1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/init.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/if_vlan.h> 40 #include <linux/mdio.h> 41 #include <linux/sockios.h> 42 #include <linux/workqueue.h> 43 #include <linux/proc_fs.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/firmware.h> 46 #include <linux/log2.h> 47 #include <linux/stringify.h> 48 #include <linux/sched.h> 49 #include <linux/slab.h> 50 #include <asm/uaccess.h> 51 52 #include "common.h" 53 #include "cxgb3_ioctl.h" 54 #include "regs.h" 55 #include "cxgb3_offload.h" 56 #include "version.h" 57 58 #include "cxgb3_ctl_defs.h" 59 #include "t3_cpl.h" 60 #include "firmware_exports.h" 61 62 enum { 63 MAX_TXQ_ENTRIES = 16384, 64 MAX_CTRL_TXQ_ENTRIES = 1024, 65 MAX_RSPQ_ENTRIES = 16384, 66 MAX_RX_BUFFERS = 16384, 67 MAX_RX_JUMBO_BUFFERS = 16384, 68 MIN_TXQ_ENTRIES = 4, 69 MIN_CTRL_TXQ_ENTRIES = 4, 70 MIN_RSPQ_ENTRIES = 32, 71 MIN_FL_ENTRIES = 32 72 }; 73 74 #define PORT_MASK ((1 << MAX_NPORTS) - 1) 75 76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 79 80 #define EEPROM_MAGIC 0x38E2F10C 81 82 #define CH_DEVICE(devid, idx) \ 83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 84 85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = { 86 CH_DEVICE(0x20, 0), /* PE9000 */ 87 CH_DEVICE(0x21, 1), /* T302E */ 88 CH_DEVICE(0x22, 2), /* T310E */ 89 CH_DEVICE(0x23, 3), /* T320X */ 90 CH_DEVICE(0x24, 1), /* T302X */ 91 CH_DEVICE(0x25, 3), /* T320E */ 92 CH_DEVICE(0x26, 2), /* T310X */ 93 CH_DEVICE(0x30, 2), /* T3B10 */ 94 CH_DEVICE(0x31, 3), /* T3B20 */ 95 CH_DEVICE(0x32, 1), /* T3B02 */ 96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */ 97 CH_DEVICE(0x36, 3), /* S320E-CR */ 98 CH_DEVICE(0x37, 7), /* N320E-G2 */ 99 {0,} 100 }; 101 102 MODULE_DESCRIPTION(DRV_DESC); 103 MODULE_AUTHOR("Chelsio Communications"); 104 MODULE_LICENSE("Dual BSD/GPL"); 105 MODULE_VERSION(DRV_VERSION); 106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); 107 108 static int dflt_msg_enable = DFLT_MSG_ENABLE; 109 110 module_param(dflt_msg_enable, int, 0644); 111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); 112 113 /* 114 * The driver uses the best interrupt scheme available on a platform in the 115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which 116 * of these schemes the driver may consider as follows: 117 * 118 * msi = 2: choose from among all three options 119 * msi = 1: only consider MSI and pin interrupts 120 * msi = 0: force pin interrupts 121 */ 122 static int msi = 2; 123 124 module_param(msi, int, 0644); 125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); 126 127 /* 128 * The driver enables offload as a default. 129 * To disable it, use ofld_disable = 1. 130 */ 131 132 static int ofld_disable = 0; 133 134 module_param(ofld_disable, int, 0644); 135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); 136 137 /* 138 * We have work elements that we need to cancel when an interface is taken 139 * down. Normally the work elements would be executed by keventd but that 140 * can deadlock because of linkwatch. If our close method takes the rtnl 141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch 142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting 143 * for our work to complete. Get our own work queue to solve this. 144 */ 145 struct workqueue_struct *cxgb3_wq; 146 147 /** 148 * link_report - show link status and link speed/duplex 149 * @p: the port whose settings are to be reported 150 * 151 * Shows the link status, speed, and duplex of a port. 152 */ 153 static void link_report(struct net_device *dev) 154 { 155 if (!netif_carrier_ok(dev)) 156 printk(KERN_INFO "%s: link down\n", dev->name); 157 else { 158 const char *s = "10Mbps"; 159 const struct port_info *p = netdev_priv(dev); 160 161 switch (p->link_config.speed) { 162 case SPEED_10000: 163 s = "10Gbps"; 164 break; 165 case SPEED_1000: 166 s = "1000Mbps"; 167 break; 168 case SPEED_100: 169 s = "100Mbps"; 170 break; 171 } 172 173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s, 174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half"); 175 } 176 } 177 178 static void enable_tx_fifo_drain(struct adapter *adapter, 179 struct port_info *pi) 180 { 181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0, 182 F_ENDROPPKT); 183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0); 184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN); 185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN); 186 } 187 188 static void disable_tx_fifo_drain(struct adapter *adapter, 189 struct port_info *pi) 190 { 191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 192 F_ENDROPPKT, 0); 193 } 194 195 void t3_os_link_fault(struct adapter *adap, int port_id, int state) 196 { 197 struct net_device *dev = adap->port[port_id]; 198 struct port_info *pi = netdev_priv(dev); 199 200 if (state == netif_carrier_ok(dev)) 201 return; 202 203 if (state) { 204 struct cmac *mac = &pi->mac; 205 206 netif_carrier_on(dev); 207 208 disable_tx_fifo_drain(adap, pi); 209 210 /* Clear local faults */ 211 t3_xgm_intr_disable(adap, pi->port_id); 212 t3_read_reg(adap, A_XGM_INT_STATUS + 213 pi->mac.offset); 214 t3_write_reg(adap, 215 A_XGM_INT_CAUSE + pi->mac.offset, 216 F_XGM_INT); 217 218 t3_set_reg_field(adap, 219 A_XGM_INT_ENABLE + 220 pi->mac.offset, 221 F_XGM_INT, F_XGM_INT); 222 t3_xgm_intr_enable(adap, pi->port_id); 223 224 t3_mac_enable(mac, MAC_DIRECTION_TX); 225 } else { 226 netif_carrier_off(dev); 227 228 /* Flush TX FIFO */ 229 enable_tx_fifo_drain(adap, pi); 230 } 231 link_report(dev); 232 } 233 234 /** 235 * t3_os_link_changed - handle link status changes 236 * @adapter: the adapter associated with the link change 237 * @port_id: the port index whose limk status has changed 238 * @link_stat: the new status of the link 239 * @speed: the new speed setting 240 * @duplex: the new duplex setting 241 * @pause: the new flow-control setting 242 * 243 * This is the OS-dependent handler for link status changes. The OS 244 * neutral handler takes care of most of the processing for these events, 245 * then calls this handler for any OS-specific processing. 246 */ 247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, 248 int speed, int duplex, int pause) 249 { 250 struct net_device *dev = adapter->port[port_id]; 251 struct port_info *pi = netdev_priv(dev); 252 struct cmac *mac = &pi->mac; 253 254 /* Skip changes from disabled ports. */ 255 if (!netif_running(dev)) 256 return; 257 258 if (link_stat != netif_carrier_ok(dev)) { 259 if (link_stat) { 260 disable_tx_fifo_drain(adapter, pi); 261 262 t3_mac_enable(mac, MAC_DIRECTION_RX); 263 264 /* Clear local faults */ 265 t3_xgm_intr_disable(adapter, pi->port_id); 266 t3_read_reg(adapter, A_XGM_INT_STATUS + 267 pi->mac.offset); 268 t3_write_reg(adapter, 269 A_XGM_INT_CAUSE + pi->mac.offset, 270 F_XGM_INT); 271 272 t3_set_reg_field(adapter, 273 A_XGM_INT_ENABLE + pi->mac.offset, 274 F_XGM_INT, F_XGM_INT); 275 t3_xgm_intr_enable(adapter, pi->port_id); 276 277 netif_carrier_on(dev); 278 } else { 279 netif_carrier_off(dev); 280 281 t3_xgm_intr_disable(adapter, pi->port_id); 282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 283 t3_set_reg_field(adapter, 284 A_XGM_INT_ENABLE + pi->mac.offset, 285 F_XGM_INT, 0); 286 287 if (is_10G(adapter)) 288 pi->phy.ops->power_down(&pi->phy, 1); 289 290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 291 t3_mac_disable(mac, MAC_DIRECTION_RX); 292 t3_link_start(&pi->phy, mac, &pi->link_config); 293 294 /* Flush TX FIFO */ 295 enable_tx_fifo_drain(adapter, pi); 296 } 297 298 link_report(dev); 299 } 300 } 301 302 /** 303 * t3_os_phymod_changed - handle PHY module changes 304 * @phy: the PHY reporting the module change 305 * @mod_type: new module type 306 * 307 * This is the OS-dependent handler for PHY module changes. It is 308 * invoked when a PHY module is removed or inserted for any OS-specific 309 * processing. 310 */ 311 void t3_os_phymod_changed(struct adapter *adap, int port_id) 312 { 313 static const char *mod_str[] = { 314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown" 315 }; 316 317 const struct net_device *dev = adap->port[port_id]; 318 const struct port_info *pi = netdev_priv(dev); 319 320 if (pi->phy.modtype == phy_modtype_none) 321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name); 322 else 323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name, 324 mod_str[pi->phy.modtype]); 325 } 326 327 static void cxgb_set_rxmode(struct net_device *dev) 328 { 329 struct port_info *pi = netdev_priv(dev); 330 331 t3_mac_set_rx_mode(&pi->mac, dev); 332 } 333 334 /** 335 * link_start - enable a port 336 * @dev: the device to enable 337 * 338 * Performs the MAC and PHY actions needed to enable a port. 339 */ 340 static void link_start(struct net_device *dev) 341 { 342 struct port_info *pi = netdev_priv(dev); 343 struct cmac *mac = &pi->mac; 344 345 t3_mac_reset(mac); 346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX); 347 t3_mac_set_mtu(mac, dev->mtu); 348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr); 350 t3_mac_set_rx_mode(mac, dev); 351 t3_link_start(&pi->phy, mac, &pi->link_config); 352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 353 } 354 355 static inline void cxgb_disable_msi(struct adapter *adapter) 356 { 357 if (adapter->flags & USING_MSIX) { 358 pci_disable_msix(adapter->pdev); 359 adapter->flags &= ~USING_MSIX; 360 } else if (adapter->flags & USING_MSI) { 361 pci_disable_msi(adapter->pdev); 362 adapter->flags &= ~USING_MSI; 363 } 364 } 365 366 /* 367 * Interrupt handler for asynchronous events used with MSI-X. 368 */ 369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie) 370 { 371 t3_slow_intr_handler(cookie); 372 return IRQ_HANDLED; 373 } 374 375 /* 376 * Name the MSI-X interrupts. 377 */ 378 static void name_msix_vecs(struct adapter *adap) 379 { 380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1; 381 382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name); 383 adap->msix_info[0].desc[n] = 0; 384 385 for_each_port(adap, j) { 386 struct net_device *d = adap->port[j]; 387 const struct port_info *pi = netdev_priv(d); 388 389 for (i = 0; i < pi->nqsets; i++, msi_idx++) { 390 snprintf(adap->msix_info[msi_idx].desc, n, 391 "%s-%d", d->name, pi->first_qset + i); 392 adap->msix_info[msi_idx].desc[n] = 0; 393 } 394 } 395 } 396 397 static int request_msix_data_irqs(struct adapter *adap) 398 { 399 int i, j, err, qidx = 0; 400 401 for_each_port(adap, i) { 402 int nqsets = adap2pinfo(adap, i)->nqsets; 403 404 for (j = 0; j < nqsets; ++j) { 405 err = request_irq(adap->msix_info[qidx + 1].vec, 406 t3_intr_handler(adap, 407 adap->sge.qs[qidx]. 408 rspq.polling), 0, 409 adap->msix_info[qidx + 1].desc, 410 &adap->sge.qs[qidx]); 411 if (err) { 412 while (--qidx >= 0) 413 free_irq(adap->msix_info[qidx + 1].vec, 414 &adap->sge.qs[qidx]); 415 return err; 416 } 417 qidx++; 418 } 419 } 420 return 0; 421 } 422 423 static void free_irq_resources(struct adapter *adapter) 424 { 425 if (adapter->flags & USING_MSIX) { 426 int i, n = 0; 427 428 free_irq(adapter->msix_info[0].vec, adapter); 429 for_each_port(adapter, i) 430 n += adap2pinfo(adapter, i)->nqsets; 431 432 for (i = 0; i < n; ++i) 433 free_irq(adapter->msix_info[i + 1].vec, 434 &adapter->sge.qs[i]); 435 } else 436 free_irq(adapter->pdev->irq, adapter); 437 } 438 439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt, 440 unsigned long n) 441 { 442 int attempts = 10; 443 444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) { 445 if (!--attempts) 446 return -ETIMEDOUT; 447 msleep(10); 448 } 449 return 0; 450 } 451 452 static int init_tp_parity(struct adapter *adap) 453 { 454 int i; 455 struct sk_buff *skb; 456 struct cpl_set_tcb_field *greq; 457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts; 458 459 t3_tp_set_offload_mode(adap, 1); 460 461 for (i = 0; i < 16; i++) { 462 struct cpl_smt_write_req *req; 463 464 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 465 if (!skb) 466 skb = adap->nofail_skb; 467 if (!skb) 468 goto alloc_skb_fail; 469 470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req)); 471 memset(req, 0, sizeof(*req)); 472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i)); 474 req->mtu_idx = NMTUS - 1; 475 req->iff = i; 476 t3_mgmt_tx(adap, skb); 477 if (skb == adap->nofail_skb) { 478 await_mgmt_replies(adap, cnt, i + 1); 479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 480 if (!adap->nofail_skb) 481 goto alloc_skb_fail; 482 } 483 } 484 485 for (i = 0; i < 2048; i++) { 486 struct cpl_l2t_write_req *req; 487 488 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 489 if (!skb) 490 skb = adap->nofail_skb; 491 if (!skb) 492 goto alloc_skb_fail; 493 494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 495 memset(req, 0, sizeof(*req)); 496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i)); 498 req->params = htonl(V_L2T_W_IDX(i)); 499 t3_mgmt_tx(adap, skb); 500 if (skb == adap->nofail_skb) { 501 await_mgmt_replies(adap, cnt, 16 + i + 1); 502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 503 if (!adap->nofail_skb) 504 goto alloc_skb_fail; 505 } 506 } 507 508 for (i = 0; i < 2048; i++) { 509 struct cpl_rte_write_req *req; 510 511 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 512 if (!skb) 513 skb = adap->nofail_skb; 514 if (!skb) 515 goto alloc_skb_fail; 516 517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req)); 518 memset(req, 0, sizeof(*req)); 519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i)); 521 req->l2t_idx = htonl(V_L2T_W_IDX(i)); 522 t3_mgmt_tx(adap, skb); 523 if (skb == adap->nofail_skb) { 524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1); 525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 526 if (!adap->nofail_skb) 527 goto alloc_skb_fail; 528 } 529 } 530 531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 532 if (!skb) 533 skb = adap->nofail_skb; 534 if (!skb) 535 goto alloc_skb_fail; 536 537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq)); 538 memset(greq, 0, sizeof(*greq)); 539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0)); 541 greq->mask = cpu_to_be64(1); 542 t3_mgmt_tx(adap, skb); 543 544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 545 if (skb == adap->nofail_skb) { 546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 548 } 549 550 t3_tp_set_offload_mode(adap, 0); 551 return i; 552 553 alloc_skb_fail: 554 t3_tp_set_offload_mode(adap, 0); 555 return -ENOMEM; 556 } 557 558 /** 559 * setup_rss - configure RSS 560 * @adap: the adapter 561 * 562 * Sets up RSS to distribute packets to multiple receive queues. We 563 * configure the RSS CPU lookup table to distribute to the number of HW 564 * receive queues, and the response queue lookup table to narrow that 565 * down to the response queues actually configured for each port. 566 * We always configure the RSS mapping for two ports since the mapping 567 * table has plenty of entries. 568 */ 569 static void setup_rss(struct adapter *adap) 570 { 571 int i; 572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; 573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; 574 u8 cpus[SGE_QSETS + 1]; 575 u16 rspq_map[RSS_TABLE_SIZE]; 576 577 for (i = 0; i < SGE_QSETS; ++i) 578 cpus[i] = i; 579 cpus[SGE_QSETS] = 0xff; /* terminator */ 580 581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { 582 rspq_map[i] = i % nq0; 583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; 584 } 585 586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | 587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | 588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map); 589 } 590 591 static void ring_dbs(struct adapter *adap) 592 { 593 int i, j; 594 595 for (i = 0; i < SGE_QSETS; i++) { 596 struct sge_qset *qs = &adap->sge.qs[i]; 597 598 if (qs->adap) 599 for (j = 0; j < SGE_TXQ_PER_SET; j++) 600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id)); 601 } 602 } 603 604 static void init_napi(struct adapter *adap) 605 { 606 int i; 607 608 for (i = 0; i < SGE_QSETS; i++) { 609 struct sge_qset *qs = &adap->sge.qs[i]; 610 611 if (qs->adap) 612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll, 613 64); 614 } 615 616 /* 617 * netif_napi_add() can be called only once per napi_struct because it 618 * adds each new napi_struct to a list. Be careful not to call it a 619 * second time, e.g., during EEH recovery, by making a note of it. 620 */ 621 adap->flags |= NAPI_INIT; 622 } 623 624 /* 625 * Wait until all NAPI handlers are descheduled. This includes the handlers of 626 * both netdevices representing interfaces and the dummy ones for the extra 627 * queues. 628 */ 629 static void quiesce_rx(struct adapter *adap) 630 { 631 int i; 632 633 for (i = 0; i < SGE_QSETS; i++) 634 if (adap->sge.qs[i].adap) 635 napi_disable(&adap->sge.qs[i].napi); 636 } 637 638 static void enable_all_napi(struct adapter *adap) 639 { 640 int i; 641 for (i = 0; i < SGE_QSETS; i++) 642 if (adap->sge.qs[i].adap) 643 napi_enable(&adap->sge.qs[i].napi); 644 } 645 646 /** 647 * setup_sge_qsets - configure SGE Tx/Rx/response queues 648 * @adap: the adapter 649 * 650 * Determines how many sets of SGE queues to use and initializes them. 651 * We support multiple queue sets per port if we have MSI-X, otherwise 652 * just one queue set per port. 653 */ 654 static int setup_sge_qsets(struct adapter *adap) 655 { 656 int i, j, err, irq_idx = 0, qset_idx = 0; 657 unsigned int ntxq = SGE_TXQ_PER_SET; 658 659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) 660 irq_idx = -1; 661 662 for_each_port(adap, i) { 663 struct net_device *dev = adap->port[i]; 664 struct port_info *pi = netdev_priv(dev); 665 666 pi->qs = &adap->sge.qs[pi->first_qset]; 667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { 668 err = t3_sge_alloc_qset(adap, qset_idx, 1, 669 (adap->flags & USING_MSIX) ? qset_idx + 1 : 670 irq_idx, 671 &adap->params.sge.qset[qset_idx], ntxq, dev, 672 netdev_get_tx_queue(dev, j)); 673 if (err) { 674 t3_free_sge_resources(adap); 675 return err; 676 } 677 } 678 } 679 680 return 0; 681 } 682 683 static ssize_t attr_show(struct device *d, char *buf, 684 ssize_t(*format) (struct net_device *, char *)) 685 { 686 ssize_t len; 687 688 /* Synchronize with ioctls that may shut down the device */ 689 rtnl_lock(); 690 len = (*format) (to_net_dev(d), buf); 691 rtnl_unlock(); 692 return len; 693 } 694 695 static ssize_t attr_store(struct device *d, 696 const char *buf, size_t len, 697 ssize_t(*set) (struct net_device *, unsigned int), 698 unsigned int min_val, unsigned int max_val) 699 { 700 char *endp; 701 ssize_t ret; 702 unsigned int val; 703 704 if (!capable(CAP_NET_ADMIN)) 705 return -EPERM; 706 707 val = simple_strtoul(buf, &endp, 0); 708 if (endp == buf || val < min_val || val > max_val) 709 return -EINVAL; 710 711 rtnl_lock(); 712 ret = (*set) (to_net_dev(d), val); 713 if (!ret) 714 ret = len; 715 rtnl_unlock(); 716 return ret; 717 } 718 719 #define CXGB3_SHOW(name, val_expr) \ 720 static ssize_t format_##name(struct net_device *dev, char *buf) \ 721 { \ 722 struct port_info *pi = netdev_priv(dev); \ 723 struct adapter *adap = pi->adapter; \ 724 return sprintf(buf, "%u\n", val_expr); \ 725 } \ 726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 727 char *buf) \ 728 { \ 729 return attr_show(d, buf, format_##name); \ 730 } 731 732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val) 733 { 734 struct port_info *pi = netdev_priv(dev); 735 struct adapter *adap = pi->adapter; 736 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0; 737 738 if (adap->flags & FULL_INIT_DONE) 739 return -EBUSY; 740 if (val && adap->params.rev == 0) 741 return -EINVAL; 742 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 743 min_tids) 744 return -EINVAL; 745 adap->params.mc5.nfilters = val; 746 return 0; 747 } 748 749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr, 750 const char *buf, size_t len) 751 { 752 return attr_store(d, buf, len, set_nfilters, 0, ~0); 753 } 754 755 static ssize_t set_nservers(struct net_device *dev, unsigned int val) 756 { 757 struct port_info *pi = netdev_priv(dev); 758 struct adapter *adap = pi->adapter; 759 760 if (adap->flags & FULL_INIT_DONE) 761 return -EBUSY; 762 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters - 763 MC5_MIN_TIDS) 764 return -EINVAL; 765 adap->params.mc5.nservers = val; 766 return 0; 767 } 768 769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr, 770 const char *buf, size_t len) 771 { 772 return attr_store(d, buf, len, set_nservers, 0, ~0); 773 } 774 775 #define CXGB3_ATTR_R(name, val_expr) \ 776 CXGB3_SHOW(name, val_expr) \ 777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL) 778 779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \ 780 CXGB3_SHOW(name, val_expr) \ 781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method) 782 783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); 784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); 785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); 786 787 static struct attribute *cxgb3_attrs[] = { 788 &dev_attr_cam_size.attr, 789 &dev_attr_nfilters.attr, 790 &dev_attr_nservers.attr, 791 NULL 792 }; 793 794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs }; 795 796 static ssize_t tm_attr_show(struct device *d, 797 char *buf, int sched) 798 { 799 struct port_info *pi = netdev_priv(to_net_dev(d)); 800 struct adapter *adap = pi->adapter; 801 unsigned int v, addr, bpt, cpt; 802 ssize_t len; 803 804 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 805 rtnl_lock(); 806 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 807 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 808 if (sched & 1) 809 v >>= 16; 810 bpt = (v >> 8) & 0xff; 811 cpt = v & 0xff; 812 if (!cpt) 813 len = sprintf(buf, "disabled\n"); 814 else { 815 v = (adap->params.vpd.cclk * 1000) / cpt; 816 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); 817 } 818 rtnl_unlock(); 819 return len; 820 } 821 822 static ssize_t tm_attr_store(struct device *d, 823 const char *buf, size_t len, int sched) 824 { 825 struct port_info *pi = netdev_priv(to_net_dev(d)); 826 struct adapter *adap = pi->adapter; 827 unsigned int val; 828 char *endp; 829 ssize_t ret; 830 831 if (!capable(CAP_NET_ADMIN)) 832 return -EPERM; 833 834 val = simple_strtoul(buf, &endp, 0); 835 if (endp == buf || val > 10000000) 836 return -EINVAL; 837 838 rtnl_lock(); 839 ret = t3_config_sched(adap, val, sched); 840 if (!ret) 841 ret = len; 842 rtnl_unlock(); 843 return ret; 844 } 845 846 #define TM_ATTR(name, sched) \ 847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 848 char *buf) \ 849 { \ 850 return tm_attr_show(d, buf, sched); \ 851 } \ 852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \ 853 const char *buf, size_t len) \ 854 { \ 855 return tm_attr_store(d, buf, len, sched); \ 856 } \ 857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name) 858 859 TM_ATTR(sched0, 0); 860 TM_ATTR(sched1, 1); 861 TM_ATTR(sched2, 2); 862 TM_ATTR(sched3, 3); 863 TM_ATTR(sched4, 4); 864 TM_ATTR(sched5, 5); 865 TM_ATTR(sched6, 6); 866 TM_ATTR(sched7, 7); 867 868 static struct attribute *offload_attrs[] = { 869 &dev_attr_sched0.attr, 870 &dev_attr_sched1.attr, 871 &dev_attr_sched2.attr, 872 &dev_attr_sched3.attr, 873 &dev_attr_sched4.attr, 874 &dev_attr_sched5.attr, 875 &dev_attr_sched6.attr, 876 &dev_attr_sched7.attr, 877 NULL 878 }; 879 880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs }; 881 882 /* 883 * Sends an sk_buff to an offload queue driver 884 * after dealing with any active network taps. 885 */ 886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 887 { 888 int ret; 889 890 local_bh_disable(); 891 ret = t3_offload_tx(tdev, skb); 892 local_bh_enable(); 893 return ret; 894 } 895 896 static int write_smt_entry(struct adapter *adapter, int idx) 897 { 898 struct cpl_smt_write_req *req; 899 struct port_info *pi = netdev_priv(adapter->port[idx]); 900 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); 901 902 if (!skb) 903 return -ENOMEM; 904 905 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req)); 906 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 907 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); 908 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ 909 req->iff = idx; 910 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); 911 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN); 912 skb->priority = 1; 913 offload_tx(&adapter->tdev, skb); 914 return 0; 915 } 916 917 static int init_smt(struct adapter *adapter) 918 { 919 int i; 920 921 for_each_port(adapter, i) 922 write_smt_entry(adapter, i); 923 return 0; 924 } 925 926 static void init_port_mtus(struct adapter *adapter) 927 { 928 unsigned int mtus = adapter->port[0]->mtu; 929 930 if (adapter->port[1]) 931 mtus |= adapter->port[1]->mtu << 16; 932 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); 933 } 934 935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo, 936 int hi, int port) 937 { 938 struct sk_buff *skb; 939 struct mngt_pktsched_wr *req; 940 int ret; 941 942 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 943 if (!skb) 944 skb = adap->nofail_skb; 945 if (!skb) 946 return -ENOMEM; 947 948 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req)); 949 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); 950 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; 951 req->sched = sched; 952 req->idx = qidx; 953 req->min = lo; 954 req->max = hi; 955 req->binding = port; 956 ret = t3_mgmt_tx(adap, skb); 957 if (skb == adap->nofail_skb) { 958 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field), 959 GFP_KERNEL); 960 if (!adap->nofail_skb) 961 ret = -ENOMEM; 962 } 963 964 return ret; 965 } 966 967 static int bind_qsets(struct adapter *adap) 968 { 969 int i, j, err = 0; 970 971 for_each_port(adap, i) { 972 const struct port_info *pi = adap2pinfo(adap, i); 973 974 for (j = 0; j < pi->nqsets; ++j) { 975 int ret = send_pktsched_cmd(adap, 1, 976 pi->first_qset + j, -1, 977 -1, i); 978 if (ret) 979 err = ret; 980 } 981 } 982 983 return err; 984 } 985 986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \ 987 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO) 988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin" 989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \ 990 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO) 991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin" 992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin" 993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin" 994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin" 995 MODULE_FIRMWARE(FW_FNAME); 996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin"); 997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin"); 998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME); 999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME); 1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME); 1001 1002 static inline const char *get_edc_fw_name(int edc_idx) 1003 { 1004 const char *fw_name = NULL; 1005 1006 switch (edc_idx) { 1007 case EDC_OPT_AEL2005: 1008 fw_name = AEL2005_OPT_EDC_NAME; 1009 break; 1010 case EDC_TWX_AEL2005: 1011 fw_name = AEL2005_TWX_EDC_NAME; 1012 break; 1013 case EDC_TWX_AEL2020: 1014 fw_name = AEL2020_TWX_EDC_NAME; 1015 break; 1016 } 1017 return fw_name; 1018 } 1019 1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size) 1021 { 1022 struct adapter *adapter = phy->adapter; 1023 const struct firmware *fw; 1024 char buf[64]; 1025 u32 csum; 1026 const __be32 *p; 1027 u16 *cache = phy->phy_cache; 1028 int i, ret; 1029 1030 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx)); 1031 1032 ret = request_firmware(&fw, buf, &adapter->pdev->dev); 1033 if (ret < 0) { 1034 dev_err(&adapter->pdev->dev, 1035 "could not upgrade firmware: unable to load %s\n", 1036 buf); 1037 return ret; 1038 } 1039 1040 /* check size, take checksum in account */ 1041 if (fw->size > size + 4) { 1042 CH_ERR(adapter, "firmware image too large %u, expected %d\n", 1043 (unsigned int)fw->size, size + 4); 1044 ret = -EINVAL; 1045 } 1046 1047 /* compute checksum */ 1048 p = (const __be32 *)fw->data; 1049 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++) 1050 csum += ntohl(p[i]); 1051 1052 if (csum != 0xffffffff) { 1053 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1054 csum); 1055 ret = -EINVAL; 1056 } 1057 1058 for (i = 0; i < size / 4 ; i++) { 1059 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16; 1060 *cache++ = be32_to_cpu(p[i]) & 0xffff; 1061 } 1062 1063 release_firmware(fw); 1064 1065 return ret; 1066 } 1067 1068 static int upgrade_fw(struct adapter *adap) 1069 { 1070 int ret; 1071 const struct firmware *fw; 1072 struct device *dev = &adap->pdev->dev; 1073 1074 ret = request_firmware(&fw, FW_FNAME, dev); 1075 if (ret < 0) { 1076 dev_err(dev, "could not upgrade firmware: unable to load %s\n", 1077 FW_FNAME); 1078 return ret; 1079 } 1080 ret = t3_load_fw(adap, fw->data, fw->size); 1081 release_firmware(fw); 1082 1083 if (ret == 0) 1084 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n", 1085 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1086 else 1087 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n", 1088 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1089 1090 return ret; 1091 } 1092 1093 static inline char t3rev2char(struct adapter *adapter) 1094 { 1095 char rev = 0; 1096 1097 switch(adapter->params.rev) { 1098 case T3_REV_B: 1099 case T3_REV_B2: 1100 rev = 'b'; 1101 break; 1102 case T3_REV_C: 1103 rev = 'c'; 1104 break; 1105 } 1106 return rev; 1107 } 1108 1109 static int update_tpsram(struct adapter *adap) 1110 { 1111 const struct firmware *tpsram; 1112 char buf[64]; 1113 struct device *dev = &adap->pdev->dev; 1114 int ret; 1115 char rev; 1116 1117 rev = t3rev2char(adap); 1118 if (!rev) 1119 return 0; 1120 1121 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev); 1122 1123 ret = request_firmware(&tpsram, buf, dev); 1124 if (ret < 0) { 1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n", 1126 buf); 1127 return ret; 1128 } 1129 1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size); 1131 if (ret) 1132 goto release_tpsram; 1133 1134 ret = t3_set_proto_sram(adap, tpsram->data); 1135 if (ret == 0) 1136 dev_info(dev, 1137 "successful update of protocol engine " 1138 "to %d.%d.%d\n", 1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1140 else 1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n", 1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1143 if (ret) 1144 dev_err(dev, "loading protocol SRAM failed\n"); 1145 1146 release_tpsram: 1147 release_firmware(tpsram); 1148 1149 return ret; 1150 } 1151 1152 /** 1153 * t3_synchronize_rx - wait for current Rx processing on a port to complete 1154 * @adap: the adapter 1155 * @p: the port 1156 * 1157 * Ensures that current Rx processing on any of the queues associated with 1158 * the given port completes before returning. We do this by acquiring and 1159 * releasing the locks of the response queues associated with the port. 1160 */ 1161 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) 1162 { 1163 int i; 1164 1165 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) { 1166 struct sge_rspq *q = &adap->sge.qs[i].rspq; 1167 1168 spin_lock_irq(&q->lock); 1169 spin_unlock_irq(&q->lock); 1170 } 1171 } 1172 1173 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features) 1174 { 1175 struct port_info *pi = netdev_priv(dev); 1176 struct adapter *adapter = pi->adapter; 1177 1178 if (adapter->params.rev > 0) { 1179 t3_set_vlan_accel(adapter, 1 << pi->port_id, 1180 features & NETIF_F_HW_VLAN_RX); 1181 } else { 1182 /* single control for all ports */ 1183 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_RX; 1184 1185 for_each_port(adapter, i) 1186 have_vlans |= 1187 adapter->port[i]->features & NETIF_F_HW_VLAN_RX; 1188 1189 t3_set_vlan_accel(adapter, 1, have_vlans); 1190 } 1191 t3_synchronize_rx(adapter, pi); 1192 } 1193 1194 /** 1195 * cxgb_up - enable the adapter 1196 * @adapter: adapter being enabled 1197 * 1198 * Called when the first port is enabled, this function performs the 1199 * actions necessary to make an adapter operational, such as completing 1200 * the initialization of HW modules, and enabling interrupts. 1201 * 1202 * Must be called with the rtnl lock held. 1203 */ 1204 static int cxgb_up(struct adapter *adap) 1205 { 1206 int i, err; 1207 1208 if (!(adap->flags & FULL_INIT_DONE)) { 1209 err = t3_check_fw_version(adap); 1210 if (err == -EINVAL) { 1211 err = upgrade_fw(adap); 1212 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n", 1213 FW_VERSION_MAJOR, FW_VERSION_MINOR, 1214 FW_VERSION_MICRO, err ? "failed" : "succeeded"); 1215 } 1216 1217 err = t3_check_tpsram_version(adap); 1218 if (err == -EINVAL) { 1219 err = update_tpsram(adap); 1220 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n", 1221 TP_VERSION_MAJOR, TP_VERSION_MINOR, 1222 TP_VERSION_MICRO, err ? "failed" : "succeeded"); 1223 } 1224 1225 /* 1226 * Clear interrupts now to catch errors if t3_init_hw fails. 1227 * We clear them again later as initialization may trigger 1228 * conditions that can interrupt. 1229 */ 1230 t3_intr_clear(adap); 1231 1232 err = t3_init_hw(adap, 0); 1233 if (err) 1234 goto out; 1235 1236 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT); 1237 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); 1238 1239 err = setup_sge_qsets(adap); 1240 if (err) 1241 goto out; 1242 1243 for_each_port(adap, i) 1244 cxgb_vlan_mode(adap->port[i], adap->port[i]->features); 1245 1246 setup_rss(adap); 1247 if (!(adap->flags & NAPI_INIT)) 1248 init_napi(adap); 1249 1250 t3_start_sge_timers(adap); 1251 adap->flags |= FULL_INIT_DONE; 1252 } 1253 1254 t3_intr_clear(adap); 1255 1256 if (adap->flags & USING_MSIX) { 1257 name_msix_vecs(adap); 1258 err = request_irq(adap->msix_info[0].vec, 1259 t3_async_intr_handler, 0, 1260 adap->msix_info[0].desc, adap); 1261 if (err) 1262 goto irq_err; 1263 1264 err = request_msix_data_irqs(adap); 1265 if (err) { 1266 free_irq(adap->msix_info[0].vec, adap); 1267 goto irq_err; 1268 } 1269 } else if ((err = request_irq(adap->pdev->irq, 1270 t3_intr_handler(adap, 1271 adap->sge.qs[0].rspq. 1272 polling), 1273 (adap->flags & USING_MSI) ? 1274 0 : IRQF_SHARED, 1275 adap->name, adap))) 1276 goto irq_err; 1277 1278 enable_all_napi(adap); 1279 t3_sge_start(adap); 1280 t3_intr_enable(adap); 1281 1282 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) && 1283 is_offload(adap) && init_tp_parity(adap) == 0) 1284 adap->flags |= TP_PARITY_INIT; 1285 1286 if (adap->flags & TP_PARITY_INIT) { 1287 t3_write_reg(adap, A_TP_INT_CAUSE, 1288 F_CMCACHEPERR | F_ARPLUTPERR); 1289 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff); 1290 } 1291 1292 if (!(adap->flags & QUEUES_BOUND)) { 1293 int ret = bind_qsets(adap); 1294 1295 if (ret < 0) { 1296 CH_ERR(adap, "failed to bind qsets, err %d\n", ret); 1297 t3_intr_disable(adap); 1298 free_irq_resources(adap); 1299 err = ret; 1300 goto out; 1301 } 1302 adap->flags |= QUEUES_BOUND; 1303 } 1304 1305 out: 1306 return err; 1307 irq_err: 1308 CH_ERR(adap, "request_irq failed, err %d\n", err); 1309 goto out; 1310 } 1311 1312 /* 1313 * Release resources when all the ports and offloading have been stopped. 1314 */ 1315 static void cxgb_down(struct adapter *adapter, int on_wq) 1316 { 1317 t3_sge_stop(adapter); 1318 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ 1319 t3_intr_disable(adapter); 1320 spin_unlock_irq(&adapter->work_lock); 1321 1322 free_irq_resources(adapter); 1323 quiesce_rx(adapter); 1324 t3_sge_stop(adapter); 1325 if (!on_wq) 1326 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */ 1327 } 1328 1329 static void schedule_chk_task(struct adapter *adap) 1330 { 1331 unsigned int timeo; 1332 1333 timeo = adap->params.linkpoll_period ? 1334 (HZ * adap->params.linkpoll_period) / 10 : 1335 adap->params.stats_update_period * HZ; 1336 if (timeo) 1337 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); 1338 } 1339 1340 static int offload_open(struct net_device *dev) 1341 { 1342 struct port_info *pi = netdev_priv(dev); 1343 struct adapter *adapter = pi->adapter; 1344 struct t3cdev *tdev = dev2t3cdev(dev); 1345 int adap_up = adapter->open_device_map & PORT_MASK; 1346 int err; 1347 1348 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1349 return 0; 1350 1351 if (!adap_up && (err = cxgb_up(adapter)) < 0) 1352 goto out; 1353 1354 t3_tp_set_offload_mode(adapter, 1); 1355 tdev->lldev = adapter->port[0]; 1356 err = cxgb3_offload_activate(adapter); 1357 if (err) 1358 goto out; 1359 1360 init_port_mtus(adapter); 1361 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, 1362 adapter->params.b_wnd, 1363 adapter->params.rev == 0 ? 1364 adapter->port[0]->mtu : 0xffff); 1365 init_smt(adapter); 1366 1367 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group)) 1368 dev_dbg(&dev->dev, "cannot create sysfs group\n"); 1369 1370 /* Call back all registered clients */ 1371 cxgb3_add_clients(tdev); 1372 1373 out: 1374 /* restore them in case the offload module has changed them */ 1375 if (err) { 1376 t3_tp_set_offload_mode(adapter, 0); 1377 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1378 cxgb3_set_dummy_ops(tdev); 1379 } 1380 return err; 1381 } 1382 1383 static int offload_close(struct t3cdev *tdev) 1384 { 1385 struct adapter *adapter = tdev2adap(tdev); 1386 struct t3c_data *td = T3C_DATA(tdev); 1387 1388 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1389 return 0; 1390 1391 /* Call back all registered clients */ 1392 cxgb3_remove_clients(tdev); 1393 1394 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group); 1395 1396 /* Flush work scheduled while releasing TIDs */ 1397 flush_work_sync(&td->tid_release_task); 1398 1399 tdev->lldev = NULL; 1400 cxgb3_set_dummy_ops(tdev); 1401 t3_tp_set_offload_mode(adapter, 0); 1402 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1403 1404 if (!adapter->open_device_map) 1405 cxgb_down(adapter, 0); 1406 1407 cxgb3_offload_deactivate(adapter); 1408 return 0; 1409 } 1410 1411 static int cxgb_open(struct net_device *dev) 1412 { 1413 struct port_info *pi = netdev_priv(dev); 1414 struct adapter *adapter = pi->adapter; 1415 int other_ports = adapter->open_device_map & PORT_MASK; 1416 int err; 1417 1418 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) 1419 return err; 1420 1421 set_bit(pi->port_id, &adapter->open_device_map); 1422 if (is_offload(adapter) && !ofld_disable) { 1423 err = offload_open(dev); 1424 if (err) 1425 printk(KERN_WARNING 1426 "Could not initialize offload capabilities\n"); 1427 } 1428 1429 netif_set_real_num_tx_queues(dev, pi->nqsets); 1430 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 1431 if (err) 1432 return err; 1433 link_start(dev); 1434 t3_port_intr_enable(adapter, pi->port_id); 1435 netif_tx_start_all_queues(dev); 1436 if (!other_ports) 1437 schedule_chk_task(adapter); 1438 1439 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id); 1440 return 0; 1441 } 1442 1443 static int __cxgb_close(struct net_device *dev, int on_wq) 1444 { 1445 struct port_info *pi = netdev_priv(dev); 1446 struct adapter *adapter = pi->adapter; 1447 1448 1449 if (!adapter->open_device_map) 1450 return 0; 1451 1452 /* Stop link fault interrupts */ 1453 t3_xgm_intr_disable(adapter, pi->port_id); 1454 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 1455 1456 t3_port_intr_disable(adapter, pi->port_id); 1457 netif_tx_stop_all_queues(dev); 1458 pi->phy.ops->power_down(&pi->phy, 1); 1459 netif_carrier_off(dev); 1460 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1461 1462 spin_lock_irq(&adapter->work_lock); /* sync with update task */ 1463 clear_bit(pi->port_id, &adapter->open_device_map); 1464 spin_unlock_irq(&adapter->work_lock); 1465 1466 if (!(adapter->open_device_map & PORT_MASK)) 1467 cancel_delayed_work_sync(&adapter->adap_check_task); 1468 1469 if (!adapter->open_device_map) 1470 cxgb_down(adapter, on_wq); 1471 1472 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id); 1473 return 0; 1474 } 1475 1476 static int cxgb_close(struct net_device *dev) 1477 { 1478 return __cxgb_close(dev, 0); 1479 } 1480 1481 static struct net_device_stats *cxgb_get_stats(struct net_device *dev) 1482 { 1483 struct port_info *pi = netdev_priv(dev); 1484 struct adapter *adapter = pi->adapter; 1485 struct net_device_stats *ns = &pi->netstats; 1486 const struct mac_stats *pstats; 1487 1488 spin_lock(&adapter->stats_lock); 1489 pstats = t3_mac_update_stats(&pi->mac); 1490 spin_unlock(&adapter->stats_lock); 1491 1492 ns->tx_bytes = pstats->tx_octets; 1493 ns->tx_packets = pstats->tx_frames; 1494 ns->rx_bytes = pstats->rx_octets; 1495 ns->rx_packets = pstats->rx_frames; 1496 ns->multicast = pstats->rx_mcast_frames; 1497 1498 ns->tx_errors = pstats->tx_underrun; 1499 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + 1500 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + 1501 pstats->rx_fifo_ovfl; 1502 1503 /* detailed rx_errors */ 1504 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; 1505 ns->rx_over_errors = 0; 1506 ns->rx_crc_errors = pstats->rx_fcs_errs; 1507 ns->rx_frame_errors = pstats->rx_symbol_errs; 1508 ns->rx_fifo_errors = pstats->rx_fifo_ovfl; 1509 ns->rx_missed_errors = pstats->rx_cong_drops; 1510 1511 /* detailed tx_errors */ 1512 ns->tx_aborted_errors = 0; 1513 ns->tx_carrier_errors = 0; 1514 ns->tx_fifo_errors = pstats->tx_underrun; 1515 ns->tx_heartbeat_errors = 0; 1516 ns->tx_window_errors = 0; 1517 return ns; 1518 } 1519 1520 static u32 get_msglevel(struct net_device *dev) 1521 { 1522 struct port_info *pi = netdev_priv(dev); 1523 struct adapter *adapter = pi->adapter; 1524 1525 return adapter->msg_enable; 1526 } 1527 1528 static void set_msglevel(struct net_device *dev, u32 val) 1529 { 1530 struct port_info *pi = netdev_priv(dev); 1531 struct adapter *adapter = pi->adapter; 1532 1533 adapter->msg_enable = val; 1534 } 1535 1536 static char stats_strings[][ETH_GSTRING_LEN] = { 1537 "TxOctetsOK ", 1538 "TxFramesOK ", 1539 "TxMulticastFramesOK", 1540 "TxBroadcastFramesOK", 1541 "TxPauseFrames ", 1542 "TxUnderrun ", 1543 "TxExtUnderrun ", 1544 1545 "TxFrames64 ", 1546 "TxFrames65To127 ", 1547 "TxFrames128To255 ", 1548 "TxFrames256To511 ", 1549 "TxFrames512To1023 ", 1550 "TxFrames1024To1518 ", 1551 "TxFrames1519ToMax ", 1552 1553 "RxOctetsOK ", 1554 "RxFramesOK ", 1555 "RxMulticastFramesOK", 1556 "RxBroadcastFramesOK", 1557 "RxPauseFrames ", 1558 "RxFCSErrors ", 1559 "RxSymbolErrors ", 1560 "RxShortErrors ", 1561 "RxJabberErrors ", 1562 "RxLengthErrors ", 1563 "RxFIFOoverflow ", 1564 1565 "RxFrames64 ", 1566 "RxFrames65To127 ", 1567 "RxFrames128To255 ", 1568 "RxFrames256To511 ", 1569 "RxFrames512To1023 ", 1570 "RxFrames1024To1518 ", 1571 "RxFrames1519ToMax ", 1572 1573 "PhyFIFOErrors ", 1574 "TSO ", 1575 "VLANextractions ", 1576 "VLANinsertions ", 1577 "TxCsumOffload ", 1578 "RxCsumGood ", 1579 "LroAggregated ", 1580 "LroFlushed ", 1581 "LroNoDesc ", 1582 "RxDrops ", 1583 1584 "CheckTXEnToggled ", 1585 "CheckResets ", 1586 1587 "LinkFaults ", 1588 }; 1589 1590 static int get_sset_count(struct net_device *dev, int sset) 1591 { 1592 switch (sset) { 1593 case ETH_SS_STATS: 1594 return ARRAY_SIZE(stats_strings); 1595 default: 1596 return -EOPNOTSUPP; 1597 } 1598 } 1599 1600 #define T3_REGMAP_SIZE (3 * 1024) 1601 1602 static int get_regs_len(struct net_device *dev) 1603 { 1604 return T3_REGMAP_SIZE; 1605 } 1606 1607 static int get_eeprom_len(struct net_device *dev) 1608 { 1609 return EEPROMSIZE; 1610 } 1611 1612 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1613 { 1614 struct port_info *pi = netdev_priv(dev); 1615 struct adapter *adapter = pi->adapter; 1616 u32 fw_vers = 0; 1617 u32 tp_vers = 0; 1618 1619 spin_lock(&adapter->stats_lock); 1620 t3_get_fw_version(adapter, &fw_vers); 1621 t3_get_tp_version(adapter, &tp_vers); 1622 spin_unlock(&adapter->stats_lock); 1623 1624 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1625 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1626 strlcpy(info->bus_info, pci_name(adapter->pdev), 1627 sizeof(info->bus_info)); 1628 if (fw_vers) 1629 snprintf(info->fw_version, sizeof(info->fw_version), 1630 "%s %u.%u.%u TP %u.%u.%u", 1631 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N", 1632 G_FW_VERSION_MAJOR(fw_vers), 1633 G_FW_VERSION_MINOR(fw_vers), 1634 G_FW_VERSION_MICRO(fw_vers), 1635 G_TP_VERSION_MAJOR(tp_vers), 1636 G_TP_VERSION_MINOR(tp_vers), 1637 G_TP_VERSION_MICRO(tp_vers)); 1638 } 1639 1640 static void get_strings(struct net_device *dev, u32 stringset, u8 * data) 1641 { 1642 if (stringset == ETH_SS_STATS) 1643 memcpy(data, stats_strings, sizeof(stats_strings)); 1644 } 1645 1646 static unsigned long collect_sge_port_stats(struct adapter *adapter, 1647 struct port_info *p, int idx) 1648 { 1649 int i; 1650 unsigned long tot = 0; 1651 1652 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i) 1653 tot += adapter->sge.qs[i].port_stats[idx]; 1654 return tot; 1655 } 1656 1657 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1658 u64 *data) 1659 { 1660 struct port_info *pi = netdev_priv(dev); 1661 struct adapter *adapter = pi->adapter; 1662 const struct mac_stats *s; 1663 1664 spin_lock(&adapter->stats_lock); 1665 s = t3_mac_update_stats(&pi->mac); 1666 spin_unlock(&adapter->stats_lock); 1667 1668 *data++ = s->tx_octets; 1669 *data++ = s->tx_frames; 1670 *data++ = s->tx_mcast_frames; 1671 *data++ = s->tx_bcast_frames; 1672 *data++ = s->tx_pause; 1673 *data++ = s->tx_underrun; 1674 *data++ = s->tx_fifo_urun; 1675 1676 *data++ = s->tx_frames_64; 1677 *data++ = s->tx_frames_65_127; 1678 *data++ = s->tx_frames_128_255; 1679 *data++ = s->tx_frames_256_511; 1680 *data++ = s->tx_frames_512_1023; 1681 *data++ = s->tx_frames_1024_1518; 1682 *data++ = s->tx_frames_1519_max; 1683 1684 *data++ = s->rx_octets; 1685 *data++ = s->rx_frames; 1686 *data++ = s->rx_mcast_frames; 1687 *data++ = s->rx_bcast_frames; 1688 *data++ = s->rx_pause; 1689 *data++ = s->rx_fcs_errs; 1690 *data++ = s->rx_symbol_errs; 1691 *data++ = s->rx_short; 1692 *data++ = s->rx_jabber; 1693 *data++ = s->rx_too_long; 1694 *data++ = s->rx_fifo_ovfl; 1695 1696 *data++ = s->rx_frames_64; 1697 *data++ = s->rx_frames_65_127; 1698 *data++ = s->rx_frames_128_255; 1699 *data++ = s->rx_frames_256_511; 1700 *data++ = s->rx_frames_512_1023; 1701 *data++ = s->rx_frames_1024_1518; 1702 *data++ = s->rx_frames_1519_max; 1703 1704 *data++ = pi->phy.fifo_errors; 1705 1706 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); 1707 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); 1708 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); 1709 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); 1710 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); 1711 *data++ = 0; 1712 *data++ = 0; 1713 *data++ = 0; 1714 *data++ = s->rx_cong_drops; 1715 1716 *data++ = s->num_toggled; 1717 *data++ = s->num_resets; 1718 1719 *data++ = s->link_faults; 1720 } 1721 1722 static inline void reg_block_dump(struct adapter *ap, void *buf, 1723 unsigned int start, unsigned int end) 1724 { 1725 u32 *p = buf + start; 1726 1727 for (; start <= end; start += sizeof(u32)) 1728 *p++ = t3_read_reg(ap, start); 1729 } 1730 1731 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1732 void *buf) 1733 { 1734 struct port_info *pi = netdev_priv(dev); 1735 struct adapter *ap = pi->adapter; 1736 1737 /* 1738 * Version scheme: 1739 * bits 0..9: chip version 1740 * bits 10..15: chip revision 1741 * bit 31: set for PCIe cards 1742 */ 1743 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); 1744 1745 /* 1746 * We skip the MAC statistics registers because they are clear-on-read. 1747 * Also reading multi-register stats would need to synchronize with the 1748 * periodic mac stats accumulation. Hard to justify the complexity. 1749 */ 1750 memset(buf, 0, T3_REGMAP_SIZE); 1751 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); 1752 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); 1753 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); 1754 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); 1755 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); 1756 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, 1757 XGM_REG(A_XGM_SERDES_STAT3, 1)); 1758 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), 1759 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); 1760 } 1761 1762 static int restart_autoneg(struct net_device *dev) 1763 { 1764 struct port_info *p = netdev_priv(dev); 1765 1766 if (!netif_running(dev)) 1767 return -EAGAIN; 1768 if (p->link_config.autoneg != AUTONEG_ENABLE) 1769 return -EINVAL; 1770 p->phy.ops->autoneg_restart(&p->phy); 1771 return 0; 1772 } 1773 1774 static int set_phys_id(struct net_device *dev, 1775 enum ethtool_phys_id_state state) 1776 { 1777 struct port_info *pi = netdev_priv(dev); 1778 struct adapter *adapter = pi->adapter; 1779 1780 switch (state) { 1781 case ETHTOOL_ID_ACTIVE: 1782 return 1; /* cycle on/off once per second */ 1783 1784 case ETHTOOL_ID_OFF: 1785 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 1786 break; 1787 1788 case ETHTOOL_ID_ON: 1789 case ETHTOOL_ID_INACTIVE: 1790 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 1791 F_GPIO0_OUT_VAL); 1792 } 1793 1794 return 0; 1795 } 1796 1797 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1798 { 1799 struct port_info *p = netdev_priv(dev); 1800 1801 cmd->supported = p->link_config.supported; 1802 cmd->advertising = p->link_config.advertising; 1803 1804 if (netif_carrier_ok(dev)) { 1805 ethtool_cmd_speed_set(cmd, p->link_config.speed); 1806 cmd->duplex = p->link_config.duplex; 1807 } else { 1808 ethtool_cmd_speed_set(cmd, -1); 1809 cmd->duplex = -1; 1810 } 1811 1812 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1813 cmd->phy_address = p->phy.mdio.prtad; 1814 cmd->transceiver = XCVR_EXTERNAL; 1815 cmd->autoneg = p->link_config.autoneg; 1816 cmd->maxtxpkt = 0; 1817 cmd->maxrxpkt = 0; 1818 return 0; 1819 } 1820 1821 static int speed_duplex_to_caps(int speed, int duplex) 1822 { 1823 int cap = 0; 1824 1825 switch (speed) { 1826 case SPEED_10: 1827 if (duplex == DUPLEX_FULL) 1828 cap = SUPPORTED_10baseT_Full; 1829 else 1830 cap = SUPPORTED_10baseT_Half; 1831 break; 1832 case SPEED_100: 1833 if (duplex == DUPLEX_FULL) 1834 cap = SUPPORTED_100baseT_Full; 1835 else 1836 cap = SUPPORTED_100baseT_Half; 1837 break; 1838 case SPEED_1000: 1839 if (duplex == DUPLEX_FULL) 1840 cap = SUPPORTED_1000baseT_Full; 1841 else 1842 cap = SUPPORTED_1000baseT_Half; 1843 break; 1844 case SPEED_10000: 1845 if (duplex == DUPLEX_FULL) 1846 cap = SUPPORTED_10000baseT_Full; 1847 } 1848 return cap; 1849 } 1850 1851 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1852 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1853 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ 1854 ADVERTISED_10000baseT_Full) 1855 1856 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1857 { 1858 struct port_info *p = netdev_priv(dev); 1859 struct link_config *lc = &p->link_config; 1860 1861 if (!(lc->supported & SUPPORTED_Autoneg)) { 1862 /* 1863 * PHY offers a single speed/duplex. See if that's what's 1864 * being requested. 1865 */ 1866 if (cmd->autoneg == AUTONEG_DISABLE) { 1867 u32 speed = ethtool_cmd_speed(cmd); 1868 int cap = speed_duplex_to_caps(speed, cmd->duplex); 1869 if (lc->supported & cap) 1870 return 0; 1871 } 1872 return -EINVAL; 1873 } 1874 1875 if (cmd->autoneg == AUTONEG_DISABLE) { 1876 u32 speed = ethtool_cmd_speed(cmd); 1877 int cap = speed_duplex_to_caps(speed, cmd->duplex); 1878 1879 if (!(lc->supported & cap) || (speed == SPEED_1000)) 1880 return -EINVAL; 1881 lc->requested_speed = speed; 1882 lc->requested_duplex = cmd->duplex; 1883 lc->advertising = 0; 1884 } else { 1885 cmd->advertising &= ADVERTISED_MASK; 1886 cmd->advertising &= lc->supported; 1887 if (!cmd->advertising) 1888 return -EINVAL; 1889 lc->requested_speed = SPEED_INVALID; 1890 lc->requested_duplex = DUPLEX_INVALID; 1891 lc->advertising = cmd->advertising | ADVERTISED_Autoneg; 1892 } 1893 lc->autoneg = cmd->autoneg; 1894 if (netif_running(dev)) 1895 t3_link_start(&p->phy, &p->mac, lc); 1896 return 0; 1897 } 1898 1899 static void get_pauseparam(struct net_device *dev, 1900 struct ethtool_pauseparam *epause) 1901 { 1902 struct port_info *p = netdev_priv(dev); 1903 1904 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; 1905 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; 1906 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; 1907 } 1908 1909 static int set_pauseparam(struct net_device *dev, 1910 struct ethtool_pauseparam *epause) 1911 { 1912 struct port_info *p = netdev_priv(dev); 1913 struct link_config *lc = &p->link_config; 1914 1915 if (epause->autoneg == AUTONEG_DISABLE) 1916 lc->requested_fc = 0; 1917 else if (lc->supported & SUPPORTED_Autoneg) 1918 lc->requested_fc = PAUSE_AUTONEG; 1919 else 1920 return -EINVAL; 1921 1922 if (epause->rx_pause) 1923 lc->requested_fc |= PAUSE_RX; 1924 if (epause->tx_pause) 1925 lc->requested_fc |= PAUSE_TX; 1926 if (lc->autoneg == AUTONEG_ENABLE) { 1927 if (netif_running(dev)) 1928 t3_link_start(&p->phy, &p->mac, lc); 1929 } else { 1930 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1931 if (netif_running(dev)) 1932 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); 1933 } 1934 return 0; 1935 } 1936 1937 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1938 { 1939 struct port_info *pi = netdev_priv(dev); 1940 struct adapter *adapter = pi->adapter; 1941 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset]; 1942 1943 e->rx_max_pending = MAX_RX_BUFFERS; 1944 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; 1945 e->tx_max_pending = MAX_TXQ_ENTRIES; 1946 1947 e->rx_pending = q->fl_size; 1948 e->rx_mini_pending = q->rspq_size; 1949 e->rx_jumbo_pending = q->jumbo_size; 1950 e->tx_pending = q->txq_size[0]; 1951 } 1952 1953 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1954 { 1955 struct port_info *pi = netdev_priv(dev); 1956 struct adapter *adapter = pi->adapter; 1957 struct qset_params *q; 1958 int i; 1959 1960 if (e->rx_pending > MAX_RX_BUFFERS || 1961 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || 1962 e->tx_pending > MAX_TXQ_ENTRIES || 1963 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1964 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1965 e->rx_pending < MIN_FL_ENTRIES || 1966 e->rx_jumbo_pending < MIN_FL_ENTRIES || 1967 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) 1968 return -EINVAL; 1969 1970 if (adapter->flags & FULL_INIT_DONE) 1971 return -EBUSY; 1972 1973 q = &adapter->params.sge.qset[pi->first_qset]; 1974 for (i = 0; i < pi->nqsets; ++i, ++q) { 1975 q->rspq_size = e->rx_mini_pending; 1976 q->fl_size = e->rx_pending; 1977 q->jumbo_size = e->rx_jumbo_pending; 1978 q->txq_size[0] = e->tx_pending; 1979 q->txq_size[1] = e->tx_pending; 1980 q->txq_size[2] = e->tx_pending; 1981 } 1982 return 0; 1983 } 1984 1985 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1986 { 1987 struct port_info *pi = netdev_priv(dev); 1988 struct adapter *adapter = pi->adapter; 1989 struct qset_params *qsp; 1990 struct sge_qset *qs; 1991 int i; 1992 1993 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) 1994 return -EINVAL; 1995 1996 for (i = 0; i < pi->nqsets; i++) { 1997 qsp = &adapter->params.sge.qset[i]; 1998 qs = &adapter->sge.qs[i]; 1999 qsp->coalesce_usecs = c->rx_coalesce_usecs; 2000 t3_update_qset_coalesce(qs, qsp); 2001 } 2002 2003 return 0; 2004 } 2005 2006 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2007 { 2008 struct port_info *pi = netdev_priv(dev); 2009 struct adapter *adapter = pi->adapter; 2010 struct qset_params *q = adapter->params.sge.qset; 2011 2012 c->rx_coalesce_usecs = q->coalesce_usecs; 2013 return 0; 2014 } 2015 2016 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2017 u8 * data) 2018 { 2019 struct port_info *pi = netdev_priv(dev); 2020 struct adapter *adapter = pi->adapter; 2021 int i, err = 0; 2022 2023 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2024 if (!buf) 2025 return -ENOMEM; 2026 2027 e->magic = EEPROM_MAGIC; 2028 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2029 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]); 2030 2031 if (!err) 2032 memcpy(data, buf + e->offset, e->len); 2033 kfree(buf); 2034 return err; 2035 } 2036 2037 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2038 u8 * data) 2039 { 2040 struct port_info *pi = netdev_priv(dev); 2041 struct adapter *adapter = pi->adapter; 2042 u32 aligned_offset, aligned_len; 2043 __le32 *p; 2044 u8 *buf; 2045 int err; 2046 2047 if (eeprom->magic != EEPROM_MAGIC) 2048 return -EINVAL; 2049 2050 aligned_offset = eeprom->offset & ~3; 2051 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2052 2053 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2054 buf = kmalloc(aligned_len, GFP_KERNEL); 2055 if (!buf) 2056 return -ENOMEM; 2057 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf); 2058 if (!err && aligned_len > 4) 2059 err = t3_seeprom_read(adapter, 2060 aligned_offset + aligned_len - 4, 2061 (__le32 *) & buf[aligned_len - 4]); 2062 if (err) 2063 goto out; 2064 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2065 } else 2066 buf = data; 2067 2068 err = t3_seeprom_wp(adapter, 0); 2069 if (err) 2070 goto out; 2071 2072 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) { 2073 err = t3_seeprom_write(adapter, aligned_offset, *p); 2074 aligned_offset += 4; 2075 } 2076 2077 if (!err) 2078 err = t3_seeprom_wp(adapter, 1); 2079 out: 2080 if (buf != data) 2081 kfree(buf); 2082 return err; 2083 } 2084 2085 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2086 { 2087 wol->supported = 0; 2088 wol->wolopts = 0; 2089 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2090 } 2091 2092 static const struct ethtool_ops cxgb_ethtool_ops = { 2093 .get_settings = get_settings, 2094 .set_settings = set_settings, 2095 .get_drvinfo = get_drvinfo, 2096 .get_msglevel = get_msglevel, 2097 .set_msglevel = set_msglevel, 2098 .get_ringparam = get_sge_param, 2099 .set_ringparam = set_sge_param, 2100 .get_coalesce = get_coalesce, 2101 .set_coalesce = set_coalesce, 2102 .get_eeprom_len = get_eeprom_len, 2103 .get_eeprom = get_eeprom, 2104 .set_eeprom = set_eeprom, 2105 .get_pauseparam = get_pauseparam, 2106 .set_pauseparam = set_pauseparam, 2107 .get_link = ethtool_op_get_link, 2108 .get_strings = get_strings, 2109 .set_phys_id = set_phys_id, 2110 .nway_reset = restart_autoneg, 2111 .get_sset_count = get_sset_count, 2112 .get_ethtool_stats = get_stats, 2113 .get_regs_len = get_regs_len, 2114 .get_regs = get_regs, 2115 .get_wol = get_wol, 2116 }; 2117 2118 static int in_range(int val, int lo, int hi) 2119 { 2120 return val < 0 || (val <= hi && val >= lo); 2121 } 2122 2123 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr) 2124 { 2125 struct port_info *pi = netdev_priv(dev); 2126 struct adapter *adapter = pi->adapter; 2127 u32 cmd; 2128 int ret; 2129 2130 if (copy_from_user(&cmd, useraddr, sizeof(cmd))) 2131 return -EFAULT; 2132 2133 switch (cmd) { 2134 case CHELSIO_SET_QSET_PARAMS:{ 2135 int i; 2136 struct qset_params *q; 2137 struct ch_qset_params t; 2138 int q1 = pi->first_qset; 2139 int nqsets = pi->nqsets; 2140 2141 if (!capable(CAP_NET_ADMIN)) 2142 return -EPERM; 2143 if (copy_from_user(&t, useraddr, sizeof(t))) 2144 return -EFAULT; 2145 if (t.qset_idx >= SGE_QSETS) 2146 return -EINVAL; 2147 if (!in_range(t.intr_lat, 0, M_NEWTIMER) || 2148 !in_range(t.cong_thres, 0, 255) || 2149 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES, 2150 MAX_TXQ_ENTRIES) || 2151 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES, 2152 MAX_TXQ_ENTRIES) || 2153 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, 2154 MAX_CTRL_TXQ_ENTRIES) || 2155 !in_range(t.fl_size[0], MIN_FL_ENTRIES, 2156 MAX_RX_BUFFERS) || 2157 !in_range(t.fl_size[1], MIN_FL_ENTRIES, 2158 MAX_RX_JUMBO_BUFFERS) || 2159 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES, 2160 MAX_RSPQ_ENTRIES)) 2161 return -EINVAL; 2162 2163 if ((adapter->flags & FULL_INIT_DONE) && 2164 (t.rspq_size >= 0 || t.fl_size[0] >= 0 || 2165 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || 2166 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || 2167 t.polling >= 0 || t.cong_thres >= 0)) 2168 return -EBUSY; 2169 2170 /* Allow setting of any available qset when offload enabled */ 2171 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2172 q1 = 0; 2173 for_each_port(adapter, i) { 2174 pi = adap2pinfo(adapter, i); 2175 nqsets += pi->first_qset + pi->nqsets; 2176 } 2177 } 2178 2179 if (t.qset_idx < q1) 2180 return -EINVAL; 2181 if (t.qset_idx > q1 + nqsets - 1) 2182 return -EINVAL; 2183 2184 q = &adapter->params.sge.qset[t.qset_idx]; 2185 2186 if (t.rspq_size >= 0) 2187 q->rspq_size = t.rspq_size; 2188 if (t.fl_size[0] >= 0) 2189 q->fl_size = t.fl_size[0]; 2190 if (t.fl_size[1] >= 0) 2191 q->jumbo_size = t.fl_size[1]; 2192 if (t.txq_size[0] >= 0) 2193 q->txq_size[0] = t.txq_size[0]; 2194 if (t.txq_size[1] >= 0) 2195 q->txq_size[1] = t.txq_size[1]; 2196 if (t.txq_size[2] >= 0) 2197 q->txq_size[2] = t.txq_size[2]; 2198 if (t.cong_thres >= 0) 2199 q->cong_thres = t.cong_thres; 2200 if (t.intr_lat >= 0) { 2201 struct sge_qset *qs = 2202 &adapter->sge.qs[t.qset_idx]; 2203 2204 q->coalesce_usecs = t.intr_lat; 2205 t3_update_qset_coalesce(qs, q); 2206 } 2207 if (t.polling >= 0) { 2208 if (adapter->flags & USING_MSIX) 2209 q->polling = t.polling; 2210 else { 2211 /* No polling with INTx for T3A */ 2212 if (adapter->params.rev == 0 && 2213 !(adapter->flags & USING_MSI)) 2214 t.polling = 0; 2215 2216 for (i = 0; i < SGE_QSETS; i++) { 2217 q = &adapter->params.sge. 2218 qset[i]; 2219 q->polling = t.polling; 2220 } 2221 } 2222 } 2223 2224 if (t.lro >= 0) { 2225 if (t.lro) 2226 dev->wanted_features |= NETIF_F_GRO; 2227 else 2228 dev->wanted_features &= ~NETIF_F_GRO; 2229 netdev_update_features(dev); 2230 } 2231 2232 break; 2233 } 2234 case CHELSIO_GET_QSET_PARAMS:{ 2235 struct qset_params *q; 2236 struct ch_qset_params t; 2237 int q1 = pi->first_qset; 2238 int nqsets = pi->nqsets; 2239 int i; 2240 2241 if (copy_from_user(&t, useraddr, sizeof(t))) 2242 return -EFAULT; 2243 2244 /* Display qsets for all ports when offload enabled */ 2245 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2246 q1 = 0; 2247 for_each_port(adapter, i) { 2248 pi = adap2pinfo(adapter, i); 2249 nqsets = pi->first_qset + pi->nqsets; 2250 } 2251 } 2252 2253 if (t.qset_idx >= nqsets) 2254 return -EINVAL; 2255 2256 q = &adapter->params.sge.qset[q1 + t.qset_idx]; 2257 t.rspq_size = q->rspq_size; 2258 t.txq_size[0] = q->txq_size[0]; 2259 t.txq_size[1] = q->txq_size[1]; 2260 t.txq_size[2] = q->txq_size[2]; 2261 t.fl_size[0] = q->fl_size; 2262 t.fl_size[1] = q->jumbo_size; 2263 t.polling = q->polling; 2264 t.lro = !!(dev->features & NETIF_F_GRO); 2265 t.intr_lat = q->coalesce_usecs; 2266 t.cong_thres = q->cong_thres; 2267 t.qnum = q1; 2268 2269 if (adapter->flags & USING_MSIX) 2270 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec; 2271 else 2272 t.vector = adapter->pdev->irq; 2273 2274 if (copy_to_user(useraddr, &t, sizeof(t))) 2275 return -EFAULT; 2276 break; 2277 } 2278 case CHELSIO_SET_QSET_NUM:{ 2279 struct ch_reg edata; 2280 unsigned int i, first_qset = 0, other_qsets = 0; 2281 2282 if (!capable(CAP_NET_ADMIN)) 2283 return -EPERM; 2284 if (adapter->flags & FULL_INIT_DONE) 2285 return -EBUSY; 2286 if (copy_from_user(&edata, useraddr, sizeof(edata))) 2287 return -EFAULT; 2288 if (edata.val < 1 || 2289 (edata.val > 1 && !(adapter->flags & USING_MSIX))) 2290 return -EINVAL; 2291 2292 for_each_port(adapter, i) 2293 if (adapter->port[i] && adapter->port[i] != dev) 2294 other_qsets += adap2pinfo(adapter, i)->nqsets; 2295 2296 if (edata.val + other_qsets > SGE_QSETS) 2297 return -EINVAL; 2298 2299 pi->nqsets = edata.val; 2300 2301 for_each_port(adapter, i) 2302 if (adapter->port[i]) { 2303 pi = adap2pinfo(adapter, i); 2304 pi->first_qset = first_qset; 2305 first_qset += pi->nqsets; 2306 } 2307 break; 2308 } 2309 case CHELSIO_GET_QSET_NUM:{ 2310 struct ch_reg edata; 2311 2312 memset(&edata, 0, sizeof(struct ch_reg)); 2313 2314 edata.cmd = CHELSIO_GET_QSET_NUM; 2315 edata.val = pi->nqsets; 2316 if (copy_to_user(useraddr, &edata, sizeof(edata))) 2317 return -EFAULT; 2318 break; 2319 } 2320 case CHELSIO_LOAD_FW:{ 2321 u8 *fw_data; 2322 struct ch_mem_range t; 2323 2324 if (!capable(CAP_SYS_RAWIO)) 2325 return -EPERM; 2326 if (copy_from_user(&t, useraddr, sizeof(t))) 2327 return -EFAULT; 2328 /* Check t.len sanity ? */ 2329 fw_data = memdup_user(useraddr + sizeof(t), t.len); 2330 if (IS_ERR(fw_data)) 2331 return PTR_ERR(fw_data); 2332 2333 ret = t3_load_fw(adapter, fw_data, t.len); 2334 kfree(fw_data); 2335 if (ret) 2336 return ret; 2337 break; 2338 } 2339 case CHELSIO_SETMTUTAB:{ 2340 struct ch_mtus m; 2341 int i; 2342 2343 if (!is_offload(adapter)) 2344 return -EOPNOTSUPP; 2345 if (!capable(CAP_NET_ADMIN)) 2346 return -EPERM; 2347 if (offload_running(adapter)) 2348 return -EBUSY; 2349 if (copy_from_user(&m, useraddr, sizeof(m))) 2350 return -EFAULT; 2351 if (m.nmtus != NMTUS) 2352 return -EINVAL; 2353 if (m.mtus[0] < 81) /* accommodate SACK */ 2354 return -EINVAL; 2355 2356 /* MTUs must be in ascending order */ 2357 for (i = 1; i < NMTUS; ++i) 2358 if (m.mtus[i] < m.mtus[i - 1]) 2359 return -EINVAL; 2360 2361 memcpy(adapter->params.mtus, m.mtus, 2362 sizeof(adapter->params.mtus)); 2363 break; 2364 } 2365 case CHELSIO_GET_PM:{ 2366 struct tp_params *p = &adapter->params.tp; 2367 struct ch_pm m = {.cmd = CHELSIO_GET_PM }; 2368 2369 if (!is_offload(adapter)) 2370 return -EOPNOTSUPP; 2371 m.tx_pg_sz = p->tx_pg_size; 2372 m.tx_num_pg = p->tx_num_pgs; 2373 m.rx_pg_sz = p->rx_pg_size; 2374 m.rx_num_pg = p->rx_num_pgs; 2375 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; 2376 if (copy_to_user(useraddr, &m, sizeof(m))) 2377 return -EFAULT; 2378 break; 2379 } 2380 case CHELSIO_SET_PM:{ 2381 struct ch_pm m; 2382 struct tp_params *p = &adapter->params.tp; 2383 2384 if (!is_offload(adapter)) 2385 return -EOPNOTSUPP; 2386 if (!capable(CAP_NET_ADMIN)) 2387 return -EPERM; 2388 if (adapter->flags & FULL_INIT_DONE) 2389 return -EBUSY; 2390 if (copy_from_user(&m, useraddr, sizeof(m))) 2391 return -EFAULT; 2392 if (!is_power_of_2(m.rx_pg_sz) || 2393 !is_power_of_2(m.tx_pg_sz)) 2394 return -EINVAL; /* not power of 2 */ 2395 if (!(m.rx_pg_sz & 0x14000)) 2396 return -EINVAL; /* not 16KB or 64KB */ 2397 if (!(m.tx_pg_sz & 0x1554000)) 2398 return -EINVAL; 2399 if (m.tx_num_pg == -1) 2400 m.tx_num_pg = p->tx_num_pgs; 2401 if (m.rx_num_pg == -1) 2402 m.rx_num_pg = p->rx_num_pgs; 2403 if (m.tx_num_pg % 24 || m.rx_num_pg % 24) 2404 return -EINVAL; 2405 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || 2406 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) 2407 return -EINVAL; 2408 p->rx_pg_size = m.rx_pg_sz; 2409 p->tx_pg_size = m.tx_pg_sz; 2410 p->rx_num_pgs = m.rx_num_pg; 2411 p->tx_num_pgs = m.tx_num_pg; 2412 break; 2413 } 2414 case CHELSIO_GET_MEM:{ 2415 struct ch_mem_range t; 2416 struct mc7 *mem; 2417 u64 buf[32]; 2418 2419 if (!is_offload(adapter)) 2420 return -EOPNOTSUPP; 2421 if (!(adapter->flags & FULL_INIT_DONE)) 2422 return -EIO; /* need the memory controllers */ 2423 if (copy_from_user(&t, useraddr, sizeof(t))) 2424 return -EFAULT; 2425 if ((t.addr & 7) || (t.len & 7)) 2426 return -EINVAL; 2427 if (t.mem_id == MEM_CM) 2428 mem = &adapter->cm; 2429 else if (t.mem_id == MEM_PMRX) 2430 mem = &adapter->pmrx; 2431 else if (t.mem_id == MEM_PMTX) 2432 mem = &adapter->pmtx; 2433 else 2434 return -EINVAL; 2435 2436 /* 2437 * Version scheme: 2438 * bits 0..9: chip version 2439 * bits 10..15: chip revision 2440 */ 2441 t.version = 3 | (adapter->params.rev << 10); 2442 if (copy_to_user(useraddr, &t, sizeof(t))) 2443 return -EFAULT; 2444 2445 /* 2446 * Read 256 bytes at a time as len can be large and we don't 2447 * want to use huge intermediate buffers. 2448 */ 2449 useraddr += sizeof(t); /* advance to start of buffer */ 2450 while (t.len) { 2451 unsigned int chunk = 2452 min_t(unsigned int, t.len, sizeof(buf)); 2453 2454 ret = 2455 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, 2456 buf); 2457 if (ret) 2458 return ret; 2459 if (copy_to_user(useraddr, buf, chunk)) 2460 return -EFAULT; 2461 useraddr += chunk; 2462 t.addr += chunk; 2463 t.len -= chunk; 2464 } 2465 break; 2466 } 2467 case CHELSIO_SET_TRACE_FILTER:{ 2468 struct ch_trace t; 2469 const struct trace_params *tp; 2470 2471 if (!capable(CAP_NET_ADMIN)) 2472 return -EPERM; 2473 if (!offload_running(adapter)) 2474 return -EAGAIN; 2475 if (copy_from_user(&t, useraddr, sizeof(t))) 2476 return -EFAULT; 2477 2478 tp = (const struct trace_params *)&t.sip; 2479 if (t.config_tx) 2480 t3_config_trace_filter(adapter, tp, 0, 2481 t.invert_match, 2482 t.trace_tx); 2483 if (t.config_rx) 2484 t3_config_trace_filter(adapter, tp, 1, 2485 t.invert_match, 2486 t.trace_rx); 2487 break; 2488 } 2489 default: 2490 return -EOPNOTSUPP; 2491 } 2492 return 0; 2493 } 2494 2495 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2496 { 2497 struct mii_ioctl_data *data = if_mii(req); 2498 struct port_info *pi = netdev_priv(dev); 2499 struct adapter *adapter = pi->adapter; 2500 2501 switch (cmd) { 2502 case SIOCGMIIREG: 2503 case SIOCSMIIREG: 2504 /* Convert phy_id from older PRTAD/DEVAD format */ 2505 if (is_10G(adapter) && 2506 !mdio_phy_id_is_c45(data->phy_id) && 2507 (data->phy_id & 0x1f00) && 2508 !(data->phy_id & 0xe0e0)) 2509 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8, 2510 data->phy_id & 0x1f); 2511 /* FALLTHRU */ 2512 case SIOCGMIIPHY: 2513 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd); 2514 case SIOCCHIOCTL: 2515 return cxgb_extension_ioctl(dev, req->ifr_data); 2516 default: 2517 return -EOPNOTSUPP; 2518 } 2519 } 2520 2521 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2522 { 2523 struct port_info *pi = netdev_priv(dev); 2524 struct adapter *adapter = pi->adapter; 2525 int ret; 2526 2527 if (new_mtu < 81) /* accommodate SACK */ 2528 return -EINVAL; 2529 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) 2530 return ret; 2531 dev->mtu = new_mtu; 2532 init_port_mtus(adapter); 2533 if (adapter->params.rev == 0 && offload_running(adapter)) 2534 t3_load_mtus(adapter, adapter->params.mtus, 2535 adapter->params.a_wnd, adapter->params.b_wnd, 2536 adapter->port[0]->mtu); 2537 return 0; 2538 } 2539 2540 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2541 { 2542 struct port_info *pi = netdev_priv(dev); 2543 struct adapter *adapter = pi->adapter; 2544 struct sockaddr *addr = p; 2545 2546 if (!is_valid_ether_addr(addr->sa_data)) 2547 return -EADDRNOTAVAIL; 2548 2549 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2550 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr); 2551 if (offload_running(adapter)) 2552 write_smt_entry(adapter, pi->port_id); 2553 return 0; 2554 } 2555 2556 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2557 netdev_features_t features) 2558 { 2559 /* 2560 * Since there is no support for separate rx/tx vlan accel 2561 * enable/disable make sure tx flag is always in same state as rx. 2562 */ 2563 if (features & NETIF_F_HW_VLAN_RX) 2564 features |= NETIF_F_HW_VLAN_TX; 2565 else 2566 features &= ~NETIF_F_HW_VLAN_TX; 2567 2568 return features; 2569 } 2570 2571 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2572 { 2573 netdev_features_t changed = dev->features ^ features; 2574 2575 if (changed & NETIF_F_HW_VLAN_RX) 2576 cxgb_vlan_mode(dev, features); 2577 2578 return 0; 2579 } 2580 2581 #ifdef CONFIG_NET_POLL_CONTROLLER 2582 static void cxgb_netpoll(struct net_device *dev) 2583 { 2584 struct port_info *pi = netdev_priv(dev); 2585 struct adapter *adapter = pi->adapter; 2586 int qidx; 2587 2588 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) { 2589 struct sge_qset *qs = &adapter->sge.qs[qidx]; 2590 void *source; 2591 2592 if (adapter->flags & USING_MSIX) 2593 source = qs; 2594 else 2595 source = adapter; 2596 2597 t3_intr_handler(adapter, qs->rspq.polling) (0, source); 2598 } 2599 } 2600 #endif 2601 2602 /* 2603 * Periodic accumulation of MAC statistics. 2604 */ 2605 static void mac_stats_update(struct adapter *adapter) 2606 { 2607 int i; 2608 2609 for_each_port(adapter, i) { 2610 struct net_device *dev = adapter->port[i]; 2611 struct port_info *p = netdev_priv(dev); 2612 2613 if (netif_running(dev)) { 2614 spin_lock(&adapter->stats_lock); 2615 t3_mac_update_stats(&p->mac); 2616 spin_unlock(&adapter->stats_lock); 2617 } 2618 } 2619 } 2620 2621 static void check_link_status(struct adapter *adapter) 2622 { 2623 int i; 2624 2625 for_each_port(adapter, i) { 2626 struct net_device *dev = adapter->port[i]; 2627 struct port_info *p = netdev_priv(dev); 2628 int link_fault; 2629 2630 spin_lock_irq(&adapter->work_lock); 2631 link_fault = p->link_fault; 2632 spin_unlock_irq(&adapter->work_lock); 2633 2634 if (link_fault) { 2635 t3_link_fault(adapter, i); 2636 continue; 2637 } 2638 2639 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) { 2640 t3_xgm_intr_disable(adapter, i); 2641 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2642 2643 t3_link_changed(adapter, i); 2644 t3_xgm_intr_enable(adapter, i); 2645 } 2646 } 2647 } 2648 2649 static void check_t3b2_mac(struct adapter *adapter) 2650 { 2651 int i; 2652 2653 if (!rtnl_trylock()) /* synchronize with ifdown */ 2654 return; 2655 2656 for_each_port(adapter, i) { 2657 struct net_device *dev = adapter->port[i]; 2658 struct port_info *p = netdev_priv(dev); 2659 int status; 2660 2661 if (!netif_running(dev)) 2662 continue; 2663 2664 status = 0; 2665 if (netif_running(dev) && netif_carrier_ok(dev)) 2666 status = t3b2_mac_watchdog_task(&p->mac); 2667 if (status == 1) 2668 p->mac.stats.num_toggled++; 2669 else if (status == 2) { 2670 struct cmac *mac = &p->mac; 2671 2672 t3_mac_set_mtu(mac, dev->mtu); 2673 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 2674 cxgb_set_rxmode(dev); 2675 t3_link_start(&p->phy, mac, &p->link_config); 2676 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 2677 t3_port_intr_enable(adapter, p->port_id); 2678 p->mac.stats.num_resets++; 2679 } 2680 } 2681 rtnl_unlock(); 2682 } 2683 2684 2685 static void t3_adap_check_task(struct work_struct *work) 2686 { 2687 struct adapter *adapter = container_of(work, struct adapter, 2688 adap_check_task.work); 2689 const struct adapter_params *p = &adapter->params; 2690 int port; 2691 unsigned int v, status, reset; 2692 2693 adapter->check_task_cnt++; 2694 2695 check_link_status(adapter); 2696 2697 /* Accumulate MAC stats if needed */ 2698 if (!p->linkpoll_period || 2699 (adapter->check_task_cnt * p->linkpoll_period) / 10 >= 2700 p->stats_update_period) { 2701 mac_stats_update(adapter); 2702 adapter->check_task_cnt = 0; 2703 } 2704 2705 if (p->rev == T3_REV_B2) 2706 check_t3b2_mac(adapter); 2707 2708 /* 2709 * Scan the XGMAC's to check for various conditions which we want to 2710 * monitor in a periodic polling manner rather than via an interrupt 2711 * condition. This is used for conditions which would otherwise flood 2712 * the system with interrupts and we only really need to know that the 2713 * conditions are "happening" ... For each condition we count the 2714 * detection of the condition and reset it for the next polling loop. 2715 */ 2716 for_each_port(adapter, port) { 2717 struct cmac *mac = &adap2pinfo(adapter, port)->mac; 2718 u32 cause; 2719 2720 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset); 2721 reset = 0; 2722 if (cause & F_RXFIFO_OVERFLOW) { 2723 mac->stats.rx_fifo_ovfl++; 2724 reset |= F_RXFIFO_OVERFLOW; 2725 } 2726 2727 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset); 2728 } 2729 2730 /* 2731 * We do the same as above for FL_EMPTY interrupts. 2732 */ 2733 status = t3_read_reg(adapter, A_SG_INT_CAUSE); 2734 reset = 0; 2735 2736 if (status & F_FLEMPTY) { 2737 struct sge_qset *qs = &adapter->sge.qs[0]; 2738 int i = 0; 2739 2740 reset |= F_FLEMPTY; 2741 2742 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) & 2743 0xffff; 2744 2745 while (v) { 2746 qs->fl[i].empty += (v & 1); 2747 if (i) 2748 qs++; 2749 i ^= 1; 2750 v >>= 1; 2751 } 2752 } 2753 2754 t3_write_reg(adapter, A_SG_INT_CAUSE, reset); 2755 2756 /* Schedule the next check update if any port is active. */ 2757 spin_lock_irq(&adapter->work_lock); 2758 if (adapter->open_device_map & PORT_MASK) 2759 schedule_chk_task(adapter); 2760 spin_unlock_irq(&adapter->work_lock); 2761 } 2762 2763 static void db_full_task(struct work_struct *work) 2764 { 2765 struct adapter *adapter = container_of(work, struct adapter, 2766 db_full_task); 2767 2768 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0); 2769 } 2770 2771 static void db_empty_task(struct work_struct *work) 2772 { 2773 struct adapter *adapter = container_of(work, struct adapter, 2774 db_empty_task); 2775 2776 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0); 2777 } 2778 2779 static void db_drop_task(struct work_struct *work) 2780 { 2781 struct adapter *adapter = container_of(work, struct adapter, 2782 db_drop_task); 2783 unsigned long delay = 1000; 2784 unsigned short r; 2785 2786 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0); 2787 2788 /* 2789 * Sleep a while before ringing the driver qset dbs. 2790 * The delay is between 1000-2023 usecs. 2791 */ 2792 get_random_bytes(&r, 2); 2793 delay += r & 1023; 2794 set_current_state(TASK_UNINTERRUPTIBLE); 2795 schedule_timeout(usecs_to_jiffies(delay)); 2796 ring_dbs(adapter); 2797 } 2798 2799 /* 2800 * Processes external (PHY) interrupts in process context. 2801 */ 2802 static void ext_intr_task(struct work_struct *work) 2803 { 2804 struct adapter *adapter = container_of(work, struct adapter, 2805 ext_intr_handler_task); 2806 int i; 2807 2808 /* Disable link fault interrupts */ 2809 for_each_port(adapter, i) { 2810 struct net_device *dev = adapter->port[i]; 2811 struct port_info *p = netdev_priv(dev); 2812 2813 t3_xgm_intr_disable(adapter, i); 2814 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2815 } 2816 2817 /* Re-enable link fault interrupts */ 2818 t3_phy_intr_handler(adapter); 2819 2820 for_each_port(adapter, i) 2821 t3_xgm_intr_enable(adapter, i); 2822 2823 /* Now reenable external interrupts */ 2824 spin_lock_irq(&adapter->work_lock); 2825 if (adapter->slow_intr_mask) { 2826 adapter->slow_intr_mask |= F_T3DBG; 2827 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); 2828 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2829 adapter->slow_intr_mask); 2830 } 2831 spin_unlock_irq(&adapter->work_lock); 2832 } 2833 2834 /* 2835 * Interrupt-context handler for external (PHY) interrupts. 2836 */ 2837 void t3_os_ext_intr_handler(struct adapter *adapter) 2838 { 2839 /* 2840 * Schedule a task to handle external interrupts as they may be slow 2841 * and we use a mutex to protect MDIO registers. We disable PHY 2842 * interrupts in the meantime and let the task reenable them when 2843 * it's done. 2844 */ 2845 spin_lock(&adapter->work_lock); 2846 if (adapter->slow_intr_mask) { 2847 adapter->slow_intr_mask &= ~F_T3DBG; 2848 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2849 adapter->slow_intr_mask); 2850 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); 2851 } 2852 spin_unlock(&adapter->work_lock); 2853 } 2854 2855 void t3_os_link_fault_handler(struct adapter *adapter, int port_id) 2856 { 2857 struct net_device *netdev = adapter->port[port_id]; 2858 struct port_info *pi = netdev_priv(netdev); 2859 2860 spin_lock(&adapter->work_lock); 2861 pi->link_fault = 1; 2862 spin_unlock(&adapter->work_lock); 2863 } 2864 2865 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq) 2866 { 2867 int i, ret = 0; 2868 2869 if (is_offload(adapter) && 2870 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2871 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0); 2872 offload_close(&adapter->tdev); 2873 } 2874 2875 /* Stop all ports */ 2876 for_each_port(adapter, i) { 2877 struct net_device *netdev = adapter->port[i]; 2878 2879 if (netif_running(netdev)) 2880 __cxgb_close(netdev, on_wq); 2881 } 2882 2883 /* Stop SGE timers */ 2884 t3_stop_sge_timers(adapter); 2885 2886 adapter->flags &= ~FULL_INIT_DONE; 2887 2888 if (reset) 2889 ret = t3_reset_adapter(adapter); 2890 2891 pci_disable_device(adapter->pdev); 2892 2893 return ret; 2894 } 2895 2896 static int t3_reenable_adapter(struct adapter *adapter) 2897 { 2898 if (pci_enable_device(adapter->pdev)) { 2899 dev_err(&adapter->pdev->dev, 2900 "Cannot re-enable PCI device after reset.\n"); 2901 goto err; 2902 } 2903 pci_set_master(adapter->pdev); 2904 pci_restore_state(adapter->pdev); 2905 pci_save_state(adapter->pdev); 2906 2907 /* Free sge resources */ 2908 t3_free_sge_resources(adapter); 2909 2910 if (t3_replay_prep_adapter(adapter)) 2911 goto err; 2912 2913 return 0; 2914 err: 2915 return -1; 2916 } 2917 2918 static void t3_resume_ports(struct adapter *adapter) 2919 { 2920 int i; 2921 2922 /* Restart the ports */ 2923 for_each_port(adapter, i) { 2924 struct net_device *netdev = adapter->port[i]; 2925 2926 if (netif_running(netdev)) { 2927 if (cxgb_open(netdev)) { 2928 dev_err(&adapter->pdev->dev, 2929 "can't bring device back up" 2930 " after reset\n"); 2931 continue; 2932 } 2933 } 2934 } 2935 2936 if (is_offload(adapter) && !ofld_disable) 2937 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0); 2938 } 2939 2940 /* 2941 * processes a fatal error. 2942 * Bring the ports down, reset the chip, bring the ports back up. 2943 */ 2944 static void fatal_error_task(struct work_struct *work) 2945 { 2946 struct adapter *adapter = container_of(work, struct adapter, 2947 fatal_error_handler_task); 2948 int err = 0; 2949 2950 rtnl_lock(); 2951 err = t3_adapter_error(adapter, 1, 1); 2952 if (!err) 2953 err = t3_reenable_adapter(adapter); 2954 if (!err) 2955 t3_resume_ports(adapter); 2956 2957 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded"); 2958 rtnl_unlock(); 2959 } 2960 2961 void t3_fatal_err(struct adapter *adapter) 2962 { 2963 unsigned int fw_status[4]; 2964 2965 if (adapter->flags & FULL_INIT_DONE) { 2966 t3_sge_stop(adapter); 2967 t3_write_reg(adapter, A_XGM_TX_CTRL, 0); 2968 t3_write_reg(adapter, A_XGM_RX_CTRL, 0); 2969 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0); 2970 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0); 2971 2972 spin_lock(&adapter->work_lock); 2973 t3_intr_disable(adapter); 2974 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task); 2975 spin_unlock(&adapter->work_lock); 2976 } 2977 CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); 2978 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) 2979 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", 2980 fw_status[0], fw_status[1], 2981 fw_status[2], fw_status[3]); 2982 } 2983 2984 /** 2985 * t3_io_error_detected - called when PCI error is detected 2986 * @pdev: Pointer to PCI device 2987 * @state: The current pci connection state 2988 * 2989 * This function is called after a PCI bus error affecting 2990 * this device has been detected. 2991 */ 2992 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev, 2993 pci_channel_state_t state) 2994 { 2995 struct adapter *adapter = pci_get_drvdata(pdev); 2996 2997 if (state == pci_channel_io_perm_failure) 2998 return PCI_ERS_RESULT_DISCONNECT; 2999 3000 t3_adapter_error(adapter, 0, 0); 3001 3002 /* Request a slot reset. */ 3003 return PCI_ERS_RESULT_NEED_RESET; 3004 } 3005 3006 /** 3007 * t3_io_slot_reset - called after the pci bus has been reset. 3008 * @pdev: Pointer to PCI device 3009 * 3010 * Restart the card from scratch, as if from a cold-boot. 3011 */ 3012 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev) 3013 { 3014 struct adapter *adapter = pci_get_drvdata(pdev); 3015 3016 if (!t3_reenable_adapter(adapter)) 3017 return PCI_ERS_RESULT_RECOVERED; 3018 3019 return PCI_ERS_RESULT_DISCONNECT; 3020 } 3021 3022 /** 3023 * t3_io_resume - called when traffic can start flowing again. 3024 * @pdev: Pointer to PCI device 3025 * 3026 * This callback is called when the error recovery driver tells us that 3027 * its OK to resume normal operation. 3028 */ 3029 static void t3_io_resume(struct pci_dev *pdev) 3030 { 3031 struct adapter *adapter = pci_get_drvdata(pdev); 3032 3033 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n", 3034 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 3035 3036 t3_resume_ports(adapter); 3037 } 3038 3039 static struct pci_error_handlers t3_err_handler = { 3040 .error_detected = t3_io_error_detected, 3041 .slot_reset = t3_io_slot_reset, 3042 .resume = t3_io_resume, 3043 }; 3044 3045 /* 3046 * Set the number of qsets based on the number of CPUs and the number of ports, 3047 * not to exceed the number of available qsets, assuming there are enough qsets 3048 * per port in HW. 3049 */ 3050 static void set_nqsets(struct adapter *adap) 3051 { 3052 int i, j = 0; 3053 int num_cpus = num_online_cpus(); 3054 int hwports = adap->params.nports; 3055 int nqsets = adap->msix_nvectors - 1; 3056 3057 if (adap->params.rev > 0 && adap->flags & USING_MSIX) { 3058 if (hwports == 2 && 3059 (hwports * nqsets > SGE_QSETS || 3060 num_cpus >= nqsets / hwports)) 3061 nqsets /= hwports; 3062 if (nqsets > num_cpus) 3063 nqsets = num_cpus; 3064 if (nqsets < 1 || hwports == 4) 3065 nqsets = 1; 3066 } else 3067 nqsets = 1; 3068 3069 for_each_port(adap, i) { 3070 struct port_info *pi = adap2pinfo(adap, i); 3071 3072 pi->first_qset = j; 3073 pi->nqsets = nqsets; 3074 j = pi->first_qset + nqsets; 3075 3076 dev_info(&adap->pdev->dev, 3077 "Port %d using %d queue sets.\n", i, nqsets); 3078 } 3079 } 3080 3081 static int __devinit cxgb_enable_msix(struct adapter *adap) 3082 { 3083 struct msix_entry entries[SGE_QSETS + 1]; 3084 int vectors; 3085 int i, err; 3086 3087 vectors = ARRAY_SIZE(entries); 3088 for (i = 0; i < vectors; ++i) 3089 entries[i].entry = i; 3090 3091 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0) 3092 vectors = err; 3093 3094 if (err < 0) 3095 pci_disable_msix(adap->pdev); 3096 3097 if (!err && vectors < (adap->params.nports + 1)) { 3098 pci_disable_msix(adap->pdev); 3099 err = -1; 3100 } 3101 3102 if (!err) { 3103 for (i = 0; i < vectors; ++i) 3104 adap->msix_info[i].vec = entries[i].vector; 3105 adap->msix_nvectors = vectors; 3106 } 3107 3108 return err; 3109 } 3110 3111 static void __devinit print_port_info(struct adapter *adap, 3112 const struct adapter_info *ai) 3113 { 3114 static const char *pci_variant[] = { 3115 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" 3116 }; 3117 3118 int i; 3119 char buf[80]; 3120 3121 if (is_pcie(adap)) 3122 snprintf(buf, sizeof(buf), "%s x%d", 3123 pci_variant[adap->params.pci.variant], 3124 adap->params.pci.width); 3125 else 3126 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", 3127 pci_variant[adap->params.pci.variant], 3128 adap->params.pci.speed, adap->params.pci.width); 3129 3130 for_each_port(adap, i) { 3131 struct net_device *dev = adap->port[i]; 3132 const struct port_info *pi = netdev_priv(dev); 3133 3134 if (!test_bit(i, &adap->registered_device_map)) 3135 continue; 3136 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n", 3137 dev->name, ai->desc, pi->phy.desc, 3138 is_offload(adap) ? "R" : "", adap->params.rev, buf, 3139 (adap->flags & USING_MSIX) ? " MSI-X" : 3140 (adap->flags & USING_MSI) ? " MSI" : ""); 3141 if (adap->name == dev->name && adap->params.vpd.mclk) 3142 printk(KERN_INFO 3143 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n", 3144 adap->name, t3_mc7_size(&adap->cm) >> 20, 3145 t3_mc7_size(&adap->pmtx) >> 20, 3146 t3_mc7_size(&adap->pmrx) >> 20, 3147 adap->params.vpd.sn); 3148 } 3149 } 3150 3151 static const struct net_device_ops cxgb_netdev_ops = { 3152 .ndo_open = cxgb_open, 3153 .ndo_stop = cxgb_close, 3154 .ndo_start_xmit = t3_eth_xmit, 3155 .ndo_get_stats = cxgb_get_stats, 3156 .ndo_validate_addr = eth_validate_addr, 3157 .ndo_set_rx_mode = cxgb_set_rxmode, 3158 .ndo_do_ioctl = cxgb_ioctl, 3159 .ndo_change_mtu = cxgb_change_mtu, 3160 .ndo_set_mac_address = cxgb_set_mac_addr, 3161 .ndo_fix_features = cxgb_fix_features, 3162 .ndo_set_features = cxgb_set_features, 3163 #ifdef CONFIG_NET_POLL_CONTROLLER 3164 .ndo_poll_controller = cxgb_netpoll, 3165 #endif 3166 }; 3167 3168 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev) 3169 { 3170 struct port_info *pi = netdev_priv(dev); 3171 3172 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN); 3173 pi->iscsic.mac_addr[3] |= 0x80; 3174 } 3175 3176 static int __devinit init_one(struct pci_dev *pdev, 3177 const struct pci_device_id *ent) 3178 { 3179 static int version_printed; 3180 3181 int i, err, pci_using_dac = 0; 3182 resource_size_t mmio_start, mmio_len; 3183 const struct adapter_info *ai; 3184 struct adapter *adapter = NULL; 3185 struct port_info *pi; 3186 3187 if (!version_printed) { 3188 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 3189 ++version_printed; 3190 } 3191 3192 if (!cxgb3_wq) { 3193 cxgb3_wq = create_singlethread_workqueue(DRV_NAME); 3194 if (!cxgb3_wq) { 3195 printk(KERN_ERR DRV_NAME 3196 ": cannot initialize work queue\n"); 3197 return -ENOMEM; 3198 } 3199 } 3200 3201 err = pci_enable_device(pdev); 3202 if (err) { 3203 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3204 goto out; 3205 } 3206 3207 err = pci_request_regions(pdev, DRV_NAME); 3208 if (err) { 3209 /* Just info, some other driver may have claimed the device. */ 3210 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3211 goto out_disable_device; 3212 } 3213 3214 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3215 pci_using_dac = 1; 3216 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3217 if (err) { 3218 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 3219 "coherent allocations\n"); 3220 goto out_release_regions; 3221 } 3222 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) { 3223 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3224 goto out_release_regions; 3225 } 3226 3227 pci_set_master(pdev); 3228 pci_save_state(pdev); 3229 3230 mmio_start = pci_resource_start(pdev, 0); 3231 mmio_len = pci_resource_len(pdev, 0); 3232 ai = t3_get_adapter_info(ent->driver_data); 3233 3234 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3235 if (!adapter) { 3236 err = -ENOMEM; 3237 goto out_release_regions; 3238 } 3239 3240 adapter->nofail_skb = 3241 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL); 3242 if (!adapter->nofail_skb) { 3243 dev_err(&pdev->dev, "cannot allocate nofail buffer\n"); 3244 err = -ENOMEM; 3245 goto out_free_adapter; 3246 } 3247 3248 adapter->regs = ioremap_nocache(mmio_start, mmio_len); 3249 if (!adapter->regs) { 3250 dev_err(&pdev->dev, "cannot map device registers\n"); 3251 err = -ENOMEM; 3252 goto out_free_adapter; 3253 } 3254 3255 adapter->pdev = pdev; 3256 adapter->name = pci_name(pdev); 3257 adapter->msg_enable = dflt_msg_enable; 3258 adapter->mmio_len = mmio_len; 3259 3260 mutex_init(&adapter->mdio_lock); 3261 spin_lock_init(&adapter->work_lock); 3262 spin_lock_init(&adapter->stats_lock); 3263 3264 INIT_LIST_HEAD(&adapter->adapter_list); 3265 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); 3266 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task); 3267 3268 INIT_WORK(&adapter->db_full_task, db_full_task); 3269 INIT_WORK(&adapter->db_empty_task, db_empty_task); 3270 INIT_WORK(&adapter->db_drop_task, db_drop_task); 3271 3272 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); 3273 3274 for (i = 0; i < ai->nports0 + ai->nports1; ++i) { 3275 struct net_device *netdev; 3276 3277 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS); 3278 if (!netdev) { 3279 err = -ENOMEM; 3280 goto out_free_dev; 3281 } 3282 3283 SET_NETDEV_DEV(netdev, &pdev->dev); 3284 3285 adapter->port[i] = netdev; 3286 pi = netdev_priv(netdev); 3287 pi->adapter = adapter; 3288 pi->port_id = i; 3289 netif_carrier_off(netdev); 3290 netdev->irq = pdev->irq; 3291 netdev->mem_start = mmio_start; 3292 netdev->mem_end = mmio_start + mmio_len - 1; 3293 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 3294 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX; 3295 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_TX; 3296 if (pci_using_dac) 3297 netdev->features |= NETIF_F_HIGHDMA; 3298 3299 netdev->netdev_ops = &cxgb_netdev_ops; 3300 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops); 3301 } 3302 3303 pci_set_drvdata(pdev, adapter); 3304 if (t3_prep_adapter(adapter, ai, 1) < 0) { 3305 err = -ENODEV; 3306 goto out_free_dev; 3307 } 3308 3309 /* 3310 * The card is now ready to go. If any errors occur during device 3311 * registration we do not fail the whole card but rather proceed only 3312 * with the ports we manage to register successfully. However we must 3313 * register at least one net device. 3314 */ 3315 for_each_port(adapter, i) { 3316 err = register_netdev(adapter->port[i]); 3317 if (err) 3318 dev_warn(&pdev->dev, 3319 "cannot register net device %s, skipping\n", 3320 adapter->port[i]->name); 3321 else { 3322 /* 3323 * Change the name we use for messages to the name of 3324 * the first successfully registered interface. 3325 */ 3326 if (!adapter->registered_device_map) 3327 adapter->name = adapter->port[i]->name; 3328 3329 __set_bit(i, &adapter->registered_device_map); 3330 } 3331 } 3332 if (!adapter->registered_device_map) { 3333 dev_err(&pdev->dev, "could not register any net devices\n"); 3334 goto out_free_dev; 3335 } 3336 3337 for_each_port(adapter, i) 3338 cxgb3_init_iscsi_mac(adapter->port[i]); 3339 3340 /* Driver's ready. Reflect it on LEDs */ 3341 t3_led_ready(adapter); 3342 3343 if (is_offload(adapter)) { 3344 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); 3345 cxgb3_adapter_ofld(adapter); 3346 } 3347 3348 /* See what interrupts we'll be using */ 3349 if (msi > 1 && cxgb_enable_msix(adapter) == 0) 3350 adapter->flags |= USING_MSIX; 3351 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3352 adapter->flags |= USING_MSI; 3353 3354 set_nqsets(adapter); 3355 3356 err = sysfs_create_group(&adapter->port[0]->dev.kobj, 3357 &cxgb3_attr_group); 3358 3359 print_port_info(adapter, ai); 3360 return 0; 3361 3362 out_free_dev: 3363 iounmap(adapter->regs); 3364 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i) 3365 if (adapter->port[i]) 3366 free_netdev(adapter->port[i]); 3367 3368 out_free_adapter: 3369 kfree(adapter); 3370 3371 out_release_regions: 3372 pci_release_regions(pdev); 3373 out_disable_device: 3374 pci_disable_device(pdev); 3375 pci_set_drvdata(pdev, NULL); 3376 out: 3377 return err; 3378 } 3379 3380 static void __devexit remove_one(struct pci_dev *pdev) 3381 { 3382 struct adapter *adapter = pci_get_drvdata(pdev); 3383 3384 if (adapter) { 3385 int i; 3386 3387 t3_sge_stop(adapter); 3388 sysfs_remove_group(&adapter->port[0]->dev.kobj, 3389 &cxgb3_attr_group); 3390 3391 if (is_offload(adapter)) { 3392 cxgb3_adapter_unofld(adapter); 3393 if (test_bit(OFFLOAD_DEVMAP_BIT, 3394 &adapter->open_device_map)) 3395 offload_close(&adapter->tdev); 3396 } 3397 3398 for_each_port(adapter, i) 3399 if (test_bit(i, &adapter->registered_device_map)) 3400 unregister_netdev(adapter->port[i]); 3401 3402 t3_stop_sge_timers(adapter); 3403 t3_free_sge_resources(adapter); 3404 cxgb_disable_msi(adapter); 3405 3406 for_each_port(adapter, i) 3407 if (adapter->port[i]) 3408 free_netdev(adapter->port[i]); 3409 3410 iounmap(adapter->regs); 3411 if (adapter->nofail_skb) 3412 kfree_skb(adapter->nofail_skb); 3413 kfree(adapter); 3414 pci_release_regions(pdev); 3415 pci_disable_device(pdev); 3416 pci_set_drvdata(pdev, NULL); 3417 } 3418 } 3419 3420 static struct pci_driver driver = { 3421 .name = DRV_NAME, 3422 .id_table = cxgb3_pci_tbl, 3423 .probe = init_one, 3424 .remove = __devexit_p(remove_one), 3425 .err_handler = &t3_err_handler, 3426 }; 3427 3428 static int __init cxgb3_init_module(void) 3429 { 3430 int ret; 3431 3432 cxgb3_offload_init(); 3433 3434 ret = pci_register_driver(&driver); 3435 return ret; 3436 } 3437 3438 static void __exit cxgb3_cleanup_module(void) 3439 { 3440 pci_unregister_driver(&driver); 3441 if (cxgb3_wq) 3442 destroy_workqueue(cxgb3_wq); 3443 } 3444 3445 module_init(cxgb3_init_module); 3446 module_exit(cxgb3_cleanup_module); 3447