1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/pci.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mdio.h>
44 #include <linux/sockios.h>
45 #include <linux/workqueue.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/stringify.h>
51 #include <linux/sched.h>
52 #include <linux/slab.h>
53 #include <asm/uaccess.h>
54 
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60 
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64 
65 enum {
66 	MAX_TXQ_ENTRIES = 16384,
67 	MAX_CTRL_TXQ_ENTRIES = 1024,
68 	MAX_RSPQ_ENTRIES = 16384,
69 	MAX_RX_BUFFERS = 16384,
70 	MAX_RX_JUMBO_BUFFERS = 16384,
71 	MIN_TXQ_ENTRIES = 4,
72 	MIN_CTRL_TXQ_ENTRIES = 4,
73 	MIN_RSPQ_ENTRIES = 32,
74 	MIN_FL_ENTRIES = 32
75 };
76 
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78 
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82 
83 #define EEPROM_MAGIC 0x38E2F10C
84 
85 #define CH_DEVICE(devid, idx) \
86 	{ PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87 
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89 	CH_DEVICE(0x20, 0),	/* PE9000 */
90 	CH_DEVICE(0x21, 1),	/* T302E */
91 	CH_DEVICE(0x22, 2),	/* T310E */
92 	CH_DEVICE(0x23, 3),	/* T320X */
93 	CH_DEVICE(0x24, 1),	/* T302X */
94 	CH_DEVICE(0x25, 3),	/* T320E */
95 	CH_DEVICE(0x26, 2),	/* T310X */
96 	CH_DEVICE(0x30, 2),	/* T3B10 */
97 	CH_DEVICE(0x31, 3),	/* T3B20 */
98 	CH_DEVICE(0x32, 1),	/* T3B02 */
99 	CH_DEVICE(0x35, 6),	/* T3C20-derived T3C10 */
100 	CH_DEVICE(0x36, 3),	/* S320E-CR */
101 	CH_DEVICE(0x37, 7),	/* N320E-G2 */
102 	{0,}
103 };
104 
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_VERSION(DRV_VERSION);
109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
110 
111 static int dflt_msg_enable = DFLT_MSG_ENABLE;
112 
113 module_param(dflt_msg_enable, int, 0644);
114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
115 
116 /*
117  * The driver uses the best interrupt scheme available on a platform in the
118  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
119  * of these schemes the driver may consider as follows:
120  *
121  * msi = 2: choose from among all three options
122  * msi = 1: only consider MSI and pin interrupts
123  * msi = 0: force pin interrupts
124  */
125 static int msi = 2;
126 
127 module_param(msi, int, 0644);
128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
129 
130 /*
131  * The driver enables offload as a default.
132  * To disable it, use ofld_disable = 1.
133  */
134 
135 static int ofld_disable = 0;
136 
137 module_param(ofld_disable, int, 0644);
138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
139 
140 /*
141  * We have work elements that we need to cancel when an interface is taken
142  * down.  Normally the work elements would be executed by keventd but that
143  * can deadlock because of linkwatch.  If our close method takes the rtnl
144  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
145  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
146  * for our work to complete.  Get our own work queue to solve this.
147  */
148 struct workqueue_struct *cxgb3_wq;
149 
150 /**
151  *	link_report - show link status and link speed/duplex
152  *	@p: the port whose settings are to be reported
153  *
154  *	Shows the link status, speed, and duplex of a port.
155  */
156 static void link_report(struct net_device *dev)
157 {
158 	if (!netif_carrier_ok(dev))
159 		netdev_info(dev, "link down\n");
160 	else {
161 		const char *s = "10Mbps";
162 		const struct port_info *p = netdev_priv(dev);
163 
164 		switch (p->link_config.speed) {
165 		case SPEED_10000:
166 			s = "10Gbps";
167 			break;
168 		case SPEED_1000:
169 			s = "1000Mbps";
170 			break;
171 		case SPEED_100:
172 			s = "100Mbps";
173 			break;
174 		}
175 
176 		netdev_info(dev, "link up, %s, %s-duplex\n",
177 			    s, p->link_config.duplex == DUPLEX_FULL
178 			    ? "full" : "half");
179 	}
180 }
181 
182 static void enable_tx_fifo_drain(struct adapter *adapter,
183 				 struct port_info *pi)
184 {
185 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
186 			 F_ENDROPPKT);
187 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
188 	t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
189 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
190 }
191 
192 static void disable_tx_fifo_drain(struct adapter *adapter,
193 				  struct port_info *pi)
194 {
195 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
196 			 F_ENDROPPKT, 0);
197 }
198 
199 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
200 {
201 	struct net_device *dev = adap->port[port_id];
202 	struct port_info *pi = netdev_priv(dev);
203 
204 	if (state == netif_carrier_ok(dev))
205 		return;
206 
207 	if (state) {
208 		struct cmac *mac = &pi->mac;
209 
210 		netif_carrier_on(dev);
211 
212 		disable_tx_fifo_drain(adap, pi);
213 
214 		/* Clear local faults */
215 		t3_xgm_intr_disable(adap, pi->port_id);
216 		t3_read_reg(adap, A_XGM_INT_STATUS +
217 				    pi->mac.offset);
218 		t3_write_reg(adap,
219 			     A_XGM_INT_CAUSE + pi->mac.offset,
220 			     F_XGM_INT);
221 
222 		t3_set_reg_field(adap,
223 				 A_XGM_INT_ENABLE +
224 				 pi->mac.offset,
225 				 F_XGM_INT, F_XGM_INT);
226 		t3_xgm_intr_enable(adap, pi->port_id);
227 
228 		t3_mac_enable(mac, MAC_DIRECTION_TX);
229 	} else {
230 		netif_carrier_off(dev);
231 
232 		/* Flush TX FIFO */
233 		enable_tx_fifo_drain(adap, pi);
234 	}
235 	link_report(dev);
236 }
237 
238 /**
239  *	t3_os_link_changed - handle link status changes
240  *	@adapter: the adapter associated with the link change
241  *	@port_id: the port index whose limk status has changed
242  *	@link_stat: the new status of the link
243  *	@speed: the new speed setting
244  *	@duplex: the new duplex setting
245  *	@pause: the new flow-control setting
246  *
247  *	This is the OS-dependent handler for link status changes.  The OS
248  *	neutral handler takes care of most of the processing for these events,
249  *	then calls this handler for any OS-specific processing.
250  */
251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
252 			int speed, int duplex, int pause)
253 {
254 	struct net_device *dev = adapter->port[port_id];
255 	struct port_info *pi = netdev_priv(dev);
256 	struct cmac *mac = &pi->mac;
257 
258 	/* Skip changes from disabled ports. */
259 	if (!netif_running(dev))
260 		return;
261 
262 	if (link_stat != netif_carrier_ok(dev)) {
263 		if (link_stat) {
264 			disable_tx_fifo_drain(adapter, pi);
265 
266 			t3_mac_enable(mac, MAC_DIRECTION_RX);
267 
268 			/* Clear local faults */
269 			t3_xgm_intr_disable(adapter, pi->port_id);
270 			t3_read_reg(adapter, A_XGM_INT_STATUS +
271 				    pi->mac.offset);
272 			t3_write_reg(adapter,
273 				     A_XGM_INT_CAUSE + pi->mac.offset,
274 				     F_XGM_INT);
275 
276 			t3_set_reg_field(adapter,
277 					 A_XGM_INT_ENABLE + pi->mac.offset,
278 					 F_XGM_INT, F_XGM_INT);
279 			t3_xgm_intr_enable(adapter, pi->port_id);
280 
281 			netif_carrier_on(dev);
282 		} else {
283 			netif_carrier_off(dev);
284 
285 			t3_xgm_intr_disable(adapter, pi->port_id);
286 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
287 			t3_set_reg_field(adapter,
288 					 A_XGM_INT_ENABLE + pi->mac.offset,
289 					 F_XGM_INT, 0);
290 
291 			if (is_10G(adapter))
292 				pi->phy.ops->power_down(&pi->phy, 1);
293 
294 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
295 			t3_mac_disable(mac, MAC_DIRECTION_RX);
296 			t3_link_start(&pi->phy, mac, &pi->link_config);
297 
298 			/* Flush TX FIFO */
299 			enable_tx_fifo_drain(adapter, pi);
300 		}
301 
302 		link_report(dev);
303 	}
304 }
305 
306 /**
307  *	t3_os_phymod_changed - handle PHY module changes
308  *	@phy: the PHY reporting the module change
309  *	@mod_type: new module type
310  *
311  *	This is the OS-dependent handler for PHY module changes.  It is
312  *	invoked when a PHY module is removed or inserted for any OS-specific
313  *	processing.
314  */
315 void t3_os_phymod_changed(struct adapter *adap, int port_id)
316 {
317 	static const char *mod_str[] = {
318 		NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
319 	};
320 
321 	const struct net_device *dev = adap->port[port_id];
322 	const struct port_info *pi = netdev_priv(dev);
323 
324 	if (pi->phy.modtype == phy_modtype_none)
325 		netdev_info(dev, "PHY module unplugged\n");
326 	else
327 		netdev_info(dev, "%s PHY module inserted\n",
328 			    mod_str[pi->phy.modtype]);
329 }
330 
331 static void cxgb_set_rxmode(struct net_device *dev)
332 {
333 	struct port_info *pi = netdev_priv(dev);
334 
335 	t3_mac_set_rx_mode(&pi->mac, dev);
336 }
337 
338 /**
339  *	link_start - enable a port
340  *	@dev: the device to enable
341  *
342  *	Performs the MAC and PHY actions needed to enable a port.
343  */
344 static void link_start(struct net_device *dev)
345 {
346 	struct port_info *pi = netdev_priv(dev);
347 	struct cmac *mac = &pi->mac;
348 
349 	t3_mac_reset(mac);
350 	t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
351 	t3_mac_set_mtu(mac, dev->mtu);
352 	t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
353 	t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
354 	t3_mac_set_rx_mode(mac, dev);
355 	t3_link_start(&pi->phy, mac, &pi->link_config);
356 	t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
357 }
358 
359 static inline void cxgb_disable_msi(struct adapter *adapter)
360 {
361 	if (adapter->flags & USING_MSIX) {
362 		pci_disable_msix(adapter->pdev);
363 		adapter->flags &= ~USING_MSIX;
364 	} else if (adapter->flags & USING_MSI) {
365 		pci_disable_msi(adapter->pdev);
366 		adapter->flags &= ~USING_MSI;
367 	}
368 }
369 
370 /*
371  * Interrupt handler for asynchronous events used with MSI-X.
372  */
373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
374 {
375 	t3_slow_intr_handler(cookie);
376 	return IRQ_HANDLED;
377 }
378 
379 /*
380  * Name the MSI-X interrupts.
381  */
382 static void name_msix_vecs(struct adapter *adap)
383 {
384 	int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
385 
386 	snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
387 	adap->msix_info[0].desc[n] = 0;
388 
389 	for_each_port(adap, j) {
390 		struct net_device *d = adap->port[j];
391 		const struct port_info *pi = netdev_priv(d);
392 
393 		for (i = 0; i < pi->nqsets; i++, msi_idx++) {
394 			snprintf(adap->msix_info[msi_idx].desc, n,
395 				 "%s-%d", d->name, pi->first_qset + i);
396 			adap->msix_info[msi_idx].desc[n] = 0;
397 		}
398 	}
399 }
400 
401 static int request_msix_data_irqs(struct adapter *adap)
402 {
403 	int i, j, err, qidx = 0;
404 
405 	for_each_port(adap, i) {
406 		int nqsets = adap2pinfo(adap, i)->nqsets;
407 
408 		for (j = 0; j < nqsets; ++j) {
409 			err = request_irq(adap->msix_info[qidx + 1].vec,
410 					  t3_intr_handler(adap,
411 							  adap->sge.qs[qidx].
412 							  rspq.polling), 0,
413 					  adap->msix_info[qidx + 1].desc,
414 					  &adap->sge.qs[qidx]);
415 			if (err) {
416 				while (--qidx >= 0)
417 					free_irq(adap->msix_info[qidx + 1].vec,
418 						 &adap->sge.qs[qidx]);
419 				return err;
420 			}
421 			qidx++;
422 		}
423 	}
424 	return 0;
425 }
426 
427 static void free_irq_resources(struct adapter *adapter)
428 {
429 	if (adapter->flags & USING_MSIX) {
430 		int i, n = 0;
431 
432 		free_irq(adapter->msix_info[0].vec, adapter);
433 		for_each_port(adapter, i)
434 			n += adap2pinfo(adapter, i)->nqsets;
435 
436 		for (i = 0; i < n; ++i)
437 			free_irq(adapter->msix_info[i + 1].vec,
438 				 &adapter->sge.qs[i]);
439 	} else
440 		free_irq(adapter->pdev->irq, adapter);
441 }
442 
443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
444 			      unsigned long n)
445 {
446 	int attempts = 10;
447 
448 	while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
449 		if (!--attempts)
450 			return -ETIMEDOUT;
451 		msleep(10);
452 	}
453 	return 0;
454 }
455 
456 static int init_tp_parity(struct adapter *adap)
457 {
458 	int i;
459 	struct sk_buff *skb;
460 	struct cpl_set_tcb_field *greq;
461 	unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
462 
463 	t3_tp_set_offload_mode(adap, 1);
464 
465 	for (i = 0; i < 16; i++) {
466 		struct cpl_smt_write_req *req;
467 
468 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
469 		if (!skb)
470 			skb = adap->nofail_skb;
471 		if (!skb)
472 			goto alloc_skb_fail;
473 
474 		req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
475 		memset(req, 0, sizeof(*req));
476 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
477 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
478 		req->mtu_idx = NMTUS - 1;
479 		req->iff = i;
480 		t3_mgmt_tx(adap, skb);
481 		if (skb == adap->nofail_skb) {
482 			await_mgmt_replies(adap, cnt, i + 1);
483 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
484 			if (!adap->nofail_skb)
485 				goto alloc_skb_fail;
486 		}
487 	}
488 
489 	for (i = 0; i < 2048; i++) {
490 		struct cpl_l2t_write_req *req;
491 
492 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
493 		if (!skb)
494 			skb = adap->nofail_skb;
495 		if (!skb)
496 			goto alloc_skb_fail;
497 
498 		req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
499 		memset(req, 0, sizeof(*req));
500 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
501 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
502 		req->params = htonl(V_L2T_W_IDX(i));
503 		t3_mgmt_tx(adap, skb);
504 		if (skb == adap->nofail_skb) {
505 			await_mgmt_replies(adap, cnt, 16 + i + 1);
506 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
507 			if (!adap->nofail_skb)
508 				goto alloc_skb_fail;
509 		}
510 	}
511 
512 	for (i = 0; i < 2048; i++) {
513 		struct cpl_rte_write_req *req;
514 
515 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
516 		if (!skb)
517 			skb = adap->nofail_skb;
518 		if (!skb)
519 			goto alloc_skb_fail;
520 
521 		req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
522 		memset(req, 0, sizeof(*req));
523 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
524 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
525 		req->l2t_idx = htonl(V_L2T_W_IDX(i));
526 		t3_mgmt_tx(adap, skb);
527 		if (skb == adap->nofail_skb) {
528 			await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
529 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
530 			if (!adap->nofail_skb)
531 				goto alloc_skb_fail;
532 		}
533 	}
534 
535 	skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
536 	if (!skb)
537 		skb = adap->nofail_skb;
538 	if (!skb)
539 		goto alloc_skb_fail;
540 
541 	greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
542 	memset(greq, 0, sizeof(*greq));
543 	greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
544 	OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
545 	greq->mask = cpu_to_be64(1);
546 	t3_mgmt_tx(adap, skb);
547 
548 	i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
549 	if (skb == adap->nofail_skb) {
550 		i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
551 		adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
552 	}
553 
554 	t3_tp_set_offload_mode(adap, 0);
555 	return i;
556 
557 alloc_skb_fail:
558 	t3_tp_set_offload_mode(adap, 0);
559 	return -ENOMEM;
560 }
561 
562 /**
563  *	setup_rss - configure RSS
564  *	@adap: the adapter
565  *
566  *	Sets up RSS to distribute packets to multiple receive queues.  We
567  *	configure the RSS CPU lookup table to distribute to the number of HW
568  *	receive queues, and the response queue lookup table to narrow that
569  *	down to the response queues actually configured for each port.
570  *	We always configure the RSS mapping for two ports since the mapping
571  *	table has plenty of entries.
572  */
573 static void setup_rss(struct adapter *adap)
574 {
575 	int i;
576 	unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
577 	unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
578 	u8 cpus[SGE_QSETS + 1];
579 	u16 rspq_map[RSS_TABLE_SIZE];
580 
581 	for (i = 0; i < SGE_QSETS; ++i)
582 		cpus[i] = i;
583 	cpus[SGE_QSETS] = 0xff;	/* terminator */
584 
585 	for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
586 		rspq_map[i] = i % nq0;
587 		rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
588 	}
589 
590 	t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
591 		      F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
592 		      V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
593 }
594 
595 static void ring_dbs(struct adapter *adap)
596 {
597 	int i, j;
598 
599 	for (i = 0; i < SGE_QSETS; i++) {
600 		struct sge_qset *qs = &adap->sge.qs[i];
601 
602 		if (qs->adap)
603 			for (j = 0; j < SGE_TXQ_PER_SET; j++)
604 				t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
605 	}
606 }
607 
608 static void init_napi(struct adapter *adap)
609 {
610 	int i;
611 
612 	for (i = 0; i < SGE_QSETS; i++) {
613 		struct sge_qset *qs = &adap->sge.qs[i];
614 
615 		if (qs->adap)
616 			netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
617 				       64);
618 	}
619 
620 	/*
621 	 * netif_napi_add() can be called only once per napi_struct because it
622 	 * adds each new napi_struct to a list.  Be careful not to call it a
623 	 * second time, e.g., during EEH recovery, by making a note of it.
624 	 */
625 	adap->flags |= NAPI_INIT;
626 }
627 
628 /*
629  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
630  * both netdevices representing interfaces and the dummy ones for the extra
631  * queues.
632  */
633 static void quiesce_rx(struct adapter *adap)
634 {
635 	int i;
636 
637 	for (i = 0; i < SGE_QSETS; i++)
638 		if (adap->sge.qs[i].adap)
639 			napi_disable(&adap->sge.qs[i].napi);
640 }
641 
642 static void enable_all_napi(struct adapter *adap)
643 {
644 	int i;
645 	for (i = 0; i < SGE_QSETS; i++)
646 		if (adap->sge.qs[i].adap)
647 			napi_enable(&adap->sge.qs[i].napi);
648 }
649 
650 /**
651  *	setup_sge_qsets - configure SGE Tx/Rx/response queues
652  *	@adap: the adapter
653  *
654  *	Determines how many sets of SGE queues to use and initializes them.
655  *	We support multiple queue sets per port if we have MSI-X, otherwise
656  *	just one queue set per port.
657  */
658 static int setup_sge_qsets(struct adapter *adap)
659 {
660 	int i, j, err, irq_idx = 0, qset_idx = 0;
661 	unsigned int ntxq = SGE_TXQ_PER_SET;
662 
663 	if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
664 		irq_idx = -1;
665 
666 	for_each_port(adap, i) {
667 		struct net_device *dev = adap->port[i];
668 		struct port_info *pi = netdev_priv(dev);
669 
670 		pi->qs = &adap->sge.qs[pi->first_qset];
671 		for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
672 			err = t3_sge_alloc_qset(adap, qset_idx, 1,
673 				(adap->flags & USING_MSIX) ? qset_idx + 1 :
674 							     irq_idx,
675 				&adap->params.sge.qset[qset_idx], ntxq, dev,
676 				netdev_get_tx_queue(dev, j));
677 			if (err) {
678 				t3_free_sge_resources(adap);
679 				return err;
680 			}
681 		}
682 	}
683 
684 	return 0;
685 }
686 
687 static ssize_t attr_show(struct device *d, char *buf,
688 			 ssize_t(*format) (struct net_device *, char *))
689 {
690 	ssize_t len;
691 
692 	/* Synchronize with ioctls that may shut down the device */
693 	rtnl_lock();
694 	len = (*format) (to_net_dev(d), buf);
695 	rtnl_unlock();
696 	return len;
697 }
698 
699 static ssize_t attr_store(struct device *d,
700 			  const char *buf, size_t len,
701 			  ssize_t(*set) (struct net_device *, unsigned int),
702 			  unsigned int min_val, unsigned int max_val)
703 {
704 	ssize_t ret;
705 	unsigned int val;
706 
707 	if (!capable(CAP_NET_ADMIN))
708 		return -EPERM;
709 
710 	ret = kstrtouint(buf, 0, &val);
711 	if (ret)
712 		return ret;
713 	if (val < min_val || val > max_val)
714 		return -EINVAL;
715 
716 	rtnl_lock();
717 	ret = (*set) (to_net_dev(d), val);
718 	if (!ret)
719 		ret = len;
720 	rtnl_unlock();
721 	return ret;
722 }
723 
724 #define CXGB3_SHOW(name, val_expr) \
725 static ssize_t format_##name(struct net_device *dev, char *buf) \
726 { \
727 	struct port_info *pi = netdev_priv(dev); \
728 	struct adapter *adap = pi->adapter; \
729 	return sprintf(buf, "%u\n", val_expr); \
730 } \
731 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
732 			   char *buf) \
733 { \
734 	return attr_show(d, buf, format_##name); \
735 }
736 
737 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
738 {
739 	struct port_info *pi = netdev_priv(dev);
740 	struct adapter *adap = pi->adapter;
741 	int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
742 
743 	if (adap->flags & FULL_INIT_DONE)
744 		return -EBUSY;
745 	if (val && adap->params.rev == 0)
746 		return -EINVAL;
747 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
748 	    min_tids)
749 		return -EINVAL;
750 	adap->params.mc5.nfilters = val;
751 	return 0;
752 }
753 
754 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
755 			      const char *buf, size_t len)
756 {
757 	return attr_store(d, buf, len, set_nfilters, 0, ~0);
758 }
759 
760 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
761 {
762 	struct port_info *pi = netdev_priv(dev);
763 	struct adapter *adap = pi->adapter;
764 
765 	if (adap->flags & FULL_INIT_DONE)
766 		return -EBUSY;
767 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
768 	    MC5_MIN_TIDS)
769 		return -EINVAL;
770 	adap->params.mc5.nservers = val;
771 	return 0;
772 }
773 
774 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
775 			      const char *buf, size_t len)
776 {
777 	return attr_store(d, buf, len, set_nservers, 0, ~0);
778 }
779 
780 #define CXGB3_ATTR_R(name, val_expr) \
781 CXGB3_SHOW(name, val_expr) \
782 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
783 
784 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
785 CXGB3_SHOW(name, val_expr) \
786 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
787 
788 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
789 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
790 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
791 
792 static struct attribute *cxgb3_attrs[] = {
793 	&dev_attr_cam_size.attr,
794 	&dev_attr_nfilters.attr,
795 	&dev_attr_nservers.attr,
796 	NULL
797 };
798 
799 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
800 
801 static ssize_t tm_attr_show(struct device *d,
802 			    char *buf, int sched)
803 {
804 	struct port_info *pi = netdev_priv(to_net_dev(d));
805 	struct adapter *adap = pi->adapter;
806 	unsigned int v, addr, bpt, cpt;
807 	ssize_t len;
808 
809 	addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
810 	rtnl_lock();
811 	t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
812 	v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
813 	if (sched & 1)
814 		v >>= 16;
815 	bpt = (v >> 8) & 0xff;
816 	cpt = v & 0xff;
817 	if (!cpt)
818 		len = sprintf(buf, "disabled\n");
819 	else {
820 		v = (adap->params.vpd.cclk * 1000) / cpt;
821 		len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
822 	}
823 	rtnl_unlock();
824 	return len;
825 }
826 
827 static ssize_t tm_attr_store(struct device *d,
828 			     const char *buf, size_t len, int sched)
829 {
830 	struct port_info *pi = netdev_priv(to_net_dev(d));
831 	struct adapter *adap = pi->adapter;
832 	unsigned int val;
833 	ssize_t ret;
834 
835 	if (!capable(CAP_NET_ADMIN))
836 		return -EPERM;
837 
838 	ret = kstrtouint(buf, 0, &val);
839 	if (ret)
840 		return ret;
841 	if (val > 10000000)
842 		return -EINVAL;
843 
844 	rtnl_lock();
845 	ret = t3_config_sched(adap, val, sched);
846 	if (!ret)
847 		ret = len;
848 	rtnl_unlock();
849 	return ret;
850 }
851 
852 #define TM_ATTR(name, sched) \
853 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
854 			   char *buf) \
855 { \
856 	return tm_attr_show(d, buf, sched); \
857 } \
858 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
859 			    const char *buf, size_t len) \
860 { \
861 	return tm_attr_store(d, buf, len, sched); \
862 } \
863 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
864 
865 TM_ATTR(sched0, 0);
866 TM_ATTR(sched1, 1);
867 TM_ATTR(sched2, 2);
868 TM_ATTR(sched3, 3);
869 TM_ATTR(sched4, 4);
870 TM_ATTR(sched5, 5);
871 TM_ATTR(sched6, 6);
872 TM_ATTR(sched7, 7);
873 
874 static struct attribute *offload_attrs[] = {
875 	&dev_attr_sched0.attr,
876 	&dev_attr_sched1.attr,
877 	&dev_attr_sched2.attr,
878 	&dev_attr_sched3.attr,
879 	&dev_attr_sched4.attr,
880 	&dev_attr_sched5.attr,
881 	&dev_attr_sched6.attr,
882 	&dev_attr_sched7.attr,
883 	NULL
884 };
885 
886 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
887 
888 /*
889  * Sends an sk_buff to an offload queue driver
890  * after dealing with any active network taps.
891  */
892 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
893 {
894 	int ret;
895 
896 	local_bh_disable();
897 	ret = t3_offload_tx(tdev, skb);
898 	local_bh_enable();
899 	return ret;
900 }
901 
902 static int write_smt_entry(struct adapter *adapter, int idx)
903 {
904 	struct cpl_smt_write_req *req;
905 	struct port_info *pi = netdev_priv(adapter->port[idx]);
906 	struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
907 
908 	if (!skb)
909 		return -ENOMEM;
910 
911 	req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
912 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914 	req->mtu_idx = NMTUS - 1;	/* should be 0 but there's a T3 bug */
915 	req->iff = idx;
916 	memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
917 	memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
918 	skb->priority = 1;
919 	offload_tx(&adapter->tdev, skb);
920 	return 0;
921 }
922 
923 static int init_smt(struct adapter *adapter)
924 {
925 	int i;
926 
927 	for_each_port(adapter, i)
928 	    write_smt_entry(adapter, i);
929 	return 0;
930 }
931 
932 static void init_port_mtus(struct adapter *adapter)
933 {
934 	unsigned int mtus = adapter->port[0]->mtu;
935 
936 	if (adapter->port[1])
937 		mtus |= adapter->port[1]->mtu << 16;
938 	t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
939 }
940 
941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942 			      int hi, int port)
943 {
944 	struct sk_buff *skb;
945 	struct mngt_pktsched_wr *req;
946 	int ret;
947 
948 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949 	if (!skb)
950 		skb = adap->nofail_skb;
951 	if (!skb)
952 		return -ENOMEM;
953 
954 	req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
955 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956 	req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957 	req->sched = sched;
958 	req->idx = qidx;
959 	req->min = lo;
960 	req->max = hi;
961 	req->binding = port;
962 	ret = t3_mgmt_tx(adap, skb);
963 	if (skb == adap->nofail_skb) {
964 		adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965 					     GFP_KERNEL);
966 		if (!adap->nofail_skb)
967 			ret = -ENOMEM;
968 	}
969 
970 	return ret;
971 }
972 
973 static int bind_qsets(struct adapter *adap)
974 {
975 	int i, j, err = 0;
976 
977 	for_each_port(adap, i) {
978 		const struct port_info *pi = adap2pinfo(adap, i);
979 
980 		for (j = 0; j < pi->nqsets; ++j) {
981 			int ret = send_pktsched_cmd(adap, 1,
982 						    pi->first_qset + j, -1,
983 						    -1, i);
984 			if (ret)
985 				err = ret;
986 		}
987 	}
988 
989 	return err;
990 }
991 
992 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."			\
993 	__stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
994 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
995 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."		\
996 	__stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
997 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
998 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
999 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1000 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1001 MODULE_FIRMWARE(FW_FNAME);
1002 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1003 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1005 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1007 
1008 static inline const char *get_edc_fw_name(int edc_idx)
1009 {
1010 	const char *fw_name = NULL;
1011 
1012 	switch (edc_idx) {
1013 	case EDC_OPT_AEL2005:
1014 		fw_name = AEL2005_OPT_EDC_NAME;
1015 		break;
1016 	case EDC_TWX_AEL2005:
1017 		fw_name = AEL2005_TWX_EDC_NAME;
1018 		break;
1019 	case EDC_TWX_AEL2020:
1020 		fw_name = AEL2020_TWX_EDC_NAME;
1021 		break;
1022 	}
1023 	return fw_name;
1024 }
1025 
1026 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1027 {
1028 	struct adapter *adapter = phy->adapter;
1029 	const struct firmware *fw;
1030 	const char *fw_name;
1031 	u32 csum;
1032 	const __be32 *p;
1033 	u16 *cache = phy->phy_cache;
1034 	int i, ret = -EINVAL;
1035 
1036 	fw_name = get_edc_fw_name(edc_idx);
1037 	if (fw_name)
1038 		ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1039 	if (ret < 0) {
1040 		dev_err(&adapter->pdev->dev,
1041 			"could not upgrade firmware: unable to load %s\n",
1042 			fw_name);
1043 		return ret;
1044 	}
1045 
1046 	/* check size, take checksum in account */
1047 	if (fw->size > size + 4) {
1048 		CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1049 		       (unsigned int)fw->size, size + 4);
1050 		ret = -EINVAL;
1051 	}
1052 
1053 	/* compute checksum */
1054 	p = (const __be32 *)fw->data;
1055 	for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1056 		csum += ntohl(p[i]);
1057 
1058 	if (csum != 0xffffffff) {
1059 		CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1060 		       csum);
1061 		ret = -EINVAL;
1062 	}
1063 
1064 	for (i = 0; i < size / 4 ; i++) {
1065 		*cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1066 		*cache++ = be32_to_cpu(p[i]) & 0xffff;
1067 	}
1068 
1069 	release_firmware(fw);
1070 
1071 	return ret;
1072 }
1073 
1074 static int upgrade_fw(struct adapter *adap)
1075 {
1076 	int ret;
1077 	const struct firmware *fw;
1078 	struct device *dev = &adap->pdev->dev;
1079 
1080 	ret = request_firmware(&fw, FW_FNAME, dev);
1081 	if (ret < 0) {
1082 		dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1083 			FW_FNAME);
1084 		return ret;
1085 	}
1086 	ret = t3_load_fw(adap, fw->data, fw->size);
1087 	release_firmware(fw);
1088 
1089 	if (ret == 0)
1090 		dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1091 			 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1092 	else
1093 		dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1094 			FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1095 
1096 	return ret;
1097 }
1098 
1099 static inline char t3rev2char(struct adapter *adapter)
1100 {
1101 	char rev = 0;
1102 
1103 	switch(adapter->params.rev) {
1104 	case T3_REV_B:
1105 	case T3_REV_B2:
1106 		rev = 'b';
1107 		break;
1108 	case T3_REV_C:
1109 		rev = 'c';
1110 		break;
1111 	}
1112 	return rev;
1113 }
1114 
1115 static int update_tpsram(struct adapter *adap)
1116 {
1117 	const struct firmware *tpsram;
1118 	char buf[64];
1119 	struct device *dev = &adap->pdev->dev;
1120 	int ret;
1121 	char rev;
1122 
1123 	rev = t3rev2char(adap);
1124 	if (!rev)
1125 		return 0;
1126 
1127 	snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1128 
1129 	ret = request_firmware(&tpsram, buf, dev);
1130 	if (ret < 0) {
1131 		dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1132 			buf);
1133 		return ret;
1134 	}
1135 
1136 	ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1137 	if (ret)
1138 		goto release_tpsram;
1139 
1140 	ret = t3_set_proto_sram(adap, tpsram->data);
1141 	if (ret == 0)
1142 		dev_info(dev,
1143 			 "successful update of protocol engine "
1144 			 "to %d.%d.%d\n",
1145 			 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1146 	else
1147 		dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1148 			TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1149 	if (ret)
1150 		dev_err(dev, "loading protocol SRAM failed\n");
1151 
1152 release_tpsram:
1153 	release_firmware(tpsram);
1154 
1155 	return ret;
1156 }
1157 
1158 /**
1159  * t3_synchronize_rx - wait for current Rx processing on a port to complete
1160  * @adap: the adapter
1161  * @p: the port
1162  *
1163  * Ensures that current Rx processing on any of the queues associated with
1164  * the given port completes before returning.  We do this by acquiring and
1165  * releasing the locks of the response queues associated with the port.
1166  */
1167 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1168 {
1169 	int i;
1170 
1171 	for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1172 		struct sge_rspq *q = &adap->sge.qs[i].rspq;
1173 
1174 		spin_lock_irq(&q->lock);
1175 		spin_unlock_irq(&q->lock);
1176 	}
1177 }
1178 
1179 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1180 {
1181 	struct port_info *pi = netdev_priv(dev);
1182 	struct adapter *adapter = pi->adapter;
1183 
1184 	if (adapter->params.rev > 0) {
1185 		t3_set_vlan_accel(adapter, 1 << pi->port_id,
1186 				  features & NETIF_F_HW_VLAN_CTAG_RX);
1187 	} else {
1188 		/* single control for all ports */
1189 		unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1190 
1191 		for_each_port(adapter, i)
1192 			have_vlans |=
1193 				adapter->port[i]->features &
1194 				NETIF_F_HW_VLAN_CTAG_RX;
1195 
1196 		t3_set_vlan_accel(adapter, 1, have_vlans);
1197 	}
1198 	t3_synchronize_rx(adapter, pi);
1199 }
1200 
1201 /**
1202  *	cxgb_up - enable the adapter
1203  *	@adapter: adapter being enabled
1204  *
1205  *	Called when the first port is enabled, this function performs the
1206  *	actions necessary to make an adapter operational, such as completing
1207  *	the initialization of HW modules, and enabling interrupts.
1208  *
1209  *	Must be called with the rtnl lock held.
1210  */
1211 static int cxgb_up(struct adapter *adap)
1212 {
1213 	int i, err;
1214 
1215 	if (!(adap->flags & FULL_INIT_DONE)) {
1216 		err = t3_check_fw_version(adap);
1217 		if (err == -EINVAL) {
1218 			err = upgrade_fw(adap);
1219 			CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1220 				FW_VERSION_MAJOR, FW_VERSION_MINOR,
1221 				FW_VERSION_MICRO, err ? "failed" : "succeeded");
1222 		}
1223 
1224 		err = t3_check_tpsram_version(adap);
1225 		if (err == -EINVAL) {
1226 			err = update_tpsram(adap);
1227 			CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1228 				TP_VERSION_MAJOR, TP_VERSION_MINOR,
1229 				TP_VERSION_MICRO, err ? "failed" : "succeeded");
1230 		}
1231 
1232 		/*
1233 		 * Clear interrupts now to catch errors if t3_init_hw fails.
1234 		 * We clear them again later as initialization may trigger
1235 		 * conditions that can interrupt.
1236 		 */
1237 		t3_intr_clear(adap);
1238 
1239 		err = t3_init_hw(adap, 0);
1240 		if (err)
1241 			goto out;
1242 
1243 		t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1244 		t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1245 
1246 		err = setup_sge_qsets(adap);
1247 		if (err)
1248 			goto out;
1249 
1250 		for_each_port(adap, i)
1251 			cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1252 
1253 		setup_rss(adap);
1254 		if (!(adap->flags & NAPI_INIT))
1255 			init_napi(adap);
1256 
1257 		t3_start_sge_timers(adap);
1258 		adap->flags |= FULL_INIT_DONE;
1259 	}
1260 
1261 	t3_intr_clear(adap);
1262 
1263 	if (adap->flags & USING_MSIX) {
1264 		name_msix_vecs(adap);
1265 		err = request_irq(adap->msix_info[0].vec,
1266 				  t3_async_intr_handler, 0,
1267 				  adap->msix_info[0].desc, adap);
1268 		if (err)
1269 			goto irq_err;
1270 
1271 		err = request_msix_data_irqs(adap);
1272 		if (err) {
1273 			free_irq(adap->msix_info[0].vec, adap);
1274 			goto irq_err;
1275 		}
1276 	} else if ((err = request_irq(adap->pdev->irq,
1277 				      t3_intr_handler(adap,
1278 						      adap->sge.qs[0].rspq.
1279 						      polling),
1280 				      (adap->flags & USING_MSI) ?
1281 				       0 : IRQF_SHARED,
1282 				      adap->name, adap)))
1283 		goto irq_err;
1284 
1285 	enable_all_napi(adap);
1286 	t3_sge_start(adap);
1287 	t3_intr_enable(adap);
1288 
1289 	if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1290 	    is_offload(adap) && init_tp_parity(adap) == 0)
1291 		adap->flags |= TP_PARITY_INIT;
1292 
1293 	if (adap->flags & TP_PARITY_INIT) {
1294 		t3_write_reg(adap, A_TP_INT_CAUSE,
1295 			     F_CMCACHEPERR | F_ARPLUTPERR);
1296 		t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1297 	}
1298 
1299 	if (!(adap->flags & QUEUES_BOUND)) {
1300 		int ret = bind_qsets(adap);
1301 
1302 		if (ret < 0) {
1303 			CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1304 			t3_intr_disable(adap);
1305 			free_irq_resources(adap);
1306 			err = ret;
1307 			goto out;
1308 		}
1309 		adap->flags |= QUEUES_BOUND;
1310 	}
1311 
1312 out:
1313 	return err;
1314 irq_err:
1315 	CH_ERR(adap, "request_irq failed, err %d\n", err);
1316 	goto out;
1317 }
1318 
1319 /*
1320  * Release resources when all the ports and offloading have been stopped.
1321  */
1322 static void cxgb_down(struct adapter *adapter, int on_wq)
1323 {
1324 	t3_sge_stop(adapter);
1325 	spin_lock_irq(&adapter->work_lock);	/* sync with PHY intr task */
1326 	t3_intr_disable(adapter);
1327 	spin_unlock_irq(&adapter->work_lock);
1328 
1329 	free_irq_resources(adapter);
1330 	quiesce_rx(adapter);
1331 	t3_sge_stop(adapter);
1332 	if (!on_wq)
1333 		flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1334 }
1335 
1336 static void schedule_chk_task(struct adapter *adap)
1337 {
1338 	unsigned int timeo;
1339 
1340 	timeo = adap->params.linkpoll_period ?
1341 	    (HZ * adap->params.linkpoll_period) / 10 :
1342 	    adap->params.stats_update_period * HZ;
1343 	if (timeo)
1344 		queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1345 }
1346 
1347 static int offload_open(struct net_device *dev)
1348 {
1349 	struct port_info *pi = netdev_priv(dev);
1350 	struct adapter *adapter = pi->adapter;
1351 	struct t3cdev *tdev = dev2t3cdev(dev);
1352 	int adap_up = adapter->open_device_map & PORT_MASK;
1353 	int err;
1354 
1355 	if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1356 		return 0;
1357 
1358 	if (!adap_up && (err = cxgb_up(adapter)) < 0)
1359 		goto out;
1360 
1361 	t3_tp_set_offload_mode(adapter, 1);
1362 	tdev->lldev = adapter->port[0];
1363 	err = cxgb3_offload_activate(adapter);
1364 	if (err)
1365 		goto out;
1366 
1367 	init_port_mtus(adapter);
1368 	t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1369 		     adapter->params.b_wnd,
1370 		     adapter->params.rev == 0 ?
1371 		     adapter->port[0]->mtu : 0xffff);
1372 	init_smt(adapter);
1373 
1374 	if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1375 		dev_dbg(&dev->dev, "cannot create sysfs group\n");
1376 
1377 	/* Call back all registered clients */
1378 	cxgb3_add_clients(tdev);
1379 
1380 out:
1381 	/* restore them in case the offload module has changed them */
1382 	if (err) {
1383 		t3_tp_set_offload_mode(adapter, 0);
1384 		clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1385 		cxgb3_set_dummy_ops(tdev);
1386 	}
1387 	return err;
1388 }
1389 
1390 static int offload_close(struct t3cdev *tdev)
1391 {
1392 	struct adapter *adapter = tdev2adap(tdev);
1393 	struct t3c_data *td = T3C_DATA(tdev);
1394 
1395 	if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1396 		return 0;
1397 
1398 	/* Call back all registered clients */
1399 	cxgb3_remove_clients(tdev);
1400 
1401 	sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1402 
1403 	/* Flush work scheduled while releasing TIDs */
1404 	flush_work(&td->tid_release_task);
1405 
1406 	tdev->lldev = NULL;
1407 	cxgb3_set_dummy_ops(tdev);
1408 	t3_tp_set_offload_mode(adapter, 0);
1409 	clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1410 
1411 	if (!adapter->open_device_map)
1412 		cxgb_down(adapter, 0);
1413 
1414 	cxgb3_offload_deactivate(adapter);
1415 	return 0;
1416 }
1417 
1418 static int cxgb_open(struct net_device *dev)
1419 {
1420 	struct port_info *pi = netdev_priv(dev);
1421 	struct adapter *adapter = pi->adapter;
1422 	int other_ports = adapter->open_device_map & PORT_MASK;
1423 	int err;
1424 
1425 	if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1426 		return err;
1427 
1428 	set_bit(pi->port_id, &adapter->open_device_map);
1429 	if (is_offload(adapter) && !ofld_disable) {
1430 		err = offload_open(dev);
1431 		if (err)
1432 			pr_warn("Could not initialize offload capabilities\n");
1433 	}
1434 
1435 	netif_set_real_num_tx_queues(dev, pi->nqsets);
1436 	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1437 	if (err)
1438 		return err;
1439 	link_start(dev);
1440 	t3_port_intr_enable(adapter, pi->port_id);
1441 	netif_tx_start_all_queues(dev);
1442 	if (!other_ports)
1443 		schedule_chk_task(adapter);
1444 
1445 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1446 	return 0;
1447 }
1448 
1449 static int __cxgb_close(struct net_device *dev, int on_wq)
1450 {
1451 	struct port_info *pi = netdev_priv(dev);
1452 	struct adapter *adapter = pi->adapter;
1453 
1454 
1455 	if (!adapter->open_device_map)
1456 		return 0;
1457 
1458 	/* Stop link fault interrupts */
1459 	t3_xgm_intr_disable(adapter, pi->port_id);
1460 	t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1461 
1462 	t3_port_intr_disable(adapter, pi->port_id);
1463 	netif_tx_stop_all_queues(dev);
1464 	pi->phy.ops->power_down(&pi->phy, 1);
1465 	netif_carrier_off(dev);
1466 	t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1467 
1468 	spin_lock_irq(&adapter->work_lock);	/* sync with update task */
1469 	clear_bit(pi->port_id, &adapter->open_device_map);
1470 	spin_unlock_irq(&adapter->work_lock);
1471 
1472 	if (!(adapter->open_device_map & PORT_MASK))
1473 		cancel_delayed_work_sync(&adapter->adap_check_task);
1474 
1475 	if (!adapter->open_device_map)
1476 		cxgb_down(adapter, on_wq);
1477 
1478 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1479 	return 0;
1480 }
1481 
1482 static int cxgb_close(struct net_device *dev)
1483 {
1484 	return __cxgb_close(dev, 0);
1485 }
1486 
1487 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1488 {
1489 	struct port_info *pi = netdev_priv(dev);
1490 	struct adapter *adapter = pi->adapter;
1491 	struct net_device_stats *ns = &pi->netstats;
1492 	const struct mac_stats *pstats;
1493 
1494 	spin_lock(&adapter->stats_lock);
1495 	pstats = t3_mac_update_stats(&pi->mac);
1496 	spin_unlock(&adapter->stats_lock);
1497 
1498 	ns->tx_bytes = pstats->tx_octets;
1499 	ns->tx_packets = pstats->tx_frames;
1500 	ns->rx_bytes = pstats->rx_octets;
1501 	ns->rx_packets = pstats->rx_frames;
1502 	ns->multicast = pstats->rx_mcast_frames;
1503 
1504 	ns->tx_errors = pstats->tx_underrun;
1505 	ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1506 	    pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1507 	    pstats->rx_fifo_ovfl;
1508 
1509 	/* detailed rx_errors */
1510 	ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1511 	ns->rx_over_errors = 0;
1512 	ns->rx_crc_errors = pstats->rx_fcs_errs;
1513 	ns->rx_frame_errors = pstats->rx_symbol_errs;
1514 	ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1515 	ns->rx_missed_errors = pstats->rx_cong_drops;
1516 
1517 	/* detailed tx_errors */
1518 	ns->tx_aborted_errors = 0;
1519 	ns->tx_carrier_errors = 0;
1520 	ns->tx_fifo_errors = pstats->tx_underrun;
1521 	ns->tx_heartbeat_errors = 0;
1522 	ns->tx_window_errors = 0;
1523 	return ns;
1524 }
1525 
1526 static u32 get_msglevel(struct net_device *dev)
1527 {
1528 	struct port_info *pi = netdev_priv(dev);
1529 	struct adapter *adapter = pi->adapter;
1530 
1531 	return adapter->msg_enable;
1532 }
1533 
1534 static void set_msglevel(struct net_device *dev, u32 val)
1535 {
1536 	struct port_info *pi = netdev_priv(dev);
1537 	struct adapter *adapter = pi->adapter;
1538 
1539 	adapter->msg_enable = val;
1540 }
1541 
1542 static const char stats_strings[][ETH_GSTRING_LEN] = {
1543 	"TxOctetsOK         ",
1544 	"TxFramesOK         ",
1545 	"TxMulticastFramesOK",
1546 	"TxBroadcastFramesOK",
1547 	"TxPauseFrames      ",
1548 	"TxUnderrun         ",
1549 	"TxExtUnderrun      ",
1550 
1551 	"TxFrames64         ",
1552 	"TxFrames65To127    ",
1553 	"TxFrames128To255   ",
1554 	"TxFrames256To511   ",
1555 	"TxFrames512To1023  ",
1556 	"TxFrames1024To1518 ",
1557 	"TxFrames1519ToMax  ",
1558 
1559 	"RxOctetsOK         ",
1560 	"RxFramesOK         ",
1561 	"RxMulticastFramesOK",
1562 	"RxBroadcastFramesOK",
1563 	"RxPauseFrames      ",
1564 	"RxFCSErrors        ",
1565 	"RxSymbolErrors     ",
1566 	"RxShortErrors      ",
1567 	"RxJabberErrors     ",
1568 	"RxLengthErrors     ",
1569 	"RxFIFOoverflow     ",
1570 
1571 	"RxFrames64         ",
1572 	"RxFrames65To127    ",
1573 	"RxFrames128To255   ",
1574 	"RxFrames256To511   ",
1575 	"RxFrames512To1023  ",
1576 	"RxFrames1024To1518 ",
1577 	"RxFrames1519ToMax  ",
1578 
1579 	"PhyFIFOErrors      ",
1580 	"TSO                ",
1581 	"VLANextractions    ",
1582 	"VLANinsertions     ",
1583 	"TxCsumOffload      ",
1584 	"RxCsumGood         ",
1585 	"LroAggregated      ",
1586 	"LroFlushed         ",
1587 	"LroNoDesc          ",
1588 	"RxDrops            ",
1589 
1590 	"CheckTXEnToggled   ",
1591 	"CheckResets        ",
1592 
1593 	"LinkFaults         ",
1594 };
1595 
1596 static int get_sset_count(struct net_device *dev, int sset)
1597 {
1598 	switch (sset) {
1599 	case ETH_SS_STATS:
1600 		return ARRAY_SIZE(stats_strings);
1601 	default:
1602 		return -EOPNOTSUPP;
1603 	}
1604 }
1605 
1606 #define T3_REGMAP_SIZE (3 * 1024)
1607 
1608 static int get_regs_len(struct net_device *dev)
1609 {
1610 	return T3_REGMAP_SIZE;
1611 }
1612 
1613 static int get_eeprom_len(struct net_device *dev)
1614 {
1615 	return EEPROMSIZE;
1616 }
1617 
1618 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1619 {
1620 	struct port_info *pi = netdev_priv(dev);
1621 	struct adapter *adapter = pi->adapter;
1622 	u32 fw_vers = 0;
1623 	u32 tp_vers = 0;
1624 
1625 	spin_lock(&adapter->stats_lock);
1626 	t3_get_fw_version(adapter, &fw_vers);
1627 	t3_get_tp_version(adapter, &tp_vers);
1628 	spin_unlock(&adapter->stats_lock);
1629 
1630 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1631 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1632 	strlcpy(info->bus_info, pci_name(adapter->pdev),
1633 		sizeof(info->bus_info));
1634 	if (fw_vers)
1635 		snprintf(info->fw_version, sizeof(info->fw_version),
1636 			 "%s %u.%u.%u TP %u.%u.%u",
1637 			 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1638 			 G_FW_VERSION_MAJOR(fw_vers),
1639 			 G_FW_VERSION_MINOR(fw_vers),
1640 			 G_FW_VERSION_MICRO(fw_vers),
1641 			 G_TP_VERSION_MAJOR(tp_vers),
1642 			 G_TP_VERSION_MINOR(tp_vers),
1643 			 G_TP_VERSION_MICRO(tp_vers));
1644 }
1645 
1646 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1647 {
1648 	if (stringset == ETH_SS_STATS)
1649 		memcpy(data, stats_strings, sizeof(stats_strings));
1650 }
1651 
1652 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1653 					    struct port_info *p, int idx)
1654 {
1655 	int i;
1656 	unsigned long tot = 0;
1657 
1658 	for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1659 		tot += adapter->sge.qs[i].port_stats[idx];
1660 	return tot;
1661 }
1662 
1663 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1664 		      u64 *data)
1665 {
1666 	struct port_info *pi = netdev_priv(dev);
1667 	struct adapter *adapter = pi->adapter;
1668 	const struct mac_stats *s;
1669 
1670 	spin_lock(&adapter->stats_lock);
1671 	s = t3_mac_update_stats(&pi->mac);
1672 	spin_unlock(&adapter->stats_lock);
1673 
1674 	*data++ = s->tx_octets;
1675 	*data++ = s->tx_frames;
1676 	*data++ = s->tx_mcast_frames;
1677 	*data++ = s->tx_bcast_frames;
1678 	*data++ = s->tx_pause;
1679 	*data++ = s->tx_underrun;
1680 	*data++ = s->tx_fifo_urun;
1681 
1682 	*data++ = s->tx_frames_64;
1683 	*data++ = s->tx_frames_65_127;
1684 	*data++ = s->tx_frames_128_255;
1685 	*data++ = s->tx_frames_256_511;
1686 	*data++ = s->tx_frames_512_1023;
1687 	*data++ = s->tx_frames_1024_1518;
1688 	*data++ = s->tx_frames_1519_max;
1689 
1690 	*data++ = s->rx_octets;
1691 	*data++ = s->rx_frames;
1692 	*data++ = s->rx_mcast_frames;
1693 	*data++ = s->rx_bcast_frames;
1694 	*data++ = s->rx_pause;
1695 	*data++ = s->rx_fcs_errs;
1696 	*data++ = s->rx_symbol_errs;
1697 	*data++ = s->rx_short;
1698 	*data++ = s->rx_jabber;
1699 	*data++ = s->rx_too_long;
1700 	*data++ = s->rx_fifo_ovfl;
1701 
1702 	*data++ = s->rx_frames_64;
1703 	*data++ = s->rx_frames_65_127;
1704 	*data++ = s->rx_frames_128_255;
1705 	*data++ = s->rx_frames_256_511;
1706 	*data++ = s->rx_frames_512_1023;
1707 	*data++ = s->rx_frames_1024_1518;
1708 	*data++ = s->rx_frames_1519_max;
1709 
1710 	*data++ = pi->phy.fifo_errors;
1711 
1712 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1713 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1714 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1715 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1716 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1717 	*data++ = 0;
1718 	*data++ = 0;
1719 	*data++ = 0;
1720 	*data++ = s->rx_cong_drops;
1721 
1722 	*data++ = s->num_toggled;
1723 	*data++ = s->num_resets;
1724 
1725 	*data++ = s->link_faults;
1726 }
1727 
1728 static inline void reg_block_dump(struct adapter *ap, void *buf,
1729 				  unsigned int start, unsigned int end)
1730 {
1731 	u32 *p = buf + start;
1732 
1733 	for (; start <= end; start += sizeof(u32))
1734 		*p++ = t3_read_reg(ap, start);
1735 }
1736 
1737 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1738 		     void *buf)
1739 {
1740 	struct port_info *pi = netdev_priv(dev);
1741 	struct adapter *ap = pi->adapter;
1742 
1743 	/*
1744 	 * Version scheme:
1745 	 * bits 0..9: chip version
1746 	 * bits 10..15: chip revision
1747 	 * bit 31: set for PCIe cards
1748 	 */
1749 	regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1750 
1751 	/*
1752 	 * We skip the MAC statistics registers because they are clear-on-read.
1753 	 * Also reading multi-register stats would need to synchronize with the
1754 	 * periodic mac stats accumulation.  Hard to justify the complexity.
1755 	 */
1756 	memset(buf, 0, T3_REGMAP_SIZE);
1757 	reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1758 	reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1759 	reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1760 	reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1761 	reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1762 	reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1763 		       XGM_REG(A_XGM_SERDES_STAT3, 1));
1764 	reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1765 		       XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1766 }
1767 
1768 static int restart_autoneg(struct net_device *dev)
1769 {
1770 	struct port_info *p = netdev_priv(dev);
1771 
1772 	if (!netif_running(dev))
1773 		return -EAGAIN;
1774 	if (p->link_config.autoneg != AUTONEG_ENABLE)
1775 		return -EINVAL;
1776 	p->phy.ops->autoneg_restart(&p->phy);
1777 	return 0;
1778 }
1779 
1780 static int set_phys_id(struct net_device *dev,
1781 		       enum ethtool_phys_id_state state)
1782 {
1783 	struct port_info *pi = netdev_priv(dev);
1784 	struct adapter *adapter = pi->adapter;
1785 
1786 	switch (state) {
1787 	case ETHTOOL_ID_ACTIVE:
1788 		return 1;	/* cycle on/off once per second */
1789 
1790 	case ETHTOOL_ID_OFF:
1791 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1792 		break;
1793 
1794 	case ETHTOOL_ID_ON:
1795 	case ETHTOOL_ID_INACTIVE:
1796 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1797 			 F_GPIO0_OUT_VAL);
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1804 {
1805 	struct port_info *p = netdev_priv(dev);
1806 
1807 	cmd->supported = p->link_config.supported;
1808 	cmd->advertising = p->link_config.advertising;
1809 
1810 	if (netif_carrier_ok(dev)) {
1811 		ethtool_cmd_speed_set(cmd, p->link_config.speed);
1812 		cmd->duplex = p->link_config.duplex;
1813 	} else {
1814 		ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1815 		cmd->duplex = DUPLEX_UNKNOWN;
1816 	}
1817 
1818 	cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1819 	cmd->phy_address = p->phy.mdio.prtad;
1820 	cmd->transceiver = XCVR_EXTERNAL;
1821 	cmd->autoneg = p->link_config.autoneg;
1822 	cmd->maxtxpkt = 0;
1823 	cmd->maxrxpkt = 0;
1824 	return 0;
1825 }
1826 
1827 static int speed_duplex_to_caps(int speed, int duplex)
1828 {
1829 	int cap = 0;
1830 
1831 	switch (speed) {
1832 	case SPEED_10:
1833 		if (duplex == DUPLEX_FULL)
1834 			cap = SUPPORTED_10baseT_Full;
1835 		else
1836 			cap = SUPPORTED_10baseT_Half;
1837 		break;
1838 	case SPEED_100:
1839 		if (duplex == DUPLEX_FULL)
1840 			cap = SUPPORTED_100baseT_Full;
1841 		else
1842 			cap = SUPPORTED_100baseT_Half;
1843 		break;
1844 	case SPEED_1000:
1845 		if (duplex == DUPLEX_FULL)
1846 			cap = SUPPORTED_1000baseT_Full;
1847 		else
1848 			cap = SUPPORTED_1000baseT_Half;
1849 		break;
1850 	case SPEED_10000:
1851 		if (duplex == DUPLEX_FULL)
1852 			cap = SUPPORTED_10000baseT_Full;
1853 	}
1854 	return cap;
1855 }
1856 
1857 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1858 		      ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1859 		      ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1860 		      ADVERTISED_10000baseT_Full)
1861 
1862 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1863 {
1864 	struct port_info *p = netdev_priv(dev);
1865 	struct link_config *lc = &p->link_config;
1866 
1867 	if (!(lc->supported & SUPPORTED_Autoneg)) {
1868 		/*
1869 		 * PHY offers a single speed/duplex.  See if that's what's
1870 		 * being requested.
1871 		 */
1872 		if (cmd->autoneg == AUTONEG_DISABLE) {
1873 			u32 speed = ethtool_cmd_speed(cmd);
1874 			int cap = speed_duplex_to_caps(speed, cmd->duplex);
1875 			if (lc->supported & cap)
1876 				return 0;
1877 		}
1878 		return -EINVAL;
1879 	}
1880 
1881 	if (cmd->autoneg == AUTONEG_DISABLE) {
1882 		u32 speed = ethtool_cmd_speed(cmd);
1883 		int cap = speed_duplex_to_caps(speed, cmd->duplex);
1884 
1885 		if (!(lc->supported & cap) || (speed == SPEED_1000))
1886 			return -EINVAL;
1887 		lc->requested_speed = speed;
1888 		lc->requested_duplex = cmd->duplex;
1889 		lc->advertising = 0;
1890 	} else {
1891 		cmd->advertising &= ADVERTISED_MASK;
1892 		cmd->advertising &= lc->supported;
1893 		if (!cmd->advertising)
1894 			return -EINVAL;
1895 		lc->requested_speed = SPEED_INVALID;
1896 		lc->requested_duplex = DUPLEX_INVALID;
1897 		lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1898 	}
1899 	lc->autoneg = cmd->autoneg;
1900 	if (netif_running(dev))
1901 		t3_link_start(&p->phy, &p->mac, lc);
1902 	return 0;
1903 }
1904 
1905 static void get_pauseparam(struct net_device *dev,
1906 			   struct ethtool_pauseparam *epause)
1907 {
1908 	struct port_info *p = netdev_priv(dev);
1909 
1910 	epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1911 	epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1912 	epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1913 }
1914 
1915 static int set_pauseparam(struct net_device *dev,
1916 			  struct ethtool_pauseparam *epause)
1917 {
1918 	struct port_info *p = netdev_priv(dev);
1919 	struct link_config *lc = &p->link_config;
1920 
1921 	if (epause->autoneg == AUTONEG_DISABLE)
1922 		lc->requested_fc = 0;
1923 	else if (lc->supported & SUPPORTED_Autoneg)
1924 		lc->requested_fc = PAUSE_AUTONEG;
1925 	else
1926 		return -EINVAL;
1927 
1928 	if (epause->rx_pause)
1929 		lc->requested_fc |= PAUSE_RX;
1930 	if (epause->tx_pause)
1931 		lc->requested_fc |= PAUSE_TX;
1932 	if (lc->autoneg == AUTONEG_ENABLE) {
1933 		if (netif_running(dev))
1934 			t3_link_start(&p->phy, &p->mac, lc);
1935 	} else {
1936 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1937 		if (netif_running(dev))
1938 			t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1939 	}
1940 	return 0;
1941 }
1942 
1943 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1944 {
1945 	struct port_info *pi = netdev_priv(dev);
1946 	struct adapter *adapter = pi->adapter;
1947 	const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1948 
1949 	e->rx_max_pending = MAX_RX_BUFFERS;
1950 	e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1951 	e->tx_max_pending = MAX_TXQ_ENTRIES;
1952 
1953 	e->rx_pending = q->fl_size;
1954 	e->rx_mini_pending = q->rspq_size;
1955 	e->rx_jumbo_pending = q->jumbo_size;
1956 	e->tx_pending = q->txq_size[0];
1957 }
1958 
1959 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1960 {
1961 	struct port_info *pi = netdev_priv(dev);
1962 	struct adapter *adapter = pi->adapter;
1963 	struct qset_params *q;
1964 	int i;
1965 
1966 	if (e->rx_pending > MAX_RX_BUFFERS ||
1967 	    e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1968 	    e->tx_pending > MAX_TXQ_ENTRIES ||
1969 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1970 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1971 	    e->rx_pending < MIN_FL_ENTRIES ||
1972 	    e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1973 	    e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1974 		return -EINVAL;
1975 
1976 	if (adapter->flags & FULL_INIT_DONE)
1977 		return -EBUSY;
1978 
1979 	q = &adapter->params.sge.qset[pi->first_qset];
1980 	for (i = 0; i < pi->nqsets; ++i, ++q) {
1981 		q->rspq_size = e->rx_mini_pending;
1982 		q->fl_size = e->rx_pending;
1983 		q->jumbo_size = e->rx_jumbo_pending;
1984 		q->txq_size[0] = e->tx_pending;
1985 		q->txq_size[1] = e->tx_pending;
1986 		q->txq_size[2] = e->tx_pending;
1987 	}
1988 	return 0;
1989 }
1990 
1991 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1992 {
1993 	struct port_info *pi = netdev_priv(dev);
1994 	struct adapter *adapter = pi->adapter;
1995 	struct qset_params *qsp;
1996 	struct sge_qset *qs;
1997 	int i;
1998 
1999 	if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2000 		return -EINVAL;
2001 
2002 	for (i = 0; i < pi->nqsets; i++) {
2003 		qsp = &adapter->params.sge.qset[i];
2004 		qs = &adapter->sge.qs[i];
2005 		qsp->coalesce_usecs = c->rx_coalesce_usecs;
2006 		t3_update_qset_coalesce(qs, qsp);
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2013 {
2014 	struct port_info *pi = netdev_priv(dev);
2015 	struct adapter *adapter = pi->adapter;
2016 	struct qset_params *q = adapter->params.sge.qset;
2017 
2018 	c->rx_coalesce_usecs = q->coalesce_usecs;
2019 	return 0;
2020 }
2021 
2022 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2023 		      u8 * data)
2024 {
2025 	struct port_info *pi = netdev_priv(dev);
2026 	struct adapter *adapter = pi->adapter;
2027 	int i, err = 0;
2028 
2029 	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2030 	if (!buf)
2031 		return -ENOMEM;
2032 
2033 	e->magic = EEPROM_MAGIC;
2034 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2035 		err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2036 
2037 	if (!err)
2038 		memcpy(data, buf + e->offset, e->len);
2039 	kfree(buf);
2040 	return err;
2041 }
2042 
2043 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2044 		      u8 * data)
2045 {
2046 	struct port_info *pi = netdev_priv(dev);
2047 	struct adapter *adapter = pi->adapter;
2048 	u32 aligned_offset, aligned_len;
2049 	__le32 *p;
2050 	u8 *buf;
2051 	int err;
2052 
2053 	if (eeprom->magic != EEPROM_MAGIC)
2054 		return -EINVAL;
2055 
2056 	aligned_offset = eeprom->offset & ~3;
2057 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2058 
2059 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2060 		buf = kmalloc(aligned_len, GFP_KERNEL);
2061 		if (!buf)
2062 			return -ENOMEM;
2063 		err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2064 		if (!err && aligned_len > 4)
2065 			err = t3_seeprom_read(adapter,
2066 					      aligned_offset + aligned_len - 4,
2067 					      (__le32 *) & buf[aligned_len - 4]);
2068 		if (err)
2069 			goto out;
2070 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2071 	} else
2072 		buf = data;
2073 
2074 	err = t3_seeprom_wp(adapter, 0);
2075 	if (err)
2076 		goto out;
2077 
2078 	for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2079 		err = t3_seeprom_write(adapter, aligned_offset, *p);
2080 		aligned_offset += 4;
2081 	}
2082 
2083 	if (!err)
2084 		err = t3_seeprom_wp(adapter, 1);
2085 out:
2086 	if (buf != data)
2087 		kfree(buf);
2088 	return err;
2089 }
2090 
2091 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2092 {
2093 	wol->supported = 0;
2094 	wol->wolopts = 0;
2095 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2096 }
2097 
2098 static const struct ethtool_ops cxgb_ethtool_ops = {
2099 	.get_settings = get_settings,
2100 	.set_settings = set_settings,
2101 	.get_drvinfo = get_drvinfo,
2102 	.get_msglevel = get_msglevel,
2103 	.set_msglevel = set_msglevel,
2104 	.get_ringparam = get_sge_param,
2105 	.set_ringparam = set_sge_param,
2106 	.get_coalesce = get_coalesce,
2107 	.set_coalesce = set_coalesce,
2108 	.get_eeprom_len = get_eeprom_len,
2109 	.get_eeprom = get_eeprom,
2110 	.set_eeprom = set_eeprom,
2111 	.get_pauseparam = get_pauseparam,
2112 	.set_pauseparam = set_pauseparam,
2113 	.get_link = ethtool_op_get_link,
2114 	.get_strings = get_strings,
2115 	.set_phys_id = set_phys_id,
2116 	.nway_reset = restart_autoneg,
2117 	.get_sset_count = get_sset_count,
2118 	.get_ethtool_stats = get_stats,
2119 	.get_regs_len = get_regs_len,
2120 	.get_regs = get_regs,
2121 	.get_wol = get_wol,
2122 };
2123 
2124 static int in_range(int val, int lo, int hi)
2125 {
2126 	return val < 0 || (val <= hi && val >= lo);
2127 }
2128 
2129 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2130 {
2131 	struct port_info *pi = netdev_priv(dev);
2132 	struct adapter *adapter = pi->adapter;
2133 	u32 cmd;
2134 	int ret;
2135 
2136 	if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2137 		return -EFAULT;
2138 
2139 	switch (cmd) {
2140 	case CHELSIO_SET_QSET_PARAMS:{
2141 		int i;
2142 		struct qset_params *q;
2143 		struct ch_qset_params t;
2144 		int q1 = pi->first_qset;
2145 		int nqsets = pi->nqsets;
2146 
2147 		if (!capable(CAP_NET_ADMIN))
2148 			return -EPERM;
2149 		if (copy_from_user(&t, useraddr, sizeof(t)))
2150 			return -EFAULT;
2151 		if (t.qset_idx >= SGE_QSETS)
2152 			return -EINVAL;
2153 		if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2154 		    !in_range(t.cong_thres, 0, 255) ||
2155 		    !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2156 			      MAX_TXQ_ENTRIES) ||
2157 		    !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2158 			      MAX_TXQ_ENTRIES) ||
2159 		    !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2160 			      MAX_CTRL_TXQ_ENTRIES) ||
2161 		    !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2162 			      MAX_RX_BUFFERS) ||
2163 		    !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2164 			      MAX_RX_JUMBO_BUFFERS) ||
2165 		    !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2166 			      MAX_RSPQ_ENTRIES))
2167 			return -EINVAL;
2168 
2169 		if ((adapter->flags & FULL_INIT_DONE) &&
2170 			(t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2171 			t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2172 			t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2173 			t.polling >= 0 || t.cong_thres >= 0))
2174 			return -EBUSY;
2175 
2176 		/* Allow setting of any available qset when offload enabled */
2177 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2178 			q1 = 0;
2179 			for_each_port(adapter, i) {
2180 				pi = adap2pinfo(adapter, i);
2181 				nqsets += pi->first_qset + pi->nqsets;
2182 			}
2183 		}
2184 
2185 		if (t.qset_idx < q1)
2186 			return -EINVAL;
2187 		if (t.qset_idx > q1 + nqsets - 1)
2188 			return -EINVAL;
2189 
2190 		q = &adapter->params.sge.qset[t.qset_idx];
2191 
2192 		if (t.rspq_size >= 0)
2193 			q->rspq_size = t.rspq_size;
2194 		if (t.fl_size[0] >= 0)
2195 			q->fl_size = t.fl_size[0];
2196 		if (t.fl_size[1] >= 0)
2197 			q->jumbo_size = t.fl_size[1];
2198 		if (t.txq_size[0] >= 0)
2199 			q->txq_size[0] = t.txq_size[0];
2200 		if (t.txq_size[1] >= 0)
2201 			q->txq_size[1] = t.txq_size[1];
2202 		if (t.txq_size[2] >= 0)
2203 			q->txq_size[2] = t.txq_size[2];
2204 		if (t.cong_thres >= 0)
2205 			q->cong_thres = t.cong_thres;
2206 		if (t.intr_lat >= 0) {
2207 			struct sge_qset *qs =
2208 				&adapter->sge.qs[t.qset_idx];
2209 
2210 			q->coalesce_usecs = t.intr_lat;
2211 			t3_update_qset_coalesce(qs, q);
2212 		}
2213 		if (t.polling >= 0) {
2214 			if (adapter->flags & USING_MSIX)
2215 				q->polling = t.polling;
2216 			else {
2217 				/* No polling with INTx for T3A */
2218 				if (adapter->params.rev == 0 &&
2219 					!(adapter->flags & USING_MSI))
2220 					t.polling = 0;
2221 
2222 				for (i = 0; i < SGE_QSETS; i++) {
2223 					q = &adapter->params.sge.
2224 						qset[i];
2225 					q->polling = t.polling;
2226 				}
2227 			}
2228 		}
2229 
2230 		if (t.lro >= 0) {
2231 			if (t.lro)
2232 				dev->wanted_features |= NETIF_F_GRO;
2233 			else
2234 				dev->wanted_features &= ~NETIF_F_GRO;
2235 			netdev_update_features(dev);
2236 		}
2237 
2238 		break;
2239 	}
2240 	case CHELSIO_GET_QSET_PARAMS:{
2241 		struct qset_params *q;
2242 		struct ch_qset_params t;
2243 		int q1 = pi->first_qset;
2244 		int nqsets = pi->nqsets;
2245 		int i;
2246 
2247 		if (copy_from_user(&t, useraddr, sizeof(t)))
2248 			return -EFAULT;
2249 
2250 		/* Display qsets for all ports when offload enabled */
2251 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2252 			q1 = 0;
2253 			for_each_port(adapter, i) {
2254 				pi = adap2pinfo(adapter, i);
2255 				nqsets = pi->first_qset + pi->nqsets;
2256 			}
2257 		}
2258 
2259 		if (t.qset_idx >= nqsets)
2260 			return -EINVAL;
2261 
2262 		q = &adapter->params.sge.qset[q1 + t.qset_idx];
2263 		t.rspq_size = q->rspq_size;
2264 		t.txq_size[0] = q->txq_size[0];
2265 		t.txq_size[1] = q->txq_size[1];
2266 		t.txq_size[2] = q->txq_size[2];
2267 		t.fl_size[0] = q->fl_size;
2268 		t.fl_size[1] = q->jumbo_size;
2269 		t.polling = q->polling;
2270 		t.lro = !!(dev->features & NETIF_F_GRO);
2271 		t.intr_lat = q->coalesce_usecs;
2272 		t.cong_thres = q->cong_thres;
2273 		t.qnum = q1;
2274 
2275 		if (adapter->flags & USING_MSIX)
2276 			t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2277 		else
2278 			t.vector = adapter->pdev->irq;
2279 
2280 		if (copy_to_user(useraddr, &t, sizeof(t)))
2281 			return -EFAULT;
2282 		break;
2283 	}
2284 	case CHELSIO_SET_QSET_NUM:{
2285 		struct ch_reg edata;
2286 		unsigned int i, first_qset = 0, other_qsets = 0;
2287 
2288 		if (!capable(CAP_NET_ADMIN))
2289 			return -EPERM;
2290 		if (adapter->flags & FULL_INIT_DONE)
2291 			return -EBUSY;
2292 		if (copy_from_user(&edata, useraddr, sizeof(edata)))
2293 			return -EFAULT;
2294 		if (edata.val < 1 ||
2295 			(edata.val > 1 && !(adapter->flags & USING_MSIX)))
2296 			return -EINVAL;
2297 
2298 		for_each_port(adapter, i)
2299 			if (adapter->port[i] && adapter->port[i] != dev)
2300 				other_qsets += adap2pinfo(adapter, i)->nqsets;
2301 
2302 		if (edata.val + other_qsets > SGE_QSETS)
2303 			return -EINVAL;
2304 
2305 		pi->nqsets = edata.val;
2306 
2307 		for_each_port(adapter, i)
2308 			if (adapter->port[i]) {
2309 				pi = adap2pinfo(adapter, i);
2310 				pi->first_qset = first_qset;
2311 				first_qset += pi->nqsets;
2312 			}
2313 		break;
2314 	}
2315 	case CHELSIO_GET_QSET_NUM:{
2316 		struct ch_reg edata;
2317 
2318 		memset(&edata, 0, sizeof(struct ch_reg));
2319 
2320 		edata.cmd = CHELSIO_GET_QSET_NUM;
2321 		edata.val = pi->nqsets;
2322 		if (copy_to_user(useraddr, &edata, sizeof(edata)))
2323 			return -EFAULT;
2324 		break;
2325 	}
2326 	case CHELSIO_LOAD_FW:{
2327 		u8 *fw_data;
2328 		struct ch_mem_range t;
2329 
2330 		if (!capable(CAP_SYS_RAWIO))
2331 			return -EPERM;
2332 		if (copy_from_user(&t, useraddr, sizeof(t)))
2333 			return -EFAULT;
2334 		/* Check t.len sanity ? */
2335 		fw_data = memdup_user(useraddr + sizeof(t), t.len);
2336 		if (IS_ERR(fw_data))
2337 			return PTR_ERR(fw_data);
2338 
2339 		ret = t3_load_fw(adapter, fw_data, t.len);
2340 		kfree(fw_data);
2341 		if (ret)
2342 			return ret;
2343 		break;
2344 	}
2345 	case CHELSIO_SETMTUTAB:{
2346 		struct ch_mtus m;
2347 		int i;
2348 
2349 		if (!is_offload(adapter))
2350 			return -EOPNOTSUPP;
2351 		if (!capable(CAP_NET_ADMIN))
2352 			return -EPERM;
2353 		if (offload_running(adapter))
2354 			return -EBUSY;
2355 		if (copy_from_user(&m, useraddr, sizeof(m)))
2356 			return -EFAULT;
2357 		if (m.nmtus != NMTUS)
2358 			return -EINVAL;
2359 		if (m.mtus[0] < 81)	/* accommodate SACK */
2360 			return -EINVAL;
2361 
2362 		/* MTUs must be in ascending order */
2363 		for (i = 1; i < NMTUS; ++i)
2364 			if (m.mtus[i] < m.mtus[i - 1])
2365 				return -EINVAL;
2366 
2367 		memcpy(adapter->params.mtus, m.mtus,
2368 			sizeof(adapter->params.mtus));
2369 		break;
2370 	}
2371 	case CHELSIO_GET_PM:{
2372 		struct tp_params *p = &adapter->params.tp;
2373 		struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2374 
2375 		if (!is_offload(adapter))
2376 			return -EOPNOTSUPP;
2377 		m.tx_pg_sz = p->tx_pg_size;
2378 		m.tx_num_pg = p->tx_num_pgs;
2379 		m.rx_pg_sz = p->rx_pg_size;
2380 		m.rx_num_pg = p->rx_num_pgs;
2381 		m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2382 		if (copy_to_user(useraddr, &m, sizeof(m)))
2383 			return -EFAULT;
2384 		break;
2385 	}
2386 	case CHELSIO_SET_PM:{
2387 		struct ch_pm m;
2388 		struct tp_params *p = &adapter->params.tp;
2389 
2390 		if (!is_offload(adapter))
2391 			return -EOPNOTSUPP;
2392 		if (!capable(CAP_NET_ADMIN))
2393 			return -EPERM;
2394 		if (adapter->flags & FULL_INIT_DONE)
2395 			return -EBUSY;
2396 		if (copy_from_user(&m, useraddr, sizeof(m)))
2397 			return -EFAULT;
2398 		if (!is_power_of_2(m.rx_pg_sz) ||
2399 			!is_power_of_2(m.tx_pg_sz))
2400 			return -EINVAL;	/* not power of 2 */
2401 		if (!(m.rx_pg_sz & 0x14000))
2402 			return -EINVAL;	/* not 16KB or 64KB */
2403 		if (!(m.tx_pg_sz & 0x1554000))
2404 			return -EINVAL;
2405 		if (m.tx_num_pg == -1)
2406 			m.tx_num_pg = p->tx_num_pgs;
2407 		if (m.rx_num_pg == -1)
2408 			m.rx_num_pg = p->rx_num_pgs;
2409 		if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2410 			return -EINVAL;
2411 		if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2412 			m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2413 			return -EINVAL;
2414 		p->rx_pg_size = m.rx_pg_sz;
2415 		p->tx_pg_size = m.tx_pg_sz;
2416 		p->rx_num_pgs = m.rx_num_pg;
2417 		p->tx_num_pgs = m.tx_num_pg;
2418 		break;
2419 	}
2420 	case CHELSIO_GET_MEM:{
2421 		struct ch_mem_range t;
2422 		struct mc7 *mem;
2423 		u64 buf[32];
2424 
2425 		if (!is_offload(adapter))
2426 			return -EOPNOTSUPP;
2427 		if (!(adapter->flags & FULL_INIT_DONE))
2428 			return -EIO;	/* need the memory controllers */
2429 		if (copy_from_user(&t, useraddr, sizeof(t)))
2430 			return -EFAULT;
2431 		if ((t.addr & 7) || (t.len & 7))
2432 			return -EINVAL;
2433 		if (t.mem_id == MEM_CM)
2434 			mem = &adapter->cm;
2435 		else if (t.mem_id == MEM_PMRX)
2436 			mem = &adapter->pmrx;
2437 		else if (t.mem_id == MEM_PMTX)
2438 			mem = &adapter->pmtx;
2439 		else
2440 			return -EINVAL;
2441 
2442 		/*
2443 		 * Version scheme:
2444 		 * bits 0..9: chip version
2445 		 * bits 10..15: chip revision
2446 		 */
2447 		t.version = 3 | (adapter->params.rev << 10);
2448 		if (copy_to_user(useraddr, &t, sizeof(t)))
2449 			return -EFAULT;
2450 
2451 		/*
2452 		 * Read 256 bytes at a time as len can be large and we don't
2453 		 * want to use huge intermediate buffers.
2454 		 */
2455 		useraddr += sizeof(t);	/* advance to start of buffer */
2456 		while (t.len) {
2457 			unsigned int chunk =
2458 				min_t(unsigned int, t.len, sizeof(buf));
2459 
2460 			ret =
2461 				t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2462 						buf);
2463 			if (ret)
2464 				return ret;
2465 			if (copy_to_user(useraddr, buf, chunk))
2466 				return -EFAULT;
2467 			useraddr += chunk;
2468 			t.addr += chunk;
2469 			t.len -= chunk;
2470 		}
2471 		break;
2472 	}
2473 	case CHELSIO_SET_TRACE_FILTER:{
2474 		struct ch_trace t;
2475 		const struct trace_params *tp;
2476 
2477 		if (!capable(CAP_NET_ADMIN))
2478 			return -EPERM;
2479 		if (!offload_running(adapter))
2480 			return -EAGAIN;
2481 		if (copy_from_user(&t, useraddr, sizeof(t)))
2482 			return -EFAULT;
2483 
2484 		tp = (const struct trace_params *)&t.sip;
2485 		if (t.config_tx)
2486 			t3_config_trace_filter(adapter, tp, 0,
2487 						t.invert_match,
2488 						t.trace_tx);
2489 		if (t.config_rx)
2490 			t3_config_trace_filter(adapter, tp, 1,
2491 						t.invert_match,
2492 						t.trace_rx);
2493 		break;
2494 	}
2495 	default:
2496 		return -EOPNOTSUPP;
2497 	}
2498 	return 0;
2499 }
2500 
2501 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2502 {
2503 	struct mii_ioctl_data *data = if_mii(req);
2504 	struct port_info *pi = netdev_priv(dev);
2505 	struct adapter *adapter = pi->adapter;
2506 
2507 	switch (cmd) {
2508 	case SIOCGMIIREG:
2509 	case SIOCSMIIREG:
2510 		/* Convert phy_id from older PRTAD/DEVAD format */
2511 		if (is_10G(adapter) &&
2512 		    !mdio_phy_id_is_c45(data->phy_id) &&
2513 		    (data->phy_id & 0x1f00) &&
2514 		    !(data->phy_id & 0xe0e0))
2515 			data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2516 						       data->phy_id & 0x1f);
2517 		/* FALLTHRU */
2518 	case SIOCGMIIPHY:
2519 		return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2520 	case SIOCCHIOCTL:
2521 		return cxgb_extension_ioctl(dev, req->ifr_data);
2522 	default:
2523 		return -EOPNOTSUPP;
2524 	}
2525 }
2526 
2527 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2528 {
2529 	struct port_info *pi = netdev_priv(dev);
2530 	struct adapter *adapter = pi->adapter;
2531 	int ret;
2532 
2533 	if (new_mtu < 81)	/* accommodate SACK */
2534 		return -EINVAL;
2535 	if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2536 		return ret;
2537 	dev->mtu = new_mtu;
2538 	init_port_mtus(adapter);
2539 	if (adapter->params.rev == 0 && offload_running(adapter))
2540 		t3_load_mtus(adapter, adapter->params.mtus,
2541 			     adapter->params.a_wnd, adapter->params.b_wnd,
2542 			     adapter->port[0]->mtu);
2543 	return 0;
2544 }
2545 
2546 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2547 {
2548 	struct port_info *pi = netdev_priv(dev);
2549 	struct adapter *adapter = pi->adapter;
2550 	struct sockaddr *addr = p;
2551 
2552 	if (!is_valid_ether_addr(addr->sa_data))
2553 		return -EADDRNOTAVAIL;
2554 
2555 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2556 	t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2557 	if (offload_running(adapter))
2558 		write_smt_entry(adapter, pi->port_id);
2559 	return 0;
2560 }
2561 
2562 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2563 	netdev_features_t features)
2564 {
2565 	/*
2566 	 * Since there is no support for separate rx/tx vlan accel
2567 	 * enable/disable make sure tx flag is always in same state as rx.
2568 	 */
2569 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2570 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2571 	else
2572 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2573 
2574 	return features;
2575 }
2576 
2577 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2578 {
2579 	netdev_features_t changed = dev->features ^ features;
2580 
2581 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2582 		cxgb_vlan_mode(dev, features);
2583 
2584 	return 0;
2585 }
2586 
2587 #ifdef CONFIG_NET_POLL_CONTROLLER
2588 static void cxgb_netpoll(struct net_device *dev)
2589 {
2590 	struct port_info *pi = netdev_priv(dev);
2591 	struct adapter *adapter = pi->adapter;
2592 	int qidx;
2593 
2594 	for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2595 		struct sge_qset *qs = &adapter->sge.qs[qidx];
2596 		void *source;
2597 
2598 		if (adapter->flags & USING_MSIX)
2599 			source = qs;
2600 		else
2601 			source = adapter;
2602 
2603 		t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2604 	}
2605 }
2606 #endif
2607 
2608 /*
2609  * Periodic accumulation of MAC statistics.
2610  */
2611 static void mac_stats_update(struct adapter *adapter)
2612 {
2613 	int i;
2614 
2615 	for_each_port(adapter, i) {
2616 		struct net_device *dev = adapter->port[i];
2617 		struct port_info *p = netdev_priv(dev);
2618 
2619 		if (netif_running(dev)) {
2620 			spin_lock(&adapter->stats_lock);
2621 			t3_mac_update_stats(&p->mac);
2622 			spin_unlock(&adapter->stats_lock);
2623 		}
2624 	}
2625 }
2626 
2627 static void check_link_status(struct adapter *adapter)
2628 {
2629 	int i;
2630 
2631 	for_each_port(adapter, i) {
2632 		struct net_device *dev = adapter->port[i];
2633 		struct port_info *p = netdev_priv(dev);
2634 		int link_fault;
2635 
2636 		spin_lock_irq(&adapter->work_lock);
2637 		link_fault = p->link_fault;
2638 		spin_unlock_irq(&adapter->work_lock);
2639 
2640 		if (link_fault) {
2641 			t3_link_fault(adapter, i);
2642 			continue;
2643 		}
2644 
2645 		if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2646 			t3_xgm_intr_disable(adapter, i);
2647 			t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2648 
2649 			t3_link_changed(adapter, i);
2650 			t3_xgm_intr_enable(adapter, i);
2651 		}
2652 	}
2653 }
2654 
2655 static void check_t3b2_mac(struct adapter *adapter)
2656 {
2657 	int i;
2658 
2659 	if (!rtnl_trylock())	/* synchronize with ifdown */
2660 		return;
2661 
2662 	for_each_port(adapter, i) {
2663 		struct net_device *dev = adapter->port[i];
2664 		struct port_info *p = netdev_priv(dev);
2665 		int status;
2666 
2667 		if (!netif_running(dev))
2668 			continue;
2669 
2670 		status = 0;
2671 		if (netif_running(dev) && netif_carrier_ok(dev))
2672 			status = t3b2_mac_watchdog_task(&p->mac);
2673 		if (status == 1)
2674 			p->mac.stats.num_toggled++;
2675 		else if (status == 2) {
2676 			struct cmac *mac = &p->mac;
2677 
2678 			t3_mac_set_mtu(mac, dev->mtu);
2679 			t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2680 			cxgb_set_rxmode(dev);
2681 			t3_link_start(&p->phy, mac, &p->link_config);
2682 			t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2683 			t3_port_intr_enable(adapter, p->port_id);
2684 			p->mac.stats.num_resets++;
2685 		}
2686 	}
2687 	rtnl_unlock();
2688 }
2689 
2690 
2691 static void t3_adap_check_task(struct work_struct *work)
2692 {
2693 	struct adapter *adapter = container_of(work, struct adapter,
2694 					       adap_check_task.work);
2695 	const struct adapter_params *p = &adapter->params;
2696 	int port;
2697 	unsigned int v, status, reset;
2698 
2699 	adapter->check_task_cnt++;
2700 
2701 	check_link_status(adapter);
2702 
2703 	/* Accumulate MAC stats if needed */
2704 	if (!p->linkpoll_period ||
2705 	    (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2706 	    p->stats_update_period) {
2707 		mac_stats_update(adapter);
2708 		adapter->check_task_cnt = 0;
2709 	}
2710 
2711 	if (p->rev == T3_REV_B2)
2712 		check_t3b2_mac(adapter);
2713 
2714 	/*
2715 	 * Scan the XGMAC's to check for various conditions which we want to
2716 	 * monitor in a periodic polling manner rather than via an interrupt
2717 	 * condition.  This is used for conditions which would otherwise flood
2718 	 * the system with interrupts and we only really need to know that the
2719 	 * conditions are "happening" ...  For each condition we count the
2720 	 * detection of the condition and reset it for the next polling loop.
2721 	 */
2722 	for_each_port(adapter, port) {
2723 		struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2724 		u32 cause;
2725 
2726 		cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2727 		reset = 0;
2728 		if (cause & F_RXFIFO_OVERFLOW) {
2729 			mac->stats.rx_fifo_ovfl++;
2730 			reset |= F_RXFIFO_OVERFLOW;
2731 		}
2732 
2733 		t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2734 	}
2735 
2736 	/*
2737 	 * We do the same as above for FL_EMPTY interrupts.
2738 	 */
2739 	status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2740 	reset = 0;
2741 
2742 	if (status & F_FLEMPTY) {
2743 		struct sge_qset *qs = &adapter->sge.qs[0];
2744 		int i = 0;
2745 
2746 		reset |= F_FLEMPTY;
2747 
2748 		v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2749 		    0xffff;
2750 
2751 		while (v) {
2752 			qs->fl[i].empty += (v & 1);
2753 			if (i)
2754 				qs++;
2755 			i ^= 1;
2756 			v >>= 1;
2757 		}
2758 	}
2759 
2760 	t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2761 
2762 	/* Schedule the next check update if any port is active. */
2763 	spin_lock_irq(&adapter->work_lock);
2764 	if (adapter->open_device_map & PORT_MASK)
2765 		schedule_chk_task(adapter);
2766 	spin_unlock_irq(&adapter->work_lock);
2767 }
2768 
2769 static void db_full_task(struct work_struct *work)
2770 {
2771 	struct adapter *adapter = container_of(work, struct adapter,
2772 					       db_full_task);
2773 
2774 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2775 }
2776 
2777 static void db_empty_task(struct work_struct *work)
2778 {
2779 	struct adapter *adapter = container_of(work, struct adapter,
2780 					       db_empty_task);
2781 
2782 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2783 }
2784 
2785 static void db_drop_task(struct work_struct *work)
2786 {
2787 	struct adapter *adapter = container_of(work, struct adapter,
2788 					       db_drop_task);
2789 	unsigned long delay = 1000;
2790 	unsigned short r;
2791 
2792 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2793 
2794 	/*
2795 	 * Sleep a while before ringing the driver qset dbs.
2796 	 * The delay is between 1000-2023 usecs.
2797 	 */
2798 	get_random_bytes(&r, 2);
2799 	delay += r & 1023;
2800 	set_current_state(TASK_UNINTERRUPTIBLE);
2801 	schedule_timeout(usecs_to_jiffies(delay));
2802 	ring_dbs(adapter);
2803 }
2804 
2805 /*
2806  * Processes external (PHY) interrupts in process context.
2807  */
2808 static void ext_intr_task(struct work_struct *work)
2809 {
2810 	struct adapter *adapter = container_of(work, struct adapter,
2811 					       ext_intr_handler_task);
2812 	int i;
2813 
2814 	/* Disable link fault interrupts */
2815 	for_each_port(adapter, i) {
2816 		struct net_device *dev = adapter->port[i];
2817 		struct port_info *p = netdev_priv(dev);
2818 
2819 		t3_xgm_intr_disable(adapter, i);
2820 		t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2821 	}
2822 
2823 	/* Re-enable link fault interrupts */
2824 	t3_phy_intr_handler(adapter);
2825 
2826 	for_each_port(adapter, i)
2827 		t3_xgm_intr_enable(adapter, i);
2828 
2829 	/* Now reenable external interrupts */
2830 	spin_lock_irq(&adapter->work_lock);
2831 	if (adapter->slow_intr_mask) {
2832 		adapter->slow_intr_mask |= F_T3DBG;
2833 		t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2834 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2835 			     adapter->slow_intr_mask);
2836 	}
2837 	spin_unlock_irq(&adapter->work_lock);
2838 }
2839 
2840 /*
2841  * Interrupt-context handler for external (PHY) interrupts.
2842  */
2843 void t3_os_ext_intr_handler(struct adapter *adapter)
2844 {
2845 	/*
2846 	 * Schedule a task to handle external interrupts as they may be slow
2847 	 * and we use a mutex to protect MDIO registers.  We disable PHY
2848 	 * interrupts in the meantime and let the task reenable them when
2849 	 * it's done.
2850 	 */
2851 	spin_lock(&adapter->work_lock);
2852 	if (adapter->slow_intr_mask) {
2853 		adapter->slow_intr_mask &= ~F_T3DBG;
2854 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2855 			     adapter->slow_intr_mask);
2856 		queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2857 	}
2858 	spin_unlock(&adapter->work_lock);
2859 }
2860 
2861 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2862 {
2863 	struct net_device *netdev = adapter->port[port_id];
2864 	struct port_info *pi = netdev_priv(netdev);
2865 
2866 	spin_lock(&adapter->work_lock);
2867 	pi->link_fault = 1;
2868 	spin_unlock(&adapter->work_lock);
2869 }
2870 
2871 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2872 {
2873 	int i, ret = 0;
2874 
2875 	if (is_offload(adapter) &&
2876 	    test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2877 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2878 		offload_close(&adapter->tdev);
2879 	}
2880 
2881 	/* Stop all ports */
2882 	for_each_port(adapter, i) {
2883 		struct net_device *netdev = adapter->port[i];
2884 
2885 		if (netif_running(netdev))
2886 			__cxgb_close(netdev, on_wq);
2887 	}
2888 
2889 	/* Stop SGE timers */
2890 	t3_stop_sge_timers(adapter);
2891 
2892 	adapter->flags &= ~FULL_INIT_DONE;
2893 
2894 	if (reset)
2895 		ret = t3_reset_adapter(adapter);
2896 
2897 	pci_disable_device(adapter->pdev);
2898 
2899 	return ret;
2900 }
2901 
2902 static int t3_reenable_adapter(struct adapter *adapter)
2903 {
2904 	if (pci_enable_device(adapter->pdev)) {
2905 		dev_err(&adapter->pdev->dev,
2906 			"Cannot re-enable PCI device after reset.\n");
2907 		goto err;
2908 	}
2909 	pci_set_master(adapter->pdev);
2910 	pci_restore_state(adapter->pdev);
2911 	pci_save_state(adapter->pdev);
2912 
2913 	/* Free sge resources */
2914 	t3_free_sge_resources(adapter);
2915 
2916 	if (t3_replay_prep_adapter(adapter))
2917 		goto err;
2918 
2919 	return 0;
2920 err:
2921 	return -1;
2922 }
2923 
2924 static void t3_resume_ports(struct adapter *adapter)
2925 {
2926 	int i;
2927 
2928 	/* Restart the ports */
2929 	for_each_port(adapter, i) {
2930 		struct net_device *netdev = adapter->port[i];
2931 
2932 		if (netif_running(netdev)) {
2933 			if (cxgb_open(netdev)) {
2934 				dev_err(&adapter->pdev->dev,
2935 					"can't bring device back up"
2936 					" after reset\n");
2937 				continue;
2938 			}
2939 		}
2940 	}
2941 
2942 	if (is_offload(adapter) && !ofld_disable)
2943 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2944 }
2945 
2946 /*
2947  * processes a fatal error.
2948  * Bring the ports down, reset the chip, bring the ports back up.
2949  */
2950 static void fatal_error_task(struct work_struct *work)
2951 {
2952 	struct adapter *adapter = container_of(work, struct adapter,
2953 					       fatal_error_handler_task);
2954 	int err = 0;
2955 
2956 	rtnl_lock();
2957 	err = t3_adapter_error(adapter, 1, 1);
2958 	if (!err)
2959 		err = t3_reenable_adapter(adapter);
2960 	if (!err)
2961 		t3_resume_ports(adapter);
2962 
2963 	CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2964 	rtnl_unlock();
2965 }
2966 
2967 void t3_fatal_err(struct adapter *adapter)
2968 {
2969 	unsigned int fw_status[4];
2970 
2971 	if (adapter->flags & FULL_INIT_DONE) {
2972 		t3_sge_stop(adapter);
2973 		t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2974 		t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2975 		t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2976 		t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2977 
2978 		spin_lock(&adapter->work_lock);
2979 		t3_intr_disable(adapter);
2980 		queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2981 		spin_unlock(&adapter->work_lock);
2982 	}
2983 	CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2984 	if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2985 		CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2986 			 fw_status[0], fw_status[1],
2987 			 fw_status[2], fw_status[3]);
2988 }
2989 
2990 /**
2991  * t3_io_error_detected - called when PCI error is detected
2992  * @pdev: Pointer to PCI device
2993  * @state: The current pci connection state
2994  *
2995  * This function is called after a PCI bus error affecting
2996  * this device has been detected.
2997  */
2998 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2999 					     pci_channel_state_t state)
3000 {
3001 	struct adapter *adapter = pci_get_drvdata(pdev);
3002 
3003 	if (state == pci_channel_io_perm_failure)
3004 		return PCI_ERS_RESULT_DISCONNECT;
3005 
3006 	t3_adapter_error(adapter, 0, 0);
3007 
3008 	/* Request a slot reset. */
3009 	return PCI_ERS_RESULT_NEED_RESET;
3010 }
3011 
3012 /**
3013  * t3_io_slot_reset - called after the pci bus has been reset.
3014  * @pdev: Pointer to PCI device
3015  *
3016  * Restart the card from scratch, as if from a cold-boot.
3017  */
3018 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3019 {
3020 	struct adapter *adapter = pci_get_drvdata(pdev);
3021 
3022 	if (!t3_reenable_adapter(adapter))
3023 		return PCI_ERS_RESULT_RECOVERED;
3024 
3025 	return PCI_ERS_RESULT_DISCONNECT;
3026 }
3027 
3028 /**
3029  * t3_io_resume - called when traffic can start flowing again.
3030  * @pdev: Pointer to PCI device
3031  *
3032  * This callback is called when the error recovery driver tells us that
3033  * its OK to resume normal operation.
3034  */
3035 static void t3_io_resume(struct pci_dev *pdev)
3036 {
3037 	struct adapter *adapter = pci_get_drvdata(pdev);
3038 
3039 	CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3040 		 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3041 
3042 	rtnl_lock();
3043 	t3_resume_ports(adapter);
3044 	rtnl_unlock();
3045 }
3046 
3047 static const struct pci_error_handlers t3_err_handler = {
3048 	.error_detected = t3_io_error_detected,
3049 	.slot_reset = t3_io_slot_reset,
3050 	.resume = t3_io_resume,
3051 };
3052 
3053 /*
3054  * Set the number of qsets based on the number of CPUs and the number of ports,
3055  * not to exceed the number of available qsets, assuming there are enough qsets
3056  * per port in HW.
3057  */
3058 static void set_nqsets(struct adapter *adap)
3059 {
3060 	int i, j = 0;
3061 	int num_cpus = netif_get_num_default_rss_queues();
3062 	int hwports = adap->params.nports;
3063 	int nqsets = adap->msix_nvectors - 1;
3064 
3065 	if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3066 		if (hwports == 2 &&
3067 		    (hwports * nqsets > SGE_QSETS ||
3068 		     num_cpus >= nqsets / hwports))
3069 			nqsets /= hwports;
3070 		if (nqsets > num_cpus)
3071 			nqsets = num_cpus;
3072 		if (nqsets < 1 || hwports == 4)
3073 			nqsets = 1;
3074 	} else
3075 		nqsets = 1;
3076 
3077 	for_each_port(adap, i) {
3078 		struct port_info *pi = adap2pinfo(adap, i);
3079 
3080 		pi->first_qset = j;
3081 		pi->nqsets = nqsets;
3082 		j = pi->first_qset + nqsets;
3083 
3084 		dev_info(&adap->pdev->dev,
3085 			 "Port %d using %d queue sets.\n", i, nqsets);
3086 	}
3087 }
3088 
3089 static int cxgb_enable_msix(struct adapter *adap)
3090 {
3091 	struct msix_entry entries[SGE_QSETS + 1];
3092 	int vectors;
3093 	int i;
3094 
3095 	vectors = ARRAY_SIZE(entries);
3096 	for (i = 0; i < vectors; ++i)
3097 		entries[i].entry = i;
3098 
3099 	vectors = pci_enable_msix_range(adap->pdev, entries,
3100 					adap->params.nports + 1, vectors);
3101 	if (vectors < 0)
3102 		return vectors;
3103 
3104 	for (i = 0; i < vectors; ++i)
3105 		adap->msix_info[i].vec = entries[i].vector;
3106 	adap->msix_nvectors = vectors;
3107 
3108 	return 0;
3109 }
3110 
3111 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3112 {
3113 	static const char *pci_variant[] = {
3114 		"PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3115 	};
3116 
3117 	int i;
3118 	char buf[80];
3119 
3120 	if (is_pcie(adap))
3121 		snprintf(buf, sizeof(buf), "%s x%d",
3122 			 pci_variant[adap->params.pci.variant],
3123 			 adap->params.pci.width);
3124 	else
3125 		snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3126 			 pci_variant[adap->params.pci.variant],
3127 			 adap->params.pci.speed, adap->params.pci.width);
3128 
3129 	for_each_port(adap, i) {
3130 		struct net_device *dev = adap->port[i];
3131 		const struct port_info *pi = netdev_priv(dev);
3132 
3133 		if (!test_bit(i, &adap->registered_device_map))
3134 			continue;
3135 		netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3136 			    ai->desc, pi->phy.desc,
3137 			    is_offload(adap) ? "R" : "", adap->params.rev, buf,
3138 			    (adap->flags & USING_MSIX) ? " MSI-X" :
3139 			    (adap->flags & USING_MSI) ? " MSI" : "");
3140 		if (adap->name == dev->name && adap->params.vpd.mclk)
3141 			pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3142 			       adap->name, t3_mc7_size(&adap->cm) >> 20,
3143 			       t3_mc7_size(&adap->pmtx) >> 20,
3144 			       t3_mc7_size(&adap->pmrx) >> 20,
3145 			       adap->params.vpd.sn);
3146 	}
3147 }
3148 
3149 static const struct net_device_ops cxgb_netdev_ops = {
3150 	.ndo_open		= cxgb_open,
3151 	.ndo_stop		= cxgb_close,
3152 	.ndo_start_xmit		= t3_eth_xmit,
3153 	.ndo_get_stats		= cxgb_get_stats,
3154 	.ndo_validate_addr	= eth_validate_addr,
3155 	.ndo_set_rx_mode	= cxgb_set_rxmode,
3156 	.ndo_do_ioctl		= cxgb_ioctl,
3157 	.ndo_change_mtu		= cxgb_change_mtu,
3158 	.ndo_set_mac_address	= cxgb_set_mac_addr,
3159 	.ndo_fix_features	= cxgb_fix_features,
3160 	.ndo_set_features	= cxgb_set_features,
3161 #ifdef CONFIG_NET_POLL_CONTROLLER
3162 	.ndo_poll_controller	= cxgb_netpoll,
3163 #endif
3164 };
3165 
3166 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3167 {
3168 	struct port_info *pi = netdev_priv(dev);
3169 
3170 	memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3171 	pi->iscsic.mac_addr[3] |= 0x80;
3172 }
3173 
3174 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3175 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3176 			NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3177 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3178 {
3179 	int i, err, pci_using_dac = 0;
3180 	resource_size_t mmio_start, mmio_len;
3181 	const struct adapter_info *ai;
3182 	struct adapter *adapter = NULL;
3183 	struct port_info *pi;
3184 
3185 	pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
3186 
3187 	if (!cxgb3_wq) {
3188 		cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3189 		if (!cxgb3_wq) {
3190 			pr_err("cannot initialize work queue\n");
3191 			return -ENOMEM;
3192 		}
3193 	}
3194 
3195 	err = pci_enable_device(pdev);
3196 	if (err) {
3197 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3198 		goto out;
3199 	}
3200 
3201 	err = pci_request_regions(pdev, DRV_NAME);
3202 	if (err) {
3203 		/* Just info, some other driver may have claimed the device. */
3204 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3205 		goto out_disable_device;
3206 	}
3207 
3208 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3209 		pci_using_dac = 1;
3210 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3211 		if (err) {
3212 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3213 			       "coherent allocations\n");
3214 			goto out_release_regions;
3215 		}
3216 	} else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3217 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3218 		goto out_release_regions;
3219 	}
3220 
3221 	pci_set_master(pdev);
3222 	pci_save_state(pdev);
3223 
3224 	mmio_start = pci_resource_start(pdev, 0);
3225 	mmio_len = pci_resource_len(pdev, 0);
3226 	ai = t3_get_adapter_info(ent->driver_data);
3227 
3228 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3229 	if (!adapter) {
3230 		err = -ENOMEM;
3231 		goto out_release_regions;
3232 	}
3233 
3234 	adapter->nofail_skb =
3235 		alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3236 	if (!adapter->nofail_skb) {
3237 		dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3238 		err = -ENOMEM;
3239 		goto out_free_adapter;
3240 	}
3241 
3242 	adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3243 	if (!adapter->regs) {
3244 		dev_err(&pdev->dev, "cannot map device registers\n");
3245 		err = -ENOMEM;
3246 		goto out_free_adapter;
3247 	}
3248 
3249 	adapter->pdev = pdev;
3250 	adapter->name = pci_name(pdev);
3251 	adapter->msg_enable = dflt_msg_enable;
3252 	adapter->mmio_len = mmio_len;
3253 
3254 	mutex_init(&adapter->mdio_lock);
3255 	spin_lock_init(&adapter->work_lock);
3256 	spin_lock_init(&adapter->stats_lock);
3257 
3258 	INIT_LIST_HEAD(&adapter->adapter_list);
3259 	INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3260 	INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3261 
3262 	INIT_WORK(&adapter->db_full_task, db_full_task);
3263 	INIT_WORK(&adapter->db_empty_task, db_empty_task);
3264 	INIT_WORK(&adapter->db_drop_task, db_drop_task);
3265 
3266 	INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3267 
3268 	for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3269 		struct net_device *netdev;
3270 
3271 		netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3272 		if (!netdev) {
3273 			err = -ENOMEM;
3274 			goto out_free_dev;
3275 		}
3276 
3277 		SET_NETDEV_DEV(netdev, &pdev->dev);
3278 
3279 		adapter->port[i] = netdev;
3280 		pi = netdev_priv(netdev);
3281 		pi->adapter = adapter;
3282 		pi->port_id = i;
3283 		netif_carrier_off(netdev);
3284 		netdev->irq = pdev->irq;
3285 		netdev->mem_start = mmio_start;
3286 		netdev->mem_end = mmio_start + mmio_len - 1;
3287 		netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3288 			NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3289 		netdev->features |= netdev->hw_features |
3290 				    NETIF_F_HW_VLAN_CTAG_TX;
3291 		netdev->vlan_features |= netdev->features & VLAN_FEAT;
3292 		if (pci_using_dac)
3293 			netdev->features |= NETIF_F_HIGHDMA;
3294 
3295 		netdev->netdev_ops = &cxgb_netdev_ops;
3296 		netdev->ethtool_ops = &cxgb_ethtool_ops;
3297 	}
3298 
3299 	pci_set_drvdata(pdev, adapter);
3300 	if (t3_prep_adapter(adapter, ai, 1) < 0) {
3301 		err = -ENODEV;
3302 		goto out_free_dev;
3303 	}
3304 
3305 	/*
3306 	 * The card is now ready to go.  If any errors occur during device
3307 	 * registration we do not fail the whole card but rather proceed only
3308 	 * with the ports we manage to register successfully.  However we must
3309 	 * register at least one net device.
3310 	 */
3311 	for_each_port(adapter, i) {
3312 		err = register_netdev(adapter->port[i]);
3313 		if (err)
3314 			dev_warn(&pdev->dev,
3315 				 "cannot register net device %s, skipping\n",
3316 				 adapter->port[i]->name);
3317 		else {
3318 			/*
3319 			 * Change the name we use for messages to the name of
3320 			 * the first successfully registered interface.
3321 			 */
3322 			if (!adapter->registered_device_map)
3323 				adapter->name = adapter->port[i]->name;
3324 
3325 			__set_bit(i, &adapter->registered_device_map);
3326 		}
3327 	}
3328 	if (!adapter->registered_device_map) {
3329 		dev_err(&pdev->dev, "could not register any net devices\n");
3330 		goto out_free_dev;
3331 	}
3332 
3333 	for_each_port(adapter, i)
3334 		cxgb3_init_iscsi_mac(adapter->port[i]);
3335 
3336 	/* Driver's ready. Reflect it on LEDs */
3337 	t3_led_ready(adapter);
3338 
3339 	if (is_offload(adapter)) {
3340 		__set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3341 		cxgb3_adapter_ofld(adapter);
3342 	}
3343 
3344 	/* See what interrupts we'll be using */
3345 	if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3346 		adapter->flags |= USING_MSIX;
3347 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
3348 		adapter->flags |= USING_MSI;
3349 
3350 	set_nqsets(adapter);
3351 
3352 	err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3353 				 &cxgb3_attr_group);
3354 
3355 	print_port_info(adapter, ai);
3356 	return 0;
3357 
3358 out_free_dev:
3359 	iounmap(adapter->regs);
3360 	for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3361 		if (adapter->port[i])
3362 			free_netdev(adapter->port[i]);
3363 
3364 out_free_adapter:
3365 	kfree(adapter);
3366 
3367 out_release_regions:
3368 	pci_release_regions(pdev);
3369 out_disable_device:
3370 	pci_disable_device(pdev);
3371 out:
3372 	return err;
3373 }
3374 
3375 static void remove_one(struct pci_dev *pdev)
3376 {
3377 	struct adapter *adapter = pci_get_drvdata(pdev);
3378 
3379 	if (adapter) {
3380 		int i;
3381 
3382 		t3_sge_stop(adapter);
3383 		sysfs_remove_group(&adapter->port[0]->dev.kobj,
3384 				   &cxgb3_attr_group);
3385 
3386 		if (is_offload(adapter)) {
3387 			cxgb3_adapter_unofld(adapter);
3388 			if (test_bit(OFFLOAD_DEVMAP_BIT,
3389 				     &adapter->open_device_map))
3390 				offload_close(&adapter->tdev);
3391 		}
3392 
3393 		for_each_port(adapter, i)
3394 		    if (test_bit(i, &adapter->registered_device_map))
3395 			unregister_netdev(adapter->port[i]);
3396 
3397 		t3_stop_sge_timers(adapter);
3398 		t3_free_sge_resources(adapter);
3399 		cxgb_disable_msi(adapter);
3400 
3401 		for_each_port(adapter, i)
3402 			if (adapter->port[i])
3403 				free_netdev(adapter->port[i]);
3404 
3405 		iounmap(adapter->regs);
3406 		if (adapter->nofail_skb)
3407 			kfree_skb(adapter->nofail_skb);
3408 		kfree(adapter);
3409 		pci_release_regions(pdev);
3410 		pci_disable_device(pdev);
3411 	}
3412 }
3413 
3414 static struct pci_driver driver = {
3415 	.name = DRV_NAME,
3416 	.id_table = cxgb3_pci_tbl,
3417 	.probe = init_one,
3418 	.remove = remove_one,
3419 	.err_handler = &t3_err_handler,
3420 };
3421 
3422 static int __init cxgb3_init_module(void)
3423 {
3424 	int ret;
3425 
3426 	cxgb3_offload_init();
3427 
3428 	ret = pci_register_driver(&driver);
3429 	return ret;
3430 }
3431 
3432 static void __exit cxgb3_cleanup_module(void)
3433 {
3434 	pci_unregister_driver(&driver);
3435 	if (cxgb3_wq)
3436 		destroy_workqueue(cxgb3_wq);
3437 }
3438 
3439 module_init(cxgb3_init_module);
3440 module_exit(cxgb3_cleanup_module);
3441