1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/moduleparam.h> 37 #include <linux/init.h> 38 #include <linux/pci.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/netdevice.h> 41 #include <linux/etherdevice.h> 42 #include <linux/if_vlan.h> 43 #include <linux/mdio.h> 44 #include <linux/sockios.h> 45 #include <linux/workqueue.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rtnetlink.h> 48 #include <linux/firmware.h> 49 #include <linux/log2.h> 50 #include <linux/stringify.h> 51 #include <linux/sched.h> 52 #include <linux/slab.h> 53 #include <asm/uaccess.h> 54 55 #include "common.h" 56 #include "cxgb3_ioctl.h" 57 #include "regs.h" 58 #include "cxgb3_offload.h" 59 #include "version.h" 60 61 #include "cxgb3_ctl_defs.h" 62 #include "t3_cpl.h" 63 #include "firmware_exports.h" 64 65 enum { 66 MAX_TXQ_ENTRIES = 16384, 67 MAX_CTRL_TXQ_ENTRIES = 1024, 68 MAX_RSPQ_ENTRIES = 16384, 69 MAX_RX_BUFFERS = 16384, 70 MAX_RX_JUMBO_BUFFERS = 16384, 71 MIN_TXQ_ENTRIES = 4, 72 MIN_CTRL_TXQ_ENTRIES = 4, 73 MIN_RSPQ_ENTRIES = 32, 74 MIN_FL_ENTRIES = 32 75 }; 76 77 #define PORT_MASK ((1 << MAX_NPORTS) - 1) 78 79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 82 83 #define EEPROM_MAGIC 0x38E2F10C 84 85 #define CH_DEVICE(devid, idx) \ 86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 87 88 static const struct pci_device_id cxgb3_pci_tbl[] = { 89 CH_DEVICE(0x20, 0), /* PE9000 */ 90 CH_DEVICE(0x21, 1), /* T302E */ 91 CH_DEVICE(0x22, 2), /* T310E */ 92 CH_DEVICE(0x23, 3), /* T320X */ 93 CH_DEVICE(0x24, 1), /* T302X */ 94 CH_DEVICE(0x25, 3), /* T320E */ 95 CH_DEVICE(0x26, 2), /* T310X */ 96 CH_DEVICE(0x30, 2), /* T3B10 */ 97 CH_DEVICE(0x31, 3), /* T3B20 */ 98 CH_DEVICE(0x32, 1), /* T3B02 */ 99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */ 100 CH_DEVICE(0x36, 3), /* S320E-CR */ 101 CH_DEVICE(0x37, 7), /* N320E-G2 */ 102 {0,} 103 }; 104 105 MODULE_DESCRIPTION(DRV_DESC); 106 MODULE_AUTHOR("Chelsio Communications"); 107 MODULE_LICENSE("Dual BSD/GPL"); 108 MODULE_VERSION(DRV_VERSION); 109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); 110 111 static int dflt_msg_enable = DFLT_MSG_ENABLE; 112 113 module_param(dflt_msg_enable, int, 0644); 114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); 115 116 /* 117 * The driver uses the best interrupt scheme available on a platform in the 118 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which 119 * of these schemes the driver may consider as follows: 120 * 121 * msi = 2: choose from among all three options 122 * msi = 1: only consider MSI and pin interrupts 123 * msi = 0: force pin interrupts 124 */ 125 static int msi = 2; 126 127 module_param(msi, int, 0644); 128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); 129 130 /* 131 * The driver enables offload as a default. 132 * To disable it, use ofld_disable = 1. 133 */ 134 135 static int ofld_disable = 0; 136 137 module_param(ofld_disable, int, 0644); 138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); 139 140 /* 141 * We have work elements that we need to cancel when an interface is taken 142 * down. Normally the work elements would be executed by keventd but that 143 * can deadlock because of linkwatch. If our close method takes the rtnl 144 * lock and linkwatch is ahead of our work elements in keventd, linkwatch 145 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting 146 * for our work to complete. Get our own work queue to solve this. 147 */ 148 struct workqueue_struct *cxgb3_wq; 149 150 /** 151 * link_report - show link status and link speed/duplex 152 * @p: the port whose settings are to be reported 153 * 154 * Shows the link status, speed, and duplex of a port. 155 */ 156 static void link_report(struct net_device *dev) 157 { 158 if (!netif_carrier_ok(dev)) 159 netdev_info(dev, "link down\n"); 160 else { 161 const char *s = "10Mbps"; 162 const struct port_info *p = netdev_priv(dev); 163 164 switch (p->link_config.speed) { 165 case SPEED_10000: 166 s = "10Gbps"; 167 break; 168 case SPEED_1000: 169 s = "1000Mbps"; 170 break; 171 case SPEED_100: 172 s = "100Mbps"; 173 break; 174 } 175 176 netdev_info(dev, "link up, %s, %s-duplex\n", 177 s, p->link_config.duplex == DUPLEX_FULL 178 ? "full" : "half"); 179 } 180 } 181 182 static void enable_tx_fifo_drain(struct adapter *adapter, 183 struct port_info *pi) 184 { 185 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0, 186 F_ENDROPPKT); 187 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0); 188 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN); 189 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN); 190 } 191 192 static void disable_tx_fifo_drain(struct adapter *adapter, 193 struct port_info *pi) 194 { 195 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 196 F_ENDROPPKT, 0); 197 } 198 199 void t3_os_link_fault(struct adapter *adap, int port_id, int state) 200 { 201 struct net_device *dev = adap->port[port_id]; 202 struct port_info *pi = netdev_priv(dev); 203 204 if (state == netif_carrier_ok(dev)) 205 return; 206 207 if (state) { 208 struct cmac *mac = &pi->mac; 209 210 netif_carrier_on(dev); 211 212 disable_tx_fifo_drain(adap, pi); 213 214 /* Clear local faults */ 215 t3_xgm_intr_disable(adap, pi->port_id); 216 t3_read_reg(adap, A_XGM_INT_STATUS + 217 pi->mac.offset); 218 t3_write_reg(adap, 219 A_XGM_INT_CAUSE + pi->mac.offset, 220 F_XGM_INT); 221 222 t3_set_reg_field(adap, 223 A_XGM_INT_ENABLE + 224 pi->mac.offset, 225 F_XGM_INT, F_XGM_INT); 226 t3_xgm_intr_enable(adap, pi->port_id); 227 228 t3_mac_enable(mac, MAC_DIRECTION_TX); 229 } else { 230 netif_carrier_off(dev); 231 232 /* Flush TX FIFO */ 233 enable_tx_fifo_drain(adap, pi); 234 } 235 link_report(dev); 236 } 237 238 /** 239 * t3_os_link_changed - handle link status changes 240 * @adapter: the adapter associated with the link change 241 * @port_id: the port index whose limk status has changed 242 * @link_stat: the new status of the link 243 * @speed: the new speed setting 244 * @duplex: the new duplex setting 245 * @pause: the new flow-control setting 246 * 247 * This is the OS-dependent handler for link status changes. The OS 248 * neutral handler takes care of most of the processing for these events, 249 * then calls this handler for any OS-specific processing. 250 */ 251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, 252 int speed, int duplex, int pause) 253 { 254 struct net_device *dev = adapter->port[port_id]; 255 struct port_info *pi = netdev_priv(dev); 256 struct cmac *mac = &pi->mac; 257 258 /* Skip changes from disabled ports. */ 259 if (!netif_running(dev)) 260 return; 261 262 if (link_stat != netif_carrier_ok(dev)) { 263 if (link_stat) { 264 disable_tx_fifo_drain(adapter, pi); 265 266 t3_mac_enable(mac, MAC_DIRECTION_RX); 267 268 /* Clear local faults */ 269 t3_xgm_intr_disable(adapter, pi->port_id); 270 t3_read_reg(adapter, A_XGM_INT_STATUS + 271 pi->mac.offset); 272 t3_write_reg(adapter, 273 A_XGM_INT_CAUSE + pi->mac.offset, 274 F_XGM_INT); 275 276 t3_set_reg_field(adapter, 277 A_XGM_INT_ENABLE + pi->mac.offset, 278 F_XGM_INT, F_XGM_INT); 279 t3_xgm_intr_enable(adapter, pi->port_id); 280 281 netif_carrier_on(dev); 282 } else { 283 netif_carrier_off(dev); 284 285 t3_xgm_intr_disable(adapter, pi->port_id); 286 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 287 t3_set_reg_field(adapter, 288 A_XGM_INT_ENABLE + pi->mac.offset, 289 F_XGM_INT, 0); 290 291 if (is_10G(adapter)) 292 pi->phy.ops->power_down(&pi->phy, 1); 293 294 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 295 t3_mac_disable(mac, MAC_DIRECTION_RX); 296 t3_link_start(&pi->phy, mac, &pi->link_config); 297 298 /* Flush TX FIFO */ 299 enable_tx_fifo_drain(adapter, pi); 300 } 301 302 link_report(dev); 303 } 304 } 305 306 /** 307 * t3_os_phymod_changed - handle PHY module changes 308 * @phy: the PHY reporting the module change 309 * @mod_type: new module type 310 * 311 * This is the OS-dependent handler for PHY module changes. It is 312 * invoked when a PHY module is removed or inserted for any OS-specific 313 * processing. 314 */ 315 void t3_os_phymod_changed(struct adapter *adap, int port_id) 316 { 317 static const char *mod_str[] = { 318 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown" 319 }; 320 321 const struct net_device *dev = adap->port[port_id]; 322 const struct port_info *pi = netdev_priv(dev); 323 324 if (pi->phy.modtype == phy_modtype_none) 325 netdev_info(dev, "PHY module unplugged\n"); 326 else 327 netdev_info(dev, "%s PHY module inserted\n", 328 mod_str[pi->phy.modtype]); 329 } 330 331 static void cxgb_set_rxmode(struct net_device *dev) 332 { 333 struct port_info *pi = netdev_priv(dev); 334 335 t3_mac_set_rx_mode(&pi->mac, dev); 336 } 337 338 /** 339 * link_start - enable a port 340 * @dev: the device to enable 341 * 342 * Performs the MAC and PHY actions needed to enable a port. 343 */ 344 static void link_start(struct net_device *dev) 345 { 346 struct port_info *pi = netdev_priv(dev); 347 struct cmac *mac = &pi->mac; 348 349 t3_mac_reset(mac); 350 t3_mac_set_num_ucast(mac, MAX_MAC_IDX); 351 t3_mac_set_mtu(mac, dev->mtu); 352 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 353 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr); 354 t3_mac_set_rx_mode(mac, dev); 355 t3_link_start(&pi->phy, mac, &pi->link_config); 356 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 357 } 358 359 static inline void cxgb_disable_msi(struct adapter *adapter) 360 { 361 if (adapter->flags & USING_MSIX) { 362 pci_disable_msix(adapter->pdev); 363 adapter->flags &= ~USING_MSIX; 364 } else if (adapter->flags & USING_MSI) { 365 pci_disable_msi(adapter->pdev); 366 adapter->flags &= ~USING_MSI; 367 } 368 } 369 370 /* 371 * Interrupt handler for asynchronous events used with MSI-X. 372 */ 373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie) 374 { 375 t3_slow_intr_handler(cookie); 376 return IRQ_HANDLED; 377 } 378 379 /* 380 * Name the MSI-X interrupts. 381 */ 382 static void name_msix_vecs(struct adapter *adap) 383 { 384 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1; 385 386 snprintf(adap->msix_info[0].desc, n, "%s", adap->name); 387 adap->msix_info[0].desc[n] = 0; 388 389 for_each_port(adap, j) { 390 struct net_device *d = adap->port[j]; 391 const struct port_info *pi = netdev_priv(d); 392 393 for (i = 0; i < pi->nqsets; i++, msi_idx++) { 394 snprintf(adap->msix_info[msi_idx].desc, n, 395 "%s-%d", d->name, pi->first_qset + i); 396 adap->msix_info[msi_idx].desc[n] = 0; 397 } 398 } 399 } 400 401 static int request_msix_data_irqs(struct adapter *adap) 402 { 403 int i, j, err, qidx = 0; 404 405 for_each_port(adap, i) { 406 int nqsets = adap2pinfo(adap, i)->nqsets; 407 408 for (j = 0; j < nqsets; ++j) { 409 err = request_irq(adap->msix_info[qidx + 1].vec, 410 t3_intr_handler(adap, 411 adap->sge.qs[qidx]. 412 rspq.polling), 0, 413 adap->msix_info[qidx + 1].desc, 414 &adap->sge.qs[qidx]); 415 if (err) { 416 while (--qidx >= 0) 417 free_irq(adap->msix_info[qidx + 1].vec, 418 &adap->sge.qs[qidx]); 419 return err; 420 } 421 qidx++; 422 } 423 } 424 return 0; 425 } 426 427 static void free_irq_resources(struct adapter *adapter) 428 { 429 if (adapter->flags & USING_MSIX) { 430 int i, n = 0; 431 432 free_irq(adapter->msix_info[0].vec, adapter); 433 for_each_port(adapter, i) 434 n += adap2pinfo(adapter, i)->nqsets; 435 436 for (i = 0; i < n; ++i) 437 free_irq(adapter->msix_info[i + 1].vec, 438 &adapter->sge.qs[i]); 439 } else 440 free_irq(adapter->pdev->irq, adapter); 441 } 442 443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt, 444 unsigned long n) 445 { 446 int attempts = 10; 447 448 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) { 449 if (!--attempts) 450 return -ETIMEDOUT; 451 msleep(10); 452 } 453 return 0; 454 } 455 456 static int init_tp_parity(struct adapter *adap) 457 { 458 int i; 459 struct sk_buff *skb; 460 struct cpl_set_tcb_field *greq; 461 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts; 462 463 t3_tp_set_offload_mode(adap, 1); 464 465 for (i = 0; i < 16; i++) { 466 struct cpl_smt_write_req *req; 467 468 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 469 if (!skb) 470 skb = adap->nofail_skb; 471 if (!skb) 472 goto alloc_skb_fail; 473 474 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req)); 475 memset(req, 0, sizeof(*req)); 476 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 477 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i)); 478 req->mtu_idx = NMTUS - 1; 479 req->iff = i; 480 t3_mgmt_tx(adap, skb); 481 if (skb == adap->nofail_skb) { 482 await_mgmt_replies(adap, cnt, i + 1); 483 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 484 if (!adap->nofail_skb) 485 goto alloc_skb_fail; 486 } 487 } 488 489 for (i = 0; i < 2048; i++) { 490 struct cpl_l2t_write_req *req; 491 492 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 493 if (!skb) 494 skb = adap->nofail_skb; 495 if (!skb) 496 goto alloc_skb_fail; 497 498 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 499 memset(req, 0, sizeof(*req)); 500 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 501 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i)); 502 req->params = htonl(V_L2T_W_IDX(i)); 503 t3_mgmt_tx(adap, skb); 504 if (skb == adap->nofail_skb) { 505 await_mgmt_replies(adap, cnt, 16 + i + 1); 506 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 507 if (!adap->nofail_skb) 508 goto alloc_skb_fail; 509 } 510 } 511 512 for (i = 0; i < 2048; i++) { 513 struct cpl_rte_write_req *req; 514 515 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 516 if (!skb) 517 skb = adap->nofail_skb; 518 if (!skb) 519 goto alloc_skb_fail; 520 521 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req)); 522 memset(req, 0, sizeof(*req)); 523 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 524 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i)); 525 req->l2t_idx = htonl(V_L2T_W_IDX(i)); 526 t3_mgmt_tx(adap, skb); 527 if (skb == adap->nofail_skb) { 528 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1); 529 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 530 if (!adap->nofail_skb) 531 goto alloc_skb_fail; 532 } 533 } 534 535 skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 536 if (!skb) 537 skb = adap->nofail_skb; 538 if (!skb) 539 goto alloc_skb_fail; 540 541 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq)); 542 memset(greq, 0, sizeof(*greq)); 543 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 544 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0)); 545 greq->mask = cpu_to_be64(1); 546 t3_mgmt_tx(adap, skb); 547 548 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 549 if (skb == adap->nofail_skb) { 550 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 551 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 552 } 553 554 t3_tp_set_offload_mode(adap, 0); 555 return i; 556 557 alloc_skb_fail: 558 t3_tp_set_offload_mode(adap, 0); 559 return -ENOMEM; 560 } 561 562 /** 563 * setup_rss - configure RSS 564 * @adap: the adapter 565 * 566 * Sets up RSS to distribute packets to multiple receive queues. We 567 * configure the RSS CPU lookup table to distribute to the number of HW 568 * receive queues, and the response queue lookup table to narrow that 569 * down to the response queues actually configured for each port. 570 * We always configure the RSS mapping for two ports since the mapping 571 * table has plenty of entries. 572 */ 573 static void setup_rss(struct adapter *adap) 574 { 575 int i; 576 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; 577 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; 578 u8 cpus[SGE_QSETS + 1]; 579 u16 rspq_map[RSS_TABLE_SIZE]; 580 581 for (i = 0; i < SGE_QSETS; ++i) 582 cpus[i] = i; 583 cpus[SGE_QSETS] = 0xff; /* terminator */ 584 585 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { 586 rspq_map[i] = i % nq0; 587 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; 588 } 589 590 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | 591 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | 592 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map); 593 } 594 595 static void ring_dbs(struct adapter *adap) 596 { 597 int i, j; 598 599 for (i = 0; i < SGE_QSETS; i++) { 600 struct sge_qset *qs = &adap->sge.qs[i]; 601 602 if (qs->adap) 603 for (j = 0; j < SGE_TXQ_PER_SET; j++) 604 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id)); 605 } 606 } 607 608 static void init_napi(struct adapter *adap) 609 { 610 int i; 611 612 for (i = 0; i < SGE_QSETS; i++) { 613 struct sge_qset *qs = &adap->sge.qs[i]; 614 615 if (qs->adap) 616 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll, 617 64); 618 } 619 620 /* 621 * netif_napi_add() can be called only once per napi_struct because it 622 * adds each new napi_struct to a list. Be careful not to call it a 623 * second time, e.g., during EEH recovery, by making a note of it. 624 */ 625 adap->flags |= NAPI_INIT; 626 } 627 628 /* 629 * Wait until all NAPI handlers are descheduled. This includes the handlers of 630 * both netdevices representing interfaces and the dummy ones for the extra 631 * queues. 632 */ 633 static void quiesce_rx(struct adapter *adap) 634 { 635 int i; 636 637 for (i = 0; i < SGE_QSETS; i++) 638 if (adap->sge.qs[i].adap) 639 napi_disable(&adap->sge.qs[i].napi); 640 } 641 642 static void enable_all_napi(struct adapter *adap) 643 { 644 int i; 645 for (i = 0; i < SGE_QSETS; i++) 646 if (adap->sge.qs[i].adap) 647 napi_enable(&adap->sge.qs[i].napi); 648 } 649 650 /** 651 * setup_sge_qsets - configure SGE Tx/Rx/response queues 652 * @adap: the adapter 653 * 654 * Determines how many sets of SGE queues to use and initializes them. 655 * We support multiple queue sets per port if we have MSI-X, otherwise 656 * just one queue set per port. 657 */ 658 static int setup_sge_qsets(struct adapter *adap) 659 { 660 int i, j, err, irq_idx = 0, qset_idx = 0; 661 unsigned int ntxq = SGE_TXQ_PER_SET; 662 663 if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) 664 irq_idx = -1; 665 666 for_each_port(adap, i) { 667 struct net_device *dev = adap->port[i]; 668 struct port_info *pi = netdev_priv(dev); 669 670 pi->qs = &adap->sge.qs[pi->first_qset]; 671 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { 672 err = t3_sge_alloc_qset(adap, qset_idx, 1, 673 (adap->flags & USING_MSIX) ? qset_idx + 1 : 674 irq_idx, 675 &adap->params.sge.qset[qset_idx], ntxq, dev, 676 netdev_get_tx_queue(dev, j)); 677 if (err) { 678 t3_free_sge_resources(adap); 679 return err; 680 } 681 } 682 } 683 684 return 0; 685 } 686 687 static ssize_t attr_show(struct device *d, char *buf, 688 ssize_t(*format) (struct net_device *, char *)) 689 { 690 ssize_t len; 691 692 /* Synchronize with ioctls that may shut down the device */ 693 rtnl_lock(); 694 len = (*format) (to_net_dev(d), buf); 695 rtnl_unlock(); 696 return len; 697 } 698 699 static ssize_t attr_store(struct device *d, 700 const char *buf, size_t len, 701 ssize_t(*set) (struct net_device *, unsigned int), 702 unsigned int min_val, unsigned int max_val) 703 { 704 char *endp; 705 ssize_t ret; 706 unsigned int val; 707 708 if (!capable(CAP_NET_ADMIN)) 709 return -EPERM; 710 711 val = simple_strtoul(buf, &endp, 0); 712 if (endp == buf || val < min_val || val > max_val) 713 return -EINVAL; 714 715 rtnl_lock(); 716 ret = (*set) (to_net_dev(d), val); 717 if (!ret) 718 ret = len; 719 rtnl_unlock(); 720 return ret; 721 } 722 723 #define CXGB3_SHOW(name, val_expr) \ 724 static ssize_t format_##name(struct net_device *dev, char *buf) \ 725 { \ 726 struct port_info *pi = netdev_priv(dev); \ 727 struct adapter *adap = pi->adapter; \ 728 return sprintf(buf, "%u\n", val_expr); \ 729 } \ 730 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 731 char *buf) \ 732 { \ 733 return attr_show(d, buf, format_##name); \ 734 } 735 736 static ssize_t set_nfilters(struct net_device *dev, unsigned int val) 737 { 738 struct port_info *pi = netdev_priv(dev); 739 struct adapter *adap = pi->adapter; 740 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0; 741 742 if (adap->flags & FULL_INIT_DONE) 743 return -EBUSY; 744 if (val && adap->params.rev == 0) 745 return -EINVAL; 746 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 747 min_tids) 748 return -EINVAL; 749 adap->params.mc5.nfilters = val; 750 return 0; 751 } 752 753 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr, 754 const char *buf, size_t len) 755 { 756 return attr_store(d, buf, len, set_nfilters, 0, ~0); 757 } 758 759 static ssize_t set_nservers(struct net_device *dev, unsigned int val) 760 { 761 struct port_info *pi = netdev_priv(dev); 762 struct adapter *adap = pi->adapter; 763 764 if (adap->flags & FULL_INIT_DONE) 765 return -EBUSY; 766 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters - 767 MC5_MIN_TIDS) 768 return -EINVAL; 769 adap->params.mc5.nservers = val; 770 return 0; 771 } 772 773 static ssize_t store_nservers(struct device *d, struct device_attribute *attr, 774 const char *buf, size_t len) 775 { 776 return attr_store(d, buf, len, set_nservers, 0, ~0); 777 } 778 779 #define CXGB3_ATTR_R(name, val_expr) \ 780 CXGB3_SHOW(name, val_expr) \ 781 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL) 782 783 #define CXGB3_ATTR_RW(name, val_expr, store_method) \ 784 CXGB3_SHOW(name, val_expr) \ 785 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method) 786 787 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); 788 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); 789 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); 790 791 static struct attribute *cxgb3_attrs[] = { 792 &dev_attr_cam_size.attr, 793 &dev_attr_nfilters.attr, 794 &dev_attr_nservers.attr, 795 NULL 796 }; 797 798 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs }; 799 800 static ssize_t tm_attr_show(struct device *d, 801 char *buf, int sched) 802 { 803 struct port_info *pi = netdev_priv(to_net_dev(d)); 804 struct adapter *adap = pi->adapter; 805 unsigned int v, addr, bpt, cpt; 806 ssize_t len; 807 808 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 809 rtnl_lock(); 810 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 811 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 812 if (sched & 1) 813 v >>= 16; 814 bpt = (v >> 8) & 0xff; 815 cpt = v & 0xff; 816 if (!cpt) 817 len = sprintf(buf, "disabled\n"); 818 else { 819 v = (adap->params.vpd.cclk * 1000) / cpt; 820 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); 821 } 822 rtnl_unlock(); 823 return len; 824 } 825 826 static ssize_t tm_attr_store(struct device *d, 827 const char *buf, size_t len, int sched) 828 { 829 struct port_info *pi = netdev_priv(to_net_dev(d)); 830 struct adapter *adap = pi->adapter; 831 unsigned int val; 832 char *endp; 833 ssize_t ret; 834 835 if (!capable(CAP_NET_ADMIN)) 836 return -EPERM; 837 838 val = simple_strtoul(buf, &endp, 0); 839 if (endp == buf || val > 10000000) 840 return -EINVAL; 841 842 rtnl_lock(); 843 ret = t3_config_sched(adap, val, sched); 844 if (!ret) 845 ret = len; 846 rtnl_unlock(); 847 return ret; 848 } 849 850 #define TM_ATTR(name, sched) \ 851 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 852 char *buf) \ 853 { \ 854 return tm_attr_show(d, buf, sched); \ 855 } \ 856 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \ 857 const char *buf, size_t len) \ 858 { \ 859 return tm_attr_store(d, buf, len, sched); \ 860 } \ 861 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name) 862 863 TM_ATTR(sched0, 0); 864 TM_ATTR(sched1, 1); 865 TM_ATTR(sched2, 2); 866 TM_ATTR(sched3, 3); 867 TM_ATTR(sched4, 4); 868 TM_ATTR(sched5, 5); 869 TM_ATTR(sched6, 6); 870 TM_ATTR(sched7, 7); 871 872 static struct attribute *offload_attrs[] = { 873 &dev_attr_sched0.attr, 874 &dev_attr_sched1.attr, 875 &dev_attr_sched2.attr, 876 &dev_attr_sched3.attr, 877 &dev_attr_sched4.attr, 878 &dev_attr_sched5.attr, 879 &dev_attr_sched6.attr, 880 &dev_attr_sched7.attr, 881 NULL 882 }; 883 884 static struct attribute_group offload_attr_group = {.attrs = offload_attrs }; 885 886 /* 887 * Sends an sk_buff to an offload queue driver 888 * after dealing with any active network taps. 889 */ 890 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 891 { 892 int ret; 893 894 local_bh_disable(); 895 ret = t3_offload_tx(tdev, skb); 896 local_bh_enable(); 897 return ret; 898 } 899 900 static int write_smt_entry(struct adapter *adapter, int idx) 901 { 902 struct cpl_smt_write_req *req; 903 struct port_info *pi = netdev_priv(adapter->port[idx]); 904 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); 905 906 if (!skb) 907 return -ENOMEM; 908 909 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req)); 910 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 911 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); 912 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ 913 req->iff = idx; 914 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); 915 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN); 916 skb->priority = 1; 917 offload_tx(&adapter->tdev, skb); 918 return 0; 919 } 920 921 static int init_smt(struct adapter *adapter) 922 { 923 int i; 924 925 for_each_port(adapter, i) 926 write_smt_entry(adapter, i); 927 return 0; 928 } 929 930 static void init_port_mtus(struct adapter *adapter) 931 { 932 unsigned int mtus = adapter->port[0]->mtu; 933 934 if (adapter->port[1]) 935 mtus |= adapter->port[1]->mtu << 16; 936 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); 937 } 938 939 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo, 940 int hi, int port) 941 { 942 struct sk_buff *skb; 943 struct mngt_pktsched_wr *req; 944 int ret; 945 946 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 947 if (!skb) 948 skb = adap->nofail_skb; 949 if (!skb) 950 return -ENOMEM; 951 952 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req)); 953 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); 954 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; 955 req->sched = sched; 956 req->idx = qidx; 957 req->min = lo; 958 req->max = hi; 959 req->binding = port; 960 ret = t3_mgmt_tx(adap, skb); 961 if (skb == adap->nofail_skb) { 962 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field), 963 GFP_KERNEL); 964 if (!adap->nofail_skb) 965 ret = -ENOMEM; 966 } 967 968 return ret; 969 } 970 971 static int bind_qsets(struct adapter *adap) 972 { 973 int i, j, err = 0; 974 975 for_each_port(adap, i) { 976 const struct port_info *pi = adap2pinfo(adap, i); 977 978 for (j = 0; j < pi->nqsets; ++j) { 979 int ret = send_pktsched_cmd(adap, 1, 980 pi->first_qset + j, -1, 981 -1, i); 982 if (ret) 983 err = ret; 984 } 985 } 986 987 return err; 988 } 989 990 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \ 991 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO) 992 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin" 993 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \ 994 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO) 995 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin" 996 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin" 997 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin" 998 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin" 999 MODULE_FIRMWARE(FW_FNAME); 1000 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin"); 1001 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin"); 1002 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME); 1003 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME); 1004 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME); 1005 1006 static inline const char *get_edc_fw_name(int edc_idx) 1007 { 1008 const char *fw_name = NULL; 1009 1010 switch (edc_idx) { 1011 case EDC_OPT_AEL2005: 1012 fw_name = AEL2005_OPT_EDC_NAME; 1013 break; 1014 case EDC_TWX_AEL2005: 1015 fw_name = AEL2005_TWX_EDC_NAME; 1016 break; 1017 case EDC_TWX_AEL2020: 1018 fw_name = AEL2020_TWX_EDC_NAME; 1019 break; 1020 } 1021 return fw_name; 1022 } 1023 1024 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size) 1025 { 1026 struct adapter *adapter = phy->adapter; 1027 const struct firmware *fw; 1028 char buf[64]; 1029 u32 csum; 1030 const __be32 *p; 1031 u16 *cache = phy->phy_cache; 1032 int i, ret; 1033 1034 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx)); 1035 1036 ret = request_firmware(&fw, buf, &adapter->pdev->dev); 1037 if (ret < 0) { 1038 dev_err(&adapter->pdev->dev, 1039 "could not upgrade firmware: unable to load %s\n", 1040 buf); 1041 return ret; 1042 } 1043 1044 /* check size, take checksum in account */ 1045 if (fw->size > size + 4) { 1046 CH_ERR(adapter, "firmware image too large %u, expected %d\n", 1047 (unsigned int)fw->size, size + 4); 1048 ret = -EINVAL; 1049 } 1050 1051 /* compute checksum */ 1052 p = (const __be32 *)fw->data; 1053 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++) 1054 csum += ntohl(p[i]); 1055 1056 if (csum != 0xffffffff) { 1057 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1058 csum); 1059 ret = -EINVAL; 1060 } 1061 1062 for (i = 0; i < size / 4 ; i++) { 1063 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16; 1064 *cache++ = be32_to_cpu(p[i]) & 0xffff; 1065 } 1066 1067 release_firmware(fw); 1068 1069 return ret; 1070 } 1071 1072 static int upgrade_fw(struct adapter *adap) 1073 { 1074 int ret; 1075 const struct firmware *fw; 1076 struct device *dev = &adap->pdev->dev; 1077 1078 ret = request_firmware(&fw, FW_FNAME, dev); 1079 if (ret < 0) { 1080 dev_err(dev, "could not upgrade firmware: unable to load %s\n", 1081 FW_FNAME); 1082 return ret; 1083 } 1084 ret = t3_load_fw(adap, fw->data, fw->size); 1085 release_firmware(fw); 1086 1087 if (ret == 0) 1088 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n", 1089 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1090 else 1091 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n", 1092 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1093 1094 return ret; 1095 } 1096 1097 static inline char t3rev2char(struct adapter *adapter) 1098 { 1099 char rev = 0; 1100 1101 switch(adapter->params.rev) { 1102 case T3_REV_B: 1103 case T3_REV_B2: 1104 rev = 'b'; 1105 break; 1106 case T3_REV_C: 1107 rev = 'c'; 1108 break; 1109 } 1110 return rev; 1111 } 1112 1113 static int update_tpsram(struct adapter *adap) 1114 { 1115 const struct firmware *tpsram; 1116 char buf[64]; 1117 struct device *dev = &adap->pdev->dev; 1118 int ret; 1119 char rev; 1120 1121 rev = t3rev2char(adap); 1122 if (!rev) 1123 return 0; 1124 1125 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev); 1126 1127 ret = request_firmware(&tpsram, buf, dev); 1128 if (ret < 0) { 1129 dev_err(dev, "could not load TP SRAM: unable to load %s\n", 1130 buf); 1131 return ret; 1132 } 1133 1134 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size); 1135 if (ret) 1136 goto release_tpsram; 1137 1138 ret = t3_set_proto_sram(adap, tpsram->data); 1139 if (ret == 0) 1140 dev_info(dev, 1141 "successful update of protocol engine " 1142 "to %d.%d.%d\n", 1143 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1144 else 1145 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n", 1146 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1147 if (ret) 1148 dev_err(dev, "loading protocol SRAM failed\n"); 1149 1150 release_tpsram: 1151 release_firmware(tpsram); 1152 1153 return ret; 1154 } 1155 1156 /** 1157 * t3_synchronize_rx - wait for current Rx processing on a port to complete 1158 * @adap: the adapter 1159 * @p: the port 1160 * 1161 * Ensures that current Rx processing on any of the queues associated with 1162 * the given port completes before returning. We do this by acquiring and 1163 * releasing the locks of the response queues associated with the port. 1164 */ 1165 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) 1166 { 1167 int i; 1168 1169 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) { 1170 struct sge_rspq *q = &adap->sge.qs[i].rspq; 1171 1172 spin_lock_irq(&q->lock); 1173 spin_unlock_irq(&q->lock); 1174 } 1175 } 1176 1177 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features) 1178 { 1179 struct port_info *pi = netdev_priv(dev); 1180 struct adapter *adapter = pi->adapter; 1181 1182 if (adapter->params.rev > 0) { 1183 t3_set_vlan_accel(adapter, 1 << pi->port_id, 1184 features & NETIF_F_HW_VLAN_CTAG_RX); 1185 } else { 1186 /* single control for all ports */ 1187 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX; 1188 1189 for_each_port(adapter, i) 1190 have_vlans |= 1191 adapter->port[i]->features & 1192 NETIF_F_HW_VLAN_CTAG_RX; 1193 1194 t3_set_vlan_accel(adapter, 1, have_vlans); 1195 } 1196 t3_synchronize_rx(adapter, pi); 1197 } 1198 1199 /** 1200 * cxgb_up - enable the adapter 1201 * @adapter: adapter being enabled 1202 * 1203 * Called when the first port is enabled, this function performs the 1204 * actions necessary to make an adapter operational, such as completing 1205 * the initialization of HW modules, and enabling interrupts. 1206 * 1207 * Must be called with the rtnl lock held. 1208 */ 1209 static int cxgb_up(struct adapter *adap) 1210 { 1211 int i, err; 1212 1213 if (!(adap->flags & FULL_INIT_DONE)) { 1214 err = t3_check_fw_version(adap); 1215 if (err == -EINVAL) { 1216 err = upgrade_fw(adap); 1217 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n", 1218 FW_VERSION_MAJOR, FW_VERSION_MINOR, 1219 FW_VERSION_MICRO, err ? "failed" : "succeeded"); 1220 } 1221 1222 err = t3_check_tpsram_version(adap); 1223 if (err == -EINVAL) { 1224 err = update_tpsram(adap); 1225 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n", 1226 TP_VERSION_MAJOR, TP_VERSION_MINOR, 1227 TP_VERSION_MICRO, err ? "failed" : "succeeded"); 1228 } 1229 1230 /* 1231 * Clear interrupts now to catch errors if t3_init_hw fails. 1232 * We clear them again later as initialization may trigger 1233 * conditions that can interrupt. 1234 */ 1235 t3_intr_clear(adap); 1236 1237 err = t3_init_hw(adap, 0); 1238 if (err) 1239 goto out; 1240 1241 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT); 1242 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); 1243 1244 err = setup_sge_qsets(adap); 1245 if (err) 1246 goto out; 1247 1248 for_each_port(adap, i) 1249 cxgb_vlan_mode(adap->port[i], adap->port[i]->features); 1250 1251 setup_rss(adap); 1252 if (!(adap->flags & NAPI_INIT)) 1253 init_napi(adap); 1254 1255 t3_start_sge_timers(adap); 1256 adap->flags |= FULL_INIT_DONE; 1257 } 1258 1259 t3_intr_clear(adap); 1260 1261 if (adap->flags & USING_MSIX) { 1262 name_msix_vecs(adap); 1263 err = request_irq(adap->msix_info[0].vec, 1264 t3_async_intr_handler, 0, 1265 adap->msix_info[0].desc, adap); 1266 if (err) 1267 goto irq_err; 1268 1269 err = request_msix_data_irqs(adap); 1270 if (err) { 1271 free_irq(adap->msix_info[0].vec, adap); 1272 goto irq_err; 1273 } 1274 } else if ((err = request_irq(adap->pdev->irq, 1275 t3_intr_handler(adap, 1276 adap->sge.qs[0].rspq. 1277 polling), 1278 (adap->flags & USING_MSI) ? 1279 0 : IRQF_SHARED, 1280 adap->name, adap))) 1281 goto irq_err; 1282 1283 enable_all_napi(adap); 1284 t3_sge_start(adap); 1285 t3_intr_enable(adap); 1286 1287 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) && 1288 is_offload(adap) && init_tp_parity(adap) == 0) 1289 adap->flags |= TP_PARITY_INIT; 1290 1291 if (adap->flags & TP_PARITY_INIT) { 1292 t3_write_reg(adap, A_TP_INT_CAUSE, 1293 F_CMCACHEPERR | F_ARPLUTPERR); 1294 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff); 1295 } 1296 1297 if (!(adap->flags & QUEUES_BOUND)) { 1298 int ret = bind_qsets(adap); 1299 1300 if (ret < 0) { 1301 CH_ERR(adap, "failed to bind qsets, err %d\n", ret); 1302 t3_intr_disable(adap); 1303 free_irq_resources(adap); 1304 err = ret; 1305 goto out; 1306 } 1307 adap->flags |= QUEUES_BOUND; 1308 } 1309 1310 out: 1311 return err; 1312 irq_err: 1313 CH_ERR(adap, "request_irq failed, err %d\n", err); 1314 goto out; 1315 } 1316 1317 /* 1318 * Release resources when all the ports and offloading have been stopped. 1319 */ 1320 static void cxgb_down(struct adapter *adapter, int on_wq) 1321 { 1322 t3_sge_stop(adapter); 1323 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ 1324 t3_intr_disable(adapter); 1325 spin_unlock_irq(&adapter->work_lock); 1326 1327 free_irq_resources(adapter); 1328 quiesce_rx(adapter); 1329 t3_sge_stop(adapter); 1330 if (!on_wq) 1331 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */ 1332 } 1333 1334 static void schedule_chk_task(struct adapter *adap) 1335 { 1336 unsigned int timeo; 1337 1338 timeo = adap->params.linkpoll_period ? 1339 (HZ * adap->params.linkpoll_period) / 10 : 1340 adap->params.stats_update_period * HZ; 1341 if (timeo) 1342 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); 1343 } 1344 1345 static int offload_open(struct net_device *dev) 1346 { 1347 struct port_info *pi = netdev_priv(dev); 1348 struct adapter *adapter = pi->adapter; 1349 struct t3cdev *tdev = dev2t3cdev(dev); 1350 int adap_up = adapter->open_device_map & PORT_MASK; 1351 int err; 1352 1353 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1354 return 0; 1355 1356 if (!adap_up && (err = cxgb_up(adapter)) < 0) 1357 goto out; 1358 1359 t3_tp_set_offload_mode(adapter, 1); 1360 tdev->lldev = adapter->port[0]; 1361 err = cxgb3_offload_activate(adapter); 1362 if (err) 1363 goto out; 1364 1365 init_port_mtus(adapter); 1366 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, 1367 adapter->params.b_wnd, 1368 adapter->params.rev == 0 ? 1369 adapter->port[0]->mtu : 0xffff); 1370 init_smt(adapter); 1371 1372 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group)) 1373 dev_dbg(&dev->dev, "cannot create sysfs group\n"); 1374 1375 /* Call back all registered clients */ 1376 cxgb3_add_clients(tdev); 1377 1378 out: 1379 /* restore them in case the offload module has changed them */ 1380 if (err) { 1381 t3_tp_set_offload_mode(adapter, 0); 1382 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1383 cxgb3_set_dummy_ops(tdev); 1384 } 1385 return err; 1386 } 1387 1388 static int offload_close(struct t3cdev *tdev) 1389 { 1390 struct adapter *adapter = tdev2adap(tdev); 1391 struct t3c_data *td = T3C_DATA(tdev); 1392 1393 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1394 return 0; 1395 1396 /* Call back all registered clients */ 1397 cxgb3_remove_clients(tdev); 1398 1399 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group); 1400 1401 /* Flush work scheduled while releasing TIDs */ 1402 flush_work(&td->tid_release_task); 1403 1404 tdev->lldev = NULL; 1405 cxgb3_set_dummy_ops(tdev); 1406 t3_tp_set_offload_mode(adapter, 0); 1407 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1408 1409 if (!adapter->open_device_map) 1410 cxgb_down(adapter, 0); 1411 1412 cxgb3_offload_deactivate(adapter); 1413 return 0; 1414 } 1415 1416 static int cxgb_open(struct net_device *dev) 1417 { 1418 struct port_info *pi = netdev_priv(dev); 1419 struct adapter *adapter = pi->adapter; 1420 int other_ports = adapter->open_device_map & PORT_MASK; 1421 int err; 1422 1423 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) 1424 return err; 1425 1426 set_bit(pi->port_id, &adapter->open_device_map); 1427 if (is_offload(adapter) && !ofld_disable) { 1428 err = offload_open(dev); 1429 if (err) 1430 pr_warn("Could not initialize offload capabilities\n"); 1431 } 1432 1433 netif_set_real_num_tx_queues(dev, pi->nqsets); 1434 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 1435 if (err) 1436 return err; 1437 link_start(dev); 1438 t3_port_intr_enable(adapter, pi->port_id); 1439 netif_tx_start_all_queues(dev); 1440 if (!other_ports) 1441 schedule_chk_task(adapter); 1442 1443 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id); 1444 return 0; 1445 } 1446 1447 static int __cxgb_close(struct net_device *dev, int on_wq) 1448 { 1449 struct port_info *pi = netdev_priv(dev); 1450 struct adapter *adapter = pi->adapter; 1451 1452 1453 if (!adapter->open_device_map) 1454 return 0; 1455 1456 /* Stop link fault interrupts */ 1457 t3_xgm_intr_disable(adapter, pi->port_id); 1458 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 1459 1460 t3_port_intr_disable(adapter, pi->port_id); 1461 netif_tx_stop_all_queues(dev); 1462 pi->phy.ops->power_down(&pi->phy, 1); 1463 netif_carrier_off(dev); 1464 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1465 1466 spin_lock_irq(&adapter->work_lock); /* sync with update task */ 1467 clear_bit(pi->port_id, &adapter->open_device_map); 1468 spin_unlock_irq(&adapter->work_lock); 1469 1470 if (!(adapter->open_device_map & PORT_MASK)) 1471 cancel_delayed_work_sync(&adapter->adap_check_task); 1472 1473 if (!adapter->open_device_map) 1474 cxgb_down(adapter, on_wq); 1475 1476 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id); 1477 return 0; 1478 } 1479 1480 static int cxgb_close(struct net_device *dev) 1481 { 1482 return __cxgb_close(dev, 0); 1483 } 1484 1485 static struct net_device_stats *cxgb_get_stats(struct net_device *dev) 1486 { 1487 struct port_info *pi = netdev_priv(dev); 1488 struct adapter *adapter = pi->adapter; 1489 struct net_device_stats *ns = &pi->netstats; 1490 const struct mac_stats *pstats; 1491 1492 spin_lock(&adapter->stats_lock); 1493 pstats = t3_mac_update_stats(&pi->mac); 1494 spin_unlock(&adapter->stats_lock); 1495 1496 ns->tx_bytes = pstats->tx_octets; 1497 ns->tx_packets = pstats->tx_frames; 1498 ns->rx_bytes = pstats->rx_octets; 1499 ns->rx_packets = pstats->rx_frames; 1500 ns->multicast = pstats->rx_mcast_frames; 1501 1502 ns->tx_errors = pstats->tx_underrun; 1503 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + 1504 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + 1505 pstats->rx_fifo_ovfl; 1506 1507 /* detailed rx_errors */ 1508 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; 1509 ns->rx_over_errors = 0; 1510 ns->rx_crc_errors = pstats->rx_fcs_errs; 1511 ns->rx_frame_errors = pstats->rx_symbol_errs; 1512 ns->rx_fifo_errors = pstats->rx_fifo_ovfl; 1513 ns->rx_missed_errors = pstats->rx_cong_drops; 1514 1515 /* detailed tx_errors */ 1516 ns->tx_aborted_errors = 0; 1517 ns->tx_carrier_errors = 0; 1518 ns->tx_fifo_errors = pstats->tx_underrun; 1519 ns->tx_heartbeat_errors = 0; 1520 ns->tx_window_errors = 0; 1521 return ns; 1522 } 1523 1524 static u32 get_msglevel(struct net_device *dev) 1525 { 1526 struct port_info *pi = netdev_priv(dev); 1527 struct adapter *adapter = pi->adapter; 1528 1529 return adapter->msg_enable; 1530 } 1531 1532 static void set_msglevel(struct net_device *dev, u32 val) 1533 { 1534 struct port_info *pi = netdev_priv(dev); 1535 struct adapter *adapter = pi->adapter; 1536 1537 adapter->msg_enable = val; 1538 } 1539 1540 static char stats_strings[][ETH_GSTRING_LEN] = { 1541 "TxOctetsOK ", 1542 "TxFramesOK ", 1543 "TxMulticastFramesOK", 1544 "TxBroadcastFramesOK", 1545 "TxPauseFrames ", 1546 "TxUnderrun ", 1547 "TxExtUnderrun ", 1548 1549 "TxFrames64 ", 1550 "TxFrames65To127 ", 1551 "TxFrames128To255 ", 1552 "TxFrames256To511 ", 1553 "TxFrames512To1023 ", 1554 "TxFrames1024To1518 ", 1555 "TxFrames1519ToMax ", 1556 1557 "RxOctetsOK ", 1558 "RxFramesOK ", 1559 "RxMulticastFramesOK", 1560 "RxBroadcastFramesOK", 1561 "RxPauseFrames ", 1562 "RxFCSErrors ", 1563 "RxSymbolErrors ", 1564 "RxShortErrors ", 1565 "RxJabberErrors ", 1566 "RxLengthErrors ", 1567 "RxFIFOoverflow ", 1568 1569 "RxFrames64 ", 1570 "RxFrames65To127 ", 1571 "RxFrames128To255 ", 1572 "RxFrames256To511 ", 1573 "RxFrames512To1023 ", 1574 "RxFrames1024To1518 ", 1575 "RxFrames1519ToMax ", 1576 1577 "PhyFIFOErrors ", 1578 "TSO ", 1579 "VLANextractions ", 1580 "VLANinsertions ", 1581 "TxCsumOffload ", 1582 "RxCsumGood ", 1583 "LroAggregated ", 1584 "LroFlushed ", 1585 "LroNoDesc ", 1586 "RxDrops ", 1587 1588 "CheckTXEnToggled ", 1589 "CheckResets ", 1590 1591 "LinkFaults ", 1592 }; 1593 1594 static int get_sset_count(struct net_device *dev, int sset) 1595 { 1596 switch (sset) { 1597 case ETH_SS_STATS: 1598 return ARRAY_SIZE(stats_strings); 1599 default: 1600 return -EOPNOTSUPP; 1601 } 1602 } 1603 1604 #define T3_REGMAP_SIZE (3 * 1024) 1605 1606 static int get_regs_len(struct net_device *dev) 1607 { 1608 return T3_REGMAP_SIZE; 1609 } 1610 1611 static int get_eeprom_len(struct net_device *dev) 1612 { 1613 return EEPROMSIZE; 1614 } 1615 1616 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1617 { 1618 struct port_info *pi = netdev_priv(dev); 1619 struct adapter *adapter = pi->adapter; 1620 u32 fw_vers = 0; 1621 u32 tp_vers = 0; 1622 1623 spin_lock(&adapter->stats_lock); 1624 t3_get_fw_version(adapter, &fw_vers); 1625 t3_get_tp_version(adapter, &tp_vers); 1626 spin_unlock(&adapter->stats_lock); 1627 1628 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1629 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1630 strlcpy(info->bus_info, pci_name(adapter->pdev), 1631 sizeof(info->bus_info)); 1632 if (fw_vers) 1633 snprintf(info->fw_version, sizeof(info->fw_version), 1634 "%s %u.%u.%u TP %u.%u.%u", 1635 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N", 1636 G_FW_VERSION_MAJOR(fw_vers), 1637 G_FW_VERSION_MINOR(fw_vers), 1638 G_FW_VERSION_MICRO(fw_vers), 1639 G_TP_VERSION_MAJOR(tp_vers), 1640 G_TP_VERSION_MINOR(tp_vers), 1641 G_TP_VERSION_MICRO(tp_vers)); 1642 } 1643 1644 static void get_strings(struct net_device *dev, u32 stringset, u8 * data) 1645 { 1646 if (stringset == ETH_SS_STATS) 1647 memcpy(data, stats_strings, sizeof(stats_strings)); 1648 } 1649 1650 static unsigned long collect_sge_port_stats(struct adapter *adapter, 1651 struct port_info *p, int idx) 1652 { 1653 int i; 1654 unsigned long tot = 0; 1655 1656 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i) 1657 tot += adapter->sge.qs[i].port_stats[idx]; 1658 return tot; 1659 } 1660 1661 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1662 u64 *data) 1663 { 1664 struct port_info *pi = netdev_priv(dev); 1665 struct adapter *adapter = pi->adapter; 1666 const struct mac_stats *s; 1667 1668 spin_lock(&adapter->stats_lock); 1669 s = t3_mac_update_stats(&pi->mac); 1670 spin_unlock(&adapter->stats_lock); 1671 1672 *data++ = s->tx_octets; 1673 *data++ = s->tx_frames; 1674 *data++ = s->tx_mcast_frames; 1675 *data++ = s->tx_bcast_frames; 1676 *data++ = s->tx_pause; 1677 *data++ = s->tx_underrun; 1678 *data++ = s->tx_fifo_urun; 1679 1680 *data++ = s->tx_frames_64; 1681 *data++ = s->tx_frames_65_127; 1682 *data++ = s->tx_frames_128_255; 1683 *data++ = s->tx_frames_256_511; 1684 *data++ = s->tx_frames_512_1023; 1685 *data++ = s->tx_frames_1024_1518; 1686 *data++ = s->tx_frames_1519_max; 1687 1688 *data++ = s->rx_octets; 1689 *data++ = s->rx_frames; 1690 *data++ = s->rx_mcast_frames; 1691 *data++ = s->rx_bcast_frames; 1692 *data++ = s->rx_pause; 1693 *data++ = s->rx_fcs_errs; 1694 *data++ = s->rx_symbol_errs; 1695 *data++ = s->rx_short; 1696 *data++ = s->rx_jabber; 1697 *data++ = s->rx_too_long; 1698 *data++ = s->rx_fifo_ovfl; 1699 1700 *data++ = s->rx_frames_64; 1701 *data++ = s->rx_frames_65_127; 1702 *data++ = s->rx_frames_128_255; 1703 *data++ = s->rx_frames_256_511; 1704 *data++ = s->rx_frames_512_1023; 1705 *data++ = s->rx_frames_1024_1518; 1706 *data++ = s->rx_frames_1519_max; 1707 1708 *data++ = pi->phy.fifo_errors; 1709 1710 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); 1711 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); 1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); 1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); 1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); 1715 *data++ = 0; 1716 *data++ = 0; 1717 *data++ = 0; 1718 *data++ = s->rx_cong_drops; 1719 1720 *data++ = s->num_toggled; 1721 *data++ = s->num_resets; 1722 1723 *data++ = s->link_faults; 1724 } 1725 1726 static inline void reg_block_dump(struct adapter *ap, void *buf, 1727 unsigned int start, unsigned int end) 1728 { 1729 u32 *p = buf + start; 1730 1731 for (; start <= end; start += sizeof(u32)) 1732 *p++ = t3_read_reg(ap, start); 1733 } 1734 1735 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1736 void *buf) 1737 { 1738 struct port_info *pi = netdev_priv(dev); 1739 struct adapter *ap = pi->adapter; 1740 1741 /* 1742 * Version scheme: 1743 * bits 0..9: chip version 1744 * bits 10..15: chip revision 1745 * bit 31: set for PCIe cards 1746 */ 1747 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); 1748 1749 /* 1750 * We skip the MAC statistics registers because they are clear-on-read. 1751 * Also reading multi-register stats would need to synchronize with the 1752 * periodic mac stats accumulation. Hard to justify the complexity. 1753 */ 1754 memset(buf, 0, T3_REGMAP_SIZE); 1755 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); 1756 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); 1757 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); 1758 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); 1759 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); 1760 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, 1761 XGM_REG(A_XGM_SERDES_STAT3, 1)); 1762 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), 1763 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); 1764 } 1765 1766 static int restart_autoneg(struct net_device *dev) 1767 { 1768 struct port_info *p = netdev_priv(dev); 1769 1770 if (!netif_running(dev)) 1771 return -EAGAIN; 1772 if (p->link_config.autoneg != AUTONEG_ENABLE) 1773 return -EINVAL; 1774 p->phy.ops->autoneg_restart(&p->phy); 1775 return 0; 1776 } 1777 1778 static int set_phys_id(struct net_device *dev, 1779 enum ethtool_phys_id_state state) 1780 { 1781 struct port_info *pi = netdev_priv(dev); 1782 struct adapter *adapter = pi->adapter; 1783 1784 switch (state) { 1785 case ETHTOOL_ID_ACTIVE: 1786 return 1; /* cycle on/off once per second */ 1787 1788 case ETHTOOL_ID_OFF: 1789 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 1790 break; 1791 1792 case ETHTOOL_ID_ON: 1793 case ETHTOOL_ID_INACTIVE: 1794 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 1795 F_GPIO0_OUT_VAL); 1796 } 1797 1798 return 0; 1799 } 1800 1801 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1802 { 1803 struct port_info *p = netdev_priv(dev); 1804 1805 cmd->supported = p->link_config.supported; 1806 cmd->advertising = p->link_config.advertising; 1807 1808 if (netif_carrier_ok(dev)) { 1809 ethtool_cmd_speed_set(cmd, p->link_config.speed); 1810 cmd->duplex = p->link_config.duplex; 1811 } else { 1812 ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN); 1813 cmd->duplex = DUPLEX_UNKNOWN; 1814 } 1815 1816 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1817 cmd->phy_address = p->phy.mdio.prtad; 1818 cmd->transceiver = XCVR_EXTERNAL; 1819 cmd->autoneg = p->link_config.autoneg; 1820 cmd->maxtxpkt = 0; 1821 cmd->maxrxpkt = 0; 1822 return 0; 1823 } 1824 1825 static int speed_duplex_to_caps(int speed, int duplex) 1826 { 1827 int cap = 0; 1828 1829 switch (speed) { 1830 case SPEED_10: 1831 if (duplex == DUPLEX_FULL) 1832 cap = SUPPORTED_10baseT_Full; 1833 else 1834 cap = SUPPORTED_10baseT_Half; 1835 break; 1836 case SPEED_100: 1837 if (duplex == DUPLEX_FULL) 1838 cap = SUPPORTED_100baseT_Full; 1839 else 1840 cap = SUPPORTED_100baseT_Half; 1841 break; 1842 case SPEED_1000: 1843 if (duplex == DUPLEX_FULL) 1844 cap = SUPPORTED_1000baseT_Full; 1845 else 1846 cap = SUPPORTED_1000baseT_Half; 1847 break; 1848 case SPEED_10000: 1849 if (duplex == DUPLEX_FULL) 1850 cap = SUPPORTED_10000baseT_Full; 1851 } 1852 return cap; 1853 } 1854 1855 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1856 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1857 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ 1858 ADVERTISED_10000baseT_Full) 1859 1860 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1861 { 1862 struct port_info *p = netdev_priv(dev); 1863 struct link_config *lc = &p->link_config; 1864 1865 if (!(lc->supported & SUPPORTED_Autoneg)) { 1866 /* 1867 * PHY offers a single speed/duplex. See if that's what's 1868 * being requested. 1869 */ 1870 if (cmd->autoneg == AUTONEG_DISABLE) { 1871 u32 speed = ethtool_cmd_speed(cmd); 1872 int cap = speed_duplex_to_caps(speed, cmd->duplex); 1873 if (lc->supported & cap) 1874 return 0; 1875 } 1876 return -EINVAL; 1877 } 1878 1879 if (cmd->autoneg == AUTONEG_DISABLE) { 1880 u32 speed = ethtool_cmd_speed(cmd); 1881 int cap = speed_duplex_to_caps(speed, cmd->duplex); 1882 1883 if (!(lc->supported & cap) || (speed == SPEED_1000)) 1884 return -EINVAL; 1885 lc->requested_speed = speed; 1886 lc->requested_duplex = cmd->duplex; 1887 lc->advertising = 0; 1888 } else { 1889 cmd->advertising &= ADVERTISED_MASK; 1890 cmd->advertising &= lc->supported; 1891 if (!cmd->advertising) 1892 return -EINVAL; 1893 lc->requested_speed = SPEED_INVALID; 1894 lc->requested_duplex = DUPLEX_INVALID; 1895 lc->advertising = cmd->advertising | ADVERTISED_Autoneg; 1896 } 1897 lc->autoneg = cmd->autoneg; 1898 if (netif_running(dev)) 1899 t3_link_start(&p->phy, &p->mac, lc); 1900 return 0; 1901 } 1902 1903 static void get_pauseparam(struct net_device *dev, 1904 struct ethtool_pauseparam *epause) 1905 { 1906 struct port_info *p = netdev_priv(dev); 1907 1908 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; 1909 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; 1910 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; 1911 } 1912 1913 static int set_pauseparam(struct net_device *dev, 1914 struct ethtool_pauseparam *epause) 1915 { 1916 struct port_info *p = netdev_priv(dev); 1917 struct link_config *lc = &p->link_config; 1918 1919 if (epause->autoneg == AUTONEG_DISABLE) 1920 lc->requested_fc = 0; 1921 else if (lc->supported & SUPPORTED_Autoneg) 1922 lc->requested_fc = PAUSE_AUTONEG; 1923 else 1924 return -EINVAL; 1925 1926 if (epause->rx_pause) 1927 lc->requested_fc |= PAUSE_RX; 1928 if (epause->tx_pause) 1929 lc->requested_fc |= PAUSE_TX; 1930 if (lc->autoneg == AUTONEG_ENABLE) { 1931 if (netif_running(dev)) 1932 t3_link_start(&p->phy, &p->mac, lc); 1933 } else { 1934 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1935 if (netif_running(dev)) 1936 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); 1937 } 1938 return 0; 1939 } 1940 1941 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1942 { 1943 struct port_info *pi = netdev_priv(dev); 1944 struct adapter *adapter = pi->adapter; 1945 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset]; 1946 1947 e->rx_max_pending = MAX_RX_BUFFERS; 1948 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; 1949 e->tx_max_pending = MAX_TXQ_ENTRIES; 1950 1951 e->rx_pending = q->fl_size; 1952 e->rx_mini_pending = q->rspq_size; 1953 e->rx_jumbo_pending = q->jumbo_size; 1954 e->tx_pending = q->txq_size[0]; 1955 } 1956 1957 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1958 { 1959 struct port_info *pi = netdev_priv(dev); 1960 struct adapter *adapter = pi->adapter; 1961 struct qset_params *q; 1962 int i; 1963 1964 if (e->rx_pending > MAX_RX_BUFFERS || 1965 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || 1966 e->tx_pending > MAX_TXQ_ENTRIES || 1967 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1968 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1969 e->rx_pending < MIN_FL_ENTRIES || 1970 e->rx_jumbo_pending < MIN_FL_ENTRIES || 1971 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) 1972 return -EINVAL; 1973 1974 if (adapter->flags & FULL_INIT_DONE) 1975 return -EBUSY; 1976 1977 q = &adapter->params.sge.qset[pi->first_qset]; 1978 for (i = 0; i < pi->nqsets; ++i, ++q) { 1979 q->rspq_size = e->rx_mini_pending; 1980 q->fl_size = e->rx_pending; 1981 q->jumbo_size = e->rx_jumbo_pending; 1982 q->txq_size[0] = e->tx_pending; 1983 q->txq_size[1] = e->tx_pending; 1984 q->txq_size[2] = e->tx_pending; 1985 } 1986 return 0; 1987 } 1988 1989 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1990 { 1991 struct port_info *pi = netdev_priv(dev); 1992 struct adapter *adapter = pi->adapter; 1993 struct qset_params *qsp; 1994 struct sge_qset *qs; 1995 int i; 1996 1997 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) 1998 return -EINVAL; 1999 2000 for (i = 0; i < pi->nqsets; i++) { 2001 qsp = &adapter->params.sge.qset[i]; 2002 qs = &adapter->sge.qs[i]; 2003 qsp->coalesce_usecs = c->rx_coalesce_usecs; 2004 t3_update_qset_coalesce(qs, qsp); 2005 } 2006 2007 return 0; 2008 } 2009 2010 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2011 { 2012 struct port_info *pi = netdev_priv(dev); 2013 struct adapter *adapter = pi->adapter; 2014 struct qset_params *q = adapter->params.sge.qset; 2015 2016 c->rx_coalesce_usecs = q->coalesce_usecs; 2017 return 0; 2018 } 2019 2020 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2021 u8 * data) 2022 { 2023 struct port_info *pi = netdev_priv(dev); 2024 struct adapter *adapter = pi->adapter; 2025 int i, err = 0; 2026 2027 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2028 if (!buf) 2029 return -ENOMEM; 2030 2031 e->magic = EEPROM_MAGIC; 2032 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2033 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]); 2034 2035 if (!err) 2036 memcpy(data, buf + e->offset, e->len); 2037 kfree(buf); 2038 return err; 2039 } 2040 2041 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2042 u8 * data) 2043 { 2044 struct port_info *pi = netdev_priv(dev); 2045 struct adapter *adapter = pi->adapter; 2046 u32 aligned_offset, aligned_len; 2047 __le32 *p; 2048 u8 *buf; 2049 int err; 2050 2051 if (eeprom->magic != EEPROM_MAGIC) 2052 return -EINVAL; 2053 2054 aligned_offset = eeprom->offset & ~3; 2055 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2056 2057 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2058 buf = kmalloc(aligned_len, GFP_KERNEL); 2059 if (!buf) 2060 return -ENOMEM; 2061 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf); 2062 if (!err && aligned_len > 4) 2063 err = t3_seeprom_read(adapter, 2064 aligned_offset + aligned_len - 4, 2065 (__le32 *) & buf[aligned_len - 4]); 2066 if (err) 2067 goto out; 2068 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2069 } else 2070 buf = data; 2071 2072 err = t3_seeprom_wp(adapter, 0); 2073 if (err) 2074 goto out; 2075 2076 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) { 2077 err = t3_seeprom_write(adapter, aligned_offset, *p); 2078 aligned_offset += 4; 2079 } 2080 2081 if (!err) 2082 err = t3_seeprom_wp(adapter, 1); 2083 out: 2084 if (buf != data) 2085 kfree(buf); 2086 return err; 2087 } 2088 2089 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2090 { 2091 wol->supported = 0; 2092 wol->wolopts = 0; 2093 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2094 } 2095 2096 static const struct ethtool_ops cxgb_ethtool_ops = { 2097 .get_settings = get_settings, 2098 .set_settings = set_settings, 2099 .get_drvinfo = get_drvinfo, 2100 .get_msglevel = get_msglevel, 2101 .set_msglevel = set_msglevel, 2102 .get_ringparam = get_sge_param, 2103 .set_ringparam = set_sge_param, 2104 .get_coalesce = get_coalesce, 2105 .set_coalesce = set_coalesce, 2106 .get_eeprom_len = get_eeprom_len, 2107 .get_eeprom = get_eeprom, 2108 .set_eeprom = set_eeprom, 2109 .get_pauseparam = get_pauseparam, 2110 .set_pauseparam = set_pauseparam, 2111 .get_link = ethtool_op_get_link, 2112 .get_strings = get_strings, 2113 .set_phys_id = set_phys_id, 2114 .nway_reset = restart_autoneg, 2115 .get_sset_count = get_sset_count, 2116 .get_ethtool_stats = get_stats, 2117 .get_regs_len = get_regs_len, 2118 .get_regs = get_regs, 2119 .get_wol = get_wol, 2120 }; 2121 2122 static int in_range(int val, int lo, int hi) 2123 { 2124 return val < 0 || (val <= hi && val >= lo); 2125 } 2126 2127 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr) 2128 { 2129 struct port_info *pi = netdev_priv(dev); 2130 struct adapter *adapter = pi->adapter; 2131 u32 cmd; 2132 int ret; 2133 2134 if (copy_from_user(&cmd, useraddr, sizeof(cmd))) 2135 return -EFAULT; 2136 2137 switch (cmd) { 2138 case CHELSIO_SET_QSET_PARAMS:{ 2139 int i; 2140 struct qset_params *q; 2141 struct ch_qset_params t; 2142 int q1 = pi->first_qset; 2143 int nqsets = pi->nqsets; 2144 2145 if (!capable(CAP_NET_ADMIN)) 2146 return -EPERM; 2147 if (copy_from_user(&t, useraddr, sizeof(t))) 2148 return -EFAULT; 2149 if (t.qset_idx >= SGE_QSETS) 2150 return -EINVAL; 2151 if (!in_range(t.intr_lat, 0, M_NEWTIMER) || 2152 !in_range(t.cong_thres, 0, 255) || 2153 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES, 2154 MAX_TXQ_ENTRIES) || 2155 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES, 2156 MAX_TXQ_ENTRIES) || 2157 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, 2158 MAX_CTRL_TXQ_ENTRIES) || 2159 !in_range(t.fl_size[0], MIN_FL_ENTRIES, 2160 MAX_RX_BUFFERS) || 2161 !in_range(t.fl_size[1], MIN_FL_ENTRIES, 2162 MAX_RX_JUMBO_BUFFERS) || 2163 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES, 2164 MAX_RSPQ_ENTRIES)) 2165 return -EINVAL; 2166 2167 if ((adapter->flags & FULL_INIT_DONE) && 2168 (t.rspq_size >= 0 || t.fl_size[0] >= 0 || 2169 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || 2170 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || 2171 t.polling >= 0 || t.cong_thres >= 0)) 2172 return -EBUSY; 2173 2174 /* Allow setting of any available qset when offload enabled */ 2175 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2176 q1 = 0; 2177 for_each_port(adapter, i) { 2178 pi = adap2pinfo(adapter, i); 2179 nqsets += pi->first_qset + pi->nqsets; 2180 } 2181 } 2182 2183 if (t.qset_idx < q1) 2184 return -EINVAL; 2185 if (t.qset_idx > q1 + nqsets - 1) 2186 return -EINVAL; 2187 2188 q = &adapter->params.sge.qset[t.qset_idx]; 2189 2190 if (t.rspq_size >= 0) 2191 q->rspq_size = t.rspq_size; 2192 if (t.fl_size[0] >= 0) 2193 q->fl_size = t.fl_size[0]; 2194 if (t.fl_size[1] >= 0) 2195 q->jumbo_size = t.fl_size[1]; 2196 if (t.txq_size[0] >= 0) 2197 q->txq_size[0] = t.txq_size[0]; 2198 if (t.txq_size[1] >= 0) 2199 q->txq_size[1] = t.txq_size[1]; 2200 if (t.txq_size[2] >= 0) 2201 q->txq_size[2] = t.txq_size[2]; 2202 if (t.cong_thres >= 0) 2203 q->cong_thres = t.cong_thres; 2204 if (t.intr_lat >= 0) { 2205 struct sge_qset *qs = 2206 &adapter->sge.qs[t.qset_idx]; 2207 2208 q->coalesce_usecs = t.intr_lat; 2209 t3_update_qset_coalesce(qs, q); 2210 } 2211 if (t.polling >= 0) { 2212 if (adapter->flags & USING_MSIX) 2213 q->polling = t.polling; 2214 else { 2215 /* No polling with INTx for T3A */ 2216 if (adapter->params.rev == 0 && 2217 !(adapter->flags & USING_MSI)) 2218 t.polling = 0; 2219 2220 for (i = 0; i < SGE_QSETS; i++) { 2221 q = &adapter->params.sge. 2222 qset[i]; 2223 q->polling = t.polling; 2224 } 2225 } 2226 } 2227 2228 if (t.lro >= 0) { 2229 if (t.lro) 2230 dev->wanted_features |= NETIF_F_GRO; 2231 else 2232 dev->wanted_features &= ~NETIF_F_GRO; 2233 netdev_update_features(dev); 2234 } 2235 2236 break; 2237 } 2238 case CHELSIO_GET_QSET_PARAMS:{ 2239 struct qset_params *q; 2240 struct ch_qset_params t; 2241 int q1 = pi->first_qset; 2242 int nqsets = pi->nqsets; 2243 int i; 2244 2245 if (copy_from_user(&t, useraddr, sizeof(t))) 2246 return -EFAULT; 2247 2248 /* Display qsets for all ports when offload enabled */ 2249 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2250 q1 = 0; 2251 for_each_port(adapter, i) { 2252 pi = adap2pinfo(adapter, i); 2253 nqsets = pi->first_qset + pi->nqsets; 2254 } 2255 } 2256 2257 if (t.qset_idx >= nqsets) 2258 return -EINVAL; 2259 2260 q = &adapter->params.sge.qset[q1 + t.qset_idx]; 2261 t.rspq_size = q->rspq_size; 2262 t.txq_size[0] = q->txq_size[0]; 2263 t.txq_size[1] = q->txq_size[1]; 2264 t.txq_size[2] = q->txq_size[2]; 2265 t.fl_size[0] = q->fl_size; 2266 t.fl_size[1] = q->jumbo_size; 2267 t.polling = q->polling; 2268 t.lro = !!(dev->features & NETIF_F_GRO); 2269 t.intr_lat = q->coalesce_usecs; 2270 t.cong_thres = q->cong_thres; 2271 t.qnum = q1; 2272 2273 if (adapter->flags & USING_MSIX) 2274 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec; 2275 else 2276 t.vector = adapter->pdev->irq; 2277 2278 if (copy_to_user(useraddr, &t, sizeof(t))) 2279 return -EFAULT; 2280 break; 2281 } 2282 case CHELSIO_SET_QSET_NUM:{ 2283 struct ch_reg edata; 2284 unsigned int i, first_qset = 0, other_qsets = 0; 2285 2286 if (!capable(CAP_NET_ADMIN)) 2287 return -EPERM; 2288 if (adapter->flags & FULL_INIT_DONE) 2289 return -EBUSY; 2290 if (copy_from_user(&edata, useraddr, sizeof(edata))) 2291 return -EFAULT; 2292 if (edata.val < 1 || 2293 (edata.val > 1 && !(adapter->flags & USING_MSIX))) 2294 return -EINVAL; 2295 2296 for_each_port(adapter, i) 2297 if (adapter->port[i] && adapter->port[i] != dev) 2298 other_qsets += adap2pinfo(adapter, i)->nqsets; 2299 2300 if (edata.val + other_qsets > SGE_QSETS) 2301 return -EINVAL; 2302 2303 pi->nqsets = edata.val; 2304 2305 for_each_port(adapter, i) 2306 if (adapter->port[i]) { 2307 pi = adap2pinfo(adapter, i); 2308 pi->first_qset = first_qset; 2309 first_qset += pi->nqsets; 2310 } 2311 break; 2312 } 2313 case CHELSIO_GET_QSET_NUM:{ 2314 struct ch_reg edata; 2315 2316 memset(&edata, 0, sizeof(struct ch_reg)); 2317 2318 edata.cmd = CHELSIO_GET_QSET_NUM; 2319 edata.val = pi->nqsets; 2320 if (copy_to_user(useraddr, &edata, sizeof(edata))) 2321 return -EFAULT; 2322 break; 2323 } 2324 case CHELSIO_LOAD_FW:{ 2325 u8 *fw_data; 2326 struct ch_mem_range t; 2327 2328 if (!capable(CAP_SYS_RAWIO)) 2329 return -EPERM; 2330 if (copy_from_user(&t, useraddr, sizeof(t))) 2331 return -EFAULT; 2332 /* Check t.len sanity ? */ 2333 fw_data = memdup_user(useraddr + sizeof(t), t.len); 2334 if (IS_ERR(fw_data)) 2335 return PTR_ERR(fw_data); 2336 2337 ret = t3_load_fw(adapter, fw_data, t.len); 2338 kfree(fw_data); 2339 if (ret) 2340 return ret; 2341 break; 2342 } 2343 case CHELSIO_SETMTUTAB:{ 2344 struct ch_mtus m; 2345 int i; 2346 2347 if (!is_offload(adapter)) 2348 return -EOPNOTSUPP; 2349 if (!capable(CAP_NET_ADMIN)) 2350 return -EPERM; 2351 if (offload_running(adapter)) 2352 return -EBUSY; 2353 if (copy_from_user(&m, useraddr, sizeof(m))) 2354 return -EFAULT; 2355 if (m.nmtus != NMTUS) 2356 return -EINVAL; 2357 if (m.mtus[0] < 81) /* accommodate SACK */ 2358 return -EINVAL; 2359 2360 /* MTUs must be in ascending order */ 2361 for (i = 1; i < NMTUS; ++i) 2362 if (m.mtus[i] < m.mtus[i - 1]) 2363 return -EINVAL; 2364 2365 memcpy(adapter->params.mtus, m.mtus, 2366 sizeof(adapter->params.mtus)); 2367 break; 2368 } 2369 case CHELSIO_GET_PM:{ 2370 struct tp_params *p = &adapter->params.tp; 2371 struct ch_pm m = {.cmd = CHELSIO_GET_PM }; 2372 2373 if (!is_offload(adapter)) 2374 return -EOPNOTSUPP; 2375 m.tx_pg_sz = p->tx_pg_size; 2376 m.tx_num_pg = p->tx_num_pgs; 2377 m.rx_pg_sz = p->rx_pg_size; 2378 m.rx_num_pg = p->rx_num_pgs; 2379 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; 2380 if (copy_to_user(useraddr, &m, sizeof(m))) 2381 return -EFAULT; 2382 break; 2383 } 2384 case CHELSIO_SET_PM:{ 2385 struct ch_pm m; 2386 struct tp_params *p = &adapter->params.tp; 2387 2388 if (!is_offload(adapter)) 2389 return -EOPNOTSUPP; 2390 if (!capable(CAP_NET_ADMIN)) 2391 return -EPERM; 2392 if (adapter->flags & FULL_INIT_DONE) 2393 return -EBUSY; 2394 if (copy_from_user(&m, useraddr, sizeof(m))) 2395 return -EFAULT; 2396 if (!is_power_of_2(m.rx_pg_sz) || 2397 !is_power_of_2(m.tx_pg_sz)) 2398 return -EINVAL; /* not power of 2 */ 2399 if (!(m.rx_pg_sz & 0x14000)) 2400 return -EINVAL; /* not 16KB or 64KB */ 2401 if (!(m.tx_pg_sz & 0x1554000)) 2402 return -EINVAL; 2403 if (m.tx_num_pg == -1) 2404 m.tx_num_pg = p->tx_num_pgs; 2405 if (m.rx_num_pg == -1) 2406 m.rx_num_pg = p->rx_num_pgs; 2407 if (m.tx_num_pg % 24 || m.rx_num_pg % 24) 2408 return -EINVAL; 2409 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || 2410 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) 2411 return -EINVAL; 2412 p->rx_pg_size = m.rx_pg_sz; 2413 p->tx_pg_size = m.tx_pg_sz; 2414 p->rx_num_pgs = m.rx_num_pg; 2415 p->tx_num_pgs = m.tx_num_pg; 2416 break; 2417 } 2418 case CHELSIO_GET_MEM:{ 2419 struct ch_mem_range t; 2420 struct mc7 *mem; 2421 u64 buf[32]; 2422 2423 if (!is_offload(adapter)) 2424 return -EOPNOTSUPP; 2425 if (!(adapter->flags & FULL_INIT_DONE)) 2426 return -EIO; /* need the memory controllers */ 2427 if (copy_from_user(&t, useraddr, sizeof(t))) 2428 return -EFAULT; 2429 if ((t.addr & 7) || (t.len & 7)) 2430 return -EINVAL; 2431 if (t.mem_id == MEM_CM) 2432 mem = &adapter->cm; 2433 else if (t.mem_id == MEM_PMRX) 2434 mem = &adapter->pmrx; 2435 else if (t.mem_id == MEM_PMTX) 2436 mem = &adapter->pmtx; 2437 else 2438 return -EINVAL; 2439 2440 /* 2441 * Version scheme: 2442 * bits 0..9: chip version 2443 * bits 10..15: chip revision 2444 */ 2445 t.version = 3 | (adapter->params.rev << 10); 2446 if (copy_to_user(useraddr, &t, sizeof(t))) 2447 return -EFAULT; 2448 2449 /* 2450 * Read 256 bytes at a time as len can be large and we don't 2451 * want to use huge intermediate buffers. 2452 */ 2453 useraddr += sizeof(t); /* advance to start of buffer */ 2454 while (t.len) { 2455 unsigned int chunk = 2456 min_t(unsigned int, t.len, sizeof(buf)); 2457 2458 ret = 2459 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, 2460 buf); 2461 if (ret) 2462 return ret; 2463 if (copy_to_user(useraddr, buf, chunk)) 2464 return -EFAULT; 2465 useraddr += chunk; 2466 t.addr += chunk; 2467 t.len -= chunk; 2468 } 2469 break; 2470 } 2471 case CHELSIO_SET_TRACE_FILTER:{ 2472 struct ch_trace t; 2473 const struct trace_params *tp; 2474 2475 if (!capable(CAP_NET_ADMIN)) 2476 return -EPERM; 2477 if (!offload_running(adapter)) 2478 return -EAGAIN; 2479 if (copy_from_user(&t, useraddr, sizeof(t))) 2480 return -EFAULT; 2481 2482 tp = (const struct trace_params *)&t.sip; 2483 if (t.config_tx) 2484 t3_config_trace_filter(adapter, tp, 0, 2485 t.invert_match, 2486 t.trace_tx); 2487 if (t.config_rx) 2488 t3_config_trace_filter(adapter, tp, 1, 2489 t.invert_match, 2490 t.trace_rx); 2491 break; 2492 } 2493 default: 2494 return -EOPNOTSUPP; 2495 } 2496 return 0; 2497 } 2498 2499 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2500 { 2501 struct mii_ioctl_data *data = if_mii(req); 2502 struct port_info *pi = netdev_priv(dev); 2503 struct adapter *adapter = pi->adapter; 2504 2505 switch (cmd) { 2506 case SIOCGMIIREG: 2507 case SIOCSMIIREG: 2508 /* Convert phy_id from older PRTAD/DEVAD format */ 2509 if (is_10G(adapter) && 2510 !mdio_phy_id_is_c45(data->phy_id) && 2511 (data->phy_id & 0x1f00) && 2512 !(data->phy_id & 0xe0e0)) 2513 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8, 2514 data->phy_id & 0x1f); 2515 /* FALLTHRU */ 2516 case SIOCGMIIPHY: 2517 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd); 2518 case SIOCCHIOCTL: 2519 return cxgb_extension_ioctl(dev, req->ifr_data); 2520 default: 2521 return -EOPNOTSUPP; 2522 } 2523 } 2524 2525 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2526 { 2527 struct port_info *pi = netdev_priv(dev); 2528 struct adapter *adapter = pi->adapter; 2529 int ret; 2530 2531 if (new_mtu < 81) /* accommodate SACK */ 2532 return -EINVAL; 2533 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) 2534 return ret; 2535 dev->mtu = new_mtu; 2536 init_port_mtus(adapter); 2537 if (adapter->params.rev == 0 && offload_running(adapter)) 2538 t3_load_mtus(adapter, adapter->params.mtus, 2539 adapter->params.a_wnd, adapter->params.b_wnd, 2540 adapter->port[0]->mtu); 2541 return 0; 2542 } 2543 2544 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2545 { 2546 struct port_info *pi = netdev_priv(dev); 2547 struct adapter *adapter = pi->adapter; 2548 struct sockaddr *addr = p; 2549 2550 if (!is_valid_ether_addr(addr->sa_data)) 2551 return -EADDRNOTAVAIL; 2552 2553 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2554 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr); 2555 if (offload_running(adapter)) 2556 write_smt_entry(adapter, pi->port_id); 2557 return 0; 2558 } 2559 2560 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2561 netdev_features_t features) 2562 { 2563 /* 2564 * Since there is no support for separate rx/tx vlan accel 2565 * enable/disable make sure tx flag is always in same state as rx. 2566 */ 2567 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2568 features |= NETIF_F_HW_VLAN_CTAG_TX; 2569 else 2570 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2571 2572 return features; 2573 } 2574 2575 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2576 { 2577 netdev_features_t changed = dev->features ^ features; 2578 2579 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2580 cxgb_vlan_mode(dev, features); 2581 2582 return 0; 2583 } 2584 2585 #ifdef CONFIG_NET_POLL_CONTROLLER 2586 static void cxgb_netpoll(struct net_device *dev) 2587 { 2588 struct port_info *pi = netdev_priv(dev); 2589 struct adapter *adapter = pi->adapter; 2590 int qidx; 2591 2592 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) { 2593 struct sge_qset *qs = &adapter->sge.qs[qidx]; 2594 void *source; 2595 2596 if (adapter->flags & USING_MSIX) 2597 source = qs; 2598 else 2599 source = adapter; 2600 2601 t3_intr_handler(adapter, qs->rspq.polling) (0, source); 2602 } 2603 } 2604 #endif 2605 2606 /* 2607 * Periodic accumulation of MAC statistics. 2608 */ 2609 static void mac_stats_update(struct adapter *adapter) 2610 { 2611 int i; 2612 2613 for_each_port(adapter, i) { 2614 struct net_device *dev = adapter->port[i]; 2615 struct port_info *p = netdev_priv(dev); 2616 2617 if (netif_running(dev)) { 2618 spin_lock(&adapter->stats_lock); 2619 t3_mac_update_stats(&p->mac); 2620 spin_unlock(&adapter->stats_lock); 2621 } 2622 } 2623 } 2624 2625 static void check_link_status(struct adapter *adapter) 2626 { 2627 int i; 2628 2629 for_each_port(adapter, i) { 2630 struct net_device *dev = adapter->port[i]; 2631 struct port_info *p = netdev_priv(dev); 2632 int link_fault; 2633 2634 spin_lock_irq(&adapter->work_lock); 2635 link_fault = p->link_fault; 2636 spin_unlock_irq(&adapter->work_lock); 2637 2638 if (link_fault) { 2639 t3_link_fault(adapter, i); 2640 continue; 2641 } 2642 2643 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) { 2644 t3_xgm_intr_disable(adapter, i); 2645 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2646 2647 t3_link_changed(adapter, i); 2648 t3_xgm_intr_enable(adapter, i); 2649 } 2650 } 2651 } 2652 2653 static void check_t3b2_mac(struct adapter *adapter) 2654 { 2655 int i; 2656 2657 if (!rtnl_trylock()) /* synchronize with ifdown */ 2658 return; 2659 2660 for_each_port(adapter, i) { 2661 struct net_device *dev = adapter->port[i]; 2662 struct port_info *p = netdev_priv(dev); 2663 int status; 2664 2665 if (!netif_running(dev)) 2666 continue; 2667 2668 status = 0; 2669 if (netif_running(dev) && netif_carrier_ok(dev)) 2670 status = t3b2_mac_watchdog_task(&p->mac); 2671 if (status == 1) 2672 p->mac.stats.num_toggled++; 2673 else if (status == 2) { 2674 struct cmac *mac = &p->mac; 2675 2676 t3_mac_set_mtu(mac, dev->mtu); 2677 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 2678 cxgb_set_rxmode(dev); 2679 t3_link_start(&p->phy, mac, &p->link_config); 2680 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 2681 t3_port_intr_enable(adapter, p->port_id); 2682 p->mac.stats.num_resets++; 2683 } 2684 } 2685 rtnl_unlock(); 2686 } 2687 2688 2689 static void t3_adap_check_task(struct work_struct *work) 2690 { 2691 struct adapter *adapter = container_of(work, struct adapter, 2692 adap_check_task.work); 2693 const struct adapter_params *p = &adapter->params; 2694 int port; 2695 unsigned int v, status, reset; 2696 2697 adapter->check_task_cnt++; 2698 2699 check_link_status(adapter); 2700 2701 /* Accumulate MAC stats if needed */ 2702 if (!p->linkpoll_period || 2703 (adapter->check_task_cnt * p->linkpoll_period) / 10 >= 2704 p->stats_update_period) { 2705 mac_stats_update(adapter); 2706 adapter->check_task_cnt = 0; 2707 } 2708 2709 if (p->rev == T3_REV_B2) 2710 check_t3b2_mac(adapter); 2711 2712 /* 2713 * Scan the XGMAC's to check for various conditions which we want to 2714 * monitor in a periodic polling manner rather than via an interrupt 2715 * condition. This is used for conditions which would otherwise flood 2716 * the system with interrupts and we only really need to know that the 2717 * conditions are "happening" ... For each condition we count the 2718 * detection of the condition and reset it for the next polling loop. 2719 */ 2720 for_each_port(adapter, port) { 2721 struct cmac *mac = &adap2pinfo(adapter, port)->mac; 2722 u32 cause; 2723 2724 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset); 2725 reset = 0; 2726 if (cause & F_RXFIFO_OVERFLOW) { 2727 mac->stats.rx_fifo_ovfl++; 2728 reset |= F_RXFIFO_OVERFLOW; 2729 } 2730 2731 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset); 2732 } 2733 2734 /* 2735 * We do the same as above for FL_EMPTY interrupts. 2736 */ 2737 status = t3_read_reg(adapter, A_SG_INT_CAUSE); 2738 reset = 0; 2739 2740 if (status & F_FLEMPTY) { 2741 struct sge_qset *qs = &adapter->sge.qs[0]; 2742 int i = 0; 2743 2744 reset |= F_FLEMPTY; 2745 2746 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) & 2747 0xffff; 2748 2749 while (v) { 2750 qs->fl[i].empty += (v & 1); 2751 if (i) 2752 qs++; 2753 i ^= 1; 2754 v >>= 1; 2755 } 2756 } 2757 2758 t3_write_reg(adapter, A_SG_INT_CAUSE, reset); 2759 2760 /* Schedule the next check update if any port is active. */ 2761 spin_lock_irq(&adapter->work_lock); 2762 if (adapter->open_device_map & PORT_MASK) 2763 schedule_chk_task(adapter); 2764 spin_unlock_irq(&adapter->work_lock); 2765 } 2766 2767 static void db_full_task(struct work_struct *work) 2768 { 2769 struct adapter *adapter = container_of(work, struct adapter, 2770 db_full_task); 2771 2772 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0); 2773 } 2774 2775 static void db_empty_task(struct work_struct *work) 2776 { 2777 struct adapter *adapter = container_of(work, struct adapter, 2778 db_empty_task); 2779 2780 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0); 2781 } 2782 2783 static void db_drop_task(struct work_struct *work) 2784 { 2785 struct adapter *adapter = container_of(work, struct adapter, 2786 db_drop_task); 2787 unsigned long delay = 1000; 2788 unsigned short r; 2789 2790 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0); 2791 2792 /* 2793 * Sleep a while before ringing the driver qset dbs. 2794 * The delay is between 1000-2023 usecs. 2795 */ 2796 get_random_bytes(&r, 2); 2797 delay += r & 1023; 2798 set_current_state(TASK_UNINTERRUPTIBLE); 2799 schedule_timeout(usecs_to_jiffies(delay)); 2800 ring_dbs(adapter); 2801 } 2802 2803 /* 2804 * Processes external (PHY) interrupts in process context. 2805 */ 2806 static void ext_intr_task(struct work_struct *work) 2807 { 2808 struct adapter *adapter = container_of(work, struct adapter, 2809 ext_intr_handler_task); 2810 int i; 2811 2812 /* Disable link fault interrupts */ 2813 for_each_port(adapter, i) { 2814 struct net_device *dev = adapter->port[i]; 2815 struct port_info *p = netdev_priv(dev); 2816 2817 t3_xgm_intr_disable(adapter, i); 2818 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2819 } 2820 2821 /* Re-enable link fault interrupts */ 2822 t3_phy_intr_handler(adapter); 2823 2824 for_each_port(adapter, i) 2825 t3_xgm_intr_enable(adapter, i); 2826 2827 /* Now reenable external interrupts */ 2828 spin_lock_irq(&adapter->work_lock); 2829 if (adapter->slow_intr_mask) { 2830 adapter->slow_intr_mask |= F_T3DBG; 2831 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); 2832 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2833 adapter->slow_intr_mask); 2834 } 2835 spin_unlock_irq(&adapter->work_lock); 2836 } 2837 2838 /* 2839 * Interrupt-context handler for external (PHY) interrupts. 2840 */ 2841 void t3_os_ext_intr_handler(struct adapter *adapter) 2842 { 2843 /* 2844 * Schedule a task to handle external interrupts as they may be slow 2845 * and we use a mutex to protect MDIO registers. We disable PHY 2846 * interrupts in the meantime and let the task reenable them when 2847 * it's done. 2848 */ 2849 spin_lock(&adapter->work_lock); 2850 if (adapter->slow_intr_mask) { 2851 adapter->slow_intr_mask &= ~F_T3DBG; 2852 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2853 adapter->slow_intr_mask); 2854 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); 2855 } 2856 spin_unlock(&adapter->work_lock); 2857 } 2858 2859 void t3_os_link_fault_handler(struct adapter *adapter, int port_id) 2860 { 2861 struct net_device *netdev = adapter->port[port_id]; 2862 struct port_info *pi = netdev_priv(netdev); 2863 2864 spin_lock(&adapter->work_lock); 2865 pi->link_fault = 1; 2866 spin_unlock(&adapter->work_lock); 2867 } 2868 2869 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq) 2870 { 2871 int i, ret = 0; 2872 2873 if (is_offload(adapter) && 2874 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2875 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0); 2876 offload_close(&adapter->tdev); 2877 } 2878 2879 /* Stop all ports */ 2880 for_each_port(adapter, i) { 2881 struct net_device *netdev = adapter->port[i]; 2882 2883 if (netif_running(netdev)) 2884 __cxgb_close(netdev, on_wq); 2885 } 2886 2887 /* Stop SGE timers */ 2888 t3_stop_sge_timers(adapter); 2889 2890 adapter->flags &= ~FULL_INIT_DONE; 2891 2892 if (reset) 2893 ret = t3_reset_adapter(adapter); 2894 2895 pci_disable_device(adapter->pdev); 2896 2897 return ret; 2898 } 2899 2900 static int t3_reenable_adapter(struct adapter *adapter) 2901 { 2902 if (pci_enable_device(adapter->pdev)) { 2903 dev_err(&adapter->pdev->dev, 2904 "Cannot re-enable PCI device after reset.\n"); 2905 goto err; 2906 } 2907 pci_set_master(adapter->pdev); 2908 pci_restore_state(adapter->pdev); 2909 pci_save_state(adapter->pdev); 2910 2911 /* Free sge resources */ 2912 t3_free_sge_resources(adapter); 2913 2914 if (t3_replay_prep_adapter(adapter)) 2915 goto err; 2916 2917 return 0; 2918 err: 2919 return -1; 2920 } 2921 2922 static void t3_resume_ports(struct adapter *adapter) 2923 { 2924 int i; 2925 2926 /* Restart the ports */ 2927 for_each_port(adapter, i) { 2928 struct net_device *netdev = adapter->port[i]; 2929 2930 if (netif_running(netdev)) { 2931 if (cxgb_open(netdev)) { 2932 dev_err(&adapter->pdev->dev, 2933 "can't bring device back up" 2934 " after reset\n"); 2935 continue; 2936 } 2937 } 2938 } 2939 2940 if (is_offload(adapter) && !ofld_disable) 2941 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0); 2942 } 2943 2944 /* 2945 * processes a fatal error. 2946 * Bring the ports down, reset the chip, bring the ports back up. 2947 */ 2948 static void fatal_error_task(struct work_struct *work) 2949 { 2950 struct adapter *adapter = container_of(work, struct adapter, 2951 fatal_error_handler_task); 2952 int err = 0; 2953 2954 rtnl_lock(); 2955 err = t3_adapter_error(adapter, 1, 1); 2956 if (!err) 2957 err = t3_reenable_adapter(adapter); 2958 if (!err) 2959 t3_resume_ports(adapter); 2960 2961 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded"); 2962 rtnl_unlock(); 2963 } 2964 2965 void t3_fatal_err(struct adapter *adapter) 2966 { 2967 unsigned int fw_status[4]; 2968 2969 if (adapter->flags & FULL_INIT_DONE) { 2970 t3_sge_stop(adapter); 2971 t3_write_reg(adapter, A_XGM_TX_CTRL, 0); 2972 t3_write_reg(adapter, A_XGM_RX_CTRL, 0); 2973 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0); 2974 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0); 2975 2976 spin_lock(&adapter->work_lock); 2977 t3_intr_disable(adapter); 2978 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task); 2979 spin_unlock(&adapter->work_lock); 2980 } 2981 CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); 2982 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) 2983 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", 2984 fw_status[0], fw_status[1], 2985 fw_status[2], fw_status[3]); 2986 } 2987 2988 /** 2989 * t3_io_error_detected - called when PCI error is detected 2990 * @pdev: Pointer to PCI device 2991 * @state: The current pci connection state 2992 * 2993 * This function is called after a PCI bus error affecting 2994 * this device has been detected. 2995 */ 2996 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev, 2997 pci_channel_state_t state) 2998 { 2999 struct adapter *adapter = pci_get_drvdata(pdev); 3000 3001 if (state == pci_channel_io_perm_failure) 3002 return PCI_ERS_RESULT_DISCONNECT; 3003 3004 t3_adapter_error(adapter, 0, 0); 3005 3006 /* Request a slot reset. */ 3007 return PCI_ERS_RESULT_NEED_RESET; 3008 } 3009 3010 /** 3011 * t3_io_slot_reset - called after the pci bus has been reset. 3012 * @pdev: Pointer to PCI device 3013 * 3014 * Restart the card from scratch, as if from a cold-boot. 3015 */ 3016 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev) 3017 { 3018 struct adapter *adapter = pci_get_drvdata(pdev); 3019 3020 if (!t3_reenable_adapter(adapter)) 3021 return PCI_ERS_RESULT_RECOVERED; 3022 3023 return PCI_ERS_RESULT_DISCONNECT; 3024 } 3025 3026 /** 3027 * t3_io_resume - called when traffic can start flowing again. 3028 * @pdev: Pointer to PCI device 3029 * 3030 * This callback is called when the error recovery driver tells us that 3031 * its OK to resume normal operation. 3032 */ 3033 static void t3_io_resume(struct pci_dev *pdev) 3034 { 3035 struct adapter *adapter = pci_get_drvdata(pdev); 3036 3037 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n", 3038 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 3039 3040 rtnl_lock(); 3041 t3_resume_ports(adapter); 3042 rtnl_unlock(); 3043 } 3044 3045 static const struct pci_error_handlers t3_err_handler = { 3046 .error_detected = t3_io_error_detected, 3047 .slot_reset = t3_io_slot_reset, 3048 .resume = t3_io_resume, 3049 }; 3050 3051 /* 3052 * Set the number of qsets based on the number of CPUs and the number of ports, 3053 * not to exceed the number of available qsets, assuming there are enough qsets 3054 * per port in HW. 3055 */ 3056 static void set_nqsets(struct adapter *adap) 3057 { 3058 int i, j = 0; 3059 int num_cpus = netif_get_num_default_rss_queues(); 3060 int hwports = adap->params.nports; 3061 int nqsets = adap->msix_nvectors - 1; 3062 3063 if (adap->params.rev > 0 && adap->flags & USING_MSIX) { 3064 if (hwports == 2 && 3065 (hwports * nqsets > SGE_QSETS || 3066 num_cpus >= nqsets / hwports)) 3067 nqsets /= hwports; 3068 if (nqsets > num_cpus) 3069 nqsets = num_cpus; 3070 if (nqsets < 1 || hwports == 4) 3071 nqsets = 1; 3072 } else 3073 nqsets = 1; 3074 3075 for_each_port(adap, i) { 3076 struct port_info *pi = adap2pinfo(adap, i); 3077 3078 pi->first_qset = j; 3079 pi->nqsets = nqsets; 3080 j = pi->first_qset + nqsets; 3081 3082 dev_info(&adap->pdev->dev, 3083 "Port %d using %d queue sets.\n", i, nqsets); 3084 } 3085 } 3086 3087 static int cxgb_enable_msix(struct adapter *adap) 3088 { 3089 struct msix_entry entries[SGE_QSETS + 1]; 3090 int vectors; 3091 int i; 3092 3093 vectors = ARRAY_SIZE(entries); 3094 for (i = 0; i < vectors; ++i) 3095 entries[i].entry = i; 3096 3097 vectors = pci_enable_msix_range(adap->pdev, entries, 3098 adap->params.nports + 1, vectors); 3099 if (vectors < 0) 3100 return vectors; 3101 3102 for (i = 0; i < vectors; ++i) 3103 adap->msix_info[i].vec = entries[i].vector; 3104 adap->msix_nvectors = vectors; 3105 3106 return 0; 3107 } 3108 3109 static void print_port_info(struct adapter *adap, const struct adapter_info *ai) 3110 { 3111 static const char *pci_variant[] = { 3112 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" 3113 }; 3114 3115 int i; 3116 char buf[80]; 3117 3118 if (is_pcie(adap)) 3119 snprintf(buf, sizeof(buf), "%s x%d", 3120 pci_variant[adap->params.pci.variant], 3121 adap->params.pci.width); 3122 else 3123 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", 3124 pci_variant[adap->params.pci.variant], 3125 adap->params.pci.speed, adap->params.pci.width); 3126 3127 for_each_port(adap, i) { 3128 struct net_device *dev = adap->port[i]; 3129 const struct port_info *pi = netdev_priv(dev); 3130 3131 if (!test_bit(i, &adap->registered_device_map)) 3132 continue; 3133 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n", 3134 ai->desc, pi->phy.desc, 3135 is_offload(adap) ? "R" : "", adap->params.rev, buf, 3136 (adap->flags & USING_MSIX) ? " MSI-X" : 3137 (adap->flags & USING_MSI) ? " MSI" : ""); 3138 if (adap->name == dev->name && adap->params.vpd.mclk) 3139 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n", 3140 adap->name, t3_mc7_size(&adap->cm) >> 20, 3141 t3_mc7_size(&adap->pmtx) >> 20, 3142 t3_mc7_size(&adap->pmrx) >> 20, 3143 adap->params.vpd.sn); 3144 } 3145 } 3146 3147 static const struct net_device_ops cxgb_netdev_ops = { 3148 .ndo_open = cxgb_open, 3149 .ndo_stop = cxgb_close, 3150 .ndo_start_xmit = t3_eth_xmit, 3151 .ndo_get_stats = cxgb_get_stats, 3152 .ndo_validate_addr = eth_validate_addr, 3153 .ndo_set_rx_mode = cxgb_set_rxmode, 3154 .ndo_do_ioctl = cxgb_ioctl, 3155 .ndo_change_mtu = cxgb_change_mtu, 3156 .ndo_set_mac_address = cxgb_set_mac_addr, 3157 .ndo_fix_features = cxgb_fix_features, 3158 .ndo_set_features = cxgb_set_features, 3159 #ifdef CONFIG_NET_POLL_CONTROLLER 3160 .ndo_poll_controller = cxgb_netpoll, 3161 #endif 3162 }; 3163 3164 static void cxgb3_init_iscsi_mac(struct net_device *dev) 3165 { 3166 struct port_info *pi = netdev_priv(dev); 3167 3168 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN); 3169 pi->iscsic.mac_addr[3] |= 0x80; 3170 } 3171 3172 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 3173 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 3174 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 3175 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 3176 { 3177 int i, err, pci_using_dac = 0; 3178 resource_size_t mmio_start, mmio_len; 3179 const struct adapter_info *ai; 3180 struct adapter *adapter = NULL; 3181 struct port_info *pi; 3182 3183 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION); 3184 3185 if (!cxgb3_wq) { 3186 cxgb3_wq = create_singlethread_workqueue(DRV_NAME); 3187 if (!cxgb3_wq) { 3188 pr_err("cannot initialize work queue\n"); 3189 return -ENOMEM; 3190 } 3191 } 3192 3193 err = pci_enable_device(pdev); 3194 if (err) { 3195 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3196 goto out; 3197 } 3198 3199 err = pci_request_regions(pdev, DRV_NAME); 3200 if (err) { 3201 /* Just info, some other driver may have claimed the device. */ 3202 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3203 goto out_disable_device; 3204 } 3205 3206 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3207 pci_using_dac = 1; 3208 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3209 if (err) { 3210 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 3211 "coherent allocations\n"); 3212 goto out_release_regions; 3213 } 3214 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) { 3215 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3216 goto out_release_regions; 3217 } 3218 3219 pci_set_master(pdev); 3220 pci_save_state(pdev); 3221 3222 mmio_start = pci_resource_start(pdev, 0); 3223 mmio_len = pci_resource_len(pdev, 0); 3224 ai = t3_get_adapter_info(ent->driver_data); 3225 3226 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3227 if (!adapter) { 3228 err = -ENOMEM; 3229 goto out_release_regions; 3230 } 3231 3232 adapter->nofail_skb = 3233 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL); 3234 if (!adapter->nofail_skb) { 3235 dev_err(&pdev->dev, "cannot allocate nofail buffer\n"); 3236 err = -ENOMEM; 3237 goto out_free_adapter; 3238 } 3239 3240 adapter->regs = ioremap_nocache(mmio_start, mmio_len); 3241 if (!adapter->regs) { 3242 dev_err(&pdev->dev, "cannot map device registers\n"); 3243 err = -ENOMEM; 3244 goto out_free_adapter; 3245 } 3246 3247 adapter->pdev = pdev; 3248 adapter->name = pci_name(pdev); 3249 adapter->msg_enable = dflt_msg_enable; 3250 adapter->mmio_len = mmio_len; 3251 3252 mutex_init(&adapter->mdio_lock); 3253 spin_lock_init(&adapter->work_lock); 3254 spin_lock_init(&adapter->stats_lock); 3255 3256 INIT_LIST_HEAD(&adapter->adapter_list); 3257 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); 3258 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task); 3259 3260 INIT_WORK(&adapter->db_full_task, db_full_task); 3261 INIT_WORK(&adapter->db_empty_task, db_empty_task); 3262 INIT_WORK(&adapter->db_drop_task, db_drop_task); 3263 3264 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); 3265 3266 for (i = 0; i < ai->nports0 + ai->nports1; ++i) { 3267 struct net_device *netdev; 3268 3269 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS); 3270 if (!netdev) { 3271 err = -ENOMEM; 3272 goto out_free_dev; 3273 } 3274 3275 SET_NETDEV_DEV(netdev, &pdev->dev); 3276 3277 adapter->port[i] = netdev; 3278 pi = netdev_priv(netdev); 3279 pi->adapter = adapter; 3280 pi->port_id = i; 3281 netif_carrier_off(netdev); 3282 netdev->irq = pdev->irq; 3283 netdev->mem_start = mmio_start; 3284 netdev->mem_end = mmio_start + mmio_len - 1; 3285 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 3286 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX; 3287 netdev->features |= netdev->hw_features | 3288 NETIF_F_HW_VLAN_CTAG_TX; 3289 netdev->vlan_features |= netdev->features & VLAN_FEAT; 3290 if (pci_using_dac) 3291 netdev->features |= NETIF_F_HIGHDMA; 3292 3293 netdev->netdev_ops = &cxgb_netdev_ops; 3294 netdev->ethtool_ops = &cxgb_ethtool_ops; 3295 } 3296 3297 pci_set_drvdata(pdev, adapter); 3298 if (t3_prep_adapter(adapter, ai, 1) < 0) { 3299 err = -ENODEV; 3300 goto out_free_dev; 3301 } 3302 3303 /* 3304 * The card is now ready to go. If any errors occur during device 3305 * registration we do not fail the whole card but rather proceed only 3306 * with the ports we manage to register successfully. However we must 3307 * register at least one net device. 3308 */ 3309 for_each_port(adapter, i) { 3310 err = register_netdev(adapter->port[i]); 3311 if (err) 3312 dev_warn(&pdev->dev, 3313 "cannot register net device %s, skipping\n", 3314 adapter->port[i]->name); 3315 else { 3316 /* 3317 * Change the name we use for messages to the name of 3318 * the first successfully registered interface. 3319 */ 3320 if (!adapter->registered_device_map) 3321 adapter->name = adapter->port[i]->name; 3322 3323 __set_bit(i, &adapter->registered_device_map); 3324 } 3325 } 3326 if (!adapter->registered_device_map) { 3327 dev_err(&pdev->dev, "could not register any net devices\n"); 3328 goto out_free_dev; 3329 } 3330 3331 for_each_port(adapter, i) 3332 cxgb3_init_iscsi_mac(adapter->port[i]); 3333 3334 /* Driver's ready. Reflect it on LEDs */ 3335 t3_led_ready(adapter); 3336 3337 if (is_offload(adapter)) { 3338 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); 3339 cxgb3_adapter_ofld(adapter); 3340 } 3341 3342 /* See what interrupts we'll be using */ 3343 if (msi > 1 && cxgb_enable_msix(adapter) == 0) 3344 adapter->flags |= USING_MSIX; 3345 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3346 adapter->flags |= USING_MSI; 3347 3348 set_nqsets(adapter); 3349 3350 err = sysfs_create_group(&adapter->port[0]->dev.kobj, 3351 &cxgb3_attr_group); 3352 3353 print_port_info(adapter, ai); 3354 return 0; 3355 3356 out_free_dev: 3357 iounmap(adapter->regs); 3358 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i) 3359 if (adapter->port[i]) 3360 free_netdev(adapter->port[i]); 3361 3362 out_free_adapter: 3363 kfree(adapter); 3364 3365 out_release_regions: 3366 pci_release_regions(pdev); 3367 out_disable_device: 3368 pci_disable_device(pdev); 3369 out: 3370 return err; 3371 } 3372 3373 static void remove_one(struct pci_dev *pdev) 3374 { 3375 struct adapter *adapter = pci_get_drvdata(pdev); 3376 3377 if (adapter) { 3378 int i; 3379 3380 t3_sge_stop(adapter); 3381 sysfs_remove_group(&adapter->port[0]->dev.kobj, 3382 &cxgb3_attr_group); 3383 3384 if (is_offload(adapter)) { 3385 cxgb3_adapter_unofld(adapter); 3386 if (test_bit(OFFLOAD_DEVMAP_BIT, 3387 &adapter->open_device_map)) 3388 offload_close(&adapter->tdev); 3389 } 3390 3391 for_each_port(adapter, i) 3392 if (test_bit(i, &adapter->registered_device_map)) 3393 unregister_netdev(adapter->port[i]); 3394 3395 t3_stop_sge_timers(adapter); 3396 t3_free_sge_resources(adapter); 3397 cxgb_disable_msi(adapter); 3398 3399 for_each_port(adapter, i) 3400 if (adapter->port[i]) 3401 free_netdev(adapter->port[i]); 3402 3403 iounmap(adapter->regs); 3404 if (adapter->nofail_skb) 3405 kfree_skb(adapter->nofail_skb); 3406 kfree(adapter); 3407 pci_release_regions(pdev); 3408 pci_disable_device(pdev); 3409 } 3410 } 3411 3412 static struct pci_driver driver = { 3413 .name = DRV_NAME, 3414 .id_table = cxgb3_pci_tbl, 3415 .probe = init_one, 3416 .remove = remove_one, 3417 .err_handler = &t3_err_handler, 3418 }; 3419 3420 static int __init cxgb3_init_module(void) 3421 { 3422 int ret; 3423 3424 cxgb3_offload_init(); 3425 3426 ret = pci_register_driver(&driver); 3427 return ret; 3428 } 3429 3430 static void __exit cxgb3_cleanup_module(void) 3431 { 3432 pci_unregister_driver(&driver); 3433 if (cxgb3_wq) 3434 destroy_workqueue(cxgb3_wq); 3435 } 3436 3437 module_init(cxgb3_init_module); 3438 module_exit(cxgb3_cleanup_module); 3439