapter->port[0]->mtu); 2547 return 0; 2548 } 2549 2550 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2551 { 2552 struct port_info *pi = netdev_priv(dev); 2553 struct adapter *adapter = pi->adapter; 2554 struct sockaddr *addr = p; 2555 2556 if (!is_valid_ether_addr(addr->sa_data)) 2557 return -EADDRNOTAVAIL; 2558 2559 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2560 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr); 2561 if (offload_running(adapter)) 2562 write_smt_entry(adapter, pi->port_id); 2563 return 0; 2564 } 2565 2566 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2567 netdev_features_t features) 2568 { 2569 /* 2570 * Since there is no support for separate rx/tx vlan accel 2571 * enable/disable make sure tx flag is always in same state as rx. 2572 */ 2573 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2574 features |= NETIF_F_HW_VLAN_CTAG_TX; 2575 else 2576 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2577 2578 return features; 2579 } 2580 2581 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2582 { 2583 netdev_features_t changed = dev->features ^ features; 2584 2585 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2586 cxgb_vlan_mode(dev, features); 2587 2588 return 0; 2589 } 2590 2591 #ifdef CONFIG_NET_POLL_CONTROLLER 2592 static void cxgb_netpoll(struct net_device *dev) 2593 { 2594 struct port_info *pi = netdev_priv(dev); 2595 struct adapter *adapter = pi->adapter; 2596 int qidx; 2597 2598 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) { 2599 struct sge_qset *qs = &adapter->sge.qs[qidx]; 2600 void *source; 2601 2602 if (adapter->flags & USING_MSIX) 2603 source = qs; 2604 else 2605 source = adapter; 2606 2607 t3_intr_handler(adapter, qs->rspq.polling) (0, source); 2608 } 2609 } 2610 #endif 2611 2612 /* 2613 * Periodic accumulation of MAC statistics. 2614 */ 2615 static void mac_stats_update(struct adapter *adapter) 2616 { 2617 int i; 2618 2619 for_each_port(adapter, i) { 2620 struct net_device *dev = adapter->port[i]; 2621 struct port_info *p = netdev_priv(dev); 2622 2623 if (netif_running(dev)) { 2624 spin_lock(&adapter->stats_lock); 2625 t3_mac_update_stats(&p->mac); 2626 spin_unlock(&adapter->stats_lock); 2627 } 2628 } 2629 } 2630 2631 static void check_link_status(struct adapter *adapter) 2632 { 2633 int i; 2634 2635 for_each_port(adapter, i) { 2636 struct net_device *dev = adapter->port[i]; 2637 struct port_info *p = netdev_priv(dev); 2638 int link_fault; 2639 2640 spin_lock_irq(&adapter->work_lock); 2641 link_fault = p->link_fault; 2642 spin_unlock_irq(&adapter->work_lock); 2643 2644 if (link_fault) { 2645 t3_link_fault(adapter, i); 2646 continue; 2647 } 2648 2649 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) { 2650 t3_xgm_intr_disable(adapter, i); 2651 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2652 2653 t3_link_changed(adapter, i); 2654 t3_xgm_intr_enable(adapter, i); 2655 } 2656 } 2657 } 2658 2659 static void check_t3b2_mac(struct adapter *adapter) 2660 { 2661 int i; 2662 2663 if (!rtnl_trylock()) /* synchronize with ifdown */ 2664 return; 2665 2666 for_each_port(adapter, i) { 2667 struct net_device *dev = adapter->port[i]; 2668 struct port_info *p = netdev_priv(dev); 2669 int status; 2670 2671 if (!netif_running(dev)) 2672 continue; 2673 2674 status = 0; 2675 if (netif_running(dev) && netif_carrier_ok(dev)) 2676 status = t3b2_mac_watchdog_task(&p->mac); 2677 if (status == 1) 2678 p->mac.stats.num_toggled++; 2679 else if (status == 2) { 2680 struct cmac *mac = &p->mac; 2681 2682 t3_mac_set_mtu(mac, dev->mtu); 2683 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 2684 cxgb_set_rxmode(dev); 2685 t3_link_start(&p->phy, mac, &p->link_config); 2686 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 2687 t3_port_intr_enable(adapter, p->port_id); 2688 p->mac.stats.num_resets++; 2689 } 2690 } 2691 rtnl_unlock(); 2692 } 2693 2694 2695 static void t3_adap_check_task(struct work_struct *work) 2696 { 2697 struct adapter *adapter = container_of(work, struct adapter, 2698 adap_check_task.work); 2699 const struct adapter_params *p = &adapter->params; 2700 int port; 2701 unsigned int v, status, reset; 2702 2703 adapter->check_task_cnt++; 2704 2705 check_link_status(adapter); 2706 2707 /* Accumulate MAC stats if needed */ 2708 if (!p->linkpoll_period || 2709 (adapter->check_task_cnt * p->linkpoll_period) / 10 >= 2710 p->stats_update_period) { 2711 mac_stats_update(adapter); 2712 adapter->check_task_cnt = 0; 2713 } 2714 2715 if (p->rev == T3_REV_B2) 2716 check_t3b2_mac(adapter); 2717 2718 /* 2719 * Scan the XGMAC's to check for various conditions which we want to 2720 * monitor in a periodic polling manner rather than via an interrupt 2721 * condition. This is used for conditions which would otherwise flood 2722 * the system with interrupts and we only really need to know that the 2723 * conditions are "happening" ... For each condition we count the 2724 * detection of the condition and reset it for the next polling loop. 2725 */ 2726 for_each_port(adapter, port) { 2727 struct cmac *mac = &adap2pinfo(adapter, port)->mac; 2728 u32 cause; 2729 2730 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset); 2731 reset = 0; 2732 if (cause & F_RXFIFO_OVERFLOW) { 2733 mac->stats.rx_fifo_ovfl++; 2734 reset |= F_RXFIFO_OVERFLOW; 2735 } 2736 2737 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset); 2738 } 2739 2740 /* 2741 * We do the same as above for FL_EMPTY interrupts. 2742 */ 2743 status = t3_read_reg(adapter, A_SG_INT_CAUSE); 2744 reset = 0; 2745 2746 if (status & F_FLEMPTY) { 2747 struct sge_qset *qs = &adapter->sge.qs[0]; 2748 int i = 0; 2749 2750 reset |= F_FLEMPTY; 2751 2752 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) & 2753 0xffff; 2754 2755 while (v) { 2756 qs->fl[i].empty += (v & 1); 2757 if (i) 2758 qs++; 2759 i ^= 1; 2760 v >>= 1; 2761 } 2762 } 2763 2764 t3_write_reg(adapter, A_SG_INT_CAUSE, reset); 2765 2766 /* Schedule the next check update if any port is active. */ 2767 spin_lock_irq(&adapter->work_lock); 2768 if (adapter->open_device_map & PORT_MASK) 2769 schedule_chk_task(adapter); 2770 spin_unlock_irq(&adapter->work_lock); 2771 } 2772 2773 static void db_full_task(struct work_struct *work) 2774 { 2775 struct adapter *adapter = container_of(work, struct adapter, 2776 db_full_task); 2777 2778 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0); 2779 } 2780 2781 static void db_empty_task(struct work_struct *work) 2782 { 2783 struct adapter *adapter = container_of(work, struct adapter, 2784 db_empty_task); 2785 2786 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0); 2787 } 2788 2789 static void db_drop_task(struct work_struct *work) 2790 { 2791 struct adapter *adapter = container_of(work, struct adapter, 2792 db_drop_task); 2793 unsigned long delay = 1000; 2794 unsigned short r; 2795 2796 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0); 2797 2798 /* 2799 * Sleep a while before ringing the driver qset dbs. 2800 * The delay is between 1000-2023 usecs. 2801 */ 2802 get_random_bytes(&r, 2); 2803 delay += r & 1023; 2804 set_current_state(TASK_UNINTERRUPTIBLE); 2805 schedule_timeout(usecs_to_jiffies(delay)); 2806 ring_dbs(adapter); 2807 } 2808 2809 /* 2810 * Processes external (PHY) interrupts in process context. 2811 */ 2812 static void ext_intr_task(struct work_struct *work) 2813 { 2814 struct adapter *adapter = container_of(work, struct adapter, 2815 ext_intr_handler_task); 2816 int i; 2817 2818 /* Disable link fault interrupts */ 2819 for_each_port(adapter, i) { 2820 struct net_device *dev = adapter->port[i]; 2821 struct port_info *p = netdev_priv(dev); 2822 2823 t3_xgm_intr_disable(adapter, i); 2824 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2825 } 2826 2827 /* Re-enable link fault interrupts */ 2828 t3_phy_intr_handler(adapter); 2829 2830 for_each_port(adapter, i) 2831 t3_xgm_intr_enable(adapter, i); 2832 2833 /* Now reenable external interrupts */ 2834 spin_lock_irq(&adapter->work_lock); 2835 if (adapter->slow_intr_mask) { 2836 adapter->slow_intr_mask |= F_T3DBG; 2837 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); 2838 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2839 adapter->slow_intr_mask); 2840 } 2841 spin_unlock_irq(&adapter->work_lock); 2842 } 2843 2844 /* 2845 * Interrupt-context handler for external (PHY) interrupts. 2846 */ 2847 void t3_os_ext_intr_handler(struct adapter *adapter) 2848 { 2849 /* 2850 * Schedule a task to handle external interrupts as they may be slow 2851 * and we use a mutex to protect MDIO registers. We disable PHY 2852 * interrupts in the meantime and let the task reenable them when 2853 * it's done. 2854 */ 2855 spin_lock(&adapter->work_lock); 2856 if (adapter->slow_intr_mask) { 2857 adapter->slow_intr_mask &= ~F_T3DBG; 2858 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2859 adapter->slow_intr_mask); 2860 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); 2861 } 2862 spin_unlock(&adapter->work_lock); 2863 } 2864 2865 void t3_os_link_fault_handler(struct adapter *adapter, int port_id) 2866 { 2867 struct net_device *netdev = adapter->port[port_id]; 2868 struct port_info *pi = netdev_priv(netdev); 2869 2870 spin_lock(&adapter->work_lock); 2871 pi->link_fault = 1; 2872 spin_unlock(&adapter->work_lock); 2873 } 2874 2875 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq) 2876 { 2877 int i, ret = 0; 2878 2879 if (is_offload(adapter) && 2880 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2881 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0); 2882 offload_close(&adapter->tdev); 2883 } 2884 2885 /* Stop all ports */ 2886 for_each_port(adapter, i) { 2887 struct net_device *netdev = adapter->port[i]; 2888 2889 if (netif_running(netdev)) 2890 __cxgb_close(netdev, on_wq); 2891 } 2892 2893 /* Stop SGE timers */ 2894 t3_stop_sge_timers(adapter); 2895 2896 adapter->flags &= ~FULL_INIT_DONE; 2897 2898 if (reset) 2899 ret = t3_reset_adapter(adapter); 2900 2901 pci_disable_device(adapter->pdev); 2902 2903 return ret; 2904 } 2905 2906 static int t3_reenable_adapter(struct adapter *adapter) 2907 { 2908 if (pci_enable_device(adapter->pdev)) { 2909 dev_err(&adapter->pdev->dev, 2910 "Cannot re-enable PCI device after reset.\n"); 2911 goto err; 2912 } 2913 pci_set_master(adapter->pdev); 2914 pci_restore_state(adapter->pdev); 2915 pci_save_state(adapter->pdev); 2916 2917 /* Free sge resources */ 2918 t3_free_sge_resources(adapter); 2919 2920 if (t3_replay_prep_adapter(adapter)) 2921 goto err; 2922 2923 return 0; 2924 err: 2925 return -1; 2926 } 2927 2928 static void t3_resume_ports(struct adapter *adapter) 2929 { 2930 int i; 2931 2932 /* Restart the ports */ 2933 for_each_port(adapter, i) { 2934 struct net_device *netdev = adapter->port[i]; 2935 2936 if (netif_running(netdev)) { 2937 if (cxgb_open(netdev)) { 2938 dev_err(&adapter->pdev->dev, 2939 "can't bring device back up" 2940 " after reset\n"); 2941 continue; 2942 } 2943 } 2944 } 2945 2946 if (is_offload(adapter) && !ofld_disable) 2947 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0); 2948 } 2949 2950 /* 2951 * processes a fatal error. 2952 * Bring the ports down, reset the chip, bring the ports back up. 2953 */ 2954 static void fatal_error_task(struct work_struct *work) 2955 { 2956 struct adapter *adapter = container_of(work, struct adapter, 2957 fatal_error_handler_task); 2958 int err = 0; 2959 2960 rtnl_lock(); 2961 err = t3_adapter_error(adapter, 1, 1); 2962 if (!err) 2963 err = t3_reenable_adapter(adapter); 2964 if (!err) 2965 t3_resume_ports(adapter); 2966 2967 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded"); 2968 rtnl_unlock(); 2969 } 2970 2971 void t3_fatal_err(struct adapter *adapter) 2972 { 2973 unsigned int fw_status[4]; 2974 2975 if (adapter->flags & FULL_INIT_DONE) { 2976 t3_sge_stop(adapter); 2977 t3_write_reg(adapter, A_XGM_TX_CTRL, 0); 2978 t3_write_reg(adapter, A_XGM_RX_CTRL, 0); 2979 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0); 2980 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0); 2981 2982 spin_lock(&adapter->work_lock); 2983 t3_intr_disable(adapter); 2984 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task); 2985 spin_unlock(&adapter->work_lock); 2986 } 2987 CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); 2988 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) 2989 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", 2990 fw_status[0], fw_status[1], 2991 fw_status[2], fw_status[3]); 2992 } 2993 2994 /** 2995 * t3_io_error_detected - called when PCI error is detected 2996 * @pdev: Pointer to PCI device 2997 * @state: The current pci connection state 2998 * 2999 * This function is called after a PCI bus error affecting 3000 * this device has been detected. 3001 */ 3002 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev, 3003 pci_channel_state_t state) 3004 { 3005 struct adapter *adapter = pci_get_drvdata(pdev); 3006 3007 if (state == pci_channel_io_perm_failure) 3008 return PCI_ERS_RESULT_DISCONNECT; 3009 3010 t3_adapter_error(adapter, 0, 0); 3011 3012 /* Request a slot reset. */ 3013 return PCI_ERS_RESULT_NEED_RESET; 3014 } 3015 3016 /** 3017 * t3_io_slot_reset - called after the pci bus has been reset. 3018 * @pdev: Pointer to PCI device 3019 * 3020 * Restart the card from scratch, as if from a cold-boot. 3021 */ 3022 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev) 3023 { 3024 struct adapter *adapter = pci_get_drvdata(pdev); 3025 3026 if (!t3_reenable_adapter(adapter)) 3027 return PCI_ERS_RESULT_RECOVERED; 3028 3029 return PCI_ERS_RESULT_DISCONNECT; 3030 } 3031 3032 /** 3033 * t3_io_resume - called when traffic can start flowing again. 3034 * @pdev: Pointer to PCI device 3035 * 3036 * This callback is called when the error recovery driver tells us that 3037 * its OK to resume normal operation. 3038 */ 3039 static void t3_io_resume(struct pci_dev *pdev) 3040 { 3041 struct adapter *adapter = pci_get_drvdata(pdev); 3042 3043 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n", 3044 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 3045 3046 rtnl_lock(); 3047 t3_resume_ports(adapter); 3048 rtnl_unlock(); 3049 } 3050 3051 static const struct pci_error_handlers t3_err_handler = { 3052 .error_detected = t3_io_error_detected, 3053 .slot_reset = t3_io_slot_reset, 3054 .resume = t3_io_resume, 3055 }; 3056 3057 /* 3058 * Set the number of qsets based on the number of CPUs and the number of ports, 3059 * not to exceed the number of available qsets, assuming there are enough qsets 3060 * per port in HW. 3061 */ 3062 static void set_nqsets(struct adapter *adap) 3063 { 3064 int i, j = 0; 3065 int num_cpus = netif_get_num_default_rss_queues(); 3066 int hwports = adap->params.nports; 3067 int nqsets = adap->msix_nvectors - 1; 3068 3069 if (adap->params.rev > 0 && adap->flags & USING_MSIX) { 3070 if (hwports == 2 && 3071 (hwports * nqsets > SGE_QSETS || 3072 num_cpus >= nqsets / hwports)) 3073 nqsets /= hwports; 3074 if (nqsets > num_cpus) 3075 nqsets = num_cpus; 3076 if (nqsets < 1 || hwports == 4) 3077 nqsets = 1; 3078 } else 3079 nqsets = 1; 3080 3081 for_each_port(adap, i) { 3082 struct port_info *pi = adap2pinfo(adap, i); 3083 3084 pi->first_qset = j; 3085 pi->nqsets = nqsets; 3086 j = pi->first_qset + nqsets; 3087 3088 dev_info(&adap->pdev->dev, 3089 "Port %d using %d queue sets.\n", i, nqsets); 3090 } 3091 } 3092 3093 static int cxgb_enable_msix(struct adapter *adap) 3094 { 3095 struct msix_entry entries[SGE_QSETS + 1]; 3096 int vectors; 3097 int i; 3098 3099 vectors = ARRAY_SIZE(entries); 3100 for (i = 0; i < vectors; ++i) 3101 entries[i].entry = i; 3102 3103 vectors = pci_enable_msix_range(adap->pdev, entries, 3104 adap->params.nports + 1, vectors); 3105 if (vectors < 0) 3106 return vectors; 3107 3108 for (i = 0; i < vectors; ++i) 3109 adap->msix_info[i].vec = entries[i].vector; 3110 adap->msix_nvectors = vectors; 3111 3112 return 0; 3113 } 3114 3115 static void print_port_info(struct adapter *adap, const struct adapter_info *ai) 3116 { 3117 static const char *pci_variant[] = { 3118 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" 3119 }; 3120 3121 int i; 3122 char buf[80]; 3123 3124 if (is_pcie(adap)) 3125 snprintf(buf, sizeof(buf), "%s x%d", 3126 pci_variant[adap->params.pci.variant], 3127 adap->params.pci.width); 3128 else 3129 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", 3130 pci_variant[adap->params.pci.variant], 3131 adap->params.pci.speed, adap->params.pci.width); 3132 3133 for_each_port(adap, i) { 3134 struct net_device *dev = adap->port[i]; 3135 const struct port_info *pi = netdev_priv(dev); 3136 3137 if (!test_bit(i, &adap->registered_device_map)) 3138 continue; 3139 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n", 3140 ai->desc, pi->phy.desc, 3141 is_offload(adap) ? "R" : "", adap->params.rev, buf, 3142 (adap->flags & USING_MSIX) ? " MSI-X" : 3143 (adap->flags & USING_MSI) ? " MSI" : ""); 3144 if (adap->name == dev->name && adap->params.vpd.mclk) 3145 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n", 3146 adap->name, t3_mc7_size(&adap->cm) >> 20, 3147 t3_mc7_size(&adap->pmtx) >> 20, 3148 t3_mc7_size(&adap->pmrx) >> 20, 3149 adap->params.vpd.sn); 3150 } 3151 } 3152 3153 static const struct net_device_ops cxgb_netdev_ops = { 3154 .ndo_open = cxgb_open, 3155 .ndo_stop = cxgb_close, 3156 .ndo_start_xmit = t3_eth_xmit, 3157 .ndo_get_stats = cxgb_get_stats, 3158 .ndo_validate_addr = eth_validate_addr, 3159 .ndo_set_rx_mode = cxgb_set_rxmode, 3160 .ndo_do_ioctl = cxgb_ioctl, 3161 .ndo_change_mtu = cxgb_change_mtu, 3162 .ndo_set_mac_address = cxgb_set_mac_addr, 3163 .ndo_fix_features = cxgb_fix_features, 3164 .ndo_set_features = cxgb_set_features, 3165 #ifdef CONFIG_NET_POLL_CONTROLLER 3166 .ndo_poll_controller = cxgb_netpoll, 3167 #endif 3168 }; 3169 3170 static void cxgb3_init_iscsi_mac(struct net_device *dev) 3171 { 3172 struct port_info *pi = netdev_priv(dev); 3173 3174 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN); 3175 pi->iscsic.mac_addr[3] |= 0x80; 3176 } 3177 3178 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 3179 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 3180 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 3181 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 3182 { 3183 int i, err, pci_using_dac = 0; 3184 resource_size_t mmio_start, mmio_len; 3185 const struct adapter_info *ai; 3186 struct adapter *adapter = NULL; 3187 struct port_info *pi; 3188 3189 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 3190 3191 if (!cxgb3_wq) { 3192 cxgb3_wq = create_singlethread_workqueue(DRV_NAME); 3193 if (!cxgb3_wq) { 3194 pr_err("cannot initialize work queue\n"); 3195 return -ENOMEM; 3196 } 3197 } 3198 3199 err = pci_enable_device(pdev); 3200 if (err) { 3201 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3202 goto out; 3203 } 3204 3205 err = pci_request_regions(pdev, DRV_NAME); 3206 if (err) { 3207 /* Just info, some other driver may have claimed the device. */ 3208 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3209 goto out_disable_device; 3210 } 3211 3212 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3213 pci_using_dac = 1; 3214 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3215 if (err) { 3216 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 3217 "coherent allocations\n"); 3218 goto out_release_regions; 3219 } 3220 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) { 3221 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3222 goto out_release_regions; 3223 } 3224 3225 pci_set_master(pdev); 3226 pci_save_state(pdev); 3227 3228 mmio_start = pci_resource_start(pdev, 0); 3229 mmio_len = pci_resource_len(pdev, 0); 3230 ai = t3_get_adapter_info(ent->driver_data); 3231 3232 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3233 if (!adapter) { 3234 err = -ENOMEM; 3235 goto out_release_regions; 3236 } 3237 3238 adapter->nofail_skb = 3239 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL); 3240 if (!adapter->nofail_skb) { 3241 dev_err(&pdev->dev, "cannot allocate nofail buffer\n"); 3242 err = -ENOMEM; 3243 goto out_free_adapter; 3244 } 3245 3246 adapter->regs = ioremap_nocache(mmio_start, mmio_len); 3247 if (!adapter->regs) { 3248 dev_err(&pdev->dev, "cannot map device registers\n"); 3249 err = -ENOMEM; 3250 goto out_free_adapter; 3251 } 3252 3253 adapter->pdev = pdev; 3254 adapter->name = pci_name(pdev); 3255 adapter->msg_enable = dflt_msg_enable; 3256 adapter->mmio_len = mmio_len; 3257 3258 mutex_init(&adapter->mdio_lock); 3259 spin_lock_init(&adapter->work_lock); 3260 spin_lock_init(&adapter->stats_lock); 3261 3262 INIT_LIST_HEAD(&adapter->adapter_list); 3263 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); 3264 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task); 3265 3266 INIT_WORK(&adapter->db_full_task, db_full_task); 3267 INIT_WORK(&adapter->db_empty_task, db_empty_task); 3268 INIT_WORK(&adapter->db_drop_task, db_drop_task); 3269 3270 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); 3271 3272 for (i = 0; i < ai->nports0 + ai->nports1; ++i) { 3273 struct net_device *netdev; 3274 3275 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS); 3276 if (!netdev) { 3277 err = -ENOMEM; 3278 goto out_free_dev; 3279 } 3280 3281 SET_NETDEV_DEV(netdev, &pdev->dev); 3282 3283 adapter->port[i] = netdev; 3284 pi = netdev_priv(netdev); 3285 pi->adapter = adapter; 3286 pi->port_id = i; 3287 netif_carrier_off(netdev); 3288 netdev->irq = pdev->irq; 3289 netdev->mem_start = mmio_start; 3290 netdev->mem_end = mmio_start + mmio_len - 1; 3291 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 3292 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX; 3293 netdev->features |= netdev->hw_features | 3294 NETIF_F_HW_VLAN_CTAG_TX; 3295 netdev->vlan_features |= netdev->features & VLAN_FEAT; 3296 if (pci_using_dac) 3297 netdev->features |= NETIF_F_HIGHDMA; 3298 3299 netdev->netdev_ops = &cxgb_netdev_ops; 3300 netdev->ethtool_ops = &cxgb_ethtool_ops; 3301 netdev->min_mtu = 81; 3302 netdev->max_mtu = ETH_MAX_MTU; 3303 } 3304 3305 pci_set_drvdata(pdev, adapter); 3306 if (t3_prep_adapter(adapter, ai, 1) < 0) { 3307 err = -ENODEV; 3308 goto out_free_dev; 3309 } 3310 3311 /* 3312 * The card is now ready to go. If any errors occur during device 3313 * registration we do not fail the whole card but rather proceed only 3314 * with the ports we manage to register successfully. However we must 3315 * register at least one net device. 3316 */ 3317 for_each_port(adapter, i) { 3318 err = register_netdev(adapter->port[i]); 3319 if (err) 3320 dev_warn(&pdev->dev, 3321 "cannot register net device %s, skipping\n", 3322 adapter->port[i]->name); 3323 else { 3324 /* 3325 * Change the name we use for messages to the name of 3326 * the first successfully registered interface. 3327 */ 3328 if (!adapter->registered_device_map) 3329 adapter->name = adapter->port[i]->name; 3330 3331 __set_bit(i, &adapter->registered_device_map); 3332 } 3333 } 3334 if (!adapter->registered_device_map) { 3335 dev_err(&pdev->dev, "could not register any net devices\n"); 3336 goto out_free_dev; 3337 } 3338 3339 for_each_port(adapter, i) 3340 cxgb3_init_iscsi_mac(adapter->port[i]); 3341 3342 /* Driver's ready. Reflect it on LEDs */ 3343 t3_led_ready(adapter); 3344 3345 if (is_offload(adapter)) { 3346 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); 3347 cxgb3_adapter_ofld(adapter); 3348 } 3349 3350 /* See what interrupts we'll be using */ 3351 if (msi > 1 && cxgb_enable_msix(adapter) == 0) 3352 adapter->flags |= USING_MSIX; 3353 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3354 adapter->flags |= USING_MSI; 3355 3356 set_nqsets(adapter); 3357 3358 err = sysfs_create_group(&adapter->port[0]->dev.kobj, 3359 &cxgb3_attr_group); 3360 3361 print_port_info(adapter, ai); 3362 return 0; 3363 3364 out_free_dev: 3365 iounmap(adapter->regs); 3366 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i) 3367 if (adapter->port[i]) 3368 free_netdev(adapter->port[i]); 3369 3370 out_free_adapter: 3371 kfree(adapter); 3372 3373 out_release_regions: 3374 pci_release_regions(pdev); 3375 out_disable_device: 3376 pci_disable_device(pdev); 3377 out: 3378 return err; 3379 } 3380 3381 static void remove_one(struct pci_dev *pdev) 3382 { 3383 struct adapter *adapter = pci_get_drvdata(pdev); 3384 3385 if (adapter) { 3386 int i; 3387 3388 t3_sge_stop(adapter); 3389 sysfs_remove_group(&adapter->port[0]->dev.kobj, 3390 &cxgb3_attr_group); 3391 3392 if (is_offload(adapter)) { 3393 cxgb3_adapter_unofld(adapter); 3394 if (test_bit(OFFLOAD_DEVMAP_BIT, 3395 &adapter->open_device_map)) 3396 offload_close(&adapter->tdev); 3397 } 3398 3399 for_each_port(adapter, i) 3400 if (test_bit(i, &adapter->registered_device_map)) 3401 unregister_netdev(adapter->port[i]); 3402 3403 t3_stop_sge_timers(adapter); 3404 t3_free_sge_resources(adapter); 3405 cxgb_disable_msi(adapter); 3406 3407 for_each_port(adapter, i) 3408 if (adapter->port[i]) 3409 free_netdev(adapter->port[i]); 3410 3411 iounmap(adapter->regs); 3412 if (adapter->nofail_skb) 3413 kfree_skb(adapter->nofail_skb); 3414 kfree(adapter); 3415 pci_release_regions(pdev); 3416 pci_disable_device(pdev); 3417 } 3418 } 3419 3420 static struct pci_driver driver = { 3421 .name = DRV_NAME, 3422 .id_table = cxgb3_pci_tbl, 3423 .probe = init_one, 3424 .remove = remove_one, 3425 .err_handler = &t3_err_handler, 3426 }; 3427 3428 static int __init cxgb3_init_module(void) 3429 { 3430 int ret; 3431 3432 cxgb3_offload_init(); 3433 3434 ret = pci_register_driver(&driver); 3435 return ret; 3436 } 3437 3438 static void __exit cxgb3_cleanup_module(void) 3439 { 3440 pci_unregister_driver(&driver); 3441 if (cxgb3_wq) 3442 destroy_workqueue(cxgb3_wq); 3443 } 3444 3445 module_init(cxgb3_init_module); 3446 module_exit(cxgb3_cleanup_module); 3447