1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51 
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57 
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61 
62 enum {
63 	MAX_TXQ_ENTRIES = 16384,
64 	MAX_CTRL_TXQ_ENTRIES = 1024,
65 	MAX_RSPQ_ENTRIES = 16384,
66 	MAX_RX_BUFFERS = 16384,
67 	MAX_RX_JUMBO_BUFFERS = 16384,
68 	MIN_TXQ_ENTRIES = 4,
69 	MIN_CTRL_TXQ_ENTRIES = 4,
70 	MIN_RSPQ_ENTRIES = 32,
71 	MIN_FL_ENTRIES = 32
72 };
73 
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75 
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79 
80 #define EEPROM_MAGIC 0x38E2F10C
81 
82 #define CH_DEVICE(devid, idx) \
83 	{ PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84 
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 	CH_DEVICE(0x20, 0),	/* PE9000 */
87 	CH_DEVICE(0x21, 1),	/* T302E */
88 	CH_DEVICE(0x22, 2),	/* T310E */
89 	CH_DEVICE(0x23, 3),	/* T320X */
90 	CH_DEVICE(0x24, 1),	/* T302X */
91 	CH_DEVICE(0x25, 3),	/* T320E */
92 	CH_DEVICE(0x26, 2),	/* T310X */
93 	CH_DEVICE(0x30, 2),	/* T3B10 */
94 	CH_DEVICE(0x31, 3),	/* T3B20 */
95 	CH_DEVICE(0x32, 1),	/* T3B02 */
96 	CH_DEVICE(0x35, 6),	/* T3C20-derived T3C10 */
97 	CH_DEVICE(0x36, 3),	/* S320E-CR */
98 	CH_DEVICE(0x37, 7),	/* N320E-G2 */
99 	{0,}
100 };
101 
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107 
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109 
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112 
113 /*
114  * The driver uses the best interrupt scheme available on a platform in the
115  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
116  * of these schemes the driver may consider as follows:
117  *
118  * msi = 2: choose from among all three options
119  * msi = 1: only consider MSI and pin interrupts
120  * msi = 0: force pin interrupts
121  */
122 static int msi = 2;
123 
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126 
127 /*
128  * The driver enables offload as a default.
129  * To disable it, use ofld_disable = 1.
130  */
131 
132 static int ofld_disable = 0;
133 
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136 
137 /*
138  * We have work elements that we need to cancel when an interface is taken
139  * down.  Normally the work elements would be executed by keventd but that
140  * can deadlock because of linkwatch.  If our close method takes the rtnl
141  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143  * for our work to complete.  Get our own work queue to solve this.
144  */
145 struct workqueue_struct *cxgb3_wq;
146 
147 /**
148  *	link_report - show link status and link speed/duplex
149  *	@p: the port whose settings are to be reported
150  *
151  *	Shows the link status, speed, and duplex of a port.
152  */
153 static void link_report(struct net_device *dev)
154 {
155 	if (!netif_carrier_ok(dev))
156 		printk(KERN_INFO "%s: link down\n", dev->name);
157 	else {
158 		const char *s = "10Mbps";
159 		const struct port_info *p = netdev_priv(dev);
160 
161 		switch (p->link_config.speed) {
162 		case SPEED_10000:
163 			s = "10Gbps";
164 			break;
165 		case SPEED_1000:
166 			s = "1000Mbps";
167 			break;
168 		case SPEED_100:
169 			s = "100Mbps";
170 			break;
171 		}
172 
173 		printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 		       p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175 	}
176 }
177 
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 				 struct port_info *pi)
180 {
181 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 			 F_ENDROPPKT);
183 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 	t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187 
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 				  struct port_info *pi)
190 {
191 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 			 F_ENDROPPKT, 0);
193 }
194 
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197 	struct net_device *dev = adap->port[port_id];
198 	struct port_info *pi = netdev_priv(dev);
199 
200 	if (state == netif_carrier_ok(dev))
201 		return;
202 
203 	if (state) {
204 		struct cmac *mac = &pi->mac;
205 
206 		netif_carrier_on(dev);
207 
208 		disable_tx_fifo_drain(adap, pi);
209 
210 		/* Clear local faults */
211 		t3_xgm_intr_disable(adap, pi->port_id);
212 		t3_read_reg(adap, A_XGM_INT_STATUS +
213 				    pi->mac.offset);
214 		t3_write_reg(adap,
215 			     A_XGM_INT_CAUSE + pi->mac.offset,
216 			     F_XGM_INT);
217 
218 		t3_set_reg_field(adap,
219 				 A_XGM_INT_ENABLE +
220 				 pi->mac.offset,
221 				 F_XGM_INT, F_XGM_INT);
222 		t3_xgm_intr_enable(adap, pi->port_id);
223 
224 		t3_mac_enable(mac, MAC_DIRECTION_TX);
225 	} else {
226 		netif_carrier_off(dev);
227 
228 		/* Flush TX FIFO */
229 		enable_tx_fifo_drain(adap, pi);
230 	}
231 	link_report(dev);
232 }
233 
234 /**
235  *	t3_os_link_changed - handle link status changes
236  *	@adapter: the adapter associated with the link change
237  *	@port_id: the port index whose limk status has changed
238  *	@link_stat: the new status of the link
239  *	@speed: the new speed setting
240  *	@duplex: the new duplex setting
241  *	@pause: the new flow-control setting
242  *
243  *	This is the OS-dependent handler for link status changes.  The OS
244  *	neutral handler takes care of most of the processing for these events,
245  *	then calls this handler for any OS-specific processing.
246  */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 			int speed, int duplex, int pause)
249 {
250 	struct net_device *dev = adapter->port[port_id];
251 	struct port_info *pi = netdev_priv(dev);
252 	struct cmac *mac = &pi->mac;
253 
254 	/* Skip changes from disabled ports. */
255 	if (!netif_running(dev))
256 		return;
257 
258 	if (link_stat != netif_carrier_ok(dev)) {
259 		if (link_stat) {
260 			disable_tx_fifo_drain(adapter, pi);
261 
262 			t3_mac_enable(mac, MAC_DIRECTION_RX);
263 
264 			/* Clear local faults */
265 			t3_xgm_intr_disable(adapter, pi->port_id);
266 			t3_read_reg(adapter, A_XGM_INT_STATUS +
267 				    pi->mac.offset);
268 			t3_write_reg(adapter,
269 				     A_XGM_INT_CAUSE + pi->mac.offset,
270 				     F_XGM_INT);
271 
272 			t3_set_reg_field(adapter,
273 					 A_XGM_INT_ENABLE + pi->mac.offset,
274 					 F_XGM_INT, F_XGM_INT);
275 			t3_xgm_intr_enable(adapter, pi->port_id);
276 
277 			netif_carrier_on(dev);
278 		} else {
279 			netif_carrier_off(dev);
280 
281 			t3_xgm_intr_disable(adapter, pi->port_id);
282 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 			t3_set_reg_field(adapter,
284 					 A_XGM_INT_ENABLE + pi->mac.offset,
285 					 F_XGM_INT, 0);
286 
287 			if (is_10G(adapter))
288 				pi->phy.ops->power_down(&pi->phy, 1);
289 
290 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 			t3_mac_disable(mac, MAC_DIRECTION_RX);
292 			t3_link_start(&pi->phy, mac, &pi->link_config);
293 
294 			/* Flush TX FIFO */
295 			enable_tx_fifo_drain(adapter, pi);
296 		}
297 
298 		link_report(dev);
299 	}
300 }
301 
302 /**
303  *	t3_os_phymod_changed - handle PHY module changes
304  *	@phy: the PHY reporting the module change
305  *	@mod_type: new module type
306  *
307  *	This is the OS-dependent handler for PHY module changes.  It is
308  *	invoked when a PHY module is removed or inserted for any OS-specific
309  *	processing.
310  */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313 	static const char *mod_str[] = {
314 		NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315 	};
316 
317 	const struct net_device *dev = adap->port[port_id];
318 	const struct port_info *pi = netdev_priv(dev);
319 
320 	if (pi->phy.modtype == phy_modtype_none)
321 		printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 	else
323 		printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 		       mod_str[pi->phy.modtype]);
325 }
326 
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329 	struct port_info *pi = netdev_priv(dev);
330 
331 	t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333 
334 /**
335  *	link_start - enable a port
336  *	@dev: the device to enable
337  *
338  *	Performs the MAC and PHY actions needed to enable a port.
339  */
340 static void link_start(struct net_device *dev)
341 {
342 	struct port_info *pi = netdev_priv(dev);
343 	struct cmac *mac = &pi->mac;
344 
345 	t3_mac_reset(mac);
346 	t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 	t3_mac_set_mtu(mac, dev->mtu);
348 	t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 	t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 	t3_mac_set_rx_mode(mac, dev);
351 	t3_link_start(&pi->phy, mac, &pi->link_config);
352 	t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354 
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357 	if (adapter->flags & USING_MSIX) {
358 		pci_disable_msix(adapter->pdev);
359 		adapter->flags &= ~USING_MSIX;
360 	} else if (adapter->flags & USING_MSI) {
361 		pci_disable_msi(adapter->pdev);
362 		adapter->flags &= ~USING_MSI;
363 	}
364 }
365 
366 /*
367  * Interrupt handler for asynchronous events used with MSI-X.
368  */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371 	t3_slow_intr_handler(cookie);
372 	return IRQ_HANDLED;
373 }
374 
375 /*
376  * Name the MSI-X interrupts.
377  */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380 	int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381 
382 	snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 	adap->msix_info[0].desc[n] = 0;
384 
385 	for_each_port(adap, j) {
386 		struct net_device *d = adap->port[j];
387 		const struct port_info *pi = netdev_priv(d);
388 
389 		for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 			snprintf(adap->msix_info[msi_idx].desc, n,
391 				 "%s-%d", d->name, pi->first_qset + i);
392 			adap->msix_info[msi_idx].desc[n] = 0;
393 		}
394 	}
395 }
396 
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399 	int i, j, err, qidx = 0;
400 
401 	for_each_port(adap, i) {
402 		int nqsets = adap2pinfo(adap, i)->nqsets;
403 
404 		for (j = 0; j < nqsets; ++j) {
405 			err = request_irq(adap->msix_info[qidx + 1].vec,
406 					  t3_intr_handler(adap,
407 							  adap->sge.qs[qidx].
408 							  rspq.polling), 0,
409 					  adap->msix_info[qidx + 1].desc,
410 					  &adap->sge.qs[qidx]);
411 			if (err) {
412 				while (--qidx >= 0)
413 					free_irq(adap->msix_info[qidx + 1].vec,
414 						 &adap->sge.qs[qidx]);
415 				return err;
416 			}
417 			qidx++;
418 		}
419 	}
420 	return 0;
421 }
422 
423 static void free_irq_resources(struct adapter *adapter)
424 {
425 	if (adapter->flags & USING_MSIX) {
426 		int i, n = 0;
427 
428 		free_irq(adapter->msix_info[0].vec, adapter);
429 		for_each_port(adapter, i)
430 			n += adap2pinfo(adapter, i)->nqsets;
431 
432 		for (i = 0; i < n; ++i)
433 			free_irq(adapter->msix_info[i + 1].vec,
434 				 &adapter->sge.qs[i]);
435 	} else
436 		free_irq(adapter->pdev->irq, adapter);
437 }
438 
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 			      unsigned long n)
441 {
442 	int attempts = 10;
443 
444 	while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 		if (!--attempts)
446 			return -ETIMEDOUT;
447 		msleep(10);
448 	}
449 	return 0;
450 }
451 
452 static int init_tp_parity(struct adapter *adap)
453 {
454 	int i;
455 	struct sk_buff *skb;
456 	struct cpl_set_tcb_field *greq;
457 	unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458 
459 	t3_tp_set_offload_mode(adap, 1);
460 
461 	for (i = 0; i < 16; i++) {
462 		struct cpl_smt_write_req *req;
463 
464 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 		if (!skb)
466 			skb = adap->nofail_skb;
467 		if (!skb)
468 			goto alloc_skb_fail;
469 
470 		req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 		memset(req, 0, sizeof(*req));
472 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 		req->mtu_idx = NMTUS - 1;
475 		req->iff = i;
476 		t3_mgmt_tx(adap, skb);
477 		if (skb == adap->nofail_skb) {
478 			await_mgmt_replies(adap, cnt, i + 1);
479 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 			if (!adap->nofail_skb)
481 				goto alloc_skb_fail;
482 		}
483 	}
484 
485 	for (i = 0; i < 2048; i++) {
486 		struct cpl_l2t_write_req *req;
487 
488 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 		if (!skb)
490 			skb = adap->nofail_skb;
491 		if (!skb)
492 			goto alloc_skb_fail;
493 
494 		req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 		memset(req, 0, sizeof(*req));
496 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 		req->params = htonl(V_L2T_W_IDX(i));
499 		t3_mgmt_tx(adap, skb);
500 		if (skb == adap->nofail_skb) {
501 			await_mgmt_replies(adap, cnt, 16 + i + 1);
502 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 			if (!adap->nofail_skb)
504 				goto alloc_skb_fail;
505 		}
506 	}
507 
508 	for (i = 0; i < 2048; i++) {
509 		struct cpl_rte_write_req *req;
510 
511 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 		if (!skb)
513 			skb = adap->nofail_skb;
514 		if (!skb)
515 			goto alloc_skb_fail;
516 
517 		req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 		memset(req, 0, sizeof(*req));
519 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 		req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 		t3_mgmt_tx(adap, skb);
523 		if (skb == adap->nofail_skb) {
524 			await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 			if (!adap->nofail_skb)
527 				goto alloc_skb_fail;
528 		}
529 	}
530 
531 	skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 	if (!skb)
533 		skb = adap->nofail_skb;
534 	if (!skb)
535 		goto alloc_skb_fail;
536 
537 	greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 	memset(greq, 0, sizeof(*greq));
539 	greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 	OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 	greq->mask = cpu_to_be64(1);
542 	t3_mgmt_tx(adap, skb);
543 
544 	i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 	if (skb == adap->nofail_skb) {
546 		i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 		adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548 	}
549 
550 	t3_tp_set_offload_mode(adap, 0);
551 	return i;
552 
553 alloc_skb_fail:
554 	t3_tp_set_offload_mode(adap, 0);
555 	return -ENOMEM;
556 }
557 
558 /**
559  *	setup_rss - configure RSS
560  *	@adap: the adapter
561  *
562  *	Sets up RSS to distribute packets to multiple receive queues.  We
563  *	configure the RSS CPU lookup table to distribute to the number of HW
564  *	receive queues, and the response queue lookup table to narrow that
565  *	down to the response queues actually configured for each port.
566  *	We always configure the RSS mapping for two ports since the mapping
567  *	table has plenty of entries.
568  */
569 static void setup_rss(struct adapter *adap)
570 {
571 	int i;
572 	unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 	unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 	u8 cpus[SGE_QSETS + 1];
575 	u16 rspq_map[RSS_TABLE_SIZE];
576 
577 	for (i = 0; i < SGE_QSETS; ++i)
578 		cpus[i] = i;
579 	cpus[SGE_QSETS] = 0xff;	/* terminator */
580 
581 	for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 		rspq_map[i] = i % nq0;
583 		rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584 	}
585 
586 	t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 		      F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 		      V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590 
591 static void ring_dbs(struct adapter *adap)
592 {
593 	int i, j;
594 
595 	for (i = 0; i < SGE_QSETS; i++) {
596 		struct sge_qset *qs = &adap->sge.qs[i];
597 
598 		if (qs->adap)
599 			for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 				t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 	}
602 }
603 
604 static void init_napi(struct adapter *adap)
605 {
606 	int i;
607 
608 	for (i = 0; i < SGE_QSETS; i++) {
609 		struct sge_qset *qs = &adap->sge.qs[i];
610 
611 		if (qs->adap)
612 			netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 				       64);
614 	}
615 
616 	/*
617 	 * netif_napi_add() can be called only once per napi_struct because it
618 	 * adds each new napi_struct to a list.  Be careful not to call it a
619 	 * second time, e.g., during EEH recovery, by making a note of it.
620 	 */
621 	adap->flags |= NAPI_INIT;
622 }
623 
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
629 static void quiesce_rx(struct adapter *adap)
630 {
631 	int i;
632 
633 	for (i = 0; i < SGE_QSETS; i++)
634 		if (adap->sge.qs[i].adap)
635 			napi_disable(&adap->sge.qs[i].napi);
636 }
637 
638 static void enable_all_napi(struct adapter *adap)
639 {
640 	int i;
641 	for (i = 0; i < SGE_QSETS; i++)
642 		if (adap->sge.qs[i].adap)
643 			napi_enable(&adap->sge.qs[i].napi);
644 }
645 
646 /**
647  *	setup_sge_qsets - configure SGE Tx/Rx/response queues
648  *	@adap: the adapter
649  *
650  *	Determines how many sets of SGE queues to use and initializes them.
651  *	We support multiple queue sets per port if we have MSI-X, otherwise
652  *	just one queue set per port.
653  */
654 static int setup_sge_qsets(struct adapter *adap)
655 {
656 	int i, j, err, irq_idx = 0, qset_idx = 0;
657 	unsigned int ntxq = SGE_TXQ_PER_SET;
658 
659 	if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 		irq_idx = -1;
661 
662 	for_each_port(adap, i) {
663 		struct net_device *dev = adap->port[i];
664 		struct port_info *pi = netdev_priv(dev);
665 
666 		pi->qs = &adap->sge.qs[pi->first_qset];
667 		for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 			err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 				(adap->flags & USING_MSIX) ? qset_idx + 1 :
670 							     irq_idx,
671 				&adap->params.sge.qset[qset_idx], ntxq, dev,
672 				netdev_get_tx_queue(dev, j));
673 			if (err) {
674 				t3_free_sge_resources(adap);
675 				return err;
676 			}
677 		}
678 	}
679 
680 	return 0;
681 }
682 
683 static ssize_t attr_show(struct device *d, char *buf,
684 			 ssize_t(*format) (struct net_device *, char *))
685 {
686 	ssize_t len;
687 
688 	/* Synchronize with ioctls that may shut down the device */
689 	rtnl_lock();
690 	len = (*format) (to_net_dev(d), buf);
691 	rtnl_unlock();
692 	return len;
693 }
694 
695 static ssize_t attr_store(struct device *d,
696 			  const char *buf, size_t len,
697 			  ssize_t(*set) (struct net_device *, unsigned int),
698 			  unsigned int min_val, unsigned int max_val)
699 {
700 	char *endp;
701 	ssize_t ret;
702 	unsigned int val;
703 
704 	if (!capable(CAP_NET_ADMIN))
705 		return -EPERM;
706 
707 	val = simple_strtoul(buf, &endp, 0);
708 	if (endp == buf || val < min_val || val > max_val)
709 		return -EINVAL;
710 
711 	rtnl_lock();
712 	ret = (*set) (to_net_dev(d), val);
713 	if (!ret)
714 		ret = len;
715 	rtnl_unlock();
716 	return ret;
717 }
718 
719 #define CXGB3_SHOW(name, val_expr) \
720 static ssize_t format_##name(struct net_device *dev, char *buf) \
721 { \
722 	struct port_info *pi = netdev_priv(dev); \
723 	struct adapter *adap = pi->adapter; \
724 	return sprintf(buf, "%u\n", val_expr); \
725 } \
726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
727 			   char *buf) \
728 { \
729 	return attr_show(d, buf, format_##name); \
730 }
731 
732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
733 {
734 	struct port_info *pi = netdev_priv(dev);
735 	struct adapter *adap = pi->adapter;
736 	int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
737 
738 	if (adap->flags & FULL_INIT_DONE)
739 		return -EBUSY;
740 	if (val && adap->params.rev == 0)
741 		return -EINVAL;
742 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
743 	    min_tids)
744 		return -EINVAL;
745 	adap->params.mc5.nfilters = val;
746 	return 0;
747 }
748 
749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
750 			      const char *buf, size_t len)
751 {
752 	return attr_store(d, buf, len, set_nfilters, 0, ~0);
753 }
754 
755 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
756 {
757 	struct port_info *pi = netdev_priv(dev);
758 	struct adapter *adap = pi->adapter;
759 
760 	if (adap->flags & FULL_INIT_DONE)
761 		return -EBUSY;
762 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
763 	    MC5_MIN_TIDS)
764 		return -EINVAL;
765 	adap->params.mc5.nservers = val;
766 	return 0;
767 }
768 
769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
770 			      const char *buf, size_t len)
771 {
772 	return attr_store(d, buf, len, set_nservers, 0, ~0);
773 }
774 
775 #define CXGB3_ATTR_R(name, val_expr) \
776 CXGB3_SHOW(name, val_expr) \
777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
778 
779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
780 CXGB3_SHOW(name, val_expr) \
781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
782 
783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
786 
787 static struct attribute *cxgb3_attrs[] = {
788 	&dev_attr_cam_size.attr,
789 	&dev_attr_nfilters.attr,
790 	&dev_attr_nservers.attr,
791 	NULL
792 };
793 
794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
795 
796 static ssize_t tm_attr_show(struct device *d,
797 			    char *buf, int sched)
798 {
799 	struct port_info *pi = netdev_priv(to_net_dev(d));
800 	struct adapter *adap = pi->adapter;
801 	unsigned int v, addr, bpt, cpt;
802 	ssize_t len;
803 
804 	addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
805 	rtnl_lock();
806 	t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
807 	v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
808 	if (sched & 1)
809 		v >>= 16;
810 	bpt = (v >> 8) & 0xff;
811 	cpt = v & 0xff;
812 	if (!cpt)
813 		len = sprintf(buf, "disabled\n");
814 	else {
815 		v = (adap->params.vpd.cclk * 1000) / cpt;
816 		len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
817 	}
818 	rtnl_unlock();
819 	return len;
820 }
821 
822 static ssize_t tm_attr_store(struct device *d,
823 			     const char *buf, size_t len, int sched)
824 {
825 	struct port_info *pi = netdev_priv(to_net_dev(d));
826 	struct adapter *adap = pi->adapter;
827 	unsigned int val;
828 	char *endp;
829 	ssize_t ret;
830 
831 	if (!capable(CAP_NET_ADMIN))
832 		return -EPERM;
833 
834 	val = simple_strtoul(buf, &endp, 0);
835 	if (endp == buf || val > 10000000)
836 		return -EINVAL;
837 
838 	rtnl_lock();
839 	ret = t3_config_sched(adap, val, sched);
840 	if (!ret)
841 		ret = len;
842 	rtnl_unlock();
843 	return ret;
844 }
845 
846 #define TM_ATTR(name, sched) \
847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
848 			   char *buf) \
849 { \
850 	return tm_attr_show(d, buf, sched); \
851 } \
852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
853 			    const char *buf, size_t len) \
854 { \
855 	return tm_attr_store(d, buf, len, sched); \
856 } \
857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
858 
859 TM_ATTR(sched0, 0);
860 TM_ATTR(sched1, 1);
861 TM_ATTR(sched2, 2);
862 TM_ATTR(sched3, 3);
863 TM_ATTR(sched4, 4);
864 TM_ATTR(sched5, 5);
865 TM_ATTR(sched6, 6);
866 TM_ATTR(sched7, 7);
867 
868 static struct attribute *offload_attrs[] = {
869 	&dev_attr_sched0.attr,
870 	&dev_attr_sched1.attr,
871 	&dev_attr_sched2.attr,
872 	&dev_attr_sched3.attr,
873 	&dev_attr_sched4.attr,
874 	&dev_attr_sched5.attr,
875 	&dev_attr_sched6.attr,
876 	&dev_attr_sched7.attr,
877 	NULL
878 };
879 
880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
881 
882 /*
883  * Sends an sk_buff to an offload queue driver
884  * after dealing with any active network taps.
885  */
886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
887 {
888 	int ret;
889 
890 	local_bh_disable();
891 	ret = t3_offload_tx(tdev, skb);
892 	local_bh_enable();
893 	return ret;
894 }
895 
896 static int write_smt_entry(struct adapter *adapter, int idx)
897 {
898 	struct cpl_smt_write_req *req;
899 	struct port_info *pi = netdev_priv(adapter->port[idx]);
900 	struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
901 
902 	if (!skb)
903 		return -ENOMEM;
904 
905 	req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
906 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
907 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
908 	req->mtu_idx = NMTUS - 1;	/* should be 0 but there's a T3 bug */
909 	req->iff = idx;
910 	memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
911 	memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
912 	skb->priority = 1;
913 	offload_tx(&adapter->tdev, skb);
914 	return 0;
915 }
916 
917 static int init_smt(struct adapter *adapter)
918 {
919 	int i;
920 
921 	for_each_port(adapter, i)
922 	    write_smt_entry(adapter, i);
923 	return 0;
924 }
925 
926 static void init_port_mtus(struct adapter *adapter)
927 {
928 	unsigned int mtus = adapter->port[0]->mtu;
929 
930 	if (adapter->port[1])
931 		mtus |= adapter->port[1]->mtu << 16;
932 	t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
933 }
934 
935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
936 			      int hi, int port)
937 {
938 	struct sk_buff *skb;
939 	struct mngt_pktsched_wr *req;
940 	int ret;
941 
942 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
943 	if (!skb)
944 		skb = adap->nofail_skb;
945 	if (!skb)
946 		return -ENOMEM;
947 
948 	req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
949 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
950 	req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
951 	req->sched = sched;
952 	req->idx = qidx;
953 	req->min = lo;
954 	req->max = hi;
955 	req->binding = port;
956 	ret = t3_mgmt_tx(adap, skb);
957 	if (skb == adap->nofail_skb) {
958 		adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
959 					     GFP_KERNEL);
960 		if (!adap->nofail_skb)
961 			ret = -ENOMEM;
962 	}
963 
964 	return ret;
965 }
966 
967 static int bind_qsets(struct adapter *adap)
968 {
969 	int i, j, err = 0;
970 
971 	for_each_port(adap, i) {
972 		const struct port_info *pi = adap2pinfo(adap, i);
973 
974 		for (j = 0; j < pi->nqsets; ++j) {
975 			int ret = send_pktsched_cmd(adap, 1,
976 						    pi->first_qset + j, -1,
977 						    -1, i);
978 			if (ret)
979 				err = ret;
980 		}
981 	}
982 
983 	return err;
984 }
985 
986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."			\
987 	__stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."		\
990 	__stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
995 MODULE_FIRMWARE(FW_FNAME);
996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1001 
1002 static inline const char *get_edc_fw_name(int edc_idx)
1003 {
1004 	const char *fw_name = NULL;
1005 
1006 	switch (edc_idx) {
1007 	case EDC_OPT_AEL2005:
1008 		fw_name = AEL2005_OPT_EDC_NAME;
1009 		break;
1010 	case EDC_TWX_AEL2005:
1011 		fw_name = AEL2005_TWX_EDC_NAME;
1012 		break;
1013 	case EDC_TWX_AEL2020:
1014 		fw_name = AEL2020_TWX_EDC_NAME;
1015 		break;
1016 	}
1017 	return fw_name;
1018 }
1019 
1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1021 {
1022 	struct adapter *adapter = phy->adapter;
1023 	const struct firmware *fw;
1024 	char buf[64];
1025 	u32 csum;
1026 	const __be32 *p;
1027 	u16 *cache = phy->phy_cache;
1028 	int i, ret;
1029 
1030 	snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1031 
1032 	ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1033 	if (ret < 0) {
1034 		dev_err(&adapter->pdev->dev,
1035 			"could not upgrade firmware: unable to load %s\n",
1036 			buf);
1037 		return ret;
1038 	}
1039 
1040 	/* check size, take checksum in account */
1041 	if (fw->size > size + 4) {
1042 		CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1043 		       (unsigned int)fw->size, size + 4);
1044 		ret = -EINVAL;
1045 	}
1046 
1047 	/* compute checksum */
1048 	p = (const __be32 *)fw->data;
1049 	for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1050 		csum += ntohl(p[i]);
1051 
1052 	if (csum != 0xffffffff) {
1053 		CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1054 		       csum);
1055 		ret = -EINVAL;
1056 	}
1057 
1058 	for (i = 0; i < size / 4 ; i++) {
1059 		*cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1060 		*cache++ = be32_to_cpu(p[i]) & 0xffff;
1061 	}
1062 
1063 	release_firmware(fw);
1064 
1065 	return ret;
1066 }
1067 
1068 static int upgrade_fw(struct adapter *adap)
1069 {
1070 	int ret;
1071 	const struct firmware *fw;
1072 	struct device *dev = &adap->pdev->dev;
1073 
1074 	ret = request_firmware(&fw, FW_FNAME, dev);
1075 	if (ret < 0) {
1076 		dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1077 			FW_FNAME);
1078 		return ret;
1079 	}
1080 	ret = t3_load_fw(adap, fw->data, fw->size);
1081 	release_firmware(fw);
1082 
1083 	if (ret == 0)
1084 		dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1085 			 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1086 	else
1087 		dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1088 			FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1089 
1090 	return ret;
1091 }
1092 
1093 static inline char t3rev2char(struct adapter *adapter)
1094 {
1095 	char rev = 0;
1096 
1097 	switch(adapter->params.rev) {
1098 	case T3_REV_B:
1099 	case T3_REV_B2:
1100 		rev = 'b';
1101 		break;
1102 	case T3_REV_C:
1103 		rev = 'c';
1104 		break;
1105 	}
1106 	return rev;
1107 }
1108 
1109 static int update_tpsram(struct adapter *adap)
1110 {
1111 	const struct firmware *tpsram;
1112 	char buf[64];
1113 	struct device *dev = &adap->pdev->dev;
1114 	int ret;
1115 	char rev;
1116 
1117 	rev = t3rev2char(adap);
1118 	if (!rev)
1119 		return 0;
1120 
1121 	snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1122 
1123 	ret = request_firmware(&tpsram, buf, dev);
1124 	if (ret < 0) {
1125 		dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126 			buf);
1127 		return ret;
1128 	}
1129 
1130 	ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131 	if (ret)
1132 		goto release_tpsram;
1133 
1134 	ret = t3_set_proto_sram(adap, tpsram->data);
1135 	if (ret == 0)
1136 		dev_info(dev,
1137 			 "successful update of protocol engine "
1138 			 "to %d.%d.%d\n",
1139 			 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140 	else
1141 		dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142 			TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143 	if (ret)
1144 		dev_err(dev, "loading protocol SRAM failed\n");
1145 
1146 release_tpsram:
1147 	release_firmware(tpsram);
1148 
1149 	return ret;
1150 }
1151 
1152 /**
1153  * t3_synchronize_rx - wait for current Rx processing on a port to complete
1154  * @adap: the adapter
1155  * @p: the port
1156  *
1157  * Ensures that current Rx processing on any of the queues associated with
1158  * the given port completes before returning.  We do this by acquiring and
1159  * releasing the locks of the response queues associated with the port.
1160  */
1161 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1162 {
1163 	int i;
1164 
1165 	for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1166 		struct sge_rspq *q = &adap->sge.qs[i].rspq;
1167 
1168 		spin_lock_irq(&q->lock);
1169 		spin_unlock_irq(&q->lock);
1170 	}
1171 }
1172 
1173 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1174 {
1175 	struct port_info *pi = netdev_priv(dev);
1176 	struct adapter *adapter = pi->adapter;
1177 
1178 	if (adapter->params.rev > 0) {
1179 		t3_set_vlan_accel(adapter, 1 << pi->port_id,
1180 				  features & NETIF_F_HW_VLAN_RX);
1181 	} else {
1182 		/* single control for all ports */
1183 		unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_RX;
1184 
1185 		for_each_port(adapter, i)
1186 			have_vlans |=
1187 				adapter->port[i]->features & NETIF_F_HW_VLAN_RX;
1188 
1189 		t3_set_vlan_accel(adapter, 1, have_vlans);
1190 	}
1191 	t3_synchronize_rx(adapter, pi);
1192 }
1193 
1194 /**
1195  *	cxgb_up - enable the adapter
1196  *	@adapter: adapter being enabled
1197  *
1198  *	Called when the first port is enabled, this function performs the
1199  *	actions necessary to make an adapter operational, such as completing
1200  *	the initialization of HW modules, and enabling interrupts.
1201  *
1202  *	Must be called with the rtnl lock held.
1203  */
1204 static int cxgb_up(struct adapter *adap)
1205 {
1206 	int i, err;
1207 
1208 	if (!(adap->flags & FULL_INIT_DONE)) {
1209 		err = t3_check_fw_version(adap);
1210 		if (err == -EINVAL) {
1211 			err = upgrade_fw(adap);
1212 			CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1213 				FW_VERSION_MAJOR, FW_VERSION_MINOR,
1214 				FW_VERSION_MICRO, err ? "failed" : "succeeded");
1215 		}
1216 
1217 		err = t3_check_tpsram_version(adap);
1218 		if (err == -EINVAL) {
1219 			err = update_tpsram(adap);
1220 			CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1221 				TP_VERSION_MAJOR, TP_VERSION_MINOR,
1222 				TP_VERSION_MICRO, err ? "failed" : "succeeded");
1223 		}
1224 
1225 		/*
1226 		 * Clear interrupts now to catch errors if t3_init_hw fails.
1227 		 * We clear them again later as initialization may trigger
1228 		 * conditions that can interrupt.
1229 		 */
1230 		t3_intr_clear(adap);
1231 
1232 		err = t3_init_hw(adap, 0);
1233 		if (err)
1234 			goto out;
1235 
1236 		t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1237 		t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1238 
1239 		err = setup_sge_qsets(adap);
1240 		if (err)
1241 			goto out;
1242 
1243 		for_each_port(adap, i)
1244 			cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1245 
1246 		setup_rss(adap);
1247 		if (!(adap->flags & NAPI_INIT))
1248 			init_napi(adap);
1249 
1250 		t3_start_sge_timers(adap);
1251 		adap->flags |= FULL_INIT_DONE;
1252 	}
1253 
1254 	t3_intr_clear(adap);
1255 
1256 	if (adap->flags & USING_MSIX) {
1257 		name_msix_vecs(adap);
1258 		err = request_irq(adap->msix_info[0].vec,
1259 				  t3_async_intr_handler, 0,
1260 				  adap->msix_info[0].desc, adap);
1261 		if (err)
1262 			goto irq_err;
1263 
1264 		err = request_msix_data_irqs(adap);
1265 		if (err) {
1266 			free_irq(adap->msix_info[0].vec, adap);
1267 			goto irq_err;
1268 		}
1269 	} else if ((err = request_irq(adap->pdev->irq,
1270 				      t3_intr_handler(adap,
1271 						      adap->sge.qs[0].rspq.
1272 						      polling),
1273 				      (adap->flags & USING_MSI) ?
1274 				       0 : IRQF_SHARED,
1275 				      adap->name, adap)))
1276 		goto irq_err;
1277 
1278 	enable_all_napi(adap);
1279 	t3_sge_start(adap);
1280 	t3_intr_enable(adap);
1281 
1282 	if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1283 	    is_offload(adap) && init_tp_parity(adap) == 0)
1284 		adap->flags |= TP_PARITY_INIT;
1285 
1286 	if (adap->flags & TP_PARITY_INIT) {
1287 		t3_write_reg(adap, A_TP_INT_CAUSE,
1288 			     F_CMCACHEPERR | F_ARPLUTPERR);
1289 		t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1290 	}
1291 
1292 	if (!(adap->flags & QUEUES_BOUND)) {
1293 		int ret = bind_qsets(adap);
1294 
1295 		if (ret < 0) {
1296 			CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1297 			t3_intr_disable(adap);
1298 			free_irq_resources(adap);
1299 			err = ret;
1300 			goto out;
1301 		}
1302 		adap->flags |= QUEUES_BOUND;
1303 	}
1304 
1305 out:
1306 	return err;
1307 irq_err:
1308 	CH_ERR(adap, "request_irq failed, err %d\n", err);
1309 	goto out;
1310 }
1311 
1312 /*
1313  * Release resources when all the ports and offloading have been stopped.
1314  */
1315 static void cxgb_down(struct adapter *adapter, int on_wq)
1316 {
1317 	t3_sge_stop(adapter);
1318 	spin_lock_irq(&adapter->work_lock);	/* sync with PHY intr task */
1319 	t3_intr_disable(adapter);
1320 	spin_unlock_irq(&adapter->work_lock);
1321 
1322 	free_irq_resources(adapter);
1323 	quiesce_rx(adapter);
1324 	t3_sge_stop(adapter);
1325 	if (!on_wq)
1326 		flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1327 }
1328 
1329 static void schedule_chk_task(struct adapter *adap)
1330 {
1331 	unsigned int timeo;
1332 
1333 	timeo = adap->params.linkpoll_period ?
1334 	    (HZ * adap->params.linkpoll_period) / 10 :
1335 	    adap->params.stats_update_period * HZ;
1336 	if (timeo)
1337 		queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1338 }
1339 
1340 static int offload_open(struct net_device *dev)
1341 {
1342 	struct port_info *pi = netdev_priv(dev);
1343 	struct adapter *adapter = pi->adapter;
1344 	struct t3cdev *tdev = dev2t3cdev(dev);
1345 	int adap_up = adapter->open_device_map & PORT_MASK;
1346 	int err;
1347 
1348 	if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1349 		return 0;
1350 
1351 	if (!adap_up && (err = cxgb_up(adapter)) < 0)
1352 		goto out;
1353 
1354 	t3_tp_set_offload_mode(adapter, 1);
1355 	tdev->lldev = adapter->port[0];
1356 	err = cxgb3_offload_activate(adapter);
1357 	if (err)
1358 		goto out;
1359 
1360 	init_port_mtus(adapter);
1361 	t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1362 		     adapter->params.b_wnd,
1363 		     adapter->params.rev == 0 ?
1364 		     adapter->port[0]->mtu : 0xffff);
1365 	init_smt(adapter);
1366 
1367 	if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1368 		dev_dbg(&dev->dev, "cannot create sysfs group\n");
1369 
1370 	/* Call back all registered clients */
1371 	cxgb3_add_clients(tdev);
1372 
1373 out:
1374 	/* restore them in case the offload module has changed them */
1375 	if (err) {
1376 		t3_tp_set_offload_mode(adapter, 0);
1377 		clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1378 		cxgb3_set_dummy_ops(tdev);
1379 	}
1380 	return err;
1381 }
1382 
1383 static int offload_close(struct t3cdev *tdev)
1384 {
1385 	struct adapter *adapter = tdev2adap(tdev);
1386 	struct t3c_data *td = T3C_DATA(tdev);
1387 
1388 	if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1389 		return 0;
1390 
1391 	/* Call back all registered clients */
1392 	cxgb3_remove_clients(tdev);
1393 
1394 	sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1395 
1396 	/* Flush work scheduled while releasing TIDs */
1397 	flush_work_sync(&td->tid_release_task);
1398 
1399 	tdev->lldev = NULL;
1400 	cxgb3_set_dummy_ops(tdev);
1401 	t3_tp_set_offload_mode(adapter, 0);
1402 	clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1403 
1404 	if (!adapter->open_device_map)
1405 		cxgb_down(adapter, 0);
1406 
1407 	cxgb3_offload_deactivate(adapter);
1408 	return 0;
1409 }
1410 
1411 static int cxgb_open(struct net_device *dev)
1412 {
1413 	struct port_info *pi = netdev_priv(dev);
1414 	struct adapter *adapter = pi->adapter;
1415 	int other_ports = adapter->open_device_map & PORT_MASK;
1416 	int err;
1417 
1418 	if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1419 		return err;
1420 
1421 	set_bit(pi->port_id, &adapter->open_device_map);
1422 	if (is_offload(adapter) && !ofld_disable) {
1423 		err = offload_open(dev);
1424 		if (err)
1425 			printk(KERN_WARNING
1426 			       "Could not initialize offload capabilities\n");
1427 	}
1428 
1429 	netif_set_real_num_tx_queues(dev, pi->nqsets);
1430 	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1431 	if (err)
1432 		return err;
1433 	link_start(dev);
1434 	t3_port_intr_enable(adapter, pi->port_id);
1435 	netif_tx_start_all_queues(dev);
1436 	if (!other_ports)
1437 		schedule_chk_task(adapter);
1438 
1439 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1440 	return 0;
1441 }
1442 
1443 static int __cxgb_close(struct net_device *dev, int on_wq)
1444 {
1445 	struct port_info *pi = netdev_priv(dev);
1446 	struct adapter *adapter = pi->adapter;
1447 
1448 
1449 	if (!adapter->open_device_map)
1450 		return 0;
1451 
1452 	/* Stop link fault interrupts */
1453 	t3_xgm_intr_disable(adapter, pi->port_id);
1454 	t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1455 
1456 	t3_port_intr_disable(adapter, pi->port_id);
1457 	netif_tx_stop_all_queues(dev);
1458 	pi->phy.ops->power_down(&pi->phy, 1);
1459 	netif_carrier_off(dev);
1460 	t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1461 
1462 	spin_lock_irq(&adapter->work_lock);	/* sync with update task */
1463 	clear_bit(pi->port_id, &adapter->open_device_map);
1464 	spin_unlock_irq(&adapter->work_lock);
1465 
1466 	if (!(adapter->open_device_map & PORT_MASK))
1467 		cancel_delayed_work_sync(&adapter->adap_check_task);
1468 
1469 	if (!adapter->open_device_map)
1470 		cxgb_down(adapter, on_wq);
1471 
1472 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1473 	return 0;
1474 }
1475 
1476 static int cxgb_close(struct net_device *dev)
1477 {
1478 	return __cxgb_close(dev, 0);
1479 }
1480 
1481 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1482 {
1483 	struct port_info *pi = netdev_priv(dev);
1484 	struct adapter *adapter = pi->adapter;
1485 	struct net_device_stats *ns = &pi->netstats;
1486 	const struct mac_stats *pstats;
1487 
1488 	spin_lock(&adapter->stats_lock);
1489 	pstats = t3_mac_update_stats(&pi->mac);
1490 	spin_unlock(&adapter->stats_lock);
1491 
1492 	ns->tx_bytes = pstats->tx_octets;
1493 	ns->tx_packets = pstats->tx_frames;
1494 	ns->rx_bytes = pstats->rx_octets;
1495 	ns->rx_packets = pstats->rx_frames;
1496 	ns->multicast = pstats->rx_mcast_frames;
1497 
1498 	ns->tx_errors = pstats->tx_underrun;
1499 	ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1500 	    pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1501 	    pstats->rx_fifo_ovfl;
1502 
1503 	/* detailed rx_errors */
1504 	ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1505 	ns->rx_over_errors = 0;
1506 	ns->rx_crc_errors = pstats->rx_fcs_errs;
1507 	ns->rx_frame_errors = pstats->rx_symbol_errs;
1508 	ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1509 	ns->rx_missed_errors = pstats->rx_cong_drops;
1510 
1511 	/* detailed tx_errors */
1512 	ns->tx_aborted_errors = 0;
1513 	ns->tx_carrier_errors = 0;
1514 	ns->tx_fifo_errors = pstats->tx_underrun;
1515 	ns->tx_heartbeat_errors = 0;
1516 	ns->tx_window_errors = 0;
1517 	return ns;
1518 }
1519 
1520 static u32 get_msglevel(struct net_device *dev)
1521 {
1522 	struct port_info *pi = netdev_priv(dev);
1523 	struct adapter *adapter = pi->adapter;
1524 
1525 	return adapter->msg_enable;
1526 }
1527 
1528 static void set_msglevel(struct net_device *dev, u32 val)
1529 {
1530 	struct port_info *pi = netdev_priv(dev);
1531 	struct adapter *adapter = pi->adapter;
1532 
1533 	adapter->msg_enable = val;
1534 }
1535 
1536 static char stats_strings[][ETH_GSTRING_LEN] = {
1537 	"TxOctetsOK         ",
1538 	"TxFramesOK         ",
1539 	"TxMulticastFramesOK",
1540 	"TxBroadcastFramesOK",
1541 	"TxPauseFrames      ",
1542 	"TxUnderrun         ",
1543 	"TxExtUnderrun      ",
1544 
1545 	"TxFrames64         ",
1546 	"TxFrames65To127    ",
1547 	"TxFrames128To255   ",
1548 	"TxFrames256To511   ",
1549 	"TxFrames512To1023  ",
1550 	"TxFrames1024To1518 ",
1551 	"TxFrames1519ToMax  ",
1552 
1553 	"RxOctetsOK         ",
1554 	"RxFramesOK         ",
1555 	"RxMulticastFramesOK",
1556 	"RxBroadcastFramesOK",
1557 	"RxPauseFrames      ",
1558 	"RxFCSErrors        ",
1559 	"RxSymbolErrors     ",
1560 	"RxShortErrors      ",
1561 	"RxJabberErrors     ",
1562 	"RxLengthErrors     ",
1563 	"RxFIFOoverflow     ",
1564 
1565 	"RxFrames64         ",
1566 	"RxFrames65To127    ",
1567 	"RxFrames128To255   ",
1568 	"RxFrames256To511   ",
1569 	"RxFrames512To1023  ",
1570 	"RxFrames1024To1518 ",
1571 	"RxFrames1519ToMax  ",
1572 
1573 	"PhyFIFOErrors      ",
1574 	"TSO                ",
1575 	"VLANextractions    ",
1576 	"VLANinsertions     ",
1577 	"TxCsumOffload      ",
1578 	"RxCsumGood         ",
1579 	"LroAggregated      ",
1580 	"LroFlushed         ",
1581 	"LroNoDesc          ",
1582 	"RxDrops            ",
1583 
1584 	"CheckTXEnToggled   ",
1585 	"CheckResets        ",
1586 
1587 	"LinkFaults         ",
1588 };
1589 
1590 static int get_sset_count(struct net_device *dev, int sset)
1591 {
1592 	switch (sset) {
1593 	case ETH_SS_STATS:
1594 		return ARRAY_SIZE(stats_strings);
1595 	default:
1596 		return -EOPNOTSUPP;
1597 	}
1598 }
1599 
1600 #define T3_REGMAP_SIZE (3 * 1024)
1601 
1602 static int get_regs_len(struct net_device *dev)
1603 {
1604 	return T3_REGMAP_SIZE;
1605 }
1606 
1607 static int get_eeprom_len(struct net_device *dev)
1608 {
1609 	return EEPROMSIZE;
1610 }
1611 
1612 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1613 {
1614 	struct port_info *pi = netdev_priv(dev);
1615 	struct adapter *adapter = pi->adapter;
1616 	u32 fw_vers = 0;
1617 	u32 tp_vers = 0;
1618 
1619 	spin_lock(&adapter->stats_lock);
1620 	t3_get_fw_version(adapter, &fw_vers);
1621 	t3_get_tp_version(adapter, &tp_vers);
1622 	spin_unlock(&adapter->stats_lock);
1623 
1624 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1625 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1626 	strlcpy(info->bus_info, pci_name(adapter->pdev),
1627 		sizeof(info->bus_info));
1628 	if (fw_vers)
1629 		snprintf(info->fw_version, sizeof(info->fw_version),
1630 			 "%s %u.%u.%u TP %u.%u.%u",
1631 			 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1632 			 G_FW_VERSION_MAJOR(fw_vers),
1633 			 G_FW_VERSION_MINOR(fw_vers),
1634 			 G_FW_VERSION_MICRO(fw_vers),
1635 			 G_TP_VERSION_MAJOR(tp_vers),
1636 			 G_TP_VERSION_MINOR(tp_vers),
1637 			 G_TP_VERSION_MICRO(tp_vers));
1638 }
1639 
1640 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1641 {
1642 	if (stringset == ETH_SS_STATS)
1643 		memcpy(data, stats_strings, sizeof(stats_strings));
1644 }
1645 
1646 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1647 					    struct port_info *p, int idx)
1648 {
1649 	int i;
1650 	unsigned long tot = 0;
1651 
1652 	for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1653 		tot += adapter->sge.qs[i].port_stats[idx];
1654 	return tot;
1655 }
1656 
1657 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1658 		      u64 *data)
1659 {
1660 	struct port_info *pi = netdev_priv(dev);
1661 	struct adapter *adapter = pi->adapter;
1662 	const struct mac_stats *s;
1663 
1664 	spin_lock(&adapter->stats_lock);
1665 	s = t3_mac_update_stats(&pi->mac);
1666 	spin_unlock(&adapter->stats_lock);
1667 
1668 	*data++ = s->tx_octets;
1669 	*data++ = s->tx_frames;
1670 	*data++ = s->tx_mcast_frames;
1671 	*data++ = s->tx_bcast_frames;
1672 	*data++ = s->tx_pause;
1673 	*data++ = s->tx_underrun;
1674 	*data++ = s->tx_fifo_urun;
1675 
1676 	*data++ = s->tx_frames_64;
1677 	*data++ = s->tx_frames_65_127;
1678 	*data++ = s->tx_frames_128_255;
1679 	*data++ = s->tx_frames_256_511;
1680 	*data++ = s->tx_frames_512_1023;
1681 	*data++ = s->tx_frames_1024_1518;
1682 	*data++ = s->tx_frames_1519_max;
1683 
1684 	*data++ = s->rx_octets;
1685 	*data++ = s->rx_frames;
1686 	*data++ = s->rx_mcast_frames;
1687 	*data++ = s->rx_bcast_frames;
1688 	*data++ = s->rx_pause;
1689 	*data++ = s->rx_fcs_errs;
1690 	*data++ = s->rx_symbol_errs;
1691 	*data++ = s->rx_short;
1692 	*data++ = s->rx_jabber;
1693 	*data++ = s->rx_too_long;
1694 	*data++ = s->rx_fifo_ovfl;
1695 
1696 	*data++ = s->rx_frames_64;
1697 	*data++ = s->rx_frames_65_127;
1698 	*data++ = s->rx_frames_128_255;
1699 	*data++ = s->rx_frames_256_511;
1700 	*data++ = s->rx_frames_512_1023;
1701 	*data++ = s->rx_frames_1024_1518;
1702 	*data++ = s->rx_frames_1519_max;
1703 
1704 	*data++ = pi->phy.fifo_errors;
1705 
1706 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1707 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1708 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1709 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1710 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1711 	*data++ = 0;
1712 	*data++ = 0;
1713 	*data++ = 0;
1714 	*data++ = s->rx_cong_drops;
1715 
1716 	*data++ = s->num_toggled;
1717 	*data++ = s->num_resets;
1718 
1719 	*data++ = s->link_faults;
1720 }
1721 
1722 static inline void reg_block_dump(struct adapter *ap, void *buf,
1723 				  unsigned int start, unsigned int end)
1724 {
1725 	u32 *p = buf + start;
1726 
1727 	for (; start <= end; start += sizeof(u32))
1728 		*p++ = t3_read_reg(ap, start);
1729 }
1730 
1731 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1732 		     void *buf)
1733 {
1734 	struct port_info *pi = netdev_priv(dev);
1735 	struct adapter *ap = pi->adapter;
1736 
1737 	/*
1738 	 * Version scheme:
1739 	 * bits 0..9: chip version
1740 	 * bits 10..15: chip revision
1741 	 * bit 31: set for PCIe cards
1742 	 */
1743 	regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1744 
1745 	/*
1746 	 * We skip the MAC statistics registers because they are clear-on-read.
1747 	 * Also reading multi-register stats would need to synchronize with the
1748 	 * periodic mac stats accumulation.  Hard to justify the complexity.
1749 	 */
1750 	memset(buf, 0, T3_REGMAP_SIZE);
1751 	reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1752 	reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1753 	reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1754 	reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1755 	reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1756 	reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1757 		       XGM_REG(A_XGM_SERDES_STAT3, 1));
1758 	reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1759 		       XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1760 }
1761 
1762 static int restart_autoneg(struct net_device *dev)
1763 {
1764 	struct port_info *p = netdev_priv(dev);
1765 
1766 	if (!netif_running(dev))
1767 		return -EAGAIN;
1768 	if (p->link_config.autoneg != AUTONEG_ENABLE)
1769 		return -EINVAL;
1770 	p->phy.ops->autoneg_restart(&p->phy);
1771 	return 0;
1772 }
1773 
1774 static int set_phys_id(struct net_device *dev,
1775 		       enum ethtool_phys_id_state state)
1776 {
1777 	struct port_info *pi = netdev_priv(dev);
1778 	struct adapter *adapter = pi->adapter;
1779 
1780 	switch (state) {
1781 	case ETHTOOL_ID_ACTIVE:
1782 		return 1;	/* cycle on/off once per second */
1783 
1784 	case ETHTOOL_ID_OFF:
1785 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1786 		break;
1787 
1788 	case ETHTOOL_ID_ON:
1789 	case ETHTOOL_ID_INACTIVE:
1790 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1791 			 F_GPIO0_OUT_VAL);
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1798 {
1799 	struct port_info *p = netdev_priv(dev);
1800 
1801 	cmd->supported = p->link_config.supported;
1802 	cmd->advertising = p->link_config.advertising;
1803 
1804 	if (netif_carrier_ok(dev)) {
1805 		ethtool_cmd_speed_set(cmd, p->link_config.speed);
1806 		cmd->duplex = p->link_config.duplex;
1807 	} else {
1808 		ethtool_cmd_speed_set(cmd, -1);
1809 		cmd->duplex = -1;
1810 	}
1811 
1812 	cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1813 	cmd->phy_address = p->phy.mdio.prtad;
1814 	cmd->transceiver = XCVR_EXTERNAL;
1815 	cmd->autoneg = p->link_config.autoneg;
1816 	cmd->maxtxpkt = 0;
1817 	cmd->maxrxpkt = 0;
1818 	return 0;
1819 }
1820 
1821 static int speed_duplex_to_caps(int speed, int duplex)
1822 {
1823 	int cap = 0;
1824 
1825 	switch (speed) {
1826 	case SPEED_10:
1827 		if (duplex == DUPLEX_FULL)
1828 			cap = SUPPORTED_10baseT_Full;
1829 		else
1830 			cap = SUPPORTED_10baseT_Half;
1831 		break;
1832 	case SPEED_100:
1833 		if (duplex == DUPLEX_FULL)
1834 			cap = SUPPORTED_100baseT_Full;
1835 		else
1836 			cap = SUPPORTED_100baseT_Half;
1837 		break;
1838 	case SPEED_1000:
1839 		if (duplex == DUPLEX_FULL)
1840 			cap = SUPPORTED_1000baseT_Full;
1841 		else
1842 			cap = SUPPORTED_1000baseT_Half;
1843 		break;
1844 	case SPEED_10000:
1845 		if (duplex == DUPLEX_FULL)
1846 			cap = SUPPORTED_10000baseT_Full;
1847 	}
1848 	return cap;
1849 }
1850 
1851 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1852 		      ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1853 		      ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1854 		      ADVERTISED_10000baseT_Full)
1855 
1856 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1857 {
1858 	struct port_info *p = netdev_priv(dev);
1859 	struct link_config *lc = &p->link_config;
1860 
1861 	if (!(lc->supported & SUPPORTED_Autoneg)) {
1862 		/*
1863 		 * PHY offers a single speed/duplex.  See if that's what's
1864 		 * being requested.
1865 		 */
1866 		if (cmd->autoneg == AUTONEG_DISABLE) {
1867 			u32 speed = ethtool_cmd_speed(cmd);
1868 			int cap = speed_duplex_to_caps(speed, cmd->duplex);
1869 			if (lc->supported & cap)
1870 				return 0;
1871 		}
1872 		return -EINVAL;
1873 	}
1874 
1875 	if (cmd->autoneg == AUTONEG_DISABLE) {
1876 		u32 speed = ethtool_cmd_speed(cmd);
1877 		int cap = speed_duplex_to_caps(speed, cmd->duplex);
1878 
1879 		if (!(lc->supported & cap) || (speed == SPEED_1000))
1880 			return -EINVAL;
1881 		lc->requested_speed = speed;
1882 		lc->requested_duplex = cmd->duplex;
1883 		lc->advertising = 0;
1884 	} else {
1885 		cmd->advertising &= ADVERTISED_MASK;
1886 		cmd->advertising &= lc->supported;
1887 		if (!cmd->advertising)
1888 			return -EINVAL;
1889 		lc->requested_speed = SPEED_INVALID;
1890 		lc->requested_duplex = DUPLEX_INVALID;
1891 		lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1892 	}
1893 	lc->autoneg = cmd->autoneg;
1894 	if (netif_running(dev))
1895 		t3_link_start(&p->phy, &p->mac, lc);
1896 	return 0;
1897 }
1898 
1899 static void get_pauseparam(struct net_device *dev,
1900 			   struct ethtool_pauseparam *epause)
1901 {
1902 	struct port_info *p = netdev_priv(dev);
1903 
1904 	epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1905 	epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1906 	epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1907 }
1908 
1909 static int set_pauseparam(struct net_device *dev,
1910 			  struct ethtool_pauseparam *epause)
1911 {
1912 	struct port_info *p = netdev_priv(dev);
1913 	struct link_config *lc = &p->link_config;
1914 
1915 	if (epause->autoneg == AUTONEG_DISABLE)
1916 		lc->requested_fc = 0;
1917 	else if (lc->supported & SUPPORTED_Autoneg)
1918 		lc->requested_fc = PAUSE_AUTONEG;
1919 	else
1920 		return -EINVAL;
1921 
1922 	if (epause->rx_pause)
1923 		lc->requested_fc |= PAUSE_RX;
1924 	if (epause->tx_pause)
1925 		lc->requested_fc |= PAUSE_TX;
1926 	if (lc->autoneg == AUTONEG_ENABLE) {
1927 		if (netif_running(dev))
1928 			t3_link_start(&p->phy, &p->mac, lc);
1929 	} else {
1930 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1931 		if (netif_running(dev))
1932 			t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1933 	}
1934 	return 0;
1935 }
1936 
1937 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1938 {
1939 	struct port_info *pi = netdev_priv(dev);
1940 	struct adapter *adapter = pi->adapter;
1941 	const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1942 
1943 	e->rx_max_pending = MAX_RX_BUFFERS;
1944 	e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1945 	e->tx_max_pending = MAX_TXQ_ENTRIES;
1946 
1947 	e->rx_pending = q->fl_size;
1948 	e->rx_mini_pending = q->rspq_size;
1949 	e->rx_jumbo_pending = q->jumbo_size;
1950 	e->tx_pending = q->txq_size[0];
1951 }
1952 
1953 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1954 {
1955 	struct port_info *pi = netdev_priv(dev);
1956 	struct adapter *adapter = pi->adapter;
1957 	struct qset_params *q;
1958 	int i;
1959 
1960 	if (e->rx_pending > MAX_RX_BUFFERS ||
1961 	    e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1962 	    e->tx_pending > MAX_TXQ_ENTRIES ||
1963 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1964 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1965 	    e->rx_pending < MIN_FL_ENTRIES ||
1966 	    e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1967 	    e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1968 		return -EINVAL;
1969 
1970 	if (adapter->flags & FULL_INIT_DONE)
1971 		return -EBUSY;
1972 
1973 	q = &adapter->params.sge.qset[pi->first_qset];
1974 	for (i = 0; i < pi->nqsets; ++i, ++q) {
1975 		q->rspq_size = e->rx_mini_pending;
1976 		q->fl_size = e->rx_pending;
1977 		q->jumbo_size = e->rx_jumbo_pending;
1978 		q->txq_size[0] = e->tx_pending;
1979 		q->txq_size[1] = e->tx_pending;
1980 		q->txq_size[2] = e->tx_pending;
1981 	}
1982 	return 0;
1983 }
1984 
1985 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1986 {
1987 	struct port_info *pi = netdev_priv(dev);
1988 	struct adapter *adapter = pi->adapter;
1989 	struct qset_params *qsp;
1990 	struct sge_qset *qs;
1991 	int i;
1992 
1993 	if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1994 		return -EINVAL;
1995 
1996 	for (i = 0; i < pi->nqsets; i++) {
1997 		qsp = &adapter->params.sge.qset[i];
1998 		qs = &adapter->sge.qs[i];
1999 		qsp->coalesce_usecs = c->rx_coalesce_usecs;
2000 		t3_update_qset_coalesce(qs, qsp);
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2007 {
2008 	struct port_info *pi = netdev_priv(dev);
2009 	struct adapter *adapter = pi->adapter;
2010 	struct qset_params *q = adapter->params.sge.qset;
2011 
2012 	c->rx_coalesce_usecs = q->coalesce_usecs;
2013 	return 0;
2014 }
2015 
2016 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2017 		      u8 * data)
2018 {
2019 	struct port_info *pi = netdev_priv(dev);
2020 	struct adapter *adapter = pi->adapter;
2021 	int i, err = 0;
2022 
2023 	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2024 	if (!buf)
2025 		return -ENOMEM;
2026 
2027 	e->magic = EEPROM_MAGIC;
2028 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2029 		err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2030 
2031 	if (!err)
2032 		memcpy(data, buf + e->offset, e->len);
2033 	kfree(buf);
2034 	return err;
2035 }
2036 
2037 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2038 		      u8 * data)
2039 {
2040 	struct port_info *pi = netdev_priv(dev);
2041 	struct adapter *adapter = pi->adapter;
2042 	u32 aligned_offset, aligned_len;
2043 	__le32 *p;
2044 	u8 *buf;
2045 	int err;
2046 
2047 	if (eeprom->magic != EEPROM_MAGIC)
2048 		return -EINVAL;
2049 
2050 	aligned_offset = eeprom->offset & ~3;
2051 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2052 
2053 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2054 		buf = kmalloc(aligned_len, GFP_KERNEL);
2055 		if (!buf)
2056 			return -ENOMEM;
2057 		err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2058 		if (!err && aligned_len > 4)
2059 			err = t3_seeprom_read(adapter,
2060 					      aligned_offset + aligned_len - 4,
2061 					      (__le32 *) & buf[aligned_len - 4]);
2062 		if (err)
2063 			goto out;
2064 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2065 	} else
2066 		buf = data;
2067 
2068 	err = t3_seeprom_wp(adapter, 0);
2069 	if (err)
2070 		goto out;
2071 
2072 	for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2073 		err = t3_seeprom_write(adapter, aligned_offset, *p);
2074 		aligned_offset += 4;
2075 	}
2076 
2077 	if (!err)
2078 		err = t3_seeprom_wp(adapter, 1);
2079 out:
2080 	if (buf != data)
2081 		kfree(buf);
2082 	return err;
2083 }
2084 
2085 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2086 {
2087 	wol->supported = 0;
2088 	wol->wolopts = 0;
2089 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2090 }
2091 
2092 static const struct ethtool_ops cxgb_ethtool_ops = {
2093 	.get_settings = get_settings,
2094 	.set_settings = set_settings,
2095 	.get_drvinfo = get_drvinfo,
2096 	.get_msglevel = get_msglevel,
2097 	.set_msglevel = set_msglevel,
2098 	.get_ringparam = get_sge_param,
2099 	.set_ringparam = set_sge_param,
2100 	.get_coalesce = get_coalesce,
2101 	.set_coalesce = set_coalesce,
2102 	.get_eeprom_len = get_eeprom_len,
2103 	.get_eeprom = get_eeprom,
2104 	.set_eeprom = set_eeprom,
2105 	.get_pauseparam = get_pauseparam,
2106 	.set_pauseparam = set_pauseparam,
2107 	.get_link = ethtool_op_get_link,
2108 	.get_strings = get_strings,
2109 	.set_phys_id = set_phys_id,
2110 	.nway_reset = restart_autoneg,
2111 	.get_sset_count = get_sset_count,
2112 	.get_ethtool_stats = get_stats,
2113 	.get_regs_len = get_regs_len,
2114 	.get_regs = get_regs,
2115 	.get_wol = get_wol,
2116 };
2117 
2118 static int in_range(int val, int lo, int hi)
2119 {
2120 	return val < 0 || (val <= hi && val >= lo);
2121 }
2122 
2123 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2124 {
2125 	struct port_info *pi = netdev_priv(dev);
2126 	struct adapter *adapter = pi->adapter;
2127 	u32 cmd;
2128 	int ret;
2129 
2130 	if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2131 		return -EFAULT;
2132 
2133 	switch (cmd) {
2134 	case CHELSIO_SET_QSET_PARAMS:{
2135 		int i;
2136 		struct qset_params *q;
2137 		struct ch_qset_params t;
2138 		int q1 = pi->first_qset;
2139 		int nqsets = pi->nqsets;
2140 
2141 		if (!capable(CAP_NET_ADMIN))
2142 			return -EPERM;
2143 		if (copy_from_user(&t, useraddr, sizeof(t)))
2144 			return -EFAULT;
2145 		if (t.qset_idx >= SGE_QSETS)
2146 			return -EINVAL;
2147 		if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2148 		    !in_range(t.cong_thres, 0, 255) ||
2149 		    !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2150 			      MAX_TXQ_ENTRIES) ||
2151 		    !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2152 			      MAX_TXQ_ENTRIES) ||
2153 		    !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2154 			      MAX_CTRL_TXQ_ENTRIES) ||
2155 		    !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2156 			      MAX_RX_BUFFERS) ||
2157 		    !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2158 			      MAX_RX_JUMBO_BUFFERS) ||
2159 		    !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2160 			      MAX_RSPQ_ENTRIES))
2161 			return -EINVAL;
2162 
2163 		if ((adapter->flags & FULL_INIT_DONE) &&
2164 			(t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2165 			t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2166 			t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2167 			t.polling >= 0 || t.cong_thres >= 0))
2168 			return -EBUSY;
2169 
2170 		/* Allow setting of any available qset when offload enabled */
2171 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2172 			q1 = 0;
2173 			for_each_port(adapter, i) {
2174 				pi = adap2pinfo(adapter, i);
2175 				nqsets += pi->first_qset + pi->nqsets;
2176 			}
2177 		}
2178 
2179 		if (t.qset_idx < q1)
2180 			return -EINVAL;
2181 		if (t.qset_idx > q1 + nqsets - 1)
2182 			return -EINVAL;
2183 
2184 		q = &adapter->params.sge.qset[t.qset_idx];
2185 
2186 		if (t.rspq_size >= 0)
2187 			q->rspq_size = t.rspq_size;
2188 		if (t.fl_size[0] >= 0)
2189 			q->fl_size = t.fl_size[0];
2190 		if (t.fl_size[1] >= 0)
2191 			q->jumbo_size = t.fl_size[1];
2192 		if (t.txq_size[0] >= 0)
2193 			q->txq_size[0] = t.txq_size[0];
2194 		if (t.txq_size[1] >= 0)
2195 			q->txq_size[1] = t.txq_size[1];
2196 		if (t.txq_size[2] >= 0)
2197 			q->txq_size[2] = t.txq_size[2];
2198 		if (t.cong_thres >= 0)
2199 			q->cong_thres = t.cong_thres;
2200 		if (t.intr_lat >= 0) {
2201 			struct sge_qset *qs =
2202 				&adapter->sge.qs[t.qset_idx];
2203 
2204 			q->coalesce_usecs = t.intr_lat;
2205 			t3_update_qset_coalesce(qs, q);
2206 		}
2207 		if (t.polling >= 0) {
2208 			if (adapter->flags & USING_MSIX)
2209 				q->polling = t.polling;
2210 			else {
2211 				/* No polling with INTx for T3A */
2212 				if (adapter->params.rev == 0 &&
2213 					!(adapter->flags & USING_MSI))
2214 					t.polling = 0;
2215 
2216 				for (i = 0; i < SGE_QSETS; i++) {
2217 					q = &adapter->params.sge.
2218 						qset[i];
2219 					q->polling = t.polling;
2220 				}
2221 			}
2222 		}
2223 
2224 		if (t.lro >= 0) {
2225 			if (t.lro)
2226 				dev->wanted_features |= NETIF_F_GRO;
2227 			else
2228 				dev->wanted_features &= ~NETIF_F_GRO;
2229 			netdev_update_features(dev);
2230 		}
2231 
2232 		break;
2233 	}
2234 	case CHELSIO_GET_QSET_PARAMS:{
2235 		struct qset_params *q;
2236 		struct ch_qset_params t;
2237 		int q1 = pi->first_qset;
2238 		int nqsets = pi->nqsets;
2239 		int i;
2240 
2241 		if (copy_from_user(&t, useraddr, sizeof(t)))
2242 			return -EFAULT;
2243 
2244 		/* Display qsets for all ports when offload enabled */
2245 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2246 			q1 = 0;
2247 			for_each_port(adapter, i) {
2248 				pi = adap2pinfo(adapter, i);
2249 				nqsets = pi->first_qset + pi->nqsets;
2250 			}
2251 		}
2252 
2253 		if (t.qset_idx >= nqsets)
2254 			return -EINVAL;
2255 
2256 		q = &adapter->params.sge.qset[q1 + t.qset_idx];
2257 		t.rspq_size = q->rspq_size;
2258 		t.txq_size[0] = q->txq_size[0];
2259 		t.txq_size[1] = q->txq_size[1];
2260 		t.txq_size[2] = q->txq_size[2];
2261 		t.fl_size[0] = q->fl_size;
2262 		t.fl_size[1] = q->jumbo_size;
2263 		t.polling = q->polling;
2264 		t.lro = !!(dev->features & NETIF_F_GRO);
2265 		t.intr_lat = q->coalesce_usecs;
2266 		t.cong_thres = q->cong_thres;
2267 		t.qnum = q1;
2268 
2269 		if (adapter->flags & USING_MSIX)
2270 			t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2271 		else
2272 			t.vector = adapter->pdev->irq;
2273 
2274 		if (copy_to_user(useraddr, &t, sizeof(t)))
2275 			return -EFAULT;
2276 		break;
2277 	}
2278 	case CHELSIO_SET_QSET_NUM:{
2279 		struct ch_reg edata;
2280 		unsigned int i, first_qset = 0, other_qsets = 0;
2281 
2282 		if (!capable(CAP_NET_ADMIN))
2283 			return -EPERM;
2284 		if (adapter->flags & FULL_INIT_DONE)
2285 			return -EBUSY;
2286 		if (copy_from_user(&edata, useraddr, sizeof(edata)))
2287 			return -EFAULT;
2288 		if (edata.val < 1 ||
2289 			(edata.val > 1 && !(adapter->flags & USING_MSIX)))
2290 			return -EINVAL;
2291 
2292 		for_each_port(adapter, i)
2293 			if (adapter->port[i] && adapter->port[i] != dev)
2294 				other_qsets += adap2pinfo(adapter, i)->nqsets;
2295 
2296 		if (edata.val + other_qsets > SGE_QSETS)
2297 			return -EINVAL;
2298 
2299 		pi->nqsets = edata.val;
2300 
2301 		for_each_port(adapter, i)
2302 			if (adapter->port[i]) {
2303 				pi = adap2pinfo(adapter, i);
2304 				pi->first_qset = first_qset;
2305 				first_qset += pi->nqsets;
2306 			}
2307 		break;
2308 	}
2309 	case CHELSIO_GET_QSET_NUM:{
2310 		struct ch_reg edata;
2311 
2312 		memset(&edata, 0, sizeof(struct ch_reg));
2313 
2314 		edata.cmd = CHELSIO_GET_QSET_NUM;
2315 		edata.val = pi->nqsets;
2316 		if (copy_to_user(useraddr, &edata, sizeof(edata)))
2317 			return -EFAULT;
2318 		break;
2319 	}
2320 	case CHELSIO_LOAD_FW:{
2321 		u8 *fw_data;
2322 		struct ch_mem_range t;
2323 
2324 		if (!capable(CAP_SYS_RAWIO))
2325 			return -EPERM;
2326 		if (copy_from_user(&t, useraddr, sizeof(t)))
2327 			return -EFAULT;
2328 		/* Check t.len sanity ? */
2329 		fw_data = memdup_user(useraddr + sizeof(t), t.len);
2330 		if (IS_ERR(fw_data))
2331 			return PTR_ERR(fw_data);
2332 
2333 		ret = t3_load_fw(adapter, fw_data, t.len);
2334 		kfree(fw_data);
2335 		if (ret)
2336 			return ret;
2337 		break;
2338 	}
2339 	case CHELSIO_SETMTUTAB:{
2340 		struct ch_mtus m;
2341 		int i;
2342 
2343 		if (!is_offload(adapter))
2344 			return -EOPNOTSUPP;
2345 		if (!capable(CAP_NET_ADMIN))
2346 			return -EPERM;
2347 		if (offload_running(adapter))
2348 			return -EBUSY;
2349 		if (copy_from_user(&m, useraddr, sizeof(m)))
2350 			return -EFAULT;
2351 		if (m.nmtus != NMTUS)
2352 			return -EINVAL;
2353 		if (m.mtus[0] < 81)	/* accommodate SACK */
2354 			return -EINVAL;
2355 
2356 		/* MTUs must be in ascending order */
2357 		for (i = 1; i < NMTUS; ++i)
2358 			if (m.mtus[i] < m.mtus[i - 1])
2359 				return -EINVAL;
2360 
2361 		memcpy(adapter->params.mtus, m.mtus,
2362 			sizeof(adapter->params.mtus));
2363 		break;
2364 	}
2365 	case CHELSIO_GET_PM:{
2366 		struct tp_params *p = &adapter->params.tp;
2367 		struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2368 
2369 		if (!is_offload(adapter))
2370 			return -EOPNOTSUPP;
2371 		m.tx_pg_sz = p->tx_pg_size;
2372 		m.tx_num_pg = p->tx_num_pgs;
2373 		m.rx_pg_sz = p->rx_pg_size;
2374 		m.rx_num_pg = p->rx_num_pgs;
2375 		m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2376 		if (copy_to_user(useraddr, &m, sizeof(m)))
2377 			return -EFAULT;
2378 		break;
2379 	}
2380 	case CHELSIO_SET_PM:{
2381 		struct ch_pm m;
2382 		struct tp_params *p = &adapter->params.tp;
2383 
2384 		if (!is_offload(adapter))
2385 			return -EOPNOTSUPP;
2386 		if (!capable(CAP_NET_ADMIN))
2387 			return -EPERM;
2388 		if (adapter->flags & FULL_INIT_DONE)
2389 			return -EBUSY;
2390 		if (copy_from_user(&m, useraddr, sizeof(m)))
2391 			return -EFAULT;
2392 		if (!is_power_of_2(m.rx_pg_sz) ||
2393 			!is_power_of_2(m.tx_pg_sz))
2394 			return -EINVAL;	/* not power of 2 */
2395 		if (!(m.rx_pg_sz & 0x14000))
2396 			return -EINVAL;	/* not 16KB or 64KB */
2397 		if (!(m.tx_pg_sz & 0x1554000))
2398 			return -EINVAL;
2399 		if (m.tx_num_pg == -1)
2400 			m.tx_num_pg = p->tx_num_pgs;
2401 		if (m.rx_num_pg == -1)
2402 			m.rx_num_pg = p->rx_num_pgs;
2403 		if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2404 			return -EINVAL;
2405 		if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2406 			m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2407 			return -EINVAL;
2408 		p->rx_pg_size = m.rx_pg_sz;
2409 		p->tx_pg_size = m.tx_pg_sz;
2410 		p->rx_num_pgs = m.rx_num_pg;
2411 		p->tx_num_pgs = m.tx_num_pg;
2412 		break;
2413 	}
2414 	case CHELSIO_GET_MEM:{
2415 		struct ch_mem_range t;
2416 		struct mc7 *mem;
2417 		u64 buf[32];
2418 
2419 		if (!is_offload(adapter))
2420 			return -EOPNOTSUPP;
2421 		if (!(adapter->flags & FULL_INIT_DONE))
2422 			return -EIO;	/* need the memory controllers */
2423 		if (copy_from_user(&t, useraddr, sizeof(t)))
2424 			return -EFAULT;
2425 		if ((t.addr & 7) || (t.len & 7))
2426 			return -EINVAL;
2427 		if (t.mem_id == MEM_CM)
2428 			mem = &adapter->cm;
2429 		else if (t.mem_id == MEM_PMRX)
2430 			mem = &adapter->pmrx;
2431 		else if (t.mem_id == MEM_PMTX)
2432 			mem = &adapter->pmtx;
2433 		else
2434 			return -EINVAL;
2435 
2436 		/*
2437 		 * Version scheme:
2438 		 * bits 0..9: chip version
2439 		 * bits 10..15: chip revision
2440 		 */
2441 		t.version = 3 | (adapter->params.rev << 10);
2442 		if (copy_to_user(useraddr, &t, sizeof(t)))
2443 			return -EFAULT;
2444 
2445 		/*
2446 		 * Read 256 bytes at a time as len can be large and we don't
2447 		 * want to use huge intermediate buffers.
2448 		 */
2449 		useraddr += sizeof(t);	/* advance to start of buffer */
2450 		while (t.len) {
2451 			unsigned int chunk =
2452 				min_t(unsigned int, t.len, sizeof(buf));
2453 
2454 			ret =
2455 				t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2456 						buf);
2457 			if (ret)
2458 				return ret;
2459 			if (copy_to_user(useraddr, buf, chunk))
2460 				return -EFAULT;
2461 			useraddr += chunk;
2462 			t.addr += chunk;
2463 			t.len -= chunk;
2464 		}
2465 		break;
2466 	}
2467 	case CHELSIO_SET_TRACE_FILTER:{
2468 		struct ch_trace t;
2469 		const struct trace_params *tp;
2470 
2471 		if (!capable(CAP_NET_ADMIN))
2472 			return -EPERM;
2473 		if (!offload_running(adapter))
2474 			return -EAGAIN;
2475 		if (copy_from_user(&t, useraddr, sizeof(t)))
2476 			return -EFAULT;
2477 
2478 		tp = (const struct trace_params *)&t.sip;
2479 		if (t.config_tx)
2480 			t3_config_trace_filter(adapter, tp, 0,
2481 						t.invert_match,
2482 						t.trace_tx);
2483 		if (t.config_rx)
2484 			t3_config_trace_filter(adapter, tp, 1,
2485 						t.invert_match,
2486 						t.trace_rx);
2487 		break;
2488 	}
2489 	default:
2490 		return -EOPNOTSUPP;
2491 	}
2492 	return 0;
2493 }
2494 
2495 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2496 {
2497 	struct mii_ioctl_data *data = if_mii(req);
2498 	struct port_info *pi = netdev_priv(dev);
2499 	struct adapter *adapter = pi->adapter;
2500 
2501 	switch (cmd) {
2502 	case SIOCGMIIREG:
2503 	case SIOCSMIIREG:
2504 		/* Convert phy_id from older PRTAD/DEVAD format */
2505 		if (is_10G(adapter) &&
2506 		    !mdio_phy_id_is_c45(data->phy_id) &&
2507 		    (data->phy_id & 0x1f00) &&
2508 		    !(data->phy_id & 0xe0e0))
2509 			data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2510 						       data->phy_id & 0x1f);
2511 		/* FALLTHRU */
2512 	case SIOCGMIIPHY:
2513 		return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2514 	case SIOCCHIOCTL:
2515 		return cxgb_extension_ioctl(dev, req->ifr_data);
2516 	default:
2517 		return -EOPNOTSUPP;
2518 	}
2519 }
2520 
2521 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2522 {
2523 	struct port_info *pi = netdev_priv(dev);
2524 	struct adapter *adapter = pi->adapter;
2525 	int ret;
2526 
2527 	if (new_mtu < 81)	/* accommodate SACK */
2528 		return -EINVAL;
2529 	if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2530 		return ret;
2531 	dev->mtu = new_mtu;
2532 	init_port_mtus(adapter);
2533 	if (adapter->params.rev == 0 && offload_running(adapter))
2534 		t3_load_mtus(adapter, adapter->params.mtus,
2535 			     adapter->params.a_wnd, adapter->params.b_wnd,
2536 			     adapter->port[0]->mtu);
2537 	return 0;
2538 }
2539 
2540 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2541 {
2542 	struct port_info *pi = netdev_priv(dev);
2543 	struct adapter *adapter = pi->adapter;
2544 	struct sockaddr *addr = p;
2545 
2546 	if (!is_valid_ether_addr(addr->sa_data))
2547 		return -EADDRNOTAVAIL;
2548 
2549 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2550 	t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2551 	if (offload_running(adapter))
2552 		write_smt_entry(adapter, pi->port_id);
2553 	return 0;
2554 }
2555 
2556 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2557 	netdev_features_t features)
2558 {
2559 	/*
2560 	 * Since there is no support for separate rx/tx vlan accel
2561 	 * enable/disable make sure tx flag is always in same state as rx.
2562 	 */
2563 	if (features & NETIF_F_HW_VLAN_RX)
2564 		features |= NETIF_F_HW_VLAN_TX;
2565 	else
2566 		features &= ~NETIF_F_HW_VLAN_TX;
2567 
2568 	return features;
2569 }
2570 
2571 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2572 {
2573 	netdev_features_t changed = dev->features ^ features;
2574 
2575 	if (changed & NETIF_F_HW_VLAN_RX)
2576 		cxgb_vlan_mode(dev, features);
2577 
2578 	return 0;
2579 }
2580 
2581 #ifdef CONFIG_NET_POLL_CONTROLLER
2582 static void cxgb_netpoll(struct net_device *dev)
2583 {
2584 	struct port_info *pi = netdev_priv(dev);
2585 	struct adapter *adapter = pi->adapter;
2586 	int qidx;
2587 
2588 	for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2589 		struct sge_qset *qs = &adapter->sge.qs[qidx];
2590 		void *source;
2591 
2592 		if (adapter->flags & USING_MSIX)
2593 			source = qs;
2594 		else
2595 			source = adapter;
2596 
2597 		t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2598 	}
2599 }
2600 #endif
2601 
2602 /*
2603  * Periodic accumulation of MAC statistics.
2604  */
2605 static void mac_stats_update(struct adapter *adapter)
2606 {
2607 	int i;
2608 
2609 	for_each_port(adapter, i) {
2610 		struct net_device *dev = adapter->port[i];
2611 		struct port_info *p = netdev_priv(dev);
2612 
2613 		if (netif_running(dev)) {
2614 			spin_lock(&adapter->stats_lock);
2615 			t3_mac_update_stats(&p->mac);
2616 			spin_unlock(&adapter->stats_lock);
2617 		}
2618 	}
2619 }
2620 
2621 static void check_link_status(struct adapter *adapter)
2622 {
2623 	int i;
2624 
2625 	for_each_port(adapter, i) {
2626 		struct net_device *dev = adapter->port[i];
2627 		struct port_info *p = netdev_priv(dev);
2628 		int link_fault;
2629 
2630 		spin_lock_irq(&adapter->work_lock);
2631 		link_fault = p->link_fault;
2632 		spin_unlock_irq(&adapter->work_lock);
2633 
2634 		if (link_fault) {
2635 			t3_link_fault(adapter, i);
2636 			continue;
2637 		}
2638 
2639 		if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2640 			t3_xgm_intr_disable(adapter, i);
2641 			t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2642 
2643 			t3_link_changed(adapter, i);
2644 			t3_xgm_intr_enable(adapter, i);
2645 		}
2646 	}
2647 }
2648 
2649 static void check_t3b2_mac(struct adapter *adapter)
2650 {
2651 	int i;
2652 
2653 	if (!rtnl_trylock())	/* synchronize with ifdown */
2654 		return;
2655 
2656 	for_each_port(adapter, i) {
2657 		struct net_device *dev = adapter->port[i];
2658 		struct port_info *p = netdev_priv(dev);
2659 		int status;
2660 
2661 		if (!netif_running(dev))
2662 			continue;
2663 
2664 		status = 0;
2665 		if (netif_running(dev) && netif_carrier_ok(dev))
2666 			status = t3b2_mac_watchdog_task(&p->mac);
2667 		if (status == 1)
2668 			p->mac.stats.num_toggled++;
2669 		else if (status == 2) {
2670 			struct cmac *mac = &p->mac;
2671 
2672 			t3_mac_set_mtu(mac, dev->mtu);
2673 			t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2674 			cxgb_set_rxmode(dev);
2675 			t3_link_start(&p->phy, mac, &p->link_config);
2676 			t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2677 			t3_port_intr_enable(adapter, p->port_id);
2678 			p->mac.stats.num_resets++;
2679 		}
2680 	}
2681 	rtnl_unlock();
2682 }
2683 
2684 
2685 static void t3_adap_check_task(struct work_struct *work)
2686 {
2687 	struct adapter *adapter = container_of(work, struct adapter,
2688 					       adap_check_task.work);
2689 	const struct adapter_params *p = &adapter->params;
2690 	int port;
2691 	unsigned int v, status, reset;
2692 
2693 	adapter->check_task_cnt++;
2694 
2695 	check_link_status(adapter);
2696 
2697 	/* Accumulate MAC stats if needed */
2698 	if (!p->linkpoll_period ||
2699 	    (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2700 	    p->stats_update_period) {
2701 		mac_stats_update(adapter);
2702 		adapter->check_task_cnt = 0;
2703 	}
2704 
2705 	if (p->rev == T3_REV_B2)
2706 		check_t3b2_mac(adapter);
2707 
2708 	/*
2709 	 * Scan the XGMAC's to check for various conditions which we want to
2710 	 * monitor in a periodic polling manner rather than via an interrupt
2711 	 * condition.  This is used for conditions which would otherwise flood
2712 	 * the system with interrupts and we only really need to know that the
2713 	 * conditions are "happening" ...  For each condition we count the
2714 	 * detection of the condition and reset it for the next polling loop.
2715 	 */
2716 	for_each_port(adapter, port) {
2717 		struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2718 		u32 cause;
2719 
2720 		cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2721 		reset = 0;
2722 		if (cause & F_RXFIFO_OVERFLOW) {
2723 			mac->stats.rx_fifo_ovfl++;
2724 			reset |= F_RXFIFO_OVERFLOW;
2725 		}
2726 
2727 		t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2728 	}
2729 
2730 	/*
2731 	 * We do the same as above for FL_EMPTY interrupts.
2732 	 */
2733 	status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2734 	reset = 0;
2735 
2736 	if (status & F_FLEMPTY) {
2737 		struct sge_qset *qs = &adapter->sge.qs[0];
2738 		int i = 0;
2739 
2740 		reset |= F_FLEMPTY;
2741 
2742 		v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2743 		    0xffff;
2744 
2745 		while (v) {
2746 			qs->fl[i].empty += (v & 1);
2747 			if (i)
2748 				qs++;
2749 			i ^= 1;
2750 			v >>= 1;
2751 		}
2752 	}
2753 
2754 	t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2755 
2756 	/* Schedule the next check update if any port is active. */
2757 	spin_lock_irq(&adapter->work_lock);
2758 	if (adapter->open_device_map & PORT_MASK)
2759 		schedule_chk_task(adapter);
2760 	spin_unlock_irq(&adapter->work_lock);
2761 }
2762 
2763 static void db_full_task(struct work_struct *work)
2764 {
2765 	struct adapter *adapter = container_of(work, struct adapter,
2766 					       db_full_task);
2767 
2768 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2769 }
2770 
2771 static void db_empty_task(struct work_struct *work)
2772 {
2773 	struct adapter *adapter = container_of(work, struct adapter,
2774 					       db_empty_task);
2775 
2776 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2777 }
2778 
2779 static void db_drop_task(struct work_struct *work)
2780 {
2781 	struct adapter *adapter = container_of(work, struct adapter,
2782 					       db_drop_task);
2783 	unsigned long delay = 1000;
2784 	unsigned short r;
2785 
2786 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2787 
2788 	/*
2789 	 * Sleep a while before ringing the driver qset dbs.
2790 	 * The delay is between 1000-2023 usecs.
2791 	 */
2792 	get_random_bytes(&r, 2);
2793 	delay += r & 1023;
2794 	set_current_state(TASK_UNINTERRUPTIBLE);
2795 	schedule_timeout(usecs_to_jiffies(delay));
2796 	ring_dbs(adapter);
2797 }
2798 
2799 /*
2800  * Processes external (PHY) interrupts in process context.
2801  */
2802 static void ext_intr_task(struct work_struct *work)
2803 {
2804 	struct adapter *adapter = container_of(work, struct adapter,
2805 					       ext_intr_handler_task);
2806 	int i;
2807 
2808 	/* Disable link fault interrupts */
2809 	for_each_port(adapter, i) {
2810 		struct net_device *dev = adapter->port[i];
2811 		struct port_info *p = netdev_priv(dev);
2812 
2813 		t3_xgm_intr_disable(adapter, i);
2814 		t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2815 	}
2816 
2817 	/* Re-enable link fault interrupts */
2818 	t3_phy_intr_handler(adapter);
2819 
2820 	for_each_port(adapter, i)
2821 		t3_xgm_intr_enable(adapter, i);
2822 
2823 	/* Now reenable external interrupts */
2824 	spin_lock_irq(&adapter->work_lock);
2825 	if (adapter->slow_intr_mask) {
2826 		adapter->slow_intr_mask |= F_T3DBG;
2827 		t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2828 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2829 			     adapter->slow_intr_mask);
2830 	}
2831 	spin_unlock_irq(&adapter->work_lock);
2832 }
2833 
2834 /*
2835  * Interrupt-context handler for external (PHY) interrupts.
2836  */
2837 void t3_os_ext_intr_handler(struct adapter *adapter)
2838 {
2839 	/*
2840 	 * Schedule a task to handle external interrupts as they may be slow
2841 	 * and we use a mutex to protect MDIO registers.  We disable PHY
2842 	 * interrupts in the meantime and let the task reenable them when
2843 	 * it's done.
2844 	 */
2845 	spin_lock(&adapter->work_lock);
2846 	if (adapter->slow_intr_mask) {
2847 		adapter->slow_intr_mask &= ~F_T3DBG;
2848 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2849 			     adapter->slow_intr_mask);
2850 		queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2851 	}
2852 	spin_unlock(&adapter->work_lock);
2853 }
2854 
2855 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2856 {
2857 	struct net_device *netdev = adapter->port[port_id];
2858 	struct port_info *pi = netdev_priv(netdev);
2859 
2860 	spin_lock(&adapter->work_lock);
2861 	pi->link_fault = 1;
2862 	spin_unlock(&adapter->work_lock);
2863 }
2864 
2865 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2866 {
2867 	int i, ret = 0;
2868 
2869 	if (is_offload(adapter) &&
2870 	    test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2871 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2872 		offload_close(&adapter->tdev);
2873 	}
2874 
2875 	/* Stop all ports */
2876 	for_each_port(adapter, i) {
2877 		struct net_device *netdev = adapter->port[i];
2878 
2879 		if (netif_running(netdev))
2880 			__cxgb_close(netdev, on_wq);
2881 	}
2882 
2883 	/* Stop SGE timers */
2884 	t3_stop_sge_timers(adapter);
2885 
2886 	adapter->flags &= ~FULL_INIT_DONE;
2887 
2888 	if (reset)
2889 		ret = t3_reset_adapter(adapter);
2890 
2891 	pci_disable_device(adapter->pdev);
2892 
2893 	return ret;
2894 }
2895 
2896 static int t3_reenable_adapter(struct adapter *adapter)
2897 {
2898 	if (pci_enable_device(adapter->pdev)) {
2899 		dev_err(&adapter->pdev->dev,
2900 			"Cannot re-enable PCI device after reset.\n");
2901 		goto err;
2902 	}
2903 	pci_set_master(adapter->pdev);
2904 	pci_restore_state(adapter->pdev);
2905 	pci_save_state(adapter->pdev);
2906 
2907 	/* Free sge resources */
2908 	t3_free_sge_resources(adapter);
2909 
2910 	if (t3_replay_prep_adapter(adapter))
2911 		goto err;
2912 
2913 	return 0;
2914 err:
2915 	return -1;
2916 }
2917 
2918 static void t3_resume_ports(struct adapter *adapter)
2919 {
2920 	int i;
2921 
2922 	/* Restart the ports */
2923 	for_each_port(adapter, i) {
2924 		struct net_device *netdev = adapter->port[i];
2925 
2926 		if (netif_running(netdev)) {
2927 			if (cxgb_open(netdev)) {
2928 				dev_err(&adapter->pdev->dev,
2929 					"can't bring device back up"
2930 					" after reset\n");
2931 				continue;
2932 			}
2933 		}
2934 	}
2935 
2936 	if (is_offload(adapter) && !ofld_disable)
2937 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2938 }
2939 
2940 /*
2941  * processes a fatal error.
2942  * Bring the ports down, reset the chip, bring the ports back up.
2943  */
2944 static void fatal_error_task(struct work_struct *work)
2945 {
2946 	struct adapter *adapter = container_of(work, struct adapter,
2947 					       fatal_error_handler_task);
2948 	int err = 0;
2949 
2950 	rtnl_lock();
2951 	err = t3_adapter_error(adapter, 1, 1);
2952 	if (!err)
2953 		err = t3_reenable_adapter(adapter);
2954 	if (!err)
2955 		t3_resume_ports(adapter);
2956 
2957 	CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2958 	rtnl_unlock();
2959 }
2960 
2961 void t3_fatal_err(struct adapter *adapter)
2962 {
2963 	unsigned int fw_status[4];
2964 
2965 	if (adapter->flags & FULL_INIT_DONE) {
2966 		t3_sge_stop(adapter);
2967 		t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2968 		t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2969 		t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2970 		t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2971 
2972 		spin_lock(&adapter->work_lock);
2973 		t3_intr_disable(adapter);
2974 		queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2975 		spin_unlock(&adapter->work_lock);
2976 	}
2977 	CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2978 	if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2979 		CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2980 			 fw_status[0], fw_status[1],
2981 			 fw_status[2], fw_status[3]);
2982 }
2983 
2984 /**
2985  * t3_io_error_detected - called when PCI error is detected
2986  * @pdev: Pointer to PCI device
2987  * @state: The current pci connection state
2988  *
2989  * This function is called after a PCI bus error affecting
2990  * this device has been detected.
2991  */
2992 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2993 					     pci_channel_state_t state)
2994 {
2995 	struct adapter *adapter = pci_get_drvdata(pdev);
2996 
2997 	if (state == pci_channel_io_perm_failure)
2998 		return PCI_ERS_RESULT_DISCONNECT;
2999 
3000 	t3_adapter_error(adapter, 0, 0);
3001 
3002 	/* Request a slot reset. */
3003 	return PCI_ERS_RESULT_NEED_RESET;
3004 }
3005 
3006 /**
3007  * t3_io_slot_reset - called after the pci bus has been reset.
3008  * @pdev: Pointer to PCI device
3009  *
3010  * Restart the card from scratch, as if from a cold-boot.
3011  */
3012 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3013 {
3014 	struct adapter *adapter = pci_get_drvdata(pdev);
3015 
3016 	if (!t3_reenable_adapter(adapter))
3017 		return PCI_ERS_RESULT_RECOVERED;
3018 
3019 	return PCI_ERS_RESULT_DISCONNECT;
3020 }
3021 
3022 /**
3023  * t3_io_resume - called when traffic can start flowing again.
3024  * @pdev: Pointer to PCI device
3025  *
3026  * This callback is called when the error recovery driver tells us that
3027  * its OK to resume normal operation.
3028  */
3029 static void t3_io_resume(struct pci_dev *pdev)
3030 {
3031 	struct adapter *adapter = pci_get_drvdata(pdev);
3032 
3033 	CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3034 		 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3035 
3036 	t3_resume_ports(adapter);
3037 }
3038 
3039 static struct pci_error_handlers t3_err_handler = {
3040 	.error_detected = t3_io_error_detected,
3041 	.slot_reset = t3_io_slot_reset,
3042 	.resume = t3_io_resume,
3043 };
3044 
3045 /*
3046  * Set the number of qsets based on the number of CPUs and the number of ports,
3047  * not to exceed the number of available qsets, assuming there are enough qsets
3048  * per port in HW.
3049  */
3050 static void set_nqsets(struct adapter *adap)
3051 {
3052 	int i, j = 0;
3053 	int num_cpus = num_online_cpus();
3054 	int hwports = adap->params.nports;
3055 	int nqsets = adap->msix_nvectors - 1;
3056 
3057 	if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3058 		if (hwports == 2 &&
3059 		    (hwports * nqsets > SGE_QSETS ||
3060 		     num_cpus >= nqsets / hwports))
3061 			nqsets /= hwports;
3062 		if (nqsets > num_cpus)
3063 			nqsets = num_cpus;
3064 		if (nqsets < 1 || hwports == 4)
3065 			nqsets = 1;
3066 	} else
3067 		nqsets = 1;
3068 
3069 	for_each_port(adap, i) {
3070 		struct port_info *pi = adap2pinfo(adap, i);
3071 
3072 		pi->first_qset = j;
3073 		pi->nqsets = nqsets;
3074 		j = pi->first_qset + nqsets;
3075 
3076 		dev_info(&adap->pdev->dev,
3077 			 "Port %d using %d queue sets.\n", i, nqsets);
3078 	}
3079 }
3080 
3081 static int __devinit cxgb_enable_msix(struct adapter *adap)
3082 {
3083 	struct msix_entry entries[SGE_QSETS + 1];
3084 	int vectors;
3085 	int i, err;
3086 
3087 	vectors = ARRAY_SIZE(entries);
3088 	for (i = 0; i < vectors; ++i)
3089 		entries[i].entry = i;
3090 
3091 	while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3092 		vectors = err;
3093 
3094 	if (err < 0)
3095 		pci_disable_msix(adap->pdev);
3096 
3097 	if (!err && vectors < (adap->params.nports + 1)) {
3098 		pci_disable_msix(adap->pdev);
3099 		err = -1;
3100 	}
3101 
3102 	if (!err) {
3103 		for (i = 0; i < vectors; ++i)
3104 			adap->msix_info[i].vec = entries[i].vector;
3105 		adap->msix_nvectors = vectors;
3106 	}
3107 
3108 	return err;
3109 }
3110 
3111 static void __devinit print_port_info(struct adapter *adap,
3112 				      const struct adapter_info *ai)
3113 {
3114 	static const char *pci_variant[] = {
3115 		"PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3116 	};
3117 
3118 	int i;
3119 	char buf[80];
3120 
3121 	if (is_pcie(adap))
3122 		snprintf(buf, sizeof(buf), "%s x%d",
3123 			 pci_variant[adap->params.pci.variant],
3124 			 adap->params.pci.width);
3125 	else
3126 		snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3127 			 pci_variant[adap->params.pci.variant],
3128 			 adap->params.pci.speed, adap->params.pci.width);
3129 
3130 	for_each_port(adap, i) {
3131 		struct net_device *dev = adap->port[i];
3132 		const struct port_info *pi = netdev_priv(dev);
3133 
3134 		if (!test_bit(i, &adap->registered_device_map))
3135 			continue;
3136 		printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3137 		       dev->name, ai->desc, pi->phy.desc,
3138 		       is_offload(adap) ? "R" : "", adap->params.rev, buf,
3139 		       (adap->flags & USING_MSIX) ? " MSI-X" :
3140 		       (adap->flags & USING_MSI) ? " MSI" : "");
3141 		if (adap->name == dev->name && adap->params.vpd.mclk)
3142 			printk(KERN_INFO
3143 			       "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3144 			       adap->name, t3_mc7_size(&adap->cm) >> 20,
3145 			       t3_mc7_size(&adap->pmtx) >> 20,
3146 			       t3_mc7_size(&adap->pmrx) >> 20,
3147 			       adap->params.vpd.sn);
3148 	}
3149 }
3150 
3151 static const struct net_device_ops cxgb_netdev_ops = {
3152 	.ndo_open		= cxgb_open,
3153 	.ndo_stop		= cxgb_close,
3154 	.ndo_start_xmit		= t3_eth_xmit,
3155 	.ndo_get_stats		= cxgb_get_stats,
3156 	.ndo_validate_addr	= eth_validate_addr,
3157 	.ndo_set_rx_mode	= cxgb_set_rxmode,
3158 	.ndo_do_ioctl		= cxgb_ioctl,
3159 	.ndo_change_mtu		= cxgb_change_mtu,
3160 	.ndo_set_mac_address	= cxgb_set_mac_addr,
3161 	.ndo_fix_features	= cxgb_fix_features,
3162 	.ndo_set_features	= cxgb_set_features,
3163 #ifdef CONFIG_NET_POLL_CONTROLLER
3164 	.ndo_poll_controller	= cxgb_netpoll,
3165 #endif
3166 };
3167 
3168 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3169 {
3170 	struct port_info *pi = netdev_priv(dev);
3171 
3172 	memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3173 	pi->iscsic.mac_addr[3] |= 0x80;
3174 }
3175 
3176 static int __devinit init_one(struct pci_dev *pdev,
3177 			      const struct pci_device_id *ent)
3178 {
3179 	static int version_printed;
3180 
3181 	int i, err, pci_using_dac = 0;
3182 	resource_size_t mmio_start, mmio_len;
3183 	const struct adapter_info *ai;
3184 	struct adapter *adapter = NULL;
3185 	struct port_info *pi;
3186 
3187 	if (!version_printed) {
3188 		printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3189 		++version_printed;
3190 	}
3191 
3192 	if (!cxgb3_wq) {
3193 		cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3194 		if (!cxgb3_wq) {
3195 			printk(KERN_ERR DRV_NAME
3196 			       ": cannot initialize work queue\n");
3197 			return -ENOMEM;
3198 		}
3199 	}
3200 
3201 	err = pci_enable_device(pdev);
3202 	if (err) {
3203 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3204 		goto out;
3205 	}
3206 
3207 	err = pci_request_regions(pdev, DRV_NAME);
3208 	if (err) {
3209 		/* Just info, some other driver may have claimed the device. */
3210 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3211 		goto out_disable_device;
3212 	}
3213 
3214 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3215 		pci_using_dac = 1;
3216 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3217 		if (err) {
3218 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3219 			       "coherent allocations\n");
3220 			goto out_release_regions;
3221 		}
3222 	} else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3223 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3224 		goto out_release_regions;
3225 	}
3226 
3227 	pci_set_master(pdev);
3228 	pci_save_state(pdev);
3229 
3230 	mmio_start = pci_resource_start(pdev, 0);
3231 	mmio_len = pci_resource_len(pdev, 0);
3232 	ai = t3_get_adapter_info(ent->driver_data);
3233 
3234 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3235 	if (!adapter) {
3236 		err = -ENOMEM;
3237 		goto out_release_regions;
3238 	}
3239 
3240 	adapter->nofail_skb =
3241 		alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3242 	if (!adapter->nofail_skb) {
3243 		dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3244 		err = -ENOMEM;
3245 		goto out_free_adapter;
3246 	}
3247 
3248 	adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3249 	if (!adapter->regs) {
3250 		dev_err(&pdev->dev, "cannot map device registers\n");
3251 		err = -ENOMEM;
3252 		goto out_free_adapter;
3253 	}
3254 
3255 	adapter->pdev = pdev;
3256 	adapter->name = pci_name(pdev);
3257 	adapter->msg_enable = dflt_msg_enable;
3258 	adapter->mmio_len = mmio_len;
3259 
3260 	mutex_init(&adapter->mdio_lock);
3261 	spin_lock_init(&adapter->work_lock);
3262 	spin_lock_init(&adapter->stats_lock);
3263 
3264 	INIT_LIST_HEAD(&adapter->adapter_list);
3265 	INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3266 	INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3267 
3268 	INIT_WORK(&adapter->db_full_task, db_full_task);
3269 	INIT_WORK(&adapter->db_empty_task, db_empty_task);
3270 	INIT_WORK(&adapter->db_drop_task, db_drop_task);
3271 
3272 	INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3273 
3274 	for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3275 		struct net_device *netdev;
3276 
3277 		netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3278 		if (!netdev) {
3279 			err = -ENOMEM;
3280 			goto out_free_dev;
3281 		}
3282 
3283 		SET_NETDEV_DEV(netdev, &pdev->dev);
3284 
3285 		adapter->port[i] = netdev;
3286 		pi = netdev_priv(netdev);
3287 		pi->adapter = adapter;
3288 		pi->port_id = i;
3289 		netif_carrier_off(netdev);
3290 		netdev->irq = pdev->irq;
3291 		netdev->mem_start = mmio_start;
3292 		netdev->mem_end = mmio_start + mmio_len - 1;
3293 		netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3294 			NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX;
3295 		netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_TX;
3296 		if (pci_using_dac)
3297 			netdev->features |= NETIF_F_HIGHDMA;
3298 
3299 		netdev->netdev_ops = &cxgb_netdev_ops;
3300 		SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3301 	}
3302 
3303 	pci_set_drvdata(pdev, adapter);
3304 	if (t3_prep_adapter(adapter, ai, 1) < 0) {
3305 		err = -ENODEV;
3306 		goto out_free_dev;
3307 	}
3308 
3309 	/*
3310 	 * The card is now ready to go.  If any errors occur during device
3311 	 * registration we do not fail the whole card but rather proceed only
3312 	 * with the ports we manage to register successfully.  However we must
3313 	 * register at least one net device.
3314 	 */
3315 	for_each_port(adapter, i) {
3316 		err = register_netdev(adapter->port[i]);
3317 		if (err)
3318 			dev_warn(&pdev->dev,
3319 				 "cannot register net device %s, skipping\n",
3320 				 adapter->port[i]->name);
3321 		else {
3322 			/*
3323 			 * Change the name we use for messages to the name of
3324 			 * the first successfully registered interface.
3325 			 */
3326 			if (!adapter->registered_device_map)
3327 				adapter->name = adapter->port[i]->name;
3328 
3329 			__set_bit(i, &adapter->registered_device_map);
3330 		}
3331 	}
3332 	if (!adapter->registered_device_map) {
3333 		dev_err(&pdev->dev, "could not register any net devices\n");
3334 		goto out_free_dev;
3335 	}
3336 
3337 	for_each_port(adapter, i)
3338 		cxgb3_init_iscsi_mac(adapter->port[i]);
3339 
3340 	/* Driver's ready. Reflect it on LEDs */
3341 	t3_led_ready(adapter);
3342 
3343 	if (is_offload(adapter)) {
3344 		__set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3345 		cxgb3_adapter_ofld(adapter);
3346 	}
3347 
3348 	/* See what interrupts we'll be using */
3349 	if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3350 		adapter->flags |= USING_MSIX;
3351 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
3352 		adapter->flags |= USING_MSI;
3353 
3354 	set_nqsets(adapter);
3355 
3356 	err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3357 				 &cxgb3_attr_group);
3358 
3359 	print_port_info(adapter, ai);
3360 	return 0;
3361 
3362 out_free_dev:
3363 	iounmap(adapter->regs);
3364 	for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3365 		if (adapter->port[i])
3366 			free_netdev(adapter->port[i]);
3367 
3368 out_free_adapter:
3369 	kfree(adapter);
3370 
3371 out_release_regions:
3372 	pci_release_regions(pdev);
3373 out_disable_device:
3374 	pci_disable_device(pdev);
3375 	pci_set_drvdata(pdev, NULL);
3376 out:
3377 	return err;
3378 }
3379 
3380 static void __devexit remove_one(struct pci_dev *pdev)
3381 {
3382 	struct adapter *adapter = pci_get_drvdata(pdev);
3383 
3384 	if (adapter) {
3385 		int i;
3386 
3387 		t3_sge_stop(adapter);
3388 		sysfs_remove_group(&adapter->port[0]->dev.kobj,
3389 				   &cxgb3_attr_group);
3390 
3391 		if (is_offload(adapter)) {
3392 			cxgb3_adapter_unofld(adapter);
3393 			if (test_bit(OFFLOAD_DEVMAP_BIT,
3394 				     &adapter->open_device_map))
3395 				offload_close(&adapter->tdev);
3396 		}
3397 
3398 		for_each_port(adapter, i)
3399 		    if (test_bit(i, &adapter->registered_device_map))
3400 			unregister_netdev(adapter->port[i]);
3401 
3402 		t3_stop_sge_timers(adapter);
3403 		t3_free_sge_resources(adapter);
3404 		cxgb_disable_msi(adapter);
3405 
3406 		for_each_port(adapter, i)
3407 			if (adapter->port[i])
3408 				free_netdev(adapter->port[i]);
3409 
3410 		iounmap(adapter->regs);
3411 		if (adapter->nofail_skb)
3412 			kfree_skb(adapter->nofail_skb);
3413 		kfree(adapter);
3414 		pci_release_regions(pdev);
3415 		pci_disable_device(pdev);
3416 		pci_set_drvdata(pdev, NULL);
3417 	}
3418 }
3419 
3420 static struct pci_driver driver = {
3421 	.name = DRV_NAME,
3422 	.id_table = cxgb3_pci_tbl,
3423 	.probe = init_one,
3424 	.remove = __devexit_p(remove_one),
3425 	.err_handler = &t3_err_handler,
3426 };
3427 
3428 static int __init cxgb3_init_module(void)
3429 {
3430 	int ret;
3431 
3432 	cxgb3_offload_init();
3433 
3434 	ret = pci_register_driver(&driver);
3435 	return ret;
3436 }
3437 
3438 static void __exit cxgb3_cleanup_module(void)
3439 {
3440 	pci_unregister_driver(&driver);
3441 	if (cxgb3_wq)
3442 		destroy_workqueue(cxgb3_wq);
3443 }
3444 
3445 module_init(cxgb3_init_module);
3446 module_exit(cxgb3_cleanup_module);
3447